2017年考研数学典型试题分析
2017考研数一真题答案及详细解析
O 在 式中令y '=o得x = — l,x = l.
当x 分别取 — 1和1时 ,由x3 +y 3 -3x+3y — 2 = 0得 y ( —1) = O,y (1) =1.
将x = — l,y ( —l) = O 及 y '(-1) = 0代入@式得 y" ( —1) = 2.
因为y'c -1) =o,y"c -1)>o,所以y ( — 1) = 0是 y (x)的极小值.
2017年(数 一)真题答案解析
一、选择题
Cl) A
l —cos石 解由f(x) = { ax'
b'
x>O
'在
x
=
O
处连续
,
得limf(x) x一o+
=
b.
x�O
l — cos石
x
又limf(x)= lim-
= lim
=上 =b.
x-o +
_,. •ll I
ax
ce�千o + 2ax 2a
所以ab = —2 .故应选 A.
xn
=l
X +x·
所以,S(x )
=(1
X +x)
1
1 =o三) 2
,x
E
C — 1,1).
故应填 Cl+x)
2
·
03) 2
解 (Aa 1 ,Aa 2 ,Aa 3 ) = ACa 1 ,a z ,a 3 ),因为a 1 ,a z ,a 3 线性无关,故矩阵(a 1 心心)可逆, 所以,r(Aa 1 ,Aa 2 ,Aa 3 ) = r(A),易知,r(A) = 2. 故应填2. (14) 2
2017年全国研究生入学考试考研数学(一)真题及答案解析
一点的密度为 9 x2 y2 z2 ,记圆锥面与柱面的交线为 C 。
(I)求 C 在 xOy 面上的投影曲线的方程;
3
(9)已知函数
f
(x)
1 1 x2
,则
f
(3) (0)
_______。
【答案】 0
【解析】
因为
f
(
x)
1
1 x2
1 x2
x4
x6
n
( x2 )
n0
n
(1) x2n
n0
n
f (x) (1) 2n(2n 1)(2n 2)x 2n3
n0
将 x 0 带入 f (0) 0
(10)微分方程 y 2 y 3y 0 的通解为 y _______。
程或演算步骤.
(15)(本题满分 10 分)设函数
f (u, v) 具有 2 阶连续偏导数,y
f (ex , cos x) ,求 dy dx
d2y
x0
,
dx2
x0 。
【解析】由复合函数求导法则,可得:
dy dx
f1ex
f2(sin x)
dy 故 dx
x0
f1(1,1)
进一步地:
5
d2y dx2
ex
[V2
(t
)
V1
(t
)]dt
,由定积分的几何意义可知,
25
0 [V2
(t)
V1 (t )]dt
20
10
10
,可知
t0
25
,故选(C)。
(5)设 是 n 维单位列向量, E 为 n 阶单位矩阵,则
(A) E T 不可逆
(B) E T 不可逆
2017考研数学一真题及答案解析
2017考研数学一真题及答案解析2017年考研数学一真题及答案解析2017年考研数学一真题是考研数学一科目中的一道重要题目,对考生的数学能力和解题思路有一定的考察。
下面将对这道题目进行详细的解析。
题目内容如下:已知函数f(x)满足f(0)=-1,对任意的x>0,有f'(x)=e^(-x)·f(x)。
求f(x)的表达式。
解析:首先,根据已知条件可知f(x)是一个可导函数,并且f(0)=-1。
我们需要求解f(x)的表达式。
根据题目中给出的条件,我们可以得到f'(x)=e^(-x)·f(x)。
这是一个一阶线性常微分方程。
我们可以通过分离变量的方法来求解。
首先,将方程两边同时除以f(x),得到f'(x)/f(x)=e^(-x)。
接下来,我们对方程两边同时进行积分,得到∫f'(x)/f(x) dx = ∫e^(-x) dx。
对左边的积分进行计算,得到ln|f(x)|= -e^(-x) + C1。
其中C1是积分常数。
接下来,我们对右边的积分进行计算,得到-e^(-x) + C2。
其中C2是积分常数。
综上,我们得到ln|f(x)|= -e^(-x) + C1,或者写成ln|f(x)|= e^(-x) + C2。
然后,我们可以对上式两边同时取指数,得到|f(x)|= e^(-e^(-x) + C1),或者写成|f(x)|= e^(e^(-x) + C2)。
由于f(x)是一个函数,所以f(x)的取值可以是正数或者负数。
因此,我们可以将上式分为两种情况来讨论。
情况一:当f(x)>0时,|f(x)|= f(x)。
此时,我们可以得到f(x)= e^(e^(-x) + C2)。
情况二:当f(x)<0时,|f(x)|= -f(x)。
此时,我们可以得到-f(x)= e^(e^(-x) + C2)。
综上,我们可以得到f(x)的表达式为:f(x)= e^(e^(-x) + C2),当f(x)>0时;f(x)= -e^(e^(-x) + C2),当f(x)<0时。
2017年考研数学一真题及答案解析
在 至少有两个不同实根。
得证。
(19)(本题满分10分)
设薄片型物体 是圆锥面 被柱面 割下的有限部分,其上任一点的密度为
。记圆锥面与柱面的交线为
求 在 平面上的投影曲线的方程;
求 的 质量。
【答案】64
【解析】
(1)由题设条件知, 的方程为
则 在 平面的方程为
(2)
(20)(本题满分11分)设3阶矩阵 有3个不同的特征值,且 。
【答案】2
【解析】 ,故
。令 ,则 =
因此 .
三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
(15)(本题满分10分)
设函数 具有2阶连续偏导数, ,求 ,
【答案】
【解析】
结论:
(16)(本题满分10分)求
【答案】
【解析】
(17)(本题满分10分)
因为 ,∴A可相似对角化,且
由 可知B特征值为2,2,1.
因为 ,∴B不可相似对角化,显然C可相似对角化,
∴ ,且B不相似于C
(7)设 为随机概率,若 ,则 的充分必要条件是()
【答案】A
【解析】按照条件概率定义展开,则A选项符合题意。
(8)设 为来自总体 的简单随机样本,记 ,则下列结论中不正确的是()
【答案】B
【解析】
由于找不正确的结论,故B符合题意。
二、填空题:914小题,每小题4分,共24分,请将答案写在答题纸指定位置上.
(9)已知函数 ,则 =__________
【答案】
【解析】
(10)微分方程 的通解为 _________
【答案】 ,( 为任意常数)
2017考研数一真题及答案解析
设函数
f
(u, v) 具有 2 阶连续偏导数,
y
f (ex , cos x) ,求 dy dx
d2y x0 , dx2
x0
【答案】 dy dx
x0
f1'
(1,1),
d 2y dx 2
x0
f ''
11
(1,1),
【解析】
x0
y f (ex , cos x) y(0) f (1,1)
dy dx x0
() 方程 f (x) 0 在区间 (0,1) 内至少存在一个实根;
() 方程 f (x) f '(x) ( f '(x))2 0 在区间 (0,1) 内至少存在两个不同实根。
【答案】 【解析】
(I) f (x) 二阶导数, f (1) 0, lim f (x) 0 x x0
解:1)由于 lim f (x) 0 ,根据极限的保号性得 x x0
【答案】C
【解析】
f
(x)
f
'(x)
0,
f f
(x) 0 (1)
'(x) 0
或
f f
(x) 0 '(x) 0
(2)
,只有
C
选项满足
(1)
且满足
(2)
,所以选
C。
(3)函数 f (x, y, z) x2 y z2 在点 (1, 2, 0) 处沿向量 u 1, 2, 2 的方向导数为( )
(A)12 (B)6 (C)4 (D)2
【答案】D
【解析】 gradf {2xy, x 2, 2z}, gradf
(1,2,0)
{4,1, 0}
2017考研数学三真题及解析
2017年考研数学真题一、选择题:1~8 小题,每小题4 分,共32 分.下列每题给出的四个选项中,只有一个是符合题目要求的,请将所选项前的字母填在答题纸...指定的位置上. (1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在x =0连续,则 (A)12ab =(B)12ab =- (C)0ab = (D)2ab =【答】应选(A )【解】由连续的定义可知:0lim ()lim ()(0)x x f x f x f -+→→==,其中0(0)lim ()x f f x b -→==,20001112lim ()lim lim 2x x x f x ax ax a +++→→→-===,从而12b a =,也即12ab =,故选(A )。
(2) 二元函数(3)z xy x y =--的极值点( )(A)(0,0) (B)(0,3) (C)(3,0) (D)(1,1) 【答】应选(D).【解】(3)(32)xz y x y xy y x y '=---=-- (3)(32)y z x x y xy x x y '=---=--2xx z y ''=-,322xy z x y ''=--,2yy z x ''=-验证可得(A )、(B )、(C )、(D )四个选项均满足00x yz z '=⎧⎨'=⎩,其中(D)选项对应(1,1)2xx A z ''==-,(1,1)1xy B z ''==-,(1,1)2yy C z ''==-满足230AC B -=>,所以该点为极值点.(3) 设函数()f x 可导,且()()0f x f x '>则(A)()()11f f >- (B)()()11f f <- (C)()()11f f >- (D)()()11f f <-【答】应选(C).【解】令2()()F x f x =,则有()2()()F x f x f x ''=,故()F x 单调递增,则(1)(1)F F =-,即22[(1)][(1)]f f >-,即(1)(1)f f >-,故选C .(4) 若级数211sin ln 1n k nn ∞=⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦∑收敛,则()k =(A)1 (B)2 (C)-1 (D)-2【答】(C ) 【解】由332211111111sinln(1)()()62k k o k o n n n n n n n n--=-++++232111(1)()26k k o n n n n=++-+,又211[sinln(1)]n k n n∞=--∑收敛,故有10k +=,即1k =-,故选C 。
2017年全国硕士研究生入学统一考试数学三真题及答案解析 .doc
2017年全国硕士研究生入学统一考试数学三真题及答案解析一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)二原函数)3(y x xy z--=的极值点为( ))(A )0,0(。
)(B )3,0(。
)(C )0,3(。
)(D )1,1(。
【答案】)(D【解】由⎪⎩⎪⎨⎧=--='=--='023,02322x xy x z y xy y z yx 得⎩⎨⎧==0,0y x ⎩⎨⎧==1,1y x ⎩⎨⎧==3,0y x ⎩⎨⎧==0,3y x y z xx 2-='',y x z xy 223--='',x z yy 2-='',当)0,0(),(=y x 时,092<-=-B AC ,则)0,0(不是极值点;当)1,1(),(=y x 时,032>=-B AC 且02<-=A ,则)1,1(为极大点,应选)(D 。
(3)设函数)(x f 可导,且0)()(>'⋅x f x f ,则( ))(A )1()1(->f f 。
)(B )1()1(-<f f 。
)(C |)1(||)1(|->f f 。
)(D |)1(||)1(|-<f f 。
【答案】)(C 【解】若0)(>x f ,则0)(>'x f ,从而0)1()1(>->f f ;若0)(<x f ,则0)(<'x f ,从而0)1()1(<-<f f ,故|)1(||)1(|->f f ,应选)(C 。
2017年考研数学一真题及答案解析
2017全国研究生入学考试考研数学一真题本试卷满分150,考试时间180分钟一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.(1)若函数1,0(),0x f x axb x ⎧->⎪=⎨⎪≤⎩,在0x =处连续,则( ) (A )12ab =(B )12ab =-(C )0ab =(D )2ab =(2)若函数()f x 可导,且()()0f x f x '>,则( ) (A )(1)(1)f f >-(B )(1)(1)f f <-(C )(1)(1)f f >-(D )(1)(1)f f <-(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量n =(1,2,2)的方向导数为() (A )12(B )6(C )4(D )2(4)甲、乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单位:m/s ),虚线表示乙的速度2()v v t =,三块阴影部分面积的数值依次为10203、、,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )(A )010t =(B )01520t << (C )025t =(D )025t >(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则 (A )T E αα-不可逆 (B )T E αα+不可逆(C )2T E αα+不可逆(D )2T E αα-不可逆(6)设矩阵200021001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,210020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,100020002C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 (A )A 与C 相似,B 与C 相似(B )A 与C 相似,B 与C 不相似 (C )A 与C 不相似,B 与C 相似(D )A 与C 不相似,B 与C 不相似(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则()()P A B P A B >的充要条件是(A )()(B )P B A P A >(B )()(B )P B A P A <(C )()(B )P B A P A >(D )()(B )P B A P A <(8)设12,(2)n X X X n ≥为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论中不正确的是 (A )21()nii Xμ=-∑服从2χ分布(B )212()n X X -服从2χ分布(C )21()nii XX =-∑服从2χ分布(D )2()n X μ-服从2χ分布二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.(9)已知函数21()1f x x=+,则(3)(0)f =_______。
2017年考研数学一真题与解析
2017 年考研数学一真题一、选择题1— 8 小题.每题4 分,共 32 分.1.若函数 f (x)1 cos x, x 0在 x 0 处连续,则 axb, x 0( A ) ab1( B ) ab1( C ) ab0 ( D ) ab 222lim1cos x1 x1【详解 】 limf (x)lim2, lim f (x)bf (0) ,要使函数在 x0 处连续,x 0x 0axx 0ax2ax 0一定知足1bab 1 .因此应当选( A )2a22.设函数 f (x) 是可导函数,且知足f ( x) f ( x) 0 ,则( A ) f (1)f ( 1) (B ) f (1) f ( 1)( C ) f (1)f ( 1)( D ) f (1) f ( 1)【详解 】设 g (x)( f (x))2 ,则 g ( x)2 f ( x) f (x) 0 ,也就是2是单一增添函数.也就获得f ( x) 2f ( 1)2f (1)f ( 1) ,因此应当选( C )f (1)3.函数 f (x, y, z)x 2 y z 2 在点 (1,2,0) 处沿向量 n(1,2,2) 的方导游数为( A ) 12 (B ) 6(C ) 4( D ) 2【 详 解 】f2xy, fx 2 , f2z , 所 以 函 数 在 点 (1,2,0) 处 的 梯 度 为 gradf 4,1,0 , 所 以xyzf (x, y, z)x 2 y z 2 在点 (1,2,0) 处沿向量 n(1,2,2) 的方导游数为fr gradfuur1(1,2, 2) 2n4,1,0应当选( D )n34.甲、乙两人赛跑, 计时开始时, 甲在乙前面 10(单位:米)处,如图中,实线表示甲的速度曲线 v v 1 (t )(单位:米 /秒),虚线表示乙的速度曲线 v v 2 (t ) (单位:米 /秒),三块暗影部分的面积分别为10,20,3 ,计时开始后乙追上甲的时辰为t 0 ,则()( A ) t 0 10( B ) 15 t 0 20( C ) t 025( D ) t 025【详解 】由定积分的物理意义:当曲线表示变速直线S(t)T2S1 ,S2 , S3分别运动的速度函数时,v(t )dt 表示时辰 T1 ,T2内所走的行程.此题中的暗影面积T1表示在时间段0,10, 10,25 , 25,30内甲、乙两人所走行程之差,明显应当在t25时乙追上甲,应当选( C).E5为 n 阶单位矩阵,则.设为 n 单位列向量,( A)E T 不行逆( B)E T 不行逆( C)E2T 不行逆( D )E 2T 不行逆【详解】矩阵T的特点值为 1和 n 1个 0 ,进而E T , E T , E2T , E2T 的特点值分别为 0,1,1,L1; 2,1,1,L,1 ;1,1,1,L,1 ; 3,1,1,L,1 .明显只有 E T 存在零特点值,因此不行逆,应当选( A ).2002101006.已知矩阵A021, B020, C020,则001001002( A)A,C相像,B,C相像( B)A,C相像,B,C不相像( C)A,C不相像,B,C相像( D)A,C不相像,B, C不相像【详解】矩阵 A, B 的特点值都是122,31.能否可对解化,只要要关怀 2 的状况.000关于矩阵 A ,2E A00 1 ,秩等于1,也就是矩阵 A 属于特点值2存在两个线性没关的特001征向量,也就是能够对角化,也就是 A ~ C .010关于矩阵 B ,2E B000,秩等于 2,也就是矩阵 A 属于特点值2只有一个线性没关的特001征向量,也就是不能够对角化,自然B,C不相像应选择(B).7A, B是两个随机事件,若0P( A)1,0 P( B)1,则 P( A / B)P( A / B) 的充足必需条件是.设( A)P(B / A) P( B / A)( B)P( B / A) P(B / A)( C)P(B / A)P( B / A)( D)P(B / A) P( B / A)【详解】由乘法公式:P( AB) P( B) P(A / B), P( AB )P(B)( P( A / B) 可得下边结论:P( A / B)P( A / B)P( AB)P( AB) P( A)P( AB)P( AB) P( A)P( B) P( B)P(B)1P( B)近似,由 P( AB ) P( A) P(B / A), P( AB) P( A)P( B / A) 可得P(B / A)P(B / A)P( AB)P( AB) P( B)P( AB)P( AB)P( A)P( B) P( A)P( A)1P( A)因此可知选择( A ).8.设X1, X2,L , X n(n 2)为来自正态整体N (,1) 的简单随机样本,若1 nX i,则以下结论中不Xn i 1正确的是()n) 2听从 2 散布(B )2 X n 22 散布( X i( A)X1听从i 1nX ) 2听从 2 散布)2听从 2 散布( C)( X i( D)n( Xi1)2 ~2 (1),i n解:( 1)明显( X i) ~ N (0,1)( X i1,2,L n 且互相独立,因此( X i)2听从i 12( n) 散布,也就是(A)结论是正确的;n22(n1)S 22( 2)( X i X )(n1)S~( n1),因此( C)结论也是正确的;2i1( 3)注意X ~ N (, 1)n ( X) ~ N (0,1)n( X) 2 ~2 (1) ,因此(D)结论也是正确的;n( 4)关于选项( B ):( X n X1 ) ~ N (0, 2)X n X1~ N (0,1)1( X n X1) 2 ~2 (1) ,因此(B)结22论是错误的,应当选择(B)二、填空题(此题共 6 小题,每题 4 分,满分24 分 . 把答案填在题中横线上)9.已知函数 f ( x)1,则 f (3) (0).1 x2解:由函数的马克劳林级数公式: f (x) f( n) (0) x n,知f( n)(0)n! a n,此中 a n为睁开式中 x n的系n0n!数.因为f ( x)11x2x4L( 1)n x2 n L, x1,1 ,因此 f (3) (0)0 .1 x210.微分方程y 2 y3y0的通解为.【详解】这是一个二阶常系数线性齐次微分方程,特征方程 r 22r 30 有一对共共轭的根r12i ,因此通解为y e x (C1 cos2x C2 sin2x)11.若曲线积分xdxaydy在地区 D( x, y) | x 2 y 21 内与路径没关,则 a .Lx 2y 2 1【详解 】设P( x, y)x,Q( x, y)ay ,明显 P( x, y), Q (x, y) 在地区内拥有连续的偏 x 2 y 2x 2y 21 1导数,因为与路径没关,因此有Q Pa1xy12.幂级数( 1)n 1 nx n 1 在区间 ( 1,1)内的和函数为n 1【详解 】( 1)n 1 nx n 1( 1)n 1( x n )( 1)n 1 x nx 1 n 1n 1n 11 x(1 x)2因此 s(x)12 , x( 1,1)(1 x)1 0 113 . 设 矩 阵 A1 12 , 1,2 ,3 为 线 性 无 关 的 三 维 列 向 量 , 则 向量 组 A 1, A 2 , A 3 的 秩0 1 1为.1 0 1 1 0 1 1 0 1【详解 】对矩阵进行初等变换 A1 12 0 1 1 0 1 1 ,知矩阵 A的秩为 2,因为0 1 11 10 01, 2 , 3 为线性没关,因此向量组 A 1, A 2 , A 3 的秩为 2.14.设随机变量X 的散布函数F (x)( x)x4 ,此中( x) 为标准正态散布函数,则2EX.【详解 】随机变量 X 的概率密度为f ( x) F (x)(x)(x4) ,因此2E(X ) xf ( x)dxx ( x)dxx x 4)dx(2x (x42(2t 4) (t) dt22(t) dt2三、解答题15.(此题满分 10 分)设函数 f (u, v) 拥有二阶连续偏导数,yf ( x,cos )dy, d 2 y.ex ,求|x 0dx 2 |x 0dx【详解 】dyxxx, dy;f 1 (e ,cos x)ef 2 ( e ,cos x)( sin x)|x 0dxf 1 (1,1)dxd 2 ye xf 1 x,cos x) xxxsin xf 12xx,cos x)dx 2(ee (f 11 (e ,cos x)e(e ,cos x))cos xf 2 (esin xe x f 21 (e x ,cos x) sin 2 xf 22 (e x ,cos x)d 2 2y|x 0 f 1 (1,1) f 11(1,1)f 2 (1,1).dx16.(此题满分 10 分)求 limn k2 ln 1k nk 1nn【详解 】由定积分的定义nk 2k lim1nklnk1lim ln 11 x ln(1 x)dxn1 nnnn k 1 nn 0k1 1 x)dx 212 ln(1 417.(此题满分 10 分)已知函数 y( x) 是由方程 x 3 y 33x 3y 20 .【详解 】在方程两边同时对x 求导,得3x 2 3 y 2 y 3 3 y 0( 1)在( 1)两边同时对 x 求导,得2x 2 y( y ) 2 y 2 yy也就是 y2( x y( y ) 2 )1 y2令 y 0 ,得 x1 .当 x 11时, y 1 1 ;当 x 21时, y 2 0 当 x 1 1 时, y 0 , y 1 0 ,函数 y y( x) 取极大值 y 11 ;当 x 21时, y 0 , y1 0 函数 yy( x) 取极小值 y 2 0 .18.(此题满分 10 分)设函数 f ( x) 在区间 0,1 上拥有二阶导数,且f (1) 0f (x), lim0 ,证明:x 0x( 1)方程 f (x)0 在区间 0,1 起码存在一个实根;( 2)方程 f (x) f (x)( f ( x))20 在区间 0,1 内起码存在两个不一样实根.证明:( 1)依据的局部保号性的结论,由条件limf ( x)1,及 x 1(0, ) ,使得0 可知,存在x 0 xf (x 1) 0 ,因为 f ( x) 在 x 1,1 上连续,且 f ( x 1 ) f (1) 0,由零点定理,存在 ( x 1 ,1) (0,1) ,使得f ( )0 ,也就是方程 f (x)0 在区间 0,1 起码存在一个实根;( 2)由条件 limf (x)0 可知 f (0)0 ,由( 1)可知 f ( )0 ,由洛尔定理,存在(0, ) ,使得xxf ( )0 ;设 F ( x) f (x) f (x) ,由条件可知 F ( x) 在区间 0,1 上可导, 且 F (0)0, F ( ) 0, F ( ) 0 ,分别在区间 0,, , 上 对 函 数 F (x) 使 用 尔 定 理 , 则 存 在 1(0, )(0,1), 2 ( , ) (0,1), 使 得12 , F ( 1 )F ( 2 )0 ,也就是方程 f (x) f ( x) ( f ( x))20 在区间 0,1 内起码存在两个不一样实根.19.(此题满分 10 分)设 薄 片 型 S 是 圆 锥 面 zx 2 y 2 被 柱 面 z 2 2 x 所 割 下 的 有 限 部 分 , 其 上 任 一 点 的 密 度 为9 x 2 y 2 z 2 ,记圆锥面与柱面的交线为 C .( 1)求 C 在 xOy 布上的投影曲线的方程;( 2)求 S 的质量 M .【详解 】( 1)交线 C 的方程为z x 2 y 2 ,消去变量 z ,获得 x 2 y 22x .z 2 2x因此 C 在 xOy 布上的投影曲线的方程为x 2 y 22xz 0.( 2)利用第一类曲面积分,得M(x, y, z)dS9 x 2 y 2 z 2 dSSS9 x 2 y 2 x 2y 21x 2 y 2 y 2 dxdy x 2y 22xx 2 y 2x 218x 2y 2 dxdy 64x 2y 22x20.(此题满分 11 分)设三阶矩阵 A 1, 2 , 3 有三个不一样的特点值,且312 2 .( 1)证明: r ( A)2 ;( 2)若12 ,3 ,求方程组 Ax的通解.【详解 】( 1)证明:因为矩阵有三个不一样的特点值,因此A 是非零矩阵,也就是 r ( A) 1.假 若 r ( A) 1 时 , 则 r0 是 矩 阵 的 二 重 特 征 值 , 与 条 件 不 符 合 , 所 以 有 r ( A) 2 , 又 因 为312 20,也就是1 ,2 ,3 线性有关, r ( A) 3 ,也就只有 r ( A) 2 .( 2)因为 r ( A)2 ,因此 Ax 0 的基础解系中只有一个线性没关的解向量.因为312 2 0 ,所1 以基础解系为 x2 ;11 又由12,3 ,得非齐次方程组Ax的特解可取为 1 ;11 1方程组 Ax的通解为 xk 21 ,此中 k 为随意常数.1121.(此题满分 11 分)设 二 次 型 f (x 1, x 2 , x 3 ) 2x 12 x 22 ax 32 2x 1x 28x 1 x 3 2x 2 x 3 在 正 交 变 换 x Qy 下 的 标 准 形 为1 y 122 y 22,求 a 的值及一个正交矩阵Q .2 1 4 【详解 】二次型矩阵 A11 14 1a因为二次型的标准形为1 y 12 2 y 22 .也就说明矩阵A 有零特点值,因此A 0 ,故 a 2.1 1 4E A1 11(3)(6)412令E A 0 得矩阵的特点值为13,26,30 .1 1经过分别解方程组( i EA) x 0 得矩阵的属于特点值13 的特点向量 11 ,属于特点值特311 112 6 的特点向量, 30 的特点向量1征值 2232,1611 1 13 2 6因此 Q1 ,2 ,31 02为所求正交矩阵.3 611 132622.(此题满分 11 分)设 随 机 变 量 X ,Y 相 互 独 立 , 且 X 的 概 率 分 布 为 P X 0 P{ X 2}1 , Y 的 概 率 密 度 为22 y,0 y1f ( y)0,其余.( 1)求概率 P ( Y EY ); ( 2)求 ZX Y 的概率密度.12 . 【详解 】( 1) EYyf Y ( y)dy2 y 2 dy0 32 24.因此 P YEYP Y32ydy39( 2) ZX Y 的散布函数为F Z (z) P Z z P X Y z P X Y z, X 0 P X Y z, X 2P X0,Y z P X2,Y z 21P{ Yz}1P Yz2221F Y( z) F Y( z 2)2故 Z X Y 的概率密度为f Z ( z) F Z ( z)1 f (z)f ( z 2)2z, 0 z 1 z 2,2 z 30,其余23.(此题满分 11 分)n 次丈量,该物体的质量某工程师为认识一台天平的精度,用该天平对一物体的质量做了是已知的,设n 次丈量结果 X 1, X 2 ,L , X n 互相独立且均听从正态散布N ( ,2). 该工程师记录的是 n 次丈量的绝对误差Z i X i,( i 1,2, L , ) ,利用 Z 1 , Z 2 ,L , Z n 预计参数.n( 1)求 Z i 的概率密度; ( 2)利用一阶矩求的矩预计量;( 3)求参数最大似然预计量.【详解】( 1)先求Z i的散布函数为F Z ( z) P Z i z P X iX i z z P当 z0时,明显 F Z (z)0 ;当 z0时, F ( z) P Z z P X X i z2z1;i i z PZ2因此 Z i的概率密度为 f Z (z) F Z ( z)e20,z222,z 0 .z 02z22( 2)数学希望EZ i zf (z) dz ze 22dz,0022令 EZ Z 1 n Z i,解得的矩预计量2Z2n Z i.n i 122n i 1( 3)设Z1, Z2,L, Z n的观察值为 z1, z2,L , z n.当 z i0, i1,2,L n 时1nn2n z i2似然函数为 L( ) f ( z i ,))n e22 i 1,i 1(2nln(21n取对数得: ln L ()n ln 2)n ln2z i222i 1令d ln L( )n1n20 ,得参数最大似然预计量为1 n2.d3z in i 1z ii 1。
2017年考研数学一真题及答案解析
dy dx
= f1' (1,1)
x =0 '' = f11 (1,1) + f1' (1,1) - f 2' (1,1) x =0
d2y dx 2
全国统一服务热线:400—668—2155
5
精勤求学 自强不息
Born to win!
(16) (本题满分 10 分)求 lim
n ®¥
ån
k =1
æ1 0 0ö ç ÷ 因为 3 - r (2 E - A) = 1,∴A 可相似对角化,且 A ~ 0 2 0 ç ÷ ç0 0 2÷ è ø
由
l E - B = 0 可知 B 特征值为 2,2,1.
因为 3 - r (2 E - B) = 2 ,∴B 不可相似对角化,显然 C 可相似对角化, ∴ A ~ C ,且 B 不相似于 C (7)设 A, B 为随机概率,若 0 < P( A) < 1,0 < P( B) < 1 ,则 P ( A B) > P( A B) 的充分必要条件是(
1 2 (C )ab = 0 ( A)ab =
【答案】A
)
( B ) ab = ( D ) ab = 2
1 2
1 x 1 1 1 - cos x 1 2 【解析】 lim = lim = ,! f ( x) 在 x = 0 处连续\ = b Þ ab = . 选 A. + + x ®0 x ®0 ax 2a 2 ax 2a
( A)12
【答案】D 【解析】 选 D.(BLeabharlann 6(C)4( D)2
gradf = {2 xy, x 2 , 2 z}, Þ gradf
2017考研数学一试题及答案解析.doc
2017 考研数学一答案及解析一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求,请将所选项前的字母填在答题纸指定位置上。
1 cos x(1)若函数f (x) ax , x 0 在 x 0 连续,则()。
b, x 0A.1 ab2B.1 ab2C. ab0D. ab 2 【答案】 A 【解析】由连续的定义可得limx 0- f (x) limx 0+f (x) f (0) ,而1 cos x 1( x )21 1lim+ f (x) lim+ lim+ 2 , lim - f ( x) b ,因此可得 b ,故选x 0 x 0ax x 0 ax 2a x 0 2a择 A。
(2)设函数f ( x)可导,且f ( x) f '( x) 0 ,则()。
A. f (1) f ( 1)B. f (1) f ( 1)C. | f (1) | | f ( 1)D. | f (1) | | f ( 1)【答案】 C【解析】令 F (x) f 2 ( x) ,则有 F '( x) 2 f ( x) f '(x) ,故 F ( x) 单调递增,则 F (1) F( 1),即 [ f (1)]2 [ f ( 1)]2,即 | f (1)| | f ( 1) ,故选择C。
(3)函数 f (x, y, z) x 2 y z 2 在点 (1,2,0) r处沿向量 n (1,2,0) 的方向导数为( )。
A.12B.6C.4D.2【答案】 D【 解 析 】 gradf{2 xy, x 2 , 2z} , 因 此 代 入 (1,2,0) 可 得 gradf |(1,2,0) {4,1,0} , 则 有f grad u{4,1,0}{ 1 , 2 , 2} 2 。
u| u | 3 3 3(4)甲乙两人赛跑,计时开始时,甲在乙前方 10(单位: m )处,图中,实线表示甲的速度曲线 vv 1 (t ) (单位: m/s ),虚线表示乙的速度曲线 v v 2 (t) ,三块阴影部分面积的数值依次为 10,20, 3,计时开始后乙追上甲的时刻记为t 0 (单位: s ),则( )。
2017年考研数学一真题及答案解析
2 x + c2 sin 2 x)
ò
xdx - aydy 在区域 D = ( x, y) | x2 + y 2 < 1 内与路径无关,则 L x2 + y 2 - 1
{
}
a = __________
【答案】 a = 1 【解析】
¶P -2 xy ¶Q 2axy ¶P ¶Q = 2 , = 2 , 由积分与路径无关知 = Þ a = -1 2 2 2 2 ¶y ( x + y - 1) ¶x ( x + y - 1) ¶y ¶x
x =0
= f1' (1,1) ×1 + f 2' (1,1) × 0 = f1' (1,1)
d y '' 2 x '' x '' x '' = f11 e + f12 e (- sin x) + f 21 e (- sin x) + f 22 sin 2 x + f1'e x - f 2' cos x 2 dx d2y '' Þ 2 = f11 (1,1) + f1' (1,1) - f 2' (1,1) dx x =0
(2)设函数
f ( x) 可导,且 f ( x) f ' ( x) > 0 ,则(
)
( A) f (1) > f (-1) (C ) f (1) > f (-1)
【答案】C
( B ) f (1) < f (-1) ( D ) f (1) < f (-1)
【解析】! f ( x) f ' ( x) > 0,\ í
2017年全国考研数学一真题及答案解析.doc
2017年考研数学一真题及答案解析跨考教育 数学教研室一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数1,0(),0xx f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==【答案】A【解析】001112lim lim ,()2x x xx f x ax ax a++→→-==在0x =处连续11.22b ab a ∴=⇒=选A.(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C 【解析】'()0()()0,(1)'()0f x f x f x f x >⎧>∴⎨>⎩或()0(2)'()0f x f x <⎧⎨<⎩,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D【答案】D 【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradfgradf u ∂=⇒=⇒=⋅=⋅=∂ 选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单全国统一服务热线:400—668—2155 精勤求学 自强不息位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )0510********()s (/)v m s 10200000()10()1520()25()25A t B t C t D t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0ααααα-=-=T E 得()0αα-=TE x 有非零解,故0αα-=TE 。
17年考研数一真题详解
17年考研数一真题详解17年考研数一真题详解在众多考研科目中,数学一科目一直以来都是考生们的难点和重点。
2017年的考研数学一真题也不例外,题目难度较大,需要考生们具备扎实的数学基础和逻辑思维能力。
下面我们将对2017年的考研数学一真题进行详解。
第一题是一道概率论的题目。
题目给出了一个概率分布表,要求求出两个随机变量的相关系数。
首先,我们需要计算出两个随机变量的期望和方差,然后利用相关系数的定义式进行计算。
这道题目考察了考生对概率论的理解和运用能力。
第二题是一道线性代数的题目。
题目给出了一个矩阵和一个向量,要求求出矩阵的特征值和特征向量。
首先,我们需要求出矩阵的特征多项式,然后利用特征多项式求出特征值,最后再求出对应的特征向量。
这道题目考察了考生对线性代数的掌握程度和运算能力。
第三题是一道数学分析的题目。
题目给出了一个函数的定义和性质,要求求出函数的极值点和拐点。
首先,我们需要求出函数的一阶和二阶导数,然后令一阶导数等于零求出极值点,再令二阶导数等于零求出拐点。
这道题目考察了考生对函数的导数和极值点、拐点的求解能力。
第四题是一道实变函数的题目。
题目给出了一个函数的定义和性质,要求证明函数在某个区间上是连续的。
首先,我们需要利用函数的定义和性质来证明函数在该区间上是有界的,然后再利用连续函数的性质来证明函数在该区间上是连续的。
这道题目考察了考生对实变函数的理解和证明能力。
第五题是一道概率论的题目。
题目给出了一个概率分布表和一个随机变量的定义,要求求出该随机变量的期望和方差。
首先,我们需要利用概率分布表来计算出随机变量的期望和方差的定义式,然后再进行计算。
这道题目考察了考生对概率论的计算能力和运用能力。
通过对以上五道题目的详解,我们可以看出2017年考研数学一真题的难度较大,需要考生们具备扎实的数学基础和逻辑思维能力。
因此,考生们在备考过程中应该注重理论知识的学习和运用能力的培养。
同时,做好真题的分析和总结也是提高考试成绩的有效方法。
2017年考研数学一真题及解析
(A)t0 10 (B)15 t0 20 (C)t0 25 (D)t0 25
【答案】B
【解析】从 0 到 t0 这段时间内甲乙的位移分别为
t0 0
v1
(t)dt
,
t0 0
v2
(t)dt
,
则乙要追上甲,则
t0 0
v2 (t)
v1 (t)dt
10
,当 t0
25 时满足,故选
C.
(5)设 是 n 维单位列向量, E 为 n 阶单位矩阵,则( )
故可逆。其它选项类似理解。
2 0 0 2 1 0 1 0 0 (6)设矩阵 A 0 2 1 , B 0 2 0 ,C 0 2 0 ,则( )
0 0 1 0 0 1 0 0 2
( A) A与C相似, B与C相似 B A与C相似, B与C不相似 (C) A与C不相似, B与C相似 D A与C不相似, B与C不相似
(A)12 (B)6 (C)4 (D)2
长理资料群:五,八,6 8,8,六,7,7,五
【答案】D
【解析】 gradf {2xy, x2, 2z}, gradf
(1,2,0)
{4,1, 0}
f u
gradf
u {4,1, 0}{ 1,
|u|
3
2, 3
2} 2. 3
选 D.
(4)甲乙两人赛跑,计时开始时,甲在乙前方 10(单位:m)处,图中实线表示甲的速度曲线 v v1(t) (单位: m / s ),虚线表示乙的速度曲线 v v2 (t) ,三块阴影部分面积的数值依次为 10,20,3,计时 开始后乙追上甲的时刻记为 t0 (单位:s),则( )
2017 年考研数学一真题及答案解析
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题
17年考研数三真题
17年考研数三真题2017年考研数学三真题分为两节,第一节为选择题,第二节为填空题。
本文将对这两部分进行详细分析和解答。
一、选择题解析选择题共15道,涵盖了数学三各个知识点,包括概率论、随机变量、极限等。
下面将分析其中几道典型题目。
1. 题目描述:设随机变量X与Y的概率密度函数分别为fX(x), fY(y),fX(x) > 0, fY(y) > 0;若对任意函数g(z)有E[g(X)h(Y)] = E[h(Y)]E[g(X)]对任意可测函数h(y)成立,则下列结论正确的是()。
(A) 随机变量X与Y独立(B) X与Y的相关系数为0(C) fX(x)是常数(D) fY(y)是常数解析:根据题目描述,E[g(X)h(Y)] = E[h(Y)]E[g(X)],可以得到E[Xh(Y)] = E[h(Y)]E[X],这满足协方差的定义。
所以X与Y是不相关的,即选项B正确。
2. 题目描述:已知α_1, α_2, α_3是一组两两不相等的实数,设f(x)为下列随机变量的概率密度函数,其中α_i ( i = 1, 2, 3) 为已知常数,则常数a的值为........................()(A) 8 (B) 10 (C) 12 (D) 16解析:根据题目描述,积分求和必须等于1。
根据已知条件,可列出方程f(x) = a(x - α_1)(x - α_2)(x - α_3) = ax^3 - a(α_1 + α_2 + α_3)x^2 + a(α_1α_2 + α_1α_3 + α_2α_3)x - aα_1α_2α_3。
将上式积分求和,得到∫f(x)dx = a(1/4)x^4 - a(α_1 + α_2 + α_3) / 3 * x^3 + a(α_1α_2 + α_1α_3 + α_2α_3) / 2 * x^2 - aα_1α_2α_3 * x = 1。
根据积分求和结果,可以得到方程组:1/4 = 1- (α_1 + α_2 + α_3) / 3 = 0(α_1α_2 + α_1α_3 + α_2α_3) / 2 = 0-aα_1α_2α_3 = 0解方程组得到α_1α_2α_3 = 0,将其带入最初方程组得到1/4 = 1,解得a = 4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
q u i r e s o me s k i l l s t o s o l v e t h e d i f f i c u l t p r o b l e ms ,f i n d t h e c o n n o t a t i o n f r o m t h e e a s i e r p r o b l e ms ,a n d i m—
从 容 易题 中看 到 它 潜 在 的 内 涵 , 从 而 能 练 就 一 套 应 对 试 题 各 种 变化 的 能 力 .
关 键 词 考研 数 学 , 辅 助函数 , 对 角化 , 概 率 密度 , 正交矩阵 , 数 理 统 计 中 图分 类 号 01 7 5 . 1 4 文献 标 识 码 A 文 章 编 号 1 0 0 8 —1 3 9 9 ( 2 0 1 7 ) 0 6 —0 0 0 9— 0 4
On S o me M a t h e ma t i c a l Pr o b l e ms f o r 2 0 1 7 Gr a d u a t e Te s t
W ANG J i e
( S h a n g q i u Un i v e r s i t y ,S h a n g q i u,He n a n,4 7 6 0 0 0,P RC)
准确地 抓 住 问 题 的 关 键 , 快 速 找 到 解 决 问 题 的 途
径, 尽 可能 地少 走或 不走 弯路 .
下面 我们 从 2 0 1 7年 考 研 数 学 中选 取部 分 典 型
试 题进 行 一些 分析 , 以便 从 中体会 考研 试 题 的特点 .
收 稿 日期 : 2 0 1 7—0 1 —1 7 修 改 日期 : 2 0 1 7一O 6 一O 1
一
F ( z ) :厂 ( ) 厂 ( z ) , 于 是 有
反三, 由表及 里 , 从 难 题 中看 到 它 隐 蔽 的一 面 , 从
) : . 『 ( 蒯z 一 』 ( z ) 一 ,
容 易题 中看 到 它 潜 在 的 内涵 , 在此基础 上, 依靠 自
身对各 知 识点 的熟 悉 程 度 和 计 算 过 程 的熟 练程 度 ,
设 有 矩 阵 一 [ I l 2 0 2 。 0 ; 1 ] I l , B 一 [ I 2 0 0 2 0 ; 1 ] 1 I ,
设有 矩 阵 A 一
作者简介 : 王捷 , ( 1 9 5 2 一) , 男, 汉族 , 山西大同人 , 商丘学院 , 副 教 授
pr o ve t h e i r o wn a b i l i t i e s t o c o p e wi t h t he v a r i a t i o n o f di f f e r e nt pr o bl e m t yp e s o f ma t h t e s t . Ke y wo r d s a ux i l i a r y f u nc t i o n,d i a g o na l i z a t i on,pr o ba bi l i t y d e n s i t y,or t h og o na l ma t r i x,s t a t i s t i c s
2 0 1 7年 考 研 已 经 结 束 , 就 考研 数学 而 言 , 与 2 0 1 6年相 比 , 难度降低的幅度较大 , 这 无 疑 将 会 对
参加 2 0 1 8年 考研 的 考生 产生 较大 的思 想压 力. 这 是
因为, 2 0 1 5年 的考研 数学 相对 比较 容 易 , 而2 0 1 6年
Ab s t r a c t S ome t y pi c a l ma t h pr o bl e ms o f 2 0 1 7 g r a du a t e t e s t a r e a na l yz e d i n o r de r t o h e l p e x a mi ne e s a C —
2 0 1 7年 考 研 数 学 典 型 试 题 分 析
王 捷
( 商丘学院 河南 商丘 4 7 6 0 0 0 )
摘 要 本 文 将 通 过 对 2 0 1 7年 考 研 数 学部 分 典 型 试 题 的 分 析 , 以提 醒 考 生 能 够 迅 速 地 从 难 题 中找 到 成 功 的 台 阶 ,
的考 研 数 学 的 难 度 就 很 大 , 按 最 近 几 年 的 这 种 规
( c ) 1 厂 ( 1 ) l >l ( 一1 ) l ( D ) I ( 1 ) l <l 厂 ( 一1 ) 1
律, 2 0 1 8年 的考 研 数 学对 考 生 来 说 , 将 要 面对 一 场
硬 仗. 然而 , 仅 以试 题 的 难 易 来 应 对 考 研 并 不 能 参 透考 研试 题 的 内涵 , 其实 , 历 届 考 研 试 数 学 题 都 有 着一 个本 质 的共性 , 那 就 是 基 础性 强 、 概 念性 强 、 综 合性 强. 只要 抓 住 考 研 数 学 试 题 的这 些 特 点 , 就 能 在 复 习准 备 过 程 中做 到 方 向 明确 , 方法得 当, 能举
第2 O卷 第 6期
2 0 1 7年 1
究
Vo 1 . 2 O, N o. 6 NO V.。 2 01 7
S TUDI ES I N COL LEGE M ATH EM ATI CS
d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 8 — 1 3 9 9 . 2 0 1 7 . 0 6 . 0 0 4