统计初步与概率初步
中考知识点总结统计初步与概率初步(13大知识点
中考知识点总结统计初步与概率初步(13大知识点中考数学知识点总结:1.整数运算:包括正整数、负整数和零的加减乘除运算。
2.分数运算:包括分数的加减乘除运算,化简和比较大小。
3.百分数运算:包括百分数的转化为小数和分数,百分数的加减乘除运算。
4.数字整理和估算:包括对数字进行整理和估算,计算结果的有效数字。
5.二次根式:包括二次根式的化简、加减乘除和比较大小。
6.代数式的计算:包括代数式的加减乘除运算和合并同类项。
7.方程与不等式:包括一元一次方程的解、一元一次不等式的解和方程、不等式的表示。
8.几何初步:包括平行线与转折线的判定、等腰三角形、直角三角形和平行四边形的性质。
9.几何运算:包括计算直角三角形的边长和面积,计算平行四边形的面积。
10.数量关系:包括比例的计算、比例的性质和比例的应用。
11.全等与相似:包括全等图形和相似图形的判定和性质。
12.统计初步:包括频数、频率、统计图等的表示和解读。
13.概率初步:包括随机事件、随机试验、样本空间和概率的计算和应用。
概率初步知识点总结:1.随机事件:随机事件是指在相同条件下不确定性、随机性的体现。
2.随机试验:随机试验是具有随机性质的试验,它的结果具有不确定性。
3.样本空间:样本空间是指一个随机试验中所有可能结果构成的集合。
4.事件:事件是样本空间的子集,表示试验的其中一种结果。
5.概率:概率是一个随机事件发生的可能性大小,用数值表示。
6.频率:频率是一个随机事件在大量重复实验中发生的次数与总次数的比值。
7.等可能概型:等可能概型是指一个随机试验中,所有结果发生的可能性相等。
8.全概率公式:全概率公式是指一个事件可以发生的条件有多种情况,将每种情况下事件的概率加起来得到事件的概率。
9.独立事件:独立事件是指一个事件的发生不受其他事件的影响。
10.互斥事件:互斥事件是指两个事件不能同时发生。
11.条件概率:条件概率是指一个事件在另一个事件发生的条件下发生的概率。
统计初步与概率初步知识点总结
第五章 统计初步与概率初步考点一、平均数 (3分)1、平均数的概念(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++=叫做这n 个数的平均数,x 读作“x 拔”。
(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为nf x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
2、平均数的计算方法(1)定义法当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x n x +++=(2)加权平均数法: 当所给数据重复出现时,一般选用加权平均数公式:nf x f x f x x k k ++=2211,其中n f f f k =++ 21。
(3)新数据法:当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -='。
)'''(1'21n x x x nx +++= 是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据)。
考点二、统计学中的几个基本概念 (4分)1、总体所有考察对象的全体叫做总体。
2、个体总体中每一个考察对象叫做个体。
3、样本从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量样本中个体的数目叫做样本容量。
5、样本平均数样本中所有个体的平均数叫做样本平均数。
6、总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
教案概率初步(全章)
概率初步(第一章)教学目标:1. 了解概率的定义和基本概念。
2. 学会计算简单事件的概率。
3. 理解概率的意义和应用。
教学重点:1. 概率的定义和计算方法。
2. 概率的基本性质和规则。
教学难点:1. 概率的计算和应用。
教学准备:1. 教学PPT或黑板。
2. 教学材料和实例。
教学过程:一、导入(5分钟)1. 引入概率的概念,例如抛硬币、抽奖等。
2. 引导学生思考概率的实际应用和意义。
二、概率的定义(10分钟)1. 解释概率的定义:事件发生的可能性。
2. 强调概率的取值范围:0到1之间。
三、计算简单事件的概率(15分钟)1. 介绍计算概率的方法:实验法和理论法。
2. 举例讲解如何计算抛硬币、掷骰子等简单事件的概率。
四、概率的基本性质和规则(10分钟)1. 介绍概率的基本性质:互补性和独立性。
2. 讲解概率的基本规则:加法和乘法规则。
五、巩固练习(10分钟)1. 给出一些简单的概率问题,让学生独立解决。
2. 讨论答案,引导学生理解和掌握概率的计算方法。
教学反思:本节课通过引入实例和讲解,让学生了解了概率的定义和计算方法。
通过巩固练习,帮助学生理解和掌握概率的计算。
在教学过程中,注意引导学生思考概率的实际应用和意义,激发学生的学习兴趣。
在下一节课中,将继续深入学习概率的更深入概念和计算方法。
概率初步(第六章)教学目标:1. 学会使用概率树图来解决概率问题。
2. 理解互斥事件和独立事件的概率计算规则。
3. 能够应用概率知识解决实际问题。
教学重点:1. 概率树图的绘制和分析。
2. 互斥事件和独立事件的概率计算。
教学难点:1. 概率树图的绘制和理解。
2. 复杂情况下概率的计算。
教学准备:1. 教学PPT或黑板。
2. 教学材料和实例。
教学过程:六、概率树图(10分钟)1. 介绍概率树图的概念和作用。
2. 讲解如何绘制概率树图,包括事件的分解和概率的分配。
七、互斥事件和独立事件的概率计算(10分钟)1. 解释互斥事件和独立事件的定义。
小学数学十二年级认识简单的概率与统计
小学数学十二年级认识简单的概率与统计在小学数学的课程中,概率与统计是一项非常重要的内容。
通过学习概率与统计,学生们可以培养出一种科学的、基于数据的思维方式,帮助他们更好地理解和分析世界。
在小学十二年级中,学生将会开始接触一些简单的概率与统计知识,并开始学习如何应用这些知识。
第一部分:概率在数学中,概率是用来描述事件发生的可能性的一种方法。
对于小学生来说,我们可以通过简单的实例来介绍概率的概念。
比如,我们可以讨论掷骰子的例子,假设一个骰子有六个面,每个面上的数字分别为1到6。
那么,掷骰子时,每个数字出现的可能性是相等的,即1的概率是1/6,2的概率是1/6,依此类推。
除了掷骰子,我们还可以通过其他简单的情景来引导学生理解概率。
比如,抽奖问题。
假设有一个抽奖箱里面有5个红色球和5个蓝色球,那么抽到红色球的概率是多少呢?很显然,红色球有5个,总共有10个球,所以红色球的概率就是5/10,即1/2。
通过这些例子,学生可以初步理解概率的概念,并学会计算简单事件的概率。
第二部分:统计统计是概率的一个重要应用方向,通过统计,我们可以收集、整理和分析数据,从而得出有关事物的一些结论。
在小学的统计学习中,我们可以通过简单的调查让学生了解如何来收集和处理数据。
比如,我们可以设计一个简单的问题,让学生调查班级中每个人的身高,收集数据后,可以用表格的形式整理数据,并画出柱状图来表示不同身高的人数。
通过观察这些数据,学生可以了解到班级中身高的分布情况,并得出一些结论。
另外,我们还可以通过一些实际的例子来让学生理解统计的应用。
比如,我们可以讨论一下超市中不同产品的销售情况,通过整理销售数据,我们可以得出哪些产品是最受欢迎的,哪些是不受欢迎的,从而帮助店家做出更好的经营决策。
通过概率和统计的学习,学生们可以培养出一种用数据思考问题的习惯,并学会如何用逻辑和推理来解决问题。
这对他们的综合能力的提升将起到积极的作用。
结论小学数学十二年级的概率与统计知识对学生的发展具有重要的意义。
举例说明儿童形成统计思想过程和概率思想发展过程的一些基本特征
举例说明儿童形成统计思想过程和概率思想发展过程的一些基本特征苏教版小学数学增加了统计与概率内容的教学,目的帮助学生形成合理解读数据的能力、提高科学认识客观世界的能力,发展在现实情境中解决实际问题的能力。
统计与概率初步知识主要有如下一些基本内容:学生形成统计思想过程的一些基本特征低年级阶段的学生,经历数据统计的全过程(提出问题、确定样本、收集数据、整理和描述数据、分析数据、作出决策和预测),能根据统计结果回答一些简单的问题,是学生具备一定的收集数据、整理数据、分析数据,根据数据进行交流的能力。
所以,加深对随机现象的理解,能用随机的观念认识并解释现实世界,培养他们在面对不确定情景或大量数据时做出合理的决策,使体会统计概率在日常生活中的应用,认识到学习统计与概率知识的必要性。
小学数学统计与概率的教学,必须注重儿童的日常经验,必须从儿童的生活出发,在儿童充分活动的基础上,在一个具体情境的活动中去体验,去认识,去建构。
因此,不能将这部分知识的学习,单纯当作统计量的计算、统计图表的制作以及概念识记等活动来组织。
下面谈谈我对儿童形成统计思想过程和概率思想发展过程的一些基本特征:1、儿童的统计思想是在合作交流、操作活动中逐步形成的。
例如,刚教学数数时,小朋友面对一幅幅多种动物的画面时,开始的时候,可能只会采用先数出动物的个数,再数出每种动物个数的方法来比较哪种动物多或少。
但是,当这些动物的数量足够多的时候,慢慢地,他们可能就会想到将这些动物先按种类分开来,然后再分别去数。
随着经验的增长,他可能逐渐会想到将这些动物分类对应排列起来,这样儿童的基本统计思想就产生了。
2、儿童的概率思想发展是一个渐进的过程。
对低年级的小朋友来说,刚接触的每一个数字往往只是表示单个物体量的一个符号,并不用来描述自己观察到的现象。
他们并不知道数字之间往往是相关的。
例如,有一个小朋友在超市里观察到买玩具的小朋友有21人,而买课外书的有12人。
统计与概率初步复习教学策略研究
结果发生 的可能性 相等 ) 我 们可 以用更 简单 的办法加 以 , 解决. 如用列举法 ( 列表 , 画树状 图) , 等 计算 出简单事件发 生的概 率 。 用以解释或解决 一些与不确定 事件有关的实 际
问 题.
我们 在利用频率作为概率 的估 计值时 . 需要对 每次试
验结果进行 统计. 统计 的特点 就是与数 据打 交通. 计就 统 是研究如何 收集 . 整理 . 描述 . 分析 数据 , 并在 此基础 上作
维普资讯
( )2 0 4 0 5年 6月 5日是第 3 个世界环境 日。 4 中国定的 主题是“ 人参与 , 建绿 色家 团” 这天武 汉市环 保局 向 人 创 , 百步亭小 区居 民发放 了 5 0只环保布袋 , 0 以减少使 用塑料 袋产生的 白色污染. 了解 塑料袋 白色污染 的情 况, 为 某校
( )甲、 C 乙两户一样 多. ( )无 法确定哪一户多. D 以此为样本 , 估计这个小 区一天丢弃塑料袋 总数大 约 在全学期 10 0 次数学作业 中对获 得“ A”级的次数进 行 统 计 。 绘制 出如 图 所 示 的条 形 统 计 图。 中从左到右的小长方形 的高度 比是 1 : 4 2 求 图 3 6: : , g
掌握.
年级学生 健康卡中随机抽取 了 3 2名学 生 的视力数据 进行
统计. 在这个 问题 中 , 总体 是— — 。 体 是 个 是 , 样本中个体的个数是 ;
— —
,
样 本
()为 了解 某国企 职工 每户年平 均 收入情况 。 不 同 2 对 工种 的职工家庭 5 0 0 户进 行调查统计. 这个 问题 中. 在 总体
维普资讯
曼 墅 班 塞
统 计 与概 率初 步 复 习教 学 策 略研 究
统计与概率初步复习训练
( )4 C 7人 .
( D)3人 .
( )作 出反映此调查结果 的条形统计图 ; 1 ()计算 每一种意见 所 占总人 数 的百 分 比。 2 并作 出扇 形统计图 ;
()你认 为 本 调 查 是 普查 。 是 抽 样 调 查 ? 查 结 果 会 3 还 调
对改进食堂管理工作 有影响吗7
样 本? 没有需要改进 的地方? 有
1 .农户老王在 山上 的承包地上 种梨树 5 O棵 , 进入 现 3 .宁波港是 一个多 功能 、 综合性 的现代 化大 港 , 年货 物吞吐 量位 居 中国大陆 第二 . 世界排名 第 五, 功跻 身 于 成 国际大港行列. 如图是 宁波港 19 9 4年 ~ 2 0 0 4年货 物吞 吐
是
—
—
( )为考察某校学生 的体 重 , 全校 学生 中抽 取 1o 2 从 2 名学生调查他们的体重. 这个 问题 中 , 在 总体是
本 是—
,
—
,
— —
样
采用的调查方式是
;
— —
()质检单 位为检查 某副食超 市 出售 的袋装 大米 ( 3 每 袋1 o千克)的质量 , 常是 采取— — 方式进行较好 ; 通
2初 年 课 活 小 做 题 查 调 校 口 . 三 级 外 动 组 课 调 。查 门
维普资讯
了 i 刚 0 一, 下月 - i .0卓月 研 蕙6 - 半 N ^ 月 第 2
高 效 练 习 j} 鸯
分段通 过校 门口的车 辆数 。 这是否是这项 调查的一个合 格
量 统 计 图.
第 三年收获 . 收获 时老 王随意采 摘 5 株梨树上 的梨 , 得每 称
株梨树 上的梨重如下( 单位 ; 千克) 3 .5 3 ,0 3 . :5 3 。4 4 ,6 ( )在这个问题 中 , 1 个体是 体为
专题07 概率统计(名师点睛+能力提升)(学生版)
2020年中考考点总动员之三轮冲刺聚焦考点+名师点睛+能力提升专题07 概率统计讲练测模块一:概率初步【例1】某地气象局预报称:明天A地区降水概率为80%,这句话指的是()A.明天A地区80%的时间都下雨B.明天A地区的降雨量是同期的80%C.明天A地区80%的地方都下雨D.明天A地区下雨的可能性是80%【例2】下列事件中,是确定事件的是()A.上海明天会下雨B.将要过马路时恰好遇到红灯C.有人把石头孵成了小鸭D.冬天,盆里的水结成了冰【例3】一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )A.16B.13C.12D.23【例4】从1到10的十个自然数中,随意取出一个数,该数为3的倍数的概率是______.【例5】某班进行一次班级活动,要在2名男同学和3名女同学中,随机选出2名学生担任主持人,那么选出的2名学生恰好是1男1女的概率是______.【例6】将一枚质地均匀的硬币抛掷2次,硬币正面均朝上的概率是___________.【例7】从小敏、小杰等3名同学中任选2名同学担任校运动会的志愿者,那么恰好选中小敏和小杰的概率为______.【例8】如果从1、2、3这三个数字中任意选取两个数字组成一个两位数,那么这个两位数是素数的概率等于()A.12B.13C.14D.16【例9】有五张分别印有等边三角形、直角三角形(非等腰)、直角梯形、正方形、圆图形的卡片(卡片中除图案不同外,其余均相同)现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有轴对称图案的卡片的概率是______.【例10】 如图,在22⨯的正方形网格中四个小正方形的顶点叫格点,已经取定格点A 和B ,在余下的格点中任取一点C ,使ABC ∆为直角三角形的概率是______.【例11】 从1、2、3、4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线2y x =上的概率是( )A .124B .112C .16D .14【例12】 在分别写有数字1-、0、2、3的四张卡片中随机抽取一张,放回后再抽取一张,如果以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标,那么所得点落在第一象限的概率为______.【例13】 袋子里有4个黑球,m 个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是12,则m 的值是______.【巩固1】(2019•上海)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是 . 【巩固2】(2018•上海)从27,π,3这三个数中选一个数,选出的这个数是无理数的概率为 . 【巩固3】(2019•虹口区二模)下列事件中,必然事件是( ) A .在体育中考中,小明考了满分B .经过有交通信号灯的路口,遇到红灯C .抛掷两枚正方体骰子,点数和大于1D .四边形的外角和为180度.【巩固4】(2019•青浦区二模)将分别写有“创建”、“智慧”、“校园”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建智慧校园”的概率是 .【巩固5】(2019•浦东新区二模)从1、2、3这三个数中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好是偶数的概率是 .【巩固6】(2019•静安区二模)从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是 . 【巩固7】(2019•虹口区二模)一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有 个.AB【巩固8】(2019•嘉定区二模)不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为.【巩固9】(2019•松江区二模)在不透明的盒子中装有4个黑色棋子和若干个白色棋子,每个棋子除颜色外其它完全相同,从中随机摸出一个棋子,摸到黑色棋子的概率是13,那么白色棋子的个数是.【巩固10】(2019•徐汇区二模)在不透明的盒子中装有5个黑色棋子和15个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是.【巩固11】(2019•金山区二模)从方程20x=1-,2240x x-+=中,任选一个方程,选出的这个方程无实数解的概率为.【巩固12】(2019•普陀区二模)如图,一个大正方形被平均分成9个小正方形,其中有2个小正方形已经被涂上阴影,在剩余的7个白色小正方形中任选一个涂上阴影,使图中涂上阴影的三个小正方形组成轴对称图形,这个事件的概率是.【巩固13】(2019•闵行区二模)从一副52张没有大小王的扑克牌中任意抽取一张牌,那么抽到A的概率是.【巩固14】(2019•黄浦区二模)掷一枚质地均匀的正方体骰子,骰子的六个面分别标有1到6的点数,向上的一面出现的点数是2的倍数的概率是.【巩固15】(2019•长宁区二模)掷一枚材质均匀的骰子,掷得的点数为素数的概率是.【巩固16】(2019•杨浦区三模)在“石头、剪刀、布”的游戏中,两人打出相同标识手势的概率是.【巩固17】(2019•崇明区二模)从1、2、3、4、5、6、7、8这八个数中,任意抽取一个数,那么抽得的数是素数的概率是.模块二:统计初步【例14】下列统计图中,可以直观地反映出数据变化的趋势的统计图是( )A.折线图B.扇形图C.条形图D.频数分布直方图【例15】一鞋店销售一种新鞋,试销期间卖出情况如下表,对于鞋店经理来说最关心哪种尺码的鞋畅销,那么下列统计量对该经理来说最有意义的是( )尺码2222.52323.52424.525数量(双)351015832A.平均数B.中位数C.众数D.方差【例16】下列说法中,正确的个数有( )①一组数据的平均数一定是该组数据中的某个数据;②一组数据的中位数一定是该组数据中的某个数据;③一组数据的众数一定是该组数据中的某个数据.A.0个B.1个C.2个D.3个【例17】某老师在试卷分析中说:参加这次考试的82位同学中,考91分的人数最多,有11人之众,但是十分遗憾最低的同学仍然只得了56分.这说明本次考试分数的众数是( )A.82 B.91 C.11 D.56【例18】一组数据3,3,2,5,8,8的中位数是( )A.3 B.4 C.5 D.8【例19】一组数据1、2、3、4、5、15的平均数和中位数分别是( )A.5、5 B.5、4 C.5、3.5 D.5、3【例20】甲、乙、丙、丁四位同学五次数学测验成绩统计如下表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加上海市初中数学竞赛,那么应选______同学.甲乙丙丁平均数70 85 85 70标准差 6 .5 6.5 7.6 7.6【例21】下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是:( )A.15,17B.14,17C.17,14D.17,15【例22】 如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是( )A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82ºD .如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【例23】 2019年1月份,某区体委组织“迎新春长跑活动”,现将报名的男选手分成:青年组、中年组、老年组.各组人数所占比例如图所示,已知青年组120人,则中年组的人数是______.【例24】 崇明县校园足球运动正在蓬勃发展,已知某校学生“足球社团”成员的年龄与人数情况如下表所示:那么“足球社团”成员年龄的中位数是______岁.【例25】 某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭与上月比较的一个月的节水情况统计:那么这10个家庭的节水量(m 3)的平均数和中位数分别是( ) A .0.42和0.4B .0.4和0.4C .0.42和0.45D .0.4和0.45【例26】 饭店为某公司提供“白领午餐”,有12元、15元、18元三种价格的套餐可供选择,每人限购一份.本中年 ?老年20%青年60%年龄(岁)11 12 13 14 15 人数3371214节水量(m 3) 0.2 0.3 0.4 0.5 0.6 家庭数(个)12241乘车步行 骑车乘步骑20 12频数(人) 出行方式周销售套餐共计500份,其中12元的占总份数的20%,15元的卖出180份,其余均为18元的,那么所购买的盒饭费用的中位数和众数分别是( )A .15元和18元B .15元和15元C .18元和15元D .18元和18元【例27】 甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为1.6;乙的成绩(环)为:7,8,10,6,9,那么这两位运动员中______的成绩较稳定.【例28】 已知两组数据:2、3、4和3、4、5,那么下列说法正确的是( )A .中位数不相等,方差不相等B .平均数相等,方差不相等C .中位数不相等,平均数相等D .平均数不相等,方差相等【例29】 某班40名全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中40个捐款额的中位数是______元.【例30】 为了了解某区5500名初三学生的的体重情况,随机抽测了400名学生的体重,统计结果列表如下: 那么样本中体重在50 - 55范围内的频率是______.【例31】 一组数据:1 ,1,3,4,a ,若它们的平均数为2,则这组数据的众数为( ) A .1B .2C .3D .4【例32】 某工厂对一个小组生产的零件进行调查.在10天中,这个小组出次品的情况如下表所示: 体重(千克) 频数 频率 40—45 44 45—50 66 50—55 84 55—60 86 60—65 72 65—70 48每天出次品的个数234元5 人数10 15 20 2546 8 10 12那么在这10天中这个小组每天所出次品数的标准差是______.【例33】 为了了解某中学学生的上学方式,从该校全体学生900名中,随机抽查了60名学生,结果显示有15名学生“步行上学”.由此,估计该校全体学生中约有______名学生“步行上学”.【例34】 某服装厂从20万件同类产品中随机抽取了100件进行质检,发现其中有2件不合格,那么你估计该厂这20万件产品中合格品约为______万件.【例35】 某区有6000名学生参加了“创建国家卫生城市”知识竞赛.为了了解本次竞赛成绩分布情况,竞赛组委会从中随机抽取部分学生的成绩(得分都是整数)作为样本,绘制成频率分布直方图.请根据提供的信息估计该区本次竞赛成绩在89.5分~99.5分的学生大约有______名.【例36】 为了解本区初中学生的视力情况,教育局有关部门采用抽样调查的方法,从全区2万名中学生中注:(4.3~4.5之间表示包括4.3及4.5))根据图表完成下列问题:(1) 填完整表格及补充完整图一;(2) “类型D ”在扇形图(图二)中所占的圆心角是度; (3) 本次调查数据的中位数落在类型内;(4) 视力在5.0以下(不含5.0)均为不良,那么全区视力不良的初中学生估计人.【巩固1】(2019•上海)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是( )A .甲的成绩比乙稳定B .甲的最好成绩比乙高C .甲的成绩的平均数比乙大D .甲的成绩的中位数比乙大【巩固2】(2018•上海)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( ) A .25和30 B .25和29C .28和30D .28和2910 80100 80 60 40 20 0ABCD视力 类型人数图一图二AB 10%C 40%D【巩固3】(2019•浦东新区二模)某运动队在一次队内选拔比赛中,甲、乙、丙、丁四位运动员的平均成绩相等,方差分别为0.85、1.23、5.01、3.46,那么这四位运动员中,发挥较稳定的是( ) A .甲B .乙C .丙D .丁【巩固4】(2019•静安区二模)小明和小丽暑期参加工厂社会实践活动,师傅将他们工作第一周每天生产的合格产品的个数整理成如表1两组数据.那么关于他们工作第一周每天生产的合格产品个数,下列说法中正确的是( )A .小明的平均数小于小丽的平均数B .两人的中位数相同C .两人的众数相同D .小明的方差小于小丽的方差【巩固5】(2019•闵行区二模)下列各统计量中,表示一组数据离散程度的量是( ) A .平均数B .众数C .方差D .频数【巩固6】(2019•金山区二模)数据2、1、0、2-、0、1-的中位数与众数分别是( ) A .0和0B .1-和0C .0和1D .0和2【巩固7】(2019•嘉定区二模)现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别是2S 甲、2S 乙,如果22S S >乙甲,那么两个队中队员的身高较整齐的是( )A .甲队B .乙队C .两队一样整齐D .不能确定【巩固8】(2019•徐汇区二模)今年3月12日,学校开展植树活动,植树小组16名同学的树苗种植情况如下表:那么这16名同学植树棵树的众数和中位数分别是( ) A .5和6B .5和6.5C .7和6D .7和6.5【巩固9】(2019•杨浦区三模)某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为 cm .【巩固10】(2019•嘉定区二模)在一次有12人参加的测试中,得100分、95分、90分、85分、75分的人数分别是1、4、3、2、2,那么这组数据的众数是分.【巩固11】(2019•松江区二模)某校初三(1)班40名同学的体育成绩如表所示,则这40名同学成绩的中位数是.【巩固12】(2019•长宁区二模)为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是小时.【巩固13】(2019•奉贤区二模)下表是某班所有学生体育中考模拟测试成绩的统计表,表格中的每个分数段含最小值,不含最大值,根据表中数据可以知道,该班这次体育中考模拟测试成绩的中位数落在的分数段是.【巩固14】(2019•闵行区二模)一射击运动员在一次射击练习中打出的成绩如表所示,那么这个射击运动员这次成绩的中位数是.【巩固15】(2019•上海)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.【巩固16】(2018•上海)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么2030元这个小组的组频率是.【巩固17】为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析.在此问题中,样本是指()A.80B.被抽取的80名初三学生C.被抽取的80名初三学生的体重D.该校初三学生的体重【巩固18】(2019•杨浦区三模)将样本容量为100的样本编制成组号①~⑧的八个组,简况如表所示:那么第⑤组的频率是()A.14B.15C.0.14D.0.15【巩固19】(2019•长宁区二模)某校随机抽查若干名学生,测试了1分钟仰卧起坐的次数,把所得数据绘制成频数分布直方图(如图),则仰卧起坐次数不小于15次且小于20次的频率是()A.0.1B.0.2C.0.3D.0.4【巩固20】(2019•奉贤区二模)学校环保小组的同学随机调查了某小区10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,7,10,6,9.利用学过的统计知识,根据上述数据估计该小区200户家庭一周内共需要环保方便袋约()A.200只B.1400只C.9800只D.14000只【巩固21】(2019•青浦区二模)A班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图,如图所示,那么成绩高于60分的学生占A班参赛人数的百分率为.【巩固22】(2019•浦东新区二模)某校有560名学生,为了解这些学生每天做作业所用的时间,调查人员在这所学校的全体学生中随机抽取了部分学生进行问卷调查,并把结果制成如图的统计图,根据这个统计图可以估计这个学校全体学生每天做作业时间不少于2小时的人数约为名.【巩固23】(2019•静安区二模)为了解某校九年级男生1000米跑步的水平情况,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,那么扇形统计图中表示C等次的扇形所对的圆心角的度数为度.【巩固24】(2019•虹口区二模)为了了解初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,共分成4组,频率分布表(不完整)如下表所示.如果次数在110次(含110次)以上为达标,那么估计该校初三毕业生一分钟跳绳次数的达标率约为.【巩固25】(2019•徐汇区二模)某校九年级学生共300人,为了解这个年级学生的体能,从中随机抽取50名学生进行1分钟的跳绳测试,结果统计的频率分布如图所示,其中从左至右前四个小长方形的高依次为0.004、0.008、0.034、0.03,如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为.【巩固26】(2019•普陀区二模)张老师对本校参加体育兴趣小组的情况进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,已知参加体育兴趣小组的学生共有80名,其中每名学生只参加一个兴趣小组,根据图中提供的信息,可知参加排球兴趣小组的人数占体育兴趣小组总人数的百分数是.【巩固27】(2019•崇明区二模)为了了解全区近3600名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是.【巩固28】(2019•金山区二模)100克鱼肉中蛋白质的含量如图表,每100克草鱼、鲤鱼、花鲢鱼鱼肉的平均蛋白质含量为16.8克,那么100克鲤鱼肉的蛋白质含量是克.【巩固29】(2019•黄浦区二模)秋季新学期开学时,某中学对六年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了不完整的图表(如表所示),图表中c=.x<6070x<7080x<8090x90100【巩固30】某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.类别A类型足球那么,其中最喜欢足球的学生数占被调查总人数的百分比为%.【巩固31】(2019•宝山区二模)为了解全区5000名初中毕业生的体重情况,随机抽测了400名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为人.【巩固32】(2018•浦东新区二模)近年来,出境旅游成为越来越多中国公民的假期选择,将2017年某小区居民出境游的不同方式的人次情况画成扇形图和条形图,如图所示,那么2017年该小区居民出境游中跟团游的人数为.【巩固33】(2018•普陀区二模)2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有万人.【习题1】布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为______.【习题2】某中学九(1)班5个同学在体育测试“1分钟跳绳”项目中,跳绳个数如下:126,134,118,152,148.这组数据中,中位数是______.【习题3】该投篮进球数据的中位数是( )A .2B .3C .4D .5【习题4】某校为了发展校园足球运动, 组建了校足球队,队员年龄分布如图所示,则这些队员年龄的众数是______.【习题5】 已知某班学生理化实验操作测试成绩的统计结果如下表:则这些学生成绩的众数是______分.【习题6】 某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为______.【习题7】 一个不透明纸箱中装有形状、大小、质地等完全相同的7个小球,分别标有数字1、2、3、4、5、6、7,从中任意摸出一个小球,这个小球上的数字是奇数的概率是______.【习题8】 一个口袋中装有3个完全相同的小球,它们分别标有数字0,1,3,从口袋中随机摸出一个小球记下数字后不放回,摇匀后再随机摸出一个小球,那么两次摸出小球的数字的和为素数的概率是______.成绩(分) 4 5 6 7 8 9 10 人数12269119人数年龄2684212 13 14 15 16一班二班三班四班 人数(人)1282010【习题9】 一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球,如果其中有2个白球,n 个黄球,从中随机摸出白球的概率是23,那么n =______.【习题10】 某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm ):红:54、44、37、36、35、34;黄:48、35、38、36、43、40;已知它们的平均高度均是40cm ,请判断哪种颜色的郁金香样本长得整齐?______.(填“红”或“黄”)【习题11】 一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是______.【习题12】 为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做上标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可以估计该山区金丝猴的数量约有______只.【习题13】 9月22日世界无车日,某校开展了“倡导绿色出行”为主题的调查,随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是______.【习题14】 某校为了解本校学生每周阅读课外书籍的时间,对本校全体学生进行了调查,并绘制如图所示的频率分布直方图(不完整),则图中m 的值是______.乘公车 y % 步行 x %骑车 25%私家车 15% 乘公车 步行 骑车 20 5人数 出行方式15 私家车 2510 学生 教师24912 1533学生出行方式扇形统计图师生出行方式条形统计图 m0.075 0.125 0246810小时数0.2 0.3 0.25。
高中数学《概率与统计初步》
1.满足每个个体被抽到的机会是均等的抽样称为随机抽样.共有三种经常采用的随机抽样方法: 简单随机抽样;系统抽样(适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样); 分层抽样(总体由有明显差别的几部分组成). 2.一般地,设样本的元素为1x ,2x ,…,n x ,样本的平均数12nx x x x n++=,样本方差222212()()()n x x x x x x s n-+-++-=,方差正的平方根称为标准差s .<教师备案>本讲分成两小节,第一节是统计,第二节是概率初步,各三道例题.例1涉及到随机抽样、频率分布直方图;例2是茎叶图的题,以及利用茎叶图求数据或比较数据的均值与方差,这是统计这一块的热点.例3是样本数据的数字特征.本节没有涉及到线性回归的内容,这部分内容考查非常少,可以结合知识点提及一下即可.尖子班学案1知识结构图14.1统计经典精讲知识网络第14讲概率 与统计初步【铺1】 ⑴(2012东城二模文11)将容量为n 的样本中的数据分成6组.若第一组至第六组数据的频率之比为234641∶∶∶∶∶,且前三组数据的频数之和等于27,则n 等于 . ⑵(2012西城一模文10)某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[)13,14,[)14,15,[)15,16,[)16,17,[]17,18,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[]16,18的学生人数是_____.【解析】 ⑴ 60⑵ 54考点:随机抽样、频率分布直方图 【例1】 ⑴(2012四川文3)交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( )A .101B .808C .1212D .2012⑵ 某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是 .若用分层抽样方法,则40岁以下年龄段应抽取 人.⑶ 某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96106],,样本数据分组为[)9698,,[)98100,,[)100102,,[)102104,,[104106],.已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( )A .90B .75C .60D .4550%20%30%40岁以下40—50岁50岁以上10610410210098960.1500.1250.1000.0750.050频率组距克 第⑵题 第⑶题【解析】 ⑴ B⑵ 3720, ⑶ A目标班学案1【拓2】 ⑴(2010朝阳二模文5)某校共有学生2000名,各年级男、女学生人数如下表,已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19,现用分层抽样的方法在全校学生中抽取64人,则应在三年级抽取的学生人数为( )一年级 二年级 三年级女生 385 a bA .24⑵ 一个总体中有100个个体,随机编号为0,1,2,,99,依编号顺序平均分成10个小组,组号依次为1,2,3,,10.现用某种抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 小组中抽取的号码个位数字与m k +的个位数字相同.若6m =,则在第7组中抽取的号码是___________.【解析】 ⑴ C⑵ 63考点:茎叶图、样本数据的数字特征 【例2】 ⑴(2010福建文9)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和92 ⑵(2010宣武二模文6)随机抽取某中学甲,乙两班各10名同学,测量他们的身高(单位:cm ),获得身高数据的茎叶图如图,则下列关于甲,乙两班这10名同学身高的结论正确的是( )A .甲班同学身高的方差较大B .甲班同学身高的平均值较大C .甲班同学身高的中位数较大D .甲班同学身高在175以上的人数较多 ⑶ 某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示,记分员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清.若记分员计算无误,则数字x 应该是 .【解析】 ⑴ A⑵ A ⑶ 1考点:均值与方差【例3】 ⑴ 样本中共有五个个体,其值分别为a ,0,1,2,3,若该样本的平均值为1,则样本方差为( )A B .65C D .2⑵ 甲、乙、丙三名射击运动员在某次测试中各射击20次,三人的测试成绩如下表:8997314026乙班甲班9885288329863001991215161718作 品 Ax 4123299988123,,x x x 分别表示甲、乙、丙三名运动员这次测试成绩的平均数,则123,,x x x 的大小关系为 ;123,,s s s 分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则123,,s s s 的大小关系为 .⑶ 已知总体的各个体的值由小到大依次为23371213.718.320a b ,,,,,,,,,,且总体的中位数为10.5,若要使该总体的方差最小,则a 、b 的取值分别是 .【解析】 ⑴ D⑵ 123x x x ==;213s s s >>平均值可以直接观察得到.得到平均值相等后,由数据的集中情况可以直接得到方差大小的关系,不必计算.显然数据丙最集中,数据乙最分散. ⑶ 10.5;10.5【备选】 (2010西城一模文5)甲乙两名运动员在某项测试中的8次成绩如茎叶图所示,1x ,2x 分别表示去掉一个最高分、一个最低分后甲、乙两名运动员这项测试成绩的平均数,1s ,2s 分别表示甲、乙两名运动员这项测试成绩的标准差,则有( ) A .1212,x x s s >< B .1212,x x s s =<C .1212,x x s s ==D .1212,x x s s <>【解析】 B右图是2010年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),甲、乙两名选手得分的平均数分别为1a ,2a ,则一定有( ) A .12a a > B .21a a >C .12a a =D .1a ,2a 的大小与m 的值有关【解析】 B甲的成绩环数 7 8 9 10 频数 5 5 5 5 乙的成绩环数 7 8 9 10 频数 6 4 4 6 丙的成绩环数 7 8 9 10 频数 4 6 6 4知识结构图14.2概率0795455184464793m 甲 乙3275538712455698210乙甲1.随机事件A 的概率()P A 的取值范围为[0,1],必然事件发生的概率为1,不可能事件发生的概率为0; 2.不可能同时发生的两个事件,A B 称为互斥事件,()()()P A B P A P B =+.若,A B 不能同时发生且必有一个发生,则,A B 称为对立事件,()P A 与()P B 满足()()1P A P B +=.3.古典概型的概率公式:在基本事件总数为n 的古典概型中,每个基本事件发生的概率为n1;如果随机事件A 包含的基本事件数为m ,则()mP A n=,这一定义称为概率的古典定义.4.几何概型:事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型.用μΩ表示区域Ω的几何度量,用A μ表示区域A 的几何度量.事件A 的概率定义为()AP A μμΩ=.尖子班学案2【铺1】 ⑴(2010辽宁文13)三张卡片上分别写上字母E E B ,,,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为 .⑵(2012海淀二模文12)在面积为1的正方形ABCD 内部随机取一点P ,则PAB △的面积大于等于14的概率是_________.【解析】 ⑴ 13⑵ 12考点:古典概型与几何概型【例4】 ⑴ 若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6六个点的正方体形玩具)先后抛掷2次,则出现向上的点数之和为奇数的概率为 .⑵ 有20张卡片,每张卡片上分别标有两个连续的自然数k ,1k +,其中0,1,2,,19k =.从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为91010++=)不小于14”为A ,则()P A =_______.⑶(2012辽宁文11)在长为12cm 的线段AB 上任取一点C .现作一矩形,邻边长分别等于线段AC ,CB 的长,则该矩形面积大于220cm 的概率为( )经典精讲知识梳理F E DCBA A .16 B .13C .23D .45 ⑷ 在区间[ππ]-,内随机取两个数分别记为a ,b ,则使得函数22()2πf x x ax b =+-+有零点的概率为( )A .78B .34C .12D .14【解析】 ⑴ 12⑵ 14⑶ C ⑷ B目标班学案2【拓2】 甲、乙、丙、丁4个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这4个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为( )A .16B .14C .13D .12【解析】 D【备选】 考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于( )A .1B .12C .13 D .0【解析】 A【备选】 (2010崇文二模文17)在平面直角坐标系xOy 中,平面区域W 中的点的坐标(,)x y 满足225x y +≤,从区域W 中随机取点(,)M x y .①若x ∈Z ,y ∈Z ,求点M 位于第四象限的概率;②已知直线:(0)l y x b b =-+>与圆22:5O x y +=15y x b -+≥的概率.【解析】 ①点M 位于第四象限的概率为1.②y x b -+≥4π33-.尖子班学案3【铺1】 (2012朝阳一模文16)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[)25,30,第2组[)30,35,第3组[)35,40,第4组[)40,45,第5组[]45,50,得到的频率分布直方图如右图所示.⑴,a b ⑵ 现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?⑶ 在⑵的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.【解析】 ⑴200a =,50b =.⑵ 第1,2,3组分别抽取1人,1人,4人.⑶ 至少有1人年龄在第3组的概率为1415.考点:概率与统计初步【例5】 (2010宣武一模文17)某校高三年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查.设其中某项问题的选择只有“同意”,“不同意”两种,且每人都做了一种选择.下⑴ ⑵ 试估计高三年级学生“同意”的人数;⑶ 从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”、一人“不同意”的概率.【解析】 ⑴男生3 2 5⑵ 105.⑶ 恰有一人“同意”、一人“不同意”的概率为815.目标班学案3【拓2】 (2010丰台一模文17)某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题: 茎 叶 5 6 8 6 2 3 3 5 6 8 97 1 2 2 3 4 5 6 7 8 989 5 8⑴ 求全班人数及分数在[)8090,之间的频数; ⑵ 估计该班的平均分数,并计算频率分布直方图中[)8090,间的矩形的高; ⑶ 若要从分数在[80100],之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90100],之间的概率.【解析】 ⑴ 分数在[)8090,之间的频数为4; ⑵ 该班的平均分约为74(或73.8分).频率分布直方图中[)8090,间的矩形的高为4100.01625÷=. ⑶ 至少有一份分数在[]90,100之间的概率是90.615=.考点:随机事件的概率【例6】 (2010海淀一模文16)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费每满100元可以转动如图所示的圆盘一次,其中O 为圆心,且标有20元、10元、0元的三部分区域面积相等.假定指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券.(例如:某顾客消费了218元 ,第一次转动获得了20元,第二次获得了10元,则其共获得了30元优惠券.)顾客甲和乙都到商场进行了消费,并按照规则参与了活动. ⑴ 若顾客甲消费了128元,求他获得优惠券面额大于0元的概率.⑵ 若顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率.【解析】 ⑴ 顾客甲获得优惠券面额大于0元的概率是23.⑵ 乙获得优惠券金额不低于20元的概率为23.组距频率分数0.0080.0160.028100908070605020元10元0元O已知集合{()|22}A x y x y x y =∈Z ,≤,≤,,,集合22{()|(2)(2)4}B x y x y x y =-+-∈Z ,≤,,,在集合A 中任取一个元素p ,则p B ∈的概率是__________. 【解析】 625;A 中元素有(22)(21)(22)-----,,,,,,,(12)--,,(11)--,,(12)-,,,……,(21)(22),,,,共25个元素.这些元素中,包含在集合B 中的元素有:(02),,(11),,(12),,(20),,(21),,(22),共6个元素,如图.因为取到每一个元素的可能性相同,故p B ∈的概率为625. 本题容易忽视x y ∈Z ,的条件,从而得到错误结论.(2011北京文16)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.098X 111099乙组甲组⑴ 如果8X =,求乙组同学植树棵数的平均数和方差;⑵ 如果9X =,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差2222121[()()()]n s x x x x x x n =-+-++-,其中x 为1x ,2x ,…,n x 的平均数)【解析】 ⑴ 平均数为354x =;方差为21116s =.⑵ 所求概率为41()164P C ==.【演练1】(2012山东文4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差【解析】 D【演练2】某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示(如右图).1s ,2s 分别表示甲、乙两班各真题再现实战演练乙甲8765443221100-2-222O yx自5名学生学分的标准差,则1s _____2s .(填“>”、“<”或“=”)【解析】<【演练3】(2012江苏6)现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________. 【解析】 35【演练4】⑴(2012石景山一模文12)在区间[]0,9上随机取一实数x ,则该实数x 满足不等式21log 2x ≤≤的概率为 . ⑵(2012湖北文10)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .21π-B .112π- C .2π D .1π【解析】 ⑴ 29⑵ A【演练5】(2010丰台二模文17)设集合{}123P =,,和{}11234Q =-,,,,,分别从集合P 和Q 中随机取一个数作为a 和b 组成数对()a b ,,并构成函数2()41f x ax bx =-+,⑴ 写出所有可能的数对()a b ,,并计算2a ≥,且3b ≤的概率; ⑵ 求函数()f x 在区间[)1+∞,上是增函数的概率.【解析】 ⑴ 所有基本事件如下:(11)-,,(11),,(12),,(13),,(14), (21)-,,(21),,(22),,(23),,(24),(31)-,,(31),,(32),,(33),,(34),,共有15个.“2a ≥,且3b ≤”的概率为815.⑵ ()f x 在[1)+∞,上是增函数的概率为13.【演练6】为了对某课题进行研究,用分层抽样方法从三所高校A ,B ,C 的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)高校 相关人数 抽取人数A18 x B 36 2C 54y ⑴ 求x ,y ;⑵ 若从高校B 、C 抽取的人中选2人作专题发言,求这2人都来自高校C 的概率. 【解析】⑴ 1x =,3y =. ⑵ 选中的2人都来自高校C 的概率为310.(2009清华大学自主招生保送生测试)随机挑选一个三位数I,⑴求I中含有因子5的概率;⑵求I中恰有两个数码相等的概率.【解析】⑴15,⑵27100⑴所有的三位数有100到999,共900个;其中含有因子5的是以0或5结束的,每十个数中都有两个数满足要求,故所求概率为15;或考虑0999-中5的倍数有199个,减去099-中5的倍数有19个,故I中含有因子5的数有180个,得概率为1801 9005=;⑵满足百位与十位相等的数有:110112113119220221223229990991998,,,,,,,,,,,,,,,共9981⨯=个;满足百位与个数相等的数同理也有81个;满足十位与个数相等的数有100122133199,,,,,200211988,,,,共有9981⨯=个,故I中恰有两个数码相等的概率为81327 900100⨯=.大千世界65。
统计与概率
统计与概率专题◆知识讲解1.统计初步的有关概念总体:所要考查对象的全体叫总体;个体:总体中每一个考查对象.样本:从总体中所抽取的一部分个体叫总体的一个样本.样本容量:样本中个体的数目.样本平均数:样本中所有个体的平均数叫样本平均数.总体平均数:总体中所有个体的平均数叫做总体平均数.2.统计学中的基本思想就是用样本对总体进行估计、推断,•用样本的平均水平、波动情况、分布规律等特征估计总体的平均水平、波动情况和分析规律.3.概率初步的有关概念(1)必然事件是指一定能发生的事件,或者说发生的可能性是100%;(2)不可能事件是指一定不能发生的事件;(3)随机事件是指在一定条件下,可能发生也可能不发生的事件;(4)随机事件的可能性一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.(5)概率一般地,在大量重复试验中,如果事件A发生的频率mn会稳定在某个常数P附近,•那么这个常数P就叫做事件A的概率,记为P(A)=P.(6)可能性与概率的关系事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0.(图6-30)(7)古典概率一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,•事件A包含其中的m种结果,那么事件A发生的概率为P(A)=mn.(8)几何图形的概率概率的大小与面积的大小有关,•事件发生的概率等于此事件所有可能结果所组成图形的面积除以所有可能结果组成图形的面积.◆例题解析例1北京2008奥运会吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”.现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子,如图6-31所示.(1)小玲从盒子中任取一张,取到印有“欢欢”图案的卡片的概率是多少?(2)小玲从盒子中取出一张卡片,记下名字后放回,•再从盒子中取出第二张卡片,记下名字.用列表或画树状图列出小玲取到的卡片的所有可能情况,并求出小玲两次都取到印有“欢欢”图案的卡片的概率.例2四张扑克牌的牌面如图6-32a所示,将扑克牌洗匀后,•如图6-32b背面朝上放置在桌面上.(1)若随机抽取一张扑克牌,则牌面数字恰好为5的概率是______;(2)规定游戏规则如下:若同时随机抽取两张扑克牌,•抽到两张牌的牌面数字之和是偶数为胜;反之,则为负.你认为这个游戏是否公平?请说明理由.◆强化训练一、填空题1.如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分.谁先累积到10分,谁就获胜.你认为______(填“甲”或“乙”)获胜的可能性更大. 2.某班有49位学生,其中有23位女生.在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀.如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是______. 3.小明的书包里装有外观完全相同的8本作业本,•其中语文作业本3本,数学作业本3本,英语作业本2本.小明从书包中随机抽出一本作业本是数学作业本的概率是______.4.按下面的要求,分别举出一个生活中的例子:(1)随机事件:___________;(2)不可能事件:________;(3)必然事件:_______.5.一个水库养了某种鱼10万条,从中捕捞了20条,称得重量如下(单位:kg)•:•1.15 1.04 1.11 1.07 1.10 1.32 1..25 1.19 1.15 1.21 1.18 1.14 •1.09 1.25 1.21 1.29 1.16 1.24 1.12 1.16,这组样本的平均数是______,估计水库里这种鱼的总重量是_______万kg.6.一个口袋中有3个黑球和若干个白球,•在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,•记下颜色……不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,•小明可估计口袋中的白球大约有_______.7.小玲家的鱼塘里养了2000条鲢鱼,现准备打捞出售.为了估计鱼塘中鲢鱼的总质量,从鱼塘中捕捞了3次进行统计,得到的数据如下表:鱼的条数平均每条鱼的质量第一次捕捞 20 1.6kg第二次捕捞 10 2.2kg第三次捕捞 10 1.8kg那么,鱼塘中鲢鱼的总质量约是______kg.8.2004年4月25日,我市举行龙岩冠豸山机场首航仪式,利用这一契机,推出“冠豸山绿色之旅”等多项旅游项目.“五一”这天,对连城八家旅行社中部分游客的年龄(年龄取整数)进行了抽样统计,经整理后分成六组,并绘制成频率分布直方图.已知从左到右依次为1~6小时的频率分别是0.08,0.20,0.32,0.24,0.12,0.04,第1小时的频数为8,请结合图形回答下列问题:(1)这次抽样的样本容量是_____;(2)样本中年龄的中位数落在第______小组内;(3)“五一”这天,若到连城冠豸山的游客约有5000人,•请你用学过的统计知识去估计20.5~50.5年龄段的游客约有______人.二、选择题9.现有A,B两枚均匀的小立方体,•立方体的每个面上分别标有数学1,2,3,4,5,6.用小莉掷A立方体朝上的数字为x,小明掷B立方体朝上的数字为y•来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=-x2+4x上的概率为()A.118B.112C.19D.1610.一个均匀的立方体六个面上分别标有数1,2,3,4,5,•6.•如图是这个立方体表面的展开图.抛掷这个立方体,•则朝上一面上的数恰好等于朝下一面上的数的概率是()A.16B.13C.12D.23(第10题) (第11题) (第12题)11.(2011,安庆市)图示转盘分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等.•四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6•号扇形的可能性就会加大.其中,你认为正确的见解有() A.1个 B.2个 C.3个 D.4个12.如图所示,图中的两个转盘分别被均匀地分成5个和4•个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A.25B.320C.310D.1513.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3•块分别写有“20”,“08”和“北京”的字块,如果婴儿能够排成“2008北京”或者“北京2008”,则他们就给婴儿奖励,假设该婴儿能将字块模着正排,那么这个婴儿能得到奖励的概率是()A.16B.14C.13D.1214.在一个不透明的口袋中装有若干个只有颜色不同的球,•如果口袋中装有4个红球,且摸出红球的概率为13,那么袋中共有球的个数为( )A .12个B .9个C .7个D .6个15.(2011安徽模考),小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( )如图示。
概率初步及计算方法
概率初步及计算方法概率是概括事物发生可能性的一种数学工具,它的应用涵盖了各个领域,如统计学、金融学、社会科学等。
在本文中,我们将初步介绍概率的基本概念和计算方法。
一、概率的基本概念概率是描述随机事件发生可能性的一种度量,通常用0到1之间的实数表示,其中0表示事件不可能发生,1表示事件一定会发生。
概率的基本法则包括:1. 加法法则:对于互斥事件A和B(即A和B不能同时发生),它们的概率之和等于各自概率的和。
P(A∪B) = P(A) + P(B)2. 乘法法则:对于独立事件A和B(即A的发生不影响B的发生),它们的概率之积等于各自概率的乘积。
P(A∩B) = P(A) × P(B)二、计算概率的方法1. 经典概率:适用于样本空间有限且各种可能性等概率出现的情况。
计算方法为事件A发生的次数除以样本空间中可能事件的总数。
P(A) = Σ(A出现的次数) / 样本空间大小2. 相对频率概率:适用于进行实验或观察时,通过实验数据来估计概率。
计算方法为事件A发生的次数除以总实验次数。
P(A) ≈ (A出现的次数) / 总实验次数3. 主观概率:适用于无法进行实验的情况,概率的估计基于主观判断。
计算方法为根据个人主观判断给出的概率值。
三、概率计算的案例为了更好地理解概率计算方法,下面将给出一个实际案例。
假设有一枚均匀硬币,进行10次抛掷实验。
事件A表示出现正面的次数大于等于7次,我们来计算事件A发生的概率。
首先,我们可以列出所有的可能结果:样本空间 S = {正正正正正正正正正正,正正正正正正正正正反,正正正正正正正正反正,...,反反反反反反反反反反}其中,正表示正面,反表示反面。
然后,我们可以计算出事件A发生的次数,即正面出现7次、8次、9次和10次的情况。
通过计算,我们可以得到事件A发生的次数为36次。
最后,我们计算事件A发生的概率:P(A) = 36次 / 1024次≈ 0.035所以,根据计算结果,事件A发生的概率约为0.035。
第15章 概率与统计初步
第十五章概率与统计初步第57讲概率初步(一)一、填空题1.[2021年普陀二模]某学校从4名男生、3名女生中选出2名担任招生宣讲员,则在这2名宣讲员中男、女生各1人的概率为________(结果用最简分数表示).2.在平面直角坐标系中,从6个点:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2),F(3,3)中任取3个,这3点能构成三角形的概率是________(结果用分数表示).3.若甲、乙两位同学随机地从6门课程中选修3门,则两人选修的课程中恰有1门相同的概率为________.4.甲、乙、丙三位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________.5.[2021年金山二模]一个不透明的袋中装有5个白球、4个红球(9个球除颜色外其余完全相同),经充分混合后,从袋中随机摸出3球,则摸出的3球中至少有一个是白球的概率为________(用分数作答).6.从集合A={1,2,3,4,5,6,7,8,9,10}中任取两个数,欲使取到的一个数大于k,另一个数小于k(其中k∈A)的概率是25,则k=________.7.已知7个实数1,-2,4,a,b,c,d依次构成等比数列,若从这7个数中任取2个,则它们的和为正数的概率为________.二、选择题8.投掷两颗骰子,得到其向上的点数分别为m和n,则复数()()i im n n m+-为实数的概率为()A.13B.14C.16D.1129.在集合{1,2,3,4,5}中任取一个偶数a和一个奇数b构成以原点为起点的向量a=(a,b).从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n,其中面积不超过4的平行四边形的个数为m,则mn=()A.415B.13C.25D.23三、解答题10.同时掷两颗骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?11.甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i,j)分别表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌面数字比乙大,则甲胜,否则,乙胜.你认为此游戏是否公平,说明你的理由.12.甲、乙两人参加知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙两人依次各抽一题.(1)求甲抽到选择题,乙抽到判断题的概率;(2)求甲、乙两人中至少有一人抽到选择题的概率.走近高考[2021年上海高考]已知花博会有四个不同的场馆A,B,C,D,甲、乙两人每人选2个去参观,则他们的选择中,恰有一个场馆相同的概率为________.第58讲概率初步(二)一、填空题1.先后抛掷硬币三次,则至少一次正面朝上的概率是________.2.甲、乙两人各进行一次射击,假设两人击中目标的概率分别是0.6和0.7,且射击结果相互独立,则甲、乙至多一人击中目标的概率为________.3.袋中有5个白球、3个黑球,从中任意摸出4个,那么至少摸出1个黑球的概率是________.4.[2021年青浦二模]若从一副52张的扑克牌(去掉大王、小王)中随机抽取1张,放回后再抽取1张,则两张牌都是K的概率为________(结果用最简分数表示).5.甲、乙两人下棋,两人和棋的概率为12,乙获胜的概率为13,则乙不输的概率为________,乙输的概率为________,甲获胜的概率为________.6.[2021年黄浦二模]已知随机事件A和B相互独立,若()0.36P AB=,()0.6P A=(A表示事件A的对立事件),则()P B=________.7.现有10个不同的产品,其中4个次品、6个正品.现每次取其中一个进行测试,直到4个次品全测完为止,若最后一个次品恰好在第五次测试时被发现,则该情况出现的概率是________.二、选择题8.设M,N为两个随机事件,如果M,N为互斥事件,那么()A.M N不一定是必然事件B.M N一定是必然事件C.M与N一定为互斥事件D.M与N一定不为互斥事件9.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再赢两局才能获得冠军.若两队每局获胜的概率相同,则甲队获得冠军的概率为()A.12B.35C.23D.34三、解答题10.加工某种零件需经过四道工序设第一、二、三、四道工序的合格率分别为1920,1819,1718,1617,且各道工序互不影响.(1)求该种零件的合格率;(2)从该种零件中任取3件,求至少取到一件合格品的概率.11.如图,沿途中路径由点B到点D,且只能向右或向上走,随机的选取一种走法.(1)求经过M点的概率;(2)求经过M点,也经过N点的概率;(3)求既不经过M点,也不经过N点的概率.12.某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都是“合格”,则该课程考核“合格”,若甲、乙、丙三人在理论考核中合格的概率分别为0.9,0.8,0.7;在实验考核中合格的概率分别为0.8,0.7,0.9,所有考核是否合格相互之间没有影响.(1)求甲、乙、丙三人在理论考核中至少有两人合格的概率;(2)求这三个人该课程考核都合格的概率(结果保留三位小数).走近高考甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球三次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(1)求乙获胜的概率;(2)求投篮结束时乙只投了2个球的概率.第59讲统计一、填空题1.在一次考试中,从高一某班50人中随机抽取10个同学的数学成绩如下:68,89,80,87,80,86,91,85,66,78,则全班同学的数学考试成绩平均分估计为________.2.设一组样本数据1x ,2x ,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为________.3.某高校一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.4.某校共有教师200人,男学生800人,女学生600人,现用分层抽样的方法从所有师生中抽取一个容量为n 的样本,已知从男学生中抽取的人数为100人,那么n =________.5.[2021年静安二模]某高科技公司所有雇员的工资情况如表所示.年薪(万元)135 95 80 70 60 52 40 31 人数112134112该公司雇员年薪的标准差约为________万元.6.某电子商务公司对10000名网络购物者2021年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图示.(1)直方图中的a =________.(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________. 二、选择题7.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A.134石 B.169石 C.338石 D.1365石8.我国新冠肺炎疫情进入常态化,各地有序推进复工复产,如图是某地连续11天复工复产的指数折线图,则下列说法正确的是( )A.这11天复工指数和复产指数均逐日增加B.这11天期间,复产指数增量大于复工指数的增量C.第3天至第11天复工复产指数均超过80%D.第9天至第11天复产指数增量小于复工指数的增量 三、解答题9.某赛季甲、乙两名运动员在若干场比赛中的得分情况如下. 甲:18,20,21,22,23,25,28,29,30,30,32,34; 乙:8,13,14,16,23,26,28,33,38,39,48. (1)分别计算甲、乙两人每场得分的平均数; (2)分别计算甲、乙两人每场得分的中位数;(3)分别计算甲、乙两人得分的标准差,并回答谁的成绩比较稳定.10.已知一组数据1x ,2x ,…,x 10的方差是2,并且()()()2221210333120x x x -+-++-=,求这组数据的平均数. 走近高考[2020年上海高考]已知1,2,a ,b 的中位数为3,平均数为4,则ab =________.第60讲 概率初步(续)一、填空题1.已知()0.5P A =,()0.3P B =,()0.2P BA =,则()|PB A =________,()|P A B =________.2.已知一种节能灯使用寿命超过10000h 的概率为0.95,而使用寿命超过12000h 的概率为0.9,则已经使用了10000h 的这种节能灯,使用寿命能超过12000h 的概率为________.3.已知随机变量X的分布列为12340.20.30.4a⎛⎫⎪⎝⎭,则a的值为________.4.投篮测试中,每人投10次,已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,X表示投中的次数,则()E X=________.5.从一个放有大小与质地相同的3个黑球、2个白球的袋子里摸出2个球并放入另外一个空袋子里,再从后一个袋子里摸出1个球,则该球是黑色的概率为________.6.某工厂的某种产品成箱包装,每箱200件,每件产品为不合格品的概率都为0.1,且各件产品是否为不合格品相互独立.已知每件产品的成本为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.这一箱产品的成本与赔偿费用的和记为X,则()E X=________.二、选择题7.已知114p<<,随机变量X的分布列为220121p p p p⎛⎫⎪--⎝⎭,则下列结论正确的是()A.()2P X=的值最大 B.()()01P X p X=>=C.E(X)随着p的增大而减小D.E(X)随着p的增大而增大8.假设某市场供应的智能手机中,市场占有率和优质率的信息如表:品牌甲乙其他市场占有率50% 30% 20% 优质率80% 90% 70%在该市场中任意买一部手机,用A1,A2,A3分别表示买到的智能手机为甲品牌、乙品牌、其他品牌,B表示可买到的优质品,则下列不正确的是()A.()10.50P A= B.()2|0.90P B A=C.()30.70P B A= D.()0.81P B=三、解答题9.分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.10.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n 14 15 16 17 18 19 20 频数10 20 16 16 15 13 10以100天记录的各需求量的频率作为各需求量发生的概率.①若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.走近高考某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.第61讲 统计分析一、填空题1.若对具有线性相关关系的两个变量建立的回归方程为0.960 3.134y x =-+,则当50x =时,y 的估计值为________.2.某产品的广告费投入与销售额的统计数据如表所示 广告费x /万元 2 3 4 5 销售费y /万元26394954则y 关于x 的线性回归方程为________.3.经市场调查,某款热销品的销售量y (万件)与广告费用x (万元)之间满足回归直线方程ˆ 3.5y bx=+.若样本点中心为(45,35),则当销售量为52.5万件时,可估计投入的广告费用为________万元.4.以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,其变换后得到线性回归方程0.34z x =+,则c =________.5.有人发现,多看手机容易使人近视,如表是调查机构对此现象的调查数据(单位:人):看手机程度视力合计近视不近视 少看 20 38 58 多看 68 42 110 合计8880168 则________(填“有”或“没有”)99.9%的把握认为近视与多看手机有关系,210.82()80.001P χ≥≈.6.给出下列四种说法:①将一组数据中的每个数都加上或减去同一个常数后,均值与方差都不变;②在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,1x ,2x ,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i=1,2,…,n )都在直线112y x =-+上,则这组样本数据的线性相关系数为12-;③回归直线ˆˆy bxa =+必经过点(),x y ; ④在吸烟与患肺病这两个分类变量的计算中,由独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说若有100人吸烟,那么其中有99人患肺病. 其中错误结论的编号是________. 二、选择题7.某校高三1班48名物理方向的学生在一次质量检测中,语文成绩、数学成绩与六科总成绩在全年级中的排名情况如图所示,“☆”表示的是该班甲、乙、丙三位同学对应的点,从这次考试的成绩看,下列结论不正确的是( )A.该班六科总成绩排名前6的同学语文成绩比数学成绩排名更好B.在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是语文C.数学成绩与六科总成绩的相关性比语文成绩与六科总成绩的相关性更强D.在甲、乙两人中,其语文成绩名次比其六科总成绩名次靠前的学生是甲8.根据分类变量x 与y 的观察数据,计算得到2 2.974χ=,依据表中给出的2χ独立性检验中的小概率值和相应的临界值,做出下列判断,正确的是( ) P (2k χ≥)0.1 0.05 0.01 0.005 0.001 k2.7063.8416.6357.87910.828A.有95%的把握认为变量x 与y 独立B.有95%的把握认为变量x 与y 独立C.变量x 与y 独立,这个结论犯错误的概率不超过10%D.变量x 与y 不独立,这个结论犯错误的概率不超过10% 三、解答题9.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(1)根据散点图判断,y a bx=+y关于年宣传费x的=+与y c回归方程类型(给出判断即可,不必说明理由)?(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系为之0.2=-.根据(2)的结果回答下列问题:z y x①年宣传费49x=时,年销售量及年利润的预报值是多少?②年宣传费x为何值时,年利润的预报值最大?走近高考为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:PM2.5[0,50] (50,150] (150,475]SO2[0,35] 32 18 4(35,75] 6 8 12(75,115] 3 7 10(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:PM2.5[0,150] (150,475]SO2[0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:()()()()()22n ad bca b c d a c b dχ-=++++()2P kχ≥0.050 0.010 0.001 k 3.841 6.635 10.828。
概率初步与统计初步
(1)分组:将一组数据按照统一的标准分成若干组称为分组,当数据在100个以内时,通常分成5-12组。
(2)频数:每个小组内的数据的个数叫做该组的频数。
各个小组的频数之和等于数据总数n。
(3)频率:每个小组的频数与数据总数n的比值叫做这一小组的频率,各小组频率之和为1。
(4)频率分布表:将一组数据的分组及各组相应的频数、频率所列成的表格叫做频率分布表。
(5)频率分布直方图:将频率分布表中的结果绘制成的,以数据的各分点为横坐标,以频率除以组距为纵坐标的直方图,叫做频率分布直方图。
图中每个小长方形的高等于该组的频率除以组距。
每个小长方形的面积等于该组的频率。
所有小长方形的面积之和等于各组频率之和等于1。
样本的频率分布反映样本中各数据的个数分别占样本容量n的比例的大小,总体分布反映总体中各组数据的个数分别在总体中所占比例的大小,一般是用样本的频率分布去估计总体的频率分布。
2)、研究频率分布的方法;得到一数据的频率分布和方法,通常是先整理数据,后画出频率分布直方图,其步骤是:(1)收集原始数据,计算最大值与最小值的差;(2)决定组距与组数;(3)决定分点;(4)列频数分布表;(5)绘频率分布直方图。
热身练习1、某班的5位同学在向“救助贫困学生”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是_______,中位数是_________,平均数是_______.8,4,5.2、n个数据的和为56,平均数为8,则n=___7_____.3、数据2,-1,0,-3,-2,3,1的样本标准差为___2_____.5、在对100个数据进行整理的频率分布表中,各组的频数之和等于___100,各组的频率之和等于_____1___.6、要了解某市初中毕业会考的数学成绩情况,从中抽查了1000名学生的数学成绩,样本是( D )(A)此城市所有参加毕业会考的学生(B)此城市所有参加毕业会考的学生的数学成绩(C)被抽查的1 000名学生(D)被抽查的1 000名学生的数学成绩7、如果x1与x2的平均数是6,那么x1+1与x2+3的平均数是( D )(A)4 (B)5 (C)6 (D)88、甲、乙两个样本的方差分别是=6.06,=14.31,由此可反映……(B )(A)样本甲的波动比样本乙大(B)样本甲的波动比样本乙小(C)样本甲和样本乙的波动大小一样(D)样本甲和样本乙的波动大小关系,不能确定9、在公式s 2=[(x 1-)2+(x 2-)2+…+(x n -)2]中,符号S 2,n ,依次表示样本的( A )(A )方差,容量,平均数 (B )容量,方差,平均数 (C )平均数,容量,方差 (D )方差,平均数,容量精解名题一、等可能试验中事件的概率问题及概率计算考核要求:(1)理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;(2)会用枚举法或画“树形图”方法求等可能事件的概率,会用区域面积之比解决简单的概率问题; (3)形成对概率的初步认识,了解机会与风险、规则公平性与决策合理性等简单概率问题.在求解概率问题中要注意:(1)计算前要先确定是否为可能事件;(2)用枚举法或画“树形图”方法求等可能事件的概率过程中要将所有等可能情况考虑完整。
[精品]人教版中职数学教案-第十章--概率与统计初步[8份教案]
10.1计数原理【教学目标】1.理解分类计数原理与分步计数原理,会利用两个原理解决实际问题.2.培养学生利用数学思想方法分析、解决实际问题的能力.3.通过教学,让学生感受生活中的数学思想,提高数学的应用意识.【教学重点】两个计数原理的理解与应用.【教学难点】分类计数原理与分步计数原理的区别.【教学方法】本节课主要采用问题教学法.教师创设问题情景,引导学生观察发现分类计数原理与分步计数原理.并通过例题讲解,使学生进一步深化对定理的理解.最后通过对比实例,明确两个定理的联系和区别.10.2概率初步【教学目标】1.正确理解古典概型的两个特点,掌握古典概率计算公式.2.通过教学,发展学生类比、归纳、猜想等推理能力.3.通过古典概率解决游戏问题,培养学生的数学应用能力以及科学的价值观与世界观.【教学重点】古典概型特点,古典概率的计算公式以及简单应用.【教学难点】试验的基本事件个数n和随机事件包含基本事件的个数m.【教学方法】通过三个简单的例题让学生初步理解古典概型的特征,并由此引出样本空间和基本事件等诸多概念,教师紧扣这三个例题讲解各个概念,并由学生总结古典概率的计算公式.然后通过后面的例题巩固古典概率的求法.【教学过程】10.3.1总体、样本和抽样方法(一)【教学目标】1.理解总体、样本和随机抽样的概念,掌握简单随机抽样的两种方法.2.通过实例,体验简单随机抽样的科学性及可靠性,培养学生分析问题、解决问题的能力.3.通过对现实生活和其他学科中统计问题的提出,体会数学知识在实际生活中的重要应用.【教学重点】正确理解简单随机抽样的概念,掌握抽签法及随机数表法的步骤.【教学难点】能灵活应用抽签法或随机数表法从总体中抽取样本.【教学方法】这节课主要采取启发引导和讲练结合的教学方法.引导学生根据现实生活的经历和体验及收集到的信息来理解理论知识,同时通过例题、练习和课后作业,启发学生从书本知识回到社会实践,学以致用.10.3.1 总体、样本和抽样方法(二)【教学目标】1.理解系统抽样的概念,掌握系统抽样的一般步骤.2.通过实例的分析、解决,培养学生分析问题、解决问题的能力.3.通过数学活动,感受数学在实际生活中的应用,体会现实世界和数学知识的联系.【教学重点】掌握系统抽样的步骤.【教学难点】能够灵活应用系统抽样的方法解决统计问题.【教学方法】本节课采用启发引导和讲练结合的教学方法.教学中教师带领学生从系统抽样的定义分析得出系统抽样的方法和步骤,然后结合例题及其变式练习巩固系统抽样的步骤.10.3.1 总体、样本和抽样方法(三)【教学目标】1.正确理解分层抽样的概念,掌握分层抽样的一般步骤.2.区分简单随机抽样、系统抽样和分层抽样,能灵活选择适当的方法进行抽样.3.通过数学活动,感受数学在实际生活中的应用,体会现实世界和数学知识的联系.【教学重点】分层抽样的定义和步骤.【教学难点】利用分层抽样的方法解决现实问题.【教学方法】这节课主要采取启发引导和讲练结合的教学方法.教学中教师带领学生从分层抽样的定义分析得出分层抽样的方法和步骤,然后结合例题及课后练习巩固分层抽样的步骤.【教学过程】10.3.2频率分布直方图【教学目标】1.掌握列频率分布表、画频率分布直方图的步骤,会用样本频率分布直方图估计总体分布.2.培养学生利用数学方法分析数据、解决实际问题的能力.3.通过画频率分布直方图的过程,培养学生耐心细致,严谨认真的科学态度.【教学重点】绘制频率直方图.【教学难点】列出频率分布表.【教学方法】本节主要采用例题教学法.通过一个具体的题目,讲解极差、频率等概念,教师带领学生一步步列出例题的频率分布表,画出频率分布直方图.随着教师的讲解,学生分步练习,真正掌握画频率分布直方图的各个步骤.【教学过程】10.3.3 用样本估计总体【教学目标】1.理解样本平均数和总体平均数,会用样本平均数估计总体平均数.2.理解样本标准差的意义和作用,学会计算样本标准差,并能用样本标准差估计总体标准差.3.通过实例,让学生体会从特殊到一般的数学思想方法,通过感性认识帮助学生理解统计在社会生活中的重要作用.【教学重点】理解样本平均数,样本标准差的意义和作用,学会计算样本平均数和样本标准差.【教学难点】理解样本平均数及样本标准差的意义和作用.【教学方法】采用支架式教学方法.教师提供研究的材料和问题,即向上攀登的支架,从学生的认知规律出发,通过大量实例,引导学生自主探索解决问题的方法,通过合作讨论互相学习,取长补短,并归纳总结成一般规律,使得原有的认知结构得到进一步补充和完善.10.3.4 一元线性回归【教学目标】1. 了解相关关系、回归分析、散点图、回归直线方程的概念.2. 掌握散点图的画法,掌握回归直线方程的求解方法,会求回归直线方程.3. 让学生参与回归直线的探求,结合身边的实例,发现散点图的线性特征,主动构建线性回归直线方程的模型.【教学重点】散点图的画法,回归直线方程的求解方法.【教学难点】回归直线方程的求解方法.【教学方法】这节课主要采取启发引导和讲练结合的教学方法.通过创设情境、设置问题等手段对学生进行了启发、诱导,结合讨论法、讲授法组织学生自主探究.然后结合例题及课后练习巩固求回归直线方程的步骤.【教学过程】。
九年级上册数学知识框架
九年级上册数学知识框架可以归纳如下:1.一元二次方程:这是本册书的重要内容之一,主要涉及一元二次方程的解法、根的判别式、根与系数的关系等。
同时,还需要掌握一元二次方程在实际问题中的应用,如求面积、体积等问题。
2.旋转:这部分内容主要涉及图形的旋转性质、旋转对称性、旋转角等概念,以及旋转在几何图形中的应用。
3.圆:这是本册书的另一个重点内容,涉及圆的性质、圆周角定理、弦心距定理等。
同时,还需要掌握圆与直线、圆与圆的位置关系,以及圆的切线长定理等。
4.概率初步知识:这部分内容主要涉及概率的基本概念、概率的计算、概率的性质等,为进一步学习概率论打下基础。
5.二次函数:这部分内容主要涉及二次函数的图象和性质、开口方向、顶点和对称轴、函数的极值和最值等。
同时,还需要掌握二次函数在实际问题中的应用,如求最大利润、最大面积等问题。
6.相似:这部分内容主要涉及相似三角形的性质、相似三角形的判定、相似三角形的应用等。
同时,还需要掌握相似多边形的性质和应用。
7.锐角三角函数:这部分内容主要涉及锐角三角函数的定义、性质和图象等,为进一步学习三角函数打下基础。
8.投影与视图:这部分内容主要涉及投影的基本概念、平行投影和中心投影、视图等。
同时,还需要掌握三视图的应用,为进一步学习机械制图打下基础。
9.二次根式:二次根式的定义、性质和运算规则(如:平方根的性质、二次根式的加减乘除运算等)。
简化二次根式的方法。
10.一元二次方程:一元二次方程的定义与标准形式(ax²+ bx + c = 0,其中a ≠0)。
解一元二次方程的方法,包括直接开平方法、配方法、公式法以及因式分解法。
一元二次方程根的判别式及其应用。
11.二次函数:二次函数的定义、图像与性质(如顶点坐标、对称轴、开口方向、增减性等)。
二次函数解析式y=ax²+bx+c(a≠0)与图像之间的对应关系。
用待定系数法求二次函数解析式。
12.图形的相似:相似图形的概念和性质,包括对应边成比例、对应角相等。
概率初步统计初步
概率初步一、学习要求:(1)理解什么是必然发生事件、不可能发生事件,什么是随机事件.(2)在具体情境中了解概率的意义,体会概率是描述不确定事件发生可能性大小的数学概率,理解概率取值范围的意义.(3)能够运用列举法(包括列表、画树状图)计算简单事件发生的概率.(4)能够通过试验,获得事件发生的频率,知道大量重复试验时频率可作为事件发生概率的估计值,理解频率与概率的区别与联系.(5)通过实例进一步丰富对概率的认识,并能解决一些实际问题.(6)了解进行模拟试验的必要性,能根据问题的实际背景设计合理的模拟试验.二、例题分析1、概率的有关概念1、下列事件中是必然事件的是()A、小婷上学一定坐公交车B、买一张电影票,座位号正好是偶数C、小红期末考试数学成绩一定得满分D、将豆油滴入水中,豆油会浮在水面上2、下列说法正确的是()A、一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B、某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C、天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D、抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等2、用列举法求概率(1)直接列举法3、四张不透明的卡片为,除正面的数不同外,其余都相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,抽到写有无理数卡片的概率为_______.(2)两步、三步试验的问题:列表和树状图4、甲盒中装有2张相同的卡片,它们分别写有字母A和B;乙盒中装有3张相同的卡片,它们分别写有字母C、D和E;丙盒中装有2张相同的卡片,它们分别写着字母H和I,从3个盒中各随机取出一张卡片.(1)取出的3张卡片上恰好有1个,2个,3个元音字母的概率是多少?(2)取出的3张卡片上全是辅音字母的概率是多少?解:根据题意,画出树形图:(1)P(一个元音)=;P(两个元音)=;P(三个元音)=;(2)P(三个辅音)=;5、把一副扑克牌中的张黑桃牌(它们的正面牌面数字分别是、、)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当张牌面数字相同时,小王赢;当张牌面数字不相同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.解:(1)P(抽到牌面数字4)=(2)游戏规则对双方不公平.3 4 53 (3,3)(3,4)(3,5)4 (4,3)(4,4)(4,5)5 (5,3)(5,4)(5,5)或由上述表格或树状图知:所有可能出现的结果共有9种.P(抽到牌面数字相同)=,P(抽到牌面数字不相同)=.∵,∴此游戏不公平,小李赢的可能性大.3、用频率估计概率1、通过实例让学生体会有频率估计概率的必要性和科学性.强调“同样条件,大量试验”2、蒙特卡罗方法:有些事情是动态的,或者很难将每一个一一数出,这时可用试验频率来估计总数.其思想依据是:理论概率=试验概率.常用方法是:先做记号,再数记号6、为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条.7、一个密封不透明的盒子里有若干个白球, 在不允许将球倒出来的情况下, 为估计白球的个数, 小刚向其中放入8个黑球, 摇匀后从中随机摸出一个球记下颜色, 再把它放回盒中, 不断重复, 共摸球400次, 其中88次摸到黑球. 估计盒中大约有白球( )A、28个B、30个C、36个D、42个一、本章知识结构框图二、学习目标:1.理解什么是必然发生的事件、不可能发生的事件,什么是随机事件;2.在具体情境中了解概率的意义,体会概率是描述不确定现象的规律的数学模型,理解概率的取值范围的意义,发展随机观念。
初中数学知识点整理统计与概率初步
初中数学知识点整理统计与概率初步在初中数学的学习中,统计与概率初步是一个重要的板块,它不仅在日常生活中有广泛的应用,也是进一步学习数学和其他学科的基础。
接下来,让我们一起系统地梳理一下这部分的知识点。
一、数据的收集数据收集是进行统计分析的第一步。
我们需要明确收集数据的目的,然后选择合适的方法来收集数据。
常见的数据收集方法有普查和抽样调查。
普查是对全体对象进行调查,比如全国人口普查。
普查能够得到准确、全面的信息,但往往需要耗费大量的人力、物力和时间。
抽样调查则是从总体中抽取一部分个体进行调查,然后根据样本数据来估计总体的情况。
抽样调查在实际应用中更为常见,比如要了解一批灯泡的使用寿命,就可以通过抽样调查的方式进行。
在抽样调查中,样本的选择要具有代表性和广泛性,这样才能更准确地反映总体的情况。
二、数据的整理收集到数据后,需要对数据进行整理。
常见的数据整理方法包括分类、排序、分组等。
我们可以根据数据的特点将其进行分类,比如将学生的成绩分为优秀、良好、及格、不及格等不同的类别。
排序则是将数据按照一定的顺序排列,比如将学生的身高从高到低进行排列。
分组是将数据分成若干个组,比如将学生的考试成绩分成0 59 分、60 79 分、80 100 分等不同的分数段。
三、数据的描述1、平均数平均数是一组数据的总和除以数据的个数。
它能够反映一组数据的平均水平。
例如,一组数据 2、4、6、8、10 的平均数为:(2 + 4 + 6 + 8 +10) ÷ 5 = 62、中位数将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是中位数;如果数据的个数是偶数,则中间两个数的平均数就是中位数。
比如,数据 3、5、7、9、11 的中位数是 7;数据 2、4、6、8 的中位数是(4 + 6) ÷ 2 = 53、众数一组数据中出现次数最多的数据称为众数。
例如,数据 1、2、2、3、3、3、4 中,众数是 3平均数、中位数和众数都是描述数据集中趋势的统计量,但它们各有特点,在不同的情况下选择合适的统计量来描述数据的特征是很重要的。
成考数学教案-第13讲--排列、组合、概率初步、统计初步
文化理论课教案-10-j-01审阅签名:【组织教学】1. 起立,师生互相问好2. 坐下,清点人数,指出和纠正存在问题 【导入新课】 【讲授新课】 第十三章 排列与组合 §13.1 两个基本原理 一、分类计数原理完成一件事有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法……,在第n 二类办法中有n m 种不同的方法,那么完成这件事共有不同的方法的种数为12n N m m m =+++二、分步计数原理完成一件事要分成n 个步骤,在第一步骤中中有1m 种不同的方法,在第二步骤中有2m 种不同的方法……,在第n 步骤中有n m 种不同的方法,那么完成这件事的方法的种数共有12n N m m m =⨯⨯⨯§13.2 排列与组合 一、排列1.排列的定义、排列数 从n 个不同的元素中,任取()m m n ≤个不同的元素,按照一定的顺序排成一列,叫做从n 个不同的元素中,取出()m m n ≤个不同的元素的一个排列.当n m =时,又叫全排列. 从n 个不同的元素中,任取()m m n ≤个不同的元素的所有排列的个数,叫做从n 个不同的元素中取()m m n ≤个不同的元素的的排列数.用符号mn P 表示.如从,,,a b c d 四个字母中,四个字母都参与排列的排列数为如下24种:abcd bacd cabd dabc abdc badc cadb dacb acbd bcad cbad dbacacdb bcda cbda dbca adbc bdac cdab dcab adcb bdca cdba dcba排列数是24,排列的过程可用以下的步骤完成:第一步,从,,,a b c d 中任选一个排在最前面,共有4种不同的选法;第二步,从第一步选剩的3个字母中任选一个排在第二位,共有3种不同的选法; 第三步,从第一步、第二步选剩的2个字母中任选一个排在第三位,共有2种不同的选法; 第四步,经过第一步、第二步、第三步的选排,剩下的字母只有一个,共有1种选法。
2023成考数学考试范围以及考点
2023成考数学考试范围以及考点
2023年成人高考数学考试范围包括代数、三角、平面解析几何和概率与统计初步四部分。
具体考点可能包括但不限于以下几个方面:
代数部分:
1.函数与方程:包括函数的定义、性质以及常见的函数类型,如线性函数、二
次函数等。
同时,方程也是考试中的热点内容,特别是一元二次方程和一元一次方程的解法和应用。
2.函数与极限:函数的定义、性质、图像和变换,极限的概念和计算
三角部分:
1.微分方程:一阶和二阶微分方程的基本概念和解法。
三角函数及其性质:包
括正弦、余弦、正切函数的定义、性质和图像。
2.三角函数的变换:包括三角函数的和差化积、积化和差等变换。
平面解析几何部分:
1.线性代数:向量、矩阵、线性方程组、特征值和特征向量等。
2.直线与方程:包括直线的点斜式、斜截式等方程形式。
3.圆与方程:包括圆的标准方程、一般方程等。
概率与统计初步部分:
1.概率初步:包括概率的基本概念、事件的概率计算等。
2.统计初步:包括数据的收集、整理和描述,以及简单的统计推断。
3.概率论与数理统计:随机事件、概率计算、随机变量、分布函数、期望和方
差、抽样分布和参数估计等。
请注意,以上只是可能的考点,具体考试内容和考点可能会根据当年的考试大纲有所调整。
因此,建议考生在备考时,除了掌握基础知识外,还要关注当年的考试大纲和考情分析,以便更准确地把握考试方向和重点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计初步与概率初步
一、平均数
1、平均数的概念
(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x n x +++=
叫做这n 个数的平均数,x 读作“x 拔”。
(2)加权平均数:如果n 个数中,1x 出现1f 次,2x 出现2f 次,…,k x 出现k f 次(这里n f f f k =++ 21),那么,根据平均数的定义,这n 个数的平均数可以表示为n
f x f x f x x k k ++=2211,这样求得的平均数x 叫做加权平均数,其中k f f f ,,,21 叫做权。
2、平均数的计算方法
(1)定义法
当所给数据,,,,21n x x x 比较分散时,一般选用定义公式:)(121n x x x n x +++=
(2)加权平均数法:
当所给数据重复出现时,一般选用加权平均数公式:n
f x f x f x x k k ++=2211,其中n f f f k =++ 21。
(3)新数据法:
当所给数据都在某一常数a 的上下波动时,一般选用简化公式:a x x +='。
其中,常数a 通常取接近这组数据平均数的较“整”的数,a x x -=11',a x x -=22',…,a x x n n -='。
)'''(1'21n x x x n
x +++= 是新数据的平均数(通常把,,,,21n x x x 叫做原数据,,',,','21n x x x 叫做新数据)。
二、统计学中的几个基本概念
1、总体
所有考察对象的全体叫做总体。
2、个体
总体中每一个考察对象叫做个体。
3、样本
从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量
样本中个体的数目叫做样本容量。
5、样本平均数
样本中所有个体的平均数叫做样本平均数。
6、总体平均数
总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
三、众数、中位数
1、众数
在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数
将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
四、方差
1、方差的概念
在一组数据,,,,21n x x x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差。
通常用“2s ”表示,即
])()()[(1222212x x x x x x n
s n -++-+-= 2、方差的计算
(1)基本公式:
])()()[(1222212x x x x x x n
s n -++-+-= (2)简化计算公式(Ⅰ):
])[(12222212x n x x x n
s n -+++=
也可写成2222212)][(1x x x x n s n -+++= 此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。
(3)简化计算公式(Ⅱ):
]')'''[(12222212x n x x x n
s n -+++= 当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',a x x -=22',…,
a x x n n -=',那么,2222212')]'''[(1x x x x n
s n -+++= 此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。
(4)新数据法:
原数据,,,,21n x x x 的方差与新数据a x x -=11',a x x -=22',…,a x x n n -='的方差相等,也就是说,根据方差的基本公式,求得,',,','21n x x x 的方差就等于原数据的方差。
3、标准差
方差的算数平方根叫做这组数据的标准差,用“s ”表示,即
])()()[(1222212x x x x x x n
s s n -++-+-== 五、频率分布
1、频率分布的意义
在许多问题中,只知道平均数和方差还不够,还需要知道样本中数据在各个小范围所占的比例的大小,这就需要研究如何对一组数据进行整理,以便得到它的频率分布。
2、研究频率分布的一般步骤及有关概念
(1)研究样本的频率分布的一般步骤是:
①计算极差(最大值与最小值的差)
②决定组距与组数
③决定分点
④列频率分布表
⑤画频率分布直方图
(2)频率分布的有关概念
①极差:最大值与最小值的差
②频数:落在各个小组内的数据的个数
③频率:每一小组的频数与数据总数(样本容量n )的比值叫做这一小组的频率。
六、确定事件和随机事件
1、确定事件
必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。
不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。
2、随机事件:
在一定条件下,可能发生也可能不放声的事件,称为随机事件。
七、随机事件发生的可能性
一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同。
对随机事件发生的可能性的大小,我们利用反复试验所获取一定的经验数据可以预测它们发生机会的大小。
要评判一些游戏规则对参与游戏者是否公平,就是看它们发生的可能性是否一样。
所谓判断事件可能性是否相同,就是要看各事件发生的可能性的大小是否一样,用数据来说明问题。
八、概率的意义与表示方法
1、概率的意义
一般地,在大量重复试验中,如果事件A 发生的频率
m
n 会稳定在某个常数p 附近,那么这个常数p 就叫做事件A 的概率。
2、事件和概率的表示方法
一般地,事件用英文大写字母A ,B ,C ,…,表示事件A 的概率p ,可记为P (A )=P
九、确定事件和随机事件的概率之间的关系
1、确定事件概率
(1)当A 是必然发生的事件时,P (A )=1
(2)当A是不可能发生的事件时,P(A)=0
2、确定事件和随机事件的概率之间的关系
事件发生的可能性越来越小
0 1概率的值
不可能发生必然发生
事件发生的可能性越来越大
十、古典概型
1、古典概型的定义
某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
我们把具有这两个特点的试验称为古典概型。
2、古典概型的概率的求法
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事
m
件A包含其中的m中结果,那么事件A发生的概率为P(A)=
n
十一、列表法求概率
1、列表法
用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
2、列表法的应用场合
当一次试验要设计两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
十二、树状图法求概率
1、树状图法
就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
2、运用树状图法求概率的条件
当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
十三、利用频率估计概率
1、利用频率估计概率
在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
2、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
3、随机数
在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。
把这些随机产生的数据称为随机数。