Effect of Crystal Quality on HCP-BCC Phase Transition in Solid 4He
fcc-,亚稳hcp-和bcc-Cu的原子状态及物理性质随温度的变化关系
由于存在强烈的s-p杂化,金属Cu外层未占据的P能
级实际已等效于8能级,因此,P能级的电子可以视为
S态电子.基于这种近似方法,本工作计算了10种基本
原子态所对应的不同晶体结构的晶格常数和结合能(其中
hcp结构的轴比c/a设为理想比1.633),结果见表1.
ergies is Ep(fcc)<Ep(hcp)<£p(bcc),and SO the lattice stability is△G(fcc)>△G(hcp)>△G(bcc);the
increasing amplitude of atomic vibrating energy is 2 to 3 times higher than that of potential energy
合金系统科学框架(systematic sciences of alloys, SSA)[5j的建立正是为了减小甚至消除这种差别,探索对 纯金属与合金的电子结构、热力学性质以及物理性质的全
万方数据
566
金属学报
42卷
面描述.这一框架以多原子相互作用势吲引、品格常数方 程[引、原子状态杂化理论[9,10】和其它物理性质理论为 基础,对Ag-Cu[11-14],Ti-AI[15—17】和Au_Cu[18—20] 等合金系的原子状态,原子势能、原子动能、原子体积、体 弹性模量和热膨胀系数等性质随温度和成分的变化规律 进行了系统研究.在这一框架中,最基础的工作是在单原 子(one atom,OA)理论[6-10J指导下,对各种不同晶体 结构纯单质的状态和性质随温度的变化进行计算模拟.本 工作采用Debye-Grfineisen模型和CALPHAD方法的 晶格稳定参数,计算模拟了SGTE纯单质数据库中fcc-, hcp一和bcc-Cu的电子结构以及物理性质随温度变化的 关系.
Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys
See discussions, stats, and author profiles for this publication at: /publication/229595062 Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloysARTICLE in JOURNAL OF APPLIED PHYSICS · MAY 2011Impact Factor: 2.19 · DOI: 10.1063/1.3587228CITATIONS 80DOWNLOADS143VIEWS4104 AUTHORS, INCLUDING:Sheng GuoChalmers University of Technology29 PUBLICATIONS 329 CITATIONSSEE PROFILEAvailable from: Sheng GuoRetrieved on: 16 September 2015Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloysSheng Guo,1Chun Ng,1Jian Lu,2and C.T.Liu1,a)1Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hung Hom,Kowloon,Hong Kong,People’s Republic of China2College of Science and Engineering,City University of Hong Kong,Kowloon,Hong Kong(Received8March2011;accepted3April2011;published online16May2011)Phase stability is an important topic for high entropy alloys(HEAs),but the understanding to it isvery limited.The capability to predict phase stability from fundamental properties of constituentelements would benefit the alloy design greatly.The relationship between phase stability andphysicochemical/thermodynamic properties of alloying components in HEAs was studiedsystematically.The mixing enthalpy is found to be the key factor controlling the formation of solidsolutions or compounds.The stability of fcc and bcc solid solutions is well delineated by thevalance electron concentration(VEC).The revealing of the effect of the VEC on the phase stabilityis vitally important for alloy design and for controlling the mechanical behavior of HEAs.V C2011American Institute of Physics.[doi:10.1063/1.3587228]I.INTRODUCTIONHigh entropy alloys(HEAs)constitute a new type of metallic alloys for structural and particularly high-tempera-ture applications,due to their high hardness,wear resistance, high-temperature softening resistance and oxidation resist-ance.1–3HEAs are typically composed of more thanfive me-tallic elements in equal or near-equal atomic ratios,and interestingly they tend to form solid solution structure (mainly fcc and/or bcc)rather than multiple intermetallic compounds as expected from general physical metallurgy principles.They were termed as HEAs because the entropy of mixing is high when the alloying elements are in equia-tomic ratio,and it was initially believed that the high entropy of mixing leads to the formation of the solid solution struc-ture rather than intermetallic compounds.The generally used alloying elements in HEAs are fcc-type Cu,Al,Ni,bcc-type Fe,Cr,Mo,V and hcp-type Ti,Co (crystal structure at ambient temperature).When these alloy-ing elements are mixed with different combination,or with same combination but different amount of certain elements, fcc,bcc or mixed fcc and bcc structures may form.For example,cast CoCrCuFeNi(in atomic ratio,same after-wards)has the fcc structure while AlCoCrCuFeNi has the fccþbcc structure;4and the amount of Al in the Al x CoCrCu-FeNi system can tune the crystal structure from fcc to fccþbcc and to fully bcc4.The structure directly affects the mechanical properties,and to take again the Al x CoCrCuFeNi system as an example:with increasing x,the structure changes from fcc to fccþbcc andfinally to bcc;the hardness and strength increase with the increasing amount of bcc phases but the alloys get brittle.4,5Although the embrittle-ment mechanism by bcc phases still needs further explora-tion,it is certainly important to be able to control the formation of bcc phases.The target of this work is hence to find out the physical parameters that control the stability for the fcc and bcc phases in HEAs.II.ANALYSISWang et al.briefly discussed the reason of addition of Al in the Al x CoCrCu1Àx FeNiTi0.5system causing the struc-tural transition from fcc to bcc.6They claimed that the alloy-ing of larger Al atoms introduces the lattice distortion energy,and the formation of a lower atomic-packing-effi-ciency structure,such as bcc,can decrease this distortion energy.This does make sense but is far away from being sat-isfactory;besides,it can not quantitatively predict when the bcc structure will form as a function of Al additions.Ke et al.claimed that,in the Al x Co y Cr z Cu0.5Fe v Ni w system,Ni and Co are fcc stabilizers and Al and Cr are bcc stablizers;1.11Co is equivalent to Ni as the fcc stablizers and2.23Cr is equivalent to Al for the bcc stablizers.Furthermore,if the equivalent Co%is greater than45at.%,the alloy has an fcc structure,and the alloy has a bcc structure if the equivalent Cr%is greater than55at.%.7This empirical rule is useful but it has no scientific merits and is valid only for the specific alloy systems.The establishment of scientific principles to control the crystal structures in HEAs can also contribute to the alloy design of HEAs with desirable properties.For example,we can use less expensive Ni to partially or com-pletely replace more expensive Co;or we can reduce the amount of Cu which is known to cause segregation issue because the mainly positive enthalpy of mixing between Cu and other alloying elements.4As a test to the equivalency of Ni and Co as fcc stabil-izers,we prepared a series of Al x CrCuFeNi2(0.2x 1.2) alloys to study the effect of Al amount on the phase stability in this alloy system,in comparison to the well studied Al x CoCrCuFeNi system.The alloys were prepared by arc-melting a mixture of the constituent elements with purity better than99.9%in a Ti-gettered high-purity argon atmos-phere.Repeated melting was carried out at leastfive times toa)Author to whom correspondence should be addressed.Electronic mail:mmct8tc@.hk.0021-8979/2011/109(10)/103505/5/$30.00V C2011American Institute of Physics109,103505-1JOURNAL OF APPLIED PHYSICS109,103505(2011)improve the chemical homogeneity of the alloy.The molten alloy was drop-cast into a10mm diameter copper mold.The phase constitution of the alloy was examined by X-ray dif-fractometer using Co radiation(Bruker AXS D8Discover). The X-ray diffraction patterns are shown in Fig.1where it is clear that at x0.8,the alloys have a single fcc structure and the bcc phase starts to appear at x¼1.0.In the Al x CoCrCu-FeNi system,fully fcc structure is obtained at x0.5and bcc phase starts to appear at x>0.8.4The experimental results indicate that Co is not necessarily required in obtain-ing the solid solution structure in HEAs,which is good foralloy design from economy concerns.This new alloy systemalso provides more data to study the phase stability in HEAs,ideally from the consideration of the fundamental propertiesof constituent alloying elements.Zhang et al.studied the relationship between the phasestability and the atomic size difference,d(¼100ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP Ni¼1c ið1Àr i=rÞ2q,r¼P ni¼1c i r i,where c i and r i areatomic percentage and atomic radius of the i th component),and also the mixing enthalpy,D H mix(¼P ni¼1;i¼jX ij c i c j,X ij¼4D AB mix,where D AB mix is the mixing enthalpy of binaryliquid AB alloys)for multi-component alloys.8They foundthat the solid solution tends to form in the region delineatedbyÀ15KJ/mol D H mix5KJ/mol and1d 6.Therequirement of atomic size difference for formation of thesolid solution structure is not surprising as basically it is inline with the well established Hume-Rothery rule.9Othertwo requirements from the Hume-Rothery rule to form thesolid solution are electronegativity and electron concentra-tion.Fang et al.defined the electronegativity difference in amulti-component alloy system as D v(¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ni¼1c iðv iÀvÞ2q,v¼P ni¼1c i v i,where v i is the Pauling electronegativity forthe i th component).10The effect of electron concentration isa little bit more complex.There are basically two definitionsof the electron concentration:average number of itinerantelectrons per atom,e/a,and the number of total electronsincluding the d-electrons accommodated in the valenceband,valence electron concentration or VEC.11,12e/a orVEC for a multi-component alloy can be defined as theweighted average from e/a or VEC of the constituent compo-nents:e/a¼P ni¼1c iðe=aÞi or VEC¼P ni¼1c iðVECÞi,where(e/a)i and(VEC)i are the e/a and VEC for the individual ele-ment.Hume-Rothery rule works with the e/a definition ande/a has clear effect on the crystal structure for the so-calledelectron compounds or Hume-Rothery compounds.9How-ever,the HEAs comprise mainly transition metals(TMs)ande/a for TMs are very controversial.11Very recently,Mizutanireviewed the various definitions of e/a for TMs and con-cluded that e/a for TMs are small positive numbers.11Unfortunately,not all e/a for TMs have been determined ande/a for a TM element even varies in different environment.For convenience,VEC was used here to study the electronconcentration effect on the phase stability in HEAs.III.RESULTSFollowing Zhang et al.’s method,8the atomic size dif-ference,d,and the mixing enthalpy,D H mix for the Al x CoCr-CuFeNi4and Al x CrCuFeNi2systems are plotted in Fig.2.The electronegativity difference,D v,and VEC are also plot-ted to show how these factors referred in the Hume-Rotheryrule affect the solid solution formation.D H mix,D v and VECare all plotted as a function of d in Fig.2for convenience,and this does not indicate these parameters are mutually de-pendent.For comparison,d,D H mix,D v and VEC for threeadditional systems of HEAs[CoCrCuFeNiTi x(see Ref.13),Al0.5CoCrCuFeNiTi x(see Ref.14),Al0.5CoCrCuFeNiV x(see Ref.15)],where compounds will form in the originallyfcc-typed alloy by increasingly doping the amount of onealloying element(Ti or V),are also plotted in Fig.2.The cal-culation required physicochemical and thermodynamicFIG.1.(Color online)X-ray diffraction patterns for Al x CrCuFeNi2alloys(x¼0.2$1.2).FIG.2.(Color online)Relationship between the mixing enthalpy,D H mix(a),the Electronegativity,D v(b)and the valence electron concentration,VEC,(c),and the atomic size difference,d,forfive HEA systems:Al x CoCrCu-FeNi,CoCrCuFeNiTi x,Al0.5CoCrCuFeNiTi x,Al0.5CoCrCuFeNiV x,andAl x CrCuFeNi2.Note on the legend:fully closed symbols for sole fcc phases;fully open symbols for sole bcc phase;top-half closed symbols for mixes fccand bcc phases;left or right-half closed symbols for phases containing atleast one compound phase(left or right half simply indicates different typesof compounds).parameters for the constituent alloying elements are from Refs.16–19and some of them are listed in Table I .As seen from Fig.2,using the definitions of atomic size difference,mixing enthalpy,valence electron concentration and electronegativity defined here,D H mix is the only effec-tive parameter that can predict the formation of sole solid solutions (hence no formation of compounds)in HEAs.Solid solution form when À5KJ/mol D H mix 5KJ/mol,and compounds would form once D H mix is more negative.On the other hand,d ,D v and VEC all fail to effectively predict the formation of solid solution phases or compounds.Figure 2provides some clues to obtain the solely solid solution struc-ture in HEAs based simply on the fundamental properties of constituent elements.This is certainly useful but from Fig.2it is still unclear when the bcc phase will form and what is the determining factor controlling the bcc phase formation.A careful examination of Fig.2,however,suggests that bcc phases start to form when VEC reaches $8.0[Fig.2(c)].The other three parameters,D H mix ,d ,and D v do not behave such a clear indicator function.To make the point clearer,VEC for three HEA systems,Al x CoCrCuFeNi (see Ref.4),Al x CoCrCu 0.5FeNi (see Ref.7),and Al x CoCrCuFeNi 2(this work)in which increasingly doping of the same element Al would cause phase constitution from sole fcc to mixed fccand bcc,are plotted in Fig.3.Figure 3clearly shows that VEC can be used to quantitatively predict the phase stability for fcc and bcc phases in HEAs:at VEC !8.0,sole fcc phase exists;at 6.87 VEC <8.0,mixed fcc and bcc phases will co-exist and sole bcc phase exists at VEC <6.87.Note that at the boundary VEC ¼8.0,sometimes bcc phases also form but they are minor phases (see Fig.1and Ref.4).Although there is one exception for the Al x CoCrCu 0.5FeNi alloy where 6.87 VEC <8.0but the stable phase is sole bcc (not fcc þbcc),we suspect this VEC -defined phase stability shall work effectively for most cases.To prove this,VEC for more HEA systems with fcc,fcc þbcc,or bcc structure containing other alloying elements like Ti,V,Mn,Nb,Mo,Ta,W even metalloid B and C,are plotted in Fig.4(data are from litera-tures in Ref.7and 20–24).Although there are still some exceptions,the fcc/bcc phase boundary can clearly be delineated by VEC .With a note to those exceptions,the VEC -defined fcc/bcc phase boundary seems to work unsatis-factorily for Mn-containing HEA systems.TABLE I.Physiochemical properties for commonly used elements in HEAs.Element Atom radius (A˚)Pauling electronegativityVEC Al 1.4321.613B 0.8202.043C 0.773 2.554Co 1.251 1.889Cr 1.249 1.666Fe 1.241 1.838Mn 1.350 1.557Mo 1.363 2.166Nb 1.429 1.65Ni 1.246 1.9110Ta 1.430 1.505Ti 1.462 1.544V 1.316 1.635W1.3672.366FIG.3.(Color online)Relationship between VEC and the fcc,bcc phase sta-bility for three HEA systems:Al x CoCrCuFeNi,Al x CrCuFeNi 2and Al x CoCr-Cu 0.5FeNi.Note on the legend:fully closed symbols for sole fcc phases;fully open symbols for sole bcc phase;top-half closed symbols for mixes fcc and bccphases.FIG. 4.(Color online)Relationship between VEC and the fcc,bcc phase sta-bility for more HEA systems further to Fig.3.Note on the legend:fully closed symbols for sole fcc phases;fully open symbols for sole bcc phase;top-half closed symbols for mixes fcc and bcc phases.IV.DISCUSSIONThe effect of the VEC on the phase stability has been studied before by the current authors for the intermetallic compounds only.One example is on the(Fe,Co,Ni)3V inter-metallic alloys with long-range-ordered(LRO)structures.25 We found that these LRO alloys are characterized by specific sequences of stacked close-packed ordered layers and the stacking character can be altered systematically by control-ling the VEC of these alloys.With the decreasing VEC by partial substitution of Co and Ni by Fe,the LRO changes from purely hexagonal,to L12-type cubic ordered structure, through different ordered mixtures of hexagonal and cubic layers.As the hexagonal structure exhibits brittle fracture while the cubic ordered structures are ductile,the control of VEC can hence be used to tune the mechanical properties of LRO alloys.We also investigated the role of VEC in the phase stability of NbCr2-based transition-metal Laves phase alloys.26It was found that when the atomic size ratios were kept nearly identical,the VEC is the dominant factor in con-trolling the phase stability(C14,hexagonal or C15,cubic)in this type of high-temperature structural alloys.Our results in the present work prove that VEC also plays a decisive role in the stability of fcc and bcc solid solution phases in the multi-component HEAs.Mizutani has shown that VEC is crucial in determining the Fermi level whenfirst-principles band calcu-lations are carried out to study the band structure.11In the first-principles band calculations,the integration of the den-sity of states(DOS)actually results in VEC,which includes not only s-and p-electrons but also d-electrons forming the valence band.11Mizutani emphasized that the parameter VEC,instead of e/a,should be used in realistic electronic structure calculations to take into account the d-electron con-tribution.11More theoretical work needs to be carried out to understand the physical basis for the mechanism behind the VEC rule on the phase stability,for example from the VEC-electronic structure-bind structure energy perspective.27 Two issues need to be emphasized here for the discussion of the VEC rule on the phase stability.First,the VEC ranges for different phases to be stable might overlap and these ranges also vary depending on the specific alloy systems.A very close example is in some ternary Mg alloys that possess typical Laves structures.9It was found that the electron con-centration(e/a though)ranges for MgCu2-type(cubic,with packing ABCABCABC),MgNi2-type(hexagonal,with pack-ing ABACABAC)and MgZn2-type(hexagonal,with packing ABABAB)structures differ in various alloy systems,and the e/a ranges for MgNi2-type structure and MgZn2-type struc-ture overlap for the Mg-Cu-Al system.This can probably explain the exceptions that appear in Figs.3and4.Second, the phases referred in this work are all identified in the as-cast state and they are hence very possibly in the metastable state. However,evidences have shown that these metastable phases have quite good thermal stability28–31and can hence be regarded as very close to the stable phases.This gives confi-dence to the general applicability of the VEC rule,consider-ing it works so well for such an extended series of various alloy systems.More work is certainly needed to further verify this.Admitting these two issues mentioned above,one solid result out of our study is that,in HEAs the bcc phase is stable at lower VEC while the fcc phase is stable at higher VEC. This trend already sheds some light on the alloy design,and the fact that most HEA alloy systems satisfying the VEC (<6.87,bcc;!8,fcc)rule even simplifies the process.As the VEC rule on the phase stability between the fcc and bcc phases is tested only for the HEAs in this work,its applicabil-ity to other alloy systems other than the nearly equiatomic HEAs(i.e.,in the traditional alloys where only one or two pri-mary elements dominate),awaits further analysis.In addition, it would be interesting to know whether this VEC rule can be used to predict the phase stability for other structured phases, like the hcp-typed phases.More work along these directions is under way.V.CONCLUSIONSIn summary,the phase stability in HEAs and its relation-ship to the physicochemical and thermodynamic properties of constituent alloying elements are systematically studied. The mixing enthalpy determines whether the solid solution phases or compounds form in the nearly equiatomic multi-component alloy systems.Most importantly the VEC is found to be the physical parameter to control the phase sta-bility for fcc or bcc solid solutions.Fcc phases are found to be stable at higher VEC(!8)and instead bcc phases are sta-ble at lower VEC(<6.87).This work provides valuable input for understanding of the phase stability and to design ductile crystal structures in HEAs. ACKNOWLEDGMENTSThis research was supported by the internal funding from HKPU.1B.Cantor,I.T.H.Chang,P.Knight,and A.J.B.Vincent,Mater.Sci. Eng.A375,213(2004).2W.H.Wu,C.C.Yang,and J.W.Yeh,Ann.Chim.Sci.Mater.31,737(2006). 3J.W.Yeh,Ann.Chim.Sci.Mater.31,633(2006).4C.J.Tong,Y.L.Chen,S.K.Chen,J.W.Yeh,T.T.Shun,C.H.Tsau, S.J.Lin,and S.Y.Chang,Metall.Mater.Trans.36A,881(2005).5C.W.Tsai,M.H.Tsai,J.W.Yeh,and C.C.Yang,J.Alloys Compd.490, 160(2010).6F.J.Wang,Y.Zhang,and G.L.Chen,J.Alloys Compd.478,321(2009). 7G.Y.Ke,S.K.Chen,T.Hsu,and J.W.Yeh,Ann.Chim.Sci.Mater.31, 669(2006).8Y.Zhang,Y.J.Zhou,J.P.Lin,G.L.Chen,and P.K.Liaw,Adv.Eng. Mater.10,534(2008).9R.W.Cahn and P.Hassen,Physical Metallurgy,4th ed.(North Holland, Amsterdam,1996),Vol.1.10S.S.Fang,X.Xiao,X.Lei,W.H.Li,and Y.D.Dong,J.Non-Cryst.Sol-ids321,120(2003).11U.Mizutani,Hume-Rothery Rules for Structurally Complex Alloy Phases (CRC Press,Boca Raton,2011).12T.B.Massalski,Mater.Trans51,583(2010).13X.F.Wang,Y.Zhang,Y.Qiao,and G.L.Chen,Intermetallics15,357 (2007).14M.R.Chen,S.J.Lin,J.W.Yeh,S.K.Chen,Y.S.Huang,and C.P.Tu, Mater.Trans.47,1395(2006).15M.R.Chen,S.J.Lin,J.W.Yeh,S.K.Chen,Y.S.Huang,and M.H. Chuang,Metall.Mater.Trans.37A,1363(2006).16A.Takeuchi and A.Inoue,Mater.Trans.41,1372(2000).17A.Takeuchi and A.Inoue,Mater.Trans.46,2817(2005).18O.N.Senkov and D.B.Miracle,Mater.Res.Bull.36,2183(2001).19WebElements:the periodic table on the web,available at:http://www. /.20C.C.Tung,J.W.Yeh,T.T.Shun,S.K.Chen,Y.S.Huang,and H.C. Chen,Mater.Lett.61,1(2007).21H.Y.Chen,C.W.Tsai,C.C.Tung,J.W.Yeh,T.T.Shun,C.C.Yang, and S.K.Chen,Ann.Chim.Sci.Mater.31,685(2006).22O.N.Senkov,G.B.Wilks,D.B.Miracle,C.P.Chuang,and P.K.Liaw, Intermetallics18,1758(2010).23C.Li,J.C.Li,M.Zhao,L.Zhang,and Q.Jiang,Mater.Sci.Technol.24, 376(2008).24Y.F.Li,L.J.Kong,Z.H.Gan,and Z.X.Yuan,J.Wuhan,Univ.Sci. Technol.32,60(2009).25C.T.Liu,Inter.Met.Rev.29,168(1984).26J.H.Zhu,P.K.Liaw,and C.T.Liu,Mater.Sci.Eng.A239–240,260 (1997).27D.Nguyen-Manh and D.G.Pettifor,Intermetallics7,1095(1999).28L.H.Wen,H.C.Kou,J.S.Li,H.Chang,X.Y.Xue and L.Zhou,Interme-tallics17,266(2009).29C.M.Lin,H.L.Tsai,and H.Y.Bor,Intermetallics18,1244(2010).30C.M.Lin and H.L.Tsai,pd.489,30(2010).31O.N.Senkov,G.B.Wilks,J.M.Scott,and D.B.Miracle,Intermetallics 19,698(2011).。
抛光粉颗粒度对高功率激光玻璃材料抛光效率和粗糙度的影响
Table 5 The roughness with different slurry particle size in BK7 polishing
图5不同平均粒径抛光粉抛光BK7在不同抛光阶段的玻璃表面粗糙度(a)BK7玻璃R1308抛光0.5 h(b)BK7玻璃 R1308抛光1.5 h(c)BK7玻璃R1308抛光2.5 h(d)BK7玻璃R1308抛光3.5 h(e)BK7玻璃R115抛光3.5 h 面粗糙度
本文就3类高功率激光玻璃材料抛光中抛光剂 中的抛光粉颗粒度对抛光效率和抛光粗糙度的影响 进行了深入研究。采用不同平均粒径的氧化铈抛光 粉配成的抛光剂分别对磷酸盐钕玻璃、熔石英和BK7 3类激光材料的抛光过程进行了实验。通过实验表 明:不同的激光玻璃材料由于硬度不同,应选择适宜 的抛光粉颗粒度才能在达到一定的抛光效率的同时 获得最佳的抛光粗糙度。实验也为抛光上述激光玻 璃材料时选择抛光粉的规格提供了工艺指导。
第29卷第7期 2009年7月
文章编号:0253—2239(2009)07—1905—07
光学学报
ACTA 0PTICA SINICA
Vol。29.No.7 July,2009
抛光粉颗粒度对高功率激光玻璃材料抛光 效率和粗糙度的影响
张宝安 包 蕾 朱健强
(中国科学院上海光学精密机械研究所,上海201800)
Experiment indicates that special glass,for its typical physical and chemcal property,need corresponding average particle size of polishing slurry to get optimal polishing material removal rate.The influence on roughness of different slurry particle size for these three type glass is studied in experiment.Experiment data shows that the influences on
材料科学基础(哈工大版)课件
dislocations climbing and gliding:位错攀移和滑移
⑴相变机制: 固态相变:过饱和固溶体 蠕变:位错 层错 滑移 攀移
⑵晶体学基础: 结构:单晶体 多晶体 原子排列:体心立方 面心立方 密排六方 晶体表征:晶面指数 晶向指数
内容及要求:懂-会-熟(练习)
本章内容
1. 化学键
№1
练习1-2答案
∞、∞、∞、1 №2
(1121) 1、1、-1/2、1
晶帶:相交或平行于某直线的所有晶面
直线:晶带轴 晶帶定理: hu + kv+ lw = 0
晶面间距
面间距的应用-物相鉴定
α ˊ (110)
In ten sity
1000
850(℃ )
800
600
400
200
0
20
Materials Science and Engineering A 454–455 (2007) 461–466
Fig. 5. Dislocation structure of a precompression treatment specimens during creep at 800 ◦C and 600MPa: (a) t = 0, (b) t=10h, (c) t = 50 h and (d) after fail at t = 287 h.
材料科学基础
第一章 材料的结构
前言
材料热处理学报,29(1),99-101, 2008
304 奥氏体不锈钢热诱发马氏体相变研究
杨卓越、王 建、陈嘉砚
摘 要: 借助X射线衍射技术,研究了304 奥氏体不锈钢热诱发 马氏体相变倾向。结果表明:C、Mn、Cr 和Ni接近标准规范下 限,304 不锈钢的稳定性急剧下降,致使液氮内冷却后的奥氏体 转变为α′或ε马氏体,室温拉伸即形成应变诱发ε和α′马氏体,而且 较小的室温变形显著增大随后液氮内冷却的热诱发α′马氏体相 变倾向,但随室温预应变增大快速形成应变诱发α′马氏体,致使 随后在液氮内发生热诱发α′马氏体倾向下降。此外,研究表明ε 马氏体的形成及消失与α′马氏体的累积量有关。
翻译修改版
环氧磷腈纳米管的合成及对环氧树脂的增强作用古晓君,黄小兵,昊巍,唐晓真上海交大化学工程、中国上海东川路800号,200240国家重点实验室纳米级微加工技术,重点实验室和微细加工技术的薄膜部上海交大教育研究所、微/纳米科学与技术、中国上海,200240上海交大国家重点实验室的金属基复合材料、中国上海东川路800号200240关键词:环氧树脂、纳米复合材料、纳米管摘要:这篇论文是采用环氧氯丙烷和带有活性羟基的磷腈纳米管来制备环氧磷腈纳米管(EPPZTs),通过傅立叶变换红外光谱(FTIR)和电子显微镜(SEM)分别对其结构和形貌进行表征。
对不同含量的PPZTs/EP复合材料进行冲击强度和拉伸强度试验。
通过SEM来研究EPPZTs在基体里的分散效果,当EPPZTs为0.1wt%时,增强效果最为明显。
通过TGA研究复合材料的热稳定性,EPPZTs的加入明显提高了残余量和降低了热失重速率。
1 引言环氧树脂有许多优点,如低制造成本、低收缩、良好的耐化学腐蚀性能和良好的综合机械性能。
其被泛应用于涂料、胶粘剂、电子仪器、汽车和航天等领域[1-4],然而它的脆性性质和易燃性限制了其在一些先进领域的应用。
为了进一步提高EP的物理机械性能,研究人员已经研究出了很多种添加剂如碳酸钙、氧化铝、硅石、海泡石、蒙脱石和碳纳米管(CNTs)[5 - 11]。
在所有的方法中CNTs的加入被看作是最好的,因为研究人员想要CNTs分散在聚合物基体中来提高机械性能、热性能和电气性能[12]。
研究人员已经研究出了很多将CNTs加入到聚合物基体中的方法[13]。
因为改性破坏了它的结构,所以碳纳米管的机械或电气性能也得到了改变[14]。
开发一种新型的低成本纳米管,使其均匀地分散在的聚合物基体中,这项研究将在这一领域有着十分重要的意义。
磷腈是一种新型的有机-无机杂化材料,交替的氮和磷原子在主链上。
磷腈材料已被用作阻燃材料、光学材料、生物材料、电极材料、膜材料,观测等。
fcc和bcc消光条件 -回复
fcc和bcc消光条件-回复标题:FCC和BCC消光条件的解析引言:FCC(Face Centered Cubic)和BCC(Body Centered Cubic)是金属晶体的两种常见结构。
消光是指材料中的光透过时被吸收或散射,而不反射的现象。
在本文中,我们将深入探讨FCC和BCC结构下的消光条件,并逐步解析这些条件的原因和实际应用。
第一节:FCC结构的消光条件FCC结构是相对较为紧密的晶体排列方式,其中每个晶胞包含有一个原子位于每个面的中心,以及八个角落的原子。
FCC结构的消光条件可以通过以下步骤来解析。
1. 光源入射:首先,我们假设一束平行入射的光线经过FCC晶体。
由于光线的波长通常远大于晶胞大小,我们可以将光看作是经过晶格之间恒定距离传播的平面波。
2. 光与晶格相互作用:当光线与晶体相互作用时,它将与晶体内的电磁场相互作用。
这种相互作用导致电子在晶体中的振动,即生成布洛赫电子波。
3. 布洛赫电子波的干涉:对于FCC结构,布洛赫电子波将在各个晶胞之间发生干涉。
由于FCC结构中的每个晶胞中都有原子位于每个面的中心,所以在不同晶胞之间的布洛赫电子波之间会产生互相抵消的干涉。
4. 消光条件的建立:当光线的入射角度使得FCC结构中的不同布洛赫电子波完全抵消时,消光即发生。
这种条件可以用来计算光线透过晶体时的消光角度和波长。
第二节:BCC结构的消光条件BCC结构是另一种常见的晶体排列方式,其中每个晶胞有一个位于每个面的中心,以及一个位于晶胞中心的原子。
BCC结构的消光条件可以通过以下步骤来解析。
1. 光源入射:同样地,我们假设一束平行入射的光线经过BCC晶体。
2. 光与晶格相互作用:光线与BCC晶体相互作用会引起电子的振动,并生成布洛赫电子波。
3. 布洛赫电子波的干涉:与FCC结构类似,BCC结构中的布洛赫电子波也会在不同晶胞之间产生干涉。
然而,由于BCC结构中的每个晶胞中只有一个角落有原子,不同晶胞的布洛赫电子波无法完全抵消。
相对分子质量对聚丙烯结晶和熔融行为的影响
2019 年第 48 卷
存在相互作用。姚瑞刚等[9]在研究化学降解 PP 树 脂时发现,降解前后 PP 的 Tc、Tm 及热焓基本不变, 而等温结晶速率则随相对分子质量减小而降低,表 现出不同于常规 PP 树脂的相对分子质量依赖性。
本工作通过中试装置合成了 6 种相对分子质量 不同但具有相似相对分子质量分布的 PP[10]。利用 GPC、熔体流动速率(MFR)、SAXS、DSC 等方法 考察了相对分子质量对 PP 晶体结构、结晶和熔融行 为的影响,为 PP 的实际生产和加工应用提供参考。
[收稿日期]2018 - 12 - 28;[修改稿日期]2019 - 02 - 05。 [作者简介]邹发生(1984—),男,江西省赣州市人,博士,高级工程师,电话 010 - 59224904,电邮 zoufs.bjhy@。
·358·
石油化工 PETROCHEMICAL TECHNOLOGY
融温度降低,而结晶度增大。等规聚丙烯的平衡熔点为 188.2 ℃。
[关键词]相对分子质量;聚丙烯;结晶;熔融
[文章编号]1000 - 8144(2019)04 - 0357 - 05
[中图分类号]TQ 325.14
[文献标志码]A
Effect of relative molecular weight on crystallization and melting behavior of polypropylene
聚丙烯(PP)因为比重轻、无毒性、易加工、 强度高、耐化学腐蚀和电气绝缘性能好等优点, 被广泛用于建筑、家电、包装、农业、国防、交通 运输等各个领域。与结晶型小分子化合物单一熔 点、熔程短不同,PP 是具有一定分子链结构分布 的聚合物混合物。分子链的构象、长短和分布都会 对 PP 的晶体结构、结晶形态、结晶速率、加工工 艺和制品性能产生影响[1-9]。Lehtimen 等[3-5]利用 聚合物分级系统研究了 PP 立构规整度和相对分子 质量对 PP 结晶温度(Tc)、熔融温度(Tm)、结
玻璃化温度对环氧树脂空间电荷分布的影响_陈少卿
2011年8月电工技术学报Vol.26 No. 8 第26卷第8期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Aug. 2011玻璃化温度对环氧树脂空间电荷分布的影响陈少卿彭宗仁王霞(西安交通大学电力设备电气绝缘国家重点实验室西安 710049)摘要用电声脉冲法(PEA)测量了纯环氧试样在313K(玻璃化温度以下)及343K(玻璃化温度以上)时的空间电荷分布,并测量了两种温度不同电场强度下的空间电荷特性。
实验发现两种温度下的空间电荷特性具有明显的差异。
并对环氧树脂表面水分对空间电荷特性的影响进行了讨论。
关键词:玻璃化温度环氧树脂空间电荷表面水分中图分类号:TM215.1Effects of Glass Transition Temperature on Space Charge in Epoxy ResinChen Shaoqing Peng Zongren Wang Xia(State Key Laboratory of Electrical Insulation and Power EquipmentXi’an Jiaotong University Xi’an 710049 China)Abstract The space charge distribution of filler free epoxy resin at temperature below 313K and above 343K are measured with the pulsed electro-acoustic (PEA) method. The space charge distributions under different electrical field at each temperature are also investigated. The results show that the space charge characteristics at each temperature had obvious diversity. The influence of the water content on the space charge generation is also shown and discussed.Keywords:Glass transition temperature, epoxy resin, space charge, surface water1引言环氧材料已被广泛作为绝缘材料应用于高压设备、电力电子器件和集成电路封装[1-4]。
镜面映像法确定FCC和BCC晶体始滑移系的原 理及技巧
Received: Apr. 21 , 2018; accepted: May 7 , 2018; published: May 17 , 2018
Abstract
The standard projection of cubic crystal system is a necessary tool for determining the initial slip system of the face-centered cubic (FCC) crystal as well as the body-centered cubic (BCC) crystal by the mirror image method. In this paper, based on the brief introduction of drawing of the cubic crystal system (001) standard projection, the principle of the mirror image method was analyzed to prove the scientific nature of the method, in an addition, the skill for determining the initial slip system of FCC and BCC crystals by the mirror image method was introduced.
Keywords
Mirror Image Method, Initial Slip System, Principle, Skill
镜面映像法确定FCC和BCC晶体始滑移系的原 理及技巧
范群成1*,康嘉晨2
色心能吸收可见光的晶体缺陷
1 缺陷的缔和
当几个缺陷占据相邻的格点时,带有
相反电荷的缺陷之间可通过库仑引力
相互缔合,形成缺陷的缔合体。
置换杂质缺陷和空位缺陷之间、空位缺 陷与空位缺陷之间、杂质原子与间隙原 子之间都可发生缺陷的缔合。
引起缺陷缔合的因素
库仑引力 偶极距作用 共价键作用
影响缔合缺陷的数目的因素
spsp33ccttdd对称性对称性最强最硬的材料之一最强最硬的材料之一高导热性与陶瓷不同高导热性与陶瓷不同在可见光和红外光中透明高折射率在可见光和红外光中透明高折射率半导体可以制备电子器件半导体可以制备电子器件对金属稳定加热可转变为碳对金属稳定加热可转变为碳钻石硬度特别大是指它抵抗外力刻划的能力强
ZnO中会呈现亮红色 这种颜色与间隙处俘获电子 形成的色心有关。
自从对晶体中的F心研究以来,已发 现了若干类型的色心。 其中许多类型的色心并不能使晶体 着色,这是由于其吸收峰的位置超 出了可见光谱的范围。
碱土金属氧化物的色心
F心系指带两个单位正电荷的氧离子空 位俘获两个电子。 如果氧离子空位只俘获了一个电子, 则该缺陷仍有一个单位的有效正电荷, 称为F—心。
碱金属卤化物中几种常见色心的模型
色心着色的原理
1
2
的存在 V
Cl
V
捕获电子形成色心 Cl
3 色心的电子从基态跃迁到激发态
产生色心的方法
1 射线辐照法
2 高温下于碱金属蒸气中处理法 3 高温下让电流通过晶体法
在萤石(CaF2)晶体中,若存在F心,
晶体会出现罕见的蓝紫红色;
含有少量间隙Zn原子的非整比化合物
基于聚苯乙烯微球的拉曼增强效应及其应用于金单晶表面单层分子的检测
[Communication]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .,2008,24(11):1941-1944November Received:August 6,2008;Revised:September 12,2008;Published on Web:September 30,2008.English edition available online at *Corresponding author.Email:bren@;Tel:+86592-2186532.国家自然科学基金(20673086,20825313)、教育部新世纪优秀人才计划(NCET -05-0564)和国家重点基础研究发展规划(973)项目(2007CB935603)资助鬁Editorial office of Acta Physico -Chimica Sinica基于聚苯乙烯微球的拉曼增强效应及其应用于金单晶表面单层分子的检测林秀梅王翔刘郑任斌*(厦门大学化学化工学院化学系,固体表面物理化学国家重点实验室,福建厦门361005)摘要:利用在样品表面上组装聚苯乙烯微球,可以使得表面拉曼信号得到增强.系统考察了增强效应与微球粒子尺寸的依赖关系,发现当微球直径为3.00μm 时,拉曼信号的增强效应最强,可以达到约5倍的增强.进一步利用聚苯乙烯微球的增强效应,获得了单层吸附在Au(111)表面上具有共振增强效应的异氰基孔雀石绿分子的拉曼信号,得到约20倍的信号净增强,相当于约3个数量级的拉曼增强效应,表明利用这种方法可以显著提高单晶表面吸附分子的检测灵敏度.这种增强效应主要是由于激光在透明微球的作用下,在微球底部产生纳米光束流,从而形成高度局域化的电磁场,使拉曼散射过程得到极大的增强.初步探讨了两种类型样品表面获得不同的增强效应的原因.关键词:聚苯乙烯微球;纳米光束流;金单晶表面;孔雀石绿分子;表面增强拉曼光谱中图分类号:O647Enhanced Raman Scattering by Polystyrene Microspheres and Applicationfor Detecting Molecules Adsorbed on Au Single Crystal SurfaceLIN Xiu -MeiWANG XiangLIU ZhengREN Bin *(State Key Laboratory of Physical Chemistry of Solid Surfaces,Department of Chemistry,College of Chemistry and ChemicalEngineering,Xiamen University,Xiamen 361005,Fujian Province,P.R.China )Abstract :By assembling polystyrene microsphores on a sample surface,the surface Raman signal could be enhanced.The dependence of the enhancement effect on the size of microparticles was systematically investigated and it was found that microparticles with a diameter of 3.00μm showed the highest enhancement of ca 5folds.By utilizing the enhancement effect of the microspheres,the surface Raman intensity of malachite green isothiocyanate (MGITC)adsorbed on Au(111)surface could be enhanced by 20folds,indicating that this method could effectively improve the detection sensitivity of surface Raman spectroscopy for the adsorbed species on single crystal surface.The later signal increment corresponds to the Raman enhancement effect of nearly 3orders of magnitude.The enhancement effect is mainly owing to the formation of nanojets when a laser is focused on the microspheres of appropriate diameter.The formation of nanojets will lead to the highly localized electromagnetic field,which will then significantly enhance the Raman process in the nanojets.The main reason for obtaining different enhancements on two types of samples was analyzed.Key Words :Polystyrene microsphere;Nanojet;Au single crystal surface;Malachite green isothiocyanate;Enhanced Raman spectroscopy拉曼光谱作为一种振动光谱技术,可以覆盖分子振动的所有频率区间,在研究各种固/液、固/气和固/固界面体系中有其独特的优势,更可以用来从分子水平上深入表征各种表面(界面)的结构和过程[1].1941Acta Phys.-Chim.Sin.,2008Vol.24但是,受其检测灵敏度的限制,直到发现表面增强拉曼散射(surface-enhanced Raman scattering,SERS)现象以后,拉曼光谱技术才被广泛地应用于包括表面、材料和生命等领域的研究中,尤其在最近几年得到迅速的发展,并且可以提供单分子检测的灵敏度[2-7].但是,至今SERS研究仍极大地依赖于粗糙化的金属表面或借助具有合适粒径的金属纳米颗粒.正是由于这些SERS基底微观环境的复杂性,使得对表面拉曼光谱信号的解释变得复杂甚至不可能[7,8].如果能在表面结构完全确定的单晶上获得表面物种的拉曼信号,则可以有效地利用表面选律[9]分析表面上的吸附分子,为了解分子在单晶电极表面的吸附和反应等表面过程提供准确的信息,不论对于理论模拟还是实际应用都具有重要的意义.但是,目前对于单晶电极表面是否存在SERS效应还存在争议,而且即使存在,其增强效应也应该很弱,导致检测灵敏度很低,这也使得拉曼光谱难以发展成为一个通用的表面分析技术.所以,如何提高单晶表面拉曼光谱的检测灵敏度,使表面拉曼光谱可以脱离粗糙的表面,从而可以研究光滑的表面甚至单晶电极表面,是拉曼光谱技术欲发展成为表面科学中重要的分析工具必须要解决的关键问题,也是拉曼光谱领域的一个巨大挑战,而且三十多年来,人们也在进行着不懈的努力.Otto小组[10]和Futamata小组[11]曾经分别成功地采用Otto光学构造的ATR电解池,利用表面等离子激元增强方法获得光滑单晶电极的表面Raman信号(其表面增强因子为1-2个数量级).而利用新发展起来的针尖增强拉曼光谱技术(TERS),我们也已经检测到Au(111)表面上共振和非共振增强效应的表面分子的拉曼信号,并获得了高达106的增强[12-14].但是,由于TERS仪器和操作的复杂性,以及在获得高质量的TERS针尖方面存在的难题,在一定程度上制约了TERS的广泛应用[15].自2004年以来,陆续有利用聚苯乙烯或者二氧化硅微球来产生光学增强效应的报道.Chen等[16,17]利用理论模拟了光通过微球后形成的纳米光束流的性质和影响因素,发现在优化的条件下,纳米光束流的腰束宽度可以小至120nm,并声称具有突破光学衍射极限的尺寸.Yang等[18]则从实验上证实了在二氧化硅微球底部产生的纳米光束流可使其下硅片的拉曼信号得到增强,并且通过有限时域差分法(FDTD)模拟表明,在实验条件下纳米光束流的腰束宽度可以小至120nm.最近,Shen等[19]利用纳米光束流开展了近场拉曼成像实验,获得了约为80nm 的空间分辨率.Arnold等[20]则利用纳米光束流在光刻胶上进行纳米图案直写,也获得了突破光学衍射极限的100nm空间分辨率.本工作拟利用聚苯乙烯(PS)微球在激光作用下所形成的纳米光束流的光学增强效应,研究表面上单层物种的表面拉曼信号.通过系统地改变微球的粒径,寻找在所采用波长下能产生最强增强效应的粒径,并在优化的粒径下获得了组装在Au(111)表面单层的异氰基孔雀石绿(MGITC)分子的表面拉曼光谱.1实验部分1.1仪器和试剂所采用的硅片购自无锡华润华晶微电子有限公司硅材料工厂.聚苯乙烯微球由颜晓梅教授(厦门大学)提供,直径分别为0.60、2.15、3.00、4.00、5.02和6.24μm.异氰基孔雀石绿分子购自美国英杰(Invitrogen)生命技术有限公司,配成1μmol·L-1的乙醇溶液.异丙醇、丙酮、乙醇、硫酸、双氧水和氟化铵等均为分析纯试剂,购自中国医药集团上海化学试剂公司.氮气(99.999%)购自厦门Linde气体公司.超纯水(18.0 MΩ·cm)由美国生产的Millpore超纯水仪提供.拉曼测试用法国Jobin Yvon的LabRam I型共聚焦拉曼光谱仪,所用的激光波长为632.8nm,采谱用50倍的长焦物镜(NA=0.55),光斑直径为2.0μm.1.2实验过程1.2.1聚苯乙烯(PS)微球在硅片上的自组装把硅片沿着晶面切割成1.0cm×1.0cm大小,先依次在异丙醇、丙酮和超纯水中各超声5min,然后在硫酸与双氧水(体积比3∶1)的混合溶液中沸腾30 min,取出后用超纯水超声三次(每次5min),再把硅片浸泡在40%氟化铵水溶液中5min以去除氧化层,取出后用超纯水彻底清洗,氮气吹干后,用微量进样器取10μL5%的PS微球乙醇溶液,滴加在处理过的硅片表面,于15℃静置2h至干,即获得覆盖了亚单层PS微球的干净的Si表面.1.2.2孔雀石绿分子在单晶Au(111)上的自组装Au单晶用Clavilier等[21]的方法制备得到,选取其中的一个Au(111)的自然面作为研究面.每次实验前对Au单晶电极进行电化学抛光,然后在氢火焰下退火,并在高纯N2的保护下冷却到室温.处理后的Au单晶在1μmol·L-1MGITC的乙醇溶液中浸泡10min,然后用乙醇冲洗干净待用.1942No.11林秀梅等:基于聚苯乙烯微球的拉曼增强效应及其应用于金单晶表面单层分子的检测1.2.3PS微球在Au(111)上的组装用微量进样器取10μL5%的PS微球乙醇溶液,滴加在组装了MGITC分子的单晶表面,15℃下静置2h至干,即获得覆盖了亚单层PS微球的表面.2结果与讨论2.1聚苯乙烯微球粒径对拉曼增强的影响影响微球增强效应的因素包括入射光波长,周围介电环境和微球本身的折射率,以及微球本身的直径等[16,17].由于本实验室拉曼光谱仪的激发光波长为632.8nm,而能产生纳米光束流的通常是透明的二氧化硅或是聚苯乙烯微球[18-20],因此本实验采用632.8nm波长的激光作为激发光,在空气环境中,主要考察PS微球直径对增强效应的影响.如图1a 为组装在硅片上直径为3.00μm PS微球的显微光学图像,PS微球在硅片上形成了亚单层有序组装.实验结果表明,如果以激光直接聚焦在硅片上时(如图2a所示)所测到硅片的520cm-1谱峰的拉曼信号强度来归一化,则当激光聚焦于组装在硅片表面上的不同粒径(0.60、2.15、3.00、4.00、5.02和6.24μm)的聚苯乙烯微球上时(如图2b所示),所得到硅片的520cm-1拉曼信号强度分别为2.03、3.25、5.22、4.41、3.64和2.57(如图3所示).即当PS微球的直径为3.00μm时,对基底信号的增强效应最强.利用FDTD方法对直径为3.00μm的PS微球进行理论模拟,基底为Si.结果表明激光经过微球的近场聚焦后电场强度的增强最大可达15倍,但是在硅片表面的最强增强为6,具体结果见图1b,其中灰度表示电场强度在X-Y空间上的分布,颜色越亮表示强度越强.如果考虑拉曼光谱信号和电场强度的4次方关系,可以得到最强约为1296的增强效应.如果考虑聚焦腰束内的平均增强效应,则增强效应要更低.由于Si单晶上的实验包含体相硅信号的贡献,难以很好关联增强的信号和理论计算的结果.为了更好地对比实验和理论的结果,我们尝试利用该增强效应获取单晶电极上单层表面物种的信号.2.2聚苯乙烯微球对吸附在Au(111)表面上分子的拉曼增强效应2.2.1Au(111)表面组装分子的选择由于单晶SERS检测灵敏度很低,非共振拉曼分子吸附在单晶表面上时,在常规实验条件下检测不到它们的信号.本实验中为了对比的方便,选择了在632.8nm激发光下具有共振增强拉曼效应的孔雀石绿分子,一方面该分子在单晶电极表面可以形成一个单层的吸附物种,并能给出较弱的表面共振增强拉曼信号;另一方面,在PS微球的作用下,该吸附分子可以给出增强的表面拉曼信号.通过比较两种条件下获得的信号强度,可以较准确地估算PS 微球的拉曼增强效应.2.2.2PS微球对吸附在Au(111)表面上的MGITC的拉曼增强效应图1直径为3.00μm的聚苯乙烯(PS)微球在硅片上自组装的光学显微镜图(a)及FDTD模拟的场强分布(b)Fig.1White light microscopic image of a silicon substrate covered with PS microspheres with a diameter of3.00μm(a),and the field strength distribution of microspheres using FDTD modeling(b)PS:polystyrene;FDTD:finite difference time domain图2激光在样品上聚焦的示意图Fig.2Schematic diagrams of the laser beamfocusing on different samples(a)bare silicon,(b)PS microspheres self-assembled on silicon,(c) malachite green isothiocyanate(MGITC)modified Au(111)surface,(d) PS microspheres self-assembled over MGITC modified Au(111)surface 图3纯硅片信号(a)及不同直径聚苯乙烯微球(b-g)对硅片信号的增强效应Fig.3Raman spectra of a bare silicon(a)and silicon substrates covered with PS microspheres withdifferent diameters(b-g)d PS/μm:(b)0.60,(c)2.15,(d)3.00,(e)4.00,(f)5.02,(g)6.241943Acta Phys.-Chim.Sin.,2008Vol.24为了研究PS 微球对吸附在Au(111)表面上的MGITC 的增强效应,分别检测吸附了MGITC 的Au (111)表面在没有PS 微球(图2c 和图4a)和有PS 微球(图2d 和图4b)时的拉曼信号.比较两个谱图可以发现,在PS 微球的作用下,吸附在Au(111)表面上的MGITC 的拉曼信号增加了约20倍.根据实际实验条件采用有限时域差分法(FDTD)进行模拟,表明纳米光束流的腰束半径可以小至250nm(图1b),则在纳米光束流内的增强至少可达G =(g -1)(R /r )2=(20-1)(1500/250)2=684,其中G 代表增强因子;g 是表面拉曼信号强度的净增强值(存在微球和不存在微球的差值),g -1为扣除未增强部分的信号贡献;R 是激光光斑半径(取1.5μm);r 是纳米光束流的腰束半径(取250nm).可以看出,理论计算和实验得到的增强值比较接近,而且两个结果都表明在该体系中存在增强效应.根据文献[18]以及我们的FDTD 模拟结果可以看出,PS 微球对硅单晶及Au 单晶上表面分子产生的增强效应的主要原因是,入射激光在微球的作用下,会在微球底部靠近基底表面处产生纳米光束流,而且纳米光束流的腰束宽度会被限制在小于半波长的范围内,从而产生强的局域化电磁场,极大地增强了拉曼散射.而纳米光束流对硅片和单晶表面分子增强效应的不同,主要是由于当激光会聚在硅片上时,激光在Si 片内具有一定的穿透深度,所得到的拉曼信号不仅仅是表面的信号还包含体相Si 的贡献,使得在最终得到的增强的信号在总信号中的贡献较小.而当它会聚在单晶面上时,得到的则仅仅是表面单层物种的信号,可以反映出最大的增强效应.3结论直径为3.00μm PS 微球在波长为632.8nm 的激发光的作用下,可以使其下方的硅片基底信号得到约为5倍的增强,从而可使组装在Au(111)单晶面上的孔雀石绿分子的拉曼信号产生约20倍的增强,对应于约3个数量级的拉曼增强效应.这种增强效应主要是由于激光在透明微球的作用下,在微球底部产生纳米光束流,从而形成高度局域化的电磁场,使拉曼散射过程得到极大的增强,有效地提高了在单晶表面分子拉曼检测的灵敏度.通过进一步系统的研究和优化,有望在原位条件下利用该技术开展单晶表面上单层吸附分子的电化学研究,从而可以利用确定的拉曼光谱表面选律来分析表面上分子的吸附行为和反应过程,为和粗糙电极上获得的SERS 信号,以及和红外光谱得到的数据进行比较,从而突破制约SERS 研究中存在的表面结构类型的限制.References1Ren,B.;Wang,X.Chin.J.Light Scattering ,2006,18(4):288[任斌,王喜.光散射学报,2006,18(4):288]2Corset,J.;Aubard,J.J.Raman Spectrosc.,1998,29(8):6493Tian,Z.Q.J.Raman Spectrosc.,2005,36(6-7):4664Surface -enhanced Raman spectroscopy,special issue.Faraday Discuss.,2006,132:1-3405Kneipp,K.;Wang,Y.;Kneipp,H.;Perelman,L.T.;Itzkan,I.;Dasari,R.R.;Feld,M.S.Phys.Rev.Lett.,1997,78(9):16676Nie,S.M.;Emory,S.R.Science ,1997,275:11027Tian,Z.Q.;Ren,B.;Wu,D.Y.J.Phys.Chem.B ,2002,106(37):94638Tian,Z.Q.;Ren,B.Annu.Rev.Phys.Chem.,2004,55:1979Moskovits,M.J.Chem.Phys.,1982,77(9):440810Bruckbauer,A;Otto,A.J.Raman Spectrosc.,1998,29(8):66511Futamata,M.Surf.Sci.,1997,386(l23):8912Pettinger,B.;Ren,B.;Picardi,G.;Schuster,R.;Ertl,G.Phys.Rev.Lett.,2004,92(9):09610113Ren,B.;Picardi,G.;Pettinger,B.;Schuster,R.;Ertl,G.Angew.Chem.Int.Ed.,2005,44(1):13914Wang,X.;Liu,Z.;Zhuang,M.D.;Zhang,H.M.;Wang,X.;Xie,Z.X.;Wu,D.Y.;Ren,B.;Tian,Z.Q.Appl.Phys.Lett.,2007,91:10110515Ren,B.;Tian,Z.Q.Modern Instrum.,2004,10(5):1[任斌,田中群.现代仪器,2004,10(5):1]16Chen,Z.G.;Taflove,A.;Backman,V.Opt.Express ,2004,12(7):121417Li,X.;Chen,Z.G.;Taflove,A.;Backman,V.Opt.Express ,2004,13(2):52618Yi,K.J.;Wang,H.;Lu,Y.F.;Yang,Z.Y.J.Appl.Phys.,2007,101:06352819Johnson,K.;Yu,T.;You,Y.M.;Liu,J.P.;Alex,S.;Li,L.J.;Shen,Z.X.Opt.Express ,2008,16(11):797620McLeod,E.;Arnold,C.B.Nat.Nanotechnol.,2008,3:41321Clavilier,J.;Faure,R.;Guinet,G.;Durand,R.J.Electroanal.Chem.,1980,107(1):205图4MGITC 分子吸附在Au(111)表面上不存在(a)和存在(b)聚苯乙烯微球时的拉曼光谱Fig.4Comparison of surface Raman spectra of MGITC adsorbed on Au(111)surface without (a)orwith (b)PS microspheresd PS =3.00μm;acquisition time:1s1944。
fcc_hcp和bcc结构Au的_省略_子状态及物理性质随温度的变化关系_陶辉锦
从而导致 fcc- Au 具有最大的单键半径以及最大的原 子体积; 温度上升过程中, 3 种结构的原 子单键半径大小顺 序
为: fcc> bcc> hcp, 导致相应的原子体积大小顺序为: fcc> bcc> hcp; 3 种晶 体结构 原子势能 大小顺 序为: fcc< hcp< bcc, 与第 一原理 V ASP 程序结果一致; 3 种结构的原子 动能随温度 的增加 幅度大 约是势 能的 4. 2 倍, 温 度 上升过程中原子动能的变化远大于势能。
1 原理与方法
1. 1 纯金属单原子理论
1. 1. 1 原子状态参数
与稳定的自由原子相比, 凝聚态金属中的原子 是通过化学键结合的。因此, 金属原子外层的电子
可以按照功能分 为成键和 非成键 两大 类电子[ 21] 。
金属键是一种 包含共价、自 由或磁性 电子的混 合
键, 因此原子外层成键的价电子可以分为共价、自
I s r s / I s ; f 和 f 分别代表共价和自由电子键
s
s
的成键能力, 即 f = + 3 + 5 , = sc / nv ,
= p c / nv , = dc / nv , f = 2 , = nf / nv ; r 0 和 r 分别代表平衡态和任意状态的最短键长; nx 和 m x 分别为 MA I 势, 即 W x ( r) 势的拟合参数。 1. 1. 4 体弹性模量和线热膨胀系数
由和磁电子, 非成键电子( 简称非键电子) 则视为具 有化学惰性的离子实电子。其中, 共价电子对结合
能起主要贡献, 自由电子对导电、导热和塑性起主
要贡献。
在 O A 理论中, 用基本原子态 k ( k= 1, 2, ,
hcp_fcc_和bcc_Sc晶格稳定性的第一原理研究
V ol.14 No.5 Oct. 2009 hcp-,fcc-和bcc-Sc 晶格稳定性的第一原理研究陶辉锦1, 2, 3, 刘玲1, 陈伟民2, 文杰斌1, 杨巧然1(1. 中南大学材料科学与工程学院,长沙410083;2. 中南大学冶金科学与工程学院,长沙410083;3. 中南大学有色金属材料科学与工程教育部重点实验室,长沙410083)摘要:分别采用第一原理总能赝势平面波的局域密度近似LDA(Local density approximation)和广义梯度近似GGA(Generalized gradient approxim ation)两种近似方法计算hcp-,fcc-和bcc-Sc 的晶格常数、总能和态密度,并将实验值与以上两种方法以及CALPHAD 方法的计算结果进行对比研究,发现采用LDA 和GGA 的计算结果均为∆G b c c-h cp>∆G f cc-h cp>0,与CALPHAD 方法外推的结果∆G fcc-hcp>∆G b cc-hcp>0 不一致。
用LDA 方法计算的hcp-,fcc-和bcc-Sc 的晶格常数和原子体积较GGA 方法的计算结果小,但总能绝对值偏大。
LDA 方法与GGA 方法的态密度曲线形状基本一致,但LDA 得到的s 和p 态电子占据数比GGA 方法的偏小。
关键词:Sc;晶格稳定性;第一原理总能平面波赝势;LDA;GGA中图分类号:TG111 文献标识码:A 文章编号:1673-0224(2009)5-299-07Study on lattice stability in first principles of hcp-, fcc- and bcc-ScTAO Hui-jin1, 2, LIU Ling1, CHEN Wei-min2, WEN Jie-bin1, Y ANG Qiao-ran1(1. School of Materials Science and Engineering, Central South University, Changsha 410083, C hina;2. School of Metallurgical Science and Engineering, Central South University, Changsha 410083, C hina;3. Key Laboratory of Nonferrous Materials Science and Engineering, Ministry of Education, Central South Universit y,Changsha 410083, C hina)Abstract: The local density approximation(LDA) and general gradient approximation(GGA) of total energy plane wave pseudopotential method in first principles have been used to calculate the lattice constants, total energies and density of state of hcp-, fcc- and bcc-Sc. The results have been compared with both calculated results of CALPHAD method and experimental data. It is found that lattice stability parameters obtained by LDA and GGA in first principles are all ∆G bcc-h cp>∆G fcc-hcp>0 but very different with the result of CALPHAD method as ∆G fcc-hcp>∆G bcc-h cp>0. And the lattice constants and atomic volumes calculated in LDA are smaller than those in GGA. The absolute values of total energies in LDA are larger than those in GGA. The curve shape of state density in LDA is very similar with that in GGA. But, the electronic occupation number of hcp-, fcc- and bcc-Sc in s and p state calculated in LDA are less than that in GGA.Key words: Sc; lattice stability; total energy plane wave pseudopotential; first principles; LDA; GGA相图是材料研究,如凝固、晶体生长、固态反应、相变和氧化等研究的基础。
关于FCC和BCC点阵晶面间距计算式的证明
关于FCC和BCC点阵晶面间距计算式的证明
宫秀敏;朱勇
【期刊名称】《北京航空航天大学学报》
【年(卷),期】1991(000)001
【总页数】7页(P35-41)
【作者】宫秀敏;朱勇
【作者单位】不详;不详
【正文语种】中文
【中图分类】O712
【相关文献】
1.关于FCC和BCC点阵晶面间距计算式的证明 [J], 宫秀敏;朱勇
2.Bravais晶格点阵广义晶面(HKL)及面间距dHKL取值探讨 [J], 李承荃
3.Fe52T2(T=Cr,Mn,Co,Ni)合金bcc与fcc相结构的第一性原理研究 [J], 董雪;马爽;武晓霞;那日苏
4.Fe合金FCC-BCC原子尺度台阶型马氏体相界面迁移行为的分子动力学模拟研究[J], 韦昭召;马骁;柯常波;张新平
5.A Molecular Dynamics Study on the Effects of Lattice Defects on the Phase Transformation from BCC to FCC Structures [J], Takuya Uehara
因版权原因,仅展示原文概要,查看原文内容请购买。
结晶化学简介(陈春华).
Trigonal (R) a=b=c α=β=γ ≠90o < 120o
晶体结构的描述:
晶胞:高度抽象,但不够形像(3-D结构特征)。 3-D结构描述方法: ¾ 等径球密堆 (close packing) :导向因素是结构中球形粒子 堆积密度最大化。金属结构描述(hcp,fcc,bcc等) ¾ 配位多面体堆积 (space-filling polyhedra) :强调结构中阳 离子与阴离子的配位关系,3D堆砌配位多面体(离子晶体、 共价键晶体结构描述)。 ¾ 价键网络 (covalent network) :突出中心原子与相邻原子 之间的价键连接关系(共价键晶体结构描述)。
2rA−O t= , 1 < t ≤ 1.06 2rB −O
Case III: 12配位A离子更小,但满足:
t=
2 R A− O 2 RB − O
, 0 .85 ≤ t < 0 .9
——稳定的正交或单斜结构。
如果 t<0.85 或 t > 1.06, ABO3将不再呈钙钛矿型结构。 例如:LiNbO3和FeTiO3,结构为O=-hcp,两种阳离子 都是6配位,占据2/3的八面体空隙。
第 3 章:结晶化学(回顾)
第1节:几个基本概念
1. 晶体(Crystal):原子、离子、分子三维周期排 列所构 成的集合体。 2. 点阵、晶格 (Lattice) 、格点( Lattice point) 点阵、 3. 晶胞(Unit cell): The smallest repeatingunit which shows the full symmetry of the crystal structure.格位 (Lattice site)原子坐标(a,b,c)晶面指数[ h k l ]晶向指数(h k l) 4. 晶体的宏观对称性:7个晶系,14种平移群,32点群 5. 晶体的微观对称性:230 space groups 6. 结构: Structure and Texture
利用光子晶体提高InP基LED出光效率
第27卷 第5期2006年5月半 导 体 学 报C HIN ES E J OU RNAL O F S EM ICOND U C TO RSVol.27 No.5May ,20063国家高技术研究发展计划(批准号:2003AA 311020)和国家自然科学基金(批准号:60345008,60377011)资助项目 通信作者.Email :duwei @se 2005208222收到,2005210211定稿Ζ2006中国电子学会利用光子晶体提高InP 基L ED 出光效率3杜 伟 许兴胜 孙增辉 鲁 琳 高俊华 赵致民 王春霞 陈弘达(中国科学院半导体研究所集成光电子学国家重点联合实验室,北京 100083)摘要:应用FDTD 方法计算了二维无限大光子晶体的能带结构,并制备出了InP 基二维平板结构的光子晶体器件.在制备过程中尝试了仅用PMMA 做掩模以及PMMA 和SiO 2做掩模两种方法.结果表明,不使用SiO 2做掩模的情况下,由于PMMA 胶选择性较差,在刻蚀过程中难以保证图形的准确转移.而增加SiO 2掩模后,获得了图形质量良好的光子晶体结构.成功实现了利用光子晶体结构增强L ED 的出光效率,与未制作光子晶体结构的L ED 相比,光子晶体结构L ED 的出光效率可在原来基础上提高1倍以上.并且随着晶格常数的增加,出光效率进一步提高.关键词:光子晶体;电子束曝光;反应离子束刻蚀;L ED 出光效率PACC :4270Q中图分类号:TN 248.4 文献标识码:A 文章编号:025324177(2006)05209212051 引言半导体发光二极管(L ED )在显示、照明和通信等领域有着广泛的应用前景.但在通常的发光器件中由于内全反射产生的传输模而导致出光效率受到很大的限制,近年来提出了很多改善L ED 出光效率的方法,如表面粗糙化、谐振腔法等,采用这些方法都观察到了不同程度的出光效率的提高.由于光子晶体中存在类似于半导体中的电子禁带的光子禁带,因此有望成为新一代的光半导体,近年来成为人们的研究热点[1].由于光子晶体中光子禁带的存在,使得某些特定频率的光子不能通过,这种特性可以用来实现多种具有优异特性的光电子器件,如光子晶体激光器、光子晶体大角度弯曲波导[2]等.最近Fa n 等人从理论上计算出可以利用光子晶体提高L ED 的出光效率.本文主要研究利用光子晶体的带隙结构提高L ED 的出光效率.利用时域有限差分法从理论上分析了晶格常数的改变对禁带位置变化的影响以及相应的对L ED 出光效率的影响,利用半导体工艺的方法制备出了光子晶体结构,从实验上验证了光子晶体提高L ED 出光效率的效果.2 光子晶体结构的理论分析和实验制作211 能带结构分析FD TD 方法主要用来计算时域上电磁波在光子晶体内部的传播和散射,通过分析同一时刻不同位置的电磁场分布情况,以及不同时刻同一位置的电磁场分布情况,实现了分析光子晶体内部电磁场传播过程的目的.利用FD TD 方法不仅能够分析光子晶体的能带结构,更可以获得同一时刻不同位置或者不同时刻同一位置电磁场分布情况[3].我们利用二维FD TD 方法获得了光子晶体的能带结构,同时也分析了改变晶格常数时光子晶体能带位置的变化情况.图1所示为a =600nm ,r/a =013时的二维无限大光子晶体T E 模的光子晶体能带结构图,从图中可以发现归一化频率范围为0121~0128的光子禁带,在此频率范围内光子态密度为零.计算还发现在TM 偏振模式的能带结构中没有出现禁带.图1 二维无限大光子晶体中TE 模的光子能带结构图Fig.1 2D infinite p hot onic crystal ba nd st ructure (TEmode )半 导 体 学 报第27卷2.2 光子晶体的微加工半导体材料上光子晶体结构的制作有多种方法,但与半导体工艺相兼容的加工工艺在实现光电子集成上具有优势.由于微加工技术的提高,使得像光子晶体这样微细结构的器件制作越来越精确.目前有多种加工光子晶体的方法,我们主要采用了利用电子束曝光(elect ron bea m lit hograp hy,EBL)生成图形,利用反应离子束刻蚀(R I E)转移图形的方法.首先尝试了仅采用PM MA胶做掩模,以直接将图形由胶转移到I n P材料上的方法制作光子晶体结构.利用EBL定义光子晶体图形.为了增大刻蚀工艺中掩模版与材料的选择性,显影后在高温环境中烘烤晶片2h以上,以使PM M A掩模更加坚硬.利用RI E系统直接刻蚀I n P材料.刻蚀中采用C H4 +H2+A r混合气体,刻蚀完成后的图形如图2所示.由图可见,由于PM MA掩模版的选择性较差,导致刻蚀之后的图形已经变形.按照理论设计和EBL定义的图形是在材料上形成空气孔的结构,刻蚀后的结果为锥形的材料柱,说明刻蚀过程中的侧蚀较为严重,使相邻的孔互相连通,形成了锥形的柱状结构.即使如此,该工艺下刻蚀得到的图形的均匀性仍然保持良好,由此也说明了通过优化工艺,提高掩模的选择性,能够得到需要的图形.图3所示为在以上工艺基础上增加SiO2做掩模,利用半导体微加工工艺制作光子晶体的典型步骤.图2 仅用PMMA做掩模,利用RI E直接刻蚀In P后的A FM照片 (a)RI E直接刻蚀In P后A FM观察到的二维图;(b)RI E直接刻蚀InP后A FM观察到的三维图Fig.2 A FM i mage of only use PMMA as mask (a)2D A FM i mage of result af ter RI E;(b)3D A FM i mage of result af ter RIE图3 基于微加工工艺的光子晶体制作主要步骤Fig.3 Main p rocesses of f abrication of p hot onic crystal 首先采用P ECV D技术在材料上淀积SiO2,淀积温度300℃,薄膜厚度180n m;清洗后利用匀胶机在SiO2上涂覆200n m厚的PM MA胶;然后利用电子束曝光技术在PM M A胶上定义图形;曝光后,将芯片置入显影液中显影10s;取出清洗,然后放入恒温烤箱中150℃烘烤坚膜30mi n.利用反应离子刻蚀设备(RI E型号:M PI2500)将图形由PM MA中转移入SiO2,刻蚀过程中采用C F4+O2混合气体,氧229第5期杜 伟等: 利用光子晶体提高InP 基L ED 出光效率气体积百分比为5%.刻蚀前首先将反应室抽真空,然后充入混合气体,气体流量为80sccm ,保持气压113332Pa ,打开射频电源,射频功率设置为150W ,开始刻蚀过程.刻蚀后未去除PM MA ,利用原子力显微镜(A FM )观察到的图形示于图4.图形转入SiO 2层之后,即可利用SiO 2层作为新的掩模版刻蚀I n P 层.图4 RI E 刻蚀SiO 2后的正方晶格的光子晶体结构A FM 照片Fig.4 A FM image of result af ter RI E by using PM 2MA a nd SiO 2as mask图形转移到SiO 2中后,利用RI E 系统直接刻蚀I n P 材料.刻蚀中采用C H 4+H 2+A r 混合气体.刻蚀完成后的图形如图5所示.由图可见,增加SiO 2掩模后,利用RI E 刻蚀,在合适的工艺参数下可以制作出良好的光子晶体图形.图5 用SiO 2做掩模利用RI E 刻蚀InP 后的光子晶体图形Fig.5 Phot onic crystal image of result af ter RI E by using SiO 2as mask3 测试与分析由于目前实现的光子晶体L ED 大部分为基于光致发光的结构,测试方法和手段也集中于如何实现L ED 的激光泵浦.由于光子晶体L ED 中的微腔结构面积只有几十平方微米,甚至几平方微米,因此如何获得小的泵浦光斑,并把光斑对准微腔区域而不照射到其他区域(防止非辐射复合产生的热量引起器件的大幅度升温而导致器件性能下降),对光路的设计提出了很高的要求.在实验中采用的测试系统的基本结构如图6所示.利用该测试系统完成了光子晶体L ED 的PL 谱测试.按照光路的顺序,光子晶体有源器件的激光泵浦和信号检测系统主要包含如下结构和部件:如图6所示,从一个激光器(波长532m m ,功率100m W )出射的泵浦光束,被一个介质膜反射镜反射,进入下一个反射镜,在该反射镜,泵浦激光光束与从可见光源发射而来的可见光一起经过下一个部分反射镜后被显微物镜聚焦到光子晶体试样的表面,聚焦后的光斑最小可达5μm ×5μm 左右.光子晶体试样中被泵浦光激发出来的荧光或者激光光束被显微物镜收集后成为平行光传输,经过多个反射镜后可以被收集进入光谱分析仪进行分析,光谱分析仪产生的信号经过锁相放大后进入微机进行信号处理,得出器件的发射光谱.为了将泵浦光源的聚焦光斑对准试样的微腔缺陷区域,采用了增加可见光束对器件进行照明,并利用可见光宽带反射镜将被试样表面反射出的可见光耦合到CCD 观测系统中,从而观察试样的表面结构.图6 光子晶体激光器激光泵浦微区测试系统光路示意图Fig.6 Test system of photonic crystal laser by laser pump图7所示分别为固定r/a =013,不同晶格常数a =525,550,600nm 时光子晶体结构对L ED 出光效率的提高结果.图中的三条曲线分别对应在相同的激光泵浦测试条件下,泵浦光斑对准完整光子晶体区域和对准未做任何工艺区域(即InP/In GaAsP 量子阱外延片)的PL 谱.从图中的测试结果可以发现,相同测试条件下,不同区域的出光功率不同,即出光效率不同.在波长1400~1600nm 的范围内,含有光子晶体区域的出光功率明显高于未制作光子晶体结构的区域,可见光子晶体结构的引入可以明显提高发光器件的出光效率.由于光子晶体结构的光子带隙与光子频率有关,因此光子晶体结构对器件效率的提高也与器件的发光波长有关,不同波长下的发光效率提高不同.此现象可在图中发现,出光效329半 导 体 学 报第27卷率提高最明显的区域为波长1400~1600nm附近,波长越短,出光效率的提高越明显.例如在图7(a)中,当波长位于1600nm附近时,器件的出光效率提高为10%左右,随着波长的减小,出光效率随之增大,当波长位于1550nm时出光效率的提高为26%;波长为1450nm时,提高幅度为90%;当波长位于1400nm附近时,出光效率的提高可达60%以上,由此可见出光效率提高的峰值在波长为1450nm附近.根据理论分析,光子晶体结构的引入除了能够引入光子禁带,使部分频率的自发发射光被抑制,提高器件的内部效率外,当器件发光频率位于光子晶体禁带之上,即辐射模区域时,由于光子晶体的作用,可使在平板结构的发光器件中属于传输模的部分模式转化为光子晶体发光器件中的辐射模,从而使更多的光模辐射到空气中,此即光子晶体提高发光器件出光效率的基本原理[4].图7 光子晶体结构参数对L ED出光效率的提高效果图(r/a=013) (a)a=525nm;(b)a=550nm;(c)a=600nm Fig.7 Images of photonic crystal enhances extraction efficiency in L ED(r/a=013) (a)a=525nm;(b)a= 550nm;(c)a=600nm 图7(b)所示为晶格常数a=550nm,r/a=013时,光子晶体结构提高发光器件出光效率的情况.与图7(a)所示的结果类似,光子晶体结构L ED的出光效率相对未做该工艺的器件有了明显提高.当器件的发光波长位于1600nm附近时,出光效率的提高幅度约为33%;当发光波长位于1550nm附近时,出光效率的提高幅度约为38%;当1450nm时则对应约100%的提高幅度;1400nm时为93%.当晶格常数增大到a=600nm时,出光效率提高比率继续增大,如图(c)所示.这主要是由于光子晶体结构参数的改变所引起的.根据光子晶体能带结构的特点,当晶格常数增大时,禁带位置发生红移,移向更低的频率,即长波长方向,则有利于使实验中设计的In2 GaAsP量子阱结构发光器件的发光波长处于能带中的泄漏模区域,从而使更多的传输模转化为泄漏模,提高出光效率[5].4 结论利用EBL在PMMA胶上曝光可以生成良好的光子晶体结构图形.在不作特殊的固化处理时,若仅采用PMMA胶做掩模,刻蚀中的侧蚀严重,会破坏图形的完整性.增加SiO2掩模后,利用RIE刻蚀,在合适的工艺参数下可以制作出良好的光子晶体图形.光子晶体结构可以明显提高L ED的出光效率,而且出光效率的提高效果与光子晶体的晶格常数有关.一定范围内,随着晶格常数的增大,出光效率的提高随之增大.随着研究工作的不断深入,光子晶体有望应用于高效率L ED的制作中.参考文献[1] Yablonovitch E.Inhibited Spontaneous emission in solid2state physics and electronics.Phys Rev Lett,1987,58:2059 [2] Susumu N,Mit suru Y,Masahiro I,et al.Polarization modecontrol of two dimensional photonic crystal laser by unitcell structure design.Science,2001,293:1123[3] Ge Debiao.Finite difference time domain met hod in electro2magnetic wave.Xi’an:Xidian University Press,2002(inChinese)[葛德彪.电磁波的时域有限差分法.西安:西安电子科技大学出版社,2002][4] Fan S H,Villeneuve P R,Joannopoulos J D,et al.High ex2t raction efficiency of spontaneous emission from slabs ofphotonic crystal.Phys Rev Lett,1997,78(17):3294[5] Ryu H Y,Hwang J K,Lee Y J,et al.Enhancement of lightextraction from two dimensional photonic crystal slabst ructures.IEEE J Sel Topics Quantum Electron,2002,8(2):231429第5期杜 伟等: 利用光子晶体提高InP基L ED出光效率529 Enhancement of Light Extraction of L ED by Photonic Crystal Structures3Du Wei ,Xu Xingsheng,Sun Zenghui,L u Lin,Gao J unhua,Zhao Zhimin,Wang Chunxia,and Chen Hongda(S tate Key L aboratory of I ntegrated Optoelect ronics,I nstit ute of S emiconductors,Chinese A cadem y of Sciences,Bei j i ng 100083,China) Abstract:The band st ructure of a2D infinite p hot onic crystal is calculated using t he FD TD met hod.Slab p hot onic crystals wit h InP are f abricated.Two f abrication met hods———one using only PMMA as mask a nd one using PMMA a nd SiO2as masks are used.The results show t hat t he first met hod ca nnot yield an accurate p atter n t ransf er,w hile t he ot her met hod ca n.The ext raction efficie ncy in a n L ED is enha nced successf ully by use of t he p hot onic crystal.The light ext raction efficie ncy of t he L ED wit h t he p hot onic crystal st ructure is twice as high as t hat of t he unp rocessed sample under t he sa me testing conditions. Along wit h t he increase of lattice consta nt,t he ext raction efficie ncy also increases.K ey w ords:p hot onic crystal;elect ron beam lit hograp hy;RI E;L ED ext raction efficie ncyPACC:4270QArticle ID:025324177(2006)05209212053Project supp orted by t he National High Technology Research a nd Develop ment Progra m of China(No.2003AA311020)a nd t he National Nat ural Science Foundation of China(N os.60345008,60377011)Corresp onding aut hor.Email:duwei@se Received22August2005,revised ma nuscript received11Oct ober2005Ζ2006Chinese Institute of Elect ronics。
过冷液态和非晶态金属Pb等温驰豫过程中bcc相的形成和演变特性(英文)
过冷液态和非晶态金属Pb等温驰豫过程中bcc相的形成和
演变特性(英文)
周丽丽;刘让苏;田泽安;刘海蓉;侯兆阳;朱轩民;刘全慧
【期刊名称】《中国有色金属学报:英文版》
【年(卷),期】2011(021)003
【摘要】采用分子动力学模拟方法和团簇类型指数法,对过冷液态和非晶态金属
Pb在等温驰豫过程中bcc相的形成和演变特性进行研究。
结果表明:bcc相的形成和演变密切依赖等温驰豫过程的初始温度和初始结构,在过冷液态区,bcc相很容
易形成并在模拟时间范围内保持稳定;而在非晶态区,bcc相先形成并随后部分转变
为hcp相,当驰豫的初始温度在较低的153K和113K时,hcp和fcc相不经历亚稳bcc相而直接在非晶态结构中形成;这说明Ostwald的"步进原则"在过冷液态和非晶态Pb等温驰豫过程中是有效的,并且,亚稳bcc相起到重要的晶化前驱的作用。
【总页数】10页(P588-597)
【作者】周丽丽;刘让苏;田泽安;刘海蓉;侯兆阳;朱轩民;刘全慧
【作者单位】
【正文语种】中文
【中图分类】TG146
因版权原因,仅展示原文概要,查看原文内容请购买。
原子尺度连续调控钛合金bcc-hcp结构转变及其强化机制研究结题报告
结题报告:原子尺度连续调控钛合金bcc-hcp结构转变及其强化机制研究一、引言钛合金由于其优异的综合性能,如高强度、高耐蚀性、良好的生物相容性等,在航空航天、医疗、能源等多个领域具有广泛的应用前景。
在钛合金的晶体结构中,钛原子的长程有序排列主要表现为体心四方结构(B2)和面心立方结构(FCC,hcp)两种,其中fcc结构在高温下占据优势,而在低温下会转变为hcp结构。
因此,精确调控钛合金bcc-hcp结构转变行为对于优化其性能具有重要意义。
二、研究方法与过程本研究采用原位表征手段,包括透射电子显微镜(TEM)、X射线衍射仪(XRD)和扫描电子显微镜(SEM)等,对钛合金在不同温度下的结构和形貌进行了连续观察和测量。
同时,我们通过改变合金元素的种类和含量,实现了对钛合金bcc-hcp结构转变的原子尺度连续调控。
具体实验过程如下:1. 在不同温度下对钛合金进行加热和冷却处理,并实时监测其结构和形貌的变化。
2. 在原位表征的基础上,对钛合金进行组织和成分分析。
3. 通过改变合金元素的种类和含量,探索影响bcc-hcp结构转变的因素。
三、主要结果与结论研究发现,通过调整合金元素的种类和含量,可以实现对钛合金bcc-hcp结构转变的原子尺度连续调控。
这种调控不仅影响钛合金的力学性能,如强度和韧性,还对其耐蚀性和生物相容性产生重要影响。
本研究揭示了钛合金bcc-hcp结构转变的强化机制。
在fcc结构向hcp结构转变的过程中,由于位错密度降低和相变强化效应,钛合金的强度得到显著提高。
同时,我们发现这种强化机制具有可逆性,即在高温下hcp结构可以向fcc结构转变,这一过程伴随着塑性变形强化的发生。
本研究为优化钛合金性能提供了新的思路和方法。
未来,我们将进一步研究不同合金元素之间的协同作用,以及bcc-hcp结构转变对钛合金耐蚀性和生物相容性的影响,为钛合金的实际应用提供理论依据和技术支持。
四、展望本研究取得了一定的成果,但仍有许多问题需要进一步探讨。
改善高 DUTY LCD显示效果的方法
第17卷 第5期2002年10月 液 晶 与 显 示Chinese Journal of Liquid Crystals and Displays Vol.17,No.5 Oct.,2002文章编号:100722780(2002)0520385206改善L CD 显示效果的方法于海峰,宋丽莉,薛长利,李 燕(吉林紫晶电子有限责任公司吉林长春130031,E 2mail :yhf @ )摘 要:阐述了LCD 从设计到工艺及各种原材料的选材对显示效果的影响。
着重分析了LCD 三大主材之一的偏振片特性,并且根据偏振片特性,对全息膜、TDF/RDF 膜、PG 系列偏振片的性能和结构进行了比较实验。
结合实际生产得到了以下结论:满足客户的不同需求,必须提高选择点与非选点的反差,从主材的择优选取、工艺设计等方面提高器件的对比度。
关键词:LCD ;对比度;视角;ITO 阻值;偏振片中图分类号:TN873.93 文献标识码:A 收稿日期:2002204207;修订日期:20022072141 引 言液晶显示器件因其具有多方面独特的优异特性而迅速发展并得到了广泛的应用[1~3]。
但现今的LCD 产品,无论是用于高档次的PDA ,还是低档次的数字显示器,都对显示对比度有了更高的要求。
而此项参数的改善,不但要对LCD 内部结构做相应的调整,而且还要对起主要作用的原材料作相应的改变,所以原材料的优化选取与匹配,对实现良好的对比度极为重要。
2 对比度与视角的关系影响LCD 显示效果的主要因素有对比度和视角。
所谓对比度就是显示状态明度与非显示状态明度的比值。
因为LCD 属被动型器件,是靠调制外界光来实现显示的,也就是说LCD 显示的明度取决于外界光光强和液晶盒的透过率(对于透射式显示器),所以,对比度受外界影响很大。
一般在白色光或日光照射下,测得的对比度约在5∶1至20∶1之间,而在激光等单色光照射下测得对比度可达100∶1以上[4]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Effect of Crystal Quality on HCP-BCC Phase Transition in Solid 4He Nikolay Mikhin, Andrey Polev, Eduard Rudavskii, and Yegor VekhovB.Verkin Institute for Low Temperature Physics and Engineering of the NationalAcademy of Sciences of Ukraine, 47 Lenin Ave., Kharkov 61103, UKRAINEvekhov@ilt.kharkov.uaAbstractThe kinetics of HCP-BCC structure phase transition is studied by precise pressure measurement technique in 4He crystals of different quality. An anomalous pressure behavior in bad quality crystals under constant volume conditions is detected just after HCP-BCC structure phase transition. A sharp pressure drop of 0.2 bar was observed at constant temperature. The subsequent pressure kinetics is a non-monotonic temperature function. The effect observed can be explained if we suppose that microscopic liquid droplets appear on the HCP-BCC interphase region in bad quality crystals. After the interphase region disappearance, these droplets are crystallized with pressure reduction. It is shown that this effect is absent in high quality thermal-treated crystals.PACS numbers: 67.80.-s, 67.80.Gb1. INTRODUCTIONIn recent years the kinetics of phase transition between dramatically different crystalline phases BCC and HCP has been actively studied with the use of various experimental techniques [1-7] - optical, acoustical, NMR, precise barometry, by driving a superconductor wire which is trapped in solid helium. The facts about the possibility of liquid droplet formation or even crystal re-melting under HCP-BCC phase transition are given in numerous works. It is noted that in all cases the kinetics of phase transition is very sensitive to sample prehistory. First of all it means crystal quality and ways of its thermal treatment.In the present work the method of precise barometry at constant volume is used that allows both to control the crystal quality by pressure magnitude and to study the kinetics of phase transition by pressure variation. Thermo-dynamic and kinetic properties of the crystal during HCP-BCC transition are compared for high quality and not annealed bad quality crystals.2. EXPERIMENTAL TECHNIQUEThe crystal under investigation had a shape of disk 10 mm in diameter and 1.5 mm in thickness. One of the experimental cell walls served as a mobile membrane of the capacitive pressure gauge. The pressure was measured in situ with an accuracy of about 0.003 bar (sensitivity was about 0.001 bar). The sample was connected with the 1K pot via a weak thermal link. The temperature of the crystal was measured with a carbon resistance thermometer with an accuracy of about 5 mK (sensitivity was about 1 mK). The experimental cell is described in more details in Ref. [6].The crystal sample was grown by the blocking capillary method, so that all the measurements were carried out under constant volume conditions. In the experiments the step-wise heating and cooling of the cold finger were usually realized with a step of 10-15 mK. During this process the kinetics of pressure and temperature in the cell were recorded. The investigations were carried out in a temperature region of 1.3-1.9 K with molar volumes ranging from 20.85 to 21.10 cm3/mol.P ,b a rt,sb )T ,Ka )Fig. 4. Kinetics of temperature (a ) and pressure (b ) variation for high quality crystal near HCP-BCC phase transition under step-wise heating (numbers correspond to the dots in Fig.3)the favour of this model and show that it can be realized in helium bad quality crystals. By estimation, pressure decreasing on 0.2 bar (Fig.1) in the crystal with V m =21.0 cm 3/mol at 1.63 K can be produced by liquid crystallization of 1% of the sample volume.The same conclusions follow from our experiments carried out with samples containing 1% of 3He.In the case of reverse BCC-HCP transition, one could expect the same effect. But the experimental data do not confirm this. Possible explanation of this consists in the assumption that the liquid crystallization after the interphase region disappearance cannot lead to pressure reduction below the equilibrium BCC-HCP line. It is realized in continuation of the run along this line.ACKNOWLEDGMENTSWe thank A. Birchenco for help in the experiments.REFERENCES1. N.E. Dyumin, V.N. Grigor'ev, and S.V. Svatko, Fiz. Nizk. Temp. (Russ), 15, 253 (1989),Sov. J. Low. Temp. Phys. 15, 142 (1989).2. I. Berent, and E. Polturak, J. Low Temp. Phys. 112, 337 (1998).3. E. Polturak, A. Kanigel, N. Gov, T. Markovich, and J. Adler, Physica B 280, 142 (2000).4. Y. Okuda, H. Fujii, Y. Okumura, and H. Maekawa, J. Low Temp.Phys. 121, 725 (2000).5. N. Mikhin, A. Polev, and E. Rudavskii, JETP Lett. 73, 470 (2001).6. Ye. Vekhov, N. Mikhin, A. Polev, and E. Rudavskii, Fiz. Nizk. Temp. (Russ), 31, 1341(2005), Low Temp. Phys. 31, 1017, (2005).7. A. Birchenco, Ye. Vekhov, N. Mikhin, A. Polev, and E. Rudavskii, Fiz. Nizk. Temp.(Russ), 32, (2006), Low Temp. Phys, 32, 1471, (2006).8. N. Mikhin, E. Rudavskii, and Ye. Vekhov, JLTP, to be published.9. A.I. Karasevskii, Fiz. Nizk. Temp. (Russ), 32, 1203 (2006), Low Temp. Phys., 32, 1203,(2006).。