05--xbl频率特性(2011)
2011 Centellax Catalog
目录SB10: 0.5-12.5GB/S误码率测试仪2 PCB12500并行多通道误码仪8 SCS16000系列注入抖动的时钟合成器12 PPG12500可编程码型发生器15测试测量附件(码型发生器/放大器/时钟分频器/DEMUX/CRU) 18光模块(XFP/SFP+等)测试解决方案20并行光模块(QSFP/CXP/SNAP12等)测试解决方案22高速PCB和电缆测试方案25高速连接器和背板物理层测试解决方案27高速收发器芯片接收机测试解决方案29 32GB/S的带压力的码型输出与误码率测量方案32SB10: 0.5-12.5Gb/s误码率测试仪10G误码仪主机TG1B1-A的特点:Array●TG1B1-A的内部时钟可支持9.85 -11.35Gbps的误码率测试;配置时钟合成器TG1C1A后可支持0.5 - 12.5Gbps的误码率测量●可差分或单端输入和输出信号●可调节输出信号的幅度和频率●可注入幅度很大的抖动用于压力测试●使用前面板按钮或者GPIB接口控制●可选PRBS码型或脉冲密度说明Centellax的SB10是10Gbps Serial BERT的缩写,即10G串行误码仪。
可用于研发实验室内或者生产线上的光模块、高速背板和连接器的测量与分析。
SB10包括10G误码仪主机TG1B1-A和0.5-13GHz的时钟合成器TG1C1-A。
TG1B1-A使用内部集成的时钟,可以满足9.85-11.35GHz的误码率测量,加配带抖动注入的时钟源TG1C1-A后,可以工作在0.5-12.5Gbps,能满足这个频段内Fibre Channel、CPRI、GE、10GE、SONET/SDH、Infiniband 等多种高速串行信号的误码率测量和抖动容限测量。
SB10支持的测试项目使用SB10测试光模块示意图●误码率测量●抖动容限测量●接收机灵敏度测量典型应用●光模块接收机测量●高速背板测试与分析●高速电缆的测试●高速收发器芯片的接收机测量极佳的信号完整性误码仪TG1B1-A的码型发生器输出10Gbps速率、PRBS31码型的串行信号,使用Agilent DCA-J测量TG1B1-A 输出信号的眼图,如图1所示,可见眼图非常清晰,抖动很小,说明TG1B1-A的码型发生器输出的信号完整性非常理想。
LMP2011中文资料
LMP2011Single/LMP2012Dual/LMP2014QuadHigh Precision,Rail-to-Rail Output Operational AmplifierGeneral DescriptionThe LMP201X is a new precision amplifier family that offers unprecedented accuracy and stability at an affordable price and is offered in miniature packages.This device utilizes patented techniques to measure and continually correct the input offset error voltage.The result is an amplifier which is ultra stable over time and temperature.It has excellent CMRR and PSRR ratings,and does not exhibit the familiar 1/f voltage and current noise increase that plagues tradi-tional amplifiers.The combination of the LMP201X charac-teristics makes it a good choice for transducer amplifiers,high gain configurations,ADC buffer amplifiers,DAC I-V conversion,and any other 2.7V-5V application requiring pre-cision and long term stability.Other useful benefits of the LMP201X are rail-to-rail output,a low supply current of 930µA,and wide gain-bandwidth product of 3MHz.These extremely versatile features found in the LMP201X provide high performance and ease of use.Features(For V S =5V,Typical unless otherwise noted)n Low guaranteed V OS over temperature 60µV n Low noise with no 1/f 35nV/n High CMRR 130dB n High PSRR 120dB n High A VOL130dB n Wide gain-bandwidth product 3MHz n High slew rate4V/µs n Low supply current 930µA n Rail-to-rail output30mVn No external capacitors requiredApplicationsn Precision instrumentation amplifiers n Thermocouple amplifiers n Strain gauge bridge amplifierConnection Diagrams5-Pin SOT238-Pin SOIC8-Pin MSOP20071502Top View20071542Top View20071538Top View14-Pin TSSOP14-Pin LLP20071539Top View20071541Top ViewPRELIMINARYOctober 2004LMP2011Single/LMP2012Dual/LMP2014Quad High Precision,Rail-to-Rail Output Operational Amplifier©2004National Semiconductor Corporation Absolute Maximum Ratings (Note 1)If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.ESD Tolerance Human Body Model 2000V Machine Model 200V Supply Voltage 5.8VCommon-Mode Input Voltage−0.3≤V CM ≤V CC +0.3VLead Temperature (soldering 10sec.)+300˚CDifferential Input Voltage ±Supply VoltageCurrent at Input Pin30mACurrent at Output Pin 30mA Current at Power Supply Pin50mAOperating Ratings (Note 1)Supply Voltage2.7V to 5.25V Storage Temperature Range −65˚C to 150˚COperating Temperature Range LMP2011MF,LMP2011MFX −40˚C to 125˚C LMP2011MA,LPM2011MAX −40˚C to 125˚C LMP2012MM,LMP2011MMX −40˚C to 125˚C LMP2014SD,LMP2014SDX −40˚C to 125˚CLMP2014MT,LMP2014MTX0˚C to 70˚C 2.7V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J =25˚C,V +=2.7V,V -=0V,VCM=1.35V,V O =1.35V and R L >1M Ω.Boldface limits apply at the temperature extremes.Symbol ParameterConditions Min (Note 3)Typ (Note 2)Max (Note 3)Units V OSInput Offset Voltage 0.82560µV Offset Calibration Time0.51012ms TCV OSInput Offset Voltage 0.015µV/˚C Long-Term Offset Drift 0.006µV/monthLifetime V OS Drift2.5µV I IN Input Current -3pA I OS Input Offset Current 6pA R IND Input Differential Resistance 9M ΩCMRR Common Mode Rejection Ratio−0.3≤V CM ≤0.9V 0≤V CM ≤0.9V1309590dB PSRR Power Supply Rejection Ratio 1209590dBA VOLOpen Loop Voltage GainR L =10k Ω1309590dBR L =2k Ω1249085V OOutput SwingR L =10k Ωto 1.35V V IN (diff)=±0.5V2.6652.6552.68V0.0330.0600.075R L =2k Ωto 1.35V V IN (diff)=±0.5V2.6302.6152.65V0.0610.0850.105I OOutput CurrentSourcing,V O =0V V IN (diff)=±0.5V 1253mASinking,V O =5V V IN (diff)=±0.5V1853R OUT Output ImpedanceΩI SSupply Current per Channel0.9191.201.50mAL M P 2011S i n g l e /L M P 2012D u a l /L M P 2014Q u a d 22.7V AC Electrical CharacteristicsT J =25˚C,V +=2.7V,V -=0V,V CM =1.35V,V O =1.35V,and R L>1M Ω.Boldface limits apply at the temperature extremes.Symbol ParameterConditions Min (Note 3)Typ (Note 2)Max (Note 3)Units GBW Gain-Bandwidth Product 3MHz SR Slew Rate 4V/µs θm Phase Margin 60Deg G m Gain Margin−14dB e n Input-Referred Voltage Noise 35nV/i n Input-Referred Current Noise pA/e n p-p Input-Referred Voltage Noise R S =100Ω,DC to 10Hz 850nV pp t rec Input Overload Recovery Time 50mst SOutput Settling timeA V =+1,R L =2k Ω1V Step1%ns0.1%0.01%A V =−1,R L =2k Ω1V Step1%0.1%0.01%5V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for TJ=25˚C,V +=5V,V -=0V,VCM=2.5V,V O =2.5V and R L >1M Ω.Boldface limits apply at the temperature extremes.Symbol ParameterConditionsMin (Note 3)Typ (Note 2)Max (Note 3)Units V OSInput Offset Voltage 0.122560µV Offset Calibration Time0.51012ms TCV OSInput Offset Voltage 0.015µV/˚C Long-Term Offset Drift 0.006µV/monthLifetime V OS Drift2.5µV I IN Input Current -3pA I OS Input Offset Current 6pA R IND Input Differential Resistance 9M ΩCMRR Common Mode Rejection Ratio−0.3≤V CM ≤3.20≤V CM ≤3.213010090dB PSRR Power Supply Rejection Ratio 1209590dBA VOLOpen Loop Voltage GainR L =10k Ω130105100dBR L =2k Ω1329590V OOutput SwingR L =10k Ωto 2.5V V IN (diff)=±0.5V4.964.954.978V0.0400.0700.085R L =2k Ωto 2.5V V IN (diff)=±0.5V4.8954.8754.919V0.0910.1150.140LMP2011Single/LMP2012Dual/LMP2014Quad35V DC Electrical Characteristics Unless otherwise specified,all limits guaranteed for T J =25˚C,V +=5V,V -=0V,VCM=2.5V,V O =2.5V and R L >1M Ω.Boldface limits apply at the temperature extremes.(Continued)Symbol ParameterConditionsMin (Note 3)Typ (Note 2)Max (Note 3)UnitsI OOutput CurrentSourcing,V O =0V V IN (diff)=±0.5V 1586mASinking,V O =5V V IN (diff)=±0.5V1786R OUT Output ImpedanceΩI SSupply Current per Channel0.9301.201.50mA5V AC Electrical CharacteristicsT J =25˚C,V +=5V,V -=0V,V CM =2.5V,V O =2.5V,and R L >1M Ω.Boldface limits apply at the temperature extremes.Symbol ParameterConditionsMin (Note 3)Typ (Note 2)Max (Note 3)Units GBW Gain-Bandwidth Product 3MHz SR Slew Rate 4V/µs θm Phase Margin 60deg G m Gain Margin−15dB e n Input-Referred Voltage Noise 35nV/i n Input-Referred Current Noise pA/e n p-p Input-Referred Voltage Noise R S =100Ω,DC to 10Hz 850nV pp t rec Input Overload Recovery Time 50mst SOutput Settling timeA V =+1,R L =2k Ω1V Step1%ns0.1%0.01%A V =−1,R L =2k Ω1V Step1%0.1%0.01%Note 1:Absolute Maximum Ratings indicate limits beyond which damage may occur.Operating Ratings indicate conditions for which the device is intended to be functional,but specific performance is not guaranteed.For guaranteed specifications and test conditions,see the Electrical Characteristics.Note 2:Typical values represent the most likely parametric norm.Note 3:Limits are 100%production tested at 25˚C.Limits over the operating temperature range are guaranteed through correlations using statistical quality control (SQC)method.Ordering InformationPackage Part Number TemperatureRangePackage MarkingTransport Media NSC Drawing5-Pin SOT23LMP2011MF −40˚C to 125˚CAN1A 1k Units Tape and Reel MF05A LMP2011MFX 3k Units Tape and Reel 8-Pin MSOP LMP2012MM AP1A1k Units Tape and Reel MUA08A LMP2012MMX 3.5k Units Tape and Reel8-Pin SOIC LMP2011MA LMP2011MA 95Units/Rail M08A LMP2011MAX 2.5k Units Tape and Reel 14-Pin LLP LMP2014SD P2014SD 250Units Tape and Reel SRC14A LMP2014SDX 2.5Units Tape and Reel14-Pin TSSOPLMP2014MT 0˚C to 70˚C LMP2014MT94Units/Rail MTC14LMP2014MTX2.5k Units Tape and ReelL M P 2011S i n g l e /L M P 2012D u a l /L M P 2014Q u a d 4Typical Performance CharacteristicsT A =25C,V S =5V unless otherwise specified.Supply Current vs.Supply VoltageOffset Voltage vs.Supply Voltage2007152420071525Offset Voltage mon Mode Offset Voltage mon Mode2007153520071534Voltage Noise vs.Frequency Input Bias Current mon Mode2007150420071503LMP2011Single/LMP2012Dual/LMP2014Quad5Typical Performance Characteristics(Continued)PSRR vs.FrequencyPSRR vs.Frequency2007150720071506Output Sourcing @2.7V Output Sourcing @5V2007152620071527Output Sinking @2.7V Output Sinking @5V2007152820071529L M P 2011S i n g l e /L M P 2012D u a l /L M P 2014Q u a d 6Typical Performance Characteristics(Continued)Max Output Swing vs.Supply VoltageMax Output Swing vs.Supply Voltage2007153020071531Min Output Swing vs.Supply Voltage Min Output Swing vs.Supply Voltage2007153220071533CMRR vs.Frequency Open Loop Gain and Phase vs.Supply Voltage2007150520071508LMP2011Single/LMP2012Dual/LMP2014Quad7Typical Performance Characteristics(Continued)Open Loop Gain and Phase vs.R L @2.7VOpen Loop Gain and Phase vs.R L @5V2007150920071510Open Loop Gain and Phase vs.C L @2.7V Open Loop Gain and Phase vs.C L @5V2007151120071512Open Loop Gain and Phase vs.Temperature @2.7V Open Loop Gain and Phase vs.Temperature @5V2007153620071537L M P 2011S i n g l e /L M P 2012D u a l /L M P 2014Q u a d 8Typical Performance Characteristics(Continued)THD+N vs.AMPLTHD+N vs.Frequency20071514200715130.1Hz −10Hz Noise vs.Time20071515LMP2011Single/LMP2012Dual/LMP2014Quad9Application InformationTHE BENEFITS OF LMP201XNO1/f NOISEUsing patented methods,the LMP201X eliminates the1/fnoise present in other amplifiers.That noise,which in-creases as frequency decreases,is a major source of mea-surement error in all DC-coupled measurements.Low-frequency noise appears as a constantly-changing signal inseries with any measurement being made.As a result,evenwhen the measurement is made rapidly,this constantly-changing noise signal will corrupt the result.The value of thisnoise signal can be surprisingly large.For example:If aconventional amplifier has a flat-band noise level of10nV/and a noise corner of10Hz,the RMS noise at0.001Hz is1µV/.This is equivalent to a0.50µV peak-to-peak error,in the frequency range0.001Hz to1.0Hz.In acircuit with a gain of1000,this produces a0.50mV peak-to-peak output error.This number of0.001Hz might appearunreasonably low,but when a data acquisition system isoperating for17minutes,it has been on long enough toinclude this error.In this same time,the LMP201X will onlyhave a0.21mV output error.This is smaller by2.4x.Keepin mind that this1/f error gets even larger at lower frequen-cies.At the extreme,many people try to reduce this error byintegrating or taking several samples of the same signal.This is also doomed to failure because the1/f nature of thisnoise means that taking longer samples just moves themeasurement into lower frequencies where the noise level iseven higher.The LMP201X eliminates this source of error.The noiselevel is constant with frequency so that reducing the band-width reduces the errors caused by noise.Another source of error that is rarely mentioned is the errorvoltage caused by the inadvertent thermocouples createdwhen the common"Kovar type"IC package lead materialsare soldered to a copper printed circuit board.These steel-based leadframe materials can produce over35µV/˚C whensoldered onto a copper trace.This can result in thermo-couple noise that is equal to the LMP201X noise when thereis a temperature difference of only0.0014˚C between thelead and the board!For this reason,the lead-frame of the LMP201X is made ofcopper.This results in equal and opposite junctions whichcancel this effect.The extremely small size of the SOT-23package results in the leads being very close together.Thisfurther reduces the probability of temperature differencesand hence decreases thermal noise.OVERLOAD RECOVERYThe LMP201X recovers from input overload much fasterthan most chopper-stabilized op amps.Recovery from driv-ing the amplifier to2X the full scale output,only requiresabout40ms.Many chopper-stabilized amplifiers will takefrom250ms to several seconds to recover from this sameoverload.This is because large capacitors are used to storethe unadjusted offset voltage.The wide bandwidth of the LMP201X enhances performancewhen it is used as an amplifier to drive loads that injecttransients back into the output.ADCs(Analog-to-Digital Con-verters)and multiplexers are examples of this type of load.To simulate this type of load,a pulse generator producing a1V peak square wave was connected to the output through a10pF capacitor.(Figure1)The typical time for the output torecover to1%of the applied pulse is80ns.To recover to0.1%requires860ns.This rapid recovery is due to the widebandwidth of the output stage and large total GBW.NO EXTERNAL CAPACITORS REQUIREDThe LMP201X does not need external capacitors.This elimi-nates the problems caused by capacitor leakage and dielec-tric absorption,which can cause delays of several secondsfrom turn-on until the amplifier’s error has settled.MORE BENEFITSThe LMP201X offers the benefits mentioned above andmore.It has a rail-to-rail output and consumes only950µA ofsupply current while providing excellent DC and AC electricalperformance.In DC performance,the LMP201X achieves130dB of CMRR,120dB of PSRR and130dB of open loopgain.In AC performance,the LMP201X provides3MHz ofgain-bandwidth product and4V/µs of slew rate.HOW THE LMP201X WORKSThe LMP201X uses new,patented techniques to achieve thehigh DC accuracy traditionally associated with chopper-stabilized amplifiers without the major drawbacks producedby chopping.The LMP201X continuously monitors the inputoffset and corrects this error.The conventional choppingprocess produces many mixing products,both sums anddifferences,between the chopping frequency and the incom-ing signal frequency.This mixing causes large amounts ofdistortion,particularly when the signal frequency approachesthe chopping frequency.Even without an incoming signal,the chopper harmonics mix with each other to produce evenmore trash.If this sounds unlikely or difficult to understand,look at the plot(Figure2),of the output of a typical(MAX432)chopper-stabilized op amp.This is the output when there isno incoming signal,just the amplifier in a gain of-10with theinput grounded.The chopper is operating at about150Hz;the rest is mixing products.Add an input signal and the noisegets much pare this plot with Figure3of theLMP201X.This data was taken under the exact same con-ditions.The auto-zero action is visible at about30kHz butnote the absence of mixing products at other frequencies.Asa result,the LMP201X has very low distortion of0.02%andvery low mixing products.20071516FIGURE1.LMP211Single/LMP212Dual/LMP214Quad10Application Information(Continued)INPUT CURRENTSThe LMP201X’s input currents are different than standard bipolar or CMOS input currents in that it appears as a current flowing in one input and out the other.Under most operating conditions,these currents are in the picoamp level and will have little or no effect in most circuits.These currents tend to increase slightly when the common-mode voltage is near the minus supply.(See the typical curves.)At high temperatures such as85˚C,the input currents become larger,0.5nA typical,and are both positive except when the V CM is near V−.If operation is expected at low common-mode voltages and high temperature,do not add resistance in series with the inputs to balance the impedances.Doing this can cause an increase in offset voltage.A small resistance such as1 kΩcan provide some protection against very large transients or overloads,and will not increase the offset significantly.PRECISION STRAIN-GAUGE AMPLIFIERThis Strain-Gauge amplifier(Figure4)provides high gain (1006or~60dB)with very low offset and ing the resistors’tolerances as shown,the worst case CMRR will be greater than108dB.The CMRR is directly related to the resistor mismatch.The rejection of common-mode error,at the output,is independent of the differential gain,which is set by R3.The CMRR is further improved,if the resistor ratio matching is improved,by specifying tighter-tolerance resis-tors,or by trimming.Extending Supply Voltages and Output Swing by Using a Composite Amplifier Configuration:In cases where substantially higher output swing is required with higher supply voltages,arrangements like the ones shown in Figure5and Figure6could be used.These configurations utilize the excellent DC performance of the LMP201X while at the same time allow the superior voltage and frequency capabilities of the LM6171to set the dynamic performance of the overall amplifier.For example,it is pos-sible to achieve±12V output swing with300MHz of overall GBW(A V=100)while keeping the worst case output shift due to V OS less than4mV.The LMP201X output voltage is kept at about mid-point of its overall supply voltage,and its input common mode voltage range allows the V-terminal to be grounded in one case(Figure5,inverting operation)and tied to a small non-critical negative bias in another(Figure6, non-inverting operation).Higher closed-loop gains are also possible with a corresponding reduction in realizable band-width.Table1shows some other closed loop gain possibili-ties along with the measured performance in each case.20071517 FIGURE2.20071504 FIGURE3.20071518FIGURE4.LMP2011Single/LMP2012Dual/LMP2014Quad11Application Information(Continued)TABLE posite Amplifier Measured PerformanceAV R1ΩR2ΩC2pF BW MHz SR (V/µs)en p-p (mV PP )5020010k 8 3.31783710010010k 10 2.5174701001k 100k 0.67 3.117070500200100k 1.75 1.4962501000100100k2.20.9864400In terms of the measured output peak-to-peak noise,the following relationship holds between output noise voltage,e n p-p,for different closed-loop gain,A V ,settings,where −3dB Bandwidth is BW:It should be kept in mind that in order to minimize the output noise voltage for a given closed-loop gain setting,one could minimize the overall bandwidth.As can be seen from Equa-tion 1above,the output noise has a square-root relationship to the Bandwidth.In the case of the inverting configuration,it is also possible to increase the input impedance of the overall amplifier,by raising the value of R1,without having to increase the feed-back resistor,R2,to impractical values,by utilizing a "Tee"network as feedback.See the LMC6442data sheet (Appli-cation Notes section)for more details on this.20071519FIGURE 5.20071520FIGURE 6.20071521FIGURE 7.L M P 2011S i n g l e /L M P 2012D u a l /L M P 2014Q u a d 12Application Information(Continued)LMP201X AS ADC INPUT AMPLIFIERThe LMP201X is a great choice for an amplifier stage imme-diately before the input of an ADC (Analog-to-Digital Con-verter),whether AC or DC coupled.See Figure 7and Figure 8.This is because of the following important characteristics:A)Very low offset voltage and offset voltage drift over timeand temperature allow a high closed-loop gain setting without introducing any short-term or long-term errors.For example,when set to a closed-loop gain of 100as the analog input amplifier for a 12-bit A/D converter,the overall conversion error over full operation temperature and 30years life of the part (operating at 50˚C)would be less than 5LSBs.B)Fast large-signal settling time to 0.01%of final value (1.4µs)allows 12bit accuracy at 100KH Z or more sampling rate.C)No flicker (1/f)noise means unsurpassed data accuracyover any measurement period of time,no matter how long.Consider the following op amp performance,based on a typical low-noise,high-performance commercially-available device,for comparison:Op amp flatband noise =8nV/1/f corner frequency =100Hz A V =2000Measurement time =100sec Bandwidth =2HzThis example will result in about 2.2mV PP (1.9LSB)of output noise contribution due to the op amp alone,com-pared to about 594µV PP (less than 0.5LSB)when that op amp is replaced with the LMP201X which has no 1/f contribution.If the measurement time is increased from 100seconds to 1hour,the improvement realized by using the LMP201X would be a factor of about 4.8times (2.86mV PP compared to 596µV when LMP201X is used)mainly because the LMP201X accuracy is not compromised by increasing the observation time.D)Copper leadframe construction minimizes any thermo-couple effects which would degrade low level/high gain data conversion application accuracy (see discussion under "The Benefits of the LMP201X"section above).E)Rail-to-Rail output swing maximizes the ADC dynamicrange in 5-Volt single-supply converter applications.Be-low are some typical block diagrams showing the LMP201X used as an ADC amplifier (Figure 7and Figure 8).20071522FIGURE 8.LMP2011Single/LMP2012Dual/LMP2014Quad13Physical Dimensionsinches (millimeters)unless otherwise noted5-Pin SOT23NS Package Number MF0A58-Pin MSOPNS Package Number MUA08AL M P 2011S i n g l e /L M P 2012D u a l /L M P 2014Q u a d 14Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)8-Pin SOICNS Package Number M08A14-Pin TSSOPNS Package Number MTC14LMP2011Single/LMP2012Dual/LMP2014Quad15Physical Dimensionsinches (millimeters)unless otherwise noted (Continued)14-LLPNS Package Number SRC14ANational does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.For the most current product information visit us at .LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in a significant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.BANNED SUBSTANCE COMPLIANCENational Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2)and the Banned Substances and Materials of Interest Specification (CSP-9-111S2)and contain no ‘‘Banned Substances’’as defined in CSP-9-111S2.National Semiconductor Americas Customer Support CenterEmail:new.feedback@ Tel:1-800-272-9959National SemiconductorEurope Customer Support CenterFax:+49(0)180-5308586Email:europe.support@Deutsch Tel:+49(0)6995086208English Tel:+44(0)8702402171Français Tel:+33(0)141918790National Semiconductor Asia Pacific Customer Support CenterEmail:ap.support@National SemiconductorJapan Customer Support Center Fax:81-3-5639-7507Email:jpn.feedback@ Tel:81-3-5639-7560L M P 2011S i n g l e /L M P 2012D u a l /L M P 2014Q u a d H i g h P r e c i s i o n ,R a i l -t o -R a i l O u t p u t O p e r a t i o n a l A m p l i f i e r。
艾森 MEDC 限 liability 公司 XB11 和 XB12 轰炸灯轰炸灯信息说明书
LISTING No.:7300-2338:0501CATEGORY:7300 - FIRE ALARM CONTROL UNIT ACCESSORIES/MISC. DEVICES LISTEE:Eaton MEDC Ltd. Unit B, Sutton Parkway, Sutton in Ashfield, AL, NG17 5FBContact: Bada, Suryakumar +44 1623 444477DESIGN:Models XB11 and XB12 Beacon Strobe Lights. Model XB11 is a 5 joule xenon strobeand a T5 temperature code. Model XB12 is a 21 joule xenon strobe and a T4temperature code. The devices consist of an electronic flasher and a xenon flash tubehoused inside a flameproof enclosure with a tempered glass globe for light transmissionand may be provided with an external guard. Intended for ambient temperature of -55°Cto 70°C.Refer to listee's data sheet for additional detailed product description and operationalconsiderations.RATING:Model XB11: 24VDC, 48VDC, 110VAC, 120VAC, 240VACModel XB12: 24VDC, 110VAC, 240VACINSTALLATION:In accordance with listee's printed installation instructions, applicable codes andordinances, and in a manner acceptable to the authority having jurisdiction.MARKING:Listee's name, model number, electrical rating, and UL label.APPROVAL:Listed as visual signal appliances for use with separately listed compatible fire alarmcontrol units. Suitable for indoor or outdoor use and in Class I, Zone 1, AEx d IIBhazardous locations. Refer to listee's Installation Instruction Manual for details.NOTES:This listing is based upon technical data submitted by the applicant. OSFM Fire Engineering staff has reviewed the test results and/or other data but does not make an independent verification of any claims. This listing is not an endorsement or recommendation of the item listed. This listing should not be used to verify correct operational requirements or installation criteria. Refer to listee's data sheet, installation instructions and/or other suitable information sources.5-24-21 VWWLISTING SERVICELISTING SERVICEDate Issued: 06/05/2023Listing Expires: 06/30/2024 Authorized By: Victor Wong, Program CoordinatorFire Engineering & Investigations Division。
西门子SIMATIC ET 200pro FC-2 参数手册说明书
4.1.1 概述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
4.1.2 关于故障和报警列表的说明 . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
3.9
矢量控制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
3.10 工艺功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
2.5
写保护和专有技术保护参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
2.5.1 带有 “WRITE_NO_LOCK” 的参数 . . . . . . . . . . . . . . . . . . . . . . . . . 272
Hale Waihona Puke 92 参数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1
参数一览 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SIMATIC ET 200pro FC-2
6
参数手册 (LH20), 04/2015, A5E34501751
WE05DLCF-B-03 W0301478A
Document: W0301482, Rev: AWE05DLCF-B Order Code: WE05DLCF-B-03Transient Voltage SuppressorFeatures● Small Body Outline Dimensions:0.039″x 0.024″(1.0 mm x 0.60 mm) ● Protects one I/O or power line ● Low Clamping Voltage ● Ultra-Low Capacitance:2.5pF ● Working Voltage: 5 V ● Low Leakage Current● Response Time is Typically < 1 nsIEC COMPATIBILITY (EN61000-4)● IEC 61000-4-2 (ESD) ±20kV (air), ±15kV (contact) ● IEC 61000-4-4 (EFT) 40A (5/50ns)Mechanical Characteristics Applications● DFN-2L package● Molding compound flammability rating:UL 94V-0● Marking: Marking Code● Packaging: Tape and Reel per EIA 481 ● Laptop Computers ● Cellular Phones ● Digital Cameras● Personal Digital Assistants (PDAs)● RoHS CompliantSchematic & PIN ConfigurationPin1Pin2DFN-2LElectrical Parameters (T=25℃)Electrical CharacteristicsWE05DLCF-BParameterSymbol ConditionsMinimumTypicalMaximumUnits Reverse Stand-Off Voltage V RWM 5.0 V Reverse Breakdown Voltage V BR I T =1mA 5.6 VReverse Leakage Current I R V RWM =5V, T=25°C 0.1 μAClamping Voltage V C I PP =2A, t p =8/20μs 11 13 V Junction CapacitanceC jV R = 0V, f= 1MHz2.53.5pFAbsolute Maximum RatingRatingSymbolValue UnitsElectrostatic discharge Voltage (See Note1 ,2)V ESD15KV (contact)Volts 20KV (air)Operating Temperature T J -55 to + 125 °C Storage TemperatureT STG-55 to +150°C SymbolParameterI PP Reverse Peak Pulse Current V C Clamping Voltage @ I PP V RWM Reverse Stand-Off Voltage I R Reverse Leakage Current @ V RWM V BR Breakdown Voltage @ I T I TTest CurrentI R I TI PPV RWMV BR V C VII RI TV RWM V BR V CI PPTypical Characteristics10.10.010.0010.1 1 10 100 1,000t d – Pulse Duration - µs P p p – P e a k P u l s e P o w e r - P p p (K W )40w 8/20µs Waveform11010090807060504030201000 25 50 75 100 125 150P e r c e n t o f R a t e d P o w e r f o r I p pAmbient Temperature - T A (℃)0 1 2C l a m p i n g V o l t a g e -V c (V )Peak Pulse Current -Ipp(A)14131211109876543210C j (V R )/C j (V R =0)Reverse Voltage -V R (V)0 1 2 3 4 5F=1MHz1.11.00.90.80.70.60.50.40.30.20.10Figure 1: Peak Pulse Power Vs Pulse TimeFigure 2: Power Derating CurveFigure 3: Clamping Voltage vs. Peak Pulse CurrentFigure 4: Normalized Junction Capacitance vs. Reverse VoltageFigure 5: Pulse Waveform1101009080706050403020100P e r c e n t I p pTime (µs)WaveformParamters tr=8µs td=20µsHalf Value Ipp/2tr=8µstd=20µsSoldering ParametersReflow ConditionPb – Free assembly Pre HeatTemperature Min (T s(min))150°C Temperature Max (T s(max)) 200°C Time (min to max) (ts )60 – 190 secs Average ramp up rate (Liquidus Temp) (T L ) to peak 5°C/second max T S(max) to T L ——Ramp-up Rate5°C/second maxReflowTemperature (T L ) (Liquidus)217°CTemperature (t L )60 – 150 seconds Peak Temperature (T P ) 260+0/-5 °C Time within actual peak Temperature (t p ) 20 – 40 seconds Ramp-down Rate5°C/second max Time 25°C to peak Temperature (T P )8 minutes Max.Do not exceed280°C©2016 WAYON Corporation 5 / 5Outline Drawing –DFN-2LPACKAGE OUTLINEDEL 1hheL1bLBOTTOM VIEW1221CA 1ADFN-2LSYMBOLMILIMETER MINNOMMAXA 0.45 0.50 0.55A1 0.00 0.02 0.05 b 0.45 0.50 0.55 C 0.12 0.15 0.18 D 0.951.00 1.05 e 0.65BSC E 0.55 0.60 0.65 L 0.20 0.250.30 L1 0.05REF h0.07 0.120.17Land Pattern0.300.600.350.601.000.35Marking CodesPart Number Marking CodeWE05DLCF-BVBPackage InformationQty :10k/ReelCONTACT INFORMATIONCYG WAYON CIRCUIT PROTECTION CO., LTD.No.1001, Shiwan(7) Road, Pudong District, Shanghai, P.R.China.201202 Tel: 86-21-68969993 Fax: 86-21-50757680 Email: market@ WAYON website: For additional information, please contact your local Sales Representative. ® is registered trademark of Wayon Corporation.Specifications are subject to change without notice.The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.。
森兰SB100参数及报警
51
7
R S Er.PLI 10
T
U V W Er.PLo 11
Er.FoP 12
Er.oHI
13
Er.oLI
14
V/F
V/F
Er.oLL 15 F3-02 F3-05 Fb-00
Er.EEF
16 FF
Er52
7
Er.rHo
20
Er.Io1 21
Er.Io2 22
6 7 8 0
AI1
应 5
34
PID PID
1 2
15 16
1
F4-07
FWD/REV
1
应
35
F4-08 F4-09 F4-10 F4-11 F4-12 F4-13
UP/DOWN UP/DOWN UP/DOWN UP/DOWN UP/DOWN 1 7 /
0 2 0.01 100.00 0 2 0.0 100.0 0.0
1 2400bps 4 19200bps
2 4800bps 5 38400bps
F0-00
Fn
26
5
FP
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 PLo FoP oHI oLI oLL EEF CFE ccF Aco rHo Io1
25
5
1.1k 16.0kHz Fb-13 Fb-14 Fb-15 Fb-16 Fb-17
4.0kHz 46 1 0 0.00Hz 0.00Hz 46 46 46 46
SB100-7.5/11T4--2.5kHz SB100-15/18.5T4--3.5kHz SB100-18.5/22T4--3.0kHz
Series 925 MicroPirani
Series 925MicroPirani™ TransducerThe Series 925 MicroPirani™ transducer is a thermal conductivity gauge based on a unique, MEMS-based (Micro-Electro-Mechanical Systems) sensor. The 925 is used for vacuum pressure measurement and offers analog voltage output, digital interface and set point relays for process controlling.The 925 Transducer offers a wide measurement range from 1x10measurement of thermal conductivity. The MicroPirani sensor consists of a silicon chip with a heated resistive element forming one surface of a cavity. A cover on top of the chip forms the other surface of the cavity. Dueto the geometry of the sensor, convection cannot take place within the cavity and consequently, the sensor is insensitive to the mounting position. Gas molecules are passed by diffusion only to the heated element wherethe heat loss of the gas is measured.ApplicationsThe 925 can be used in many differentvacuum applications within the semiconductor,analytical, and coating industries:General vacuum pressure measurementForeline and roughing pressure measurementGas backfilling measurement and controlMass spectrometer controlActivation of UHV gaugesSystem process controlControl system pressureLike all thermal conductivity sensors, the 925 is sensitive to Array gas type. To compensate for gas dependency, the MicroPiranihas a number of common gas calibrations that can beselected via the digital interface. This makes it a simplesolution for locating medium to fine leaks in vacuum systems.The 925 has RS232, RS485, and EtherCAT digitalcommunication interface for setup of transducer parametersand to provide real time pressure measurement.The 925 also has a analog pressure output of 1 VDC/decadethat can be interfaced to external analog equipment forpressure readout or controlling. Other analog outputs andcurves can be selected via the digital user interface.The 925 has up to three mechanical relays which can beused for process control, examples are interlocking valvesor pumps. The 925 compact design significantly reducesthe amount of space occupied by a vacuum gauge. This isparticularly appealling to system designers and allows for amore compact vacuum system.Dra winga lDimensionNote: Unless otherwise specified, dimensions are nominal values in inches(mm referenced).PinOutsThree (3) set point relays and dual Aout, 15 pin D Subminiature and RJ45 EtherCAT IN/OUT ConnectorsSpecificationsSensor Type MicroPirani (MEMS Thermal Conductivity) Measuring Range 1.0 x 10-5 Torr to AtmosphereSet Point Range 5.0 x 10-4 Torr to 500 TorrCalibration Gas Air, Argon, Helium, Nitrogen, Hydrogen, H2O vapor, CO2, Xenon, NeonOperating Temperature Range 0° to 40°C (32° to 104°F)Maximum Bakeout Temperature 80°C (176°F), non-operatingCommunication RS485 / RS232 (4800 to 230400 Baud)Controls Zero adjust, atmosphere adjust, pressure units, baud rate, address, factory default, gas type;set point functions: value, hysteresis, direction, enable analog output transducer status, switch,LEDtestStatus Pressure reading and units, set point, operating time, transducer temperature, user tag, model,device type, serial number, firmware and hardware versions part number, manufacturer Analog Output 1 to 9 VDC, 100W maximum output impedance, 1 volt/decadeAnalog Output Resolution 16 bitRelays (Optional) 925 - 3 relays SPDTRelay Contact Rating 1 A @ 30VAC/DC, resistiveRelay Response<100 msec maximumPower Requirements 9 to 30 VDC, < 1.5 watts maxAccuracy (Typical)1 5 x 10-4 to 10-3 Torr ±10% of Reading10-3 to 100 Torr ±5% of Reading100 Torr to atm ±25% of ReadingRepeatability (Typical)110-3 to 100 Torr ±2% of ReadingOverpressure Limit 3000 Torr absoluteInstallation Orientation AnyInternal Volume (KF16) 2.80 cm3Materials Exposed to Vacuum 304 stainless steel, Silicon, SiO2, Si3N4, Gold, Viton®,Low out gassing epoxy resinElectronic Casing and Flange 304 stainless steelWeight (KF 16) 170 gCompliance CE, ETG.5003.2080 Vacuum Pressure Gauge 1 Accuracy and repeatability are typical values measured with Nitrogen gas at ambient temperature after zero adjustment.Ordering InformationOrdering Code Example: 925-11030Code Configuration925 with Displ a yThe optional integrated touch-screen display is user configurable; the user can change pressure units, orientation and has access to set point parameters as well as gas type. The display also indicates the status of the available set point relays. Displayed reading can be seen from >5 meters away on the high contrast display.PDR900 Power Supply and DisplayThe PDR900 power supply and readout unit is a stand alone, single channel controller for use with the Series 900 digital vacuum transducers. It can be used as a stand-alone power supply readout unit or as a tool for configuration, calibration and diagnostics of system integrated transducers in OEM applications.+1-978-645-5500 I +1-800-227-8766MKS products provided subject to the US Export Regulations. Export, re-export, diversion or transfer contrary to US law (and local country law) is prohibited.mksinst ™ and MicroPirani ™ are trademarks of MKS Instruments, Inc., VCR ® is a registered trademark of Swagelok Co. Viton ® is a registered trademark of E.I Dupont Co., Inc. EtherCAT ® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. U.S. Patent No. 6,672,171. Other patents pending.925_01/20©2020 MKS Instruments, Inc.Specifications are subject to change without notice.。
PCS-915分布式母线保护说明书
技术和使用说明书
南瑞继保电气有限公司版权所有 本说明书和产品今后可能会有小的改动,请注意核对实际产品与说明书的版本是 否相符。 更多产品信息,请访问互联网:
目录
1 概述 .........................................................................................................................................................1 1.1 应用范围 ..........................................................................................................................................1 1.2 保护配置 ..........................................................................................................................................1 1.3 性能特征 ..........................................................................................................................................1 2 技术参数 ...................................................................
压缩机减压阀
结构特点和用处YK气体减压阀属于先导活塞式减压阀。
由主阀和导阀两部分组成。
主阀主要由阀座、主阀盘、活塞、弹簧等零件组成。
导阀主要由阀座、阀瓣、膜片、弹簧、调节弹簧等零件组成。
通过调节调节弹簧压力设定出口压力、利用膜片传感出口压力变化,通过导阀启闭驱动活塞调节主阀节流部位过流面积的大小,实现减压稳压功能。
本产品主要用于气体管路,如空气、氮气、氧气、氢气、液化气、天然气等气体。
主要技术参数和性能指标公称压力(Mpa) 1.6 2.5 4.0 6.410.016.0壳体试验压力(Mpa)* 2.4 3.75 6.09.615.024密封试验压力(Mpa) 1.6 2.5 4.0 6.410.016.0最高进口压力(Mpa) 1.6 2.5 4.0 6.410.016.0出口压力范围(Mpa)0.1-1.00.1-1.60.1-2.50.5-3.50.5-3.50.5-4.5压力特性偏差(Mpa)△P2P GB12246-1989流量特性偏差(Mpa)P2G GB12246-1989最小压差(Mpa)0.150.150.20.40.8 1.0渗漏量X/F(聚四氟乙稀/橡胶):O Y(硬密封):GB12245-1989壳体试验不包括膜片、顶盖主要零件材料零件名称零件材料阀体阀盖底盖WCB/FCB*阀座阀盘2Cr13/304*缸套2Cr13/25(镀硬铬)/304*活塞2Cr13/铜合金/铜合金*活塞环合金铸铁/对位聚苯*导阀座导阀杆2Cr13/304*膜片1Cr18Ni9Ti主阀导阀弹簧50CrVA调节弹簧60Si2Mn密封垫(X/F型号)橡胶/聚四氟乙稀导阀体导阀盖25/304*用于氧气介质时的材料流量系数(Cv)D N 152253245658101251520250300350400500C v12.546.591625366410142540057078010201500外形尺寸(PN1.6-4.0)单位:mm公称通径DN 外形尺寸LH Hl1.6/2.5MPa 4.0MPa1516018029090 2016018030098 25180200300110 32200220300110 40220240320125 50250270320125 65280300325130 80310330365160 100350380365170 125400450475200 150450500475210 200500550515240 250650560290 300800705335 350850745375 400900780405 450900730455 500950835465外形尺寸(PN6.4-16.0)单位:mm 公称通径DN外形尺寸L H Hl6.4MPa10.0/16.0MPa15180180300100 20180200310105 2520022031120 32220230310120 40240240335135 50270300335135 65300340340140 80330360380170 100380380185 125450490215 150500490225 200550535260 250650580310 300800725355 350850765395 400900800435 500950855495订货须知。
DICK音响产品手册
L-6 基本参数单元配置(System Type)............................... ...6"×2+2"×1频率响应(Frequency Range)............................ 30Hz-20KHz灵敏度(1W/1M)........................ ..........................101dB平均功率(Power Capacity)............................... 200W/400 &4Ω40W/80 &8Ω最大声压级(Max SPL)................................ ....131dB指向性(Nominal Dispersion)............................ 120°×(30°-90°)尺寸(Dimensions)................ ......................... …580×205×308mm净重/毛重(NW/GW))........................... ..................14/16 Kg应用范围。
★中小型会议室外发布会★剧场,音乐厅★高档小型多功能厅L-15B基本参数单元配置(System Type)............................................15"×1(有源)频率响应(Frequency Range)................................... 30Hz-500Hz灵敏度(1W/1M)........................ ...................................99dB标称阻抗(Nominal Impedance)................................8Ω平均功率(Power Capacity).......................................400W峰值功率(Peak Power Capacity)............................800W最大声压级(Max SPL)................................ ............129dB指向性(Nominal Dispersion)..................................... N/A尺寸(DimensionsH*W*D)................ .........................580×645×650mm 净重/毛重(NW/GW))........................... .........................34/37 Kg基应范围★大中型室外演出,发布会,大型开闭幕式★剧场,音乐厅★体育馆,大型会堂。
【专业知识】防雷器的技术数据
【专业知识】防雷器的技术数据【学员问题】防雷器的技术数据【解答】主要参数1、标称电压Un:设备正常耐受电压,不动作。
与被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的保护器的类型,它标出交流或直流电压的有效值。
2、额定电压Uc:能长久施加在保护器的指定端,而不引起保护器特性变化和激活保护元件的最大电压有效值。
3、额定放电电流Isn:也称标称放电电流In,给保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。
4、最大放电电流Imax:给保护器施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
5、电压保护级别Up:保护器在下列测试中的最大值:1KV/μs斜率的跳火电压;额定放电电流的残压。
6、响应时间tA:主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。
7、数据传输速率Vs:表示在一秒内传输多少比特值,单位:bps;是数据传输系统中正确选用防雷器的参考值,防雷保护器的数据传输速率取决于系统的传输方式。
8、插入损耗Ae:在给定频率下保护器插入前和插入后的电压比率。
9、回波损耗Ar:表示前沿波在保护设备(反射点)被反射的比例,是直接衡量保护设备同系统阻抗是否兼容的参数。
10、最大纵向放电电流:指每线对地施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
11、最大横向放电电流:指线与线之间施加波形为8/20μs的标准雷电波冲击1次时,保护器所耐受的最大冲击电流峰值。
12、在线阻抗:指在标称电压Un下流经保护器的回路阻抗和感抗的和。
通常称为系统阻抗。
13、峰值放电电流:分两种:额定放电电流Isn和最大放电电流Imax.14、漏电流:指在75或80标称电压Un下流经保护器的直流电流。
ADXL001_官方手册
ADI中文版数据手册是英文版数据手册的译文,敬请谅解翻译中可能存在的语言组织或翻译错误,ADI不对翻译中存在的差异或由此产生的错误负责。如需确认任何词语的准确性,请参考ADI提供
的最新英文版数据手册。
ADXL001
目录
产品特性 ............................................................................................ 1 应用..................................................................................................... 1 概述..................................................................................................... 1 功能框图 ............................................................................................ 1 修订历史 ............................................................................................ 2 技术规格 ............................................................................................ 3
Rev. A | Page 2 of 16
ADXL001
技术规格
XLPE绝缘电老化中局放特性试验研究
X L PE 绝缘电老化中局放特性试验研究陈小林,成永红,谢小军,崔 浩(西安交通大学电力设备电气绝缘国家重点实验室,西安710049)摘 要:利用TE571局放检测仪和超宽频带局放(PD )检测系统研究了XL PE 电缆绝缘试样加速电老化过程中判断试样老化状态的局放统计参量和单次放电波形特性。
结果表明,电老化过程中单次放电时域波形的上升沿变陡,从老化前50ns 降低为老化50h 的8ns ;脉冲幅值从老化前的2mV 增加到老化50h 的17mV ;放电频谱中特征峰的位置随着老化程度的加剧向高频方向移动,从老化前<15M Hz 增加到老化50h 的<50M Hz 和125~200M Hz 。
该研究为放电单次波形检测技术评估XL PE 电力电缆绝缘状态的基础研究。
关键词:XL PE 绝缘;电老化;局部放电;超宽频带;绝缘状态中图分类号:TM855文献标识码:A 文章编号:100326520(2006)0420022203E xperimental Study on P artial Disch arge in X LPE I nsulation During E lectrical AgingCH EN Xiaolin ,CH EN G Y onghong ,XIE Xiaojun ,CU I Hao (State Key Laboratory of Elect rical Insulation for Power Equip ment ,Xi ’an Jiaotong U niversity ,Xi ’an 710049,China )Abstract :The XL PE insulation samples are processed by an accelerated electrical ageing setup ,and the characteris 2tics of partial discharges (PD )during ageing are studied by the TE571PD detector and the ultra 2wide band PD measurement system.The TE571PD detector detects the phase resolved PD signals ,such as the phase resolved dis 2tribution of the maximum discharge magnitude ,the mean discharge magnitude ,and the number of discharges ,while the ultra 2wide band PD measurement system acquires the time 2domain pulses of PD and obtains the PD waveform pa 2rameters ,such as the rise times ,fall times ,and amplitudes of PD pulses.Thus ,the statistical parameters and single waveform parameters are obtained respectively ,and the former can also be used to evaluate the aging status of the X L PE samples.The experimental results show that the rising edge of PD pulses become steep ,which decreases from 50ns before aged to 8ns after aged for 50hours ,the amplitude of PD pulses increases from 2mV to 17mV ,and the characteristic peaks location in the spectrum move toward to high frequency band ,which shift from below 15MHz before aged to 50M Hz and 125~200MHz.This research is a foundation for evaluating the insulating status of X L PE power cables in service.K ey w ords :XL PE insulation ;electrical ageing ;partial discharges ;ultra 2wide band ;insulating status0 引 言XL PE 是高压电力设备常用的绝缘材料之一。
RA参数表
11-4
Siemens Electrical Drives Ltd. 6RX1700-0AD50 SIMOREG DC Master 使用说明书
05.2007
参数号 说 明
值范围 [单位] 步长
11.1
r000
运行状态显示
运行状态显示 状态显示,故障和报警信息
(控制字 2,位 31,见 P691)
[自版本 1.8 起]
o4 等待电压(电枢)
o4.0 等待在电源端子 1U1,1V1,1W1 的电压。电压和频率必须在参数
P351,P352,P353,P363 和 P364 规定的范围内。也见 P078.001。
o4.1 等待熔断器监控器 OK 信号
[自版本 1.7 起]
o7 等待合闸指令( = READY TO SWITCH ON) o7.0 等待通过端子 37 的合闸指令。 o7.1 等待由开关量连接器(根据在参数 P654 中的选择)或控制字,0 位
(根据在参数 P648 中的选择)的合闸指令。 o7.2 等待通过一个外部分闸指令输入的内部分闸取消或等待“用励磁
功能 模拟量输出 开关量输出 基本整流器上串行接口的配置 监控功能的解除 补偿值 晶闸管诊断 关于 DriveMonitor 和 OP1S 的参数 程序文件参数 故障存贮器 只读参数: 报警 装置标志 只读参数: 控制字和状态字 复位和存储参数,现有的和更改的 P 和 r 参数 密码保护,钥匙/锁的作用原理 处理器利用率 其他 串行接口的开关量连接器/连接器的转换 换向监控 设定值的减小 输入和输出功能定义 继电器输出端子 109/110 功能意义 启动脉冲速度调节器 用于起重机 4 级主开关的计算 带有 SCI1 的 SCB1 的配置 在板安装位置 2 和 3 的附加板的配置 SIMOLINK 板的配置 EB1 扩展板的配置 EB2 扩展板的配置 SBP 脉冲编码器板的配置 并行接口的配置 用于 SIMOREG CM (控制模块)的参数 外部励磁单元额定直流电流 模拟工作模式 DriveMonitor 的参数 槽禁止激活 DriveMonitor 的参数 DriveMonitor 的参数 专家的参数存取 现存的和更改的 U 和 n 参数
215502028_水中运行设备共振幅频特性研究
2023年5月水 利 学 报SHUILI XUEBAO第54卷 第5期文章编号:0559-9350(2023)05-0610-11收稿日期:2022-09-09;网络首发日期:2023-05-19网络首发地址:https:??kns.cnki.net?kcms?detail?11.1882.TV.20230518.1135.001.html基金项目:中国水利水电科学研究院科研专项项目(HM0145B432016)作者简介:徐洪泉(1955-),教授级高级工程师,主要从事水力机械开发及稳定性研究。
E-mail:xuhq@iwhr.com水中运行设备共振幅频特性研究徐洪泉,周 叶,廖翠林,曹登峰,邹志超(中国水利水电科学研究院,北京 100038)摘要:在水力机械等淹没水中设备的运行中,常遇到剧烈振动造成设备损坏等故障,多认为由共振引起。
本文首先对单自由度简谐振动系统自由振动、强迫振动方程的稳态振动解进行无量纲化处理,计算出不同阻尼比条件下的共振频率比、共振幅值比,发现阻尼比、共振频率比、共振幅值比三者之间存在一一对应的单调变化关系,并据此提出了分别测量设备在水中及空气中的自由振动频率,假定空气中自由振动频率为设备固有频率,再依次确定水中阻尼比和共振幅值比的反求式估算方法。
本研究采用敲击法进行了混流式水轮机模型转轮水中及空气中自由振动频率测试,发现其水中自由振动频率比空气中低,其水中一阶自由振动频率与空气中一阶自由振动频率之比约为0.758~0.872;如假定该值为水中自由振动频率比,可计算出相应的水中阻尼比为0.652~0.490,共振幅值比约为1.01~1.17。
本研究还进行了中间固定两侧悬臂梁在空气及水中的真实共振试验,在两侧悬臂梁计算固有频率附近均发生明显共振,发现水中共振频率比空气中明显降低,用反求法获得的水中共振幅值比小于2,水中共振幅值对空气中初始振动幅值放大倍数也非常小,进一步说明水中共振时对激振幅值的放大作用非常有限。
200hz低通参数
200hz低通参数
一个200Hz的低通滤波器可以通过数字滤波器的一些参数来描述。
常见的数字滤波器参数包括截止频率、滤波器类型、阶数等。
下面是一个典型的数字低通滤波器的参数:
1. 截止频率(Cutoff frequency):截止频率是指在滤波器中信号频率被减弱的频率。
对于200Hz的低通滤波器,截止频率就是200Hz。
2. 滤波器类型(Filter type):低通滤波器会通过低于截止频率的信号,而削弱高于截止频率的信号。
常见的低通滤波器类型包括Butterworth、Chebyshev、Bessel等。
3. 阶数(Order):阶数描述了滤波器的复杂度,通常用于指示滤波器的陡峭度。
阶数越高,滤波器的陡峭度越高,但计算复杂度也会增加。
根据这些参数,可以设计一个数字低通滤波器,例如一个Butterworth低通滤波器,其参数可能如下:
-截止频率:200Hz
-滤波器类型:Butterworth
-阶数:2(这表示一个二阶的Butterworth低通滤波器)
当然,具体的数字滤波器参数还取决于实际的应用需求,例如需要考虑滤波器的幅频响应、群延迟、相位特性等。
在实际应用中,可能需要使用专业的信号处理工具或者软件来设计和实现数字滤波器。
XB6-P04A 脉冲输出模块 快速使用手册说明书
XB6-P04A脉冲输出模块快速使用手册南京实点电子科技有限公司XB6-P04A快速使用手册版权所有© 南京实点电子科技有限公司2023。
保留一切权利。
非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。
商标声明和其它实点商标均为南京实点电子科技有限公司的商标。
本文档提及的其它所有商标或注册商标,由各自的所有人拥有。
注意您购买的产品、服务或特性等应受实点公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。
除非合同另有约定,实点公司对本文档内容不做任何明示或默示的声明或保证。
由于产品版本升级或其他原因,本文档内容会不定期进行更新。
除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。
南京实点电子科技有限公司地址:江苏省南京市江宁区胜利路91号昂鹰大厦11楼邮编:211106电话:4007788929网址:目录1产品概述 (1)1.1产品简介 (1)1.2产品特性 (1)2产品参数 (2)2.1通用参数 (2)3面板 (4)3.1模块结构 (4)3.2指示灯功能 (5)4安装和拆卸 (6)4.1外形尺寸 (6)4.2安装指南 (6)4.3安装拆卸步骤 (8)4.4安装示意图 (8)5接线 (12)5.1接线图 (12)5.2接线端子定义 (13)6使用 (14)6.1配置参数定义 (14)6.1.1梯形加减速参数 (15)6.1.2回零参数 (15)6.1.3脉冲模式配置 (19)6.1.4输入信号逻辑 (19)6.2过程数据 (20)6.2.1上行数据 (20)6.2.2下行数据 (22)6.3使用案例 (24)6.4模块组态说明 (25)6.4.1在TwinCAT3软件环境下的应用 (25)6.4.2在TIA Portal V17软件环境下的应用 (39)6.4.3在KV STUDIO软件环境下的应用 (63)1产品概述1.1产品简介XB6-P04A为插片式脉冲输出模块,采用X-bus底部总线,适配本司XB6系列耦合器模块,可外接步进/伺服电机驱动器,通过输出脉冲的方式驱动步进/伺服电机。
Belimo EP050R2+BAC-N 特殊数据表说明书
Characterised control valve with sensor-operated flow control, 2-way, Internal andexternal thread, PN 25 (EPIV)• Nominal voltage AC/DC 24 V• Control modulating, communicative, hybrid • For closed cold and warm water systems• For modulating control of air-handling and heating systems on the water side• Communication via BACnet MS/TP, Modbus RTU, Belimo-MP-Bus or conventional control • Conversion of active sensor signals and switching contacts• Measurement of the fluid temperatureType OverviewTypeDN Rp ["]G ["]V'nom [l/s]V'nom [l/min]V'nom [m³/h]kvs theor. [m³/h]PN EP050R2+BAC-N5022 1/2 6.337822.6830.425kvs theor.: Theoretical kvs value for pressure drop calculationTechnical dataElectrical dataNominal voltageAC/DC 24 V Nominal voltage frequency 50/60 HzNominal voltage rangeAC 19.2...28.8 V / DC 21.6...28.8 V Power consumption in operation 5 W Power consumption in rest position 3.9 W Power consumption for wire sizing 7.5 VAConnection supply / controlCable 1 m, 6x 0.75 mm²Data bus communicationCommunicative controlBACnet MS/TP Modbus RTU MP-BusNumber of nodesBACnet / Modbus see interface description MP-Bus max. 8MP-Bus compatibility modeIf the device is used as a EP..R-(K)MPreplacement in an existing MP-Bus system, the unit can be set to the MP compatibility mode. The existing MP client will recognise the device as former EPIV device.The compatibility mode shall not be used for new projects.Functional data Operating range Y 2...10 V Operating range Y variable 0.5...10 V Position feedback U 2...10 V Position feedback U note Max. 1 mA Position feedback U variable 0...10 V 0.5...10 V Sound power level Motor 45 dB(A)V'max adjustable 25...100% of V'nom Control accuracy ±5% (of 25...100% V'nom)Control accuracy note ±10% (of 25...100% V'nom) @ Glycol 0...60% vol.Min. controllable flow 1% of V'nomParametrisationvia NFC, Belimo Assistant AppTechnical dataFunctional data Fluid Cold and warm water, water with glycol up tomax. 60% vol.Fluid temperature-10...120°C [14...248°F]Close-off pressure ∆ps1400 kPaDifferential pressure Δpmax350kPaDifferential pressure note200 kPa for low-noise operationFlow characteristic equal percentage, optimised in the openingrange (switchable to linear)Leakage rate air-bubble tight, leakage rate A (EN 12266-1)Pipe connection Internal and external threadInstallation orientation upright to horizontal (in relation to the stem)Servicing maintenance-freeManual override with push-button, can be lockedMeasuring data Measured values FlowFluid temperature in valve unitTemperature sensor Pt1000 - EN 60751, 2-wire technology,inseparably connectedintegrated in flow sensorTemperature measurement Measuring accuracy absolute temperature± 0.35°C @ 10°C (Pt1000 EN60751 Class B)± 0.6°C @ 60°C (Pt1000 EN60751 Class B) Flow measurement Measuring principle Ultrasonic volumetric flow measurementMeasuring accuracy flow±2% (of 20...100% V'nom) @ 20°C / glycol 0%vol.Measuring accuracy flow note±5% (of 20...100% V'nom) @ glycol 0...60% vol.Min. flow measurement0.5% of V'nomGlycol monitoring Measurement display glycol0...60% or >60%Measuring accuracy glycolmonitoring±4% (0...60%)Safety data Protection class IEC/EN III, Protective Extra-Low Voltage (PELV)Degree of protection IEC/EN IP54Pressure equipment directive CE according to 2014/68/EUEMC CE according to 2014/30/EUCertification IEC/EN IEC/EN 60730-1:11 and IEC/EN 60730-2-15:10Quality Standard ISO 9001Type of action Type 1Rated impulse voltage supply / control0.8 kVPollution degree3Ambient humidity Max. 95% RH, non-condensingAmbient temperature-30...50°C [-22...122°F]Storage temperature-40...80°C [-40...176°F]Materials Valve body BrassFlow measuring pipe Brass body nickel-platedClosing element Stainless steelSpindle Stainless steelSpindle seal EPDM O-ring••••Safety notesThis device has been designed for use in stationary heating, ventilation and air-conditioning systems and must not be used outside the specified field of application, especially in aircraft or in any other airborne means of transport.Outdoor application: only possible in case that no (sea) water, snow, ice, insolation or aggressive gases interfere directly with the device and that it is ensured that the ambient conditions remain within the thresholds according to the data sheet at any time.Only authorised specialists may carry out installation. All applicable legal or institutional installation regulations must be complied with during installation.The device contains electrical and electronic components and must not be disposed of as household refuse. All locally valid regulations and requirements must be observed.Operating modeCalibration certificateProduct featuresThe HVAC performance device is comprised of three components: characterised control valve (CCV), measuring pipe with flow sensor and the actuator itself. The adjusted maximum flow (V'max) is assigned to the maximum control signal (typically 100%). The HVAC performance device can be controlled via communicative signals. The fluid is detected by the sensor in the measuring pipe and is applied as the flow value. The measured value is balanced with the setpoint. The actuator corrects the deviation by changing the valve position. The angle of rotation α varies according to the differential pressure through the control element (see flow curves).There is a calibration certificate available in the Belimo Cloud for each device. If needed, it can be downloaded as a PDF through the Belimo Assistant App.Flow rate curvesControl characteristics Fluid temperature measurement The fluid velocity is measured in the measuring component (sensor electronics) and convertedto a flow rate signal.The control signal Y corresponds to the power Q via the exchanger, the flow is regulated in theEPIV. The control signal Y is converted into an equal-percentage characteristic curve and provided with the V'max value as the new reference variable w. The momentary controldeviation forms the control signal Y1 for the actuator.The specially configured control parameters in connection with the precise flow sensor ensure astable quality of control. They are, however, not suitable for rapid control processes, i.e. for domestic water control. U5 displays the measured flow as voltage (factory setting). Parametrising V'max with Belimo Assistant App:U5 refers to the respective V'nom, i.e. if V'max is e.g. 50% of V'nom, then Y = 10 V, U5 = 5 V.As an alternative, U5 can be used for displaying the valve opening angle (position) or the fluidtemperature.1. Standard equal percentage V'max = V'nom /2. effect V'max < V'nomFlow controlV'nom is the maximum possible flow.V'max is the maximum flow rate which has been set with the highest control signal DDC. V'maxcan be set between 25% and 100% of V'nom.By means of the temperature sensor integrated in the flow sensor, the medium temperature ispermanently measured. The measured value can be read via the bus system or the analoguefeedback signal U. The current measured value is also displayed in the Belimo Assistant App.Creep flow suppressionConverter for sensorsControl signal inversionHydronic balancing Combination analogue - communicative(hybrid mode)Glycol monitoringManual overrideHigh functional safety Given the very low flow speed in the opening point, this can no longer be measured by the sensor within the required tolerance. This range is overridden electronically.Opening valveThe valve remains closed until the flow required by the control signal DDC corresponds to 1% of V'nom. The control along the flow characteristic is active after this value has been exceeded. Closing valveThe control along the flow characteristic is active up to the required flow rate of 1% of V'nom. Once the level falls below this value, the flow rate is maintained at 1% of V'nom. If the level falls below the flow rate of 0.5% of V'nom required by the control signal DDC, then the valve willclose.Connection option for a sensor (active or with switching contact). In this way, the analogue sensor signal can be easily digitised and transferred to the bus systems BACnet, Modbus or MP-Bus.This can be inverted in cases of control with an analogue control signal. The inversion causes the reversal of the standard behaviour, i.e. at a control signal of 0%, regulation is to V'max, and the valve is closed at a control signal of 100%.With the Belimo tools, the maximum flow rate (equivalent to 100% requirement) can be adjusted on-site, simply and reliably, in a few steps. If the device is integrated in the management system, then the balancing can be handled directly by the management system. With conventional control by means of an analogue control signal DDC, BACnet, Modbus or MP-Bus can be used for the communicative position feedback.Glycol monitoring measures the actual glycol content, which is necessary for safe operation and optimised heat exchange.Manual override with push-button possible (the gear train is disengaged for as long as the button is pressed or remains locked).The actuator is overload protected, requires no limit switches and automatically stops when the end stop is reached.Product featuresParts includedDescription TypeInsulation shell for EPIV / Belimo Energy Valve™ DN 32...50Z-INSH32Insulation shell not included in Asia PacificAccessoriesMechanical accessories Description TypePipe connector DN 50 Rp 2", G 2 1/2"EXT-EF-50FInsulation shell for EPIV / Belimo Energy Valve™ DN 32...50Z-INSH32Valve neck extension for ball valve DN 15...50ZR-EXT-01Description TypePipe connector for ball valve with internal thread DN 50 Rp 2"ZR2350Tools Description TypeConverter Bluetooth / NFC ZIP-BT-NFCAccessoriesWire colours:1 = black2 = red3 = white5 = orange6 = pink7 = grey Functions:C1 = D- = A (wire 6) C2 = D+ = B (wire 7)Electrical installationSupply from isolating transformer.Parallel connection of other actuators possible. Observe the performance data.The wiring of the line for BACnet MS/TP / Modbus RTU is to be carried out in accordance withapplicable RS-485 regulations.Modbus / BACnet: Supply and communication are not galvanically isolated. Connect earth signalof the devices with one another.Sensor connection: An additional sensor can optionally be connected to the flow sensor. Thiscan be an active sensor with output DC 0...10 V (max. DC 0...32 V with resolution 30 mV) or aswitching contact (switching current min. 16 mA @ 24 V). Thus the analogue signal of the sensorcan be easily digitised with the flow sensor and transferred to the corresponding bus system.Analogue output: An analogue output (wire 5) is available on the flow sensor. It can be selectedas 0...10 V, 0.5...10 V, 2...10 V or user defined. For example, the flow rate or the temperature ofthe temperature sensor (Pt1000 - EN 60751, 2-wire technology) can be output as an analoguevalue.AC/DC 24 V, modulatingBACnet MS/TP / Modbus RTUConnection with switching contact, e.g. Δp monitorConnection with active sensor, e.g. 0...10 V @ 0...50°CSwitching contact requirements: The switching contact must be able to switch a current of 16mA at 24 V accurately.Possible voltage range: 0...32 V Resolution 30 mVElectrical installationFunctionsFunctions with specific parameters (parametrisation necessary)Override control and limiting with AC 24 V with relay contactsOverride control and limiting with DC 24 V with relay contacts (with conventional control or hybrid mode)Control 3-point1) Position control2) Flow controlFunctions with specific parameters (parametrisation necessary)BACnet MS/TP / Modbus RTU with analogue setpoint (hybrid mode)MP-Bus, supply via 3-wireconnectionMP-Bus via 2-wire connection,local power supply FunctionsOperating controls and indicators1LED display greenOn:Device starting upOff:No power supply or wiring errorFlashing:In operation (Voltage ok)2Flow direction3NFC interface4Manual override buttonPress button:Gear train disengages, motor stops, manual override possibleRelease button:Gear train engages, standard mode. Device performs synchronisation.Permissible installation orientationInstallation location in returnWater quality requirementsServicingFlow directionInlet sectionSplit installation The ball valve can be installed upright to horizontal. The ball valve may not be installed in ahanging position, i.e. with the spindle pointing downwards.Installation in the return is recommended.The water quality requirements specified in VDI 2035 must be adhered to.Belimo valves are regulating devices. For the valves to function correctly in the long term, theymust be kept free from particle debris (e.g. welding beads during installation work). Theinstallation of a suitable strainer is recommended.Ball valves, rotary actuators and sensors are maintenance-free.Before any service work on the control element is carried out, it is essential to isolate the rotaryactuator from the power supply (by unplugging the electrical cable if necessary). Any pumps in the part of the piping system concerned must also be switched off and the appropriate slidevalves closed (allow all components to cool down first if necessary and always reduce thesystem pressure to ambient pressure level).The system must not be returned to service until the ball valve and the rotary actuator havebeen correctly reassembled in accordance with the instructions and the pipeline has been refilled by professionally trained personnel.The direction of flow, specified by an arrow on the housing, is to be complied with, sinceotherwise the flow rate will be measured incorrectly.In order to achieve the specified measuring accuracy, a flow-calming section or inflow section inthe direction of the flow is to be provided upstream from the flow sensor. Its dimensions shouldbe at least 5x DN.The valve-actuator combination may be mounted separately from the flow sensor. The directionof flow of both components must be observed.Minimum differential pressure (pressuredrop)Behaviour in case of sensor failure The minimum required differential pressure (pressure drop through the valve) for achieving the desired volumetric flow V'max can be calculated with the aid of the theoretical kvs value (see type overview) and the below-mentioned formula. The calculated value is dependent on the required maximum volumetric flow V'max. Higher differential pressures are compensated for automatically by the valve.FormulaExample (DN 25 with the desired maximum flow rate = 50% V'nom)In case of a flow sensor error, the EPIV will switch from flow control to position control.Once the error disappears, the EPIV will switch back to the normal control setting.DimensionsDimensional drawingsFurther documentation• Tool connections• BACnet Interface description • Modbus Interface description• Overview MP Cooperation Partners • MP Glossary• Introduction to MP-Bus Technology • General notes for project planning• Installation instructions for actuators and/or ball valves。
试谈飞力潜水设备主要技术优势
一般制造工艺-浸注
• 整个定子采用完全浸入树脂直至饱和的工艺。 • 然后转子通过旋转烘烤变硬。 • 由于树脂蒸发,空气渗入,蒸发后会形成气泡。 • 这些不规则的气泡导致树脂无法完全浸入,降低了
定子的绝缘能力。
2005-2-4Guangzhou
飞力工艺-滴注
•新 的 改 进 工 艺 确 保 树 脂 完 全 浸 透 定 子 绕 组 。 •通 过 缓 慢 旋 转 装 置 对 定 子 预 热 。 •聚 脂 树 脂 溶 剂 慢 慢 地 滴 入 定 子 。 •由 于 树 脂 可 用 于 高 温 , 故 粘 性 很 低 。 •在 慢 速 旋 转 过 程 中 , 树 脂 会 渗 入 所 有 空 隙 , 毛 细 张 力会将树脂渗透到绕组的细微之处。 •在 整 个 滴 注 过 程 中 , 旋 转 装 置 转 动 定 子 , 直 至 最 后 阶段冷却阶段。
保工作环境的安全性。 • 总体降低对空气和水的污染。
2005-2-4Guangzhou
插入式机械密封
• 所有飞力产品的机械密封的类似 性
• 预安装和工厂测试组件
污物的排除、防止密封面的胡乱安装
机械密封耐腐蚀烧结碳化钨
➢ 机械密封是潜水泵的心脏 ➢ 碳化钨与碳化硅相比有如下
优点:
➢ 6倍的机械强度 ➢ 4倍的抗拉强度 ➢ 6倍的抗热阻塞能力(能迅速降温)
4 kW
相同结果 !
2005-2-4Guangzhou
推力是性能参数 !
真正搅拌器性能是推力(以牛顿为单位) 它描述为多少力从叶轮传输到液体
1000 N
(6 kW)
1000 N
(4 kW)
相同结果 !
2005-2-4Guangzhou
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于三极管级间电容 的影响,相当于RC 低通滤波电路
信号频率越高,输出电压越接近输入电压。 一、高通电路:
. Uo . I . Ui
U o 超前 U i,当 f 0 时; U o 0, U o 超前 U i 90 。
Uo Au U
i
R 1 j C R
fL
1 2 ( R C R L ) C
二、低频电压放大倍数:
j A usl A usm 1 j f fL f fL A usm 1 1 fL jf
2
中频段
fL 20 lg A usl 201 g A usm 201 g 1 f
5.1.3 波特图
幅频特性的横轴和纵轴都是采用对数坐标, 横轴采用 lg f ,纵轴采用 20 lg A u 。 相频特性的横轴采用对数坐标 lg f 纵轴仍用φ表示。 以折线代替曲线。 采用对数坐标系,横轴为lg f,可开阔视野;
纵轴为 20 lg ,单位为“分贝” (dB),使得
,
gm
g m rb' e
I EQ Ib 0 0 U be rb e VT
g m rb' e [1 j rb' e ( C π C μ )]
[1 j rb' e C π ]
0 g m rb e
0
1 j f f
0
1 j rb e C
共基极截止频率
f f T f
fT 0 f
讨论一
1. 若干个放大电路的放大倍数分别为1、10、102、 103、104、105,它们的增益分别为多少? 2. 为什么波特图开阔了视野?同样长度的横轴,在 单位长度不变的情况下,采用对数坐标后,最高频 率是原来的多少倍? O 10 20 30 40 50 60 f
'
gm
'
I EQ Ib 0 0 U be rb e UT
'
C μ (1 g m R L ) C μ (1 K ) C μ
f 、 C μ ( C ob )、 g m C π
Cμ Cπ Cπ
' '
C
gm 2 f T
C
5.3 场效应管的高频等效模型
“ ×” →“ +” 。
5.2 晶体管的高频等效模型 5.2.1 晶体管的混合 π 模型: 一、完整的混合 π 模型 r ---基区的体电阻 因面积大
bb'
而阻值小
rc re ---集电区、发射区的体电阻,很小。
rb e rb e rb c rce 很大,可开路。
rb c rb c ,
C C (1 K ) C
三、混合π模型的主要参数:
rbe rb b rb e
rb b 可查手册
rb e (1 )
UT I EQ
Ic g m U b `e o Ib
gm I EQ Ib 0 0 U be rb e UT
C 和 fT
--从手册中查出
C
C
gm 2 f T gm 2 f T
C
5.2.2 晶体管电流放大倍数 的频率响应
由H参数可知:
'
Ic I
U CE
'
b
因为 k g m R L 0,所以 C π C π C μ
g m U b' e 1 U b' e [ j ( C π C μ )] rb' e
0
1 j f f
f f 时, 0; 0 0 . 707 , -45 ; f f 时, 0 2 f f 时, f f 0; f 时, 0 , -90
5.2.2 晶体管电流放大倍数 的频率响应
rb' e rbe
( g m Rc )
A usl
Ri R s Ri
rb e rbe
( g m R L ) 1
1 1 j ( R C R L )C
下限频率
j A usl A usm 1 1 fL jf A usm 1 j
f fL f fL
Au f / fL 1 ( f fL )
2
下限截止频率 (下限频率)
------幅频特性 -------相频特性
90 arctg(
o
f fL
)
f>>fL时放大 倍数约为1
fL
fL
1 2 RC
下限截止频率 (下限频率)
Av f / fL 1 (
o
f fL
------幅频特性
i
j C 1 j C R
1 1 j RC
二、低通电路:频率响应
Uo 1 Au Ui 1 j RC
f<<fH时放大 倍数约为1
fH
1
fH 1 2 RC
令: H
1 RC
Au
1 1 j / H
1 1 ( f fH )
2
波特图: 采用对数坐标系
特征频率
20 lg
2 3 dB
-20dB/十倍频 lg f
5 . 71
注意折线化曲线的误差 采用对数坐标系,横轴为lg f,可开阔视野;纵轴为 20 lg , 单位为“分贝” (dB),使得 “ ×” →“ +” 。
5.2.3晶体管的频率参数
共基截 止频率 共射截 止频率
1 C rb e
0
1 j
f
1 2 C rb e
共发射极 截止频率
5.2.2 晶体管电流放大倍数 的频率响应
0 f 2 1 ( ) f f tg - 1 f
o
A usl Uo U0 Uo U Us U s 0
Us
Rs . Ui . Au . Uoo
C RL Leabharlann Uo A usl Ri Rs Ri
rb e rbe
( g m RC )
RL RC R L 1 j C
A u smo
Ri R s+ R i
特征 频率
集电结电容
使 1时的频率为 f T f 0 f fT
f 、 f 、 f T 、 C ob ( C )。
f 1 2 π rb' e ( C π C μ )
0
1 j f f
通过以上分析得出的结论: ① 低频段和高频段放大倍数的表达式; ② 截止频率与时间常数的关系; ③ 波特图及其折线画法; ④ Cπ的求法。
1 1 jf / f H
上限截止频率 (上限频率)
Av
-----幅频特性
)
arctg(
f fH
-----相频特性
三、几个结论:
① 电路低频段的放大倍数需乘因子 电路高频段的放大倍数需乘因子
jf 1 jf
1 1 jf fH
fL fL
② 当 f=fL时放大倍数幅值约降到0.707倍,相角超前45º ; 当 f=fH时放大倍数幅值也约降到0.707倍,相角滞后45º 。 ③ 截止频率决定于电容所在回路的时间常数
可与晶体管高频等效电流类比,简化、单向化变换。
单向化变换
忽略d-s间等效电容
很大,可忽略其电流
C gs C gs (1 g m R L ) C dg
' '
极间电容
数值/pF
Cgs
1~10
Cgd
1~10
Cds
0.1~1
5.4 单管放大电路的频率响应
5.4.1 单管共射放大电路的频率响应 适用于信号频率从0~∞的 交流等效电路
手册 查得
5.2.3晶体管的频率参数
共基极截止频率: 0
1 1 j 1 f f
特征频率
0
1 j f f
0
1 0 f (1 0 ) f
0
1 0 j f f
1 j
0
1 j f f
f (1 0 ) f
放大电路对信号频率的适应程度,即信号频率 对放大倍数的影响。 由于放大电路中耦合电容、旁路电容、半导体 器件极间电容的存在,使放大倍数为频率的函数。
在使用一个放大电路时应了解其信号频率的适 用范围,在设计放大电路时,应满足信号频率的范 围要求。
5.1.2 频率响应的基本概念:
对于耦合电容的影响, 相当于RC高通滤波电路
10
102 103
104 105
106
lg f
讨论二
电路如图。已知各电阻阻值;静态工作点合适, 集电极电流ICQ=2mA;晶体管的βo=50, rbb’=200Ω,Cob=5pF, fβ=1MHz。 试求: 解该电路中晶体管高频等效模型中的各个参数。
I CQ g m 、 rb' e
C μ ( C ob )、 g m 、 R c、 R L C μ
)
2
90 arctg(
f fL
)
-------相频特性
信号频率越低,输出电压越接近输入电压。 二、低通电路:
. I . Ui . Uo
U o 滞后 U i,当 f 时; o 0, U o 滞后 U i 90 。 U