数字图像处理第四章图像增强解读

合集下载

数字图像处理第四章图像增强

数字图像处理第四章图像增强

数字图像处理第四章图像增强
3
上节知识点回顾
一、图像平滑 1、邻域平均 2、低通滤波 3、中值滤波
二、图像锐化
1、一阶微分法
2、二阶微分法
3、高通滤波
数字图像处理第四章图像增强
4
4.5.1 图像的彩色表示
人眼对于彩色的观察和处理是一种 生理 和 心理 现象,其机理还没有完全搞清楚,
因而对于彩色的许多结论都是建立在实验 基础之上的。
如果采用其他色系进行了处理,最终一定 要转换到RGB色系,才能正常显示结果。
数字图像处理第四章图像增强
15
数字图像处理第四章图像增强
16
2、HIS彩色模型
RGB色系虽然是目前各类显示器使用的色 系,但颜色的构成与人对颜色的理解方式 不同,因此在进行处理与调整时,不易获 得准确的参数。
这种彩色系统格式的设计反映了人类观察
m=X+Y+Z
x X X XYZ m
y Y Y XYZ m
z Z Z XYZ m
m为色模,表示某彩色光所 含标准三基色单位总量,与 光通量有关; x、y、z为相对色度系数(色 度坐标)
且x+y+z=1则z是一个非独立参量,因此配色数 据可换算为x-y坐标值,即x-y标准色度图
数字图像处理第四章图像增强
数字图像处理第四章图像增强
5
一、彩色概念
1、可见光谱
☻可见光谱:人眼能够感觉到的可见光谱集
中在5×1014 Hz附近的一个很窄的光谱范围 内,波长为380~780nm。
数字图像处理第四章图像增强
6
2、光的特性:
(1).可见光的波长范围有限; (2).不同波长的光呈现的颜色不同,随波长
由长到短颜色依次为:红、橙、黄、绿、 青、蓝、紫(品红); (3).只含单一波长的光称为单色光,含两种 或两种以上波长的光称为复合光; (4).太阳发出的光包含了所有的可见光,若 用三棱镜可以将太阳光分解。

数字图像处理与分析-第4章-图像增强讲解

数字图像处理与分析-第4章-图像增强讲解
直方图均衡即是找一种变换,使具有任意概 率分布密度的直方图的图像,变换成接近于均匀 概率分布密度的直方图的图像。
4.2.1 直方图均衡 1. 直方图均衡的基本思想
pr (r)
s T(r)
ps (s)
1
0
1r
0
s
1
4.2.1 直方图均衡
1. 直方图均衡的基本思想
显然,基于上述思想的直方图均衡变换函数:
1
③ 所画的原图像的直方
2 3
图如图4.9所示。
4
rk Pr(rk)=nk/n
=0
0.19
=1/7
0.25
=2/7
0.21
=3/7
0.16
=4/7
0.08
5 =5/7
0.06
6 =6/7
0.03
7 =1
0.02
例4.2.1 (续2)
pr (rk )
0.25
0.20
0.15
0.10
0.05
0
1 7
2 7
4.2.1 直方图均衡
4. 直方图均衡的实现
◆直方图均衡的步骤: (1)计算原图像的归一化灰度级别及其分布概
率pr(rk)=nk/n。 (2)根据直方图均衡化公式(4.13)求变换函
数的各灰度等级值sk。
4.2.1 直方图均衡
4. 直方图均衡的实现
◆直方图均衡的步骤: (3)将所得的变换函数的各灰度等级值转化成
标准的灰度级别值。也即把第(2)步求得的各sk值, 按靠近原则近似到与原图像灰度级别相同的标准灰度 级别中。此时获得的即是均衡化后的新图像中存在的 灰度级别值,其对应的像素个数不为零;对于那些在 变换过程中“被丢失了的”灰度级别值,将其像素个 数设为零。

数字图像处理_胡学龙等_第04章_图像增强

数字图像处理_胡学龙等_第04章_图像增强

直方图均衡化
通过对原图像进行某种变换,使得图像的直 方图变为均匀分布的直方图 。
灰度级连续的灰度图像:当变换函数是原图 像直方图累积分布函数时,能达到直方图均 衡化的目的。 对于离散的图像,用频率来代替概率 。 【例4.2】假定有一幅总像素为n=64×64的图 像,灰度级数为8,各灰度级分布列于表4.1 中。试对其进行直方图均衡化。
• 4.3.2増晰原理 • 同态増晰采用合适的滤波特性函数,可以即使图 像灰度动态范围压缩,又能让感兴趣的物体图像 灰度扩展,从而是图像清晰。 • 图像是物体对照明光的反射,自然景物图像是由 两个分量乘积组成的,即照明函数和反射函数的 乘积。 • 图像的灰度由照明分量和反射分量合成,反射分 量反映了图像的实际内容(细节,纹理,边缘 等),随图像细节不同在空间上做快速变化,其 频谱落在空间高频区域。 • 而照明分量在空间上均具有缓慢变化的性质,其 频谱落在空间低频区域。 • 因此可通过傅里叶变换将两者分开,进行同态滤 波。
a’=0,b’=255。
实现的程序:
• • • • • A=imread('pout.tif'); %读入图像 imshow(A); %显示图像 figure,imhist(A); %显示图像的直方图 J1=imadjust(A,[0.3 0.7],[]); %函数将图像在0.3*255~0.7*255灰度之间 的值通过线性变换映射到0~255之间 • figure,imshow(J1); %输出图像效果图 • figure,imhist(J1) %输出图像的直方图
• 基本思想:按照高通滤波器设计,压缩低 频分量,提升高频分量。 • 照明函数频率变化缓慢,幅度变化大,数 字化占用位数多,所以要压缩; • 反射函数频率变化快,灰度变化很小,层 次不清,细节不明,应该扩展。

数字图像处理_第四章_频域图像增强

数字图像处理_第四章_频域图像增强

2
u 0.1.2. M 1 v 0.1.2. N 1 f ( x, y ) F (u , v)e j 2 (ux / M vy / N )
u 0 v 0 M 1 N 1
可以证明:
x y f ( x , y )( 1) F (u
4.2 傅立叶变换和频率域的介绍
数字图像处理
Chapter 4 Image Enhancement in the Frequency Domain
4.2.3 频率域滤波 频率域滤波基本步骤: 1、(1) x y 原图像 2、F (u, v) 3、 H (u, v) F (u, v) 4、反DEF 5、实部 x y 6、用 (1) (5) 结果。 1 被滤波图像 G(u, v)
数字图像处理
Chapter 4 Image Enhancement in the Frequency Domain
4.3 平滑的频率域滤波器
4.3.1 理想低通滤波器
c ~ e均有“振铃”特征 为什么会有“振铃”现象呢? 其根本原因是空域滤波器有负 值,具体具体解释右图(b)
右图用5个脉冲图像来说明“振 铃”的产生,可看作5个冲激, 只是简单地复制 h( x, y ) → “振铃”。
F (u ) F (u ) e j (u ) F (u ) R (u ) I (u )
2 2
1 2
(u ) arct g
2(u ) R(u )
数字图像处理
Chapter 4 Image Enhancement in the Frequency Domain
1 M x 1 v N y u
4.2 傅立叶变换和频率域的介绍

第4章 图像增强(08) 数字图像处理课件

第4章 图像增强(08) 数字图像处理课件

c
f (x, y)
a
g
(
x,
y
)
d d
c a
[
f
(
x,
y
)
a
]
c
M
g
d
[
f
(x,
y)
b]
d
M f b
0 f (x, y) a 0 f (x, y) b b f (x, y) M f
(4-16)
Image No
第四章 图像增强
g (x, y) Mg d
c
O
ab
M f f (x , y)
一个重要的变换函数为
r
sT(r) 0
pr()d
(4-6)
ω是积分变量,而
r
0 pr ()d
就是r的累积分布函数。
这里,累积分布函数是r的函数,并且单调地从0增 加到1, 所以这个变换函数满足关于T(r)在0≤r≤1内单值 单调增加。在0≤r≤1内有0≤T(r)≤1的两个条件。
第四章 图像增强
Image No
因为r0=0,经变换得s0=1/7,所以有790个像素取s0这个灰度值。r1 映射到s1=3/7,所以有1023个像素取s1=3/7这一灰度值。依次类推, 有 850 个 像 素 取 s2=5/7这 个 灰 度值 。 但 是, 因 为 r3 和 r4 均 映射 到 s3=6/7这一灰度级,所以有656+329=985个像素取这个值。同样, 有245+122+81=448个像素取s4=1这个新灰度值。用n = 4096来除上 述这些nk值,便可得到新的直方图,如图4-10(c)所示。
3
s3 T (r3 ) Pr (rj ) Pr (r0 ) Pr (r1) Pr (r2 ) Pr (r3 ) 0.81

数字图像处理第四章

数字图像处理第四章
(6) 统计映射后新的灰度级Sk的像素数目nk
(7) 计算输出图像的直方图
35
例 例:设图象有64*64=4096个象素,有8个灰 度级,灰度分布如表所示。进行直方图均衡化。
rk r0=0 r1=1/7 r2=2/7 r3=3/7 r4=4/7 r5=5/7 r6=6/7 r7=1
nk 790 1023 850 656 329 245 122 81
37
(2) 计算s k
rk r0=0 r1=1/7 r2=2/7 r3=3/7 r4=4/7 r5=5/7 r6=6/7 r7=1
nk 790 1023 850 656 329 245 122 81
P (r k ) 0.19 0.25 0.21 0.16 0.08 0.06 0.03 0.02
S k计算 0.19 0.44 0.65 0.81 0.89 0.95 0.98 1.00
图像噪声的分类
加性噪声:噪声和图像信号的强度不相关,如图像在 传输过程中引入的信道噪声,摄像机扫描噪声等。
g=f+n
乘性噪声:噪声和图像信号相关,往往随图像信号的 变化而变化,如飞点扫描图像中的噪声、电视扫描光
栅、颗粒噪声等。 g=f+ fn
量化噪声:数字图像的主要噪声源,其大小显示出数 字图像与原始图像的差异。对这类噪声减小的最好办 法是采用按灰度级概率密度函数选择量化级的最优量 化措施。 椒盐噪声:即黑图像的白点、白图像上的黑点,往往 由图像切割引起。
设备元器件及材料本身引起的噪声。如磁带、 磁盘表面缺陷所产生的噪声;
系统内部设备电路所引起的噪声,包括电源系 统引入的交流噪声,偏转系统和箝位电路引起的噪 声等;
电器部件机械运动产生的噪声。如数字化设备 的各种接头因抖动引起的电流变化所产生的噪声, 磁头、磁带抖动引起的抖动噪声等;

遥感数字图像处理-第四章_遥感数字图像增强处理(一)[研究材料]

遥感数字图像处理-第四章_遥感数字图像增强处理(一)[研究材料]
度值或亮度值区间像元出现的频率的分布图。
计算方法:
Pi
mi M
M表示整幅图像的像元个数
M表示整幅图像的像元个数
Pi表示第i灰度级的像元比例频率
X和
调研学习
13
直方图的性质
(1)直方图反映了图像中的灰度分布规律,描述每个灰度 级具有的像元个数,但不包含这些像元在图像中的位置;
(2)任何图像有唯一的直方图,不同的图像可能有相同的 直方图;
六、图像运算 Image Calcu.
七、多光谱增强 M调u研l学ti习-spectral Enhancement
1
一、图像增强概述
➢ 什么是图像增强?
Image enhancement is the process of making an image more interpretable for a particular application ( Faust, 1989).
空间域增强:空间域是指图像平面所在的二维平面。 直接处理图像上的像素,主要对灰度进行操作;
1)点处理:每次对单个像元进行灰度增强的处理 2)邻域处理或模板处理:对一个像元及其周围的小区域子
图像进行处理
频率域增强:对图像经傅立叶变换后的频谱成分进 行操作,然后经傅立叶逆变换获得所需结果
调研学习
6
➢图像增强的分类
调研学习
2
➢ 图像增强的目的
主要目的:(1)采用一系列技术改善图像的视觉效 果,提高图像的清晰度;(2)将图像转换成一种 更适合于人或机器进行解译和分析处理的形式。
改变图像的灰度等级,提高图像的对比度; 消除边缘和噪声,平滑图像; 突出边缘和线状地物,锐化图像; 合成彩色图像; 压缩图像数据量,突出主要信息等。

数字图像处理 第四章图像增强

数字图像处理 第四章图像增强

Pr(rk) 0.19 0.25 0.21 0.16 0.08 0.06
0.03
0.02
计算每个sk对应的像素数目 计算均衡化后的直方图
Tr
Sk并
sk
nsk Ps(sk)
0.19
1/7
0.44
3/7
S0=1/7 S1=3/7 S2=5/7
790 0.19 1023 0.25 850 0.21
0.65
✓ 校正后的原始图像 f (i, j) C g(i, j) gc(i, j)
9
灰度级校正注意问题:
对降质图像进行逐点灰度级校正所获得的图像, 其中某些像素的灰度级值有可能要超出记录器 件或显示器输入灰度级的动态范围,在输出时 还要采用其他方法来修正才能保证不失真地输 出。
降质图像在数字化时,各像素灰度级都被量化 在离散集合中的离散值上,但经校正后的图像 各像素灰度极值并不一定都在这些离散值上, 因此必须对校正后的图像进行量化。
),使得结果图像s的直方图Ps(s)为一个常数
Pr(r)
Ps(s)
直方图均衡化 T(r)
r
s
26
直方图均衡化理论基础
-1 由概率论可知,若Pr(r)和变换函数s=T(r)已知,r=T (s)是单 调增长函数,则变换后的概率密度函数Ps(s)可由Pr(r)得到:
分 布 函 数 Fs(s)sp( s s) ds=rp( r r) dr
✓ 计算均衡后的直方图
s k 计
T( rk)
k
=
i 0
P(r
r

i
k i 0
ni n
s k并
round( sk计 * (L L 1
1))
j

第四章图像增强讲解

第四章图像增强讲解
r
s T (r) 0 pr (r)dr
上式表明,当变换函数为r的累积直方图函数时,能达到直方图均衡化的 目的。
g(x, y) Mg d
c O
ab
(c / a) f (x, y) 0 f (x, y) a
g(x,
y)


[(d

c)
/(b

a)][
f
(x,
y)

a]

c
a f (x, y) b
[(M g d) /(M f b)][ f (x, y) b] d b f (x, y) M f
第四章 图像增强
图像增强是采用一系列技术去改善图像的视觉效果,或将图像转 换成一种更适合于人或机器进行分析和处理的形式。
例如采用一系列技术有选择地突出某些感兴趣的信息,同时 抑制一些不需要的信息,提高图像的使用价值。
增强的方法往往具有针对性,增强的结果往往靠人的主观感 觉加以评价。
图像增强方法从增强的作用域出发,可分为空间域增强和频率域 增强两种。
为了突出感兴趣目标所在的灰 度区间,相对抑制那些不感兴趣的 灰度区间,可采用分段线性变换。
通过细心调整折线拐点的位置 及控制分段直线的斜率,可对任一 灰度区间进行拉伸或压缩。
设原图像 f(x, y)在[0, Mf],感兴 趣目标的灰度范围在[a, b],欲使其 灰度范围拉伸到[c, d],则对应的分 段线性变换表达式为:
空间域增强是直接对图像各像素进行处理; 频率域增强是将图像经傅立叶变换后的频谱成分进行处理,
然后逆傅立叶变换获得所需的图像。
图像增强所包含的主要内容如下。


灰度变换

数字图像处理第04章图像增强

数字图像处理第04章图像增强

%显示变换后图像的直方图
Slide 18
图4.5 图像线性变换
Slide 19
2.分段线性变换
对整个灰度区间进行分 段,采用分段线性函数 进行变换。
这种变换突出了感兴趣 的目标或灰度区间,相 对抑制那些不感兴趣的 灰度区间。
常用的是三段线性变换。 图4.6 三段线性变换
Slide 20
Slide 2
内容提要
单点增强:
灰度级校正、灰度变换、灰度直方图变换。
区域增强的平滑方法:
邻域平均法、中值滤波和各种边界保持类滤波方法。
区域增强的锐化方法:
梯度锐化法、拉普拉斯算子、高通滤波及其他常用的 锐化算子。
Slide 3
4.1 概述
4.1.1 图像增强的目的 首要目标:
J = histeq(I); %完成直方图均衡化
imshow(I);
%显示直方图均衡化前的图像
figure,imhist(I);
%均衡化前的直方图
figure,imshow(J); %显示直方图均衡化后的图像
figure,imhist(J);
%均衡化后的直方图
Slide 33
图4.10 直方图均衡
【例4.3】对图像进行直方图均衡化。
假定有一幅总像素为n = 64×64的图像,灰度 级数为8,各灰度级分布列于表4.1中。
(1)按式(4.14)求变换函数Sk’ (2)计算Sk’’ (3) Sk的确定 (4)计算对应每个sk的nsk (5)计算ps(sk)
Slide 31
4.4.1 图像噪声
数字图像往往要经过采集、处理、存储、传输 等一系列加工变换,而由电气系统和外界引入 的图像噪声也将在这些过程中随之引入,可能 严重影响图像的质量。

数字图像处理——图像增强

数字图像处理——图像增强

数字图像处理——图像增强图像增强图像增强的⽬的是:改善图像的视觉效果或使图像更适合于⼈或机器的分析处理图像增强空域法点操作直接灰度变换直⽅图修正邻域操作图像平滑图像锐化频域法低通滤波⾼通滤波点操作直接灰度变换g (x ,y )=T [f (x ,y )]T => 灰度映射函数坐标位置 (x ,y ) 为 f 的⾃变量,表⽰当前灰度值,经过函数T 转变为g ,注意在T 函数中f (x ,y )为其⾃变量直接灰度变换⼜可以分为:线性变换分段线性变换⾮线性变换线性变换 & 分段线性变换image.png对于f (x ,y )灰度范围为[a ,b ]的部分,进⾏线性变换g (x ,y )=d −cb −a [f (x ,y )−a ]+c我们可以⽤它来做什么?举个简单的例⼦,我们可以很容易的通过调整灰度分布,使得图⽚⽩的部分更⽩,⿊的部分更⿊效果图:图像增强.png⾮线性灰度变换g (x ,y )=clog 10[1+f (x ,y )]直⽅图{{{{{void increase(Mat &inputImage, Mat& outputImage){outputImage = inputImage.clone();int rows = outputImage.rows;int cols = outputImage.rows;for (int i = 0; i < rows; i++){for (int j = 0; j < cols; j++){Vec3b & tmp = outputImage.at<Vec3b>(i, j);for (int k = 0; k < 3; k++){if (tmp[k] < 48)tmp[k] = tmp[k] / 1.5;else if (tmp[k] > 191)tmp[k] = (tmp[k] - 192) * 0.5 + 223;else tmp[k] = (tmp[k] - 38) * 1.33;}}}在数字图像处理中,直⽅图是最简单并且最有⽤的⼯具灰度直⽅图是灰度级的函数,描述的是图像中该灰度级的像素个数横坐标表⽰灰度级,纵坐标表⽰图像中该灰度级出现的像素个数数据表⽰:变量含义n图像的像素总数L灰度级的个数r k第 k 个灰度级n k第 k 个灰度级的像素数p r(r k)该灰度级出现的频率则归⼀化形式:p r(r k)=n kn,k=0,1,2,⋯,L−1公式利于归纳但是不利于理解,我们举个例⼦说明:原始图像数据(每个位置上⾯的数字表⽰灰度级)123456643221166466345666146623136466直⽅图灰度系数123456像素个数5456214归⼀化直⽅图数据1/62/63/64/65/66/65/364/365/366/362/3614/36图像略直⽅图性质1. 直⽅图未反映某⼀灰度级像素所在位置,即丢失了位置信息2. ⼀幅图像对应⼀个灰度直⽅图,但是不同的图像可能有相同的直⽅图3. 灰度直⽅图具有可加性,整幅图像的直⽅图等于素有不重叠⼦区域的直⽅图之和直⽅图⽤途1. 反映图像的亮度、对⽐度、清晰度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

✓ 校正后的原始图像
g(i, j)
f (i, j) C
gc (i, j)
灰度级校正注意问题:
对降质图像进行逐点灰度级校正所获得的图像, 其中某些像素的灰度级值有可能要超出记录器 件或显示器输入灰度级的动态范围,在输出时 还要采用其他方法来修正才能保证不失真地输 出。 降质图像在数字化时,各像素灰度级都被量化 在离散集合中的离散值上,但经校正后的图像 各像素灰度极值并不一定都在这些离散值上, 因此必须对校正后的图像进行量化。
4.1.2灰度变换
灰度变换:将图像的灰度级映射到另一灰度级。 分类:线性变换,非线性变换 一、线性变换 由于成像时曝光不足或过度,以及成像设备的 非线性或图像记录设备动态范围太窄等因素, 对图像都会产生对比度不足的弊病,使图像中 的细节分辨不清,这时如将图像灰度线性扩展, 常能显著改善图像的主观质量。
低灰度拉伸,高灰度压缩 指数变换
g(i,j) = bc[f(i,j)-a] 1 使图像高灰度拉伸
对数 变换
指数 变换
附:PS相关命令
通过命令“图像曲线”调整灰度
4.1.3 直方图修正法
灰度直方图反映图像中灰度分布,为图像处理 提供了重要依据。 直方图修正后可使图像的灰度间距拉开或分布 均匀,从而增大反差,使图像细节清晰,提高 图像质量。 分类
经逆变换获得所需增强结果
图像增强
图像质量退化的原因
✓ 对比度局部或全部偏低 ✓ 噪声干扰,包括热噪声、量化噪声、椒盐噪声、
背景干扰等 ✓ 清晰度下降,图像模糊
图像增强通过针对性技术,如直方图均衡、平 滑去噪、边缘锐化等对图像的退化加以修正, 已达到改进图像质量的目的。
图像增强的主要内容
空间域
✓ 点运算 ✓ 局部运算 图像平滑,图像锐化
ba
f ~ [0, 4]; g ~ [1, 7]
g (i,
j)
1
7 1 4 0
f
(i,
j) 0
g(i, j) 1.5 f (i, j) 1
线性灰度变换
3、分段线性变换
拉伸图像中的一些灰度细节,相对抑制不感兴趣的部分,这 可通过分段线性变换得到。
g(i,j)
Mg d
c
0
a
b
Mf
线性灰度变换
输入图像为f (i, j),灰度范围为[0,M f ],0<a<b<M f 变换后图像为g(i, j),灰度范围为[0,M g ],0<c<d<M g
(c / a) f (i, j),
0 f (i, j) a
g (i,
j)
[(d c) /(b a)][ f (i, j) a] c,
a f (i, j) b
直方图均衡化理论基础
直方图均衡化的要点:
✓ 公理:直方图P为常数的图像对比度最好 ✓ 目标:对输入图像r,寻找一个灰度级变换函数T(r
),使得结果图像s的直方图Ps(s)为一个常数
Pr(r) r
线性灰度变换 g7
6
1、线性点运算
5
4
3
2
f
若a 1,b0,图象像素不发生变化;
1
0
1
2
3
4
g(i, j) 1.5 f (i, j) 1
若a 1,b0,图象所有灰度值上移或下移;
若a 1, 输出图象对比度增强;
若0 a 1, 输出图象对比度减小;
若a 0, 暗区域变亮,亮区域变暗,图象求补。
第四章 图像增强
主要内容
图像增强的作用及目的 像素级运算 空间域平滑与锐化 频率域增强 彩色增强 代数运算
图像增强
图像增强是改善图像质量最常用的技术。 图像增强目的
✓ 改善图像的视觉效果,提高图像的可辨识度 ✓ 转换成更容易分析处理的形式
评判标准 :人的主观感觉 从作用域出发分两类
✓ 空间域 对图像像素灰度或灰度统计操作 ✓ 频率域 对图像变换后对频谱成分操作,最后
频率域
✓ 高通滤波 ✓ 低通滤波 ✓ 同态滤波增强
彩色增强
✓ 假彩色增强 ✓ 伪彩色增强 ✓ 彩色变换增强
代数运算
✓ 加,减,乘,除
主要内容
图像增强的作用及目的
空间域点运算 空间域平滑 空间域锐化
灰度级变换 直方图变换 局部统计
频率域增强
彩色增强
代数运算
4.1点运算
点运算:对于一幅输入图像,将产生一幅输出图像, 输出图像的每个像素点的灰度值由输入像素点决定。 点运算由灰度变换函数GST确定。
g(x, y) T f x, y
点运算实际是图像像素灰度级增强, 包括: ✓ 灰度级校正:成像系统对像素的修正 ✓ 灰度变换:将一个灰度区间映射到另一个灰度区间 ✓ 直方图修正: 使图像灰度分布均匀、间距拉开,增强
对比度。 ✓ 局部统计:利用局部统计特征进行对比度增强
4.1.1灰度级校正
灰度级校正:在图像采集系统中对图像像素 进行修正,使整幅图像亮度分布均匀。
线性灰度变换
原图
g f 50
g 1.5 f
g 0.8 f
g 1 f 255
线性灰度变换
ቤተ መጻሕፍቲ ባይዱg7
2、线性灰度范围变换
6
5
原始图像f (i, j),灰度范围为[a,b]
4
变换后图像g(i, j),灰度范围为[a',b'] 3
存在以下关系
2
b ' a '
1
f
0
1
2
3
4
g(i, j) a '
( f (i, j) a)
[(M g d ) /(M f b)][ f (i, j) b] d,b f (i, j) M f
式中 ca (d c) (b a), (M g d ) (M j b)
灰度区间[0,a]被压缩 [a,b]被拉伸 [b,M f ]被压缩
二、非线性灰度变换
对数变换 g(i,j) = a+ ln[f(i, j) +1] blnc
具体实现
实际处理对象
✓ 对理想系统的输入图像f(i,j)和实际获得降质图 像g(i,j)的关系用公式表示为 g(i,j)=e(i,j)f(i,j)
其中e(i,j)为降质函数/系统的灰度失真系数
✓ 采用一幅灰度级为常数C的图像成像,实际输
出为gc(i,j),即gc(i,j)=e(i,j)C,代入前式可得
✓ 直方图均衡化:灰度间距拉开,分布均匀 ✓ 直方图规定化:直接给出希望获得直方图的形状,
寻找某个灰度级的变换对原图像进行处理。
直方图均衡化
直方图规定化
附:PS操作
“设置”菜单中的命令: 自动色阶---直方图均衡化 替换颜色---直方图匹配
直方图均衡化
直方图均衡化
直方图均衡化理论基础
假设原图像的归一化后的灰度级为r,直方图修正后为s
相关文档
最新文档