NEWSITECELL0924

合集下载

丁酸盐在炎症性肠病中的免疫调节机制研究进展

丁酸盐在炎症性肠病中的免疫调节机制研究进展

doi :10.3969/j.issn.1002-7386.2024.09.026·综述与讲座·丁酸盐在炎症性肠病中的免疫调节机制研究进展崔馨月 石璠 郑丽红 王海强项目来源:国家中医药管理局第五批全国中医临床优秀人才研修项目(国中医药人教函[2022]1号);黑龙江中医药大学“优秀青年骨干教师”计划(编号:150********)作者单位:150040 哈尔滨市,黑龙江中医药大学(崔馨月、石璠);黑龙江中医药大学附属第四医院消化内科(郑丽红);黑龙江中医药大学附属第一医院消化二科(王海强)通信作者:王海强 E⁃mail:haiqiang915@ 【摘要】 炎症性肠病(IBD )是一组与肠道慢性炎症相关的异质性疾病,丁酸盐是肠道微生物群产生的关键代谢产物,能够调节免疫细胞的发育和功能,调节免疫功能并防止过度免疫反应,从而延缓IBD 的临床进展。

本文就丁酸盐在调节免疫功能方面改善IBD 作用机制的研究进展进行综述,旨在为IBD 的临床治疗提供新的选择。

【关键词】 炎症性肠病;丁酸盐;G 蛋白耦联受体;Th17细胞;Treg 细胞【中图分类号】 R 321.54 【文献标识码】 A 【文章编号】 1002-7386(2024)09-1397-06Research progress on the immunomodulatory mechanism of butyrate in inflammatory bowel diseases CUI Xinyue ∗,SHI Fan ∗,ZHENG Lihong ,et al.∗Heilongjiang University of Chinese Medicine ,Heilongjiang ,Harbin 150040,China【Abstract 】 Inflammatory bowel diseases (IBDs )are a group of heterogeneous diseases associated with chronic inflammation of the gut.Butyrate is a key metabolite produced by the gut microbiota that regulates the development and function of immune cells ,modulates immune function and prevents excessive immune responses ,thereby delaying the clinical progression of IBDs.This paper reviews the progress of research on the mechanism of butyrate in modulating immune function to improve IBD ,aiming to provide new options for the clinical treatment of IBD.【Key words 】 inflammatory bowel disease ;butyrate ;G⁃protein coupled receptor ;Th17cell ;Treg cell 炎症性肠病(inflammatory bowel disease,IBD)是一组与肠道慢性炎症相关的异质性疾病[1],常表现为腹痛、腹泻、血便、体重减轻等,在过去的10年里在全球范围内变得越来越普遍[2]。

The Body-Mass Index, Airflow Obstruction, Dyspnea, and Exercise Capacity Index in COPD

The Body-Mass Index, Airflow Obstruction, Dyspnea, and Exercise Capacity Index in COPD

n engl j med 350;10march 4, 2004 The new england journal of medicine1005The Body-Mass Index, Airflow Obstruction, Dyspnea, and Exercise Capacity Index in Chronic Obstructive Pulmonary DiseaseBartolome R. Celli, M.D., Claudia G. Cote, M.D., Jose M. Marin, M.D., Ciro Casanova, M.D., Maria Montes de Oca, M.D., Reina A. Mendez, M.D.,Victor Pinto Plata, M.D., and Howard J. Cabral, Ph.D.From the COPD Center at St. Elizabeth’s Medical Center, Tufts University School of Medicine, Boston (B.R.C., V .P.P.); Bay Pines Veterans Affairs Medical Center, Bay Pines,Fla. (C.G.C.); Hospital Miguel Servet, Zara-goza, Spain (J.M.M.); H ospital Nuestra Senora de La Candelaria, Tenerife, Spain (C.C.); Hospital Universitario de Caracas and Hospital Jose I. Baldo, Caracas, Vene-zuela (M.M.O., R.A.M.); and Boston Uni-versity School of Public H ealth, Boston (H.J.C.). Address reprint requests to Dr.Celli at Pulmonary and Critical Care Medi-cine, St. Elizabeth’s Medical Center, 736Cambridge St., Boston, MA 02135, or at bcelli@.N Engl J Med 2004;350:1005-12.Copyright © 2004 Massachusetts Medical Society.backgroundChronic obstructive pulmonary disease (COPD) is characterized by an incompletely re-versible limitation in airflow. A physiological variable — the forced expiratory volume in one second (FEV 1 ) — is often used to grade the severity of COPD. However, patients with COPD have systemic manifestations that are not reflected by the FEV 1 . We hypoth-esized that a multidimensional grading system that assessed the respiratory and sys-temic expressions of COPD would better categorize and predict outcome in these pa-tients.methodsWe first evaluated 207 patients and found that four factors predicted the risk of death in this cohort: the body-mass index (B), the degree of airflow obstruction (O) and dys-pnea (D), and exercise capacity (E), measured by the six-minute–walk test. We used these variables to construct the BODE index, a multidimensional 10-point scale in which higher scores indicate a higher risk of death. We then prospectively validated the index in a cohort of 625 patients, with death from any cause and from respiratory caus-es as the outcome variables.resultsThere were 25 deaths among the first 207 patients and 162 deaths (26 percent) in the validation cohort. Sixty-one percent of the deaths in the validation cohort were due to respiratory insufficiency, 14 percent to myocardial infarction, 12 percent to lung can-cer, and 13 percent to other causes. Patients with higher BODE scores were at higher risk for death; the hazard ratio for death from any cause per one-point increase in the BODE score was 1.34 (95 percent confidence interval, 1.26 to 1.42; P<0.001), and the hazard ratio for death from respiratory causes was 1.62 (95 percent confidence inter-val, 1.48 to 1.77; P<0.001). The C statistic for the ability of the BODE index to predict the risk of death was larger than that for the FEV 1 (0.74 vs. 0.65).conclusionsThe BODE index, a simple multidimensional grading system, is better than the FEV 1at predicting the risk of death from any cause and from respiratory causes among pa-tients with COPD.The new england journal of medicine1006hronic obstructiv e pulmonarydisease (COPD), a common disease char-acterized by a poorly reversible limitationin airflow,1 is predicted to be the third most fre-quent cause of death in the world by 2020.2 Therisk of death in patients with COPD is often gradedwith the use of a single physiological variable, theforced expiratory volume in one second (FEV1).1,3,4However, other risk factors, such as the presenceof hypoxemia or hypercapnia,5,6 a short distancewalked in a fixed time,7 a high degree of functionalbreathlessness,8 and a low body-mass index (theweight in kilograms divided by the square of theheight in meters),9,10 are also associated with anincreased risk of death. We hypothesized that a mul-tidimensional grading system that assessed the res-piratory, perceptive, and systemic aspects of COPDwould better categorize the illness and predict theoutcome than does the FEV1 alone. We used datafrom an initial cohort of 207 patients to identifyfour factors that predicted the risk of death: thebody-mass index (B), the degree of airflow ob-struction (O) and functional dyspnea (D), and exer-cise capacity (E) as assessed by the six-minute–walk test. We then integrated these variables into amultidimensional index — the BODE index — andvalidated the index in a second cohort of 625 pa-tients, with death from any cause and death from859 outpatients with a wide range in the severityof COPD were recruited from clinics in the UnitedStates, Spain, and Venezuela. The study was ap-proved by the human-research review board at eachsite, and all patients provided written informed con-sent. COPD was defined by a history of smokingthat exceeded 20 pack-years and a ratio of FEV1 toforced vital capacity (FVC) of less than 0.7 measured20 minutes after the administration of albuterol.1All patients were in clinically stable condition andreceiving appropriate therapy. Patients who werereceiving inhaled oxygen had to have been takinga stable dose for at least six months before studyentry. The exclusion criteria were an illness otherthan COPD that was likely to result in death withinthree years; asthma, defined as an increase in theFEV1 of more than 15 percent above the base-linevalue or of 200 ml after the administration of a bron-chodilator; an inability to take the lung-functionand six-minute–walk tests; a myocardial infarctionwithin the preceding four months; unstable angi-na; or congestive heart failure (New York Heart As-sociation class III or IV).variables selected for the bode indexWe determined the following variables in the first207 patients who were recruited between 1995 and1997: age; sex; pack-years of smoking; FVC; FEV1,measured in liters and as a percentage of the pre-dicted value according to the guidelines of theAmerican Thoracic Society11; the best of two six-minute–walk tests performed at least 30 minutesapart12; the degree of dyspnea, measured with theuse of the modified Medical Research Council(MMRC) dyspnea scale13; the body-mass index9,10;the functional residual capacity and inspiratorycapacity11; the hematocrit; and the albumin level.The validated Charlson index was used to deter-mine the degree of comorbidity. This index hasbeen shown to predict mortality.14 The differenc-es in these values between survivors and nonsur-vivors are shown in Table 1.Each of these possible explanatory variableswas independently evaluated to determine its as-sociation with one-year mortality in a stepwise for-ward logistic-regression analysis. A subgroup offour variables had the strongest association — thebody-mass index, FEV1 as a percentage of the pre-dicted value, score on the MMRC dyspnea scale,and the distance walked in six minutes (general-ized r2=0.21, P<0.001) — and these were includ-ed in the BODE index (Table 2). All these variablespredict important outcomes, are easily measured,and may change over time. We chose the post-bron-chodilator FEV1 as a percent of the predicted value,classified according to the three stages identifiedby the American Thoracic Society, because it can beused to predict health status,15 the rate of exacer-bation of COPD,16 the pharmacoeconomic costs ofthe disease,17 and the risk of death.18,19 We chosethe MMRC dyspnea scale because it predicts thelikelihood of survival among patients with COPD8and correlates well with other scales and health-status scores.20,21 We chose the six-minute–walktest because it predicts the risk of death in patientswith COPD,7 patients who have undergone lung-reduction surgery,22 patients with cardiomyopa-thy,23 and those with pulmonary hypertension.24In addition, the test has been standardized,12 theclinically significant thresholds have been deter-mined,25 and it can be used to predict resource uti-cn engl j med 350; march 4, 2004n engl j med 350;10march 4, 2004 a multidimensional grading system in chronic obstructive pulmonary disease1007lization. 26 Finally, there is an inverse relation be-tween body-mass index and survival 9,10 that is not linear but that has an inflection point, which was 21 in our cohort and in another study. 10validation of the bode indexThe BODE index was validated prospectively in two ways in a different cohort of 625 patients who were recruited between January 1997 and January 2003. First, we used the empirical model: for each threshold value of FEV 1 , distance walked in six min-utes, and score on the MMRC dyspnea scale shown in Table 2, the patients received points ranging from 0 (lowest value) to 3 (maximal value). For body-mass index the values were 0 or 1, because of the unique relation between body-mass index and survival described above. The points for each varia-ble were added, so that the BODE index ranged from 0 to 10 points, with higher scores indicating a greater risk of death. In an exploratory analysis, the various components of the BODE index were as-signed different weights, with no corresponding increase in predictive value.study protocolIn the cohort, patients were evaluated with the use of the BODE index within six weeks after enroll-ment and were seen every three to six months for at least two years or until death. The patient and family were contacted if the patient failed to return for appointments. Death from any cause and from specific respiratory causes was recorded. The cause of death was determined by the investigators at each site after reviewing the medical record and death certificate.statistical analysisData for continuous variables are presented as means ± SD. Comparison among the three coun-tries was completed with the use of one-way analy-sis of variance. The differences between survivors and nonsurvivors in pulmonary-function variables and other pertinent characteristics were established with the use of t-tests for independent samples.To evaluate the capacity of the BODE index to pre-dict the risk of death, we performed Cox propor-tional-hazards regression analyses. 27 We estimat-ed the hazard ratio, 95 percent confidence interval,and P value for the BODE score, before and after adjustment for coexisting conditions as measured by the Charlson index. We repeated these analyses using the BODE index as the predictor of interest in*FVC denotes forced vital capacity, FEV 1 forced expiratory volume in one sec-ond, and FRC functional residual capacity.†Scores on the modified Medical Research Council (MMRC) dyspnea scale can range from 0 to 4, with a score of 4 indicating that the patient is too breathless to leave the house or becomes breathless when dressing or undressing.‡The body-mass index is the weight in kilograms divided by the square of the height in meters.§Scores on the Charlson index can range from 0 to 33, with higher scores indi- cating more coexisting conditions.*The cutoff values for the assignment of points are shown for each variable. The total possible values range from 0 to 10. FEV 1 denotes forced expiratory volume in one second.†The FEV 1 categories are based on stages identified by the American Thoracic Society.‡Scores on the modified Medical Research Council (MMRC) dyspnea scale can range from 0 to 4, with a score of 4 indicating that the patient is too breathless to leave the house or becomes breathless when dressing or undressing.§The values for body-mass index were 0 or 1 because of the inflection point in the inverse relation between survival and body-mass index at a value of 21.The new england journal of medicine1008dummy-variable form, using the first quartile as thereference group. These analyses yielded estimatesof risk similar to those obtained from analyses us-ing the BODE score as a continuous variable. Thus,we focus our presentation on the predictive charac-teristics of the BODE index and present only bivari-ate results for survival according to quartiles of theBODE index in a Kaplan–Meier analysis. The statis-tical significance was evaluated with the use of thelog-rank test. We also performed bivariate analysison the stage of COPD according to the validatedstaging system of the American Thoracic Society.3In the Cox regression analysis, we assessed thereliability of the model with the body-mass index,degree of airflow obstruction and dyspnea, and ex-ercise capacity score as the predictor of the time todeath by computing bootstrap estimates using thefull sample for the hazard ratio and its 95 percentconfidence interval (according to the percentilemethod). This approach has the advantage of notrequiring that the data be split into subgroups andis more precise than alternative methods, such ascross-validation.28Finally, in order to determine how much moreprecise the BODE index is than the FEV1 alone, wecomputed the C statistics29 for a model containingFEV1 or the BODE score as the sole independentvariable. We compared the survival times and esti-mated the probabilities of death up to 52 months.In these analyses, the C statistic is a mathematicalfunction of the sensitivity and specificity of theBODE index in classifying patients by means of theCox model as either dying or surviving. The nullvalue for the C statistic is 0.5, with a maximum of29patients (Tables 3 and 4) with all degrees of severityof COPD. The FEV1 was slightly lower among pa-tients in the United States than among those in Ven-ezuela or Spain. The U.S. patients also had morefunctional impairment, more severe dyspnea, andmore coexisting conditions. The 27 patients (4 per-cent) lost to follow-up were evenly distributed ac-cording to the severity of COPD and did not differsignificantly from the rest of the cohort with respectto any measured characteristic. There were 162deaths (26 percent) over a median follow-up of 28months (range, 4 to 68). The majority of patients(61 percent) died of respiratory insufficiency, 14percent died of myocardial infarction, 12 percentof lung cancer, and the rest of miscellaneouscauses. The BODE score was lower among survi-vors than among those who died from any cause(3.7±2.2 vs. 5.9±2.6, P<0.005). The score was alsolower among survivors than among those whodied of respiratory causes, and the difference be-tween the scores was larger (3.6±2.2 vs. 6.7±2.3,P<0.001).Table 5 shows the BODE index as a predictor ofdeath from any cause after correction for coexistingconditions. There were significantly more deathsin the United States (32 percent) than in Spain (15percent) or Venezuela (13 percent) (P<0.001). How-ever, when the analysis was done separately foreach country, the predictive power of the BODE in-dex was similar; therefore, the data are presentedtogether. Table 5 shows that the BODE index wasalso a predictor of death from respiratory causesafter correction for coexisting conditions (hazardratio, 1.63; 95 percent confidence interval, 1.48 to1.80; P<0.001). The Kaplan–Meier analysis of sur-*Because of rounding, percentages do not total 100. Thethree stages of chronic obstructive pulmonary disease(COPD) were defined by the American Thoracic Society.FEV1 denotes forced expiratory volume in one second.†Higher scores on the body-mass index, degree of airflowobstruction and dyspnea, and exercise capacity (BODE)index indicate a greater risk of death. Quartile 1 was de-fined by a score of 0 to 2, quartile 2 by a score of 3 to 4,quartile 3 by a score of 5 to 6, and quartile 4 by a scoreof 7 to 10.n engl j med 350; march 4, 2004n engl j med 350;10march 4, 2004 a multidimensional grading system in chronic obstructive pulmonary disease1009vival (Fig. 1A) shows that each quartile increase in the BODE score was associated with increased mor-tality (P<0.001). Thus, the highest quartile (a BODE score of 7 to 10) was associated with a mortality rate of 80 percent at 52 months. These same data are shown in Figure 1B in relation to the severity of COPD according to the staging system of the Amer-ican Thoracic Society. The C statistic for the ability of the BODE index to predict the risk of death was 0.74, as compared with a value of 0.65 with the use of FEV 1 alone (expressed as a percentage of the pre-dicted value). The computation of 2000 bootstrap samples for these data and estimation of the haz-ard ratios for death indicated that for each one-point increment in the BODE score the hazard ratio for death from any cause was 1.34 (95 percent confi-dence interval, 1.26 to 1.42) and the hazard ratio for death from a respiratory cause was 1.62 (95 per-the BODE index — and validated its use by show-ing that it is a better predictor of the risk of death from any cause and from respiratory causes than is the FEV 1 alone. We believe that the BODE index is useful because it includes one domain that quan-tifies the degree of pulmonary impairment (FEV 1 ),one that captures the patient’s perception of symp-toms (the MMRC dyspnea scale), and two indepen-dent domains (the distance walked in six minutes and the body-mass index) that express the systemic consequences of COPD. The FEV 1 is essential for the diagnosis and quantification of the respirato-ry impairment resulting from COPD. 1,3,4 In addi-tion, the rate of decline in FEV 1 is a good marker of disease progression and mortality. 18,19 Howev-er, the FEV 1 does not adequately reflect all the sys-temic manifestations of the disease. For example,the FEV 1 correlates weakly with the degree of dys-pnea, 20 and the change in FEV 1 does not reflect the rate of decline in patients’ health. 30 More impor-tant, prospective observational studies of patients with COPD have found that the degree of dyspnea 8 and health-status scores 31 are more accurate pre-dictors of the risk of death than is the FEV 1 . Thus,although the FEV 1 is important to obtain and essen-tial in the staging of disease in any patient with COPD, other variables provide useful information that can improve the comprehensibility of the eval-uation of patients with COPD. Each variable should*Plus–minus values are means ±SD.†Analysis of variance was used to calculate the P values.‡Scores on the modified Medical Research Council (MMRC) dyspnea scale can range from 0 to 4, with a score of 4 indicating that the patient is too breathless to leave the house or becomes breathless when dressing or undressing.§Scores on the Charlson index can range from 0 to 33, with higher scores indi-cating more coexisting conditions.¶Scores on the body-mass index, degree of airflow obstruction and dyspnea, and exercise capacity (BODE) index can range from 0 to 10, with higher scores indicating a greater risk of death.*The Cox proportional-hazards models for death from any cause include 162 deaths. The Cox proportional-hazards models for death from specific respira-tory causes include 96 deaths. Model I includes the body-mass index, degree of airflow obstruction and dyspnea, and exercise capacity (BODE) index alone. The hazard ratio is for each one-point increase in the BODE score. Model II includes coexisting conditions as expressed by each one-point increase in the Charlson index. CI denotes confidence interval.The new england journal of medicine1010correlate independently with the prognosis ofCOPD, should be easily measurable, and shouldserve as a surrogate for other potentially importantvariables.In the BODE index, we included two descriptorsof systemic involvement in COPD: the body-massindex and the distance walked in six minutes. Bothare simply obtained and independently predict therisk of death.7,9,10 It is likely that they share somecommon underlying physiological determinants,but the distance walked in six minutes contains adegree of sensitivity not provided by the body-massindex. The six-minute–walk test is simple to per-form and has been standardized.12 Its use as a clin-ical tool has gained acceptance, since it is a goodpredictor of the risk of death among patients withother chronic diseases, including congestive heartfailure23 and pulmonary hypertension.24 Indeed, thedistance walked in six minutes has been acceptedas a good outcome measure after interventions suchas pulmonary rehabilitation.32 The body-mass in-dex was also an independent predictor of the riskof death and was therefore included in the BODEindex. We evaluated the independent prognosticpower of body-mass index in our cohort using dif-ferent thresholds and found that values below 21were associated with an increased risk of death, anobservation similar to that reported by Landbo andcoworkers in a large population study.10The Global Initiative for Chronic ObstructiveLung Disease and the American Thoracic Societyrecommend that a patient’s perception of dyspneabe included in any new staging system for COPD.1,3Dyspnea represents the most disabling symptomof COPD; the degree of dyspnea provides informa-tion regarding the patient’s perception of illnessand can be measured. The MMRC dyspnea scale issimple to administer and correlates with other dys-pnea scales20 and with scores of health status.21Furthermore, in a large cohort of prospectively fol-lowed patients with COPD, which used the thresh-old values included in the BODE index, the scoreon the MMRC dyspnea scale was a better predictorof the risk of death than was the FEV1.8The BODE index combines the four variables bymeans of a simple scale. We also explored whetherweighting the variables included in the index im-proved the predictive power of the BODE index. In-terestingly, it failed to do so, most likely becauseeach variable included has already proved to be agood predictor of the outcome of COPD.Our study had some limitations. First, relative-ly few women were recruited, even though enroll-ment was independent of sex. It probably reflectsthe problem of the underdiagnosis of COPD inwomen. Second, there were differences among thethree countries. For example, patients in the UnitedStates had a higher mortality rate, more severe dys-pnea, more functional limitations, and more co-n engl j med 350; march 4, 2004n engl j med 350; march 4, 2004a multidimensional grading system in chronic obstructive pulmonary disease1011existing conditions than patients in Venezuela or Spain, even though the severity of airflow obstruc-tion was relatively similar among the patients as a whole. The reasons for these differences are un-known, because there have been no systematic com-parisons of the regional manifestations of COPD.In all three countries, the BODE index was the best predictor of survival, an observation that renders our findings widely applicable.Three studies have reported the effects of the grouping of variables to express the various do-mains affected by COPD.33-35 These studies did not include variables now known to be important pre-dictors of outcome, such as the body-mass index.However, as we found in our study, they showedthat the FEV 1, the degree of dyspnea, and exercise performance provide independent information regarding the degree of compromise in patients with COPD.Besides its excellent predictive power with re-gard to outcome, the BODE index is simple to cal-culate and requires no special equipment. This makes it a practical tool of potentially widespread applicability. Although the BODE index is a predic-tor of the risk of death, we do not know whether it will be a useful indicator of the outcome in clinical trials, the degree of utilization of health care re-sources, or the clinical response to therapy.We are indebted to Dr. Gordon L. Snider, whose guidance, com-ments, and criticisms were fundamental to the final manuscript.1.Pauwels RA, Buist AS, Calverley PM,Jenkins CR, Hurd SS. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease:NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Work-shop summary. Am J Respir Crit Care Med 2001;163:1256-76.2.Murray CJL, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 1997;349:1269-76.3.Definitions, epidemiology, pathophys-iology, diagnosis, and staging. Am J Respir Crit Care Med 1995;152:Suppl:S78-S83.4.Siafakas NM, Vermeire P, Pride NB, et al. Optimal assessment and management of chronic obstructive pulmonary disease (COPD). Eur Respir J 1995;8:1398-420.5.Nocturnal Oxygen Therapy Trial Group.Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive pulmonary disease: a clinical trial. Ann Intern Med 1980;93:391-8.6.Intermittent positive pressure breathing therapy of chronic obstructive pulmonary disease: a clinical trial. Ann Intern Med 1983;99:612-20.7.Gerardi DA, Lovett L, Benoit-Connors ML, Reardon JZ, ZuWallack RL. Variables re-lated to increased mortality following out-patient pulmonary rehabilitation. Eur Res-pir J 1996;9:431-5.8.Nishimura K, Izumi T, Tsukino M, Oga T. Dyspnea is a better predictor of 5-year sur-vival than airway obstruction in patients with COPD. Chest 2002;121:1434-40.9.Schols AM, Slangen J, Volovics L, Wout-ers EF. Weight loss is a reversible factor in the prognosis of chronic obstructive pulmo-nary disease. Am J Respir Crit Care Med 1998;157:1791-7.ndbo C, Prescott E, Lange P, Vestbo J,Almdal TP. Prognostic value of nutritional status in chronic obstructive pulmonary dis-ease. Am J Respir Crit Care Med 1999;160:1856-61.11.American Thoracic Society Statement.Lung function testing: selection of reference values and interpretative strategies. Am Rev Respir Dis 1991;144:1202-18.12.ATS Committee on Proficiency Stan-dards for Clinical Pulmonary Function Lab-oratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002;166:111-7.13.Mahler D, Wells C. Evaluation of clinical methods for rating dyspnea. Chest 1988;93:580-6.14.Charlson M, Szatrowski T, Peterson J,Gold J. Validation of a combined comor-bidity index. J Clin Epidemiol 1994;47:1245-51.15.Ferrer M, Alonso J, Morera J, et al. Chron-ic obstructive pulmonary disease stage and health-related quality of life. Ann Intern Med 1997;127:1072-9.16.Dewan NA, Rafique S, Kanwar B, et al.Acute exacerbation of COPD: factors associ-ated with poor treatment outcome. Chest 2000;117:662-71.17.Friedman M, Serby CW , Menjoge SS,Wilson JD, Hilleman DE, Witek TJ Jr. Phar-macoeconomic evaluation of a combination of ipratropium plus albuterol compared with ipratropium alone and albuterol alone in COPD. Chest 1999;115:635-41.18.Anthonisen NR, Wright EC, Hodgkin JE. Prognosis in chronic obstructive pulmo-nary disease. Am Rev Respir Dis 1986;133:14-20.19.Burrows B. Predictors of loss of lung function and mortality in obstructive lung diseases. Eur Respir Rev 1991;1:340-5.20.Mahler DA, Weinberg DH, Wells CK ,Feinstein AR. The measurement of dyspnea:contents, interobserver agreement, and phys-iologic correlates of two new clinical index-es. Chest 1984;85:751-8.21.Hajiro T, Nishimura K, Tsukino M, Ike-da A, Koyama H, Izumi T. Comparison of discriminative properties among disease-specific questionnaires for measuring health-related quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1998;157:785-90.22.Szekely LA, Oelberg DA, Wright C, et al.Preoperative predictors of operative mor-bidity and mortality in COPD patients under-going bilateral lung volume reduction sur-gery. Chest 1997;111:550-8.23.Shah M, Hasselblad V , Gheorgiadis M,et al. Prognostic usefulness of the six-min-ute walk in patients with advanced conges-tive heart failure secondary to ischemic and nonischemic cardiomyopathy. Am J Car-diol 2001;88:987-93.24.Miyamoto S, Nagaya N, Satoh T, et al.Clinical correlates and prognostic signifi-cance of six-minute walk test in patients with primary pulmonary hypertension: compari-son with cardiopulmonary exercise testing.Am J Respir Crit Care Med 2000;161:487-92.25.Redelmeier DA, Bayoumi AM, Gold-stein RS, Guyatt GH. Interpreting small dif-ferences in functional status: the Six Minute Walk test in chronic lung disease patients.Am J Respir Crit Care Med 1997;155:1278-82.26.Decramer M, Gosselink R, Troosters T,Verschueren M, Evers G. Muscle weakness is related to utilization of health care resourc-es in COPD patients. Eur Respir J 1997;10:417-23.27.Cox DR. Regression models and life-tables. J R Stat Soc [B] 1972;34:187-220.28.Harrell FE Jr, Lee KL, Mark DB. Multi-variate prognostic models: issues in devel-oping models, evaluating assumptions and adequacy, and measuring and reducing er-rors. Stat Med 1996;15:361-87.29.Nam B-H, D’Agostino R. Discrimina-tion index, the area under the ROC curve. In:Huber-Carol C, Balakrishnan N, Nikulin MS,Mesbah M, eds. Goodness-of-fit tests and。

甘薯蛋白抗癌作用研究进展

甘薯蛋白抗癌作用研究进展

荧光显微镜观察细胞凋亡( Hoechst 33258 核染色):将细胞接种到24孔板 上(1.2x105/孔),托血清16-24 h后用不同浓度SPP处理细胞48 h ,吸去培养基,用PBS洗细胞3 次。然后用2.5% 的戊二醛固定细胞4 h,置摇床上用0.9% NaCL洗细胞3次。除去上清液后,用1μg/ml Hoechst 33258溶液在冰上避光处理细胞30min,然后用0.9% NaCL漂洗3次,甘油封闭后立即于荧光显微镜下(Olymus IX71)紫外光 (360 nm)激发,观察细胞核染色情况。
结果
结果
结果
结果
Fig 1 . Sporamin inhibited the wound closure of HT-29 cells in the presence of PMA. *, P<0.05 vs. PMA alone; #, P<0.05 vs. vehicle
划痕愈合实验
Fig 3. Sporamin suppressed the PMA-induced secretion of uPA in HT-29 cells after 16 h
Fig 2. Sporamin decreases adhesion of colorectal carcinoma HT-29 cells to the substrate in the presence of PMA in HT-29 cells after 16 h
Fig 4. Gelatin zymogram of conditioned medium from HT-29 cancer cells treated with 100 ng/ml PMA and various concentrations of sporamin during 4-h incubation period showing direct inhibitory effect of sporamin on MMP-9 and MMP-2 activity.

人乙醛脱氢酶2基因在毕赤酵母中的高效表达

人乙醛脱氢酶2基因在毕赤酵母中的高效表达

0 AL 7 DH2去除 信 号 肽 (- a tr 。将 酶 切 的质 粒 用 aF co )
D NA 回 收 试 剂 盒 回 收 , 用 。 备
种 。其 中 AL DH2处 在 线 粒 体 内 , 现 出 基 因 多 态 表
性 , 是人 体酒精 代 谢 的关 键 酶 在 肝 脏 和 胃中有 引,

20o 7o 亿 与生物 互程 0,I . 1V. N2 2
Ch m ity & Bie g n e ig e sr o n ie rn
人 乙醛脱 氢 酶 2基 因在 毕 赤 酵 母 中的 高效 表达
赵 锦 , 玉凤 , 赵 黄 锟 。 明科 , 元欣 。 雷 吴 刘 洋 ( 汉 工 程 大 学 绿 色化 工 过 程 省 部 共 建 教 育 部 重 点 实验 室 , 北 武 汉 4 0 7 ) 武 湖 3 0 3
达 过 程 中 失 活 严 重 , 难 得 到 大 量 有 活 性 的 人 AL 很 —
D H 2。
() 5 将上 一步 的质粒 转化 至 E.oi H5 , 涂 布 cl D a 并 在含 氨苄青 霉素 的 L B平 板上 。
( ) 菌 落 P R 验 证 得 到 E cl D a p I 9 - 6经 C .oi H5 ( P C K
AIDH 2 des g 一 l i n)。
作 者在此 研究 了人 AI DH2在毕 赤酵母 中 的高效
表 达 。
1 实 验
1 1 材 料 、 剂 与 仪 器 . 试 含有 密 码 子 优 化 的 人 A D L H2 的 质 粒 p I9 - PC K 0 A DH2 7L ,自 行 构 建 。 毕 赤 酵 母 P ci p s rs i a at i h o

红蓝撞色开展工作计划PPT模版

红蓝撞色开展工作计划PPT模版

YOUR TITLE HERE
45.52
ADD YOUR TEXT
13.46%
ADD YOUR TEXT
262.96
ADD YOUR TEXT
68.55%
ADD YOUR TEXT
01
02
03
04
05
06
ADD YOUR TEXT
Vestibulum ante ipsum primis in faucibus orci luctus
YOUR TITLE HERE
ullamcorper sit amet ligula. Nulla quis lorem ut libero malesuada feugiat. Vestibulum ac diam sit amet quam vehiculaullamcorper sit amet ligula. Nulla quis lorem ut libero malesuada feugiat. Vestibulum ac diam sit amet quam vehicula
cubilia Curae.
YOUR TITLE HERE
Nulla quis lorem ut libero malesuada feugiat. Vestibulum ac diam sit vehiculaNulla quis lorem ut libero malesuada feugiat. Vestibulum ac diam sit ametamet quam vehiculaNulla quis lorem ut libero malesua vehiculaNulla quis lorem ut libero malesuada feugiat. Vestibulum ac diam sit amet da feugiat. Vestibulum ac diam sit amet quam

FAME (费米)全自动酶免分析系统

FAME (费米)全自动酶免分析系统

•Nexgen Four全自动酶免分析系统•双臂四针,可并行运行4块96孔酶标板•系统由1个中央样品装载盘,2套独立三维加样臂、4个独立孵育舱、4×8通道读数器、2套洗板装置组成。

•拥有可实时互换的双重加样针(金属加样针和一次性加样头),并行加样本速度>800孔/h,加试剂速度> 3 800孔/h。

•该仪器由内、外2套计算机管理,先进的运行软件基干WINDOWS XP和NET架构设计。

•仪器还可以增选全自动过敏原分析装置。

FAME (费米)全自动酶免分析系统•硬件上采用综合模块化设计,并行工作模式、双孵育双洗板、单读数模块•可容纳10块板,24个试剂位,30个密闭式孵育位•采用液体水平探测(LLD )、体积与重量传感、光学位置传感等技术,实现了真正的全过程控制( TPC ),尤其是专利的洗液传感器,确保了最佳洗板效果。

•软件上采用全自动GMP/GLP规范系统,如全面的系统跟踪记录(Traceability)与系统追溯(Traceability),标本/试剂加样校验( Sarnple verification) 及“自由任务管理”等功能。

VELISA 软件作为日常工作流程,您所作的只是提供一个电子数据l表格,包括样品的描述以及各种参数。

您只需要简单地点击确定您想做的分析,所有进一步的优化都由Hamilton 的VELISA 软件完成。

在您确定了这些参数以后,您将样品放置到工作站台面上,ELISA STAR let将完成您选择的实验。

优化资源管理的Dynamic Scheduler软件Hamilton的Dynamic Scheduler软件可以根据可用的系统资源,动态的调度多个并行任务,从而能够优化您ELISA 实验的通量。

iSWAP 机械手• 集成的台面内外微孔板控制工具• 可将板放置在孵育器,洗站及读板机上• 确认微孔板的运送条形码扫描器• 读取试管、微孔板以及载架上的条形码• 支持样品追踪• 确保正确的样品被载入,增强实验过程安全监控洗板机• 8通道同时进行洗涤• 每个通道都有液面探测功能• 四条液体处理线路(3条清洗,1条漂净)• 独立的吸液和放液钢针,避免交叉污染读板机• 8道LED酶标检测器• 波长范围340-750nm• 标配4个滤光片(405,450,492,620nm)• 其它波长滤光片根据需要选配孵育器• 成熟的Microlab F.A.M.E技术• 暗箱中共可容纳20块微孔板(4个培养仓,每个培养仓可放置5块微孔板)• 每个培养仓的温度均可独立控制• 培养仓的温度范围从环境温度到70℃标准化的实验器具STARlet的台面有30个轨道,可以灵活的放置各种实验器具,比如可放置2个微孔板载架(每个载架占6个轨道),1个吸头载架(占6个轨道)和12个32孔位的试管载架(占1个轨道。

应用新一代测序技术测定大室别藻苔虫线粒体基因组全序列

应用新一代测序技术测定大室别藻苔虫线粒体基因组全序列

计 划 的基础 , 是 由于 它 测 序 通量 低 、 时费 力 , 但 费 科 学 家们 一直 在努 力寻 求通 量更 高 、 度更 快 、 格更 速 价
便宜的测序技术 。自 20 0 5年 以 来 , Roh 以 c e公 司 的 4 4技 术 、l mia 司 的 S lx 技 术 和 AB 公 5 Iu n 公 l oe a I
1 引 言
诞生于 2 O世 纪 7 0年代 的 S n e 法 是 最 早 被 a gr
广 泛使 用 的 D NA 测 序 技 术 , 是 完 成 人 类 基 因组 也
群 体遗传 分 化的理 想 材料L 。线 粒 体基 因组 的获 2 J
得 传 统上 通 常 是采 取 长 P R 结合 鸟 枪 法 或步 移 法 C 测 序 。虽然 P R方 法 操 作 简 单 , 样 品 需 求量 少 , C 对 但 是花 费时 间较 长 、 工作 量较 大 等问题 , 并且 利用 长 P R扩 增有 时成 功率不 高 , 以获得 目的片段 l 。 C 难 5 ] 苔 藓动 物 ( ro o n ) 为 重 要 的 海 洋 无 脊 椎 by za s 作
关键 词 : 室别 藻苔 虫 ; 粒体基 因组 ; 一代测 序技 术 ; 式 P R; 因排 列 大 线 新 巢 C 基
中 图 分 类 号 : 1. 1 Q9 5 8 5 文 献标 忘码 : A 文 章 编 号 :2 34 9 ( 0 2 0—1 60 0 5 -13 2 1) 20 3 —7
动物 门类 , 存 6 0 余 种 。 目前 国际上较 少 , 完 成 4个苔 藓 动 仅 物物 种 的线 粒体 全基 因组 , 包括 多室 草苔 虫 B g l u ua
n rt a 栉 口 目苔虫 Fls el r ipd 、 ei n 、 i u t l d ah s i a 颈链 血 r i 苔虫 Waes oas boq aa和扇 形管 孔苔 虫 T 一 tri r u tru t p “ b l oaf a elrs6 。大 室别 藻 苔 虫 Me r ui r lbl i¨ p a ] mba

100%活细胞UNES

100%活细胞UNES

100%活细胞UNES VEGNEOTOX原液10ml有盒。

1、暗沉+斑点+松弛——叶杜果+胶原蛋白。

2、暗沉+斑点+干燥缺水——叶杜果+玻尿酸。

3、暗沉+斑点+出油+粉刺——叶杜果+杜鹃花。

4、暗沉+斑点+凹洞+疤痕——叶杜果+胎盘素。

5、暗沉+斑点+皱纹——叶杜果+胜肽祛皱。

6、暗沉+斑点+暗黄+痘痘——叶杜果+左旋C。

1、原液一共分为8种。

100%多糖尿酸/玻尿酸原液(顶级保湿)。

100%杜鹃花原液(控油、收缩毛孔)。

100%去皱原液(强效去皱)。

100%胶原蛋白原液(紧致皮肤、增加弹性)。

100%胎盘素原液(修复受损、滋润)。

100%叶杜果美白皇后原液(强效美白淡斑)。

100%左旋C原液(美白去痘印)。

100%甘草精原液(抗过敏修复)。

肉毒杆菌原液(抗皱去皱)+胎盘原液(延缓衰老)。

油性皮肤毛孔大的最佳选择:杜鹃花原液(收缩毛孔、控油)+玻尿酸原液(补水,油性皮肤经常由于缺水,水油不平衡,导致毛孔更大,皮肤也变得敏感哦)。

痘痘、痘印、修复凹洞左旋维生素C是利用纳米技术,具有超强的渗透力,及抗氧化稳定性,可停留在真皮内长达六小时以上并缓慢释放左旋C而不会使左旋C氧化.具亲手性,亲脂性双重特性,能促进胶原蛋白合成,淡化黑色素沉淀,黑班,雀班,老人班,晒班等各类型班点及去皱,去痘去痘疤,修补缺损,增加肌肤靓白,弹性,尤其对于容易干燥,敏感发炎的肌肤具有独特的免疫保护作用。

看起来比较眼花缭乱,不过搭配方法其实很简单,都是两两一组搭配的,美容院有专门指导搭配的罗盘,只要告诉店主你的皮肤特征,我们用罗盘一转,就马上知道皮肤应该怎么搭配拉!2、一小瓶原液就是一个月的用量哦!每瓶配有专门的喷头,开封后套上即可,左旋c每次只能使用一滴哦!!其他的可以酌情使用两-三滴,由于活细胞原液的渗透效果非常好,所以不要担心不够用哦~~~。

3、使用的时候,将原液滴到虎口处(大拇指跟食指之间的地方),因为虎口是身体温度最低的地方之一,温度越高,原液吸收最快,所以不要用手心哦,手心温度高,原液就容易被手心都吸收拉!4、本品搭配可贝尔水嫩白面膜效果更赞!!本店是可贝尔广东代理,有授权书的哦~~。

Network Cell Info 2.0 用户手册说明书

Network Cell Info 2.0 用户手册说明书

2
Manual v.2, Mar. 8, 2017
Gauge Tab (2/2)
(1) SIM1 cells’ information (2) SIM2 cells’ information ** (for dual SIM phones with Android > 5) (3) WiFi network information (4) Band information (only for Android 7)
(b) Start/pause updates (c) Lock (unlock) the cursor in the center (d) Clear measurement markers and lines (e) Clear map completely (f) Save log files (save the database to the device storage) (g) Zoom in (h) Zoom out (i) Move cursor in the center
The top gauge "Serving Cell" provides the signal strength about the cell you are currently connected to. The other gauges "Neighbor #x" are the signal strengths of the neighbor cells you are most likely to switch to, if you move or if the network judges so.
(2) Bar graph
(3) Reset button to reset statistics counters

细胞结构英文版27张幻灯片

细胞结构英文版27张幻灯片
Needed to continue glucose breakdown for energy
NAD+
cytoplasm
fermentation
Electron carrier produced in glycolysis
fermentation lactate
when oxygen is available
Contains digestive enzymes to digest food in protists or destroy aging organelles
Endomembrane System
Rough Endoplasmic
Reticulum
Smooth Endoplasmic
Reticulum
Structure
Cilia and Flagella
Function(s)
• Move substances across cell surface in lungs, fallopian tubes
• Cell movement in sperm
Connections Between Cells
Citric acid cycle
Electron Transport chain
oxygen Outside cell
mitochondrion
2 ATP
2 ATP
32 ATP
Energy Yield from Glucose
Without Oxygen, Fermentation Occurs
Structure
Mitochondrion
Function
Captures energy from organic molecules, producing ATP

cell search操作流程

cell search操作流程

cell search操作流程摘要:1.cell search 操作流程概述2.cell search 操作流程的具体步骤3.cell search 操作流程的注意事项正文:一、cell search 操作流程概述cell search 操作流程,即细胞搜索操作流程,是一种用于检测和分析细胞结构的生物学实验技术。

该技术通过显微镜观察细胞,借助计算机分析系统对细胞结构进行定量和定位分析。

cell search 操作流程广泛应用于细胞生物学、生物医学和药物研发等领域,有助于科学家深入了解细胞结构和功能,为相关研究提供有力支持。

二、cell search 操作流程的具体步骤cell search 操作流程主要包括以下几个步骤:1.样本制备:首先,需要从生物体中提取细胞样本,并将其固定在载玻片上。

固定液可以防止细胞在实验过程中发生形态改变。

2.染色:将固定后的细胞样本进行染色,以便在显微镜下观察到细胞结构。

常用的染色方法包括荧光染色、免疫染色等。

3.扫描:使用激光共聚焦显微镜对染色后的细胞进行扫描,获取细胞结构的二维或三维图像。

4.图像处理:将扫描得到的图像输入计算机分析系统,进行图像处理和分析。

这一步通常包括去噪、分割、定位等操作,目的是提取出细胞结构信息。

5.分析:根据分析目的,对提取到的细胞结构信息进行统计和分析。

例如,可以计算细胞内各个结构的数量、大小、位置等参数,或者分析不同结构之间的相互关系。

6.结果输出:将分析结果以可视化的方式展示,便于科学家进行观察和分析。

常用的结果输出形式包括图像、图表等。

三、cell search 操作流程的注意事项在进行cell search 操作流程时,需要注意以下几点:1.样本处理:在制备细胞样本时,要确保细胞形态不变,以免影响实验结果。

2.染色方法:选择合适的染色方法,使细胞结构对比鲜明,便于观察和分析。

3.显微镜选择:使用合适的显微镜,确保获取的图像质量高,有利于后续图像处理和分析。

TD信息元素详解

TD信息元素详解

信息元素功能性定义作者:李欣目录目录 (1)信息元素功能性定义 (11)1 核心网信息元素 (11)1.1 CN Information elements (11)1.2 CN Domain System Information (11)1.3 CN Information info (11)1.4 IMEI (11)1.5 IMSI (GSM-MAP) (11)1.6 Intra Domain NAS Node Selector (11)1.7 Location Area Identification (12)1.8 NAS message (12)1.9 NAS system information (GSM-MAP) (12)1.10 Paging record type identifier (12)1.11 PLMN identity (12)1.12 PLMN Type (12)1.13 P-TMSI (GSM-MAP) (12)1.14 RAB identity (12)1.15 Routing Area Code (12)1.16 Routing Area Identification (13)1.17 TMSI (GSM-MAP) (13)2 UTRAN 移动信息元素 (13)2.1 Cell Access Restriction (13)2.2 Cell identity (13)2.3 Cell selection and re-selection info for SIB3/4 (13)2.4 Cell selection and re-selection info for SIB11/12 (13)2.5 Mapping Info (14)2.6 URA identity (14)3 UE 信息元素 (14)3.1 Activation time (14)3.2 Capability Update Requirement (14)3.3 Cell update cause (15)3.4 Ciphering Algorithm (15)3.5 Ciphering mode info (15)3.6 CN domain specific DRX cycle length coefficient (15)3.7 CPCH Parameters (15)3.8 C-RNTI (15)3.9 DRAC system information (15)3.10 Void (16)3.11 Establishment cause (16)3.12 Expiration Time Factor (16)3.13 Failure cause (16)3.14 Failure cause and error information (16)3.15 Initial UE identity (16)3.16 Integrity check info (16)3.17 Integrity protection activation info (17)3.18 Integrity protection Algorithm (17)3.19 Integrity protection mode info (17)3.20 Maximum bit rate (17)3.21 Measurement capability (17)3.22 Paging cause (17)3.23 Paging record (17)3.24 PDCP capability (17)3.25 Physical channel capability (18)3.26 Protocol error cause (18)3.27 Protocol error indicator (18)3.28 RB timer indicator (18)3.29 Redirection info (18)3.30 Re-establishment timer (18)3.31 Rejection cause (18)3.32 Release cause (18)3.33 RF capability FDD (19)3.34 RLC capability (19)3.35 RLC re-establish indicator (19)3.36 RRC transaction identifier (19)3.37 Security capability (19)3.38 START (19)3.39 Transmission probability (19)3.40 Transport channel capability (20)3.41 UE multi-mode/multi-RAT capability (20)3.42 UE radio access capability (20)3.43 UE Timers and Constants in connected mode (21)3.44 UE Timers and Constants in idle mode (21)3.45 UE positioning capability (21)3.46 URA update cause (21)3.47 U-RNTI (21)3.48 U-RNTI Short (21)3.49 UTRAN DRX cycle length coefficient (21)3.50 Wait time (21)3.51 UE Specific Behavior Information 1 idle (21)3.52 UE Specific Behavior Information 1 interRAT (22)4 无线承载信息元素 (22)4.0 Default configuration identity (22)4.1 Downlink RLC STATUS info (22)4.2 PDCP info (22)4.3 PDCP SN info (22)4.4 Polling info (22)4.5 Predefined configuration identity (23)4.6 Predefined configuration value tag (23)4.7 Predefined RB configuration (23)4.8 RAB info (23)4.9 RAB info Post (23)4.10 RAB information for setup (23)4.11 RAB information to reconfigure (24)4.12 NAS Synchronization indicator (24)4.13 RB activation time info (24)4.14 RB COUNT-C MSB information (24)4.15 RB COUNT-C information (24)4.16 RB identity (24)4.17 RB information to be affected (24)4.18 RB information to reconfigure (25)4.19 RB information to release (25)4.20 RB information to setup (25)4.21 RB mapping info (25)4.22 RB with PDCP information (25)4.23 RLC info (25)4.24 Signaling RB information to setup (26)4.25 Transmission RLC Discard (26)5 传输信道信息元素 (26)5.1 Added or Reconfigured DL TrCH information (26)5.2 Added or Reconfigured UL TrCH information (27)5.3 CPCH set ID (27)5.4 Deleted DL TrCH information (27)5.5 Deleted UL TrCH information (27)5.6 DL Transport channel information common for all transport channels (27)5.7 DRAC Static Information (27)5.8 Power Offset Information (28)5.9 Predefined TrCH configuration (28)5.10 Quality Target (28)5.11 Semi-static Transport Format Information (28)5.12 TFCI Field 2 Information (28)5.13 TFCS Explicit Configuration (28)5.14 TFCS Information for DSCH (TFCI range method) (29)5.15 TFCS Reconfiguration/Addition Information (29)5.16 TFCS Removal Information (29)5.17 Void (29)5.18 Transport channel identity (29)5.19 Transport Format Combination (TFC) (29)5.20 Transport Format Combination Set (29)5.21 Transport Format Combination Set Identity (29)5.22 Transport Format Combination Subset (29)5.23 Transport Format Set (29)5.24 UL Transport channel information common for all transport channels (30)6 物理信道信息元素 (30)6.1 AC-to-ASC mapping (30)6.2 AICH Info (30)6.3 AICH Power offset (30)6.4 Allocation period info (30)6.5 Alpha (30)6.6 ASC Setting (30)6.7 Void (31)6.8 CCTrCH power control info (31)6.9 Cell parameters Id (31)6.10 Common timeslot info (31)6.11 Constant value (31)6.12 CPCH persistence levels (31)6.13 CPCH set info (31)6.14 CPCH Status Indication mode (31)6.15 CSICH Power offset (32)6.16 Default DPCH Offset Value (32)6.17 Downlink channelisation codes (32)6.18 Downlink DPCH info common for all RL (32)6.19 Downlink DPCH info common for all RL Post (32)6.20 Downlink DPCH info common for all RL Pre (32)6.21 Downlink DPCH info for each RL (32)6.22 Downlink DPCH info for each RL Post (33)6.23 Downlink DPCH power control information (33)6.24 Downlink information common for all radio links (33)6.25 Downlink information common for all radio links Post (33)6.26 Downlink information common for all radio links Pre (33)6.27 Downlink information for each radio link (33)6.28 Downlink information for each radio link Post (33)6.29 Void (33)6.30 Downlink PDSCH information (33)6.31 Downlink rate matching restriction information (34)6.32 Downlink Timeslots and Codes (34)6.33 DPCH compressed mode info (34)6.34 DPCH Compressed Mode Status Info (34)6.35 Dynamic persistence level (34)6.36 Frequency info (34)6.37 Individual timeslot info (35)6.38 Individual Timeslot interference (35)6.39 Maximum allowed UL TX power (35)6.40 Void (35)6.41 Midamble shift and burst type (35)6.42 PDSCH Capacity Allocation info (35)6.43 PDSCH code mapping (36)6.44 PDSCH info (36)6.45 PDSCH Power Control info (36)6.46 PDSCH system information (36)6.47 PDSCH with SHO DCH Info (36)6.48 Persistence scaling factors (36)6.49 PICH Info (36)6.50 PICH Power offset (37)6.51 PRACH Channelisation Code List (37)6.52 PRACH info (for RACH) (37)6.53 PRACH partitioning (37)6.54 PRACH power offset (37)6.55 PRACH system information list (37)6.56 Predefined PhyCH configuration (38)6.57 Primary CCPCH info (38)6.58 Primary CCPCH info post (38)6.59 Primary CCPCH TX Power (38)6.60 Primary CPICH info (38)6.61 Primary CPICH Tx power (38)6.62 Primary CPICH usage for channel estimation (38)6.63 PUSCH info (38)6.64 PUSCH Capacity Allocation info (38)6.65 PUSCH power control info (39)6.66 PUSCH system information (39)6.67 RACH transmission parameters (39)6.68 Radio link addition information (39)6.69 Radio link removal information (39)6.70 SCCPCH Information for FACH (39)6.71 Secondary CCPCH info (39)6.72 Secondary CCPCH system information (40)6.73 Secondary CPICH info (40)6.74 Secondary scrambling code (40)6.75 SFN Time info (40)6.76 SSDT cell identity (40)6.77 SSDT information (40)6.78 STTD indicator (40)6.79 TDD open loop power control (41)6.80 TFC Control duration (41)6.81 TFCI Combining Indicator (41)6.82 TGPSI (41)6.83 Time info (41)6.84 Timeslot number (41)6.85 TPC combination index (41)6.86 TSTD indicator (41)6.87 TX Diversity Mode (41)6.88 Uplink DPCH info (41)6.89 Uplink DPCH info Post (42)6.90 Uplink DPCH info Pre (42)6.91 Uplink DPCH power control info (42)6.92 Uplink DPCH power control info Post (42)6.93 Uplink DPCH power control info Pre (42)6.94 Uplink Timeslots and Codes (42)6.95 Uplink Timing Advance (42)6.96 Uplink Timing Advance Control (43)7 测量信息元素 (43)7.1 Additional measurements list (43)7.2 Cell info (43)7.3 Cell measured results (43)7.4 Cell measurement event results (44)7.5 Cell reporting quantities (44)7.6 Cell synchronization information (44)7.7 Event results (44)7.8 FACH measurement occasion info (45)7.9 Filter coefficient (45)7.10 HCS Cell re-selection information (45)7.11 HCS neighboring cell information (45)7.12 HCS Serving cell information (45)7.13 Inter-frequency cell info list (46)7.14 Inter-frequency event identity (46)7.15 Inter-frequency measured results list (46)7.16 Inter-frequency measurement (46)7.17 Inter-frequency measurement event results (47)7.18 Inter-frequency measurement quantity (47)7.19 Inter-frequency measurement reporting criteria (47)7.20 Inter-frequency measurement system information (47)7.21 Inter-frequency reporting quantity (47)7.22 Inter-frequency SET UPDATE (48)7.23 Inter-RAT cell info list (48)7.24 Inter-RAT event identity (48)7.25 Inter-RAT info (48)7.26 Inter-RAT measured results list (48)7.27 Inter-RAT measurement (49)7.28 Inter-RAT measurement event results (49)7.29 Inter-RAT measurement quantity (49)7.30 Inter-RAT measurement reporting criteria (49)7.31 Inter-RAT measurement system information (50)7.32 Inter-RAT reporting quantity (50)7.33 Intra-frequency cell info list (50)7.34 Intra-frequency event identity (50)7.35 Intra-frequency measured results list (50)7.36 Intra-frequency measurement (50)7.37 Intra-frequency measurement event results (51)7.38 Intra-frequency measurement quantity (51)7.39 Intra-frequency measurement reporting criteria (51)7.40 Intra-frequency measurement system information (51)7.41 Intra-frequency reporting quantity (52)7.42 Intra-frequency reporting quantity for RACH reporting (52)7.43 Maximum number of reported cells on RACH (52)7.44 Measured results (52)7.45 Measured results on RACH (52)7.46 Measurement Command (52)7.47 Measurement control system information (53)7.48 Measurement Identity (53)7.49 Measurement reporting mode (53)7.50 Measurement Type (53)7.51 Measurement validity (53)7.52 Observed time difference to GSM cell (53)7.53 Periodical reporting criteria (53)7.54 Primary CCPCH RSCP info (54)7.55 Quality measured results list (54)7.56 Quality measurement (54)7.57 Quality measurement event results (54)7.58 Quality measurement reporting criteria (54)7.59 Quality reporting quantity (54)7.60 Reference time difference to cell (54)7.61 Reporting Cell Status (55)7.62 Reporting information for state CELL_DCH (55)7.63 SFN-SFN observed time difference (55)7.64 Time to trigger (55)7.65 Timeslot ISCP info (55)7.66 Traffic volume event identity (55)7.67 Traffic volume measured results list (55)7.68 Traffic volume measurement (55)7.69 Traffic volume measurement event results (56)7.70 Traffic volume measurement object (56)7.71 Traffic volume measurement quantity (56)7.72 Traffic volume measurement reporting criteria (56)7.73 Traffic volume measurement system information (56)7.74 Traffic volume reporting quantity (56)7.75 UE internal event identity (56)7.76 UE internal measured results (57)7.77 UE internal measurement (57)7.78 UE internal measurement event results (57)7.79 UE internal measurement quantity (57)7.80 UE internal measurement reporting criteria (57)7.81 Void (58)7.82 UE Internal reporting quantity (58)7.83 UE Rx-Tx time difference type 1 (58)7.84 UE Rx-Tx time difference type 2 (58)7.85 UE Transmitted Power info (58)7.86 UE positioning Ciphering info (58)7.87 UE positioning Error (58)7.88 UE positioning GPS acquisition assistance (59)7.89 UE positioning GPS almanac (59)7.90 UE positioning GPS assistance data (59)7.91 UE positioning GPS DGPS corrections (59)7.92 UE positioning GPS ionospheric model (59)7.93 UE positioning GPS measured results (59)7.94 UE positioning GPS navigation model (60)7.95 UE positioning GPS real-time integrity (60)7.96 UE positioning GPS reference time (60)7.97 UE positioning GPS UTC model (61)7.98 UE positioning IPDL parameters (61)7.99 UE positioning measured results (61)7.100 UE positioning measurement (61)7.101 UE positioning measurement event results (61)7.102 Void (62)7.103 UE positioning OTDOA assistance data for UE-assisted (62)7.104 Void (62)7.105 UE positioning OTDOA measured results (62)7.106 UE positioning OTDOA neighbor cell info (62)7.107 UE positioning OTDOA quality (63)7.108 UE positioning OTDOA reference cell info (63)7.109 UE positioning position estimate info (64)7.110 UE positioning reporting criteria (64)7.111 UE positioning reporting quantity (64)7.112 T ADV info (65)8 其它信息元素 (65)8.1 BCCH modification info (65)8.2 BSIC (65)8.3 CBS DRX Level 1 information (65)8.4 Cell Value tag (65)8.5 Inter-RAT change failure (65)8.6 Inter-RAT handover failure (66)8.7 Inter-RAT UE radio access capability (66)8.8 Void (66)8.9 MIB Value tag (66)8.10 PLMN Value tag (66)8.11 Predefined configuration identity and value tag (66)8.12 Protocol error information (66)8.13 References to other system information blocks (66)8.14 References to other system information blocks and scheduling blocks (67)8.15 Rplmn information (67)8.16 Scheduling information (67)8.17 SEG COUNT (67)8.18 Segment index (67)8.19 SIB data fixed (67)8.20 SIB data variable (67)8.21 SIB type (67)8.22 SIB type SIBs only (67)9 ANSI-41 Information elements (68)10 Multiplicity values and type constraint values (68)信息元素功能性定义消息是由多个信息元素组合而成,信息元素根据其功能的不同划分为:核心网域信息元素、UTRAN 移动信息元素、UE 信息元素、无线承载信息元素、传输信道信息元素、物理信道信息元素和测量信息元素。

BD FACSLyric

BD FACSLyric

1Alex Fainshtein, 1Edward Joe, 1Lori Apoll, 1Xiaoyang (Alice) Wang, 2Robert Sutherland1BD Biosciences, San Jose, California, USA; 2Laboratory Medicine Program, University Health Network, Toronto, CanadaAccurate Enumeration of CD34+ Cells with the BD®Stem CellEnumeration Kit on the BD FACSLyric™Flow CytometerIntroductionHematopoietic stem cells (HSCs)are CD34+and are responsible for engraftment in the bone marrow transplant setting.Enumerating CD34+HSCs in peripheral blood,leukapheresis and cord blood samples provides critical information to the transplant physicians.The number of viable CD34+cells present in the peripheral blood after mobilization and/or chemotherapy predicts the yield of CD34+cells in the leukapheresis product.Additionally,the number of CD34+cells collected predicts time to engraftment after transplantation.The infusion of a minimum of two million viable CD34+cells per kilogram patient weight generally enables rapid (10—12days to 500neutrophils/µL)and sustained engraftment in the auto-transplant setting.The International Society of Hematotherapy and Graft Engineering (ISHAGE)protocol for CD34+cell enumeration is the most widely used flow cytometric method in clinical laboratories.BD Biosciences has developed an algorithm for the BD FACSLyric™Flow Cytometer that closely follows the ISHAGE protocol.This study was performed to demonstrate the accuracy of the new BD Stem Cell Enumeration Assay algorithm used to enumerate CD34+HSCs.Materials and SamplesBD ®Stem Cell Enumeration Kit BD ®Stem Cell Control BD ® CS&T RUO Beads BD ®FC Beads 7-Color KitBD FACSLyric™Flow Cytometer BD FACSuite™Clinical Application BD Stem Cell Enumeration Assay moduleBD FACSDiva™Software BD CellQuest™Pro SoftwareSamples (50 total):•15 leukapheresis•15 mobilized leukapheresis •15 cord blood • 2 bone marrow• 3 normal peripheral bloodMethodThe samples were stained using the BD ®Stem Cell Enumeration Kit.The stained samples were acquired on the BD FACSLyric™Flow Cytometer using BD FACSuite™Clinical Application.The cytometer was set up using BD ®CS&T RUO Beads for daily performance quality control,BD ®FC Beads and stained BD ®Stem Cell Control for automated compensation.Analysis and ResultsAcquired samples were analyzed in parallel using three different methods. They were gated:A.Manually by BD experts, using BD gating templates(BD internal use) in BD FACSuite™Clinical ApplicationB.Automatically by the new BD Stem CellEnumeration Assay algorithm used in BD FACSuite™Clinical ApplicationC.Manually by an academic expert, using well-established sequential gating criteria and BD CellQuest™Pro Software Each analysis produced cell counts for:•Viable stem cells (CD34+)•Total stem cells (CD34+)•Viable CD45+ Cells •Total CD45+ CellsThe cell counts derived by the three methods were compared using regression analysis.Gating with BD CellQuest™ProManual, Academic Expert (C)Correspondence between “R” regions and populations LabelDefinitionViable CD45R1 and R8G2 (viable CD34+) R2 and “viable CD45”G3 (viable CD34+ and CD45dim)R3 and G2Viable stem cells R4 and G3BeadsR6Total stem cells R1 and R2 and R3Viable lymph R5 and R8Total CD45R1 and not beads DebrisR7Gating with BD FACSuite™Clinical ApplicationManual, BD Experts (A)New Algorithm (B)The BD template includes additional SSC-A vs. CD34 PE-A plots (*) that show the total rather than viable CD45+ cells. The total plot displays the same CD34+ gate, linked to the gate in the viable plot.Regression plots: BD ®Stem Cell Enumeration Assay vs. academic expert**Method A/B vs. Method C (Academic Expert)Method ABD Manual ResultsMethod BBD Stem Cell Enumeration Assay algorithm used in BD FACSuite™Clinical Application Av. BiasSt. Dev.Av. Bias St. Dev.Viable SCE -2.1% 6.3%-3.6%7.8%Total SCE -1.8%8.4%-3.9%9.7%Viable CD45+0.5%0.9%0.5%0.8%Total CD45+-0.1%0.1%0.1%0.2%The additional plot for total CD45+ helps to exclude non-stem cell particles (e.g., platelets), which can appear as a larger population in the CD45+ total plot than is represented in the viable CD45+ —see the example (right). This provides a means to ensure that results for total stem cell count and for stem cell viability are more robust,especially for bone marrow samples.Some of the algorithmic gates have a different construct from the traditional manual gates, but these produce results that are statistically equivalent to the manual results, as demonstrated by the regression analysis.The BD FACSLyric™Flow Cytometer is a Class 1 Laser Product.The BD FACSLyric™Flow Cytometer with the BD FACSuite™Clinical and BD FACSuite™Applications are CE marked in compliance with the European In Vitro Diagnostic Medical Device Directive 98/79/EC. The BD® Stem Cell Enumeration Kit is not available for use with the BD FACSLyric™Flow Cytometer in the United States.BD, the BD Logo, CellQuest, FACSDiva, FACSLyric and FACSuite are trademarks of Becton, Dickinson and Company or its affiliates. © 2021 BD. All rights reserved. BD-42639 (v1.0) 0921 / Formerly 23-19959-00The matched data show excellent concordance between all three methods (R 2= 0.99). Data derived from the algorithm generated slightly lower stem cell counts than BD experts, who in turn generated slightly lower counts than the academic expert.However , the differences were all below 5% for viable and total stem cells and less than 1% for viable and total CD45+ cells.The results demonstrate that the BD ®Stem Cell Enumeration Assay algorithm used in BD FACSuite™Clinical Application on the BD FACSLyric™System accurately enumerates CD34+ cells .ConclusionB D F AC S L y r i c ™S y s t e m a l g o r i t h mB D F AC S L y r i c ™S y s t e m a l g o r i t h mB D F AC S L y r i c ™S y s t e m a l g o r i t h mB D F AC S L y r i c ™S y s t e m a l g o r i t h m。

人类基因组概况ppt课件

人类基因组概况ppt课件
A+T含量 G+C含量 不能确定的碱基 重复序列(不含异染色质) 编码序列(基因)数目 功能未知基因比例 外显子最多的基因 SNP数量 SNP密度
2.91Gbp
54% 38% 9% 35% 26588 42% Titin(234) 约300万个 1/12500 bp
最长的染色体 最短的染色体 基因最多的染色体 基因最少的染色体 基因密度最大的染色体 基因密度最小的染色体 重复序列含量最高的染色体
It is essentially immoral not to get it (the human genome sequence) done as fast as possible.
James Watson
人类基因组计划的完成,使得我们今天有可能来探 讨基因组的概,但我们仍然无法来谈论细节。
重复序列含量最低的染色体
编码外显子序列的比例 基因的平均长度
2(240 Mbp) Y(19 Mbp) 1(2453) Y(104) 19(23/Mb) 13,Y(5/Mb) 19(57%)
2,8,10,13,18(36%)
1.1~1.4% 27 Kb
女 平均 男
染色体上距着丝粒越远,重组率越高
4. Francis S. Collins, Eric D. Green, Alan E. Guttmacher, Mark S. Guyer :A Vision for the Future of Genomics Research. A blueprint for the genomic era. Nature Apr 24 2003: 835.
而 Celera 的测序样本来自5个人:分别属于西班牙裔、 亚洲裔、非洲裔、美洲裔和高加索裔(2男3女),是从21个志 愿者样本中挑选的。

纤维素结合域的酿酒酵母表面展示及其黏附位点初探

纤维素结合域的酿酒酵母表面展示及其黏附位点初探
粉 1 / 用 于 重组 质 粒 的 筛选 。 5g L,
C AA 培 养基 中 ,0 ℃ 、0 / n培 养 过 夜 。 待 菌 3 2 0 rmi 体 生 长到 OD o 在 2~5时 , 0 0 Xg离 心 5mi 0 5 0 n 收集 菌 体 。用 2 半 乳 糖 的 Y — A 培 养 基 重 % NB C A 新 悬 浮菌 体 , 菌 液 OD 使 洲… 为 0 5~1 0,0 o . . 2 c条 件 下 2 0r mi 床 培养 6 h 导基 因表 达 。 0 / n摇 诱
1 4 稻 草 片 的 制备 与酵 母细 胞 孵 育 .
改 进 W a g等 ¨ n 和 Mc ame C r y等 的方 法 制 备植 物 材 料 , 对 其 进 行 酵 母 细 胞 孵 育 。 具 体 做 并 法 如下 : 整 株 稻 草 , 离 茎 、 片 和 叶 鞘 , 茎 的 取 剥 叶 在 第 二 节 上 缘 , 下 2厘 米 处截 取 长 为 3厘米 的茎 片 节
接 产物 转 化 大 肠 杆 菌 T a s o, 化 后 涂 布 于 L rn5 ̄ 活 B 氨 苄青 霉 素 固体选 择 性 培 养 基 。挑 取 筛 选 出 的 单 菌 落经 液 体 选择 性 培 养 基 扩 增 后 , 提 质 粒 , 过 抽 通 限制性 酶 切 分 析 和测 序 ( 海 桑 尼公 司 ) 证 重 组 上 验 质 粒 构建 是 否 成 功 。 1 3 酵 母 转 化 及诱 导 表 达 . 采 用 醋 酸锂 法 副将 构 建成 功 的质 粒 p B 2 MC D 转 化 酿 酒 酵母 细 胞 E Y1 0 转 化后 涂 布 于 MD 培 B 0,
面 。利 用免 疫组 化技 术检 测 重组 酵母 细胞 在 稻 草 茎 细胞 壁 上 的黏 附位 点 。 结 果表 明 : 用 酿 酒 利

A2O工艺活性污泥黏性膨胀原因及控制措施

A2O工艺活性污泥黏性膨胀原因及控制措施

DOI :10.19965/ki.iwt.2023-0608第 44 卷第 4 期2024年 4 月Vol.44 No.4Apr.,2024工业水处理Industrial Water Treatment A 2O 工艺活性污泥黏性膨胀原因及控制措施赵晓娟,张智瑞,刘东洋,雷彬(中原环保股份有限公司,河南郑州 450000)[摘要]污泥黏性膨胀问题一直是A 2O 工艺运行控制的难点。

郑州市某污水处理厂在运行过程中出现污泥黏性膨胀问题,造成污泥沉降性能变差,SVI 逐渐提升至240 mL/g 左右,二沉池泥位持续升高。

从进水水质、水温、曝气量、浮渣等多方面综合分析引起污泥膨胀的原因,及时从剩余污泥排放量、污泥龄、溶解氧、回流比、水力停留时间等工艺参数调整运行工艺,使污泥膨胀问题得到一定程度的缓解。

为彻底消除生物池浮泥,又通过在二沉池配水井精准投加40 mg/L 的阳离子高分子絮凝剂,经过一段时间的药剂助沉,明显提高了污泥沉降性能,SVI 也逐渐下降至120 mL/g 左右的正常水平,解决了污泥黏性膨胀问题,消除了生物池浮泥,为解决污泥黏性膨胀提供了思路。

[关键词] A 2O 工艺;污泥黏性膨胀;生物浮泥;絮凝剂[中图分类号] X703.1 [文献标识码]B [文章编号] 1005-829X (2024)04-0198-07Reasons and control measures for viscous bulking of activatedsludge in A 2O processZHAO Xiaojuan, ZHANG Zhirui, LIU Dongyang, LEI Bin (Central Plains Environment Protection Co., L td., Z hengzhou 450000, China )Abstract : Sludge viscosity expansion has always been a difficulty in the operation control of A 2O process. The sludge viscosity expansion problem occurred in a sewage treatment plant in Zhengzhou City, resulting in poor sludge settling performance with SVI gradually increasing to about 240 mL/g and the mud level of the secondary sedimenta⁃tion tank continuing to rise. The reasons of sludge swelling were analyzed from the aspects of inlet water quality, wa⁃ter temperature, aeration rate and scum. And then some measures such as adjusting the residual sludge discharge, sludge age, dissolved oxygen value, reflux ratio, hydraulic residence time were timely adopted, so that the sludge bulking problem was alleviated to a certain extent. In order to eliminate the floating mud in the biological tank, 40 mg/L cationic polymer flocculant was added to the distribution well of the secondary sedimentation tank. After a pe⁃riod of time, the sedimentation performance of the sludge was obviously improved with the SVI gradually decreasing to the normal level of about 120 mL/g, indicating that the problem of sludge viscosity swelling and eliminated thefloating mud in the biological tank was solved. It provides a way to solve the viscous swelling of sludge.Key words : A 2O process; sludge viscous bulking; biological floating mud; flocculant长期以来污泥膨胀是困扰采用活性污泥法处理工艺的城镇污水处理厂正常运行管理的突出难题〔1〕。

一种新的多肽——人S4核糖体蛋白10和编码这种多肽的多核苷酸[发明专利]

一种新的多肽——人S4核糖体蛋白10和编码这种多肽的多核苷酸[发明专利]

专利名称:一种新的多肽——人S4核糖体蛋白10和编码这种多肽的多核苷酸
专利类型:发明专利
发明人:毛裕民,谢毅
申请号:CN00115719.1
申请日:20000516
公开号:CN1323826A
公开日:
20011128
专利内容由知识产权出版社提供
摘要:本发明公开了一种新的多肽——人S4核糖体蛋白10,编码此多肽的多核苷酸和经DNA重组技术产生这种多肽的方法。

本发明还公开了此多肽用于治疗多种疾病的方法,如恶性肿瘤,血液病,HIV 感染和免疫性疾病和各类炎症等。

本发明还公开了抗此多肽的拮抗剂及其治疗作用。

本发明还公开了编码这种新的人S4核糖体蛋白10的多核苷酸的用途。

申请人:上海博德基因开发有限公司
地址:200092 上海市中山北二路1111号3号楼12层
国籍:CN
更多信息请下载全文后查看。

RESONATOR LENGTH MEASUREMENT

RESONATOR LENGTH MEASUREMENT

专利名称:RESONATOR LENGTH MEASUREMENT发明人:DJUPSJÖBACKA, Anders,DAHLQUIST, Håkan 申请号:EP2009063208申请日:20091009公开号:WO10/040838P1公开日:20100415专利内容由知识产权出版社提供摘要:The invention provides a method and system for measuring the length of a reflective resonator, by analyzing an electromagnetic spectrum emitted therefrom. The emitted spectrum is used for estimating a first cavity length. This estimation is thereafter improved, by first computing at least one interference number for the spectrum, adjust this value to e.g. an integer or half-integer depending on the configuration of the resonator, and thereafter re-calculating the length of the resonator using the adjusted value of the interference number. The above is an efficient way of improving the accuracy in the determination of a physical property of a resonator.申请人:DJUPSJÖBACKA, Anders,DAHLQUIST, Håkan地址:Electrum 236 S-164 40 Kista SE,Sorterargatan 1 S-162 50 VällingbySE,Virebergsvägen 20 S-169 30 Solna SE,Lindaus Väg 8 S-165 72 Hässelby SE 国籍:SE,SE,SE,SE代理机构:HAAG, Malina更多信息请下载全文后查看。

activate格子 原理

activate格子 原理

activate格子原理
格子激活原理是指通过某种方式刺激格子的活性,使其达到一定程度的活跃状态。

在科学与技术领域中,这一原理被广泛应用于多个领域,如生物学、物理学、电子学等。

在生物学中,格子激活原理常常被用于描述细胞内蛋白质与细胞间信号传递的过程。

细胞内的蛋白质网络形成了一个复杂的生物信息传递系统,其中的格子具有重要的作用。

通过刺激这些格子,可以促进细胞内信号的传导与调控,进而调整细胞的功能状态。

在物理学中,格子激活原理被应用于描述固体晶格中的原子活动。

固体晶格是由一系列排列有序的原子或离子组成的规则结构,其活性对材料的性质至关重要。

通过刺激晶格的活性,可以改变材料的导电性、热导性、机械性能等特性,从而实现材料的优化与调控。

在电子学中,格子激活原理常被用于描述半导体器件中的工作原理。

半导体器件中的格子,如硅或锗等材料的晶格,可以通过外加电场或电流的刺激而发生活跃状态的改变,从而实现电子的传导或封锁。

这一原理被广泛应用于电子元件的设计与制造,如晶体管、二极管等。

总而言之,格子激活原理是一种通过刺激格子的活性,使其达到一定程度的活跃状态的原理。

在不同领域中,这一原理被应用于解释和实现各种现象和功能,从而推动了科学技术的发展和应用。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

日期所属区域站点站型CELL_NAME BS_NO BSPWRTH22松山工业区1H22SSQ1H22松山工业区2H22SSQ2H22松山工业区3H22SSQ3H62东湖北路1H62DHL1H62东湖北路2H62DHL2H62东湖北路3H62DHL3H62塔仔湖1H62TZH1H62塔仔湖2H62TZH2H62塔仔湖3H62TZH3H62木墩湖1H62MDH1H62木墩湖2H62MDH2H62木墩湖3H62MDH3H61大岭山1H61DLS1H61大岭山2H61DLS2H61大岭山3H61DLS3H61何屋1H61HWU1H61何屋2H61HWU2H61何屋3H61HWU3H62市公安局0H62GAJ0H61阳光名邸0H61YGD0H61惠州国税0H61GSJ0H62交警大队0(江北)H62JDD0H61惠州地税0H61DSJ0H61世纪会0H61SJH0H62银梦0H62YMG0H61金色年华0H61JSH0H61麦科特大酒店0H61MKD0H61汇银大厦0H61HYS0H62城区人民政府0H62CRZ0H62电信实业0H62SYS0H62外商投资中心0H62TZX0H62交警支队0(大湖溪附H62JJD0H22TCL手机大楼0H22TCL0H62金沙俊园0H62JSY0 2004-5-8修改邻区H61立新村1H61LXC12004-5-8小区分裂H61立新村2H61LXC22004-5-8小区扩容(2-3)H62红花湖1H62HHH12004-5-8小区扩容(2-3)H62红花湖2H62HHH22004-5-8小区分裂H62红花湖3H62HHH32004-5-11小区分裂H11冷水坑1H11LSK12004-5-11小区分裂H11冷水坑2H11LSK22004-5-11小区分裂H11冷水坑3H11LSK32004-9-2新开站H42梅花林场1H42MHL1452004-9-2新开站H42梅花林场2H42MHL245 2004-9-3新开站H12戴屋1H12DWU145 2004-9-3新开站H12戴屋2H12DWU245 2004-9-3新开站H12戴屋3H12DWU345 2004-9-8新开站H11风门1H11FMN12004-9-8新开站H11风门2H11FMN22004-9-8新开站H11风门3H11FMN32004-9-16新开站H42蓄能电站1H42CDZ145 2004-9-16新开站H42蓄能电站2H42CDZ245 2004-9-20新开站H12叶屋1H12YWU145 2004-9-20新开站H12叶屋2H12YWU245 2004-9-20新开站H12叶屋3H12YWU345 2004-9-20新开站H12杨屋1H12YAW145 2004-9-20新开站H12杨屋2H12YAW245 2004-9-20新开站H12杨屋3H12YAW345 2004-9-20新开站H12利合1H12LHE145 2004-9-20新开站H12利合2H12LHE245 2004-9-20新开站H12利合3H12LHE345 2004-9-21博罗新开站其它900站H41圆洲市场1H41YZC145 2004-9-21博罗新开站其它901站H41圆洲市场2H41YZC245 2004-9-21博罗新开站其它902站H41圆洲市场3H41YZC345 2004-9-21新开站H41狮子峰1H41SZF145 2004-9-21新开站H41狮子峰2H41SZF245 2004-9-21新开站H41狮子峰3H41SZF345 2004-9-22新开站H42卢屋1H42LWU145 2004-9-22新开站H42卢屋2H42LWU245 2004-9-22新开站452004-9-22新开站45 2004-9-22新开站45 2004-9-22新开站45 2004-9-24新开站45 2004-9-24新开站45 2004-9-24新开站45 2004-9-24新开站45BSPWRB CI ARFCN BSIC BEARING LAC98377660309552983863601709552983986602809552106047861509560106058463140956010606896334095601060774616095601060880611409560106098861250956010611816340956010612906214095601061372632909560101447667809555101459267170955510146716734095551014783636095551014864621809555101498562300955510620606395601021085610955510220866309555106408064095601023053620955510240606709555106506065095601026058620955510270916309555102002160095551063095601066073610956010670746095601068046669560984090629552106904861095601012570611609555101269461340955510434826460956010435726220095601043678623309560809778641159561809866612409561809972623309561 4590542861120955345905523613009553 458475566109550 45847670611009550 45847786612109550 8256766160956182566661190956182561612809561 45808226612209553 45808332613009553 4583045562109550 45830562621009550 45830652622909550 4583076462809550 45830874621609550 45830980622609550 4583104260209550 45831178601709550 45831282602909550 4588579266109558 45885863661309558 45885956662409558 458863109558 4588641109558 4588652509558 4580545865109553 45805592651409553 45805652652009553 4580174762609561 45801887621409561 45801989623209561 4573117266409833 45731270661409833 45731377663109833 4584686766OMNI9550NON_BCCH DOWNTILT MAX_TX_BTS ANT_HEIGHMAX_TX_MSANT_GAIN 5,26,67,765251324,30,36,635251340,59,86625134,28,52,786321313,19,80,844321330,45,76,89432136,16,57,744231330,38,80,826231322,78,88,926231339,42,81,10125331317,90,1016,10198331352,64,72633134,10,34,64,7681321,26,55,9251340,45,69,7171351,58,83,100141,36,64,70054,85,101977,60085,24094,86020,80018,53044,48,60,9209,20,29,6004,58,72,8091,564048016814,33,5901148,5337,8001,4708,32010,16,013,36323027215,49,1703,10,650 20,272 9,142 82,512 23,19,850 61,720 9,250 12,22,722 29,57,2021,2129,162 7,122 12,17,252 20,30,382 33,44,532 22,472 62,682 64,782 8,1023,10114 9,1019,10074 79,1015,10034333 3, 24, 360 12, 18,220 6,14,330 10,22,452 32,55,362 57,63,772 3,15,27,850 7,19,31,890 5,87,1007,10190 16,30,670ANT_TYPE TIME LON LAT BASETYPE LENGTH NCELL1X-URBAN 7217.04114.35638923.0413890200H22SSQ2 X-URBAN 7217.04114.35638923.0413890200H22SSQ1 X-URBAN 7217.04114.35638923.0413890200H22SSQ1 X-URBAN 7217.04114.42777823.0844440200H62HDL1 X-URBAN 7217.04114.42777823.0844440200H62HDL1 X-URBAN 7217.04114.42777823.0844440200H62HDL1 X-URBAN 7217.04114.41472223.0905560200H62TZH2 X-URBAN 7217.04114.41472223.0905560200H62TZH1 X-URBAN 7217.04114.41472223.0905560200H62TZH1 X-URBAN 7217.04114.40083323.1283330200H62MDH2 X-URBAN 7217.04114.40083323.1283330200H62MDH1 X-URBAN 7217.04114.40083323.1283330200H62MDH2 X-URBAN 7217.03114.38222223.0736110200H61DLS2 X-URBAN 7217.04114.38222223.0736110200H61DLS1 X-URBAN 7217.03114.38222223.0736110200H61DLS1 X-URBAN 7217.04114.45027823.0600000200H22HWU2 X-URBAN 7217.04114.45027823.0600000200H22HWU1 X-URBAN 7217.03114.45027823.0600000200H22HWU2114.40577823.116639H62JPY1114.40327823.0868891H62SMN2114.40141723.0749441H61MXL3114.41558323.1398891H62WSI2114.40966723.0673891H61SHL2114.38941723.0796111H61LFG1114.4022523.09551H62GQL1114.40061123.0745H61MXL3114.40722223.077222H32HBL3114.41316723.0837221H31DPG1114.39358323.106028114.41630023.114540H62JPY1114.40691023.109760H62JPY1114.43961123.091139H11DZX1114.34305623.035556H22BBO1114.42270023.087180H31DPG1 739 655114.37872223.054306H61LXC2 739 655114.37872223.054306H61LXC1 X-URBAN 7217.04114.33555623.084444H62FDC2 X-URBAN 7217.04114.33555623.084444H62HHH3 X-URBAN 7217.04114.33555623.084444H62HHH1114.59916723.555278H11BLT0114.59916723.555278H11BLT0114.59916723.555278H11BLT0 7383.02114.22703°23.20931°H42MHL27383.02114.22704°23.20932°H42MHL1 739655114.25027°23.67811°H12SWU2 739655114.25028°23.67812°H12DWU1 739655114.25029°23.67813°H12DWU1 7382.02114.43138923.437500H11FMN2 7382.02114.43138923.437500H11FMN1 7382.02114.43138923.437500H11FMN1 739650114.31924°23.26909°H42CDZ2 739650114.31924°23.26909°H42CDZ1 739624113.94438°23.55246°H12YWU2 739624113.94438°23.55246°H12YWU1 739624113.94438°23.55246°H12YWU1 739624113.96564°23.70788°H12TGG3 739624113.96564°23.70788°H12YAW1 739624113.96564°23.70788°H12YAW1 739624114.35579°23.68783°H12LHE2 739624114.35579°23.68783°H12LHE2 739624114.35579°23.68783°H12LHE2 739622113.95472223.121111H41YZF2 739622113.95472223.121111H41YZF2 739622113.95472223.121111H41YZC1 739650114'03'5723'15'15739650114'03'5723'15'15739650114'03'5723'15'157383.02114.1147123.40706H42LWU2 7383.02114.1147123.40706H42LWU1 7383.02114.1147123.40706H42LWU1 739650114.4373723.48806H11XTN2 739650114.4373723.48806H11XTN1 739650114.4373723.48806H11XTN1 7217.03114.3453923.03534H81YLI2 7217.03114.3453923.03534H81YLI1 7217.03114.05777823.883889H81YLI1H12CND1NCELL2NCELL3NCELL4NCELL5NCELL6NCELL7NCELL8H22SSQ3H61LXC4H61GTA2H61GTA3H61NZN3H61GTA1H61NZN2 H22SSQ3H22XXA1H22XXA2H22XXA3H22CCG1H22CCG2H22CCG3 H22SSQ2H22ZKX1H22ZKX2H22ZKX3H22SZN1H22SZN2H22CCG1 H62HDL2H62HDL3H62DHL2H62DHL3H62DHY2H62DPZ2H62DPZ3 H62HDL2H62HDL3H62DHL1H62DHL3H62DHY1H62DPG2H62DPZ3 H62HDL2H62HDL3H62DHL1H62DHL2H62DHY2H62DPG2H62CHY3 H62TZH3H62QDY1H62QDY2H62QDY3H62LTC3H62DPG1H62DPG3 H62TZH3H62QDY3H62DPG3H62DPG1H31DPG2H62DPY1H31DPY1 H62TZH2H62QDY3H62DPG3H31DPG2H62DPY1H31DPY1H62DPY3 H62MDH3H62WSI3H62JSD2H62JSD3H62SXQ3H62SXC3H62JTS3 H62MDH3H62JSD3H62JSD2H62SXQ3H62SXC3H62SXC1H62JTS3 H62MDH1H62JSD3H62SXQ3H62SXC3H62JTS3H62LXO1H62LXO3 H61DLS3H61YFG0H61LTC2H61LTA2H61SPI3H61SPI2H61SPI1 H61DLS3H61LTC3H61LTC2H61LTA2H61SPI2H61HYJ2H61DXO3 H61DLS2H61LTC3H61LTC2H61LTC1H61YFG0H61LTA2H61SPI3 H22HWU3H62DHY2H62DHL2H62HDL2H62CHY2H62CHY3H62DHX3 H22HWU3H62DHY2H62DHL2H62HDL2H62CHY2H62DHX3H62LBW2 H22HWU1H62DHY2H62DHL2H62HDL2H62CHY2H62DHX3H61HZX1 H62JPY3H62JTS2H62LXO2H62SBI3H62SZF1H62SZF2H62SZF3 H31SMN2H62XDL2H31XDL2H31NMN1H61NMN1H61NTL3H61NTL1 h32MXL2H32mdi1H61MDI1h32MDI2H61MDI2H61LWS1H61LWS3 H62WSI3H62JSD1H62JSD3H62XCN3H62SXQ1H62JJQ2H62SXC1 H61NAL3H61HNA3H61SJL1H61SJL3H61HTN2H61SHL3H61SPY2 H61LFG2H61LFG3H61HYJ3H61HYJ2H61SPI1H61LTA1H61DXO1 H62GQL2H62GQL3H62WHG2H62CSY3H62SDJ3H62SMN1H62XDL1 h32MXL2H32mdi1H61MDI1h32MDI2H61MDI2H61LWS1H61LWS3 H32HBL1H32HJL2H32LZH4H32SYX2H61HBL1H32XPU2H61HBL3 H31DPY2h32BZH1h32BJY1h32BJY2h32SYX1h32XPU1h32XPU2H62JPY3H62JTS2H62JSJ1H62JSJ2H62JSJ3H62SZF1H62SZF3 H62JPY3H62JTS2H62LXO2H62SZF1H62SZF2H62WGC3H62DSS0 H11DZX3H11LJN3H62CHY1H62CHY3H62DHX1H62DHX3H62DPZ1 H22BBO3H22CCG1H22CCG2H22CCG3H22CYY1H22CYY3H22SZN1 H31DPG2H31DPY1H31DPY2h32BZH1H62DHL1H62DHL3H62DHY1H61GTA1H61GTA2H61GTA3H61HZG1H61HZG2H61HZX2H61NZN1 H61GTA1H61GTA2H61GTA3H61HZG1H61HZG2H61HZX2H61LTC3 H62GLN1H62GLN2H62GLN3H62HHH3H62HHH2H62HHZ0H62LSN3 H22CJF1H22JDI1H22PNN3H22SXI0H22SYD1H22XMC1H62BBO3 H62FDC2H62GLN1H62GLN2H62GLN3H62HHH2H62HHZ0H62QLN3 H11LSK2H11SBA1H11SBA2H11SBA3H11XKG4HA1PQ31HA1PQ32 H11LSK1H11MBI2H11SBA1H11SBA2H11SBA3H11XKG4HA1PQ31 H11LSK1H11MBI1H11MBI2H11MBI3H11SBA1H11SBA3H11XKG4 H42TSW1H42MHC1H42MHC3H42MHC2H42MHC4H42JGX3H42XZT2H42XZT2H42XZT1H42XZT3H42XSI2H42TSW1H42HZN2H42YZZ2 H12DWU3H12GXG2H12GXG1H12QXI1H12QXI2H12HSA0H12WPG3 H12DWU3H12QXI2H12QXI1H12HSA0H12XLN1H12XLN2H12ZHT1 H12DWU2H12ZHT1H12HZU3H12HSA0H12LGJ3H12QXI1H12HZU1 H11FMN3H11SEL1H11YCY3H11YCC3H11YCC2H11YCN3H11YCN2 H11FMN3H11SEL1H11SEL3H11YCY3H11YCC2H11YCC3H11YCN2 H11FMN2H11SEL1H11SEL3H11YCY3H11XIC2H42GQO1H42BTG1 H42BMG3H42XSI1H42XSI2H42XSI3H42MHL2H42MHL1H42XZT1 H42BMG1H42BMG2H42BMG3H42PAN2H42PAN1H42XSI1H42XSI2 H12YWU3H12WML0B H12WML0C H12WML0H12YHN3H12YHN2H12YHN1 H12YWU3H12WML0B H12YHN2H12YHN3H12MWU2H12YTH0H12HXG1 H12YWU2H12JCZ0H12YTH0H12WML0B H12WML0C H12HXG1H12YHN3 H12TGG1H12TGG2H12YAW2H12YAW3H12ZTN3H12ZSX0H12ZSX1 H12YAW3H12TGG3H12TGG2H12ZSX0H12ZSX1H12QXD1H12QXD0 H12YAW3H12TGG3H12TGG2H12ZSX0H12ZSX1H12QXD1H12QXD0 H12LHE3H12PLG1H12PLG2H12QXI1H11SDB0H12ZLG1H11QLU3 H12LHE3H12PLG1H12PLG2H12QXI1H11SDB0H12ZLG1H11QLU3 H12LHE3H12PLG1H12PLG2H12QXI1H11SDB0H12ZLG1H11QLU3 H41YZF1H41YZF3H41LWU2H41LWU3H41LWU1H41XNN1H41XNN2 H41YZF1H41YZF3H41LWU2H41LWU3H41LWU1H41XNN1H41XNN2 H41YZC2H41BMW1H41BMW2H41BMW3H41CCN2H41GTU2H41LWU1H42LWU3H12CHD0H12DPO1H12DPO2H12DPO3H42CTN1H42CTN2 H42LWU3H12CHD0H12DPO1H12DPO2H12DPO3H42CTN1H42CTN2 H42LWU2H12CHD0H12DPO1H12DPO2H12DPO3H42CTN1H42CTN2 H11XTN3H11XKG2H11XIC1H11XIC2H11XIC3H11YCN1H11YCN2 H11XTN3H11HXI1H11HXI2H11HXI3H11JZX2H11MBI1H11MBI2 H11XTN2H11FMN1H11FMN2H11FMN3H11GZG2H11HXI1H11HXI2 H81YLI3H81TCL0H81CCG1H81CCG2H81CCG3H81CYY1H81CYY2 H81YLI3H81TCL0H81BBO1H81BBO2H81BBO3H81CCG2H81CCG3 H81YLI2H81TCL0H81BBO3H81CCG1H81CCG2H81CCG3H81CYY1 H12CND2H12CND3H12DLU1H12DLU2H12DPI1H12DPI2H12DPI3NCELL9NCELL10NCELL11NCELL12NCELL13NCELL14NCELL15NCELL16 H22CCG1H22CCG3H22CCG2H22ZKX1H22XXA1H22XXA2H22XXA3H22HTI1 H22HTI1H22CYY1H22ZKI3H22ZKX1H22ZKI1H61LXC4H61GTA2H22CCG3H22ZKI3H22CYY1H22HTI1H22XXA3H22XXA2H61LXC4H61GTA2 H62CHY3H62DHX3H62DPG2H62LTC2H62DHY1H62DPZ2H62QDY2H62LTC2H62CHY3H61HSD1H62DPZ3H62DHY1H62DPZ2H31DPG3H31DPG2H62DPY1H31DPY1H31DPY3H62DPY3H62SBT1H31SBT1H62SDJ1 H62DPY3H31DPY3H62SBT1H31SBT1H62SDJ1H62SBT3H62CSY2H61BZH1 H31DPY3H62SBT1H31SBT1H62SBT2H31SBT2H62SBT3H31SBT3H62SDJ1 H62JTS1H62LXO1H62LXO3H62JJQ2H62SXC1H62SXC2H62HZD0H62WSI2 H62JTS1H62HZD0H62LXO1H62LXO3H62MHU2H62FDC1H62JJQ2H62MHU1 H62MHU1H62FDC1H62JJQ2H62WSI3H62JJQ1H62JJQ3H61DXO3H61DXO1H61HYJ2H61LFG2H61HZG3H61DXO1H61DXO2H61HZG3H61SPI2H61SPI1H61HYJ2H61DXO3H61DXO1H61LTA3H61LTA1H62DHX2H62LBW2H11CNG3H11CNG2H11MAN3H22ZZY1H22SHD1H61HZX1 H11CNG3H11CNG2H11MAN3H22ZZY1H22ZZY2H22SDG1H22SDG2H22SDG3 H61JHC1H61SJL1H61HNA1H61HNX1H61HNX2H61YLG2H61YLG1H61HSD1 H62WGC1H62WGC3H61BJY2h32BJY3H31SMN1h32TY12h32TY13H61GBD2H61HTN1H61DXO3H31XDL1H62JPY2h32TY12h32TY13H61GBD2H61GSJ0H61BZH3H61GBD1H61RRL0H61LZH3H61SMJ2H61SYX2H61XPU2h32XPU3h32XPD1H61BZH3H61BJY1H61SYX1H61SMJ1H61XPU1H61XPU2 H62SBI2H62SBI3H62WJG2H62WGC1H62WGC2H62WGC3H62JPY2H62SZF0H62SZF3H62DPZ2H62LBW3H62LTC1H62LTC2H22SZN2H22SSQ2H22SSQ3H22ZKX1H22ZKX2H22ZKX3H22ZKI1H22ZKI2 H62DHY3H62DPG1H62DPG2H62DPG3H62HDL1H62HDL3H62LTC2H62QDY2 H61NZN2H61NZN3H61XKG0H62SSQ1H62SSQ2H62SSQ3H62XXA1H61NZN1H61NZN2H61NZN3H61XKG0H62SSQ1H62SSQ2H62SSQ3H62XXA1 H62QLN3H62SZN1H62XMH2H62XMH3H62CCG3H62GLN2H62HHH1H62HHZ0H62HNK1H62HNK2H62SZN1H62XMH3 H62SZN1H62XMH1H62XMH2H62XMH3HA1PQ33HA1PQN1HA1PQN2HA1PQN3HA2GZC2HA2GZU1HA2GZU2HA2GZU3 HA1PQ32HA1PQ33HA1PQN1HA1PQN2HA1PQN3HA2GZC2HA2GZU1HA2GZU2 HA1PQ31HA1PQ32HA1PQ33HA1PQN1HA1PQN2HA1PQN3HA2GZC2HA2GZU1 H42LQO1H42YHE1H42LQO3H42LQO2H42DXT3H42DXT1H42GSX3H42STL3H42MHC3H42LQO1H12LMN3H12XLN2H12XLN1H12WAO1H12LMN2H12ZYN2H12HZU3H12LGJ3H12GXG2H12PLG2H12PLX2H12LHA1H11XIC2H11HXI3H11YCN3H42BTG1H42GQO1H42BTG3H42BTG3H11YCC2H11YCN3H42XZT2H42XZT3H42GSX1H42GSX3H42MHC4H42MHC3H42JGX3H42XSI3H42MHL2H42XZT1H42SQN2H42PAN3H12MXG2H12JCZ0H12YTH0H12MWU2H12YHN1H12HXG1H12MWU1H12HXG2H12MZA2H12MZA3H12MZX1H12MZX3H12XLG0H12MXG2 H12MWU2H12HXG2Z32QJG2Z32QJG1Z32DFM0H12YXT0B H12NKS2H12YXT0 H12HZI0H12QXD1H12JCZ0H12JCZ0H12MXG1H12ZTN3H12NKS1H12JCZ0H12MXG1H12ZTN3H12NKS1H12HZI0H12HSA0H12XLN1H12HSA0H12XLN1H12ZLG2H12QXI3H12PLX1H12PLX3H12PLX2H12HSA0H12XLN1H12ZLG2H12QXI3H12PLX1H12PLX3H12PLX2H12DWU2 H41YZU3H41YZU1H41BMW2H41CCN2H41CCN3H41SNN3H41YZC2H41YZC3 H41YZU3H41YZU1H41BMW2H41CCN2H41CCN3H41SNN3H41YZC2H41YZC3 H41LWU2H41LWU3H41SNN3H41XNN1H41XNN2H41XNN3H41YZU1H41YZU2H42CTN3H42HMU1H42HMU2H42HMU3H42HHE1H42HHE2H42HHE3Z32SHZ0H42CTN3H42HMU1H42HMU2H42HMU3H42HHE1H42HHE2H42HHE3Z32SHZ0H42CTN3H42HMU1H42HMU2H42HMU3H42HHE1H42HHE2H42HHE3Z32SHZ0H11YCN3H11FMN1H11FMN2H11FMN3H11GZG1H11GZG2H11GZG3H11JZX1H11MBI3H11PLN2H11TXI1H11TXI3H11XKG1H11XKG2H11XIC1H11XIC2H11HXI3H11JZX1H11MBI1H11MBI3H11SEL1H11STN1H11TXI1H11TXI2H81CYY3H81HTI1H81HTI2H81HTI3H81SSQ1H81SSQ2H81SSQ3H81XXA1H81CYY1H81CYY2H81CYY3H81HTI1H81HTI3H81SZN2H81SSQ2H81SSQ3H81CYY3H81HTI1H81HTI3H81SZN1H81SZN2H81SZN3H81SSQ1H81SSQ2H12HZI0H12MXI0H12MXI2SA1XZN1SA1XZN2NCELL17NCELL18NCELL19NCELL20NCELL21NCELL22NCELL23NCELL24 H22CYY1H22ZKI3H22ZKI1H61GTA3H22CCG2H62CSY2h32BZH1H62DPY2H31DPY2H31DPG1H62SDJ2h32BJY3H62CSY2H61JHC1H61HNA1H61HNX1H61HSD1H61YLG2H22SHD1H22SHD2H22SHD3H61HZX1H61HZX3H61JHC1H61HNA1H61HNX2 H61HSD2H61HSD3H61BZH2H61LZH1H62DHY3H61HSD3H61NAL1H61NAL2 H61XPU3H61XPD1H61XPD2H62DPY2H61BZH1H61DLS2H62HHZ0H62XXA3H62ZKI3H62ZKX3H11LSK3H11MBI2HA2GZU3H11LSK3HA2GZU2HA2GZU3H11LSK2H42BLX3H12MWU1H12GXG1H12ZYN2H41GTU1H41GTU2H41BMW1DGMTLO2DGMTLO1H41YZU3H41YZF1H41YZF2H41YZF3DDHSPX1DGMTLO1DGMTLO2DGMXXI1Z32ZLX0H12LST1H12LST2Z32ZLX0H12LST1H12LST2Z32ZLX0H12LST1H12LST2H11JZX2H11JZX3H11PLN1H11PLN2H11PLN3H11QLU2H11XKG1H11XIC3H11YCN1H11YCC1H11YCC3H11TXI3H11XIC1H11XIC2H11XIC3H11YCN1H11YCN2H11YCN3H11YCY1H81XXA2H81XXA3H81ZKI1H81ZKI3H81ZKX1H81ZKX2H81GTA2H81XXA2H81XXA3H81ZKI1H81ZKI2H81ZKI3H81ZKX1H81ZKX2H81ZKX3H81SSQ3H81XXA3H81ZKI1H81ZKI3H81ZKX1H81ZKX2H81ZKX3NCELL25NCELL26NCELL27NCELL28NCELL29NCELL30NCELL31NCELL32NCELL33 H61HNA2DGMXXI3H11YCY2H11YCY3H11YCC1H11YCC2H11YCC3NCELL34NCELL35NCELL36NCELL37NCELL38NCELL39NCELL40NCELL41NCELL42NCELL43NCELL44NCELL45NCELL46NCELL47NCELL48。

相关文档
最新文档