(教师版)九年级下册《二次函数》的应用培优提高

合集下载

初三数学二次函数的专项培优练习题(含答案)含详细答案

初三数学二次函数的专项培优练习题(含答案)含详细答案

初三数学二次函数的专项培优练习题(含答案)含详细答案一、二次函数1.某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量(y 万件)与销售单价(x 元)之间符合一次函数关系,其图象如图所示.()1求y 与x 的函数关系式;()2物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x 定为每件多少元时,厂家每月获得的利润()w 最大?最大利润是多少?【答案】(1)2280y x =-+;(2)当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元.【解析】【分析】()1根据函数图象经过点()40,200和点()60,160,利用待定系数法即可求出y 与x 的函数关系式;()2先根据利润=销售数量(⨯销售单价-成本),由试销期间销售单价不低于成本单价,也不高于每千克80元,结合电子产品的成本价即可得出x 的取值范围,根据二次函数的增减性可得最值.【详解】解:()1设y 与x 的函数关系式为()0y kx b k =+≠,Q 函数图象经过点()40,200和点()60,160,{4020060160k b k b +=∴+=,解得:{2280k b =-=, y ∴与x 的函数关系式为2280y x =-+.()2由题意得:()()224022802360112002(90)5000w x x x x x =--+=-+-=--+. Q 试销期间销售单价不低于成本单价,也不高于每千克80元,且电子产品的成本为每千克40元,∴自变量x 的取值范围是4080x ≤≤.20-<Q ,∴当90x <时,w 随x 的增大而增大,80x ∴=时,w 有最大值,当80x =时,4800w =,答:当销售单价x 定为每件80元时,厂家每月获得的利润()w 最大,最大利润是4800元.【点睛】本题考查了一次函数和二次函数的应用,根据点的坐标利用待定系数法求出函数关系式是解题的关键,并注意最值的求法.2.抛物线y =ax 2+bx ﹣3(a≠0)与直线y =kx+c (k≠0)相交于A (﹣1,0)、B (2,﹣3)两点,且抛物线与y 轴交于点C .(1)求抛物线的解析式;(2)求出C 、D 两点的坐标(3)在第四象限抛物线上有一点P ,若△PCD 是以CD 为底边的等腰三角形,求出点P 的坐标.【答案】(1)y =x 2﹣2x ﹣3;(2)C (0,﹣3),D (0,﹣1);(3)P (2,﹣2).【解析】【分析】(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得抛物线解析式. (2)当x =0时可求C 点坐标,求出直线AB 解析式,当x =0可求D 点坐标. (3)由题意可知P 点纵坐标为﹣2,代入抛物线解析式可求P 点横坐标.【详解】解:(1)把A (﹣1,0)、B (2,﹣3)两点坐标代入y =ax 2+bx ﹣3可得 304233a b a b --=⎧⎨+-=-⎩ 解得12a b =⎧⎨=-⎩∴y =x 2﹣2x ﹣3(2)把x =0代入y =x 2﹣2x ﹣3中可得y =﹣3∴C (0,﹣3)设y =kx+b ,把A (﹣1,0)、B (2,﹣3)两点坐标代入023k b k b -+=⎧⎨+=-⎩解得11 kb=-⎧⎨=-⎩∴y=﹣x﹣1∴D(0,﹣1)(3)由C(0,﹣3),D(0,﹣1)可知CD的垂直平分线经过(0,﹣2)∴P点纵坐标为﹣2,∴x2﹣2x﹣3=﹣2解得:x=1±2,∵x>0∴x=1+2.∴P(1+2,﹣2)【点睛】本题是二次函数综合题,用待定系数法求二次函数的解析式,把x=0代入二次函数解析式和一次函数解析式可求图象与y轴交点坐标,知道点P纵坐标带入抛物线解析式可求点P 的横坐标.3.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).(1)求抛物线y=x2+bx+c的表达式;(2)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.【答案】(1)y=x2﹣4x+3;(2)(2,﹣1);(3)42【解析】试题分析:(1)利用待定系数法求抛物线解析式;(2)如图1,设D(2,y),利用两点间的距离公式得到BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,然后讨论:当BD为斜边时得到18+4+(y﹣3)2=1+y2;当CD 为斜边时得到4+(y﹣3)2=1+y2+18,再分别解方程即可得到对应D的坐标;(3)先证明∠CEF=90°得到△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,则PE 2,PF2,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,这样PE+EF=2PE+PF=﹣2t2+42t,然后利用二次函数的性质解决问题.试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:9303b cc++=⎧⎨=⎩,解得:43bc=-⎧⎨=⎩,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3;(2)如图1,抛物线的对称轴为直线x=﹣42-=2,设D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5);当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1);(3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,PE=22PG,PF=2PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF=2PH=2t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=22PG=﹣22t2+322t,∴PE+EF=PE+PE+PF=2PE+PF=﹣2t2+32t+2t=﹣2t2+42t=﹣2(t﹣2)2+42,当t=2时,PE+EF的最大值为42.点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式.4.如图1,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)在(1)中抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(4)如图2,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.【答案】(1)y=﹣x2﹣2x+3;(2)存在符合条件的点P,其坐标为P(﹣1,10)或P(﹣1,﹣10)或P(﹣1,6)或P(﹣1,53);(3)存在,Q(﹣1,2);(4)63 8,315,24E⎛⎫-⎪⎝⎭.【解析】【分析】(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M 的坐标得出,CQ=3﹣x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标.②当CM=MP时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).③当CM=C P时,因为C的坐标为(0,3),那么直线y=3必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;(3)根据轴对称﹣最短路径问题解答;(4)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,S四边形BOCE=S△BFE+S梯形FOCE.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在△BFE中,BF=BO﹣OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.【详解】(1)∵抛物线y =ax 2+bx+3(a≠0)与x 轴交于点A (1,0)和点B (﹣3,0), ∴309330a b a b ++=⎧⎨-+=⎩, 解得:12a b =-⎧⎨=-⎩. ∴所求抛物线解析式为:y =﹣x 2﹣2x+3;(2)如答图1,∵抛物线解析式为:y =﹣x 2﹣2x+3,∴其对称轴为x =22-=﹣1, ∴设P 点坐标为(﹣1,a ),当x =0时,y =3,∴C (0,3),M (﹣1,0)∴当CP =PM 时,(﹣1)2+(3﹣a )2=a 2,解得a =53, ∴P 点坐标为:P 1(﹣1,53); ∴当CM =PM 时,(﹣1)2+32=a 2,解得a =±10,∴P 点坐标为:P 2(﹣1,10)或P 3(﹣1,﹣10);∴当CM =CP 时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a )2,解得a =6, ∴P 点坐标为:P 4(﹣1,6).综上所述存在符合条件的点P ,其坐标为P (﹣1,10)或P (﹣1,﹣10)或P (﹣1,6)或P (﹣1,53); (3)存在,Q (﹣1,2),理由如下:如答图2,点C (0,3)关于对称轴x =﹣1的对称点C′的坐标是(﹣2,3),连接AC′,直线AC′与对称轴的交点即为点Q .设直线AC′函数关系式为:y=kx+t(k≠0).将点A(1,0),C′(﹣2,3)代入,得23 k tk t+=⎧⎨-+=⎩,解得11kt=-⎧⎨=⎩,所以,直线AC′函数关系式为:y=﹣x+1.将x=﹣1代入,得y=2,即:Q(﹣1,2);(4)过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a∴S四边形BOCE=12BF•EF+12(OC+EF)•OF=12(a+3)•(﹣a2﹣2a+3)+12(﹣a2﹣2a+6)•(﹣a)=﹣32a2﹣92a+92=﹣32(a+32)2+638,∴当a=﹣32时,S四边形BOCE最大,且最大值为638.此时,点E坐标为(﹣32,154).【点睛】本题主要考查了二次函数的综合知识,要注意的是(2)中,不确定等腰三角形哪条边是底边的情况下,要分类进行求解,不要漏解.5.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B.抛物线过A、B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)如图1,设抛物线顶点为M,且M的坐标是(12,92),对称轴交AB于点N.①求抛物线的解析式;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)是否存在这样的点D,使得四边形BOAD的面积最大?若存在,求出此时点D的坐标;若不存在,请说明理由.【答案】(1)①y=﹣2x2+2x+4;;②不存在点P,使四边形MNPD为菱形;;(2)存在,点D的坐标是(1,4).【解析】【分析】(1)①由一次函数图象上点的坐标特征求得点B的坐标,设抛物线解析式为y=a21922x⎛⎫-+⎪⎝⎭,把点B的坐标代入求得a的值即可;②不存在点P,使四边形MNPD为菱形.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),根据题意知PD∥MN,所以当PD=MN时,四边形MNPD为平行四边形,根据该等量关系列出方程﹣2m2+4m=32,通过解方程求得m的值,易得点N、P的坐标,然后推知PN=MN是否成立即可;(2)设点D的坐标是(n,﹣2n2+2n+4),P(n,﹣2n+4).根据S四边形BOAD=S△BOA+S△ABD =4+S△ABD,则当S△ABD取最大值时,S四边形BOAD最大.根据三角形的面积公式得到函数S△ABD=﹣2(n﹣1)2+2.由二次函数的性质求得最值.【详解】解:①如图1,∵顶点M的坐标是19,22⎛⎫ ⎪⎝⎭,∴设抛物线解析式为y=21922a x⎛⎫-+⎪⎝⎭(a≠0).∵直线y=﹣2x+4交y轴于点B,∴点B的坐标是(0,4).又∵点B在该抛物线上,∴21922a⎛⎫-+⎪⎝⎭=4,解得a=﹣2.故该抛物线的解析式为:y=219222x⎛⎫--+⎪⎝⎭=﹣2x2+2x+4;②不存在.理由如下:∵抛物线y=219222x⎛⎫--+⎪⎝⎭的对称轴是直线x=12,且该直线与直线AB交于点N,∴点N的坐标是1,32⎛⎫ ⎪⎝⎭.∴93322MN=-=.设点P的坐标是(m,﹣2m+4),则D(m,﹣2m2+2m+4),∴PD=(﹣2m2+2m+4)﹣(﹣2m+4)=﹣2m2+4m.∵PD∥MN.当PD=MN时,四边形MNPD是平行四边形,即﹣2m2+4m=32.解得 m1=12(舍去),m2=32.此时P(32,1).∵PN∴PN≠MN,∴平行四边形MNPD不是菱形.∴不存在点P,使四边形MNPD为菱形;(2)存在,理由如下:设点D的坐标是(n,﹣2n2+2n+4),∵点P在线段AB上且直线PD⊥x轴,∴P(n,﹣2n+4).由图可知S四边形BOAD=S△BOA+S△ABD.其中S△BOA=12OB•OA=12×4×2=4.则当S△ABD取最大值时,S四边形BOAD最大.S△ABD=12(y D﹣y P)(x A﹣x B)=y D﹣y P=﹣2n2+2n+4﹣(﹣2n+4)=﹣2n2+4n=﹣2(n﹣1)2+2.当n=1时,S△ABD取得最大值2,S四边形BOAD有最大值.此时点D的坐标是(1,4).【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题7.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=12×(2+5)×9﹣12×2×4﹣12×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.8.在平面直角坐标系xOy中(如图).已知抛物线y=﹣12x2+bx+c经过点A(﹣1,0)和点B(0,52),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.【答案】(1)抛物线解析式为y=﹣12x 2+2x+52;(2)线段CD 的长为2;(3)M 点的坐标为(0,72)或(0,﹣72). 【解析】【分析】(1)利用待定系数法求抛物线解析式; (2)利用配方法得到y=﹣12(x ﹣2)2+92,则根据二次函数的性质得到C 点坐标和抛物线的对称轴为直线x=2,如图,设CD=t ,则D (2,92﹣t ),根据旋转性质得∠PDC=90°,DP=DC=t ,则P (2+t ,92﹣t ),然后把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得到关于t的方程,从而解方程可得到CD 的长;(3)P 点坐标为(4,92),D 点坐标为(2,52),利用抛物线的平移规律确定E 点坐标为(2,﹣2),设M (0,m ),当m >0时,利用梯形面积公式得到12•(m+52+2)•2=8当m <0时,利用梯形面积公式得到12•(﹣m+52+2)•2=8,然后分别解方程求出m 即可得到对应的M 点坐标.【详解】(1)把A (﹣1,0)和点B (0,52)代入y=﹣12x 2+bx+c 得 10252b c c ⎧--+=⎪⎪⎨⎪=⎪⎩,解得252b c =⎧⎪⎨=⎪⎩,∴抛物线解析式为y=﹣12x 2+2x+52; (2)∵y=﹣12(x ﹣2)2+92, ∴C (2,92),抛物线的对称轴为直线x=2, 如图,设CD=t ,则D (2,92﹣t ),∵线段DC 绕点D 按顺时针方向旋转90°,点C 落在抛物线上的点P 处, ∴∠PDC=90°,DP=DC=t , ∴P (2+t ,92﹣t ), 把P (2+t ,92﹣t )代入y=﹣12x 2+2x+52得﹣12(2+t )2+2(2+t )+52=92﹣t , 整理得t 2﹣2t=0,解得t 1=0(舍去),t 2=2, ∴线段CD 的长为2;(3)P 点坐标为(4,92),D 点坐标为(2,52), ∵抛物线平移,使其顶点C (2,92)移到原点O 的位置, ∴抛物线向左平移2个单位,向下平移92个单位,而P 点(4,92)向左平移2个单位,向下平移92个单位得到点E , ∴E 点坐标为(2,﹣2), 设M (0,m ),当m >0时,12•(m+52+2)•2=8,解得m=72,此时M 点坐标为(0,72);当m <0时,12•(﹣m+52+2)•2=8,解得m=﹣72,此时M 点坐标为(0,﹣72);综上所述,M 点的坐标为(0,72)或(0,﹣72).【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.9.如图,抛物线25(0)y ax bx a =+-≠经过x 轴上的点A (1,0)和点B 及y 轴上的点C ,经过B 、C 两点的直线为y x n =+. ①求抛物线的解析式.②点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,△PBE 的面积最大并求出最大值.③过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B 、C 重合)作直线AM 的平行线交直线BC 于点Q .若点A 、M 、N 、Q 为顶点的四边形是平行四边形,求点N 的横坐标.【答案】①265y x x =-+-;②当2t =时,△PBE 的面积最大,最大值为22③点N 的横坐标为:4或5412+或5412. 【解析】 【分析】①点B 、C 在直线为y x n =+上,则B (﹣n ,0)、C (0,n ),点A (1,0)在抛物线上,所以250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩,解得1a =-,6b =,因此抛物线解析式:265y x x =-+-;②先求出点P 到BC 的高h 为2sin 45(4)2BP t ︒=-,于是21122)22)2222PBE S BE h t t t ∆=⋅=-⨯=-+2t =时,△PBE 的面积最大,最大值为22③由①知,BC 所在直线为:5y x =-,所以点A 到直线BC 的距离22d =N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H .设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -,易证△PQN 为等腰直角三角形,即22NQ PQ ==4PN =,Ⅰ.4NH HP +=,所以265(5)4m m m -+---=解得11m =(舍去),24m =,Ⅱ.4NH HP +=,()25654m m m ---+-=解得1541m +=,2541m -=去),Ⅲ.4NH HP -=,()265[(5)]4m m m --+----=,解得15412m =(舍去),252m =. 【详解】解:①∵点B 、C 在直线为y x n =+上, ∴B (﹣n ,0)、C (0,n ), ∵点A (1,0)在抛物线上,∴250505a b an bn n +-=⎧⎪+-=⎨⎪=-⎩, ∴1a =-,6b =,∴抛物线解析式:265y x x =-+-; ②由题意,得,4PB t =-,2BE t =,由①知,45OBC ︒∠=, ∴点P 到BC 的高h为sin 45)BP t ︒=-,∴211)22)22PBE S BE h t t t ∆=⋅=-⨯=-+ 当2t =时,△PBE的面积最大,最大值为 ③由①知,BC 所在直线为:5y x =-, ∴点A 到直线BC的距离d =过点N 作x 轴的垂线交直线BC 于点P ,交x 轴于点H . 设()2,65N m m m -+-,则(,0)H m 、(,5)P m m -, 易证△PQN为等腰直角三角形,即NQ PQ == ∴4PN =, Ⅰ.4NH HP +=, ∴265(5)4m m m -+---= 解得11m =,24m =,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形, ∴4m =;Ⅱ.4NH HP +=, ∴()25654m m m ---+-=解得1m =,2m =∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,5m >,∴541m +=, Ⅲ.4NH HP -=,∴()265[(5)]4m m m --+----=, 解得15412m +=,25412m -=,∵点A 、M 、N 、Q 为顶点的四边形是平行四边形,0m <,∴5412m -=, 综上所述,若点A 、M 、N 、Q 为顶点的四边形是平行四边形,点N 的横坐标为:4或541+或541-. 【点睛】本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.10.已知抛物线C 1:y=ax 2﹣4ax ﹣5(a >0). (1)当a=1时,求抛物线与x 轴的交点坐标及对称轴;(2)①试说明无论a 为何值,抛物线C 1一定经过两个定点,并求出这两个定点的坐标; ②将抛物线C 1沿这两个定点所在直线翻折,得到抛物线C 2,直接写出C 2的表达式; (3)若(2)中抛物线C 2的顶点到x 轴的距离为2,求a 的值.【答案】(1)(﹣1,0)或(5,0)(2)①(0,﹣5),(4,﹣5)②y=﹣ax 2+4ax ﹣5(3)a=或【解析】试题分析:(1)将a=1代入解析式,即可求得抛物线与x轴交点;(2)①化简抛物线解析式,即可求得两个点定点的横坐标,即可解题;②根据抛物线翻折理论即可解题;(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题试题解析:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,∴对称轴为y=2;∴当y=0时,x﹣2=3或﹣3,即x=﹣1或5;∴抛物线与x轴的交点坐标为(﹣1,0)或(5,0);(2)①抛物线C1解析式为:y=ax2﹣4ax﹣5,整理得:y=ax(x﹣4)﹣5;∵当ax(x﹣4)=0时,y恒定为﹣5;∴抛物线C1一定经过两个定点(0,﹣5),(4,﹣5);②这两个点连线为y=﹣5;将抛物线C1沿y=﹣5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;∴抛物线C2解析式为:y=﹣ax2+4ax﹣5,(3)抛物线C2的顶点到x轴的距离为2,则x=2时,y=2或者﹣2;当y=2时,2=﹣4a+8a﹣5,解得,a=;当y=﹣2时,﹣2=﹣4a+8a﹣5,解得,a=;∴a=或;考点:1、抛物线与x轴的交点;2、二次函数图象与几何变换11.(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.【答案】(1)A(-1,0),;(2);(3)P的坐标为(1,)或(1,-4).【解析】试题分析:(1)在中,令y=0,得到,,得到A(-1,0),B(3,0),由直线l经过点A,得到,故,令,即,由于CD=4AC,故点D的横坐标为4,即有,得到,从而得出直线l的函数表达式;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面积的最大值为,而△ACE的面积的最大值为,所以,解得;(3)令,即,解得,,得到D (4,5a),因为抛物线的对称轴为,设P(1,m),然后分两种情况讨论:①若AD是矩形的一条边,②若AD是矩形的一条对角线.试题解析:(1)∵=,令y=0,得到,,∴A(-1,0),B(3,0),∵直线l经过点A,∴,,∴,令,即,∵CD=4AC,∴点D的横坐标为4,∴,∴,∴直线l的函数表达式为;(2)过点E作EF∥y轴,交直线l于点F,设E(,),则F(,),EF==,S△ACE=S△AFE-S△CFE===,∴△ACE的面积的最大值为,∵△ACE的面积的最大值为,∴,解得;(3)令,即,解得,,∴D(4,5a),∵,∴抛物线的对称轴为,设P(1,m),①若AD是矩形的一条边,则Q(-4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴,∴,即,∵,∴,∴P1(1,);②若AD 是矩形的一条对角线,则线段AD 的中点坐标为( ,),Q (2,),m =,则P (1,8a ),∵四边形APDQ 为矩形,∴∠APD =90°,∴,∴,即,∵,∴,∴P 2(1,-4).综上所述,以点A 、D 、P 、Q 为顶点的四边形能成为矩形,点P 的坐标为(1,)或(1,-4).考点:二次函数综合题.12.如图,已知抛物线2(0)y ax bx a =+≠过点3,-3) 和3,0),过点A 作直线AC//x 轴,交y 轴与点C . (1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D ,连接OA ,使得以A ,D ,P 为顶点的三角形与△AOC 相似,求出对应点P 的坐标;(3)抛物线上是否存在点Q ,使得13AOC AOQ S S ∆∆=?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)21332y x x =-;(2)P 点坐标为(383,- 43);(3)Q 点坐标(30)或(315) 【解析】 【分析】(1)把A 与B 坐标代入抛物线解析式求出a 与b 的值,即可确定出解析式;(2)设P 坐标为2133,22x x x ⎛⎫- ⎪ ⎪⎝⎭,表示出AD 与PD ,由相似分两种情况得比例求出x 的值,即可确定出P 坐标;(3)存在,求出已知三角形AOC 边OA 上的高h ,过O 作OM ⊥OA ,截取OM=h,与y 轴交于点N ,分别确定出M 与N 坐标,利用待定系数法求出直线MN 解析式,与抛物线解析式联立求出Q 坐标即可. 【详解】(1)把3A 3)-和点(33B 0)代入抛物线得:33327330a b a b ⎧+=-⎪⎨+=⎪⎩,解得:12a =,332b =-, 则抛物线解析式为213322y x x =-; (2)当P 在直线AD 上方时,设P 坐标为2133,2x x x ⎛⎫ ⎪ ⎪⎝⎭,则有3AD x =213332PD x x =+, 当OCA ADP ∆∆∽时,OC CA AD DP =2331333x x x =--+, 整理得:239318236x x x -+=-,即23113240x x -+=,解得:6x =,即3x =或x =此时P 4)3-;当OCA PDA ∆∆∽时,OC CA PD AD =22=,296x x -+=-2120x -+=,解得:x =x =此时P 6);当点()0,0P 时,也满足OCA PDA ∆∆∽; 当P 在直线AD 下方时,同理可得:P的坐标为10)3-,综上,P的坐标为,4)3-或6)或10)3-或()0,0;(3)在Rt AOC ∆中,3OC =,AC =根据勾股定理得:OA =Q 11··22OC AC OA h =, 32h ∴=,132AOC AOQ S S ∆∆==Q , AOQ ∴∆边OA 上的高为92, 过O 作OM OA ⊥,截取92OM =,过M 作//MN OA ,交y 轴于点N ,如图所示:在Rt OMN ∆中,29ON OM ==,即()0,9N , 过M 作MH x ⊥轴,在Rt OMH ∆中,1924MH OM ==,393OH ==,即93(M ,9)4, 设直线MN 解析式为9y kx =+,把M 坐标代入得:99394=+,即3k =39y x =+, 联立得:23913322y x y x x ⎧=-+⎪⎨=-⎪⎩,解得:330x y ⎧=⎪⎨=⎪⎩315x y ⎧=-⎪⎨=⎪⎩(33Q 0)或(23-,15),则抛物线上存在点Q ,使得13AOC AOQ S S ∆∆=,此时点Q 的坐标为(330)或(23-15).【点睛】二次函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,点到直线的距离公式,熟练掌握待定系数法是解本题的关键.13.如图1,抛物线y=ax 2+2x+c 与x 轴交于A (﹣4,0),B (1,0)两点,过点B 的直线y=kx+23分别与y 轴及抛物线交于点C ,D . (1)求直线和抛物线的表达式;(2)动点P 从点O 出发,在x 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t 秒,当t 为何值时,△PDC 为直角三角形?请直接写出所有满足条件的t 的值;(3)如图2,将直线BD 沿y 轴向下平移4个单位后,与x 轴,y 轴分别交于E ,F 两点,在抛物线的对称轴上是否存在点M ,在直线EF 上是否存在点N ,使DM+MN 的值最小?若存在,求出其最小值及点M ,N 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为:y=228233x x +-,BD 解析式为y=﹣2233x +;(2)t 的值为4915129±、233.(3)N 点坐标为(﹣2,﹣2),M 点坐标为(﹣32,﹣54),213 【解析】分析:(1)利用待定系数法求解可得;(2)先求得点D 的坐标,过点D 分别作DE ⊥x 轴、DF ⊥y 轴,分P 1D ⊥P 1C 、P 2D ⊥DC 、P 3C ⊥DC 三种情况,利用相似三角形的性质逐一求解可得;(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短. 详解:(1)把A (﹣4,0),B (1,0)代入y=ax 2+2x+c ,得168020a c a c -+=⎧⎨++=⎩,解得:2383a c ⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线解析式为:y=228233x x +-, ∵过点B 的直线y=kx+23, ∴代入(1,0),得:k=﹣23, ∴BD 解析式为y=﹣2233x +;(2)由2282332233y x xy x﹣⎧=+-⎪⎪⎨⎪=+⎪⎩得交点坐标为D(﹣5,4),如图1,过D作DE⊥x轴于点E,作DF⊥y轴于点F,当P1D⊥P1C时,△P1DC为直角三角形,则△DEP1∽△P1OC,∴DEPO=PEOC,即4t=523t-,解得t=151296±,当P2D⊥DC于点D时,△P2DC为直角三角形由△P2DB∽△DEB得DBEB=2P BDB,5252,解得:t=233;当P3C⊥DC时,△DFC∽△COP3,∴DFOC=3CFP O,即523=103t,解得:t=49,∴t的值为49、151296、233.(3)由已知直线EF解析式为:y=﹣23x﹣103,在抛物线上取点D的对称点D′,过点D′作D′N⊥EF于点N,交抛物线对称轴于点M过点N 作NH ⊥DD′于点H ,此时,DM+MN=D′N 最小. 则△EOF ∽△NHD′ 设点N 坐标为(a ,﹣21033a -), ∴OE NH =OF HD ',即52104()33a ---=1032a -, 解得:a=﹣2,则N 点坐标为(﹣2,﹣2),求得直线ND′的解析式为y=32x+1, 当x=﹣32时,y=﹣54, ∴M 点坐标为(﹣32,﹣54), 此时,DM+MN 的值最小为22D H NH '+=2246+=213.点睛:本题是二次函数和几何问题综合题,应用了二次函数性质以及转化的数学思想、分类讨论思想.解题时注意数形结合.14.如图,已知抛物线2y ax bx c =++(a≠0)经过A (﹣1,0)、B (3,0)、C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P 是直线l 上的一个动点,当点P 到点A 、点B 的距离之和最短时,求点P 的坐标;(3)点M 也是直线l 上的动点,且△MAC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.【答案】(1)223y x x =--;(2)P (1,0);(3).【解析】试题分析:(1)直接将A 、B 、C 三点坐标代入抛物线的解析式中求出待定系数即可; (2)由图知:A .B 点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知,直线l 与x 轴的交点,即为符合条件的P 点;(3)由于△MAC 的腰和底没有明确,因此要分三种情况来讨论:①MA=AC 、②MA=MC 、③AC=MC ;可先设出M 点的坐标,然后用M 点纵坐标表示△MAC 的三边长,再按上面的三种情况列式求解.试题解析:(1)将A (﹣1,0)、B (3,0)、C (0,﹣3)代入抛物线2y ax bx c=++中,得:0{9303a b c a b c c -+=++==-,解得:1{23a b c ==-=-,故抛物线的解析式:223y x x =--.(2)当P 点在x 轴上,P ,A ,B 三点在一条直线上时,点P 到点A 、点B 的距离之和最短,此时x=2ba-=1,故P (1,0); (3)如图所示:抛物线的对称轴为:x=2ba-=1,设M (1,m ),已知A (﹣1,0)、C (0,﹣3),则:2MA =24m +,2MC =2(3)1m ++=2610m m ++,2AC =10;①若MA=MC ,则22MA MC =,得:24m +=2610m m ++,解得:m=﹣1; ②若MA=AC ,则22MA AC =,得:24m +=10,得:m=6±;③若MC=AC ,则22MC AC =,得:2610m m ++=10,得:10m =,26m =-; 当m=﹣6时,M 、A 、C 三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M 点,且坐标为 M (1,6)(1,6-)(1,﹣1)(1,0).考点:二次函数综合题;分类讨论;综合题;动点型.15.如图1,四边形OABC 是矩形,点A 的坐标为(3,0),点c 的坐标为(0,6).点P 从点O 出发,沿OA 以每秒1个单位长度的速度向点A 运动,同时点Q 从点A 出发,沿AB 以每秒2个单位长度的速度向点B 运动,当点P 与点A 重合时运动停止.设运动时间为t 秒.(1)当2t =时,线段PQ 的中点坐标为________; (2)当CBQ ∆与PAQ ∆相似时,求t 的值;(3)当1t =时,抛物线2y x bx c =++经过P 、Q 两点,与y 轴交于点M ,抛物线的顶点为K ,如图2所示.问该抛物线上是否存在点D ,使12MQD MKQ ∠=∠,若存在,求出所有满足条件的D 点坐标;若不存在,说明理由. 【答案】(1)PQ 的中点坐标是(2.5,2);(2)9352t -=或3t 4=;(3)124(,)39D ,2240(,)39D -. 【解析】分析:(1)先根据时间t=2,和速度可得动点P 和Q 的路程OP 和AQ 的长,再根据中点坐标公式可得结论;(2)根据矩形的性质得:∠B=∠PAQ=90°,所以当△CBQ 与△PAQ 相似时,存在两种情况:①当△PAQ ∽△QBC 时,PA QB AQ BC =,②当△PAQ ∽△CBQ 时,PA BC AQ QB=,分别列方程可得t 的值;(3)根据t=1求抛物线的解析式,根据Q (3,2),M (0,2),可得MQ ∥x 轴,∴KM=KQ ,KE ⊥MQ ,画出符合条件的点D ,证明△KEQ ∽△QMH ,列比例式可得点D 的坐标,同理根据对称可得另一个点D .详解:(1)如图1,∵点A 的坐标为(3,0), ∴OA=3,当t=2时,OP=t=2,AQ=2t=4, ∴P (2,0),Q (3,4),。

九年级培优专题(三)二次函数整合提升

九年级培优专题(三)二次函数整合提升
九年级数学培优专题训练(三) 二次函数整合提升
知识网络
热点一:二次函数的图象与性质
二次函数的图象是抛物线,其性质主要体现在开口方向、 对称轴、顶点坐标、增减性、最值、对称性等方面,熟练掌握 这些性质是学好本章的前提和基础.
再者注意 y=a(x-h)2+k 的图象与函数 y=ax2 的图象的关
系,它们形状、开口方向均相同,只是位置不同,可以通过平 移得到.平移的规律是:“h 左加右减,k 上加下减”.二次函 数的一般形式 y=ax2+bx+c 可以转化为顶点式 y=a(x-h)2+k 加以分析.
解得 bБайду номын сангаас2,c=-3,
则抛物线解析式为=x2+2x-3.
(-3,0),
由题意, 点 A(-3,0), ∴AC= 9+9=3 2,AD= 4+16=2 5, 2, CD= 1+1=
(2)结合图形,抛物线 y=x2+2x-3,与 x 轴的交点为(1,0),
由 AC2+CD2=AD2,所以△ACD 为直角三角形.
∴三点纵坐标的大小关系为 y3>y2>y1. 答案:D
【跟踪训练】 1.二次函数 y=x2+2x-5 有( D ) A.最大值-5 C.最大值-6 B.最小值-5 D.最小值-6
2.抛物线 y=(x+2)2-3 可以由抛物线 y=x2 平移得到,则 下列平移过程正确的是( B ) A.先向左平移 2 个单位,再向上平移 3 个单位 B.先向左平移 2 个单位,再向下平移 3 个单位
将其代入 y=(x-1) 中,得
2
3- C 2
5 3- 5 , 2 (因点 C 在点 A 左

侧).抛物线与 y 轴的交点 D 的坐标为(0,1).
热点二:二次函数与一元二次方程的关系

北师大版2020九年级数学下册第二章二次函数单元综合培优提升训练题1(附答案详解)

北师大版2020九年级数学下册第二章二次函数单元综合培优提升训练题1(附答案详解)

北师大版2020九年级数学下册第二章二次函数单元综合培优提升训练题1(附答案详解)1.抛物线2(1)y x =-与y 轴的交点坐标为()A .(1,0)B .(-1,0)C .(0,-1)D .(0,1)2.如图是二次函数2y ax bx c =++图像的一部分,其对称轴为x=-l ,且过点(-3,0).下列说法:①abc<0;②2a -b=O ;③4a+2b+c<0;④若(-5,y 1),25(,)2y 是抛物线上两点,则y 1>y 2,其中说法正确的有( )A .4个B .3个C .2个D .1个3.如下图,已知经过原点的抛物线y=ax 2+bx+c (a ≠0)的对称轴是直线x=-1,下列结论中①ab >0,②a +b +c >0,③当-2<x <0时,y <0.正确的个数是( )A .0个B .1个C .2个D .3个4.若二次函数y =x 2 +bx +5,配方后为y =(x -3)2+k ,则b 与k 的值分别为( ) A .-6,-4 B .-6,4 C .6,4 D .6,-45.如图,在Rt△ABC 中,∠C =90°,P 是BC 边上不同于B ,C 的一动点,过点P 作PQ ⊥AB ,垂足为Q ,连接AP .若AC =3,BC =4,则△AQP 的面积的最大值是( )A .254B .258C .7532D .75166.在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t 2+2t ,则当t=4时,该物体所经过的路程为( )7.二次函数y=ax 2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2。

有下列结论:①4a+b=0;②16a+4b+c<0;③8a+7b+2c>0;④当x>-1时,y 的值随x 的增大而增大。

其中正确的结论有( )A .1个B .2个C .3个D .4个8.已知二次函数y =ax 2+bx +c (其中a >0,b >0,c <0),关于这个二次函数的图象有如下说法:①图象的开口向上;②图象的顶点一定在第四象限;③图象与x 轴的交点有一个在y 轴的右侧.以上正确的说法的个数是( )A .0个B .1个C .2个D .3个9.将抛物线y =2x 2向右平移1个单位,再向上平移5个单位,则平移后的抛物线的解析式为( )A .y =2(x +1)2+5B .y =2(x +1)2-5C .y =2(x -1)2+5D .y =2(x -1)2-510.将抛物线y =x 2向左平移3个单位,得到新抛物线的函数关系式是( )A .y =x 2+3B .y =x 2-3C .y =(x +3)2D .y =(x -3)2 11.抛物线y=5(x+3)2-2的顶点坐标是( )A .(-3,-2)B .(3,-2)C .(3,2)D .(-3,2)12.将抛物线y=2x 2平移后得到抛物线y=2x 2+1,则平移方式为( )A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位13.抛物线y=x 2﹣2x+1的顶点坐标是______.14.将y =x 2﹣2x +5化成y =a (x ﹣h )2+k 的形式,则y =__________.15.已知实数s ,t 满足21s t +=,则代数式2251s t s -++-的最大值等于________. 16.抛物线y =2x 2﹣bx +3的对称轴是直线x =1,则b 的值为_____.17.将二次函数y=x 2﹣2x ﹣5化为y=a (x ﹣h )2+k 的形式为y=______________. 18.二次函数210y ax bx a =+≠-()的图象经过点(1,1),则代数式1a b --的值为______.19.平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图,建立平面直角坐标系,抛物线的函数表达式为y =-16x 2+13x +32(单位:m),绳子甩到最高处时刚好通过站在x =2点处跳绳的学生小明的头顶,则小明的身高为______m.20.抛物线22(3)5y x =--+的顶点坐标是______21.已知二次函数22(3)1y x =-+.当__________时,y 随x 的增大而减小.22.二次函数y=-2x 2+4x+7的顶点坐标__________.23.一男生在校运动会比赛中推铅球,铅球的行进高度()y m 与水平距离()x m 之间的函数关系式为21251233y x x =-++,则铅球被推出的水平距离为________m . 24.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)设每件商品降价x 元,则商场此商品可多售出 件,此商品每件盈利 元,此商品每天可销售 件.(2)每件商品降价多少元时,商场日盈利可达到2100元?25.直线y=-3x+3与x 轴、y 轴分别交于A 、B 两点,点A 关于直线x=-1的对称点为点C .(1)求点C 的坐标;(2)若抛物线23y mx nx m =+-(m≠0)经过A 、B 、C 三点,求抛物线的表达式;(3)若抛物线23y ax bx =++(a≠0)经过A ,B 两点,且顶点在第二象限.抛物线与线段AC 有两个公共点,求a 的取值范围.26. 已知函数y =(m 2-m )x 2+(m -1)x +2-2m .(1)若这个函数是二次函数,求m 的取值范围.(2)若这个函数是一次函数,求m 的值.(3)这个函数可能是正比例函数吗?为什么?27.如图,已知点A (0,2),B (2,2),C (-1,-2),抛物线F :2222y x mx m =-+-与直线x =-2交于点P .(1)当抛物线F 经过点C 时,求它的表达式;(2)抛物线F 上有两点M ()11,x y 、N ()22,x y ,若-2≤12x x <,1y <2y ,求m 的取值范围;(3)设点P 的纵坐标为P y ,求P y 的最小值,此时抛物线F 上有两点M ()11,x y 、N ()22,x y ,若12x x <≤-2,比较1y 与2y 的大小;(4)当抛物线F 与线段AB 有公共点时,直接写出m 的取值范围.28.已知抛物线的顶点为(-1,-3),与y 轴的交点为(0,-5)求抛物线的解析式.29.已知:抛物线C 1:y =x 2-2a x +2a+2 顶点P 在另一个函数图象C 2上,(1)求证:抛物线C 1必过定点A (1,3);并用含的a 式子表示顶点P 的坐标;(2)当抛物线C 1的顶点P 达到最高位置时,求抛物线C 1解析式;并判断是否存在实数m 、n ,当m≤x≤n 时恰有3m≤y≤3n,若存在,求出求m 、n 的值;若不存在,说明理由;(3)抛物线C 1和图象C 2分别与y 轴交于B 、C 点,当△ABC 为等腰三角形,求a 的值. 30.已知二次函数y =x 2+mx +m ﹣5(m 是常数).(1)求证:不论m 为何值,该函数的图象与x 轴一定有两公共点;(2)若该二次函数的图象过点(0,﹣3),则将函数图象沿x 轴怎样平移能使抛物线过原点?31.某商场销售一种成本为每件30元的商品,销售过程中发现,每月销售量y (件)与销售单价x(元)之间的关系可近似看作一次函数y=-10x+600,商场销售该商品每月获得利润为w(元).(1)求w与x之间的函数关系式;(2)如果商场销售该商品每月想要获得2000元的利润,那么每月成本至少多少元?(3)为了保护环境,政府部门要求用更加环保的新产品替代该商品,商场销售新产品,每月的销量与销售价格之间的关系与原产品的销售情况相同,新产品的成本每件32元,若新产品每月的销售量不低于200件时,政府部门给予每件4元的补贴,试求定价多少元时,每月销售新产品的利润最大?求出最大的利润。

2020-2021初中数学二次函数的应用培优提升训练题2(附答案详解)

2020-2021初中数学二次函数的应用培优提升训练题2(附答案详解)

2020-2021初中数学二次函数的应用培优提升训练题2(附答案详解) 一、单选题 1.小明研究二次函数2221y x mx m =-+-+(m 为常数)性质时有如下结论:①该二次函数图象的顶点始终在平行于x 轴的直线上;②该二次函数图象的顶点与x 轴的两个交点构成等腰直角三角形;③当12x -<<时,y 随x 的增大而增大,则m 的取值范围为2m ≥;④点()11,A x y 与点()22,B x y 在函数图象上,若12x x <,122x x m +>,则12y y >.其中正确结论的个数为( )A .1B .2C .3D .42.如图,二次函数y 1=x 2-mx 的图象与反比例函数22y x=的图象交于(a ,1)点,则y 1>y 2时,x 的取值范围是( ) A .x >2 B .0<x <2 C .x >2或x <0 D .x <03.如图,分别过点P i (i ,0)(i =1、2、…、n )作x 轴的垂线,交212y x =的图象于点A i ,交直线12y x =-于点B i .则111A B +121A B +1n nA B +的值为( ) A .21n n + B .2 C .2(1)n n + D .2n 1+ 4.方程227(13)20x k x k k -++--=(k 是实数)有两个实根α、β,且01α<<,12β<<,那么k 的取值范围是( )A .34k <<B .21k -<<-C .34k <<或21k -<<-D .无解 5.如图,在四边形ABCD 中,AB ∥CD ,∠A=90°,AB=1,AD=3,DC=5.点S 沿A→B→C 运动到C 点停止,以S 为圆心,SD 为半径作弧交射线DC 于T 点,设S 点运动的路径长为x ,等腰△DST 的面积为y ,则y 与x 的函数图象应为( )A .B .C .D .6.如图,在四边形ABCD 中,AB CD ∥,90BCD ∠=,10AB AD cm ==,8BC cm =,点P 从点A 出发,以每秒3cm 的速度沿折线A B C D ---方向运动,点Q 从点D 出发,以每秒2cm 的速度沿线段DC 方向向点C 运动、已知动点P ,Q 同时出发,当点Q 运动到点C 时,点P ,Q 停止运动,设运动时间为t 秒,在这个运动过程中,若BPQ ∆的面积为220cm ,则满足条件的t 的值有( )A .1个B .2个C .3个D .4个7.如图,在矩形ABCD 中,8,4,AB AD E ==为CD 的中点,连接AE BE 、,点M 从点A 出发沿AE 方向向点E 匀速运动,同时点N 从点E 出发沿EB 方向向点B 匀速运动,点M N 、运动速度均为每秒1个单位长度,运动时间为t ,连接MN ,设EMN ∆的面积为S ,则S 关于t 的函数图像为( )A .B .C .D . 8.如图,正方形ABCD 的边长为2m ,点P ,点Q 同时从点A 出发,速度均2cm/s ,点P 沿A D C --向点C 运动,点Q 沿A B C --向点C 运动,则△APQ 的面积()2cm S 与运动时间()s t 之间函数关系的大致图象是( ) A .B .C .D .9.如图,在平面直角坐标系中,抛物线()()y x 1x 3=+-与x 轴相交于A 、B 两点.若在抛物线上有且只有三个不同的点1C 、2C 、3C ,使得1ΔABC 、2ΔABC 、3ΔABC 的面积都等于m ,则m 的值是( )A .6B .8C .12D .16 二、填空题 10.已知函数()2(x 1)1,x 32y (x 5)1,(x 3)--≤⎧⎪=-->⎨⎪⎩,若使y k =成立的x 值恰好有2个,则k 的值为______.11.如图,抛物线y=-x 2+2x+3与x 轴交于A 、B 两点,与y 轴交于点C ,点D 为抛物线的顶点,点P 为第一象限抛物线上一点,且∠DAP=45°,则点P 的坐标为______.12.如图,在第一象限内作射线OC ,与x 轴的夹角为30,在射线OC 上取点A ,过点A 作AH x ⊥轴于点H .在抛物线2(0)y x x =>上取点P ,在y 轴上取点Q ,使得以P ,O ,Q 为顶点,且以点Q 为直角顶点的三角形与AOH 全等,则符合条件的点A 的坐标是________.13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数表达式为y =-18x 2+12x +32,那么铅球运动过程中最高点离地面的距离为_____米.14.如图,将抛物线y=−x 2+2x+8的图象x 轴上方的部分沿x 轴折到x 轴下方,图象的其余部分不变,得到一个新图象(实线部分);点P(a ,ka-1)在该函数上,若这样的点P 恰好有3个,则k 的值为_____.15.已知抛物线242y x x c =++,且当11x -<<时,抛物线与x 轴有且只有一个公共点,则c 的取值范围是________.16.边长为2的正方形OABC 在平面直角坐标系中的位置如图所示,点D 是边OA 的中点,连接CD ,点E 在第一象限,且DE ⊥DC ,DE =DC .以直线AB 为对称轴的抛物线过C ,E 两点.点M 为直线AB 上一动点,点N 为抛物线上一动点,当以点M ,N ,D ,E 为顶点的四边形是平行四边形时点N 的坐标为___________.17.在平面直角坐标系xOy 中,已知抛物线22y x ax b =-+的顶点在x 轴上,P ()1,x m ,Q ()2,x m (12x x <)是此抛物线上的两点.若存在实数c ,使得13x c ≤-,且23x c ≥+成立,则m 的取值范围是__________.18.如图,已知抛物线y=49-(x-1)(x-7)与x 轴交于两点,对称轴与抛物线交于点C ,与x 轴交于点D ,⊙C 的半径为2,G 为⊙C 上的一动点,P 为AG 的中点,则DP 的最大值为_________.三、解答题19.如图,抛物线y=ax 2-4n+4经过点P (2,4),与x 轴交于A 、B 两点,过点P 作直线l ∥x 轴,点C 为第二象限内直线l 上方,抛物线上一个动点,其横坐标为m 。

第26章《二次函数》培优专题9:二次函数的应用

第26章《二次函数》培优专题9:二次函数的应用

第26章《二次函数》培优习题9:二次函数的实际应用考点1:二次函数在利润问题中实际应用例1、某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元。

销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件。

同时,在销售过程中,每月还要支付其他费用450元。

设销售单价为x元,平均月销售量为y件。

(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)当销售单价为多少元时,销售这种童装每月可获利1800元?(3)当销售单价为多少元时,销售这种童装每月获得利润最大?最大利润是多少?【同步练习】1、某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的60%.在销售过程中发现,这种儿童玩具每天的销售量y(件)与销售单价x(元)满足一次函数关系。

当销售单价为35元时,每天的销售量为350件;当销售单价为40元时,每天的销售量为300件。

(1)求y与x之间的函数关系式、(2)当销售单价为多少时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少?2、小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件。

市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元)。

(1)求y与x的函数关系式;(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润、3、2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴、某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100件。

根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x元,每个月的销量为y件。

初三中考二次函数培优

初三中考二次函数培优

初三数学培优卷:二次函数考点分析培优★★★二次函数的图像抛物线的时候应抓住以下五点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.★★二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)一般式:y=ax 2+bx+c ,三个点顶点式:y=a (x -h )2+k ,顶点坐标对称轴 顶点坐标(-,). 顶点坐标(h ,k )★★★a b c 作用分析│a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大,a ,b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-<0,即对称轴在y 轴左侧,当a ,b•异号时,对称轴x=->0,即对称轴在yc•的符号决定了抛物线与y 轴交点的位置,c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0时,与y•轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.交点式:y=a(x- x 1)(x- x 2),(有交点的情况)与x 轴的两个交点坐标x 1,x 2对称轴为221x x h +=2b a 244ac b a-2b a 2b a1.把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是2)1(2-+=x y 则原二次函数的解析式为2.二次函数的图象顶点坐标为(2,1),形状开品与抛物线y= - 2x 2相同,这个函数解析式为________。

3.如果函数1)3(232++-=+-kx x k y k k是二次函数,则k 的值是______★6.抛物线5)43()1(22+--++=x m m x m y 以Y 轴为对称轴则。

M =7.二次函数52-+=a ax y 的图象顶点在Y 轴负半轴上。

且函数值有最小值,则m 的取值范围是9.抛物线2)13(-=x y 当x 时,Y 随X 的增大而增大★11.已知二次函数2)3(2--=x y ,当X 取1x 和2x 时函数值相等,当X 取1x +2x 时函数值为18.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是3,那么c 的值等于( )(A )8 (B )14(C )8或14 (D )-8或-1419.二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( )(A )12 (B )11 (C )10 (D )920.若0<b ,则二次函数12-+=bx x y 的图象的顶点在 ( A )(A )第一象限(B )第二象限(C )第三象限(D )第四象限21.不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( )A.a>0,△>0B.a>0, △<0C.a<0, △<0D.a<0, △<0★22.已知二次函数)1(3)1(2-++-=a a x x a y 的图象过原点则a 的值为24. 二次函数y=2(x+3)(x-1)的x 轴的交点的个数有__个,交点坐标为_______25.已知二次函数222--=x ax y 的图象与X 轴有两个交点,则a 的取值范围是26.二次函数y=(x-1)(x+2)的顶点为___,对称轴为 _。

初三《二次函数的应用》培优专题练习含答案

初三《二次函数的应用》培优专题练习含答案

于都中学初三《二次函数的应用》培优专题练习 ____________ ____________ ____________1、有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正确水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过6.76米米时,就会影响过往船只的顺利航行。

2、如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,桥拱最高点C 到AB 的距离为9m ,AB =36m ,D ,E 为桥拱底部的两点,且DE ∥AB ,点E 到直线AB 的距离为7m ,则DE 的长为_________m . [答案]483、如图,AB 是自动喷灌设备的水管,点A 在地面,点B 高出地面1.5米.在B 处有一自动旋转的喷水头,在每一瞬间,喷出的水流呈抛物线状,喷头B 与水流最高点C 的连线与水平线成45°角,水流的最高点C 与喷头B 高出2米,在如图的坐标系中,水流的落地点D 到点A 的距离是_________米.解析式为22113y -(2) 3.5-2222x x x =-+=++,水流落点D 到A 点的距离为:米72+ 4、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. 降价后,应将售价定为________元,才能使所获销售利润最大,为____________元。

5、科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况〔如下表〕:温度x /℃ …… -4 -2 0 2 4 4.5 ……植物每天高度增长量y /mm …… 41 49 49 41 25 19.75 ……由这些数据,科学家推测出植物每天高度增长量y 是温度x 的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.〔1〕请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;〔2〕温度为多少时,这种植物每天高度的增长量最大?〔3〕如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个X 围内选择?请直接写出结果.解:〔1〕y 关于x 的函数关系式是4922+--=x x y .不选另外两个函数的理由:注意到点〔0,49〕不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点〔-4,41〕,〔-2,49〕,〔2,41〕不在同一直线上,所以y 不是x 的一次函数.〔2〕由〔1〕,得4922+--=x x y ,∴()5012++-=x y , 即当温度为-1℃时,这种植物每天高度增长量最大.〔3〕46<<-x .6、某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万。

初三《二次函数的应用》培优专题练习含答案

初三《二次函数的应用》培优专题练习含答案

《二次函数的应用》专题练习 1、有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正确水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过 米时,就会影响过往船只的顺利航行。

2、如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,桥拱最高点C 到AB 的距离为9m ,AB =36m ,D ,E 为桥拱底部的两点,且DE ∥AB ,点E 到直线AB 的距离为7m ,则DE 的长为_________m .3、如图,AB 是自动喷灌设备的水管,点A 在地面,点B 高出地面1.5米.在B 处有一自动旋转的喷水头,在每一瞬间,喷出的水流呈抛物线状,喷头B 与水流最高点C 的连线与水平线成45°角,水流的最高点C 与喷头B 高出2米,在如图的坐标系中,水流的落地点D 到点A 的距离是_________ 米.4、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件. 降价后,应将售价定为________元,才能使所获销售利润最大,为____________元。

5、科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.6、某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万。

该生产线投产后,从第1年到第x 年的维修、保养费用累计为y (万元),且2y ax bx =+,若第1年的维修、保养费用为2万元,到第2年为4万元。

(教师版)九年级下册《二次函数》的应用培优提高

(教师版)九年级下册《二次函数》的应用培优提高

九年级下册《二次函数》的应用培优提高【基础知识回顾】一、二次函数与一元二次方程:二次函数y= ax2+bx+c的同象与x轴的交点的横坐标对应着一元二次方程ax2+bx+c=0的实数根,它们都由根的判别式决定抛物线x轴有个交点<=b2-4ac>0=>一元二次方程有实数根抛物线x轴有个交点<=b2-4ac=0=>一元二次方程有实数根抛物线x轴有个交点<=b2-4ac<0=>一元二次方程有实数根【教师提醒:若抛物线与x轴有两交点为A(x1,0)B(x2,0)则抛物线对称轴式x= 两交点间距离AB 】二、二次函数解析式的确定:1、设顶点式,即:设当知道抛物线的顶点坐标或对称轴方程与函数最值时,除代入这一点外,再知道一个点的坐标即可求函数解析式2、设一般式,即:设知道一般的三个点坐标或自变量与函数的三组对应数值可设为一般式,从而列三元一次方程组求的函数解析式【教师提醒:求二次函数解析式,根据具体同象特征灵活设不同的关系或除上述常用方法以外,还有:如抛物线顶点在原点可设以y轴为对称轴,可设顶点在x轴上,可设抛物线过原点等】三、二次函数的应用1、实际问题中解决最值问题:步骤:1、分析数量关系建立模型2、设自变量建立函数关系3、确定自变量的取值范围4、根据顶点坐标公式或配法结合自变量的取值范围求出函数最值2、与一次函数或直线形图形结合的综合性问题一般步骤:1、求一些特殊点的坐标2、将点的坐标代入函数关系式求出函数的解析式3、结合图像根据自变量取值讨论点的存在性或图形的形状等问题【教师提醒:1、在有关二次函数最值的应用问题中一定要注意自变量的取值范围2、有关二次函数综合性问题中一般作为中考压轴题出现,解决此类问题时要将题目分解开来,讨论过程中要尽量将问题】【重点考点例析】考点一:二次函数的最值例1.已知:M,N两点关于y轴对称,且点M在双曲线12yx=上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x()A.有最大值,最大值为92- B.有最大值,最大值为92C.有最小值,最小值为92D.有最小值,最小值为92-思路分析:先用待定系数法求出二次函数的解析式,再根据二次函数图象上点的坐标特征求出其最值即可.解:∵M,N两点关于y轴对称,点M的坐标为(a,b),∴N点的坐标为(-a,b),又∵点M在反比例函数12yx=的图象上,点N在一次函数y=x+3的图象上,∴123bab a⎧=⎪⎨⎪=-+⎩,整理得123aba b⎧=⎪⎨⎪+=⎩,故二次函数y=-abx2+(a+b)x为y=12-x2+3x,∴二次项系数为12-<0,故函数有最大值,最大值为y=239124()2-=⨯-,故选:B.对应训练1.(2012?兰州)已知二次函数y=a(x+1)2-b(a≠0)有最小值1,则a,b的大小关系为()A .a >bB .a <bC .a=bD .不能确定解:∵二次函数y=a (x+1)2-b (a≠0)有最小值,∴抛物线开口方向向上,即a >0; 又最小值为1,即-b=1,∴b=-1,∴a>b .故选A .考点二:确定二次函数关系式例2 (2012?珠海)如图,二次函数y=(x-2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m 的x思路分析:(1)将点A (1,0)代入y=(x-2)2+m 求出m 的值,根据点的对称性,将y=3代入二次函数解析式求出B 的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A 、B 的交点坐标可直接求出kx+b≥(x-2)2+m 的x 的取值范围. 解:(1)将点A (1,0)代入y=(x-2)2+m 得,(1-2)2+m=0,1+m=0,m=-1,则二次函数解析式为y=(x-2)2-1.当x=0时,y=4-1=3,故C 点坐标为(0,3),由于C 和B 关于对称轴对称,在设B 点坐标为(x ,3),令y=3,有(x-2)2-1=3,解得x=4或x=0.则B 点坐标为(4,3).设一次函数解析式为y=kx+b ,将A (1,0)、B (4,3)代入y=kx+b 得, 0 43k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,则一次函数解析式为y=x-1; (2)∵A、B 坐标为(1,0),(4,3),∴当kx+b≥(x-2)2+m 时,1≤x≤4.对应训练2.(2012?佳木斯)如图,抛物线y=x 2+bx+c 经过坐标原点,并与x 轴交于点A (2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.分析:(1)直接把(0,0),(2,0)代入y=x2+bx+c中,列方程组求b、c的值即可;(2)将二次函数解析式写成顶点式,可求顶点坐标及对称轴;(3)设点B的坐标为(a,b),根据三角形的面积公式求b的值,再将纵坐标b代入抛物线解析式求a的值,确定B点坐标.解:(1)把(0,0),(2,0)代入y=x2+bx+c得420cb=⎧⎨+=⎩,解得2bc=-⎧⎨=⎩,所以解析式为y=x2-2x。

二次函数的应用:拱桥喷水与投球问题大题专练(重难点培优)九年级数学下册尖子生培优题典【苏科版】

二次函数的应用:拱桥喷水与投球问题大题专练(重难点培优)九年级数学下册尖子生培优题典【苏科版】

2021-2022学年九年级数学下册尖子生培优题典【苏科版】专题5.6二次函数的应用:拱桥喷水与投球问题大题专练(重难点培优)姓名:__________________ 班级:______________ 得分:_________________一、解答题(共24题)1.(2022·江苏泰州·九年级期末)校园景观设计:如图1,学校计划在流经校园的小河上建造一座桥孔为抛物线的小桥,桥孔的跨径为8m,拱高为6m.(1)把该桥孔看作一个二次函数的图像,建立适当的平面直角坐标系,写出这个二次函数的表达式;(2)施工时,工人师傅先要制作如图2的桥孔模型,图中每个立柱之间距离相等,请你计算模型中左侧第二根立柱(AB)的高.2.(2022·江苏·九年级专题练习)如图1,是抛物线形的拱桥,当拱顶高水面2米时,水面宽4米.如图建立平面直角坐标系,解答下列问题:(1)如图2,求该抛物线的函数解析式.(2)当水面AB下降1米,到CD处时,水面宽度增加多少米?(保留根号)(3)当水面AB上升1米时,水面宽度减少多少米?(保留根号)3.(2022·江苏宿迁·二模)如图,正常水位时,抛物线形拱桥下的水面宽AB为20m,此时拱桥的最高点到水面的距离为4m.(1)把拱桥看作一个二次函数的图象,建立恰当的平面直角坐标系,求出这个二次函数的表达式;(2)当水面宽10m时,达到警戒水位,如果水位以0.2m/h的速度持续上涨,那么达到警戒水位后,再过多长时间此桥孔将被淹没?4.(2022·江苏连云港·九年级期末)如图,某公路隧道横截面为抛物线,其最大高度6米,底部宽度OM为12米,现以O点为原点,OM所在的直线为x轴建立直角坐标系.(1)求这条抛物线的解析式;(2)若要搭建一个由AD﹣DC﹣CB组成的矩形“支撑架”,已知支架的高度为4米,则这个“支撑架”总长是多少米?5.(2021·江苏·南通市启秀中学九年级阶段练习)为促进经济发展,方便居民出行,某施工队要修建一个横断面为抛物线的公路隧道,隧道最高点P离路面OM的距离为6米,宽度OM为12米,隧道内设双向行车道,并且中间有一条宽为1米的隔离带.如果一货运汽车装载某大型设备后高为4米,宽为3.5米,按如图所示的平面直角坐标系这辆货车能否安全通过?为什么?6.(2022·江苏·苏州工业园区金鸡湖学校二模)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处.有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA 在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m>0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围.7.(2021·江苏·昆山市城北中学九年级阶段练习)河上有一座桥孔为抛物线形的拱桥,水面宽6m时,水面离桥孔顶部3m.因降暴雨水位上升lm.(1)如图①,若以桥孔的最高点为原点,建立平面直角坐标系,求抛物线的解析式;(2)一艘装满物资的小船,露出水面的高为0.5m、宽为4m(横断面如图②).暴雨后这艘船能从这座拱桥下通过吗?请说明理由.8.(2021·江苏·九年级专题练习)如图:河上有一座抛物线形桥洞,已知桥下的水面离桥拱顶部3m时,水面宽AB=6m,建立如图所示的坐标系.(1)当水位上升0.5m时,求水面宽度CD为多少米?(结果可保留根号)(2)有一艘游船它的左右两边缘最宽处有一个长方体形状的遮阳棚,此船正对着桥洞在上述河流中航行,若这船宽(最大宽度)2米,从水面到棚顶高度为1.8米.问这艘船能否从桥下洞通过?9.(2022·江苏·九年级专题练习)从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是ℎ=30t−5t2.(1)小球从抛出到落地经过了多少秒?(2)当小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?10.(2022·江苏扬州·二模)图,某体育休闲中心的一处山坡OA的坡度为1∶2,山坡上A处的水平距离OE= 10m,A处有一根与OE垂直的立杆AB=3m.这是投掷沙球的比赛场地,要求人站在立杆正前方的山坡下点O处投掷沙球,沙球超过立杆AB的高度即为获胜.在一次比赛中,小林投出的沙球运动路线看作一条抛物线,沙球出手时离地面2m,当飞行的最大高度为12m 时,它的水平飞行距离为6m;(1)求该抛物线的表达式,并在网格图中,以O为原点建立平面直角坐标系,画出这条抛物线的大致图像;(2)小林这一次投掷沙球能否获胜?请说明理由.11.(2021·江苏·九年级专题练习)如图,以60米/秒的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:米)与飞行时间t(单位:秒)之间有下列函数关系:h=30t﹣5t2.依据所给信息,解决下列问题:(1)小球的飞行高度是否能达到25米?如果能,需要飞行的时间是多少?(2)小球的飞行高度是否能达到45米?如果能,需要飞行的时间是多少?请直接写出答案:.(3)小球从飞出到落地要用多少时间(设地面是水平的)?12.(2021·江苏·无锡市太湖格致中学九年级阶段练习)已知,足球球门高2.44米,宽7.32米(如图1)在射门训练中,一球员接传球后射门,击球点A距离地面0.4米,即AB=0.4米,球的运动路线是抛物线的一部分,当球的水平移动距离BC为6米时,球恰好到达最高点D,即CD=4.4米.以直线BC为x轴,以直线AB为y轴建立平面直角坐标系(如图2).(1)求该抛物线的表达式;(2)若足球恰好击中球门横梁,求该足球运动的水平距离;(3)若要使球直接落在球门内,则该球员应后退m米后接球射门,击球点为A′(如图3),请直接写出m 的取值范围.13.(2022·江苏·西安交大苏州附中九年级阶段练习)科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽路空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.(1)直接写出y1与x之间的函数关系式;(2)求出y2与x之间的函数关系式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?14.(2021·江苏南京·二模)如图①,小明和小亮分别站在平地上的C、D两地先后竖直向上抛小球A、B(抛出前两小球在同一水平面上),小球到达最高点后会自由竖直下落到地面.A、B两球到地面的距离y1(m)和y2(m)与小球A离开小明手掌后运动的时间x(s)之间的函数图像分别是图②中的抛物线C1、C2.已知抛物线C1经过点P(0,2),顶点是Q(1,7),抛物线C2经过M(1,2)和N(2,5)两点,两抛物线的开口大小相同.(1)分别求出y1、y2与x之间的函数表达式.(2)在小球B离开小亮手掌到小球A落到地面的过程中.①当x的值为__________时,两小球到地面的距离相等;②当x为何值时,两小球到地面的距离之差最大?最大是多少?15.(2021·江苏·盐城市初级中学二模)小明为了能在4月份的体育加试中取得好成绩,每天进行掷实心球训练:当投掷实心球时会产生竖直向上的速度和水平向前的速度,研究表明:当这两个速度相等时,投掷距离最远.实心球在投掷的过程中的高度y与实心球出手后的时间t满足:y=-5t2+bt+2,水平距离x=at,a是出手后实心球水平向前的速度,b为出手后竖直向上的速度.(1)当a=b=4√2m/s时,①写出x与t的函数表达式为,y与t的函数表达式为;②结合所给的平面直角坐标系,求出y与x的函数表达式及此时投掷距离.(2)当a=b时,点O为投掷点,实心球落在圆心角为45°的∠AOB区域内时成绩有效,以实心球的落地点与投掷点O的距离为学生的投掷距离,已知落地点P在∠AOB区域内且到边界的距离PM=√2m,PN=6m,求出小明投掷的距离及实心球在此次投掷中的最高高度.m,16.(2021·江苏·九年级专题练习)在一次篮球比赛中,如图,队员甲正在投篮.已知球出手时离地面209与篮圈中心的水平距离为7m,球出手后水平距离为4m时达到最大高度4m,设篮球运行轨迹为抛物线,篮圈距地面3m.(1)建立如图所示的平面直角坐标系,求此抛物线的解析式;(2)此时球能否准确投中?(3)此时,对方队员乙在甲面前1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?17.(2022·江苏·如皋市石庄镇初级中学九年级阶段练习)如图①,一个可调节高度的喷灌架喷射出的水流可以近似地看成抛物线.图②是喷射出的水流在平面直角坐标系中的示意图,其中喷灌架置于点O处,喷水头的高度(喷水头距喷灌架底部的距离)设置的是1米,当喷射出的水流距离喷水头水平距离为8米时,达到最大高度5米.(1)求水流运行轨迹的函数解析式;(2)若在距喷灌架12米处有一棵3.5米高的果树,问:水流是否会碰到这棵果树?请通过计算说明.18.(2022·江苏·九年级专题练习)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x−ℎ)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m,身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.19.(2022·江苏·九年级专题练习)某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同。

7.二次函数的图象和性质九年级数学下册专题培优训练含答案

7.二次函数的图象和性质九年级数学下册专题培优训练含答案

二次函数的图象和性质九年级数学下册专题培优训练一、选择题1、有以下关于函数y =2x 2的图象的说法:(1)图象有最低点;(2)图象为轴对称图形;(3)图象与y 轴的交点为原点; (4)图象的开口向上. 其中正确的有( )A .1个B .2个C .3个D .4个2、已知点(1,y 1),(2,y 2),(3,y 3)均在函数y =2020x 2的图象上,则下列关于y 1,y 2,y 3的大小关系正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 3<y 2<y 13、对于抛物线y=—21(x+1)2+3,有下列结论:①开口向下;②对称轴为直线x=1;③顶点坐标为(-1,3); ④当x>1时,y 随x 的增大而减小.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、函数y=x 2+2x+1写成y=a(x -h)2+k 的形式是( )A.y=21(x -1)2+2B.y=21(x -1)2+21C.y=21(x -1)2-3D.y=21(x+2)2-1 5、在同一坐标系中,一次函数y=﹣mx+n 2与二次函数y=x 2+m 的图象可能是( ). A. B. C. D.6、二次函数y=ax 2+bx+c (a ≠0)的图象上部分点的坐标(x ,y )的对应值列表如下:x … -3 -2 -1 0 1 …y … -3 -2 -3 -6 -11 …则该函数图象的对称轴是 ( )A .直线x=-3B .直线x=-2C .直线x=-1D .直线x=07、函数y=x 2-4x+3的图象的顶点坐标是 ( )A .(2,-1)B .(-2,1)C .(-2,-1)D .(2,1)8、已知一次函数y =b ax +c 的图像如图所示,则二次函数y =ax 2+bx +c 在平面直角坐标系中的图像可能是( )x ≤4)( )A .有最大值2,有最小值-2.5B .有最大值2,有最小值1.5C 2.5D .有最大值2,无最小值10的图象如图所示,有下列结论:①ac<0; ②b-2a<0; ③b>0; ④a-b+c<0.其中正确的是( )A.①②B.①④C.②③D.②④二、填空题11、二次函数y =14x 2的图象开口向________,对称轴是________,图象最低点的坐标是________,当x =2时, y =________,当y =1时,x =________.12、已知二次函数y =12x 2的图象如图所示,线段AB ∥x 轴,交二次函数图象于A ,B 两点,且点A 的横坐标为2,则AB 的长为________.13、二次函数y=ax 2+bx+c 的图象如图6所示,当x=2时,y 的值为 .14、将抛物线22y x x =-向上平移3个单位,再向右平移4个单位得到的抛物线是__15、已知函数y =x 2+2x +1,当y =0时,x =________;当1<x <2时,y 随x 的增大而________(填写“增大”或“减小”).16、已知二次函数y=x 2+2mx+2,当x>2时,y 随x 的增大而增大,则实数m 的取值范围是 .17、已知二次函数y =ax 2+bx +c (a ≠0)与一次函数y =kx +m (k ≠0)的图象相交于点A (-2,4),B (8,2),如图所示,能使y 1>y 2成立的x 取值范围是 .18、平移抛物线y =x 2+2x -8,使它经过原点,写出平移后抛物线的一个解析式19、已知二次函数y =ax 2+bx +c 的x 、y 的部分对应值如下表:x … ﹣2 ﹣1 0 1 2 …y … ﹣5 0 3 4 3 …根据表格中的信息回答:若y =﹣5,则对应x 的值是 .20、如图,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x =﹣2,点C 在抛物线上,且位于点A 、B 之间(C 不与A 、B 重合)若△ABC 的周长为a ,则四边形AOBC 的周长为_________.(用含a 的式子表示)三、解答题21、已知二次函数216y ax bx =++的图象经过点(-2,40)和点(6,-8)(1)分别求a 、b 的值,并指出二次函数图象的顶点、对称轴;(2)当26x -≤≤时,试求二次函数y 的最大值与最小值.22、如图,已知直线l 过A (4,0),B (0,4)两点,它与二次函数y =ax 2的图象在第一象限内交于点P .若△AOP 的面积为92,求a 的值.23、已知一条抛物线的开口方向和开口大小与抛物线y =2x 2的都相同,顶点与y =-(x +2)2的顶点相同.(1)求抛物线的解析式;(2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?(3)当x 取何值时,函数有最大(或小)值?最大(或小)值是多少?24、如图,已知二次函数y=-21x 2+bx-6的图象与x 轴交于点A (2,0),与y 轴交于点B ,对称轴与x 轴交于点C ,连接BA ,BC ,求△ABC 的面积.25、如图,二次函数y =ax 2+bx +c (a >0)图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1,3.与y 轴负半轴交于点C .(1)若△ABD 是等腰直角三角形,求a 的值.(2)探究:是否存在a ,使得△ACB 是等腰三角形?若存在,求出符合条件的a 的值;不存在,说明理由.二次函数的图象和性质九年级数学下册专题培优训练(答案)一、选择题1、有以下关于函数y =2x 2的图象的说法:(1)图象有最低点;(2)图象为轴对称图形;(3)图象与y 轴的交点为原点; (4)图象的开口向上. 其中正确的有( D )A .1个B .2个C .3个D .4个2、已知点(1,y 1),(2,y 2),(3,y 3)均在函数y =2020x 2的图象上,则下列关于y 1,y 2,y 3的大小关系正确的是( A )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 3<y 2<y 13、对于抛物线y=—21(x+1)2+3,有下列结论:①开口向下;②对称轴为直线x=1;③顶点坐标为(-1,3); ④当x>1时,y 随x 的增大而减小.其中正确的有(C ) A .1个 B .2个 C .3个 D .4个4、函数y=21x 2+2x+1写成y=a(x -h)2+k 的形式是( D ) A.y=21(x -1)2+2 B.y=21(x -1)2+21 C.y=21(x -1)2-3 D.y=21(x+2)2-1 5、在同一坐标系中,一次函数y=﹣mx+n 2与二次函数y=x 2+m 的图象可能是( D ). A. B. C. D.6、二次函数y=ax 2+bx+c (a ≠0)的图象上部分点的坐标(x ,y )的对应值列表如下:x … -3 -2 -1 0 1 …y … -3 -2 -3 -6 -11 …则该函数图象的对称轴是 ( B )A .直线x=-3B .直线x=-2C .直线x=-1D .直线x=07、函数y=x 2-4x+3的图象的顶点坐标是 ( A )A .(2,-1)B .(-2,1)C .(-2,-1)D .(2,1)8、已知一次函数y =b ax +c 的图像如图所示,则二次函数y =ax 2+bx +c 在平面直角坐标系中的图像可能是( A )9、已知二次函数的图象(0≤x ≤4)如图.关于该函数在所给自变量的取值范围内,下列说法正确的是( A) A .有最大值2,有最小值-2.5 B .有最大值2,有最小值1.5C 2.5D .有最大值2,无最小值10的图象如图所示,有下列结论:①ac<0; ②b-2a<0; ③b>0; ④a-b+c<0.其中正确的是( A )A.①②B.①④C.②③D.②④二、填空题11、二次函数y =14x 2的图象开口向________,对称轴是________,图象最低点的坐标是________,当x =2时, y =________,当y =1时,x =________.答案:上 y 轴 (0,0) 1 2或-212、已知二次函数y =12x 2的图象如图所示,线段AB ∥x 轴,交二次函数图象于A ,B 两点,且点A 的横坐标为2,则AB 的长为____ 4____.13、二次函数y=ax 2+bx+c 的图象如图6所示,当x=2时,y 的值为 2 .14、将抛物线22y x x =-向上平移3个单位,再向右平移4个单位得到的抛物线是__ _21027y x x =-+__15、已知函数y =x 2+2x +1,当y =0时,x =________;当1<x <2时,y 随x 的增大而________(填写“增大”或“减小”).答案: -1 增大16、已知二次函数y=x 2+2mx+2,当x>2时,y 随x 的增大而增大,则实数m 的取值范围是 .[解析] 该抛物线的对称轴为直线x=-=-=-m.∵a=1>0,∴抛物线开口向上,∴当x>-m 时,y 随x 的增大而增大.又∵当x>2时,y 随x 的增大而增大,∴-m ≤2,解得m ≥-2.17、已知二次函数y =ax 2+bx +c (a ≠0)与一次函数y =kx +m (k ≠0)的图象相交于点A (-2,4),B (8,2),如图所示,能使y 1>y 2成立的x 取值范围是 .x <-2或x >8; .18、平移抛物线y =x 2+2x -8,使它经过原点,写出平移后抛物线的一个解析式 答案不惟一,如,y =x 2+2x ;19、已知二次函数y =ax 2+bx +c 的x 、y 的部分对应值如下表:x … ﹣2 ﹣1 0 1 2 …y … ﹣5 0 3 4 3 …根据表格中的信息回答:若y =﹣5,则对应x 的值是 .【解答】解:由表格中的数据知,该抛物线的对称轴是x =1,∵当x =﹣2时,y =5,∴根据抛物线的对称性质得到:当x =4时,y =﹣5,综上所述,当x =﹣2或x =4时,y =﹣5.故答案是:﹣2或4.20、如图,在平面直角坐标系中,点A 在第二象限,以A 为顶点的抛物线经过原点,与x 轴负半轴交于点B ,对称轴为直线x =﹣2,点C 在抛物线上,且位于点A 、B 之间(C 不与A 、B 重合)若△ABC 的周长为a ,则四边形AOBC 的周长为_________.(用含a 的式子表示)解答:如图,∵对称轴为直线x =﹣2,抛物线经过原点、x 轴负半轴交于点B ,∴OB =4,∵由抛物线的对称性知AB =AO ,∴四边形AOBC 的周长为AO +AC +BC +OB =△ABC 的周长+OB =a +4,故答案为:a +4.三、解答题21、已知二次函数216y ax bx =++的图象经过点(-2,40)和点(6,-8)(1)分别求a 、b 的值,并指出二次函数图象的顶点、对称轴;(2)当26x -≤≤时,试求二次函数y 的最大值与最小值.解:(1)根据题意,将点(-2,40)和点(6,-8)代入216y ax bx =++,得:421640366168a b a b -+=⎧⎨++=-⎩,解得:110a b =⎧⎨=-⎩, ∴二次函数解析式为:()22101659y x x x =-+=--,该二次函数图象的顶点坐标为:(5,-9),对称轴为x=5;(2)由(1)知当x=5时,y 取得最小值-9,在-2≤x ≤6中,当x=-2时,y 取得最大值40,∴最大值y=40,最小值y=-9.22、如图,已知直线l 过A (4,0),B (0,4)两点,它与二次函数y =ax 2的图象在第一象限内交于点P .若△AOP 的面积为92,求a 的值. y),直线l 的函数表达式为y =kx +b ,将A(4,0),B(0,4)分别代入y =kx +b ,计算可得k =-1,b =4,故y =-x +4.∵△AOP 的面积为92=12×4y ,∴y =94. 再把y =94代入y =-x +4,得x =74, ∴P(74,94). 把P(74,94)代入y =ax 2中,得a =3649.23、已知一条抛物线的开口方向和开口大小与抛物线y =2x 2的都相同,顶点与y =-(x +2)2的顶点相同.(1)求抛物线的解析式;(2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?(3)当x 取何值时,函数有最大(或小)值?最大(或小)值是多少?解:(1)设所求抛物线为y =a (x -h )2.∵抛物线开口方向和大小与y =2x 2相同,∴a =2,∴所求抛物线为y =2(x -h )2.又∵抛物线的顶点与y =-(x +2)2的顶点相同,∴顶点为(-2,0),代入y=2(x -h )2解得h =-2,∴y =2(x +2)2;(2)当x >-2时,y 随x 的增大而增大;当x <-2时,y 随x 的增大而减小;(3)当x =-2时,函数有最小值,最小值为0.24、如图,已知二次函数y=-21x 2+bx-6的图象与x 轴交于点A (2,0),与y 轴交于点B ,对称轴与x 轴交于点C ,连接BA ,BC ,求△ABC 的面积.解:将A (2,0)代入y=-x 2+bx-6, 得0=-2+2b-6,解得b=4,∴二次函数的表达式为y=-x 2+4x-6. 当x=0时,y=-6,∴点B 的坐标为(0,-6).∵抛物线的对称轴为直线x=-=4, ∴点C 的坐标为(4,0),∴S △ABC =AC ·OB=×(4-2)×6=6.25、如图,二次函数y =ax 2+bx +c (a >0)图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1,3.与y 轴负半轴交于点C .(1)若△ABD 是等腰直角三角形,求a 的值.(2)探究:是否存在a ,使得△ACB 是等腰三角形?若存在,求出符合条件的a 的值;不存在,说明理由.【解答】解:(1)如图,作DE ⊥AB 于点E , AB =3﹣(﹣1)=4,∵△ABD 是等腰直角三角形,∴DE =AB =2,则D 的坐标是(1,﹣2).设二次函数的解析式是y =a (x ﹣1)2﹣2,把(﹣1,0)代入得4a ﹣2=0, 解得:a =.(2)存在,分三种情况:①当AB =BC 时,∴CB =AB =4,在Rt △OBC 中,OB 2+OC 2=BC 2,∴OC 2=BC 2﹣OB 2=16﹣9=7,∴OC =,∴C (0,﹣),设二次函数的解析式为:y =a (x +1)(x ﹣3),将C (0,﹣)代入,∴a =,②当AB=AC时,∴AC=AB=4,在Rt△AOC中,AO2+OC2=AC2,∴OC2=16﹣1=15,∴OC=,则C(0,﹣),y=a(x+1)(x﹣3),∴a=,③当AC=BC时,∵CO⊥AB,∴O是AB的中点,而AO=1,BO=3,∴AO≠BO,∴AC=BC不成立,∴a=或.。

2025年北师大版九年级下册数学第2章培优拔高练 二次函数的综合应用

2025年北师大版九年级下册数学第2章培优拔高练 二次函数的综合应用

当 C2 的顶点坐标为 Q(-h,10+k)时, y2=a(x+h)2+10+k,
将点 A(-h-2,8+k)的坐标代入上式,得 4a+10+k=8+k,
解得 a=-12;
当 C2 的顶点坐标为 Q(-h,6+k)时,y2=a(x+h)2+6+k,将
点 A(-h-2,8+k)的坐标代入上式,得 4a+6+k=8+k,解
【点拨】
由题意,设抛物线 L2 的表达式为 y=54(x-h)2+k,由题意得 D921,-10.∴易知抛物线 L2 的对称轴是直线 x=4+912- 2 4=247.∴抛物线 L2 的表达式为 y=54x-2472+k. 将点 B(4,-10)的坐标代入上式,得-10=544-2472+k, 解得 k=-1 62445,∴顶点 C 的坐标为247,-1 62445. ∴最低点 C 离水面的距离为1 62445-10=66045(m).
(1)
x023456
y 0 1 2.25 4 6.25 9 请用平滑的曲线在图②将上述点连接,并求出y与x的
关系式;
解:描点,连线,函数图象如图所示.
观察图象知,函数为二次函数,
设抛物线的表达式为
c=0,
a=14,
y=ax2+bx+c,由题意得4a+2b+c=1,
解得b=0,
16a+4b+c=4,
得 a=21.
综上,a 的值为12或-12.
返回
第二章 二次函数 培优拔高练 二次函数的Leabharlann 合应用温馨提示:点击 进入讲评
1 2
1. [2024 陕西师大附中八模改编]如图,在平面直 角坐标系中,某跳水运动员站在跳台上的 O 处 进行 10 m 跳台跳水训练,水面平行于 x 轴, 水面边缘点 E 的坐标为-32,-10.运动员(将 运动员看成一点)在空中运动的路线是经过原 点 O、最高点 A、入水点 B 的抛物线 L1,最高 点 A 的坐标为1,54.

九年级数学下册《二次函数》能力提升1 (含答案)

九年级数学下册《二次函数》能力提升1  (含答案)

第二章 二次函数能力提高一、选择题1.观察函数2y x =的图象,则下列判断中正确的是( )A.若,a b 互为相反数,财x a =与x b =的函数值相等。

B.对于同一个自变量x ,有两个函数值与其对应。

C.对任意实数x ,都有y >0。

D.对任意实数y ,都有两个x 与其对应。

2.已知h 关于t 的函数关系式为21(2h gt g =为常数,t 为时间),则函数图象为( )3.某工厂从国外进口了一套机器设备,现价值为50万元,但该套设备每年的折旧率为x ,那么两年之后这台机器的价值为y 万元,则y 与x 之间的函数关系式可以写为( )A.250(1)y x =-B.50(1)y x =-C.250y x =-D.230(1)y X =+4.如图,当ab >0时,抛物线2y ax =与直线y ax b =+的图象在同一坐标系内大致是( )二、填空题5. 把二次函数22y x =+的图象向下平移4个单位,得到的函数图象对应的解析式为 。

6.与二次函数2122y x =+的图象关于x 轴对称的图象对应的二次函数解析式为 。

7.抛物经①23y x =,②223y x =,③243y x =-中的开口从大到小顺序是 。

8.已知二次函数2(0)y ax c ac =+≠,当取1212,()x x x x ≠时,函数值相等,则当x 取12x x +时,函数值为 。

三、解答题9. 如图,某大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8m ,两侧距地面4m 高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6m 。

求校门高(精确到0.1m ,水泥建筑物厚度忽略不计)。

10.已知抛物线2y x k =+与x 轴交于A ,B 两点,与y 轴交于点C ,且△ABC 为直角三角形,求抛物线2y x k =+的顶点坐标。

11.在同一平面直角坐标系内画出下列二次函数的图象①2112y x =-+ ②2122y x =-- 观察你所画的图象,并回答下列问题 (1) 两条抛物线的开口方向,顶点坐标和对称轴(2) 抛物线2112y x =-+通过怎样的平移可以得到抛物线2122y x =--,反之,抛物线2122y x =--通过怎样的平移可得到抛物线2112y x =-+? (3) 请你根据你所画的抛物线,说出2y ax k =+的开口方向,对称轴和顶点坐标。

九年级数学 二次函数的专项 培优练习题含详细答案

九年级数学 二次函数的专项 培优练习题含详细答案

九年级数学 二次函数的专项 培优练习题含详细答案一、二次函数1.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D .(1)求该二次函数的解析式及点C ,D 的坐标;(2)点(,0)P t 是x 轴上的动点,①求PC PD -的最大值及对应的点P 的坐标;②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2||23y a x a x =-+的图像只有一个公共点,求t 的取值范围.【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或332t ≤<或72t =. 【解析】【分析】(1)先利用对称轴公式x=2a 12a--=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标;(3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ 过点(0,3),即点Q 与点C 重合时,两图象有一个公共点,当线段PQ 过点(3,0),即点P 与点(3,0)重合时,两函数有两个公共点,写出t 的取值;②线段PQ 与当函数y=a|x|2-2a|x|+c (x≥0)时有一个公共点时,求t 的值;③当线段PQ 过点(-3,0),即点P 与点(-3,0)重合时,线段PQ 与当函数y=a|x|2-2a|x|+c (x <0)时也有一个公共点,则当t≤-3时,都满足条件;综合以上结论,得出t 的取值.【详解】解:(1)∵2a x 12a-=-=, ∴2y ax ax 3=-+的对称轴为x 1=.∵2y ax ax 3=-+人最大值为4,∴抛物线过点()1,4.得a 2a 34-+=,解得a 1=-.∴该二次函数的解析式为2y x 2x 3=-++.C 点坐标为()0,3,顶点D 的坐标为()1,4.(2)①∵PC PD CD -≤,∴当P,C,D 三点在一条直线上时,PC PD -取得最大值.连接DC 并延长交y 轴于点P ,PC PD CD -===∴PC PD -.易得直线CD 的方程为y x 3=+.把()P t,0代入,得t 3=-.∴此时对应的点P 的坐标为()3,0-.②2y a |x |2a x 3=-+的解析式可化为22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩ 设线段PQ 所在直线的方程为y kx b =+,将()P t,0,()Q 0,2t 的坐标代入,可得线段PQ 所在直线的方程为y 2x 2t =-+.(1)当线段PQ 过点()3,0-,即点P 与点()3,0-重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时t 3=-. ∴当t 3≤-时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (2)当线段PQ 过点()0,3,即点Q 与点C 重合时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点,此时3t 2=. 当线段PQ 过点()3,0,即点P 与点()3,0重合时,t 3=,此时线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像有两个公共点. 所以当3t 32≤<时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点. (3)将y 2x 2t =-+带入()2y x 2x 3x 0=-++≥,并整理,得2x 4x 2t 30-+-=. ()Δ1642t 3288t =--=-.令288t 0-=,解得7t 2=. ∴当7t 2=时,线段PQ 与函数22x 23,0,y x 23,0.x x x x ⎧-++≥=⎨--+<⎩的图像只有一个公共点.综上所述,t 的取值范围为t 3≤-或3t 32≤<或7t 2=. 【点睛】 本题考查了二次函数的综合应用,先利用待定系数法求解析式,同时把最大值与三角形的三边关系联系在一起;同时对于二次函数利用动点求取值问题,从特殊点入手,把函数分成几部分考虑,按自变量从大到小的顺序或从小到大的顺序求解.2.如图,抛物线y =ax 2+bx (a ≠0)过A (4,0),B (1,3)两点,点C 、B 关于抛物线的对称轴对称,过点B 作直线BH ⊥x 轴,交x 轴于点H .(1)求抛物线的表达式;(2)直接写出点C 的坐标,并求出△ABC 的面积;(3)点P 是抛物线上一动点,且位于第四象限,是否存在这样的点P ,使得△ABP 的面积为△ABC 面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由;(4)若点M 在直线BH 上运动,点N 在x 轴正半轴上运动,当以点C ,M ,N 为顶点的三角形为等腰直角三角形时,请直接写出此时△CMN 的面积.【答案】(1)y =-x 2+4x ;(2)C (3,3),面积为3;(3)P 的坐标为(5,-5);(4)52或5. 【解析】 试题分析:(1)利用待定系数法进行求解即可;(2)先求出抛物线的对称轴,利用对称性即可写出点C 的坐标,利用三角形面积公式即可求面积;(3)利用三角形的面积以及点P 所处象限的特点即可求;(4)分情况进行讨论,确定点M 、N ,然后三角形的面积公式即可求.试题解析:(1)将A (4,0),B (1,3)代入到y =ax 2+bx 中,得16403a b a b +=⎧⎨+=⎩ ,解得14a b =-⎧⎨=⎩ , ∴抛物线的表达式为y =-x 2+4x .(2)∵抛物线的表达式为y=-x2+4x,∴抛物线的对称轴为直线x=2.又C,B关于对称轴对称,∴C(3,3).∴BC=2,∴S△ABC=12×2×3=3.(3)存在点P.作PQ⊥BH于点Q,设P(m,-m2+4m).∵S△ABP=2S△ABC,S△ABC=3,∴S△ABP=6.∵S△ABP+S△BPQ=S△ABH+S梯形AHQP∴6+12×(m-1)×(3+m2-4m)=12×3×3+12×(3+m-1)(m2-4m)整理得m2-5m=0,解得m1=0(舍),m2=5,∴点P的坐标为(5,-5).(4)52或5.提示:①当以M为直角顶点,则S△CMN=52;②当以N为直角顶点,S△CMN=5;③当以C为直角顶点时,此种情况不存在.【点睛】本题是二次函数的综合题,主要考查待定系数法求解析式,三角形面积、直角三角形的判定等,能正确地根据题意确定图形,分情况进行讨论是解题的关键.3.二次函数y=x2-2mx+3(m>)的图象与x轴交于点A(a,0)和点B(a+n,0)(n >0且n为整数),与y轴交于C点.(1)若a=1,①求二次函数关系式;②求△ABC的面积;(2)求证:a=m-;(3)线段AB(包括A、B)上有且只有三个点的横坐标是整数,求a的值.【答案】(1)y=x2-4x+3;3;(2)证明见解析;(3)a=1或a=−.【解析】试题分析:(1)①首先根据a=1求得A的坐标,然后代入二次函数的解析式,求得m的值即可确定二次函数的解析式;②根据解析式确定抛物线与坐标轴的交点坐标,从而确定三角形的面积;(2)将原二次函数配方后即可确定其对称轴为x=m,然后根据A、B两点关于x=m对称得到a+n-m=m-a,从而确定a、m、n之间的关系;(3)根据a=m-得到A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,求得m 的值即可确定a的值.试题解析:(1)①∵a=1,∴A(1,0),代入y=x2-2mx+3得1-2m+3=0,解得m=2,∴y=x2-4x+3;②在y=x2-4x+3中,当y=0时,有x2-4x+3=0可得x=1或x=3,∴A(1,0)、B(3,0),∴AB=2再根据解析式求出C点坐标为(0,3),∴OC=3,△ABC的面积=×2×3=3;(2)∵y=x2-2mx+3=(x-m)2-m2+3,∴对称轴为直线x=m,∵二次函数y=x2-2mx+3的图象与x轴交于点A和点B∴点A和点B关于直线x=m对称,∴a+n-m=m-a,∴a=m-;(3)y=x2-2mx+3(m>)化为顶点式为y=(x-m)2-m2+3(m>)①当a为整数,因为n>0且n为整数所以a+n是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=2,∴a=m-1,∴A(m-1,0)代入y=(x-m)2-m2+3得(x-m)2-m2+3=0,∴m2-4=0,∴m=2,m=-2(舍去),∴a=2-1=1,②当a不是整数,因为n>0且n为整数所以a+n不是整数,∵线段AB(包括A、B)上有且只有三个点的横坐标是整数,∴n=3,∴a=m-∴A(m-,0)代入y=(x-m)2-m2+3得0=(m--m)2-m2+3,∴m2=,∴m=,m=-(舍去),∴a=−,综上所述:a=1或a=−.考点:二次函数综合题.4.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A (0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)如图2,∵PH ⊥OB 于H ,∴∠DHB=∠AOB=90°,∴DH ∥AO ,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE ∥x 轴、PD ⊥x 轴,∴∠DPE=90°,若△PDE 为等腰直角三角形,则∠EDP=45°,∴∠EDP 与∠BDH 互为对顶角,即点E 与点A 重合,则当y=6时,﹣12x 2+2x+6=6, 解得:x=0(舍)或x=4,即点P (4,6). 【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.5.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y1 3 =x2﹣3;(3)M的坐标为(33,6)或(3,﹣2).【解析】【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【详解】(1)将C(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:390ba b=-⎧⎨+=⎩,解得:133ab⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y13=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°3=设DC为y=kx﹣33,0),可得:k3=联立两个方程可得:233133y xy x⎧=-⎪⎨=-⎪⎩,解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩,, 所以M 1(33,6);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°-15°=30°,∴OE =OC •tan60°=33,设EC 为y =kx ﹣3,代入(33,0)可得:k 33=, 联立两个方程可得:233133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩,, 所以M 2(3,﹣2).综上所述M 的坐标为(33,6)或(3,﹣2).【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.6.如图,已知直线y kx 6=-与抛物线2y ax bx c =++相交于A ,B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上。

苏教版九年级下册第一章-二次函数提优训练

苏教版九年级下册第一章-二次函数提优训练

二次函数的提高培优训练【例题精讲】一、关于二次函数的图像例题1、(2011•随州)已知函数y=22(1)1(3)(5)1(3)x xyx x⎧--≤⎪=⎨-->⎪⎩,若使y=k成立的x值恰好有三个,则k的值为()【变式练习】(2012•贵港)若直线y=m(m为常数)与函数y=2(2)4(2)x xxx⎧≤⎪⎨>⎪⎩的图象恒有三个不同的交点,则常数m的取值范围是_______。

例题2、(2012•西宁)如同,二次函数y=ax2+bx+c的图象过(-1,1)、(2,-1)两点,下列关于这个二次函数的叙述正确的是()A.当x=0时,y的值大于1 B.当x=3时,y的值小于0C.当x=1时,y的值大于1 D.y的最大值小于0【变式练习】(2012•济南)如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0 B.当x=0时,y的值大于1C.当x=-1时,y的值大于1 D.当x=-3时,y的值小于0例题3、(2012•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数y=ax在同一平面直角坐标系中的图象大致是()【变式练习】(2011•昭通)函数y=ax2+a与y=ax(a≠0),在同一坐标系中的图象可能是()例题4、(2010•乐山)设a、b是常数,且b>0,抛物线y=ax2+bx+a2-5a-6为下图中四个图象之一,则a的值为()【变式练习】1、(2008•仙桃潜江江汉)如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为() A.0 B.-1 C.1 D.22、(2010•新疆)抛物线y=-x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是_________. 【课堂练习】1、(2011•威海)二次函数y=x 2-2x-3的图象如图所示.当y <0时,自变量x 的取值范围是( ) A .-1<x <3 B .x <-1 C .x >3 D .x <-3或x >32、(2010•潍坊)已知函数y 1=x 2与函数y 2=132x -+ 的图象大致如图.若y 1<y 2,则自变量x 的取值范围是( )3.(2010•攀枝花)如图所示,是二次函数y=ax 2-bx+2的大致图象,则函数y=-ax+b 的图象不经过( )二、关于二次函数的性质例题1、(2012•宜宾)给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题: ①直线y=0是抛物线y=214x 的切线; ②直线x=-2与抛物线y=214x 相切于点(-2,1);③直线y=x+b 与抛物线y=214x 相切,则相切于点(2,1); ④若直线y=kx-2与抛物线y=214x 相切,则实数其中正确命题的是( )A .①②④B .①③C .②③D .①③④【变式练习】(2012•南宁)如变式练习1图,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴相同,则下列关系不正确的是( ) A .k=n B .h=m C .k <n D .h <0,k <0例题2、(2012•南宁)已知二次函数y=ax 2+bx+1,一次函数y=k (x-1)-24k ,若它们的图象对于任意的非零实数k 都只有一个公共点,则a ,b 的值分别为( ) A .a=1,b=2 B .a=1,b=-2 C .a=-1,b=2 D .a=-1,b=-2【变式练习】(2012•河北)如变式练习2图,抛物线y 1=a (x+2)2-3与y 2=12(x-3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结论:①无论x 取何值,y 2的值总是正数;②a=1;③当x=0时,y 2-y 1=4;④2AB=3AC ;其中正确结论是( )A .①②B .②③C .③④D .①④例题3、(2012•德阳)设二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c 的取值范围是( )A .c=3B .c≥3C .1≤c≤3D .c≤3【变式练习】.(2011•广安)若二次函数y=(x-m )2-1,当x≤l 时,y 随x 的增大而减小,则m 的取值范围是( )A .m=1B .m >lC .m≥1D .m≤1【课堂练习】1、(2012•咸宁)对于二次函数y=x2-2mx-3,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3.其中正确的说法是 _________.(把你认为正确说法的序号都填上)2、(2012•长春)在平面直角坐标系中,点A是抛物线y=a(x-3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为_________.3、(2010•株洲)已知二次函数y=(x-2a)2+(a-1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”.如图分别是当a=-1,a=0,a=1,a=2时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y=________二次函数图像与系数的关系例题1、(2012•重庆)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=-12.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b 【变式练习1】、(2012•衡阳)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当-1<x<3时,y>0,其中正确的个数为()A.1 B.2 C.3 D.4例题2、(2012•仙桃天门潜江江汉)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c >0.其中正确的有()A.3个 B.2个 C.1个 D.0个【变式练习2】(2011•雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A.①②③④ B.②④⑤ C.②③④ D.①④⑤例题3、(2012•乐山)二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t值的变化范围是()A.0<t<1 B.0<t<2 C.1<t<2 D.-1<t<1【变式练习】(2011•孝感)如图,二次函数y=ax2+bx+c的图象与y 轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.4【课堂练习】1、(2011•山西)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A.ac>0 B.方程ax2+bx+c=0的两根是x1=-1,x2=3C.2a-b=0 D.当x>0时,y随x的增大而减小2、(2011•泸州)已知二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的图象如图所示,有下列结论:①abc>0,②b2-4ac<0,③a-b+c>0,④4a-2b+c<0,其中正确结论的个数是()A.1 B.2 C.3 D.43、(2011•广西)已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1.其中正确的项是()A.①⑤ B.①②⑤ C.②⑤ D.①③④4、(2010•昭通)二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a<0,b<0,c>0,b2-4ac>0 B.a>0,b<0,c>0,b2-4ac<0 C.a<0,b>0,B.c<0,b2-4ac>0 D.a<0,b>0,c>0,b2-4ac>05、(2010•铁岭)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论,其中正确的结论是()A.abc>0 B.b>a+c C.2a-b=0 D.b2-4ac<06、.(2010•广安)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②b<a+c;③2a+b=0;④a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.1个 B.2个 C.3个 D.4个7、.(2008•鄂州)小明从图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确信息的个数有()A.2个 B.3个 C.4个 D.5个8、(2012•孝感)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<3时,y>0.其中正确的是 _______(把正确的序号都填上).9、(2011•日照)如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b >2a ;③ax 2+bx+c=0的两根分别为-3和1;④a-2b+c >0.其中正确的命题是_______.(只要求填写正确命题的序号)10、.(2010•枣庄)已知抛物线y=ax 2+bx+c (a≠0)经过点(-1,0),且顶点在第一象限.有下列三个结论:①a <0;②a+b+c >0;③-2ba>0.把正确结论的序号填在横线上___________。

2022--2023学年北师大版九年级数学下册《2-4二次函数的应用》同步提升训练(附答案)

2022--2023学年北师大版九年级数学下册《2-4二次函数的应用》同步提升训练(附答案)

2022--2023学年北师大版九年级数学下册《2.4二次函数的应用》同步提升训练(附答案)一.选择题1.如图,某学校拟建一块矩形花圃,打算一边利用学校现有的墙(墙足够长),其余三边除门外用栅栏围成,栅栏总长度为50m,门宽为2m.这个矩形花圃的最大面积是()A.169m2B.288m2C.338m2D.312.5m22.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2,小球运动到最高点所需的时间是()A.2s B.3s C.4s D.5s3.小明用一根长40cm的铁丝围成一个矩形(如图),他发现矩形邻边的长度a,b及面积S 是三个变量.有下面三个结论:①b是a的一次函数;②S是a的一次函数;③S是a的二次函数.其中所有正确结论的序号是()A.①②B.①③C.②③D.①②③4.向空中发射一枚炮弹,第x秒时的高度为y米,且高度与时间的关系为y=ax2+bx+c(a ≠0),若此炮弹在第6秒与第16秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第11秒D.第16秒5.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;③小球抛出3秒时,速度为0;④当t=1.5s时,小球的高度h=30m.其中正确的是()A.②③B.②③④C.①②④D.①③④二.填空题6.如图,在四边形ABCD中,∠A=∠D=120°,AB=6、AD=4,点E、F分别在线段AD、DC上(点E与点A、D不重合),若∠BEF=120°,AE=x、DF=y,则y关于x 的函数关系式为.7.如图,Rt△ABC中,∠ACB=90°,AC=BC=8,D为AB中点,E、F是边AC、BC上的动点,E从A出发向C运动,同时F以相同的速度从C出发向B运动,F运动到B停止,当AE为时,△ECF的面积最大.8.小燕去参观一个蔬菜大棚,大棚横截面为抛物线,有关数据如图所示,已知小燕的身高1.40米,在她不弯腰的情况下,横向活动范围有米.9.如图,规格为60cm×60cm的正方形地砖在运输过程中受损,断去一角,量得AF=30cm,CE=45cm.现准备从五边形地砖ABCEF上截出一个面积为S的矩形地砖PMBN,则S 最大值是.10.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的序号是.11.为了在校运会中取得更好的成绩,小丁积极训练,在某次试投中铅球所经过的路线是如图所示的抛物线的一部分.已知铅球出手处A距离地面的高度是1.68米,当铅球运行的水平距离为2米时,达到最大高度2米的B处,则小丁此次投掷的成绩是米.12.如图,有一座抛物线形拱桥,桥下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米.若洪水到来时,水位以每小时0.2米的速度上升,则再持续小时水位才能到拱桥顶.13.如图,一位篮球运动员投篮,球沿抛物线y=﹣0.2x2+x+2.25运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m,则他距篮筐中心的水平距离OH是m.14.斜抛小球,小球触地后呈抛物线反弹,每次反弹后保持相同的抛物线形状(开口方向与开口大小前后一致),第一次反弹后的最大高度为h1,第二次反弹后的最大高度为h2.第二次反弹后,小球越过最高点落在垂直于地面的挡板C处,且离地高度BC=h1,若OB=90dm,OA=2AB.则为.15.某产品进货单价为90元,按100元一件出售时,能售500件,如果这种商品每涨价1元,其销售量就减少10件,为了获得最大利润,其单价应定为元.16.“水晶晶南浔”的美食文化中以特有的双交画出名,盛面的瓷碗截面图如图1所示,碗体DEC呈抛物线状(碗体厚度不计),点E是抛物线的顶点,碗底高EF=1cm,碗底宽AB=2cm,当瓷碗中装满面汤时,液面宽CD=8cm,此时面汤最大深度EG=6cm,将瓷碗绕点B缓缓倾斜倒出部分面汤,如图2,当∠ABK=30°时停止,此时液面CH宽cm;碗内面汤的最大深度是cm.三.解答题17.如图,要用篱笆(虚线部分)围成一个矩形苗圃ABCD,其中两边靠的墙足够长,中间用平行于AB的篱笆EF隔开,已知篱笆的总长度为18米,设矩形苗圃ABCD的一边AB 的长为x(m),矩形苗圃ABCD面积为y(m2).(1)求y与x的函数关系式;(2)求所围矩形苗圃ABCD的面积最大值.18.某景区超市销售一种纪念品,这种商品的成本价15元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于24元/件,市场调查发现,该商品每天的销售量y(件)与销售单价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售单价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?19.如图,在一次足球比赛中,守门员在地面O处将球踢出,一运动员在离守门员8米的A 处发现球在自己头上的正上方4米处达到最高点M,球落地后又一次弹起.据实验测算,足球在空中运行的路线是一条抛物线,在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球第一次落地之前的运动路线的函数表达式及第一次落地点B和守门员(点O)的距离;(2)运动员(点A)要抢到第二个落点C,他应再向前跑多少米?(假设点O、A、B、C在同一条直线上,结果保留根号)20.如图,一小球M从斜坡OA上的O点处抛出,球的抛出路线是抛物线的一部分,建立如图所示的平面直角坐标系,斜坡可以用一次函数y=x刻画.若小球到达的最高的点坐标为(4,8),解答下列问题:(1)求抛物线的表达式;(2)在斜坡OA上的B点有一棵树,B点的横坐标为2,树高为4,小球M能否飞过这棵树?通过计算说明理由;(3)求小球M在飞行的过程中离斜坡OA的最大高度.21.二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),与y轴交于点C,点P为第二象限内抛物线上一点,连接BP、AC,交于点Q,过点P作PD⊥x轴于点D.(1)求二次函数的表达式;(2)连接P A,PC,求S△P AC的最大值;(3)连接BC,当∠DPB=2∠BCO时,求直线BP的表达式.22.如图(1),直线y=﹣x+3与x轴、y轴分别交于点B(3,0)、点C(0,3),经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式与点P的坐标;(2)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值;(3)连接AC,点N在x轴上,点M在对称轴上,①是否存在使以B、P、N为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由;②是否存在点M,N,使以C、P、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.(图(2)、图(3)供画图探究)参考答案一.选择题1.解:设花圃的长为x,面积为y,则y关于x的函数表达式为:y=(50+2﹣x)x=﹣x2+26x=﹣(x﹣26)2+338,∵,∴2≤x<52.∴当x=26时,面积最大为338m2.2.解:h=30t﹣5t2=﹣5(t﹣3)2+45,∵﹣5<0,∴当t=3时,h有最大值,最大值为45.故选:B.3.解:①由题意得:a+b=×40=20,b=20﹣a,则b是a的一次函数,故①正确,符合题意;②S=ab=a(20﹣a)=﹣a2+20a,则S是a的二次函数,故②错误,不符合题意;③S是a的二次函数,由②知S是a的二次函数,故③正确,符合题意.故选:B.4.解:∵此炮弹在第6秒与第18秒时的高度相等,∴抛物线的对称轴直线是:x==11,∴x=11时,函数值最大,即第11秒炮弹所在高度最高,故选:C.5.解:①由图象知小球在空中经过的路程是40×2=80m;故①错误;②当t=6时,高度为0,则运动时间是6s,或由图象可知,小球6s时落地,故小球运动的时间为6s,故②正确;③小球抛出3秒时达到最高点即速度为0,故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O点(0,0)代入得0=a(0﹣3)2+40,解得:,∴,当t=1.5时,,解得:h=30米,故④正确;综上,正确的有②③④.故选:B.二.填空题6.解:∵∠A=∠D=120°,∴∠ABE+∠AEB=60°,∵∠BEF=120°,∴∠AEB+∠DEF=60°,∴∠ABE=∠DEF,∴△ABE∽△DEF,∴=,∵AE=x、DF=y,AB=6、AD=4,∴,∴,故答案为:.7.解:设点E运动的距离为a,则点F运动的距离也为a,S△ECF==,∴当a=4时,△ECF的面积最大,故答案为:4.8.解:如图建立坐标系,设抛物线的解析式为y=ax2+3.2,将点B(4,0)代入得:16a+3.2=0,解得:a=﹣,则抛物线的解析式为y=﹣x2+3.2,当y=1.4时,﹣x2+3.2=1.4,解得:x=3或x=﹣3,所以横向活动的范围为3﹣(﹣3)=6米,故答案为:6.9.解:延长MP交CD与点G,设MP为x,PN为y,则EG=y﹣45,PG=60﹣x.∵PG∥FD,∴△EPG∽△EFD,∴y=﹣x+75(30≤x≤60),∴S=xy=(﹣x+75)x=﹣x2+75x=﹣(x﹣75)2+,∵﹣<0,∴当x<75时,S随x的增大而增大,∵30≤x≤60,∴当x=60时,S最大,最大值为2700cm2.故答案为:2700cm2.10.解:①∵(﹣1,0),(3,0)和(0,3)坐标都满足函数y=|x2﹣2x﹣3|,∴①是正确的;②从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线x=1,因此②也是正确的;③根据函数的图象和性质,发现当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大,因此③也是正确的;④函数图象的最低点就是与x轴的两个交点,根据y=0,求出相应的x的值为x=﹣1或x=3,因此④也是正确的;⑤从图象上看,当x<﹣1或x>3,存在函数值要大于当x=1时的y=|x2﹣2x﹣3|=4,因此⑤是不正确的;故答案为:①②③④.11.解:建立坐标系,如图所示:由题意得:A(0,1.68),B(2,2),点B为抛物线的顶点,设抛物线的解析式为y=a(x﹣2)2+2,把A(0,1.68)代入得:4a+2=1.68,解得a=﹣0.08,∴y=﹣0.08(x﹣2)2+2,令y=0,得﹣0.08(x﹣2)2+2=0,解得x1=7,x2=﹣3(舍),∴小丁此次投掷的成绩是7米.故答案为:7.12.解:设抛物线的解析式为y=ax2,设D(5,b),则B(10,b﹣3),把D、B的坐标分别代入y=ax2得:,解得,∴y=﹣x2;∵b=﹣1,∴拱桥顶O到CD的距离为1,1÷0.2=5(小时).所以再持续5小时到达拱桥顶.故答案为:5.13.解:当y=3.05时,3.05=﹣0.2x2+x+2.25,x2﹣5x+4=0,(x﹣1)(x﹣4)=0,解得:x1=1,x2=4,故他距篮筐中心的水平距离OH是4m.故答案为:4.14.解:∵OB=90,OA=2AB,∴OA=60,AB=30,设第一次反弹后的抛物线解析式为y=a(0﹣30)2+h1,∵抛物线过原点O,∴a(x﹣30)2+h1=0,解得:h1=﹣900a,∵每次反弹后保持相同的抛物线形状(开口方向与开口大小前后一致),∴两个抛物线的a是相同的,设二次反弹后的抛物线解析式为y=a(x﹣m)2+h2,∵BC=h1,h1=﹣900a,∴BC=﹣600a,∵抛物线过A,C两点,∴,解得:,∴==.故答案为:.15.解:设单价定为x,总利润为W,则可得销量为:500﹣10(x﹣100),单件利润为:(x﹣90),由题意得,W=(x﹣90)[500﹣10(x﹣100)]=﹣10x2+2400x﹣135000=﹣10(x﹣120)2+9000,故可得,当x=120时,W取得最大,即为了获得最大利润,其单价应定为120元.故答案为:120.16.解:以F为原点,直线AB为x轴,直线EF为y轴,建立平面直角坐标系,如图:由题意知:F(0,0),E(0,1),C(4,7),D(﹣4,7),设抛物线的解析式为:y=ax2+1,把点C(4,7)代入得,7=a+1,解得:a=,∴y=x2+1,将瓷碗绕点B缓缓倾斜倒出部分面汤,当∠ABK=30°时停止,所以旋转前CH与水平方向的夹角为30°,即∠DCH=30°,设直线CH的解析式为y=kx+b,与y轴交于点G,如图:由题意知:点C(4,7),∵∠DCH=30°,CK=4,∴KG=4tan30°=4,即点G(0,3),∴,解得:,∴直线CH的解析式为:y=x+3,由,解得或,∴H(﹣,),∴CH==.把直线CH:y=x+3,向下平移m个单位得到直线l1:y=x﹣m,当直线l1与抛物线只有一个交点l时,两平行线之间的距离最大,过G作GJ⊥l1,交l1于点J,与y 轴交于点M,GJ的长即为碗内面汤的最大深度,联立,整理为:x2﹣x+1+m=0,∵只要一个交点,∴Δ=0,即b2﹣4ac=﹣4××(1+m)=0,解得:m=﹣,∴直线l1的解析式为:y=x+,∴点M(0,),GM=3﹣=,∵CH与水平面的夹角为30°,∴直线l1与水平面的夹角为30°,即∠MGJ=30°,∴在Rt△GMJ中,GJ=GM cos30°=×=,即碗内面汤的最大深度为:,故答案为:,.三.解答题17.解:(1)设AB=xm,则有BC=(18﹣2x)m,根据题意得:y=x(18﹣2x)=﹣2x2+18x,∴y与x的函数关系式y=﹣2x2+18x;(2)二次函数y=﹣2x2+18x=﹣2(x﹣)2+,∵﹣2<0,∴二次函数图象开口向下,∴当x=时,y有最大值,最大值为,答:围矩形苗圃ABCD的面积最大值为m2.18.解:(1)设y与x的函数解析式为y=kx+b,将(15,45)、(24,36)代入,得:,解得:,所以y与x的函数解析式为y=﹣x+60(15≤x≤24);(2)根据题意知,W=(x﹣15)y=(x﹣15)(﹣x+60)=﹣x2+75x﹣900,∵a=﹣1<0,∴当x<时,W随x的增大而增大,∵15≤x≤24,∴当x=24时,W取得最大值,最大值为324,答:每件销售价为24元时,每天的销售利润最大,最大利润是324元.19.解:(1)设足球第一次落地之前的运动路线的函数表达式为y=a(x﹣8)2+4,根据其顶点为(8,4),过点O(0,0)得0=64a+4,解得:a=﹣,∴y=﹣(x﹣8)2+4.当y=0时,﹣(﹣8)2+4=0,解得:x=0(舍去)或x=16,答:足球第一次落地之前的运动路线的函数表达式为y=﹣(x﹣8)2+4,第一次落地点B和守门员(点O)的距离为16米;(2)设第一次落地之后的运动路线的函数表达式为y=﹣(x﹣m)2+2,由题意,得0=﹣(16﹣m)2+2,解得m=16+4或m=16﹣4(舍去),∴y=﹣(x﹣16﹣4)2+2.当y=0时,0=﹣(x﹣16﹣4)2+2.解得:x=16+8或x=16.∴他应从A点再往前的距离为:16+8﹣8=(8+8)米.答:他应再向前跑(8+8)米.20.解:(1)∵小球到达的最高的点坐标为(4,8),∴设抛物线的表达式为y=a(x﹣4)2+8,把(0,0)代入得,0=a(0﹣4)2+8,解得:a=﹣,∴抛物线的表达式为y=﹣(x﹣4)2+8;(2)当x=2时,y1=x=1,y2=﹣(x﹣4)2+8=6,∵6﹣1>4,∴小球M能飞过这棵树;(3)小球M在飞行的过程中离斜坡OA的高度h=﹣(x﹣4)2+8﹣x=﹣(x﹣)2+,∴小球M在飞行的过程中离斜坡OA的最大高度为.21.解:(1)∵二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),∴,解得:,∴二次函数的表达式为y=﹣x2﹣3x+4.(2)将x=0代入y=﹣x2﹣3x+4得,y=4,∴点C(0,4),设直线AC所在直线的表达式为y=k1x+b1,则,解得:,∴直线AC的表达式为y=x+4,如图,设PD与线段AC交于点N,设P(t,﹣t2﹣3t+4),∵PD⊥x轴交AC于点N,∴N(t,t+4),∴PN=y P﹣y N=﹣t2﹣4t,过点C作CH⊥PD,则CH=﹣t,AD=t+4,∴S△APC=S△APN+S△PCN====﹣2t2﹣8t,∵a=﹣2<0,∴当t=﹣2时,S△APC有最大值,△P AC面积的最大值为8.(3)如图,设BP与y轴交于点E,∵PD∥y轴,∴∠DPB=∠OEB,∵∠DPB=2∠BCO,∴∠OEB=2∠BCO,∴∠ECB=∠EBC,∴BE=CE,∵C(0,4),B(1,0),∴OC=4,OB=1,设OE=a,则CE=BE=4﹣a,在Rt△BOE中,BE2=OE2+OB2,∴(4﹣a)2=a2+12,解得:a=,∴E(0,),设BP所在直线表达式为y=kx+b(k≠0),∴,解得:,∴直线BP的表达式为y=﹣x+.22.解:(1)将点B(3,0)、点C(0,3)代入y=x2+bx+c,得,解得:,∴抛物线的解析式为y=x2﹣4x+3,∵y=(x﹣2)2﹣1,∴顶点P的坐标为(2,﹣1).(2)设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=﹣x+3,如图(1),过点E作y轴的平行线交直线BC于点F,设点E(x,x2﹣4x+3),则点F(x,﹣x+3),∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE====﹣x2+x,∵S△CBE=﹣(x﹣)2+,∴当x=时,△EBC的面积最大值为;∴E(,﹣).(3)①对y=x2﹣4x+3,当y=0时,x2﹣4x+3=0,解得:x=1或x=3,∴A(1,0),∵B(3,0),C(0,3),∴OC=OB=3,AB=2,BC=3,AC=,∴∠ABC=45°,∵B(3,0),P(2,﹣1),∴∠PBN=45°,PB=,∴∠PBN=∠ABC,如图(2),当△ABC∽△PBN时,,∴,∴BN=3,∴N1(0,0);当△ABC∽△NBP时,,∴,∴NB=,∴N2(,0);综上所述,当点N的坐标为(0,0)或(,0)时,以点B、P、N为顶点的三角形与△ABC相似.②如图(3),C(0,3),P(2,﹣1),设M(2,y),N(x,0),(i)以CN为对角线时,,解得:,∴M1(2,4),N1(4,0);(ii)以CP为对角线时,,解得:,∴M2(2,2),N2(0,0);(iii)以CM为对角线时,,解得:,∴M3(2,﹣4),N3(0,0);综上所述,当点M的坐标为(2,4)或(2,2)或(2,﹣4)时,存在以C、P、M、N 为顶点的四边形是平行四边形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级下册《二次函数》的应用培优提高【基础知识回顾】一、二次函数与一元二次方程:二次函数y= ax2+bx+c的同象与x轴的交点的横坐标对应着一元二次方程ax2+bx+c=0的实数根,它们都由根的判别式决定抛物线x轴有个交点<=b2-4ac>0=>一元二次方程有实数根抛物线x轴有个交点<=b2-4ac=0=>一元二次方程有实数根抛物线x轴有个交点<=b2-4ac<0=>一元二次方程有实数根【教师提醒:若抛物线与x轴有两交点为A(x1,0)B(x2,0)则抛物线对称轴式x= 两交点间距离AB 】二、二次函数解析式的确定:1、设顶点式,即:设当知道抛物线的顶点坐标或对称轴方程与函数最值时,除代入这一点外,再知道一个点的坐标即可求函数解析式2、设一般式,即:设知道一般的三个点坐标或自变量与函数的三组对应数值可设为一般式,从而列三元一次方程组求的函数解析式【教师提醒:求二次函数解析式,根据具体同象特征灵活设不同的关系或除上述常用方法以外,还有:如抛物线顶点在原点可设以y轴为对称轴,可设顶点在x轴上,可设抛物线过原点等】三、二次函数的应用1、实际问题中解决最值问题:步骤:1、分析数量关系建立模型2、设自变量建立函数关系3、确定自变量的取值范围4、根据顶点坐标公式或配法结合自变量的取值范围求出函数最值2、与一次函数或直线形图形结合的综合性问题一般步骤:1、求一些特殊点的坐标2、将点的坐标代入函数关系式求出函数的解析式3、结合图像根据自变量取值讨论点的存在性或图形的形状等问题【教师提醒:1、在有关二次函数最值的应用问题中一定要注意自变量的取值范围2、有关二次函数综合性问题中一般作为中考压轴题出现,解决此类问题时要将题目分解开来,讨论过程中要尽量将问题】【重点考点例析】考点一:二次函数的最值例1.已知:M,N两点关于y轴对称,且点M在双曲线12yx=上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x()A.有最大值,最大值为92- B.有最大值,最大值为92C.有最小值,最小值为92D.有最小值,最小值为92-思路分析:先用待定系数法求出二次函数的解析式,再根据二次函数图象上点的坐标特征求出其最值即可.解:∵M,N 两点关于y 轴对称,点M 的坐标为(a ,b ),∴N 点的坐标为(-a ,b ), 又∵点M 在反比例函数12y x=的图象上,点N 在一次函数y=x+3的图象上, ∴123b a b a ⎧=⎪⎨⎪=-+⎩,整理得123 ab a b ⎧=⎪⎨⎪+=⎩,故二次函数y=-abx 2+(a+b )x 为y=12-x 2+3x , ∴二次项系数为12-<0,故函数有最大值,最大值为y=239124()2-=⨯-, 故选:B .对应训练1.(2012•兰州)已知二次函数y=a (x+1)2-b (a≠0)有最小值1,则a ,b 的大小关系为( )A .a >bB .a <bC .a=bD .不能确定解:∵二次函数y=a (x+1)2-b (a≠0)有最小值,∴抛物线开口方向向上,即a >0;又最小值为1,即-b=1,∴b=-1,∴a>b .故选A .考点二:确定二次函数关系式例2 (2012•珠海)如图,二次函数y=(x-2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b 的图象经过该二次函数图象上点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x-2)2+m 的x思路分析:(1)将点A (1,0)代入y=(x-2)2+m 求出m 的值,根据点的对称性,将y=3代入二次函数解析式求出B 的横坐标,再根据待定系数法求出一次函数解析式;(2)根据图象和A 、B 的交点坐标可直接求出kx+b≥(x-2)2+m 的x 的取值范围.解:(1)将点A (1,0)代入y=(x-2)2+m 得,(1-2)2+m=0,1+m=0,m=-1,则二次函数解析式为y=(x-2)2-1.当x=0时,y=4-1=3,故C 点坐标为(0,3),由于C 和B 关于对称轴对称,在设B 点坐标为(x ,3),令y=3,有(x-2)2-1=3,解得x=4或x=0.则B 点坐标为(4,3).设一次函数解析式为y=kx+b ,将A (1,0)、B (4,3)代入y=kx+b 得,0 43k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,则一次函数解析式为y=x-1; (2)∵A、B 坐标为(1,0),(4,3),∴当kx+b≥(x-2)2+m 时,1≤x≤4.对应训练2.(2012•佳木斯)如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0).(1)求此抛物线的解析式;(2)写出顶点坐标及对称轴;(3)若抛物线上有一点B,且S△OAB=3,求点B的坐标.分析:(1)直接把(0,0),(2,0)代入y=x2+bx+c中,列方程组求b、c的值即可;(2)将二次函数解析式写成顶点式,可求顶点坐标及对称轴;(3)设点B的坐标为(a,b),根据三角形的面积公式求b的值,再将纵坐标b代入抛物线解析式求a的值,确定B点坐标.解:(1)把(0,0),(2,0)代入y=x2+bx+c得420cb=⎧⎨+=⎩,解得2bc=-⎧⎨=⎩,所以解析式为y=x2-2x。

(2)∵y=x2-2x=(x-1)2-1,∴顶点为(1,-1),对称轴为:直线x=1 。

(3)设点B的坐标为(a,b),则12×2|b|=3,解得b=3或b=-3,∵顶点纵坐标为-1,-3<-1 (或x2-2x=-3中,x无解)∴b=3,∴x2-2x=3,解得x1=3,x2=-1。

所以点B的坐标为(3,3)或(-1,3)。

考点三:二次函数与x轴的交点问题例3 (2012•天津)若关于x的一元二次方程(x-2)(x-3)=m有实数根x1、x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>14-;③二次函数y=(x-x1)(x-x2)+m的图象与x轴交点的坐标为(2,0)和(3,0).其中,正确结论的个数是()A.0 B.1 C.2 D.3思路分析:将已知的一元二次方程整理为一般形式,根据方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集即可对选项②进行判断;再利用根与系数的关系求出两根之积为6-m,这只有在m=0时才能成立,故选项①错误;将选项③中的二次函数解析式整理后,利用根与系数关系得出的两根之和与两根之积代入,整理得到确定出二次函数解析式,令y=0,得到关于x的方程,求出方程的解得到x的值,确定出二次函数图象与x轴的交点坐标,即可对选项③进行判断.解:一元二次方程(x-2)(x-3)=m化为一般形式得:x2-5x+6-m=0,∵方程有两个不相等的实数根x1、x2,∴b2-4ac=(-5)2-4(6-m)=4m+1>0,解得:m>14-,故选项②正确;∵一元二次方程实数根分别为x1、x2,∴x1+x2=5,x1x2=6-m,而选项①中x1=2,x2=3,只有在m=0时才能成立,故选项①错误;二次函数y=(x-x1)(x-x2)+m=x2-(x1+x2)x+x1x2+m=x2-5x+(6-m)+m=x2-5x+6=(x-2)(x-3),令y=0,可得(x-2)(x-3)=0,解得:x=2或3,∴抛物线与x轴的交点为(2,0)或(3,0),故选项③正确.综上所述,正确的结论有2个:②③.故选C.对应训练3.(2012•株洲)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=-1,则该抛物线与x轴的另一交点坐标是()A.(-3,0) B.(-2,0) C.x=-3 D.x=-2解:抛物线与x轴的另一个交点为B(b,0),∵抛物线与x轴的一个交点A(1,0),对称轴是x=-1,∴12b=-1,解得b=-3,∴B(-3,0).故选A.考点四:二次函数的实际应用例4 (2012•绍兴)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=-112(x-4)2+3,由此可知铅球推出的距离是 m.思路分析:根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.解:令函数式y=-112(x-4)2+3中,y=0,0=-112(x-4)2+3,解得x1=10,x2=-2(舍去),即铅球推出的距离是10m.故答案为:10.例5 (2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满月份x123456输送的污水量y1(吨)12000600040003000240020007至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为y2=ax2+c(a≠0).其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:z1=12x,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:z2=34x-112x2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W (元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a 的整数值.(参考数据: 231≈,419≈, 809≈)思路分析:(1)利用表格中数据可以得出xy=定值,则y 1与x 之间的函数关系为反比例函数关系求出即可,再利用函数图象得出:图象过(7,10049),(12,10144)点,求出解析式即可;(2)利用当1≤x≤6时,以及当7≤x≤12时,分别求出处理污水的费用,即可得出答案;(3)利用今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a 一30)%,得出等式12000(1+a%)××[1+(a-30)%]×(1-50%)=18000,进而求出即可.解:(1)根据表格中数据可以得出xy=定值,则y 1与x 之间的函数关系为反比例函数关系: y 1=k x ,将(1,12000)代入得:k=1×12000=12000,故y 1=2000x(1≤x≤6,且x 取整数); 根据图象可以得出:图象过(7,10049),(12,10144)点,代入y 2=ax 2+c(a≠0)得:1004949 10144144 a c a c =+⎧⎨=+⎩,解得: 1 10000a c =⎧⎨=⎩,故y 2=x 2+10000(7≤x≤12,且x 取整数); (2)当1≤x≤6,且x 取整数时: W=y 1•z 1+(12000-y 1)•z 2=1200012x x +(12000-12000x )•(34x-112x 2), =-1000x 2+10000x-3000,∵a=-1000<0,x=2b a-=5,1≤x≤6,∴当x=5时,W 最大=22000(元), 当7≤x≤12时,且x 取整数时, W=2×(12000-y 2)+=2×(12000-x 2-10000)+(x 2+10000),=-12x 2+1900, ∵a=-12<0,x=2b a-=0,当7≤x≤12,W 随x 增大而减小,∴当x=7时,W 最大=(元), ∵22000>,∴去年5月用于污水处理的费用最多,最多费用是22000元;(3)由题意得:12000(1+a%)××[1+(a-30)%]×(1-50%)=18000,设t=a%,整理得:10t2+17t-13=0,解得:t=1780920-±,∵809≈,∴t1≈,t2≈(舍去),∴a≈57,答:a的值是57.对应训练4.(2012•襄阳)某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式是y=,该型号飞机着陆后滑行 m才能停下来.解:∵<0,∴函数有最大值.∴s最大值=2606004( 1.5)-=⨯-,即飞机着陆后滑行600米才能停止.故答案为:600.5.(2012•益阳)已知:如图,抛物线y=a(x-1)2+c与x轴交于点A(1-3,0)和点B,将抛物线沿x轴向上翻折,顶点P落在点P'(1,3)处.(1)求原抛物线的解析式;(2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x轴的平行线交抛物线于C、D两点,将翻折后得到的新图象在直线CD以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比51-(约等于).请你计算这个“W”图案的高与宽的比到底是多少(参考数据:5≈,6≈,结果可保留根号)考点:二次函数的应用.分析:(1)利用P与P′(1,3)关于x轴对称,得出P点坐标,利用待定系数法求出二次函数的解析式即可;(2)根据已知得出C,D两点坐标,进而得出“W”图案的高与宽(CD)的比.解:(1)∵P与P′(1,3)关于x轴对称,∴P点坐标为(1,-3);∵抛物线y=a(x-1)2+c过点A(30),顶点是P(1,-3),∴22(131)0(11) 3a ca c⎧+=⎪⎨-+=-⎪⎩;解得13ac=⎧⎨=-⎩;则抛物线的解析式为y=(x-1)2-3,即y=x2-2x-2.(2)∵CD平行x轴,P′(1,3)在CD上,∴C、D两点纵坐标为3;由(x-1)2-3=3,解得:x1=1-6,x2=1+6,∴C、D两点的坐标分别为(1-6,3),(1+6,3)∴CD=26。

相关文档
最新文档