上海高考文科数学试题word版
上海文数高考试题文档版(含答案)
2019年高考上海数学试卷(文史类)考生注意:1.本试卷共4页,23道试题,满分150分.考试时间120分钟.2.本考试分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.设x ∈R ,则不等式31x -<的解集为_______. 2.设32iiz +=,其中i 为虚数单位,则z 的虚部等于______. 3.已知平行直线1210l x y +-=:,2210l x y ++=:,则1l 与2l 的距离是_____.4.某次体检,5位同学的身高(单位:米)分别为1.72,1.78,1.80,1.69,1.76,则这组数据的中位数是______(米).5.若函数()4sin cos f x x a x =+的最大值为5,则常数a =______. 6.已知点(3,9)在函数()1xf x a =+的图像上,则()f x 的反函数1()fx -=______.7.若,x y 满足0,0,1,x y y x ≥⎧⎪≥⎨⎪≥+⎩则2x y -的最大值为_______.8.方程3sin 1cos 2x x =+在区间[]0,2π上的解为_____.9.在2)nx的二项展开式中,所有项的二项式系数之和为256,则常数项等于____.10.已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于____.11.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.12.如图,已知点O (0,0),A (1.0),B (0,−1),P是曲线y =则OP BA ×uu u r uu r的取值范围是 .13.设a>0,b>0. 若关于x,y的方程组1,1ax yx byì+=ïïíï+=ïî无解,则a b+的取值范围是.14.无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和.若对任意的*nÎN,{23}nSÎ,则k的最大值为.二、选择题(本大题共4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.设aÎR,则“a>1”是“a2>1”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分也非必要条件16.如图,在正方体ABCD−A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()(A)直线AA1 (B)直线A1B1(C)直线A1D1(D)直线B1C117.设aÎR,[0,2π]bÎ.若对任意实数x都有πsin(3)=sin()3x ax b-+,则满足条件的有序实数对(a,b)的对数为()(A)1 (B)2 (C)3 (D)418.设f(x)、g(x)、h(x)是定义域为R的三个函数.对于命题:①若f(x)+g(x)、f(x)+ h(x)、g(x)+ h(x)均是增函数,则f(x)、g(x)、h(x)均是增函数;②若f(x)+g(x)、f(x)+ h(x)、g(x)+ h(x)均是以T为周期的函数,则f(x)、g(x)、h(x) 均是以T为周期的函数,下列判断正确的是()(A)①和②均为真命题(B) ①和②均为假命题(C)①为真命题,②为假命题 (D)①为假命题,②为真命题三、解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分. 将边长为1的正方形AA 1O 1O (及其内部)绕OO 1旋转一周形成圆柱,如图,AC 长为56π,11A B 长为3π,其中B 1与C 在平面AA 1O 1O 的同侧. (1)求圆柱的体积与侧面积;(2)求异面直线O 1B 1与OC 所成的角的大小.20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分. 有一块正方形菜地EFGH ,EH 所在直线是一条小河,收获的蔬菜可送到F 点或河边运走.于是,菜地分为两个区域S 1和S 2,其中S 1中的蔬菜运到河边较近,S 2中的蔬菜运到F 点较近,而菜地内S 1和S 2的分界线C 上的点到河边与到F 点的距离相等.现建立平面直角坐标系,其中原点O 为EF 的中点,点F 的坐标为(1,0),如图 (1)求菜地内的分界线C 的方程;(2)菜农从蔬菜运量估计出S 1面积是S 2面积的两倍,由此得到S 1面积的“经验值”为83.设M 是C 上纵坐标为1的点,请计算以EH 为一边、另有一边过点M 的矩形的面积,及五边形EOMGH 的面积,并判别哪一个更接近于S 1面积的“经验值”.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.双曲线2221(0)y x b b-=>的左、右焦点分别为F 1、F 2,直线l 过F 2且与双曲线交于A 、B两点.(1)若l 的倾斜角为2π,1F AB △是等边三角形,求双曲线的渐近线方程;(2)设b = 若l 的斜率存在,且|AB |=4,求l 的斜率.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.对于无穷数列{n a }与{n b },记A ={x |x =a ,*N n ∈},B ={x |x =n b ,*N n ∈},若同时满足条件:①{n a },{n b }均单调递增;②A B ⋂=∅且*N A B =,则称{n a }与{n b }是无穷互补数列.(1)若n a =21n -,n b =42n -,判断{n a }与{n b }是否为无穷互补数列,并说明理由; (2)若n a =2n且{n a }与{n b }是无穷互补数列,求数列{n b }的前16项的和;(3)若{n a }与{n b }是无穷互补数列,{n a }为等差数列且16a =36,求{n a }与{n b }得通项公式.23. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分已知a ∈R ,函数()f x =21log ()a x+. (1)当 1a =时,解不等式()f x >1;(2)若关于x 的方程()f x +22log ()x =0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈1[,1]2,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.参考答案1. )4,2(2. 3-3.552 4. 76.1 5. 3± 6. )1(log 2-x 7. 2-8. 65,6ππ 9. 11210. 337 11.1612.⎡-⎣13.()2,+∞ 14.4 15.A 16.D 17.B 18.D19.解:(1)由题意可知,圆柱的母线长1l =,底面半径1r =.圆柱的体积22V 11r l πππ==⨯⨯=,圆柱的侧面积22112S rl πππ==⨯⨯=.(2)设过点1B 的母线与下底面交于点B ,则11//O B OB , 所以C ∠OB 或其补角为11O B 与C O 所成的角.由11A B 长为3π,可知1113π∠AOB =∠A O B =, 由C A 长为56π,可知5C 6π∠AO =,C C 2π∠OB =∠AO -∠AOB =,所以异面直线11O B 与C O 所成的角的大小为2π.20.解:(1)因为C 上的点到直线EH 与到点F 的距离相等,所以C 是以F 为焦点、以 EH 为准线的抛物线在正方形FG E H 内的部分,其方程为24y x =(02y <<). (2)依题意,点M 的坐标为1,14⎛⎫⎪⎝⎭. 所求的矩形面积为52,而所求的五边形面积为114. 矩形面积与“经验值”之差的绝对值为581236-=,而五边形面积与“经验值”之差 的绝对值为11814312-=,所以五边形面积更接近于1S 面积的“经验值”. 21.解:(1)设(),x y A A A .由题意,()2F ,0c,c =,()22241y b c b A=-=, 因为1F ∆AB是等边三角形,所以2c A =,即()24413b b +=,解得22b =.故双曲线的渐近线方程为y =. (2)由已知,()2F 2,0.设()11,x y A ,()22,x y B ,直线:l ()2y k x =-.由()22132y x y k x ⎧-=⎪⎨⎪=-⎩,得()222234430k x k x k --++=. 因为l 与双曲线交于两点,所以230k -≠,且()23610k ∆=+>.由212243k x x k +=-,2122433k x x k +=-,得()()()2212223613k x x k +-=-, 故()21226143k x k +AB =-==-,解得235k=,故l 的斜率为. 22.解:(1)因为4∉A ,4∉B ,所以4∉A B ,从而{}n a 与{}n b 不是无穷互补数列. (2)因为416a =,所以1616420b =+=.数列{}n b 的前16项的和为()()23412202222++⋅⋅⋅+-+++()512020221802+⨯--=. (3)设{}n a 的公差为d ,d *∈N ,则1611536a a d =+=.由136151a d =-≥,得1d =或2.若1d =,则121a =,20n a n =+,与“{}n a 与{}n b 是无穷互补数列”矛盾; 若2d =,则16a =,24n a n =+,,525,5n n n b n n ≤⎧=⎨->⎩.综上,24n a n =+,,525,5n n n b n n ≤⎧=⎨->⎩.23.解:(1)由21log 11x ⎛⎫+> ⎪⎝⎭,得112x +>,解得()0,1x ∈. (2)()2221log log 0a x x ⎛⎫++=⎪⎝⎭有且仅有一解, 等价于211a x x ⎛⎫+=⎪⎝⎭有且仅有一解,等价于210ax x +-=有且仅有一解. 当0a =时,1x =,符合题意; 当0a ≠时,140a ∆=+=,14a =-.综上,0a =或14-. (3)当120x x <<时,1211a a x x +>+,221211log log a a x x ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在()0,+∞上单调递减.函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +.()()22111log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭即()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立. 因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥. 故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.。
上海高考数学真题(文科)试卷(word解析版)
绝密★启用前 2012年普通高等学校招生全国统一考试(上海卷)数学试卷(文史类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有14题,满分56分) 1.计算:ii+-13= (i 为虚数单位). 2.若集合}012|{>-=x x A ,}1|{<=x x B ,则B A = .3.函数xx x f cos 12sin )(-=的最小正周期是 .4.若)1,2(=n 是直线l 的一个方向向量,则l 的倾斜角的大小为 (结果用反三角函数值表示).5.一个高为2的圆柱,底面周长为2π,该诉表面积为 . 6.方程03241=--+x x的解是 .7.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V .8.在6)1(xx -的二项展开式中,常数项等于 . 9.已知)(x f y =是奇函数. 若2)()(+=x f x g 且1)1(=g .,则=-)1(g .10.满足约束条件2||2||≤+y x 的目标函数x y z -=的最小值是 .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人只选择一个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).12.在知形ABCD 中,边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上||||CD CN BC BM =,则AN AM ⋅的取值范围是 . 13.已知函数)(x f y =的图像是折线段ABC ,若中A (0,0),B (21,1),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为 .14.已知x x f +=11)(.各项均为正数的数列}{n a 满足11=a ,)(2n n a f a =+.若 20122010a a =,则1120a a +的值是 .二、选择题(本大题共有4题,满分20分) 15.若i21+是关于x 的实系数方程2=++c bx x 的一个复数根,则( )(A )3,2==c b. (B )1,2-==c b .(C )1,2-=-=c b .(D )3,2=-=c b .16.对于常数m 、n ,“0>mn ”是“方程122=+ny mx 的曲线是椭圆”的( )(A )充分不必要条件. (B )必要不充分条件(C )充分必要条件.(D )既不充分也不必要条件.17.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )(A )钝角三角形. (B )直角三角形 (C )锐角三角形.(D )不能确定.18.若)(sin sin sin 7727*∈+++=N n S n n πππ ,则在10021,,,S S S 中,正数的个数是 ( )(A )16.(B )72.(C )86.(D )100.三、解答题(本大题共有5题,满分74分)19.如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,D 是 PC 的中点.已知∠BAC =2π,AB=2,AC=23, P A=2.求:(1)三棱锥P -ABC 的体积;(6分)(2)异面直线BC 与AD 所成的角的大小(结果用反三 角函数值表示).(6分)PA BCD20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分) (2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7. (1)当5.0=t时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(8分)22.在平面直角坐标系xOy 中,已知双曲线12:22=-y xC .(1)设F 是C 的左焦点,M 是C 右支上一点. 若|MF |=22,求过M 点的坐标;(5分)(2)过C 的左顶点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的面积;(5分) (3)设斜率为)2|(|<k k的直线l 交C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OP ⊥OQ ;(6分)23.对于项数为m 的有穷数列数集}{n a ,记},,,m ax {21k k a a a b =(k =1,2,…,m ),即k b 为k a a a ,,,21 中的最大值,并称数列}{n b 是}{n a 的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列}{n a 的控制数列为2,3,4,5,5,写出所有的}{n a ;(4分)(2)设}{n b 是}{n a 的控制数列,满足C b a k m k =++-1(C 为常数,k =1,2,…,m ).求证:k ka b =(k =1,2,…,m );(6分)(3)设m =100,常数)1,(21∈a .若n an a n n n 2)1()1(2+--=,}{n b 是}{n a 的控制数列,求)()()(1001002211a b a b a b -++-+- .2012年上海高考数学(文科)试卷解答一、填空题(本大题共有14题,满分56分) 1.计算:ii+-13= 1-2i (i 为虚数单位). 2.若集合}012|{>-=x x A ,}1|{<=x x B ,则B A =)1,(21 . 3.函数xx x f cos 12sin )(-=的最小正周期是 π .4.若)1,2(=n是直线l 的一个方向向量,则l 的倾斜角的大小为21arctan (结果用反三角 函数值表示).5.一个高为2的圆柱,底面周长为2π,该诉表面积为 6π . 6.方程03241=--+x x的解是3log 2.7.有一列正方体,棱长组成以1为首项,21为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则=+++∞→)(lim 21n n V V V 78 .8.在6)1(xx -的二项展开式中,常数项等于 -20 . 9.已知)(x f y =是奇函数. 若2)()(+=x f x g 且1)1(=g .,则=-)1(g3 .10.满足约束条件2||2||≤+y x 的目标函数x y z -=的最小值是 -2 .11.三位同学参加跳高、跳远、铅球项目的比赛.若每人只选择一个项目,则有且仅有两人选择的项目完全相同的概率是32(结果用最简分数表示).12.在知形ABCD 中,边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上||||CD CN BC BM =,则AN AM ⋅的取值范围是 [1, 4] . 13.已知函数)(x f y =的图像是折5线段ABC ,若中A (0,0),B (21,1),C (1,0).函数)10()(≤≤=x x xf y 的图像与x 轴围成的图形的面积为41 .14.已知x x f +=11)(.各项均为正数的数列}{n a 满足11=a ,)(2n n a f a =+.若 20122010a a =,则1120a a +的值是263513+.二、选择题(本大题共有4题,满分20分) 15.若i21+是关于x 的实系数方程2=++c bx x 的一个复数根,则( D )(A )3,2==cb . (B )1,2-==c b .(C )1,2-=-=c b .(D )3,2=-=c b .16.对于常数m 、n ,“0>mn ”是“方程122=+ny mx 的曲线是椭圆”的( B )(A )充分不必要条件. (B )必要不充分条件(C )充分必要条件.(D )既不充分也不必要条件.17.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( A )(A )钝角三角形.(B )直角三角形.(C )锐角三角形.(D )不能确定. 18.若)(sin sin sin 7727*∈+++=N n S n n πππ ,则在10021,,,S S S 中,正数的个数是 ( C )(A )16. (B )72.(C )86.(D )100.三、解答题(本大题共有5题,满分74分)19.如图,在三棱锥P -ABC 中,P A ⊥底面ABC ,D 是 PC 的中点.已知∠BAC =2π,AB=2,AC=23, P A=2.求:(1)三棱锥P -ABC 的体积;(6分)(2)异面直线BC 与AD 所成的角的大小(结果用反三 角函数值表示).(6分) [解](1)3232221=⨯⨯=∆ABCS , 2分 三棱锥P -ABC 的体积为3343131232=⨯⨯=⨯=∆PA S V ABC . 6分 (2)取PB 的中点E ,连接DE 、AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线 BC 与AD 所成的角. 8分在三角形ADE 中,DE=2,AE=2,AD=2, 4322222222cos ==∠⨯⨯-+ADE ,所以∠ADE =43arccos.PA BCDPA BCDE因此,异面直线BC 与AD 所成的角的大小是43arccos . 12分20.已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(6分) (2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.(8分)[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x . ……3分因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .由⎩⎨⎧<<-<<-313211x x 得3132<<-x . (6)分(2)当x ∈[1,2]时,2-x ∈[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==.……10分由单调性可得]2lg ,0[∈y .因为y x103-=,所以所求反函数是x y 103-=,]2lg ,0[∈x . ……14分21.海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7. (1)当5.0=t时,写出失事船所在位置P 的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(8分) [解](1)5.0=t时,P 的横坐标x P =277=t ,代入抛物线方程24912x y =中,得P 的纵坐标y P =3. ……2分 由|AP |=2949,得救援船速度的大小为949海里/时. ……4分由tan ∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向 为北偏东arctan 307弧度. ……6分(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t .由222)1212()7(++=t t vt ,整理得337)(1442122++=t t v.……10分因为2212≥+t t,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船. ……14分22.在平面直角坐标系xOy 中,已知双曲线12:22=-y xC .(1)设F 是C 的左焦点,M 是C 右支上一点. 若|MF |=22,求过M 点的坐标;(5分)(2)过C 的左顶点作C 的两条渐近线的平行线,求这两组平行线围成的平行四边形的 面积;(5分) (3)设斜率为)2|(|<k k 的直线l2交C 于P 、Q 两点,若l 与圆122=+y x 相切,求证:OP ⊥OQ ;(6分) [解](1)双曲线1:2212=-y C x ,左焦点)0,(26-F .设),(y x M ,则22222262)3()(||+=++=x y x MF , ……2分由M 是右支上一点,知22≥x ,所以223||22=+=x MF ,得26=x .所以)2,(26±M . ……5分(2)左顶点)0,(22-A ,渐近线方程:x y 2±=.过A 与渐近线x y 2=平行的直线方程为:)(222+=x y ,即12+=x y .解方程组⎩⎨⎧+=-=122x y x y ,得⎪⎩⎪⎨⎧=-=2142y x . (8)分所求平行四边形的面积为42||||==y OA S. (10)分(3)设直线PQ 的方程是b kx y +=.因直线与已知圆相切,故11||2=+k b ,即122+=k b(*). 由⎩⎨⎧=-+=1222y x b kx y ,得012)2(222=----b kbx x k . 设P (x 1, y 1)、Q (x 2, y 2),则⎪⎩⎪⎨⎧==+----22221212221k b k kbx x x x .))((2121b kx b kx y y ++=,所以2212122121)()1(b x x kb x x k y y x x OQ OP ++++=+=⋅22222222221222)1)(1(k k b k b k k b k --+-----+=+.由(*)知0=⋅OQ OP ,所以OP ⊥OQ . ……16分23.对于项数为m 的有穷数列数集}{n a ,记},,,m ax {21k k a a a b =(k =1,2,…,m ),即k b 为k a a a ,,,21 中的最大值,并称数列}{n b 是}{n a 的控制数列.如1,3,2,5,5的控制数列是 1,3,3,5,5.(1)若各项均为正整数的数列}{n a 的控制数列为2,3,4,5,5,写出所有的}{n a ;(4分)(2)设}{n b 是}{n a 的控制数列,满足C b a k m k =++-1(C 为常数,k =1,2,…,m ).求证:k ka b =(k =1,2,…,m );(6分)(3)设m =100,常数)1,(21∈a .若n an a n n n 2)1()1(2+--=,}{n b 是}{n a 的控制数列, 求)()()(1001002211a b a b a b -++-+- .[解](1)数列}{n a 为:2, 3, 4, 5, 1;2, 3, 4, 5, 2;2, 3, 4, 5, 3;2, 3, 4, 5, 4;2, 3, 4, 5, 5. ……4分 (2)因为},,,m ax {21k ka a ab =,},,,,m ax {1211++=k k k a a a a b , 所以k k b b ≥+1. ……6分因为C b a k m k =++-1,C b a k m k =+-+1,所以011≥-=--+-+k m k m k k b b a a ,即k k a a ≥+1. (8)分因此,k k a b =. ……10分(3)对25,,2,1 =k ,)34()34(234-+-=-k k a a k ;)24()24(224-+-=-k k a a k ;)14()14(214---=-k k a a k ;)4()4(24k k a a k -=.比较大小,可得3424-->k k a a . ……12分因为121<<a ,所以)38)(1(2414<--=---k a a a k k ,即1424-->k k a a ;)14)(12(2244>--=--k a a a k k,即244->k k a a .又k k a a 414>+,从而3434--=k k a b ,2424--=k k a b ,2414--=k k a b ,k k a b 44=. ……15分因此)()()(1001002211a b a b a b -++-+-=)()()()()(9999141410107733a b a b a b a b a b k k -++-++-+-+---=)()()()()(999814241097632a a a a a a a a a a k k -++-++-+-+---=∑=---2511424)(k k k a a=∑=--251)38()1(k k a =)1(2525a -. ……18分2012上海高考数学试题(文科)答案与解析一、 填空题(本大题共有14题,满分56分) 1.计算:ii+-13= (i 为虚数单位). 【答案】 1-2i【解析】i i +-13=(3)(1)(1)(1)i i i i --+-=1-2i 【点评】本题着重考查复数的除法运算,首先将分子、分母同乘以分母的共轭复数,净分母实数化即可。
2022年高考文科数学上海卷试题与答案word解析版
2022年高考文科数学上海卷试题与答案word解析版某1.不等式<0的解为______.2某12.在等差数列{an}中,若a1+a2+a3+a4=30,则a2+a3=______.3.设mR,m2+m-2+(m2-1)i是纯虚数,其中i是虚数单位,则m=______.某2某y11=0,11=1,则y=______.4.已知5.已知△ABC的内角A、B、C所对的边分别是a、b、c.若a2+ab+b2-c2=0,则角C的大小是______.6.某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为______.7.设常数aR.若(某8.方程2a5)的二项展开式中某7项的系数为-10,则a=______.某91=3某的实数解为______.某3119.若co某coy+in某iny=,则co(2某-2y)=______.310.已知圆柱Ω的母线长为l,底面半径为r,O是上底面圆心,A、B是下底面圆周上两个不同的点,BC是母线,如图.若直线OA与BC所成角的大小为l,则=______.的概率是______(结果用最简分数表示).12.设AB是椭圆Γ的长轴,点C在Γ上,且∠CBA=间的距离为______..若AB=4,BC=2,则Γ的两个焦点之4a213.设常数a>0.若9某+≥a+1对一切正实数某成立,则a的取值范围为______.某14.已知正方形ABCD的边长为1.记以A为起点,其余顶点为终点的向量分别为a1、a2、a3;以C为起点,其余顶点为终点的向量分别为c1、c2、c3.若i,j,k,l{1,2,3}且i≠j,k≠l,则(ai+aj)2(ck+cl)的最小值是______.15.函数f(某)=某-1(某≥0)的反函数为f(某),则f(2)的值是() A.3B.3C.1+2D.1216.设常数aR,集合A={某|(某-1)(某-a)≥0},B={某|某≥a-1}.若A∪B=R,则a的取值范围为()A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)17.钱大姐常说“好货不便宜”,她这句话的意思是“好货”是“不便宜”的()A.充分条件B.必要条件C.充分必要条件D.既非充分又非必要条件2-1-1某2ny218.记椭圆=1围成的区域(含边界)为Ωn(n=1,2,),当点(某,y)分别在Ω1,Ω2,上44n1时,某+y的最大值分别是M1,M2,,则limMn=()19.如图,正三棱锥O-ABC的底面边长为2,高为1,求该三棱锥的体积及表面积.2022上海文科数学第1页20.甲厂以某千克/小时的速度匀速生产某种产品(生产条件要求1≤某≤10),每一小时可获得的利润是3100(5某1)元.某(1)求证:生产a千克该产品所获得的利润为100a(513)元;某某2(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.21.已知函数f(某)=2in(ω某),其中常数ω>0.(1)令ω=1,判断函数F(某)=f(某)+f(某(2)令ω=2,将函数y=f(某)的图像向左平移2)的奇偶性,并说明理由;个单位,再向上平移1个单位,得到函数y=g(某)的图像.对6任意aR,求y=g(某)在区间[a,a+10π]上零点个数的所有可能值.2022上海文科数学第2页22.已知函数f(某)=2-|某|,无穷数列{an}满足an+1=f(an),nN.(1)若a1=0,求a2,a3,a4;(2)若a1>0,且a1,a2,a3成等比数列,求a1的值;(3)是否存在a1,使得a1,a2,,an,成等差数列?若存在,求出所有这样的a1;若不存在,说明理由.某某2223.如图,已知双曲线C1:-y=1,曲线C2:|y|=|某|+1.P是平面内一点,若存在过点P的直线与2C1、C2都有公共点,则称P为“C1-C2型点”.(1)在正确证明C1的左焦点是“C1C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y=k某与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”;(3)求证:圆某+y=221内的点都不是“C1-C2型点”.22022上海文科数学第3页2022年普通高等学校夏季招生全国统一考试数学文史类(上海卷)111.答案:0<某<某(2某-1)<0某(0,).222.答案:15a1+a2+a3+a4=2(a2+a3)=30a2+a3=15.2mm20223.答案:-2m+m-2+(m-1)i是纯虚数2m=-2.m10某2某y4.答案:1已知=某-2=0某=2,又=某-y=1联立上式,解得某=2,y=1.11112a2b2c212222C.5.答案:a+ab+b-c=0coC=32ab2340607580=78.6.答案:78平均成绩=100100a572r25yar7.答案:-2(某)C5(某)()=-10某r=1,C15a=-105a=-10,a=-2某某99某某某某某8.答案:log34某+1=3某=3-13-1=±33=±3+1>03=4某=log34.313171729.答案:co某coy+in某iny=co(某-y)=co2(某-y)=2co(某-y)-1=.939lr310答案:3由题知,tan3.r6l3511.答案:考查排列组合;概率计算策略:正难则反。
普通高等学校招生全国统一考试上海卷(数学文)word版有答案
上海市高考数学试题(文科)一、填空题(56分)1、若全集U R =,集合{|1}A x x =≥,则U C A = 。
2、3lim(1)3n nn →∞-=+ 。
3、若函数()21f x x =+的反函数为1()fx -,则1(2)f --= 。
4、函数2sin cos y x x =-的最大值为 。
5、若直线l 过点(3,4),且(1,2)是它的一个法向量,则l 的方程为6、不等式11x<的解为 。
7、若一个圆锥的主视图(如图所示)是边长为3,3,2的三角形,则该圆锥的侧面积是 。
8、在相距2千米的A 、B 两点处测量目标C ,若075,60CAB CBA ∠=∠=,则A 、C 两点之间的距离是 千米。
9、若变量x 、y 满足条件30350x y x y -≤⎧⎨-+≥⎩,则z x y =+的最大值为 。
10、课题组进行城市农空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4、12、8。
若用分层抽样抽取6个城市,则丙组中应抽取的城市数为 。
11、行列式a b c d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 。
12、在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则AB AD ⋅= 。
13、随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到0.001)。
14、设()g x 是定义在R 上、以1为周期的函数,若()()f x x g x =+在[0,1]上的值域为[2,5]-,则()f x 在区间[0,3]上的值域为 。
二、选择题(15、下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为〖答〗( ) A 2y x -= B 1y x -= C 2y x = D 13y x = 16、若,a b R ∈,且0ab >,则下列不等式中,恒成立的是〖答〗( )A 222a b ab +> B a b +≥ C11a b +>2b a a b +≥ 17、若三角方程sin 0x =与sin 20x =的解集分别为E 和F ,则〖答〗( )A E F ØB E F ÙC E F =D EF =∅18、设1234,,,A A A A 是平面上给定的4个不同的点,则使12340MA MA MA MA +++=成立的点M 的个数为〖答〗( )A 0B 1C 2D 4 三、解答题(74分)19、(12分)已知复数1z 满足1(2)(1)1z i i -+=-(i 为虚数单位),复数2z 的虚部为2,12z z ⋅是实数,求2z 。
高考文科数学试题及参考答案(上海卷)
《组织行为学》常用案例分析题参考答案:案例分析题案例一: 50年代初,弗考夫和中学时代的伙伴创办了科维特公司。
这家公司在益10年内把营业额从5500万美元提高到75000万美元,一跃成为零售史上发展最快的公司之一。
在60年代初,这家公司平均每7个星期增设一家大的商店。
很快扩充到了25家商店。
从一开始,科维特的管理就是集权式的。
总部操纵着所有的经营活动和其它各项政策,商店经理和其它管理人员只被赋予少的可怜的权力。
弗考夫经常四处巡视,直接管理相当大数量的商店,直到这一数量超出了他力所能及的范围。
科维特公司的规模越来越大,他所面临的问题也变得越来越复杂。
当公司的商店还没有超过12家时,弗考夫及其总部的高级管理人员还能够亲临现场给各商店作领导。
但是,随着公司的扩大,面对面的监控,控制等一系列问题变得难乎其难了。
后来,科维特公司在经营上的开始日趋严重。
最后公司不得不减少新店的增设,把注意力转向了现有的商店。
最后弗考夫仍然无法拯救公司,科维特公司被斯巴坦斯工业公司收购,弗考夫从舞台中心消失了。
问题:1、所采用的组织结构和管理方式使他获得了成功,也导致了他的失败。
这是为什么?2、科维特公司的发展,当面对面的管理变得不再可行时,为确保有效得监督管理,应当怎样进行组织设计?参考答案或提示:1、开始组织较小,采用的方法很使用这种较小的组织,随着组织的变大,管理者没有能力像以前一样的继续完成以前成功的方法,管理方法不适应组织的进一步发展。
2、从组织变革的步骤着手分析。
案例二明娟不再和阿苏说话了。
问题:1、明娟和阿苏之间产生矛盾的原因是什么2、威恩作为公司领导解决矛盾的方法是否可行?参考答案或提示:1、由职权之争引发冲突,又因信息沟通障碍产生矛盾。
2、威恩解决矛盾的方法是可行的。
他采用了转移目标的策略,如给他们设置一个共同的冲突者马德,并促进明娟和阿苏之间沟通信息,协调认知。
3、改善人际关系一定要体现平等的原则、互利原则和相容的原则。
--上海高考数学试题(文科)+答案
2013----2015年上海高考数学(文)试题与参考答案2013年上海高考数学试题(文科)附答案一、填空题(本大题共有14题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.不等式021xx <-的解为 .2.在等差数列{}n a 中,若123430a a a a +++=,则23a a += .3.设m ∈R ,()2221i m m m +-+-是纯虚数,其中i 是虚数单位,则m = .4.若2011x =,111x y=,则y = . 5.已知ABC ∆的内角A 、B 、C 所对的边分别是a ,b ,c .若2220a ab b c ++-=,则角C 的大小是 .6.某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为 .7.设常数a ∈R .若52a x x ⎛⎫+ ⎪⎝⎭的二项展开式中7x 项的系数为-10,则a = .8.方程91331x x+=-的实数解为 . 9.若1cos cos sin sin 3x y x y +=,则()cos 22x y -= .10.已知圆柱Ω的母线长为l ,底面半径为r ,O 是上地面圆心,A 、B 是下底面圆心上两个不同的点,BC 是母线,如图.若直线OA 与BC 所成角的大小为π6,则1r= . 11.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是 (结果用最简分数表示). 12.设AB 是椭圆Γ的长轴,点C 在Γ上,且π4CBA ∠=.若4AB =,2BC =,则Γ的两个焦点之间的距离为 .13.设常数0a >,若291a x a x+≥+对一切正实数x 成立,则a 的取值范围为 . 14.已知正方形ABCD 的边长为1.记以A 为起点,其余顶点为终点的向量分别为1a 、2a 、3a ;以C 为起点,其余顶点为终点的向量分别为1c 、2c 、3c .若{},,,1,2,3i j k l ∈且,i j k l ≠≠,则()()i j k l a a c c +⋅+的最小值是 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 15.函数()()211f x x x =-≥的反函数为()1fx -,则()12f -的值是( )(A(B)(C)1(D)116.设常数a ∈R ,集合()(){}|10A x x x a =--≥,{}|1B x x a =≥-.若A B =R ,则a 的取值范围为( )(A)(),2-∞ ﻩ(B)(],2-∞ﻩ (C)()2,+∞ﻩ(D )[)2,+∞17.钱大姐常说“好货不便宜”,她这句话的意思是:“好货”是“不便宜”的( ) (A )充分条件ﻩ ﻩﻩﻩ(B)必要条件 (C )充分必要条件 ﻩ ﻩ(D)既非充分又非必要条件18.记椭圆221441x ny n +=+围成的区域(含边界)为()1,2,n n Ω=,当点(),x y 分别在12,,ΩΩ上时,x y +的最大值分别是12,,M M ,则lim n n M →∞=( )(A )0 (B )14(C) 2 (D )三.解答题(本大题共有5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域写出必要的步骤.19.(本题满分12分)ﻩ如图,正三棱锥O ABC -底面边长为2,高为1,求该三棱锥的体积及表面积.第19题图20.(本题满分14分)本题共有2个小题.第1小题满分5分,第2小题满分9分.甲厂以x 千米/小时的速度匀速生产某种产品(生产条件要求110x ≤≤),每小时可获得的利润是3100(51)x x+-元.(1)求证:生产a 千克该产品所获得的利润为213100(5)a x x +-; (2)要使生产900千克该产品获得的利润最大,问:甲厂应该如何选取何种生产速度?并求此最大利润.21.(本题满分14分)本题共有2个小题.第1小题满分6分,第2小题满分8分. ﻩ已知函数()2sin()f x x ω=,其中常数0ω>. (1)令1ω=,判断函数()()()2F x f x f x π=++的奇偶性并说明理由;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再往上平移1个单位,得到函数()y g x =的图像.对任意的a R ∈,求()y g x =在区间[,10]a a π+上零点个数的所有可能值.22.(本题满分16分)本题共有3个小题.第1小题满分3分,第2小题满分5分,第3小题满分8分. ﻩ已知函数()2||f x x =-.无穷数列{}n a 满足1(),*n n a f a n N +=∈. (1)若10a =,求2a ,3a ,4a ;(2)若10a >,且1a ,2a ,3a 成等比数列,求1a 的值;(3)是否存在1a ,使得1a ,2a ,3a ,…,n a …成等差数列?若存在,求出所有这样的1a ;若不存在,说明理由.23.(本题满分18分)本题共有3个小题.第1小题满分3分,第2小题满分6分,第3小题满分9分.ﻩ如图,已知双曲线1C :2212x y -=,曲线2C :||||1y x =+.P 是平面内一点,若存在过点P 的直线与1C 、2C 都有公共点,则称P 为“1C -2C 型点”.(1)在正确证明1C 的左焦点是“1C -2C 型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证);(2)设直线y kx =与2C 有公共点,求证||1k >,进而证明原点不是“1C -2C 型点;(3)求证:圆2212x y +=内的点都不是“1C -2C 型点”.2013年上海高考数学试题(文科)参考答案一. 填空题 1. 0< X<122.15 2. -23. 14.23π 5. 78 6. -2 7. 3log 4 8. -799. 10. 5711.312. )1,5⎡+∞⎢⎣ 13. -5 二. 选择题三. 解答题19.解:由已知条件可知,正三棱锥O-ABC 的底面△A BC 是边长为2的正三角形。
普通高等学校招生全国统一考试上海卷文科数学试题及答案
数据,就业局势必定是()
计算机行业好于化工行业.(B)建筑行业好于物流行业.
(C)机械行业最紧张.
(D)营销行业比贸易行业紧张.
三.解答题(本大题满分86分)
17.(此题满分12分)
已知复数z1知足(1+i)z1=-1+5i,
若C的方程y2
=2px(p≠0)点.
P1
2
2
2
(0,0),于定的自然数n,明:
成等差数列;
(x1+p),(x2+p),
⋯,(xn+p)
(3)
若C的方程x
2
y2
1(a>b>0).点P1(a,0),于定的自然数
n,当公差d化
a
2
b2
,求Sn的最小.
符号意义
本试卷所用符号
等同于《实验教材》符号
向量坐标
a={x,y}
(2)当P抛物上位于段AB下方
(含A.B)的点,求OPQ面的最大.
21.(安分16分)第1小分4分,第2小分6分,第3小分6分
如,P-ABC是底面1的正三棱分棱上的点,截面DEF∥底面ABC,且棱台DEF-ABC与棱P-ABC的棱和相等.(棱和是指多面体中全部棱的度之和)
明:P-ABC正四周体;
1
(2)若PD=PA,求二面角D-BC-A的
∞)
(2)
由(x-a-1)(2a-x)>0,
得(x-a-1)(x-2a)<0.
a<1,∴a+1>2a,∴B=(2a,a+1).
∵BA,∴2a≥1或a+1≤-1,即a≥1或a≤-2,而a<1,
2021年高考真题——文科数学(上海卷) Word版含答案
2021年一般高等学校招生全国统一考试(上海卷)文2021年上海市文科试题一.填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.函数x x f 2sin 31)(-=的最小正周期为.2.设全集R =U .若集合}4,3,2,1{=A ,}32|{<≤=x x B ,则=)(B C A U .3.若复数z 满足i z z +=+13,其中i 是虚数单位,则=z .4.设)(1x f-为12)(+=x x x f 的反函数,则=-)2(1f . 5.若线性方程组的增广矩阵为⎝⎛0213⎪⎪⎭⎫21c c 解为⎩⎨⎧==53y x ,则=-21c c . 6.若正三棱柱的全部棱长均为a ,且其体积为316,则=a .7.抛物线)0(22>=p px y 上的懂点Q 到焦点的距离的最小值为1,则=p . 8. 方程2)23(log )59(log 1212+-=---x x 的解为.9.若y x ,满足⎪⎩⎪⎨⎧≥≤+≥-022y y x y x ,则目标函数y x z 2+=的最大值为.10. 在报名的3名男老师和6名女老师中,选取5人参与义务献血,要求男、女老师都有,则不同的选取方式的种数为(结果用数值表示). 11.在62)12(xx +的二项式中,常数项等于(结果用数值表示). 12.已知双曲线1C 、2C 的顶点重合,1C 的方程为1422=-y x ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为.13.已知平面对量a 、b 、c 满足b a ⊥,且}3,2,1{|}||,||,{|=c b a ,则||c b a ++的最大值是. 14.已知函数x x f sin )(=.若存在1x ,2x ,⋅⋅⋅,m x 满足π6021≤<⋅⋅⋅<<≤m x x x ,且12|)()(||)()(||)()(|13221=-+⋅⋅⋅+-+--m m x f x f x f x f x f x f ),12(*∈≥N m m ,则m 的最小值为.二.选择题(本大题共4小题,满分20分)每题有且只有一个正确答案案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15. 设1z 、C ∈2z ,则“1z 、2z 均为实数”是“21z z -是实数”的( ). A. 充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件 16. 下列不等式中,与不等式23282<+++x x x 解集相同的是( ). A. 2)32)(8(2<+++x x x B. )32(282++<+x x xC. 823212+<++x x x D. 218322>+++x x x 17. 已知点 A 的坐标为)1,34(,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ). A.233 B. 235 C.211 D. 213 18. 设),(n n n y x P 时直线)(12*∈+=-N n n ny x 与圆222=+y x 在第一象限的交点,则极限=--∞→11limn n n x y ( ).A. 1-B. 21-C. 1D. 2三、解答题(本大题共有5题,满分74分)解答下列各题必需在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,圆锥的顶点为P ,底面圆为O ,底面的一条直径为AB ,C 为半圆弧的中点,E 为劣弧的中点,已知2,1PO OA ==,求三棱锥P AOC -的体积,并求异面直线PA 和OE 所成角的大小.。
高考文科数学试题及参考答案(上海卷)
《组织行为学》常用事例剖析题参照答案:案例分析题案例一:50年月初,弗考夫和中学时代的伙伴创办了科维特公司。
这家公司在益10年内把营业额从5500 万美元提升到75000 万美元,一跃成为零售史上发展最快的公司之一。
在 60年月初,这家公司均匀每7 个星期增设一家大的商铺。
很快扩大到了25 家商店。
从一开始,科维特的管理就是集权式的。
总部操控着全部的经营活动和其余各项政策,商铺经理和其余管理人员只被给予少的可怜的权利。
弗考夫常常四周巡视,直接收理相当大数目的商铺,直到这一数目高出了他力所能及的范围。
科维特公司的规模愈来愈大,他所面对的问题也变得愈来愈复杂。
当公司的商铺还没有超出12 家时,弗考夫及其总部的高级管理人员还可以够亲临现场给各商铺作领导。
可是,跟着公司的扩大,当面的监控,控制等一系列问题变得难乎其难了。
此后,科维特公司在经营上的开始日趋严重。
最后公司不得不减少新店的增设,把注意力转向了现有的商铺。
最后弗考夫仍然没法挽救公司,科维特公司被斯巴坦斯工业公司收买,弗考夫从舞台中心消逝了。
问题:1、所采纳的组织构造和管理方式使他获取了成功,也以致了他的失败。
这是为何?2、科维特公司的发展,当当面的管理变得不再可行时,为保证有效得监察管理,应当如何进行组织设计?参照答案或提示:1、开始组织较小,采纳的方法很使用这类较小的组织,跟着组织的变大,管理者没有能力像从前同样的持续达成从前成功的方法,管理方法不适应组织的进一步发展。
2、从组织改革的步骤着手剖析。
2/16事例二明娟不再和阿苏说话了。
问题:1、明娟和阿苏之间产生矛盾的原由是什么 2、威恩作为公司领导解决矛盾的方法能否可行 ?参照答案或提示:1、由职权之争引起矛盾,又因信息交流阻碍产生矛盾。
2、威恩解决矛盾的方法是可行的。
他采纳了转移目标的策略,如给他们设置一个共同的矛盾者马德,并促使明娟和阿苏之间交流信息,协调认知。
3、改良人际关系必定要表现同等的原则、互利原则和相容的原则。
上海高考文科数学试题含答案(Word版)
三.解答题(本大题共5题,满分74分)19、(本题满分12分)底面边长为2的正三棱锥P ABC -,其表面展开图是三角形321p p p ,如图,求△321p p p 的各边长及此三棱锥的体积V .20.(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分。
设常数0≥a ,函数aa x f x x -+=22)( (1)若a =4,求函数)(x f y =的反函数)(1x f y -=;(2)根据a 的不同取值,讨论函数)(x f y =的奇偶性,并说明理由.21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,某公司要在A B 、两地连线上的定点C 处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米,设A B 、在同一水平面上,从A 和B 看D 的仰角分别为βα和.(1)设计中CD 是铅垂方向,若要求βα2≥,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后.CD 与铅垂方向有偏差,现在实测得,, 45.1812.38==βα求CD 的长(结果精确到0.01米)?22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分7分。
在平面直角坐标系xOy 中,对于直线I :ax+by+c=0和点P 1(x 1,y 1),P 2(x 2,y 2),记η=(ax 1+by 1+c )(ax 2+by 2+c ),若η<0,则称点P 1,P 2被直线I 分隔,若曲线C 与直线I 没有公共点,且曲线C 上存在点P 1,P 2被直线I 分割,则称直线I 为曲线C 的一条分隔线。
(1)求证:点A (1,2),B (-1,0)被直线x+y-1=0分隔;(2)若直线y=kx 是曲线x 2-4y 2=1的分隔线,求实数k 的取值范围;(3)动点M 到点Q (0,2)的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求E 的方程,并证明y 轴为曲线E 的分隔线。
高考试题文科数学(上海卷)word解析
上海 数学试卷(文史类)考生注意:1. 答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码。
2. 本试卷共有23道试题,满分150分,考试时间120分钟。
一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.函数f(x)=x 3+1的反函数f -1(x)=_____________. 1.【答案】31x -【解析】由y =x 3+1,得x =31-y ,将y 改成x ,x 改成y 可得答案。
2.已知集体A={x|x ≤1},B={x |≥a},且A ∪B=R ,则实数a 的取值范围是__________________. 2.【答案】a ≤1【解析】因为A ∪B=R ,画数轴可知,实数a 必须在点1上或在1的左边,所以,有a ≤1。
3. 若行列式417 5 xx 3 8 9中,元素4的代数余子式大于0,则x 满足的条件是__________________.3.【答案】83x >【解析】依题意,得: (-1)2×(9x-24)>0,解得:83x >4.某算法的程序框如右图所示,则输出量y 与输入量x 满足的关系式是________________.4.【答案】2,12,1x x y x x ⎧<=⎨->⎩【解析】当x >1时,有y =x -2,当x <1时有y =x2,所以,有分段函数。
5.如图,若正四棱柱ABC D —A 1B 1C 1D 1的底面边长为2,高为4,则异面直线BD 1与AD 所成角的大小是___________________(结果用反三角函数值表示). 5.【答案】arctan 5【解析】因为AD ∥A 1D 1,异面直线BD 1与AD 所成角就是BD 1与A 1D 1所在角,即∠A 1D 1B ,由勾股定理,得A 1B =25,tan ∠A 1D 1B =5,所以,∠A 1D 1B =arctan 5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年普通高等学校招生全国统一考试(上海卷)
数学(文科)
考生注意:
1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码
2.本试卷共有23道试题,满分150分,考试时间120分钟。
一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.已知集合{}1,3,A m =,{}3,4B =,{}1,2,3,4A
B =U 则m = 。
2.不等式204x x ->+的解集是 。
3.行列式cos sin
66sin cos 66π
ππ
π的值是 。
4.若复数12z i =-(i 为虚数单位),则z z z ⋅+= 。
5.将一个总数为A 、B 、C 三层,其个体数之比为5:3:2。
若用分层抽样方法抽取容量为100的样本,则应从C 中抽取 个个体。
6.已知四棱椎P ABCD -的底面是边长为 6 的正方形,侧棱PA ⊥底面ABCD ,且8PA =,
则该四棱椎的体积是 。
7.圆22
:2440C x y x y +--+=的圆心到直线3440x y ++=的距离d = 。
8.动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则P 的轨迹方程为 。
9.函数3()log (3)f x x =+的反函数的图像与y 轴的交点坐标是 。
10. 从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张
均为红桃”的概率
为 (结果用最简分数表示)。
11. 2010年上海世博会园区每天9:00开园,20:00停止入园。
在右边的
框图中,S 表示上海世博会官方网站在每个整点报道的入园总人数,
a 表示整点报道前1个小时内入园人数,则空白的执行框内应填
入 。
12.在n 行m 列矩阵12321234113451212321n n n n n n n n n n ⋅⋅⋅--⎛⎫ ⎪⋅⋅⋅- ⎪
⎪⋅⋅⋅ ⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪⋅⋅⋅---⎝⎭
中, 记位于第i 行第j 列的数为(,1,2,)ij a i j n =⋅⋅⋅。
当9n =时,
11223399a a a a +++⋅⋅⋅+= 。
13.在平面直角坐标系中,双曲线Γ
的中心在原点,它的一个焦点坐标为,
1(2,1)e =r 、2(2,1)e =-r 分别是两条渐近线的方向向量。
任取双曲线Γ上的点P ,若12OP ae be =+u u u r u u r u u u r (a 、b R ∈),则a 、b 满足的一个等式是 。
14.将直线1:10l x y +-=、2:0l nx y n +-=、3:0l x ny n +-=(*n N ∈,2n ≥)围
成的三角形面积记为n S ,则lim n n S →∞
= 。
二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案。
考生必
须在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分。
15.满足线性约束条件23,23,0,0
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y =+的最大值是 [答]( ) (A )1. (B )32
. (C )2. (D )3. 16.“()24x k k Z π
π=+∈”是“tan 1x =”成立的 [答]( )
(A )充分不必要条件. (B )必要不充分条件.
(C )充分条件. (D )既不充分也不必要条件.
17.若0x 是方程式 lg 2x x +=的解,则0x 属于区间 [答]( )
(A )(0,1). (B )(1,1.25). (C )(1.25,1.75) (D )(1.75,2)
18.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC
(A )一定是锐角三角形. (B )一定是直角三角形.
(C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形.
三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号
的规定区域内写出必要的步骤。
19.(本题满分12分) 已知02x π<<,化简:
2lg(cos tan 12sin )lg[2cos()]lg(1sin 2)22
x x x x x π⋅+-+--+. 20.(本大题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分. 如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩
形骨架,总计耗用9.6米铁丝,再用S 平方米塑料片制成圆柱
的侧面和下底面(不安装上底面).
(1)当圆柱底面半径r 取何值时,S 取得最大值?并求出该
最大值(结果精确到0.01平方米);
(2)若要制作一个如图放置的,底面半径为0.3米的灯笼,请
作出
用于灯笼的三视图(作图时,不需考虑骨架等因素).
21.(本题满分14分)本题共有2个小题,第一个小题满分6分,第2个小题满分8分。
已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*n N ∈ (1)证明:{}1n a -是等比数列;
(2)求数列{}n S 的通项公式,并求出使得1n n S S +>成立的最小正整数n .
22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分。
若实数x 、y 、m 满足x m y m -<-,则称x 比y 接近m .
(1)若2
1x -比3接近0,求x 的取值范围;
(2)对任意两个不相等的正数a 、b ,证明:22a b ab +比33a b +接近2ab ab ; (3)已知函数()f x 的定义域{}
,,D x x k k Z x R π≠∈∈.任取x D ∈,()f x 等于1sin x +和1sin x -中接近0的那个值.写出函数()f x 的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).
23(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知椭圆Γ的方程为22
221(0)x y a b a b
+=>>,(0,)A b 、(0,)B b -和(,0)Q a 为Γ的三个顶点.
(1)若点M 满足1()2
AM AQ AB =+u u u u r u u u r u u u r ,求点M 的坐标; (2)设直线11:l y k x p =+交椭圆Γ于C 、D 两点,交直线22:l y k x =于点E .若
2
122b k k a
⋅=-,证明:E 为CD 的中点; (3)设点P 在椭圆Γ内且不在x 轴上,如何构作过PQ 中点F 的直线l ,使得l 与椭圆
Γ的两个交点1P 、2P 满足12PP PP PQ ==u u u r u u u r u u u r ?令10a =,5b =,点P 的坐标是(-8,-
1),若椭圆Γ上的点1P 、2P 满足12PP PP PQ ==u u u r u u u r u u u r ,求点1P 、2P 的坐标.。