点到平面的距离的几种求法 高中数学 高考 立体几何教学内容
点到平面的距离 高中数学 高考 立体几何
求“二面角”与“点到平面的距离”问题一直是高考命题的热点,而这两方面的题目又是很多学生感到头痛的。
事实上,这两类问题有着较强的相关性,下面给出这两类问题的一个“统一”求解公式,让你一招通解两类问题,定理:如下图,若锐二面角βα--CD 的大小为θ,点A 为平面α内一点,若点A 到二面角棱CD 的距离为m AB =,点A 到平面β的距离AH=d ,则有θsin ⋅=m d 。
说明:θsin ⋅=m d 中含有3个参数,已知其中任意2个可求第3个值。
其中θ是指二面角βα--CD 的大小,d 表示点A 到平面β的距离,m 表示点A 到二面角βα--CD 棱CD 的距离。
值得指出的是:θsin ⋅=m d 可用来求解点到平面的距离,也可用于求解相关的二面角大小问题。
其优点在于应用它并不.强求..作出经过点A 的二面角βα--CD 的平面角∠ABH ,而只需已知点A 到二面角βα--CD 棱的距离,与二面角大小θ,即可求解点A 到平面β的距离,或已知两种“距离”即可求二面角的大小θ。
这样便省去了许多作图过程与几何逻辑论证,简缩了解题过程。
还要注意,当已知点A 到平面β的距离d 与点A 到二面角棱CD 的距离m 求解二面角的大小时,若所求二面角为锐二面角,则有mdarcsin =θ;若所求二面角为钝二面角,则md arcsin-=πθ 下面举例说明该公式在解题中的应用。
例1. (2004年全国卷I 理科20题)如下图,已知四棱锥P-ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°。
(1)求点P 到平面ABCD 的距离;(2)求面APB 与面CPB 所成二面角的大小。
分析:如上图,作PO ⊥平面ABCD ,垂足为O ,即PO 为点P 到平面ABCD 距离。
第(1)问要求解距离PO ,只需求出点P 到二面角P-AD-O 的棱AD 的距离,及二面角P-AD-O 的大小即可。
高中数学立体几何中点到平面距离的求法
例谈点到平面距离的求法某某省洪泽中学 花鹤波邮编 223100立体几何的空间距离是历年高考考查的重点和热点。
由于线面距离、面面距离以及两异面直线间的距离都可以转化为点到平面的距离来解决,因此点到平面的距离更值得我们关注。
点到平面的距离的求法可分为三大类:一、由点向平面引垂线,且垂足位置可确定转化到在某平面内,求出点和垂足间的线段的长。
1、 用定义直接构造法例1、如图,三棱锥S-ABC 中,ABC ∆是等腰三角形,2AB BC a ==,0120ABC ∠=,且SA ⊥面ABC ,SA=3a 。
求点A 到平面SBC 的距离。
解:作AD BC ⊥交BC 于D,连结SD.SA ⊥平面ABC,根据三垂线定理有SD BC ⊥又SD AD D ⋂=,BC ∴⊥平面SAD 。
又BC ⊂平面SBC , ∴平面SBC ⊥平面ADS ,且平面SBC ⋂平面ADS=SD∴过点A 作AH SD ⊥于H ,那么AH ⊥平面SBC 。
在Rt SAD ∆中,SA=3a,0sin 60AD AB ==,2232SA AD a AH AD ∴==+ 故点A 到平面SBC 的距离为32a 。
[点评]利用构造法关键是定位点在面内的射影。
常常要寻找过点且与所给面垂直的面,再过点作两垂面交线的垂线。
2、转移构造法〔1〕利用平行线转换点例2、在直三棱柱111ABC A B C -中,11AB BC ⊥,1,AB CC a BC b ===〔b >a 〕 〔1〕求证:11A C AB ⊥ (2)求点1B 到平面1ABC 的距离.解:(1)连结1A B ,那么11AB A B ⊥,又11AB BC ⊥,故111AB A BC ⊥面。
知111AC AB ⊥,得1111A C ABB A ⊥面,知11A C AB ⊥。
〔2〕由〔1〕得111ABC AAC ⊥面面.11111,A B AB A B ABC ∴平面CC1111A ABC ABC ∴到平面的距离等于B 到平面的距离过1A 作11A G AC ⊥于G ,11AB ACC A ⊥平面, 1AB A G ∴⊥从而11AG ABC ⊥平面. 故1A G即为所求的距离。
高中数学 第二章 空间向量与立体几何 2.6 距离的计算 2.6.2 直线到平面的距离、平面到平面的
1.理解直线到平面的距离、平面到平面的距离的概念. 2.通过转化,会利用空间向量解决距离问题.
1.直线到平面的距离
当直线与平面平行时,直线上任一点到该平面的距离,叫直线到
平面的距离.
求直线到平面的距离时,一般转化为点到平面的距离.
说明:如果直线l平行于平面α,即l∥α,求直线l到α的距离可以转化
2.平面到平面的距离 当两平面平行时,一个平面内任一点到另一平面的距离,叫平面 到平面的距离. 求平面到平面的距离时,一般也是转化成点到平面的距离. 说明:如果两个平面α,β互相平行,即α∥β,求α与β之间的距离可以 转化为求平面α上任意一点P到平面β的距离,即点到平面的距离.
3.两条异面直线间的距离 (1)与两异面直线垂直且相交的直线叫作异面直线的公垂线,夹在 两交点之间的线段叫作公垂线段.两异面直线的距离是指公垂线段 的长度. (2)用向量法求异面直线距离的步骤:先求两条异面直线的公垂线 的方向向量,再求两条异面直线上两点的连线段在公垂线的方向向 量上的投影的大小.如图,a,b是两条异面直线,n是a和b的公垂线的 方向向量,点E∈a,F∈b,则异面直线a与b间的距离 d=|������|������������·|������|.
设 F(0,m,0),则������������=(-a,m-a,0),������������=(-a,-a,a).
∵PC⊥CF,∴������������ ⊥ ������������,∴������������ ·������������=(-a)·(-a)+(-a)·(m-a)+0·a
=a2-a(m-a)=0,
∴������������1=(1,1,1)为 AD1和 A1B 的公垂线的方向向量,d=|���������|������1������·������1������|���1| =
高中数学浅谈空间距离的几种计算方法-北师大版选修2-1
浅谈空间距离的几种计算方法【摘要】空间的距离是从数量角度进一步刻划空间中点、线、面、体之间相对位置关系的重要的量,是平面几何与立体几何中研究的重要数量.空间距离的求解是高中数学的重要内容,也是历年高考考查的重点和热点,其中以点与点、点到线、点到面的距离为基础,一般是将问题最终转化为求线段的长度。
在解题过程中,要充分利用图形的特点和概念的内在联系,做好各种距离间的相互转化,从而使问题得到解决。
【关键词】空间距离点线距离点面距离异面直线距离公垂线段等体积法【正文】空间距离是衡量空间中点、线、面、体之间相对位置关系的重要的量。
空间距离的求解是高中数学的重要内容,也是历年高考考查的重点。
空间距离主要包括:(1)两点之间的距离;(2)点到直线的距离;(3)点到平面的距离;(4)两条异面直线的距离;(5)与平面平行的直线到平面的距离;(6)两平行平面间的距离。
这六种距离的计算一般常采用“一作、二证、三计算”的方法求解。
对学生来说是较难掌握的一种方法,难就难在“一作”上。
所谓的“一作”就是作出点线或点面距中的垂线段,异面直线的公垂线段。
除非有相当的基本功,否则这种方法很难运用自如,因此就需要进行转化来求解这些空间距离。
下面就介绍几种常见的空间距离的计算方法,使得有些距离的计算可以避开作(或找)公垂线段、垂线段的麻烦,使空间距离的计算变得比较简单。
一、两点之间的距离两点间的距离的计算通常有两种方法:1、可以计算线段的长度。
把要求的线段放入某个三角形中,用勾股定理或余弦定理求解。
2、可以用空间两点间距离公式。
如果图形比较特殊,便于建立空间直角坐标系,可写出两点的坐标,然后代入两点间距离公式计算即可。
二、点到直线的距离在求解点到直线的距离时,通常是寻找或构造一个三角形。
其中点是三角形的一个顶点,直线是此顶点所对的一条边,利用等面积法计算点线距离。
所寻找或构造的三角形有等腰三角形(或等边三角形)、直角三角形、一般三角形三类,最关键的步骤是算出三角形的面积,然后用等面积法计算即可。
点到平面的距离的几种求法
点到平面的距离的几种求法求‘点到平面的距离’是立体几何学习中不可忽视的一个基本问题,是近几年高考的一个热点.本文试通过对一道典型例题的多种解法的探讨,结合《立体几何》(必修本)中的概念、习题,概括出求‘点到平面的距离’的几种基本方法.例:已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在平面,且GC=2,求点B到平面EFG的距离.一、直接通过该点求点到平面的距离1.直接作出所求之距离,求其长.解法1.如图1,为了作出点B到平面EFG的距离,延长FE交CB的延长线于M,连结GM,作BN⊥BC,交GM于N,则有BN∥CG,BN⊥平面ABCD.作BP⊥EM,交EM于P,易证平面BPN⊥平面EFG.作BQ⊥PN,垂足为Q,则BQ⊥平面EFG.于是BQ是点B到平面EFG的距离.易知BN=,BP=,PZ=,由BQ·PN=PB·BN,得BQ =.图1 图22.不直接作出所求之距离,间接求之.(1)利用二面角的平面角.课本P.42第4题,P.46第2题、第4题给出了“二面角一个面内的一个点,它到棱的距离、到另一个面的距离与二面角的大小之间所满足的关系”.如图2,二面角M-CD-N的大小为α,A∈M,AB⊥CD,AB=a,点A到平面N的距离AO=d,则有d=asinα.①①中的α也就是二面角的大小,而并不强求要作出经过AB的二面角的平面角.解法2.如图3,过B作BP⊥EF,交FE的延长线于P,易知BP=,这就是点B到二面角C-EF-G的棱EF的距离.连结AC交EF于H,连结GH,易证∠GHC就是二面角C-EF-G的平面角.∵ GC=2,AC=4,AH=,∴CH=3,GH=,sin∠GHC=2/,于是由①得所求之距离d=BP·sin∠GHC=·=.解略.(2)利用斜线和平面所成的角.如图4,OP为平面α的一条斜线,A∈OP,OA=l,OP与α所成的角为θ,A到平面α的距离为d,则由斜线和平面所成的角的定义可知,有d=lsinθ.②经过OP与α垂直的平面与α相交,交线与OP所成的锐角就是②中的θ,这里并不强求要作出点A在α上的射影B,连结OB得θ.解法3.如图5,设M为FE与CB的延长线的交点,作BR⊥GM,R为垂足.又GM⊥EB,易得平面BER⊥平面EFG,ER为它们的交线,所以∠REB就是EB与平面EFG所成的角θ.由△MRB∽△MCG,可得BR=,在Rt△REB中,∠B=90°,BR=,EB=2,所以sinθ=BR/ER=,于是由②得所求之距离d=.图5 图6(3)利用三棱锥的体积公式.解法4.如图6,设点B到平面EFG的距离为d,则三棱锥B-EFG的体积V=(1/3)S△EFG·d.另一方面又可得这个三棱锥的体积V=(1/3)S△FEB·CG,可求得S△FEB=(1/4)S△DAB=2,S△EFG=,所以有1/3··d=1/3·2·2,得d=.二、不经过该点间接确定点到平面的距离1.利用直线到平面的距离确定解法5.如图7,易证BD∥平面EFG,所以BD上任意一点到平面EFG的距离就是点B到平面EFG的距离.由对称思想可知,取BD中点O,求点O到平面EFG的距离较简单.AC交EF于H,交BD于O.易证平面GHC⊥平面EFG,作OK⊥HG,K为垂足,OK=为所求之距离.图7 图82.利用平行平面间的距离确定如图8,把平面EFG补成一个正四棱柱的截面所在的平面,可使题设中的点、线、面之间的位置关系更加明朗.面GMT是正四棱柱ABCD-A1B1GD1经过F、E、G的截面所在的平面.MG交BB1于N,TG交DD1于Q,作BP∥MG,交CG于P,连结DP,则有平面GTM∥平面PDB.它们之间的距离就是所求之距离.于是可以把点B平移到平面PDB上任何一个位置,哪里方便就在哪里求.这两个平行平面的距离d又同三棱柱GQN-PDB的体积有关,所以也可以利用三棱柱的体积确定所求之距离.据此可得解法6.解法6.三棱柱GQN-PDB的体积V=S△PDB·d,另一方面又有V=S△CDB·BN,可求得BN=2/3,CP=4/3,PB=PD=,BD=,S△PDB=,S△CDB=8,所以·d=8·2/3,得d=为所求之距离.。
点到平面距离的若干典型求法
点到平面距离的若干典型求法1.引言点到平面的距离是高考立体几何部分必考的热点题型之一,也是学生较难准确把握的难点问题之一。
本文将介绍七种较为典型的求解方法,包括几何方法(如体积法、二面角法)、代数方法(如向量法、公式法)以及常用数学思维方法(如转化法、最值法),以达到秒杀得分的效果。
2.预备知识1) 正射影的定义:从平面外一点P向平面α引垂线,垂足为P',则点P'叫做点P在平面α上的正射影,简称为射影。
同时,把线段PP'叫作点P与平面α的垂线段。
2) 点到平面距离定义:一点到它在一个平面上的正射影的距离叫作这点到这个平面的距离,也即点与平面间垂线段的长度。
3) 四面体的体积公式:V = Sh/3,其中V表示四面体体积,S、h分别表示四面体的一个底面的面积及该底面所对应的高。
4) 直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。
5) 三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它和这条斜线也垂直。
3.求点到平面距离的若干求法3.1 定义法求点到平面距离定义法是最基本的求解方法之一,根据点到平面距离的定义,可以通过求点在平面上的正射影来求解点到平面的距离。
3.2 转化法求点到平面距离转化法是一种常用的求解方法,通过将问题转化为等价的问题来求解。
在点到平面距离的求解中,可以通过将平面方程转化为标准式,然后代入点的坐标,求解点到平面的距离。
3.3 等体积法求点到平面距离等体积法是一种几何方法,通过构造等体积的四面体来求解点到平面的距离。
具体方法是在点与平面之间构造一个四面体,使其与另一四面体等体积,然后根据四面体的体积公式来求解点到平面的距离。
3.4 利用二面角求点到平面距离二面角法是一种几何方法,通过求解点与平面所夹二面角的正弦值来求解点到平面的距离。
具体方法是求解点到平面的垂线与平面法线的夹角,然后根据正弦定理求解点到平面的距离。
高中数学第三章空间向量与立体几何点到平面的距离若干求解方法素材1
点到平面的距离若干求法1定义法求点到平面距离(直接法)定义法求点到平面距离是根据点到平面的定义直接作出或者寻找出点与平面间的垂线段,进而根据平面几何的知识计算垂线段长度而求得点与平面距离的一种常用方法.定义法求点到平面距离的关键在于找出或作出垂线段,而垂线段是由所给点及其在平面射影间线段,应而这种方法往往在很多时候需要找出或作出点在平面的射影。
以下几条结论常常作为寻找射影点的依据:(1)两平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们交线的直线垂直于另一个平面。
(2)如果一个角所在平面外一点到角的两边的距离相等,那么这个点在该平面内的射影在这个角的角平分线所在的直线上。
(3)经过一个角的顶点引这个角所在平面的斜线。
设斜线和已知两边的夹角为锐角且相等,则这条斜线在这个平面的射影是这个角的角平分线.(4)若三棱锥的三条棱长相等,则顶点在底面上的射影是底面三角形的外心。
例如图4所示,所示的正方体ABCD A B C D''''-棱长为a,求点A'到平面AB D''的距离。
(注:本文所有解法均使用本例)图4解法一(定义法):如图5所示,连结交B D ''于点E ,再连结AE ,过点A '作A H '垂直于AE ,垂足为H ,下面证明A H '⊥平面AB D ''。
图5AA '⊥平面A B C D ''''∴B D ''⊥AA ' 又在正方形A B C D ''''中,对角线B D A C ''''⊥,且AA A C A ''''=AA '⊂平面AA E ', A C ''⊂平面AA E '∴由线面垂直的判定定理知道B D ''⊥平面AA E 'A H '⊂平面AA E '∴A H '⊥B D ''又由A H '的作法知道A H '⊥AE ,且有B D ''AE E =,B D ''⊂平面AB D '',AE ⊂平面AB D ''∴由线面垂直的判定定理知道A H '⊥平面AB D ''根据点到平面距离定义,A H '的长度即为点A '到平面AB D ''的距离,下面求A H '的长度。
高考数学中利用空间向量解决立体几何的向量方法(三)——空间向量求距离
G
x D F A
C
E
y
B
例1 如图,已知正方形 ABCD 的边长为 4,E、F 分别是 :
AB、AD 的中点,GC⊥平面 ABCD,且 GC=2,求点 z B 到平面 EFG 的距离. G 解:如图,建立空间直角坐标系 C-xyz. 由题设 C(0,0,0),A(4,4,0),B(0,4,0), D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2). E F ( 2 , 2 , 0 ), E G ( 2 , 4 , 2 ), D C
G
x D
F A
C
E
y
B
练习3: 正方体AC1棱长为1,求BD与平面GB1D1的 距离
D1 A1 Z B1
DD
C1 d
1
n
n
G A X
D
B
C Y
三、求平面与平面间距离
例3、正方体AC1棱长为1,求平面AD1C 与平面A1BC1的距离
D1 A1 Z B1
AD
n
C1 d
n
D
A X B
C Y
| PA n | = |n |
.
这个结论说明,平面外一点到平面的距离等于连结此点与平面 上的任一点(常选择一个特殊点)的向量在平面的法向量上的射影的 绝对值.
例1、已知正方形ABCD的边长为4, CG⊥平面ABCD,CG=2,E、F分别是AB、 AD的中点,求点B到平面GEF的距离。 z
∴n M C 2 2 ax ay 0
a , 0, 0) N (
2 2
a,
1 2
a,
1 2
a)
高中数学总结归纳 点面距离的几种求法
1点面距离的几种求法立体几何中的距离种类很多,最常见的也是最重要的当数点面距离.这里就对点面距离的求法进行一些探讨,供同学们参考.一、直接法:即直接由点向面作垂线,求出垂线段的长度. 例1 如图1,PA 垂直于边长为4的正方形ABCD 所在的平面求点A 到平面PBD 的距离.解析:连结AC 、BD 交于点O,连结PO,则AC ⊥BD.又PA ⊥面则PA ⊥BD,BD ⊥面PAO.过A 作AH⊥PO 于H,则BD ⊥AH,AH ⊥面即AH 就是点A 到平面PBD 的距离.在Rt △PAO 中,PA=3,AO=22,则PO=17,∴AH=1734617223=⋅=⋅PO AO PA ,即点A 到平面PBD 的距离为17346.二、间接法:即直接求解相对困难时,可采用间接转化的办法.例2 如图2,正方体ABCD-A 1B 1C 1D 1的棱长为a ,求点A 1到面AB 1D 1的距离. 解析: ∵AB 1=B 1D 1=AD 1=2a , ∴=∆11D AB S 2223)2(43a a =⋅. 由111111D AB A B AA D V V --=,易得A 1到面AB 1D 1a 33. 例3 如图3,已知斜三棱柱ABC-A 1B 1C 1的侧面AA 1C 1C ABC 垂直,∠ABC=90°,BC=2,AC=23,且AA 1⊥A 1C,AA 1=A 1C. (1)求侧棱A 1A 与底面ABC 所成角的大小; (2)求侧面A 1ABB 1与底面ABC 所成二面角的大小;2(3)求CC 1到侧面A 1ABB 1的距离.解析:(1)问,(2)问解析略.(3)问因为CC 1∥面A 1ABB 1 ,所以CC 1到面A 1ABB 1的距离就等于点C 到面A 1ABB 1的距离.由B AA C ABCA V V 11--=,可得点C 到面A 1ABB1的距离为3,所以CC 1到侧面A 1ABB 1的距离为3.总之,我们在求点面距离时,一方面注意能否直接求解,另一方面多从转化入手,增强转化意识,问题就一定能迎刃而解.。
高中数学 第3章 空间向量与立体几何 3.7 点到平面的距离课件 湘教版选修2-1
d=|AP1|=___||_A_P_|_c_o_s_∠_P_A__N_|__=___|_A_|Pn_·|_n_| __.
1.已知直线 l 过点 A(1,-1,2),和 l 垂直的一个向量为 n=
(-3,0,4),则 P(3,5,0)到 l 的距离为( )
A.5
B.14
C.154
D.45
答案:C
2.已知直线 l 与平面 α 相交于点 O,A∈l,B 为线段 OA 的中
d=
|B→C|2-B→|CA→·′AC→′|C2=
16 4-14
=2
35 7.
用向量法求点到直线的距离的一般步骤 (1)建立空间直角坐标系; (2)求直线的方向向量; (3)计算所求点与直线上某一点所构成的向量在直线的方向向 量上的射影长; (4)利用勾股定理求解.另外,要注意平行直线间的距离与点到 直线的距离之间的转化.
则 A(4,0,0),B(0,3,0),P0,0,95, 所以A→B=(-4,3,0),A→P=-4,0,95, 所以A→P在 AB 上的投影长为|A→P|A·→BA→| B|=156, 所以点 P 到 AB 的距离为 d= |A→P|2-1562= 16+8215-22556=3. 答案:3
点到直线的距离 如图,在空间直角坐标系中有长方体 ABCD-A′B′C′D′, AB=1,BC=2,AA′=3,求点 B 到直线 A′C 的距离.
又 AC∥平面 PEF,
所以
AC
到平面
PEF
的距离为
17 17 .
用向量法求点面距的步骤 (1)建系:建立恰当的空间直角坐标系; (2)求点坐标:写出(求出)相关点的坐标; (3)求向量:求出相关向量的坐标; (4)利用公式即可求得点到平面的距离.
2021届高考数学立体几何专题:点到平面的距离(学生版)
立体几何专题点到平面的距离定义:从平面外一点向平面作垂线,这个点与垂足之间的距离叫这个点到平面的距离。
作用:(1)求几何体的体积;(2)求直线与平面所成的角;(3)求二面角;方法一:直接法,根据题意得到平面α外一点P 在平面α内的射影O ,建立三角形,解出PO 的长度。
【题型一】根据已知条件直接找出点P 在平面α内的射影。
如:①正棱锥的顶点在底面内的射影是底面正多边形的中心;②侧棱长相等的棱锥的顶点在底面内的射影是底面多边形的外心;③三棱锥P ﹣ABC 的三侧棱两两垂直,则顶点在底面的射影是底面三角形的垂心;【典例】在三棱锥P ﹣ABC 中,PA=PB=PC=AC ,AB ⊥BC ,求PB 与底面ABC 所成角的大小.【题型二】利用平面与平面垂直的性质定理,找出点P 在平面α内的射影。
【典例1】(2011重庆文)如图,在四面体ABCD 中,平面ABC ⊥平面ACD ,AB ⊥BC ,AC=AD=2,BC=CD=1.(Ⅰ)求四面体ABCD 的体积;(Ⅱ)求二面角C ﹣AB ﹣D 的平面角的正切值。
【典例2】(2012年天津文)如图,在四棱锥P ﹣ABCD 中,底面ABCD 是矩形,AD ⊥PD ,BC=1,PC=32,PD=CD=2.(I )求异面直线PA 与BC 所成角的正切值;(II )证明:平面PDC ⊥平面ABCD ;(III )求直线PB 与平面ABCD 所成角的正弦值。
ABCPABCPD ABCD【题型三】根据已知条件,证明PO ⊥α.【典例1】(2016全国Ⅱ)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE=CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D′EF 的位置.(Ⅰ)证明:AC ⊥HD′;(Ⅱ)若AB=5,AC=6,AE=45,OD′=22,求五棱锥D′﹣ABCFE 的体积【典例2】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,AE =A 1E ,AB =3,BE ⊥EC 1.(1)求BC 1与平面EB 1C 1所成角的正弦值;(2)求四棱锥11E BB C C -的体积.方法二:平行线转移法若直线l ∥α,则直线l 上任意一点到平面α的距离相等。
[精品]点到平面的距离 高中数学 高考 立体几何
[精品]点到平面的距离高中数学高考立体几何点到平面的距离是指特定的点到指定的平面之间的距离。
它在高中数学、高考、立体几何中有非常重要的知识点。
在几何中,点到平面的距离的理解是:从平面到点的法向量的模,即为点到平面的距离。
所谓法向量,是一个与该平面法方向一致,并且与平面全相切的向量,因此,求点到平面的距离,就是求法向量的模。
根据向量的性质,可以把点到平面的距离表示为点到平面法向量点积的绝对值。
设A(x1, y1,z1)是给定点,表示该点在三维坐标系中的位置,n=(a,b,c)是平面Ax+By+Cz-D=0的法向量,那么,点A到平面Ax+By+Cz-D=0的距离就是|Ax1+By1+Cz1-D|/√(a2+b2+c2)另外,从立体几何的角度来看,点到平面的距离是有关立体角度定理的。
给定一个平面∏,并设P(x1, y1, z1)和Q(x2, y2, z2)两点坐标,其实际距离就是|PQ|=√[(x1-x2)2+(y1-y2)2+(z1-z2)2]。
如果将点P和点Q的坐标分别投影到平面∏上,形成两个投影点P′(x1,y1)和Q′(x2,y2),点P到平面∏的距离就是将点P投影到平面∏上的距离,即|P′P|=√[(x1-x1′)2+(y1-y1′)2];点Q到平面∏的距离就是将点Q投影到平面∏上的距离,即|Q′Q|=√[(x2-x2′)2+(y2-y2′)2]。
同时,根据立体角度定理可以得出:|PQ|2=(x1-x2)2+(y1-y2)2+(z1-z2)2=[(x1-x1′)2+(y1-y1′)2]+[(x2-x2′)2+(y2-y2′)2]。
利用上面的结果可以求出点到平面的距离,即|P′P|和|Q′Q|。
由点到平面的距离这一概念,可以进一步解决众多实际问题,如:求空间两点最短连线是什么;空间直线和平面的位置关系;求直线和平面的最短距离等。
总而言之,点到平面的距离是高中数学、高考、立体几何等领域中非常重要且常见的概念,它熟悉掌握可以为很多问题的解决提供有力的理论支撑。
点到平面的距离的几种求法
点到平面的距离的几种求法大关一中 胡兴兆点到平面的距离是高中立体几何的一项基本要求,点到平面的距离涉及先面平行、线面垂直、面面垂直等关系,也是高考经常遇见的一个知识点。
下面就用几个列子说明点到平面的距离的几种求法。
一、直接法1、 直接过点作平面的垂线。
例1 已知:直线l 与平面α交于点O,点A 在直线l 上, OA=2cm.l 与α所成的角为300,求点A 到平面α的距离。
解:过点A 作AB ⊥α,垂足为B ,则∠AOB=300,在直角三角形ABO 中,AB=OA ⨯sin ∠AOB =3⨯sin300=3⨯21=23∴点A 到平面α的距离为23cm 。
2、直接过点作平面内某一直线的垂线。
例2 三棱柱ABC-A 1B 1C 1中,底面是边长为1的 正三角形,侧棱与底面垂直,M 是BC 的中点, 且MC 1=MA ,求点B 到平面AMC 1的距离. 解:过B 作BF ⊥C 1M 交C 1M 的延长线于F,M 是等边三角形ABC 中BC 边上的中点,∴ AM ⊥BCC 1C ⊥平面ABC, AM ⊂平面ABC∴ AM ⊥C 1CC 1M BC=C∴ AM ⊥平面BCC 1BF ⊂平面BCC 1∴BF ⊥A又 BF ⊥C 1F,C 1F AM=M∴BF ⊥平面AMC 1∴BF 的长就是点B 到平面AMC 1的距离,M FBAB 1C 1A 1ClA BO易知:AM=MC 1=23,MC=MB=21,CC 1=22在∆BFM 和∆C 1CM 中,∠BFM=∠C 1CM=900∠BMF=∠C 1CM,∴ ∆BFM ∽∆C 1CM, ∴BF cc 1=BMMC 1, ∴ BF=11MC CC ⨯BM=232122⨯=66, ∴点B 到平面AMC 1的距离是66。
二、等体积法例 已知三棱柱A 1B 1C 1-ABC 中,侧棱垂直于底面,且C 1C=AC=BC=2,求点C 到平面C 1AB 的距离。
分析:点C 到平面C 1AB 的距离就是三棱锥C-C 1AB 的高。
立体几何中点面距离的求法
立体几何中点面距离的求法作者:罗明铁来源:《理科考试研究·高中》2014年第06期空间立体几何中的距离包括点点距离、点线距离、点面距离、线线距离、线面距离、面面距离.在这些距离当中,点到平面的距离显得尤为重要,在高考中也经常出现,并且线线距离、线面距离、面面距离都可以转化成点到平面的距离去求解.因此,点面距离就成了这一类距离问题的交汇点.下面举例谈谈点面距离的求法:一、直接法即直接作出点到平面的垂线段,然后求出垂线段的长度.而在作点面垂直时,通常先找面面垂直,然后作两个面交线的垂线,利用面面垂直的性质,即可找出垂线段.例1如图1,已知长方体ABCD—A1B1C1D1中,底面是边长为2的正方形,高为4,则点A1到截面AB1D1的距离为.分析要作出A1到平面AB1D1的垂线段,只要找到一个经过A1且与面AB1D1垂直的平面即可.显然对角面AA1C1C符合条件,过A1作交线OA的垂线,垂足为H,则A1H⊥面AB1D1.解连结A1C1,AC,易证面AB1D1⊥面AA1C1C.过A1作A1H⊥AO,由面面垂直的性质知A1H⊥面AB1D1,A1O=12A1C1=2,OA=32.在Rt△A1AO中,利用面积相等可求得A1H=43.二、等体积法通过三棱锥模型,把点面距离看成棱锥的顶点到对面三角形所在平面的距离,在三棱锥体积易求的前提下,实现等体积转化,求出点到平面的距离.例2如图2,已知正方体AC1的棱长为a,E、F分别是A1B1、CD的中点,求点B到平面AEF的距离.分析因B点在平面AEF上的射影位置不易确定,所以不考虑直接作出点面距离,而在三棱锥B—AEF中利用等体积转化来求.解连结BF、BE,易求AE=AF=52a.取C1D1中点G,连FG、EG,则FG⊥面A1C1,所以FG⊥EG.在Rt△EFG中,EF=2a.过A作AH⊥EF,垂足为H,故AH=AE2-EH2=32a,所以S△AEF=12·2a·32a=64a2S△AEB=12a2.设B点到面AEF的距离为h,由VB-AEF=VF-ABE,可得13·64 a2·h=13·12a2·a,所以h=63a,即点B到平面AEF的距离为63a.三、平行转化法当直线与平面平行时,直线上任意一点到平面的距离相等.在某点到平面的距离易求的前提下实行平行转化,将较难的点到平面的距离转化为较易求的另外一点到平面的距离.例3如图3,已知ABCD是边长为4的正方形,E,F分别是AB、AD的中点,GC垂直于平面ABCD,且GC=2,求点B到平面EFG的距离.分析点B在平面EFG上的射影位置不易确定,故直接作出垂线段比较困难.而BD∥面EFG,因此直线BD上任意一点到平面EFG的距离都相等.由于AC与BD的交点O到平面EFG的距离可以作出来,故将B点到平面EFG的距离转化为O点到平面EFG的距离比较方便.另外,本题也可利用等体积法来求.解连结AC,BD交于O点,AC与EF交于P,由EF∥BD可得BD∥面EFG,故O点到平面EFG的距离等于B点到平面EFG的距离.因为GC⊥在ABCD,所以GC⊥BD.又BD⊥AC,所以BD⊥面GPC.又BD∥EF,所以EF⊥面GPC.过O作OM⊥GP于M,则EF⊥OM,所以OM⊥面EFG.在Rt△GPC中,PC=32,OP=2,GC=2,GP=22,由Rt△OPM∽Rt△GPC知OMGC=OPGP,所以OM=GC·OPGP=2×222=21111.四、比例转化法通过线面相交模型,利用平行线段分直线对应成比例,把点面距离通过比例转化为另一点到平面的距离.如图4、图5,AC与α相交于B,过A和C分别作AD⊥α于D,CE⊥α与E,则ADCE=ABCB.例4如图6,已知四棱锥P-ABCD的底面是边长为a的菱形,且∠BAD = 60°,又PC⊥面ABCD,PC = a,E是PA上一点,且PEPA=13,求点E到平面PBC的距离.分析E点在平面PBC上的射影不易确定,并且三棱锥E-PBC的体积也难以求出,若想直接作出点面距离或用等体。
解析点面距的求法
解析点面距的求法作者:张国新来源:《成才之路》2010年第07期求点到面的距离是立体几何中最常见的问题,在高考中作为重要的知识点,几乎每年必有。
而且其他如线面距离、面面距离均可转化为点面距离,因而学好这一内容是立体几何中重要的一环。
下面就几种常见的方法加以总结供同仁参考。
一、定义法直接由点向面作垂线,垂线段长度即为所求。
例:如图1,四边形ABCD为正方形,PA⊥面ABCD,AB=PA=a,求A到面PBD的距离。
解:连AC、BD交于O,则AC⊥BD,而PA⊥BD,则BD⊥面PAC,面PAC⊥面PBD,过A作PC垂线交于M则AM⊥面PBD。
即AM为所求,易知AC=a, Rt△PBC中由等面积法PA• AC=AM•PC∴AM=a,即A到面PBD的距离为a评析:若求点P到平面α的距离,先作过点P且垂直于α的平面β,在β内过P作面α与β的交线的垂线,PM为所求。
如图2,这种模型要熟知,求垂线段长时一般放到三角形中求解。
二、转化相关点当用定义较难解时,可转化到与已知点相关的点到已知面的距离,利用这两点到同一平面距离的倍数关系求解。
例:如图3,已知ABCD是边长为4的正方形,E、F分别是AB、AD中点,GC垂直于ABCD 所在平面,且GC=2,求B到面EFG的距离。
解:易知EF∥BD,则BD∥面EFG,设AC交BD于O,故B到EFG距离等于O到面EFG距离。
容易证面MGC⊥面EFG。
作OP⊥MG,则OP为所求,△GCM中可求OP=另解:到面EFG距离是O到面EFG的3倍,可转化成C到面EFG距离再乘以即可。
评析:注意转化到相关点的距离后,还要还原到题目所求距离,防止因一时疏忽丢分。
三、等体积法将所点面距看成一个三棱锥的高,在该三棱锥中利用利用不同的底面积和高的乘积的倍相等(均为三棱锥体积)。
从而可求距离。
例:四棱锥P-ABCD底面是边长为a的正方形,侧面PAD是正三角形且与底面ABCD垂直,求点C到面PBD距离。
数学必修二点到面的距离
【模块标题】点到面的距离<模块综述>求‘点到平面的距离’是立体几何学习中不可忽视的一个基本问题,是近几年高考的一个热点.下面介绍两种常见的求解空间“点到面的距离问题”的方法:直接法,等体积法.知识回顾:1. 点面距离的概念 垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段.垂线段的长度叫做这个点到平面的距离.如图,$AA'\bot \alpha $,$A'$为垂足,则$AA'$的长度为$A$到$\alpha $的距离.2.等体积法求点面距离如果点到平面的垂线段容易作出,我们可以直接求出点面距离.当垂线段不易作出,我们可以通过等体积法来求出点面距离.设四面体A BCD -中点A 到面BCD 的距离为d ,点B 到面ACD 的距离为1d ,则此时若BCD S ,ACD S ,1d 容易求出,则可根据上式求得点A 到面BCD 的距离为d .【教材内容1】会用直接法求空间点到面的距离(3星)例1. 如图,正方形ACDE 所在的平面与平面ABC 互相垂直,且,=2AC BC AC BC ⊥=,则点A 与平面BCE 距离的大小为<承接>点到面的距离是过点做平面的垂线,点到垂足的距离就是点到平面的距离,所以可以根据定义找到垂线段,进而求得点到面的距离.也就是用“直接法”求点到面的距离.<板书演示>过点A 作OA EC ⊥,O 为垂足,因为平面ACDE ABC ⊥平面,AC BC ⊥,所以BC AO ⊥,所以AO EBC ⊥平面,则AO 就是点A 到面EBC 的距离.练1. 已知棱长为a 的空间四面体ABCD ,则点A 到底面BCD 的距离为_________.本题是正四面体,所以顶点在底面的投影为底面的几何中心,即正三角形的中心点.运用勾股定理即可求解.<承接>将点等效转移例2. 如图,正方体1111ABCD A B C D -的棱长为1,O 是底面1111A B C D 的中心,则O 到平面11ABC D 的距离为( )AB CDEA .12 B. C. D.本题直接找点O 在平面11ABC D 的投影,不易找,可以把点O 等效的转移,再求解点面的距离.<板书演示>第一步:取11C B 的中点为M ,连接OM ,因为OM 平行于平面11ABC D ,所以O 到平面11ABC D 的距离等于M 到平面11ABC D 的距离;第二步:找M 点在面11ABC D 的投影,结合练习1的方法可知,即过M 点作1C B 的垂线,交于点N ,则N练2. 如图所示,在棱长为1的正方体1111ABCD A B C D -中,,E F 分别为棱11,AA BB 的中点,G 为棱11A B 上一点,且()101A G λλ=≤≤,则点G 到平面1D EF 的距离为____.因为,E F 分别为棱11,AA BB 的中点,所以11EF A B ∥.所以11A B ∥平面1D EF , 1D A所以点G 到平面1D EF 的距离等于点1A 到平面1D EF 的距离,过点1A 作11A M D E ⊥于点M ,则1A M ⊥平面1D EF ,所以1A M 即为所求,<承接> 上面我们用直接法可以求解点到平面的距离,此种方法可直接解决好找垂线段的题目,但对于不太好直接找出点到面的距离的题目用此种方法相对比较复杂和困难一些.所以,接下来我们介绍另一种方法.【教材内容2】会用等体积法求空间点到面的距离(3星)例3. 如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,则点B 到平面AMN 的距离为________.分析可知:B AMN N ABM V V --=,后者点面距很容易求,故考虑等体积法.<板书演示>练3.已知直三棱柱111ABC A B C -中,190,2ABC AC AA AB ∠==== ,M 为1BB 的中点,则1B 与平面ACM 的距离为_____.答案:1练4.如图,在直二面角D AB E --中,四边形ABCD 是边长为2的正方体,AEB 是等腰直角三角形,且90AEB ∠= ,则点D 到平面ACE 的距离为______.<承接>将点等效转移,再用等体积法例4. 在棱长为2的正方体1111ABCD A B C D -中,设E 是棱1CC 的中点;(1)求证:BD AE ⊥;(2)求证://AC平面1B DE ;(3)求A 到平面1BDE 的距离.<板书演示>(1)连接AC ,又1CC BD ⊥,所以BD ACE ⊥平面,所以BDAE ⊥.(2)连接1AC 交1B D 于点G ,连接EG ,可证明EG AC ∥,进而可得1AC B DE 平面∥.(3)在四面体中,进行顶点转移,观察何点为顶点时,其高易求;分析可知:1,,,A B D E 四个点,无论那个点作顶点时,高都不易求出,因此,在运用顶点转移求体积时,需要进行一定的处理,结合(2)可知,AC ∥平面1B DE ,点A 到平面1B DE 的距离等于点C 到平面1B DE 的距离,再用等体积法,即11C B DE D B EC V V --=;练 5.如图,P 为矩形ABCD 所在平面外一点,且PA ⊥平面ABCD ,Q 为线段AP 的中点,若2,4AB AP BC ===,求点P 到平面BQD 的距离.<板书演示>因为Q 为线段PA 的中点,所以P 点到平面QBD 的距离等于A 点到平面QBD 的距离.如图,在平面ABCD 内过A 作BD 的垂线AE ,交BD 于E ,连接QE .因为PA ⊥平面ABCD ,所以BD PA ⊥,又PA AE A ⋂=,所以BD ⊥平面QAE .在平面QAE 内过A 作AH QE ⊥于H .所以BD AH ⊥.又QE BD E ⋂=,所以AH ⊥平面BQD .所以A 点到平面BQD 的距离为AH 的长.练6.如图,四棱锥P ABCD -中,90,2ABC BAD BC AD ∠=∠== ,PAB 与PAD 都是边长为2的等边三角形.1.证明:PB CD ⊥;2.求点A 到平面PCD 的距离.<板书演示>1.取BC 的中点E ,连接DE ,则四边形ABED 为正方形.过点P 作PO ⊥平面ABCD ,垂足为O .连接,,,OA OB OD OE .由PAB 和PAD 都是等边三角形,知PA PB PD ==,所以OA OB OD ==,即点O 为正方形ABED 对角线的交点,故OE BD ⊥,从而PB OE ⊥.因为O 是BD 的中点,E 是BC 的中点,所以OE CD ∥.因此PB CD ⊥.2.取PD 的中点F ,连接OF ,则OFPB ∥. 由(1)知,PB CD ⊥,故OF CD ⊥.又 故POD 为等腰三角形,因此OF PD ⊥.又PD CD D ⋂=,所以OF ⊥平面PCD .因为,AE CD CD ⊂∥平面PCD ,AE ⊄平面PCD ,所以AE ∥平面PCD .因此点O 到平面PCD 的距离OF 就是点A 到平面PCD 的距离,而所以点A到平面PCD的距离为1.【模块小结】本节课学习了两种求空间点到平面距离的方法:定义法,等体积法,其中等体积法用的更多,需要同学们重点掌握.。
点到平面的距离的几种求法-高中数学-高考-立体几何
点到平面的距离的几种求法求‘点到平面的距离’是立体几何学习中不可忽视的一个基本问题,是近几年高考的一个热点.本文试通过对一道典型例题的多种解法的探讨,结合《立体几何》(必修本)中的概念、习题,概括出求‘点到平面的距离’的几种基本方法.例:已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在平面,且GC=2,求点B到平面EFG的距离.一、直接通过该点求点到平面的距离1.直接作出所求之距离,求其长.解法1.如图1,为了作出点B到平面EFG的距离,延长FE交CB的延长线于M,连结GM,作BN⊥BC,交GM于N,则有BN∥CG,BN⊥平面ABCD.作BP⊥EM,交EM于P,易证平面BPN⊥平面EFG.作BQ⊥PN,垂足为Q,则BQ⊥平面EFG.于是BQ是点B到平面EFG的距离.易知BN=,BP=,PZ=,由BQ·PN=PB·BN,得BQ =.图1 图22.不直接作出所求之距离,间接求之.(1)利用二面角的平面角.课本P.42第4题,P.46第2题、第4题给出了“二面角一个面内的一个点,它到棱的距离、到另一个面的距离与二面角的大小之间所满足的关系”.如图2,二面角M-CD-N的大小为α,A∈M,AB⊥CD,AB=a,点A到平面N的距离AO=d,则有d=asinα.①①中的α也就是二面角的大小,而并不强求要作出经过AB的二面角的平面角.解法2.如图3,过B作BP⊥EF,交FE的延长线于P,易知BP=,这就是点B到二面角C-EF-G的棱EF的距离.连结AC交EF于H,连结GH,易证∠GHC就是二面角C-EF-G的平面角.∵ GC=2,AC=4,AH=,∴CH=3,GH=,sin∠GHC=2/,于是由①得所求之距离d=BP·sin∠GHC=·=.解略.(2)利用斜线和平面所成的角.如图4,OP为平面α的一条斜线,A∈OP,OA=l,OP与α所成的角为θ,A到平面α的距离为d,则由斜线和平面所成的角的定义可知,有d=lsinθ.②经过OP与α垂直的平面与α相交,交线与OP所成的锐角就是②中的θ,这里并不强求要作出点A在α上的射影B,连结OB得θ.解法3.如图5,设M为FE与CB的延长线的交点,作BR⊥GM,R为垂足.又GM⊥EB,易得平面BER⊥平面EFG,ER为它们的交线,所以∠REB就是EB与平面EFG所成的角θ.由△MRB∽△MCG,可得BR=,在Rt△REB中,∠B=90°,BR=,EB=2,所以sinθ=BR/ER=,于是由②得所求之距离d=.图5 图6(3)利用三棱锥的体积公式.解法4.如图6,设点B到平面EFG的距离为d,则三棱锥B-EFG的体积V=(1/3)S△EFG·d.另一方面又可得这个三棱锥的体积V=(1/3)S△FEB·CG,可求得S△FEB=(1/4)S△DAB=2,S△EFG=,所以有1/3··d=1/3·2·2,得d=.二、不经过该点间接确定点到平面的距离1.利用直线到平面的距离确定解法5.如图7,易证BD∥平面EFG,所以BD上任意一点到平面EFG的距离就是点B到平面EFG的距离.由对称思想可知,取BD中点O,求点O到平面EFG的距离较简单.AC交EF于H,交BD于O.易证平面GHC⊥平面EFG,作OK⊥HG,K为垂足,OK=为所求之距离.图7 图82.利用平行平面间的距离确定如图8,把平面EFG补成一个正四棱柱的截面所在的平面,可使题设中的点、线、面之间的位置关系更加明朗.面GMT是正四棱柱ABCD-A1B1GD1经过F、E、G的截面所在的平面.MG交BB1于N,TG交DD1于Q,作BP∥MG,交CG于P,连结DP,则有平面GTM∥平面PDB.它们之间的距离就是所求之距离.于是可以把点B平移到平面PDB上任何一个位置,哪里方便就在哪里求.这两个平行平面的距离d又同三棱柱GQN-PDB的体积有关,所以也可以利用三棱柱的体积确定所求之距离.据此可得解法6.解法6.三棱柱GQN-PDB的体积V=S△PDB·d,另一方面又有V=S△CDB·BN,可求得BN=2/3,CP=4/3,PB=PD=,BD=,S△PDB=,S△CDB=8,所以·d=8·2/3,得d=为所求之距离.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点到平面的距离的几种求法
求‘点到平面的距离’是立体几何学习中不可忽视的一个基本问题,是近几年高考的一个热点.本文试通过对一道典型例题的多种解法的探讨,结合《立体几何》(必修本)中的概念、习题,概括出求‘点到平面的距离’的几种基本方法.
例:已知ABCD是边长为4的正方形,E、F分别是AB、AD的中点,GC垂直于ABCD所在平面,且GC=2,求点B到平面EFG的距离.
一、直接通过该点求点到平面的距离
1.直接作出所求之距离,求其长.
解法1.如图1,为了作出点B到平面EFG的距离,延长FE交CB的延长线于M,连结GM,作BN⊥BC,交GM于N,则有BN∥CG,BN⊥平面ABCD.作BP⊥EM,交EM于P,易证平面BPN⊥平面EFG.作BQ⊥PN,垂足为Q,则BQ⊥平面EFG.于是BQ是点B到平面EFG
的距离.易知BN=,BP=,PZ=,由BQ·PN=PB·BN,得BQ =.
图1 图2
2.不直接作出所求之距离,间接求之.
(1)利用二面角的平面角.
课本P.42第4题,P.46第2题、第4题给出了“二面角一个面内的一个点,它到棱的距离、到另一个面的距离与二面角的大小之间所满足的关系”.如图2,二面角M-CD-N的大小为α,A∈M,AB⊥CD,AB=a,点A到平面N的距离AO=d,则有d=asinα.①
①中的α也就是二面角的大小,而并不强求要作出经过AB的二面角的平面角.
解法2.如图3,过B作BP⊥EF,交FE的延长线于P,易知BP=,这就是点B到二面角C-EF-G的棱EF的距离.连结AC交EF于H,连结GH,易证∠GHC就是二面角C-EF-G的平面角.∵ GC=2,AC=4,AH=,∴CH=3,GH=,sin∠GHC=2/,于是由①得所求之距离d=BP·s
in∠GHC=·=.解略.
(2)利用斜线和平面所成的角.
如图4,OP为平面α的一条斜线,A∈OP,OA=l,OP与α所成的角为θ,A到平面α的距离为d,则由斜线和平面所成的角的定义可知,有d=lsinθ.②经过OP与α垂直的平面与α相交,交线与OP所成的锐角就是②中的θ,这里并不强求要作出点A在α上的射影B,连结OB得θ.
解法3.如图5,设M为FE与CB的延长线的交点,作BR⊥GM,R为垂足.又GM⊥EB,易得平面BER⊥平面EFG,ER为它们的交线,所以∠REB就是EB与
平面EFG所成的角θ.由△MRB∽△MCG,可得BR=,在Rt△REB中,∠B=90°,BR=,EB=2,所以sinθ=BR/ER=,于是由②得所求之距离d=.
图5 图6
(3)利用三棱锥的体积公式.
解法4.如图6,设点B到平面EFG的距离为d,则三棱锥B-EFG的体积V=(1/3)S△EFG·d.另一方面又可得这个三棱锥的体积V=(1/3)S△FEB·CG,可求得S
△FEB=(1/4)S△DAB=2,S△EFG=,所以有1/3··d=1/3·2·2,
得d=.
二、不经过该点间接确定点到平面的距离
1.利用直线到平面的距离确定
解法5.如图7,易证BD∥平面EFG,所以BD上任意一点到平面EFG的距离就是点B到平面EFG的距离.由对称思想可知,取BD中点O,求点O到平面EFG的距离较简单.AC交EF于H,交BD于O.易证平面GHC⊥平面EFG,作OK⊥HG,
K为垂足,OK=为所求之距离.
图7 图8
2.利用平行平面间的距离确定
如图8,把平面EFG补成一个正四棱柱的截面所在的平面,可使题设中的点、线、面之间的位置关系更加明朗.面GMT是正四棱柱ABCD-A1B1GD1经过F、E、G的截面所在的平面.MG交BB1于N,TG交DD1于Q,作BP∥MG,交CG于P,连结DP,则有平面GTM∥平面PDB.它们之间的距离就是所求之距离.于是可以把点B平移到平面PDB上任何一个位置,哪里方便就在哪里求.
这两个平行平面的距离d又同三棱柱GQN-PDB的体积有关,所以也可以利用三棱柱的体积确定所求之距离.据此可得解法6.
解法6.三棱柱GQN-PDB的体积V=S△PDB·d,另一方面又有V=S△CDB·BN,可求得BN=2/3,CP=4/3,PB=PD=,BD=,S△PDB=,S△CDB=8,所以·d=8·2/3,得d=为所求之距离.。