18直线与椭圆的位置关系2
直线和椭圆位置关系总结大全
1.直线和椭圆位置关系判定方法概述1直线斜率存在时221y kx bmx ny =+⎧⎨+=⎩⇒222()210m k n x kbnx b +++-=当0∆>时直线和椭圆相交当0∆=时直线和椭圆相切当0∆<时直线和椭圆相离2直线斜率不存在时22221x x y ab =⎧⎪⎨+=⎪⎩判断y 有几个解注:01无论直线斜率存在与否,关键是看联立后的方程组有几组解,而不是看""∆。
02直线和椭圆位置关系的判断只有这种“坐标法”,无几何法。
2.直线和椭圆相交时1弦长问题弦长公式22121221111AB k x x k y y a k∆=+-=+=+-注:2121212()4x x x x x x -=+-而12x x +和12x x 可用韦达定理解决,不必求出1x 和2x 的精确值,“设而不求”思想初现。
2三角形面积1过x 轴上一定点H 的直线l 与椭圆22221x y a b +=交于A 、B 两点,求AOB S ∆1212AOB S OH y y ∆=- 02过y 轴上一定点H 的直线l 与椭圆22221x y b a+=交于A 、B 两点,求AOB S ∆1212AOB S OH x x ∆=- 03弦任意,点任意12S ∆=弦长×点线距注:仍然蕴含“设而不求”思想。
3弦的中点问题01中点弦所在直线方程问题02平行弦中点轨迹03共点弦中点轨迹04其他问题类型题一:直线与椭圆位置1.已知直线2+=kx y 和椭圆12322=+y x ,当k 取何值时,此直线与椭圆:(1)相交;(2)相切;(3)相离。
2.已知直线2+=kx y 与椭圆2222=+y x 相交于不同的两点,求k 的取值范围。
3.点P 在椭圆284722=+y x 上,则点P 到直线01623=--y x 的距离的最大值为_____,最小值为________.类型题二:弦长公式1.已知椭圆:1922=+y x ,过左焦点1F 作倾斜角为6 的直线交椭圆于B A ,两点,求弦AB 的长。
直线与椭圆的位置关系
解:因为 2 2 x 4 y 16 0 设直线方程为 y - 2 k x 1 , 代入椭圆 得 x2 4kx k 22 16 1 4k 2 x2 16k 8k 2 x 4k 2 16k 0
1 4 1 16 4 ,所以点在椭圆外,切线有两条
12 3 1 解:因为 1 ,所以点在椭圆上,切线只有一条。 16 4 4 4 x2 y2 1 ,得 设直线方程为y=kx+m,代入椭圆 16 4 2
2 3
2
x 4kx m 16 0 2 2 2 1 4k x 8kmx 4m 16 0 2 8km 4 1 4k 2 4m2 16 0
得 k
所求直线为3x+8y-20=0 当直线与X轴垂直是即x=4也与椭圆相切 故所求直线方程为x-4=0或3x+8y-20=0
1、点 Px0 , y0
x2 y2 与椭圆 a 2 b 2 1a b 0 的位置关系有三种:
(1)点在椭圆内: (2)点在椭圆上:
x0 y0 1 2 2 a b x0 y0 2 1 2 a b x0 y0 1 2 2 a b
2 2 2 2
2
2
(3)点在椭圆外:
2
m2 16k 2 4 0
又点 2 3,1 在直线y=kx+m上,所以2 3k m 1 由
2 2 m 16k 4 0 2 3k m 1
m 4 ,得 3 k 2
3 故所求直线方程为 y 2 x 4 ,即: 3x 2 y 8 0
直线与椭圆的 位置关系(2)
2018年高考数学命题角度5.2直线与椭圆位置关系大题狂练理
命题角度5.2 :直线与椭圆位置关系1.已知椭圆 的两个焦点为且经过点 ⑴求椭圆•的方程; ⑵过 的直线与椭圆-交于| ■两点(点」位于 轴上方),若人 ;,且—■:: ,求直线的斜率的取值范围.£十几1 並【答案】(1);( 2).【解析】试题分析:(2)联立直线与椭圆的方程,结合韦达定理得到关于实数 £斜率 的取值范围是k=.试题解析;⑴由椭圆定义2。
= |阴| + |跖| = 4,有a = 2f c =从而W +-w 3(y =+1) ⑵设直线=比& + i)(A >0),有|兰+邑=]设百0") 玖%y)有% = -久仏y 1y 3=^(y 1+y 3)S 讐二戏戶人#一ST2 <A<3f注洁訂》解得0C 冬乎.3^4Jt==a, A = +y,由已矢皿=¥・2.已知椭圆C 的中心在原点,焦点在 x 轴上,离心率e 2 •以两个焦点和短轴的两个端点2为顶点的四边形的周长为 8,面积为2^3 •(I)求椭圆C 的方程;(n)若点P X o ,y 。
为椭圆C 上一点,直线I 的方程为3x °x • 4y °y -12=0,求证:直线I 与椭圆C 有且只有一个交点.(1)由题意可得 , i — -- + —,—则椭圆方程为k 的不等式,求解不等式可得直线的J 整理得任+斗a+^fc 2 ■【来源】【全国市级联考】广西桂林 ,百色,梧州,北海,崇左五市2017届高三5月联合模拟理 科数学试题2 2【答案】(I )- y 1 ;( II )详见解析•4 3【解析】试题分析:2 2(1) 利用题意求得b 「3, c =1,椭圆C 的方程为 —1 .4 3(2) 首先讨论当y 。
=0的情况,否则联立直线与椭圆的方程, 结合直线的特点整理可得直线 I 与 椭圆C 有且只有一个交点.试题解析:(I >依题意,设椭圆c 的方程为4 + = 焦距为丸,由题设条件知,4^=8, “2,2x 丄x 2c xb= 2-^5 , b 1= / = 4』所以“省,c = b 或— C = j3 (经检验不合题意舍去), 故椭圆。
直线与椭圆的位置关系讲解(全面)
分析:先画图熟悉题意, 点 F1 到直线 AB 的距离易知,
要求 S△F1AB ,关键是求弦长 AB. 设 A( x1 , y1 ), B( x2 , y2 ) . 由直线方程和椭圆方程联立方程组
解 例焦:2∵:点已椭,圆知过点x2F2 F21作y、2倾F斜21分的角别两为个 是4焦椭的点圆直坐2x线标2 ,F11y求(21△,10F)的1, AF左2B(1、 的, 0右 面) 积. ∴直线 AB 的方程为 y x 1 设 A( x1, y1 ), B( x2 , y2 )
是否存在一点,它到直线l的距离最小? y 最小距离是多少?
解:设直线m平行于l,
则l可写成:4x 5y k 0
x o
4x 5y k 0
由方程组
x2
y2
消去y,得25x2 8kx k 2 - 225 0
25 9 1
由 0,得64k 2 - 4 2(5 k 2 - 225) 0
平分,求此弦所在直线的方程.
点
作差
点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率.
知识点3:中点弦问题
点差法:利用端点在曲线上,坐标满足方程,作 差构造出中点坐标和斜率.
设A(x1, y1), B(x2 , y2 ), AB中点M (x0 , y0 ),
则有:2x0 x1 x2 , 2 y0 y1 y2
1 a2
1 b2
1
a2
b2
a2b2
题型一:直线与椭圆的位置关系
练习1.K为何值时,直线y=kx+2和曲线2x2+3y2=6有 两个公共点?有一个公共点?没有公共点?
当k= 6 时有一个交点 3
当k> 6 或k<- 6 时有两个交点
高二数学直线与椭圆的位置关系
( C )
A、(0,1)
B、(0,5 )
D、(1,+ ∞ )
C、[ 1,5)∪(5,+ ∞ )
3、过椭圆 x2-2y2=4 的左焦点作倾斜角为300的直线,
则弦长 |AB|= _______ , 通径长是 _______
小 结:
1、直线与椭圆的三种位置关系及等价条件; 2、弦长的计算方法: (1)垂径定理:|AB|= 2 r 2 d 2 (只适用于圆) (2)弦长公式: |AB|=
2b 2 a
例2、已知中心在原点,长轴在x轴上的椭圆的两准
线间的距离为2,若椭圆被直线x+y+1=0截得的 2 弦的中点的横坐标是 ,求椭圆的方程. 3
练习 中心在原点,一个焦点为F(0,
50 )的椭圆被
直线 y=3x-2所截得弦的中点横坐标是1/2,求椭圆
方程。
例3
x2 y2 1 椭圆 45 20
起来:“守夜也有秦顺儿呢!哪儿轮得到您们!”两各丫环晓得爷那是动咯气,吓得别敢再吱声,乖乖地放下手中の热水和中衣,壹并退咯下去。回到水清の房间,月影只见晚 膳还胡乱地摆在桌子上,上前看咯看,有些动咯,有些壹点儿也没什么动,看样子仆役用咯壹些,但都别多。再往里屋探身壹看,水清已经和衣躺在床上咯,深感失职の月影赶 快冲咯进去:“仆役,奴婢回来咯,奴婢那就服侍您歇息。”水清随便用咯些晚膳之后,原本是拿咯壹本书,壹边看书壹边等月影,结果因为壹天の旅途劳累,看咯没壹会儿就 有些迷迷糊糊地睡着咯,被月影叫醒后,她赶快问道:“爷那里怎么样咯?都伺候完咯吗?”“嗯,是爷让我们回来の,说有秦公公服侍就可以咯。”“噢,那您们赶快吃饭吧, 都有些凉咯呢。”“奴婢别饿の,仆役,赶快让奴婢帮您安置咯吧。”“我那里也没什么啥啊事情……”别待水清说完,月影已经手脚麻利地开始为水清拆头发,拔簪子,卸容 妆,水清也好由着她做那些,晓得她那是心中愧疚,只有壹刻别停地忙碌着才能让她心安理得壹些。吉尔眼见着月影进咯里间屋伺候侧福晋,她在外间屋没敢贸然地进去。由于 是初次服侍侧福晋,既别好跟月影那各老人抢差事,又别晓得如何跟侧福晋解释啥啊,更是别晓得那各侧福晋是啥啊性子,她贸然进屋会别会惹主子别高兴。于是吉尔赶快很有 眼力劲儿地在外间屋将桌子收拾干净,又将行李归置整齐。她那么手脚别停地干活儿,也是想让自己能够心安壹些。由于水清别习惯有人在跟前值夜,于是两各丫环就在外间屋 踏踏实实地睡咯壹晚。前壹天被两各小丫环弄得只有招架之功,没什么还手之力の王爷急于摆脱被动挨打の局面,于是壹大清早儿就让秦顺儿给水清传话:“您壹会儿跟侧福晋 传爷の吩咐,月影和吉尔两各人专门负责伺候侧福晋,别用到爷那里当差来咯。” 水清听完咯秦顺儿壹字别落の传话,心里别由得咯噔地壹下:昨天晚上发生啥啊事情咯?爷怎 么会专门来传那各吩咐?爷の身边没各丫环,光指着秦顺儿壹各小太监怎么能行?况且福晋姐姐那次之所以特意将吉尔派来同行,还别是担心她和月影两各人没什么经验,生怕 别能把爷伺候好吗?现在吉尔假设成咯自己の专用丫环,把爷の事情给耽误咯,既辜负咯福晋の壹番心意,更是要把福晋姐姐得罪咯。第壹卷 第552章 抢功生怕辜负咯福晋壹 片信任の水清想到那里,赶快对秦顺儿说道:“您跟爷回各话,我那里有月影壹各人就行咯,还是让吉尔专心伺候爷吧。”别但秦顺儿听明白咯水清の吩咐,连两各丫环都听得 真真切切。吉尔の心中是暗暗欢喜、感激别已,月影却是急得别行、心生埋怨,于是顾别得礼仪,开口对水清说道:“仆役,要别,让奴婢去服侍爷吧,吉尔留下来伺候 您。”“月影?!”水清惊呆咯!月影可是她从娘家带过来の陪嫁丫环,她们同进共退,同甘共苦,在那陌生の王府里相依为命,度过咯六年の时光!那各丫头可是她在王府里 唯壹の壹各亲人,最为亲近、最为信赖の奴才,怎么现在居然为咯去伺候爷,将她那各正经主子扔在壹边别管咯?难道说为咯攀上王爷那各高枝,她们六年多の主仆之情全都忘 到咯脑后咯?可是,月影别是那种人啊?六年多咯都别去攀附王爷那根高枝,怎么现在突然开窍咯?百思别解の水清根本别打算再理会月影,转身继续对秦顺儿说道:“就照我 刚才の吩咐去给爷传口信吧。”王爷听咯秦顺儿の回复,想想自己手边上只秦顺儿壹各人也确实是有些忙别过来,刚才之所以让两各丫环都留给水清,完全还是因为昨天晚上の 事情在赌气。现在看到水清主动让咯步,心里舒坦咯许多,于是就点头同意咯。秦顺儿见王爷别但同意咯,而且脸色有咯好转,他那心里也跟着高兴起来,于是忍别住就又多咯 壹句嘴:“启禀爷,月影那姑娘其实也想来伺候您呢,侧福晋没答应。”“啥啊?”那各情况大大出乎王爷の意料,再联想到昨天晚上月影那破天荒の殷勤劲儿,更是让他糊涂 别已!以前那丫头见着他就像老鼠见到猫似の,别是战战兢兢,就是退避三舍,偶尔他去咯怡然居,眼见着躲别掉咯,别得已只好硬着头皮上前来伺候他。而从昨天晚上开始の 月影那番脱胎换骨の巨大变化,简直是让他丈二和尚摸别到头脑咯!谢天谢地,幸好水清留下咯月影,否则他还真别晓得怎么面对她。于是他朝秦顺儿挥咯挥手,让他先退下咯。 吉尔听到秦顺儿の禀报,心中自是欢喜别已,辞别咯水清,赶快随着秦顺儿去王爷那里服侍,生怕壹会儿侧福晋又变咯卦。月影眼见着吉尔欢天喜地地去咯王爷那里,急得她顾 别得礼数,壹把拉住水清:“仆役啊!您怎么让吉尔壹各人去服侍爷咯?您怎么那么糊涂啊!”月影急别择言,如此大逆别道の话语未经大脑就脱口而出。好在水清与她壹直情 同姐妹,所以也没什么太在意她の失礼,只是笑咯笑,然后说道:“月影啊,您最近那是怎么?变得我都要别认识咯呢!您现在老老实实跟我交代,昨天晚上到底发生咯啥啊事 情,气得爷都别让您去跟前伺候咯呢。”第壹卷 第553章 和尚月影早就想跟水清好好地说壹说那各事情,现在见水清主动提咯起来,难得碍事の吉尔又别在身边,她也打算打 开天窗说亮话。虽然她们情同姐妹,但毕竟也有主仆之分,于是她先是费咯好大の劲儿才总算是略微压住咯心中の怒火,开口说道:“仆役,昨天晚上没什么发生啥
直线与椭圆的位置关系、弦长公式
解:
3、弦中点问题
例 :已知椭圆
过点P(2,1)引一弦,使弦在这点被
平分,求此弦所在直线的方程. 解:
韦达定理→斜率
韦达定理法:利用韦达定理及中点坐标公式来构造
3、弦中点问题
例 :已知椭圆
过点P(2,1)引一弦,使弦在这点被
平分,求此弦所在直线的方程.
点
作差
点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率.
2.2.2 椭圆的简单几何性质
1-----直线与椭圆的位置关系 2-----弦长公式
高二数学 熊超进
直线与椭圆的位置关系
种类: 相离(没有交点) 相切(一个交点) 相交(二个交点)
相离(没有交点) 相切(一个交点) 相交(二个交点)
1直线与椭圆的位置关系
1.位置关系:相交、相切、相离 2.判别方法(代数法)
例:已知斜率为1的直线L过椭圆 交椭圆于A,B两点,求弦AB之长.
的右焦点,
练习:已知椭C x2 y2 1斜率为1的 直线 l 与椭圆交
3
于 A, B 两点,且 AB 3 2求直线 l 的方程
2
3.若P(x,y)满足 x2 y2 1( y 0) ,求 y 3 的
4
x4
最大值、最小值.
( x1
x2 )2
4 x1
x2
6 5
2
2、弦长公式
设直线与椭圆交于P1(x1,y1),P2(x2,y2)两点,直线P1P2的斜率为k.
弦长公式:
弦长的计算方法: 弦长公式:
|AB|= 1 k 2 ·(x1 x2)2 4x1 x2
=
1
1 k2
·(y1
y2)
4 y1
2.2.2椭圆的简单几何性质(3)直线与椭圆的位置关系
题型三:中点弦问题
例1、已知椭圆 x2 y2 1过点P(2,1)引一弦,使弦在这点被 16 4
平分,求此弦所在直线的方程.
点 作差
点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率.
例2、如图,已知椭圆 ax2 by2 1 与直线x+y-1=0交
于A、B两点,AB 2 2, AB的中点M与椭圆中心连线的
斜率是 2 ,试求a、b的值。
2
解:ax2 by2 1
y
消y得:(a b)x2 2bx b 1 0
x y 1 0
A
=4b2 -4(a b)(b 1) 0 ab a b 设A(x1, y1), B(x2 , y2 )
M
o
x
B
x1
x2
2b ab
0)
y x1
由
x2 2
y2
1
消去
3x2 4x 0
y 并化简整理得
∴ x1 x2
4 3
,
x1 x2
0
∴ AB
( x1 x2 )2 ( y1 y2 )2
2( x1 x2 )2
2
( x1
x2
)2
4 x1 x2
=
4 3
2
∵点 F1 到直线 AB 的距离 d
18
9
x1 x2
7
, x1 x2
14
弦长
1 k2
(x1 x2 )2
4x1 x2
6
11 7
练习: 已知椭圆5x2+9y2ቤተ መጻሕፍቲ ባይዱ45,椭圆的右焦点为F,
直线与椭圆的位置关系
直线与椭圆的位置关系
直线与椭圆的位置关系是数学几何学的一个重要问题。
在这篇
文档中,我们将讨论直线与椭圆的几种可能的位置关系。
直线位于椭圆内部
当一条直线完全位于椭圆内部时,我们可以得到以下几种情况:
1. 直线与椭圆没有交点:这意味着直线与椭圆没有任何交点,
且直线与椭圆的轴是平行的。
2. 直线与椭圆有两个交点:这说明直线与椭圆相交于两个点,
椭圆的两个焦点位于直线上。
直线与椭圆位于同一平面
当直线与椭圆位于同一平面时,我们可以得到以下几种情况:
1. 直线与椭圆相切:这种情况下,直线与椭圆只有一个交点,
并且交点是椭圆的一个焦点。
2. 直线与椭圆相交于两点:这意味着直线与椭圆相交于两个不同的点,并且这两个点分别位于椭圆的两个焦点的同侧。
3. 直线与椭圆相离:这种情况下,直线与椭圆没有任何交点,并且直线与椭圆的轴平行。
直线与椭圆相交于无穷多点
当直线与椭圆相交于无穷多点时,这种情况被称为直线与椭圆重叠。
直线与椭圆重叠意味着直线和椭圆重合,任意一点都同时位于直线和椭圆上。
结论
通过研究直线与椭圆的位置关系,我们可以得出结论:直线与椭圆的位置关系取决于直线与椭圆之间的交点数量和位置。
这个问题在计算机图形学、建筑设计等领域都有广泛的应用。
了解这些位置关系有助于我们更好地理解直线和椭圆之间的几何性质。
总之,直线与椭圆的位置关系是一个有趣且复杂的问题,通过分析直线与椭圆的交点情况,我们可以获得更多关于它们的几何特性的信息。
直线与椭圆的位置关系
2
2
y 2 1 的两个焦点坐标 F1 (1, 0), F2 (1, 0)
3x 4x 0
4 2 2 ∴ AB ( x1 x2 )2 ( y1 y2 )2 2( x1 x2 )2 2 = ( x x ) 4 x x 2 1 2 1 3
AB y1 y2
,运用韦达定理来进行
.
x2 y2 1 的左、右 例 2:已知点 F1 、F2 分别是椭圆 2 1 焦点,过 F2 作倾斜角为 的直线,求 △F1 AB 的面积. 4 x2
解:∵椭圆
∴直线 AB 的方程为 y x 1 设 A( x1 , y1 ), B( x2 , y2 )
分析:先画图熟悉题意,
点 F1 到直线 AB 的距离易知,
要求 S△F1 AB ,关键是求弦长 AB. 设 A( x1 , y1 ), B( x2 , y2 ) . 由直线方程和椭圆方程联立方程组
关于弦长计算:直线与二次曲线相交所得的弦长 k ,直线与二次曲线的两个交点坐标分别为 直线具有斜率
A(x1, y1 ), B( x2 , y2 ) ,则它的弦长
方程组有两解 方程组有一解 方程组无解 两个交点 一个交点 无交点 相交 相切 相离
x 2 y2 例1:直线y=kx+1与椭圆 1 5 m
恒有公共点,
求m的取值范围。
x2 y2 1 的左、右 例 2:已知点 F1 、F2 分别是椭圆 2 1 焦点,过 F2 作倾斜角为 的直线交椭圆于 A、B 两点, 4 求 △F1 AB 的面积.
椭圆的简单几何性质(三)
直线与椭圆的位置关系
新高考数学椭圆-第2课时 直线与椭圆的位置关系精品课件
解:易知F1(-1,0),F2(1,0).①当直线l的斜率存在时,设直线l的方程为y=k(x-1),设A(x1,y1),B(x2,y2),由消去y得(1+2k2)x2-4k2x+2k2-2=0,∴x1+x2=,x1·x2=.∵A(x1,y1),B(x2,y2)在椭圆C上,∴=1-,=1-,∴|AF1|===,
课堂考点探究
解:将直线l的方程与椭圆C的方程联立,得方程组将①代入②,整理得7x2+8mx+4m2-12=0③.方程③根的判别式Δ=(8m)2-4×7×(4m2-12)=-48m2+336.(1)当Δ>0,即-<m<时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解,这时直线l与椭圆C有两个不重合的公共点.(2)当Δ=0,即m=±时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解,这时直线l与椭圆C有两个互相重合的公共点,即直线l与椭圆C有且只有一个公共点.
课堂考点探究
例3 已知椭圆M:+=1(a>b>0)的左、右顶点分别为A,B,左焦点为F,椭圆M的离心率为,且过点.(2)若过点N(1,1)的直线与椭圆M交于P,Q两点,且线段PQ的中点恰为点N,求直线PQ的方程.
解:设P(xP,yP),Q(xQ,yQ),∵线段PQ的中点恰为点N,∴xP+xQ=2,yP+yQ=2.由题知+=1,+=1,两式相减可得(xP+xQ)(xP-xQ)+(yP+yQ)·(yP-yQ)=0,∴=-,即直线PQ的斜率为-,∴直线PQ的方程为y-1=-(x-1),即3x+4y-7=0.
课堂考点探究
例2 [2021·辽宁辽阳一模] 已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,且点在C上.(2)设过F2的直线l与C交于A,B两点,若|AF1|·|BF1|=,求|AB|.
直线和椭圆位置关系总结大全
直线和椭圆位置关系总结大全1.直线不交于椭圆:当直线与椭圆不相交时,可以分为以下两种情况:(1)直线在椭圆外部:此时直线与椭圆没有交点;(2)直线在椭圆内部:此时直线与椭圆没有交点。
2.直线与椭圆外切:当一条直线与椭圆相切时,可以分为以下两种情况:(1)直线与椭圆外切于一个点:此时直线与椭圆有且仅有一个切点;(2)直线与椭圆外切于一条线段:此时直线与椭圆有且仅有两个切点。
3.直线与椭圆内切:当一条直线与椭圆相切时,可以分为以下两种情况:(1)直线与椭圆内切于一个点:此时直线与椭圆有且仅有一个切点;(2)直线与椭圆内切于一条线段:此时直线与椭圆有且仅有两个切点。
4.直线穿过椭圆:当一条直线穿过椭圆时,可以分为以下三种情况:(1)直线与椭圆有两个交点:此时直线与椭圆相交于两个不同的点;(2)直线与椭圆相交于椭圆的一个点:此时直线是椭圆的切线;(3)直线与椭圆没有交点:此时直线与椭圆相离。
5.直线包围椭圆:当一条直线将椭圆切割成两个部分时,可以分为以下两种情况:(1)直线穿过椭圆:此时直线将椭圆分成内外两个部分;(2)直线在椭圆外部:此时直线将椭圆分成两个不相交的部分。
6.直线与椭圆重合:当直线与椭圆方程相同或者参数相同时,直线与椭圆重合。
7.直线与椭圆相交:当直线与椭圆有交点时,可以分为以下几种情况:(1)直线与椭圆有两个交点:此时直线与椭圆相交于两个不同的点;(2)直线与椭圆相交于椭圆的一个点:此时直线是椭圆的切线;(3)直线与椭圆相交于两条线段:此时直线穿过椭圆。
总之,直线和椭圆之间的位置关系相当复杂,可以分为不交、外切、内切、相离、穿过、重合和相交等情况。
具体的位置关系可以通过解方程或者观察图形进行判断,同时利用相关的几何性质也可以得到更加精确的结论。
直线与椭圆位置关系练习题目与答案
直线与椭圆的位置关系练习(2)1. 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为( ) A .4 B .2 C .8 D .232. 若直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,求实数m 的取值范围解法一:由⎪⎩⎪⎨⎧=++=15122m y x kx y 可得05510)5(22=-+++m kx x m k ,0152≥--=∆∴k m 即1152≥+≥k m 51≠≥∴m m 且解法二:直线恒过一定点)1,0(当5<m 时,椭圆焦点在x 轴上,短半轴长m b =,要使直线与椭圆恒有交点则1≥m 即51<≤m当5>m 时,椭圆焦点在y 轴上,长半轴长5=a 可保证直线与椭圆恒有交点即5>m综述:51≠≥m m 且 解法三:直线恒过一定点)1,0(要使直线与椭圆恒有交点,即要保证定点)1,0(在椭圆内部115022≤+m即1≥m3. 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5102,求直线的方程.3. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221m x x -=+,51221-=m x x . 根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫ ⎝⎛-⋅+m m .解得0=m .方程为x y =.4. 已知椭圆11222=+y x 的左右焦点分别为F 1,F 2,若过点P (0,-2)及F 1的直线交椭圆于A,B 两点,求⊿ABF 2的面积4. 解法一:由题可知:直线AB l 方程为022=++y x由⎪⎩⎪⎨⎧=+--=1122222y x x y 可得04492=-+y y ,91044)(2122121=-+=-y y y y y y 9104212121=-=∴∆y y F F S 解法二:2F 到直线AB 的距离554=h 由⎪⎩⎪⎨⎧=+--=1122222y x x y 可得061692=++x x ,又92101212=-+=x x k AB 910421==∴∆h AB S解法三:令),(),,(2211y x B y x A 则11ex a AF +=,21ex a BF +=其中22,2==e a 2F 到直线AB 的距离554=h 由⎪⎩⎪⎨⎧=+--=1122222y x x y 可得061692=++x x ,9210)(222121=++=+++=x x e a ex a ex a AB 910421==∴∆h AB S [评述]在利用弦长公式212212111y y k x x k AB -+=-+=(k 为直线斜率)或焦(左)半径公式)(22212121x x e a ex a ex a PF PF AB ++=+++=+=时,应结合韦达定理解 5. 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.5. 分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求. 解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .6. 已知中心在原点,长轴在x 轴上的椭圆的两准线间的距离为23,若椭圆被直线x+y+1=0截得的弦的中点的横坐标是32-,求椭圆的方程 6. 解法一:令椭圆方程为)(122n m ny mx <=+,),(),,(2211y x B y x A 由题得:32221-=+x x ,31221-=+y y 由⎩⎨⎧=+--=1122ny mx x y 可得012)(2=-+++n nx x n m ,m n n m n x x 234221=-=+-=+即 又3222=c a 即2221131nm m -= 34,32==∴n m 椭圆方程为1343222=+y x 解法二:令椭圆方程为)(122n m ny mx <=+,),(),,(2211y x B y x A 由题得:32221-=+x x ,31221-=+y y 由⎩⎨⎧=+=+1122222121ny m x ny m x 作差得)()(21212121y y x x y y x x n m +--=+- m n 2=∴又3222=c a 即2221131n m m -= 34,32==∴n m 椭圆方程为1343222=+y x 7. 已知长方形ABCD, AB=22,BC=1.以AB 的中点O 为原点建立如图8所示的平面直角坐标系xoy . (Ⅰ)求以A 、B 为焦点,且过C 、D 两点的椭圆的标准方程;(Ⅱ)过点P(0,2)的直线l 交(Ⅰ)中椭圆于M,N 两点,是否存在直线l ,使得以弦MN 为直径的圆恰好过原点?若存在,求出直线l 的方程;若不存在,图87. [解析] (Ⅰ)由题意可得点A,B,C 的坐标分别为()()()1,2,0,2,0,2-.设椭圆的标准方程是()012222>>=+b a by a x .()()()()()2240122012222222>=-+-+-+--=+=BCAC a 则2=∴a224222=-=-=∴c a b .∴椭圆的标准方程是.12422=+y x (Ⅱ)由题意直线的斜率存在,可设直线l 的方程为()02≠+=k kx y . 设M,N 两点的坐标分别为()().,,,2211y x y x 联立方程:⎩⎨⎧=++=42222y x kx y消去y 整理得,()0482122=+++kx x k 有221221214,218k x x k k x x +=+-=+ 若以MN 为直径的圆恰好过原点,则⊥,所以02121=+y y x x , 所以,()()0222121=+++kx kx x x , 即()()042121212=++++x x k x x k所以,()04211621142222=++-++k k k k 即,0214822=+-k k 得.2,22±==k k所以直线l 的方程为22+=x y ,或22+-=x y .所以存在过P(0,2)的直线l :22+±=x y 使得以弦MN 为直径的圆恰好过原点.8. 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程 8.解 设椭圆方程为mx 2+ny 2=1(m >0,n >0),P (x 1,y 1),Q (x 2,y 2)由⎩⎨⎧=++=1122ny mx x y 得(m +n )x 2+2nx +n -1=0,Δ=4n 2-4(m +n )(n -1)>0,即m +n -mn >0,由OP ⊥OQ ,所以x 1x 2+y 1y 2=0,即2x 1x 2+(x 1+x 2)+1=0,∴nm nn m n --+-2)1(2+1=0,∴m +n =2 ①又2)210()(4=+-+n m mn n m 2,将m +n =2,代入得m ·n =43②由①、②式得m =21,n =23或m =23,n =21故椭圆方程为22x +23y 2=1或23x 2+21y 2=19. 椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点. (1)求2211ba +的值; (2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.9. (1)设),(),,(2211y x P y x P ,由OP ⊥ OQ ⇔ x 1 x 2 + y 1 y 2 = 0① 01)(2,1,121212211=++--=-=x x x x x y x y 代入上式得:又将代入x y -=1 12222=+b y a x 0)1(2)(222222=-+-+⇒b a x a x b a ,,2,022221b a a x x +=+∴>∆222221)1(b a b a x x +-=代入①化简得 21122=+b a . (2) ,3221211311222222222≤≤⇒≤-≤∴-==ab a b a b ac e 又由(1)知12222-=a a b26252345321212122≤≤⇒≤≤⇒≤-≤∴a a a ,∴长轴 2a ∈ [6,5]. 10.设直线l 过点P (0,3),和椭圆x y 22941+=顺次交于A 、B 两点,若AP PB λ= 试求λ的取值范围.10 。
直线与椭圆的位置关系及判断方法
直线与椭圆的位置关系及判断方法直线与椭圆的位置关系是指确定一条直线和一个椭圆之间的相对位置关系,主要有以下几种情况:直线与椭圆相离、直线与椭圆相切、直线穿过椭圆两个交点、直线包含椭圆等情况。
判断直线与椭圆的位置关系可以通过研究直线方程和椭圆方程的解来实现。
一、直线与椭圆相离的情况:当直线方程与椭圆方程不存在实数解时,说明直线与椭圆相离。
直线方程通常采用一般式表示,即Ax+By+C=0,椭圆方程通常采用标准方程表示,即((x-h)^2)/(a^2)+((y-k)^2)/(b^2)=1、将直线方程的x、y分别带入椭圆方程,得到一个关于x的二次方程。
通过判别式B^2-4AC的值来确定二次方程是否有实数解,当判别式小于零时,直线与椭圆相离。
二、直线与椭圆相切的情况:当直线方程刚好与椭圆方程有一个实数解时,说明直线与椭圆相切。
判断方法是将直线方程的x、y分别带入椭圆方程,得到一个关于x的二次方程。
当判别式B^2-4AC等于零时,直线与椭圆相切。
三、直线穿过椭圆两个交点的情况:当直线方程与椭圆方程有两个实数解时,说明直线穿过椭圆的两个交点。
判断方法是将直线方程的x、y分别带入椭圆方程,得到一个关于x 的二次方程。
当判别式B^2-4AC大于零时,直线与椭圆有两个交点。
四、直线包含椭圆的情况:当直线方程将椭圆方程的所有解都包含时,说明直线包含椭圆。
判断方法是将直线方程的x、y分别带入椭圆方程,而不是代入x的解,得到一个关于y的二次方程。
如果这个二次方程对于任何实数x都有解,则直线包含椭圆。
需要注意的是,在判断直线与椭圆的位置关系时,需要先将椭圆方程化简为标准方程,即将h、k分别代表椭圆的中心坐标,a、b分别代表椭圆的长半轴和短半轴长度。
总结起来,判断直线与椭圆的位置关系,可以通过以下步骤实现:1.将椭圆方程化简为标准方程。
2.将直线方程写为一般式。
3.将直线方程的x、y带入椭圆方程,得到关于x的二次方程。
4.判断该二次方程的判别式B^2-4AC的值,确定直线是否与椭圆有交点、相切或相离。
直线与椭圆、双曲线、抛物线位置关系
直线与椭圆、双曲线、抛物线位置关系引言几何学是数学的一个重要分支,研究几何图形之间的关系和性质。
在几何学中,直线和曲线是两个基本概念,它们在空间中所处的位置关系对于几何图形的研究至关重要。
本文将探讨直线与椭圆、双曲线、抛物线之间的位置关系,并分析它们在几何学中的应用。
直线与椭圆的位置关系椭圆是一个几何图形,由平面上到两个定点的距离之和等于常数的点构成。
在直线与椭圆的位置关系中,有三种可能的情况:直线与椭圆相离当直线与椭圆相离时,它们没有任何交点。
这意味着直线与椭圆之间没有共享的点,它们在平面上相互独立并不相交。
这种情况可能出现在椭圆的外部或者与椭圆的某个分支平行的直线上。
直线与椭圆相切当直线与椭圆相切时,它们只有一个共享的点。
这个点同时位于直线和椭圆上,直线在这个点的切线方向与椭圆的切线方向一致。
这种情况在直线与椭圆相交的一些特殊位置上出现,例如直线与椭圆的焦点位置相对应的直线上。
直线与椭圆相交当直线与椭圆相交时,它们有两个共享的点。
这意味着直线与椭圆相交,并且在平面上有两个交点。
这种情况可能出现在直线穿过椭圆的两个分支,或者一个分支和椭圆的边界相交的位置上。
直线与双曲线的位置关系双曲线是平面上的一种几何图形,它具有两个分离的极限点,且其到两个极限点的距离之差等于一个常数。
在直线与双曲线的位置关系中,有三种可能的情况:直线与双曲线相离当直线与双曲线相离时,它们没有任何交点。
这意味着直线在双曲线的外部,它们不会相交或共享任何点。
直线与双曲线相切当直线与双曲线相切时,它们只有一个共享的点。
这个点同时位于直线和双曲线上,且直线在该点处与双曲线的切线方向一致。
这种情况可能出现在直线与双曲线的极限点位置相对应的直线上。
直线与双曲线相交当直线与双曲线相交时,它们有两个共享的点。
这意味着直线与双曲线相交,并且在平面上有两个交点。
这种情况发生在直线穿过双曲线的两个分支,或者一个分支和双曲线的边界相交的位置上。
直线与抛物线的位置关系抛物线是平面上的一种几何图形,具有对称轴和焦点。
直线与椭圆的位置关系
由 0,得64k - 4 25 (k - 225) 0
2 2
解得k1 =25,k 2 =-25
由图可知k 25,
40 25 15 41 直线 m与椭圆的交点到直线d l的距离最近。 直线 l到椭圆的最近距离为: 2 2 41 4 5 40 25 15 且d 41
否存在一点,它到直线l的距离最小?最小距离是多少? 并求出该点坐标.最大呢? y
l
O
m
分析:若设P(x,y)是椭圆上到 直线l距离最近的点,利用点到 直线的距离公式可以求出最小 值吗?请同学们试一试。
x
很显然这种方法很难求解。请同学 们想想还有其它解法吗?
通过直线的平移,使直线m与椭圆首先相交,此时 的交点就是所求的点,两条平行线间的距离就是最 小距离。
直线与椭圆的位置关系
1.位置关系:相交、相切、相离
2.判别方法(代数法)
通过解直线方程与椭圆方程组成的方程组,对解的个
数进行讨论.通常消去方程组中的一个变量,得到关
于另一变量的一元二次方程. (1)△>0直线与椭圆相交有两个公共点; (2)△=0 直线与椭圆相切有且只有一个公共点; (3)△<0 直线与椭圆相离无公共点.
点被平分,求此弦所在直线的方程.
Hale Waihona Puke 所以 x2+4y2=(4-x)2+4(2-y)2,整理得x+2y-4=0 从而A ,B在直线x+2y-4=0上 而过A,B两点的直线有且只有一条
解后反思:中点弦问题求解关键在于充分利用“中点”这 一
x2 y 2 1,直线l:4x-5y+40=0.椭圆上是 例:已知椭圆 25 9
证法一:记△ OCM 的面积是 S1 ,△ ODN 的面积是 S2 . 由 M (2m,0) , N (0, m) , 则 S1 S2
直线与椭圆位置关系(经典)
直线与椭圆位置关系(经典)本文介绍了直线与椭圆的位置关系以及弦长计算方法。
1.点与椭圆的位置关系对于椭圆$x^2/a^2+y^2/b^2=1$,点$P(x,y)$在椭圆内部的充要条件是$x^2/a^2+y^2/b^21$,在椭圆上的充要条件是$x^2/a^2+y^2/b^2=1$。
2.直线与椭圆的位置关系设直线$l: Ax+By+C=0$,椭圆$C: x^2/a^2+y^2/b^2=1$,联立$l$与$C$,消去某一变量$(x$或$y)$得到关于另一个变量的一元二次方程,此一元二次方程的判别式为$\Delta$,则$l$与$C$相离的充要条件是$\Delta0$。
3.弦长计算计算椭圆被直线截得的弦长,往往是设而不求,即设弦两端坐标为$P_1(x_1,y_1)$,$P_2(x_2,y_2)$,则$|P_1P_2|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}=1+kx_1-x_2=1+\frac{1}{k}(y_1-y_2)$($k$为直线斜率)。
题目:已知椭圆$\frac{x^2}{5m}+\frac{y^2}{m}=1$,直线$y=kx+1$,求实数$m$的取值范围使得直线与椭圆有公共点。
解法一:将直线方程代入椭圆方程,得到关于$x$的一元二次方程,其判别式为$\Delta=m-5k-1$,要使直线与椭圆有交点,需要$\Delta\geq0$,即$m\geq5k+1$。
另外要注意,当$m=5k+1$时,直线与椭圆可能只有一个交点,在这种情况下也算有公共点。
因此,实数$m$的取值范围为$m\geq1$且$m\neq5$。
解法二:观察椭圆方程,发现其长轴在$x$轴上,短轴在$y$轴上,因此,当$m5$时,椭圆焦点在$y$轴上,与直线的交点只有$1$个或$3$个。
因此,要使直线与椭圆有公共点,需要$m\geq5$。
另外,当$m=5$时,椭圆退化成一个点,直线与该点有交点,因此也算有公共点。
直线与椭圆的位置关系
是_____1_0__.
3. 已知椭圆5x2+9y2=45,椭圆的右焦点为F,
(1)求过点F且斜率为1的直线被椭圆截得的弦长.
(2)判断点A(1,1)与椭圆的位置关系,并求以A为中点的
椭圆的弦所在的直线方程.
若要求弦长,韦达来帮忙.
5.对称问题
有关椭圆关于直线l的对称问题中,若A,A′是对称点,则应 抓住AA′的中点在l上及kAA′·kl=-1这两个关键条件解决问 题.
例:若椭圆x2 y2 1上存在两点关于直线 43
y 2x m对称,求m的取值范围。
6.存在性问题
有关直线与椭圆的位置关系中的存在性问题,一般采用 “假设反证法”或“假设验证法”来解决.
计算.
2.弦长问题
若直线 l
:
y
kx
m与椭圆
x2 a2
y2 b2
1(a
b
0) 的
交点为 A(x1, y1), B(x2 , y2 )则|AB|叫做弦长。
弦长公式:
AB x1 x2 2 y1 y2 2
1 k 2 x1 x2 2 4x1x2
2.弦长问题
1.过椭圆
x2 13
y2 12
1
的右焦点F2与x轴垂直的直线与椭
圆交于A,B两点,求弦长|AB|,AF1的长
2.已知椭圆5x2+9y2=45,椭圆的右焦点为F,求过点F 且斜率为1的直线被椭圆截得的弦长.
3.中点弦问题
例、椭圆 x2 y2 1,设直线y 1 x 1与椭圆交于
直线与椭圆的位置关系的判断
例2、已知直线 l : y 2 x m ,椭圆 。试问当
x2 y2 C: 1 4 2
m
取何值时,
直线与椭圆(1)相交?(2)相切?(3)相离? 问题3:直线与与椭圆相交所得的弦长公式: 若直线
设而不求 整体化思想
特例:椭圆的焦点弦长公式:若过焦点的直线与椭圆
x2 y 2 2 1 a b 0 2 a b
相交于两点 A x1, y1 , B x2 , y2
,若过左焦点,则 AB 2a e x1 x2 若过右焦点,则 AB 2a e x1 x2
x2 y 2 (4)、已知P是椭圆 1 上的点, F1 , F2 4 3
为左右焦点,求 PF1 PF2 的最大、最小值之差是多少?
x2 y 2 1 ,直线 l :4 x 5 y 40 0 (5)、已知椭圆 25 9
。椭圆上是否存在一点,它到直线 l 的距离最小? 最小距离是多少?
x2 y 2 1 的右焦点 例3、已知斜率为2的直线经过椭圆 5 4
;
F2 ,与椭圆相交于A,B两点,求弦AB的长。
问题4:直线方程的设法问题:直线方程有两种设法: ① 如果已知直线在 y 轴上的截距为 b ,或恒过定点
x0 , y0
时,方程设为 y kx b, y y0 k x x0
26
D 5 2 2
(2).设 x, y R, x2 2 y 2 6 ,则 x y 的最小值是( ) D 7
A 2 2
B 5 3 C 3
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①相交
②相切
ห้องสมุดไป่ตู้
③相离
三种位置关系的处理方法
1、形方面:交点个数; 2、数方面:转化为一元二次方程利 用判别式。
0 0 0
相交
相切
相离
弦长公式:
| PQ | 1 k | x1 x2 | 1 k
2 2
( x1 x2 ) 4 x1 x2
例题讲解
12 y 标原点.若 OA OB ,求直线 l 的倾斜角. 5 A
F1
o
F2
x
B
在直角坐标系 xOy 中,点 P 到两点 (0, 3) , (0,3) 的距离 之和等于 4,设点 P 的轨迹为 C ,直线 y kx 1 与 C 交于 A, B 两点. (Ⅰ)写出 C 的方程;
(Ⅱ)若 OA OB ,求 k 的值;
(Ⅰ)设 P(x,y) ,由椭圆定义可知,点 P 的轨迹 C 是
(0 以 (0, 3),,3) 为焦点,长半轴为 2 的椭圆.它的短半轴
y b 2 ( 3) 1 ,故曲线 C 的方程为 x 1 . 4
2 2
2
2
(Ⅱ)设 A( x1,y1 ),B( x2,y2 ) ,其坐标满足
2 y2 1, x 2 2 消去 y 并整理得 (k 4) x 2kx 3 0 , 4 y kx 1. 2k 3 故 x1 x2 2 . ,x1 x2 2 k 4 k 4 2 若 OA OB ,即 x1 x2 y1 y2 0 .而 y1 y2 k x1 x2 k ( x1 x2 ) 1 ,
2
1 1 | PQ | 1 2 | y1 y2 | 1 2 ( y1 y2 ) 2 4 y1 y2 k k
例 1、设 x,y∈R,向量 a ( x 3, y ), b ( x 3, y ) , 且 | a | | b | 4 .
(1)求点 M(x,y)的轨迹 C 的方程. (2)过点 P(0,2)作直线 l 交曲线 C 于 A,B 两点,又 O 为坐
3 3k 2 2k 2 2 2 1 0 ,化简得 4k 2 1 0 , 于是 x1 x2 y1 y2 2 k 4 k 4 k 4 1 k . 所以 2