高等数学实验报告一
高中数学实验报告
高中数学实验报告标题:高中数学实验报告引言数学实验作为一种创新性的教育方式,旨在通过实际操作来增强学生对数学概念的理解和应用能力。
本文将以高中数学实验为主题,从实验目的、实验方法、实验结果等方面展开回答,旨在探讨实验对学生数学学习的促进作用。
实验目的本次实验的主要目的是通过实践来加深学生对函数、几何、概率等数学概念的理解,并培养学生的分析和解决问题的能力。
同时,实验也旨在激发学生对数学的兴趣,提高他们的学习积极性。
实验方法在本次实验中,我们采用了以小组合作为基础的学习方式。
学生们分成小组,在老师的指导下进行实验,通过互相合作和讨论,提高了学生们的思维能力和团队合作意识。
实验一:函数图像绘制在这个实验中,学生们利用软件绘制了函数的图像。
通过改变函数中的系数和常量,他们可以直观地观察到图像的变化,并将其与数学公式相联系。
这样一来,学生们不仅可以更好地理解函数的性质,还能够培养他们的图形直观能力。
实验结果显示,学生们在绘制函数图像的过程中,逐渐掌握了函数图像的规律,提高了图像的准确性。
通过实验,学生们深入了解了函数的概念,从而更好地掌握了相关的求导和导数概念。
实验二:几何问题求解在这个实验中,学生们通过模拟实际生活中的几何问题,运用数学知识解决实际问题。
比如,他们用测量工具测量物体的高度,然后根据测量结果计算物体的体积。
这样的实践操作能够帮助学生将抽象的数学概念与实际问题联系起来,提高解决实际问题的能力。
实验结果表明,学生们在几何问题求解中,通过实践操作掌握了几何图形的性质和计算方法,提高了他们的空间想象和逻辑思维能力。
实验三:概率实验在这个实验中,学生们利用随机事件的模拟实验来研究概率。
例如,他们通过投掷骰子的实验来研究点数的分布规律,并运用概率理论对实验结果进行分析。
这样的实践操作可以帮助学生更好地理解概率的概念和计算方法。
实验结果显示,学生们通过概率实验加深了对概率的理解,提高了他们的分析和推理能力。
实验报告模板
并且误差 ,或者分母 而且误差 ,那么 就是比 更佳的分数近似值, 就不能说是“最佳”。
反过来,如果 的误差比起分母不超过 的其他分数近似值 都小,也就是 对所有 以及 且 成立,就称 给出了 的最佳逼近。
2、将误差小,分母小这两个标准综合起来,以误差 与分母 的乘积 为标准来判定分数近似值 的优劣, 越小, 越优。还可以进一步强化“分母小”这一要求,用 作衡量标准, 越小越优。
实验的内容与步骤
实验内容
实验步骤
(1)在计算机中打开Mathematica系统;
(2)在工作区中输入以下语句:
(3)按Shift和Enter键运行。ຫໍສະໝຸດ 实验结果与结果分析实验结果
结果分析
附录
实验报告
实验一最佳分数近似值
专业:
班级:
学号:
姓名:
实验报告
实验人
实验时间
实验名称
分数对无理数的最佳逼近——以π为例
实验目的
1、研究怎样用分数近似值去对给定的无理数作最佳逼近;
2、探究π的最佳分数近似值。
实验环境
Mathematica系统
实验的基本理论方法
1、设 是给定的无理数。分数 能够称为 的最佳分数近似值,既然
大一高数实验报告
g1=Plot[f[x],{x,-2Pi,2Pi},PlotStyle->RGBColor[0,0,1], DisplayFunction->Identity]; m=18; For[i=1, i ≤m, i+=2, g2=Plot[Evaluate[s[x,i]], {x,-2Pi,2Pi}, DisplayFunction->Identity]; Show[g1,g2, DisplayFunction->$ DisplayFunction]]
四、程序运行结果
1 0.75 Z 0.5 0.25 0 -1 -0.5 0 X 0.5 1 -1 -0.5 0 1 0.5 Y
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建
东南大学实验报告
五、结果的讨论和分析
曲面 x 2 + z = 1, y 2 + z = 1 ,z=0 的参数方程分别为:x=u,y=v,z=-u +1;
四、程序设计 ParametricPlot3D[{r*Cos[u],r*Sin[u], r 2 − 1 },{u,0,2*Pi}, {r,1, 2 }, PlotPoints->30] 五、程序运行结果
1 0.75 0.5 0.25 0 0 -1 0 1 -1
1
六、结果的讨论和分析
由解析几何知识,曲面 z = 0, z = 1 与 z 2 + 1 = x 2 + y 2 所围成立体是一个单叶双曲面介于平面
,
实验四 一、实验题目: 演示在 yOz 平面内, z=2y 绕 z 轴旋转一周所得曲面方程的过程。 二、实验目的和意义
高数实验报告doc(两篇)
高数实验报告引言:高等数学是大学理工科专业中必修的一门基础课程,通过实验可以帮助学生更好地理解和应用数学知识。
本实验报告旨在介绍高等数学实验的目的、原理和实验结果,以及对实验过程的详细阐述。
通过实验,学生可以深入了解高等数学的概念和方法,并提高其数学建模和问题解决的能力。
概述:一、数列与数学归纳法:1.数列的概念和性质2.等差数列和等比数列的求和公式3.斐波那契数列4.数学归纳法的原理和应用5.数学归纳法在证明数学命题中的应用二、函数与导数:1.函数的概念和分类2.复合函数的求导法则3.高阶导数与泰勒展开4.特殊函数的导数求解5.函数与导数在实际问题中的应用三、不定积分与定积分:1.不定积分的定义和性质2.基本初等函数的不定积分3.分部积分和换元积分法4.定积分的概念和性质5.定积分在几何、物理等领域中的应用四、微分方程:1.微分方程的基本概念和分类2.一阶常微分方程的解法3.二阶常微分方程的解法4.高阶常微分方程与常系数线性齐次微分方程5.微分方程在科学和工程领域的应用五、级数与幂级数:1.级数的概念和性质2.级数的收敛与发散3.幂级数的收敛域4.幂级数的求和与展开5.幂级数在数学分析中的应用总结:通过本次高等数学实验,我们对数列与数学归纳法、函数与导数、不定积分与定积分、微分方程以及级数与幂级数等知识进行了深入了解和实践。
实验过程中,我们运用数学原理和方法解决了一系列数学问题,并将理论知识应用到实际问题解决中。
通过实验,我们不仅加深了对高等数学的理解和掌握,也提高了自己的数学建模和问题解决能力。
这次实验为我们的数学学习和应用提供了宝贵的经验和机会。
引言概述本文是一篇关于高数实验的报告,主要探讨了高数实验的意义、目的、实验方法以及实验结果和分析等内容。
高数实验是大学高数课程的重要组成部分,通过实验能够帮助学生更好地理解和应用数学知识,提高解决实际问题的能力。
本文将从实验目的、实验方法和实验结果三个方面进行详细阐述,并对实验进行总结与分析。
数学实验综合实验报告
数学实验综合实验报告《数学实验综合实验报告》摘要:本实验旨在通过数学实验的方式,探索和验证数学理论,并通过实验数据的分析和处理,得出结论和结论。
本实验涉及到数学的多个领域,包括代数、几何、概率统计等。
通过实验,我们得出了一些有趣的结论和发现,验证了数学理论的正确性,并对数学知识有了更深入的理解。
一、实验目的1. 验证代数公式的正确性2. 探索几何图形的性质3. 分析概率统计的实验数据4. 探讨数学理论的应用二、实验方法1. 代数公式验证实验:通过代数运算和数值计算,验证代数公式的正确性。
2. 几何图形性质探索实验:通过几何构造和图形分析,探索几何图形的性质。
3. 概率统计数据分析实验:通过实验数据的收集和处理,分析概率统计的规律和特性。
4. 数学理论应用实验:通过实际问题的分析和解决,探讨数学理论在实际中的应用。
三、实验结果与分析1. 代数公式验证实验结果表明,代数公式在特定条件下成立,验证了代数理论的正确性。
2. 几何图形性质探索实验发现,某些几何图形具有特定的性质和规律,进一步加深了对几何学的理解。
3. 概率统计数据分析实验得出了一些概率统计的规律和结论,对概率统计理论有了更深入的认识。
4. 数学理论应用实验通过具体问题的分析和解决,验证了数学理论在实际中的应用性。
四、结论通过本次数学实验,我们验证了代数、几何、概率统计等数学理论的正确性,得出了一些有意义的结论和发现。
实验结果进一步加深了对数学知识的理解和应用,对数学理论的研究和发展具有一定的参考价值。
五、展望本次实验虽然取得了一些有意义的结果,但也存在一些不足之处,如实验方法的局限性、实验数据的局限性等。
未来可以进一步完善实验设计和方法,开展更深入的数学实验研究,为数学理论的发展和应用提供更多的支持和帮助。
大学数学实验报告----微积分基础
3、通过函数图像,观察Sin(x)的Taylor逼近。
4、观察函数y= 在[-2Pi,2Pi]上的图象。
实验环境
Mathematica4.0系统
(3)按Shift和Enter键运行。
3、作出y=5/x的图像
(1)在计算机中打开Mathematica4.0系统;
(2)点击鼠标进入工作区后,输入以下语句
Plot[{5/x}, {x,-4,4}]
(3)按Shift和Enter键运行。
4、作出 ; ; ; 的图像
(1)在计算机中打开Mathematica4.0系统;
5、观察y= 在n=9和n=519时的图象,发现在n值很大时,图象越来越接近于“方形”的波。
(2)点击鼠标进入工作区后,输入以下语句
(3)按Shift和Enter键运行。
6、作出y= 在n=9和n=519时的图象
(1)在计算机中打开Mathematica4.0系统;
(2)点击鼠标进入工作区后,输入以下语句
实
验
结
果
及
结
果
分
析
实验结果:
1、
2、
3、
4、语句如下:
图4—1
图4—2
图4—3
图4—4
数学实验报告
实验一 微积分基础
学院:数学与信息科学学院
班级:09级数学(4)班
姓名:***
学号:**
实验一:微积分基础
实验名称
学习和应用Mathematica4.0系统,并做出和观察一些基本图形
高数实验报告
引言概述:本文是关于高数实验的报告,主要通过引言概述、正文内容、总结等部分对高数实验进行详细阐述。
高数实验是通过实际操作和观察,探索和应用数学中的基本原理和概念。
它有助于加深对高数理论的理解、提高数学思维和解决问题的能力。
正文内容:一、实验目的本次高数实验的目的是通过实际操作,加深对数学概念和原理的理解,并掌握基本数学实验的方法和技巧,提高数学思维和解决问题的能力。
二、实验材料和仪器本次实验所需材料和仪器包括实验记录表、计算器、尺子、直角尺、量角器等。
三、实验一:极限的探究1.设立实验任务:研究函数f(x)在某点a的极限。
2.实验步骤:a.确定函数f(x)和点a的取值范围,并在实验记录表中记录下来。
b.设定x的取值逐渐接近a的过程,并依次计算f(x)的值。
c.绘制出随着x的接近程度增加,f(x)的变化趋势图,并通过图像分析来研究f(x)在点a的极限。
3.实验结果和讨论:a.根据实验数据绘制的图像分析可以看出,当x接近a的时候,f(x)的值逐渐趋近于某一数值,这个数值就是f(x)在点a的极限。
b.实验结果和数学概念相符,证明了极限的定义和性质。
四、实验二:导数的计算1.设立实验任务:求函数f(x)在某点的导数。
2.实验步骤:a.确定函数f(x)和点a的取值范围,并在实验记录表中记录下来。
b.通过逐渐缩小x的取值范围,计算f(x)在点a的导数值。
c.通过实验数据绘制出f(x)在点a处导数的变化趋势图,并通过图像分析来研究f(x)在点a的导数。
3.实验结果和讨论:a.根据实验结果和图像分析可以得出结论,f(x)在点a的导数值表示了函数在该点的斜率。
b.实验结果和导数的定义和性质相符,进一步验证了导数的计算方法和应用。
五、实验三:定积分的求解1.设立实验任务:求函数f(x)在某区间的定积分。
2.实验步骤:a.确定函数f(x)和求解区间的取值范围,并在实验记录表中记录下来。
b.将求解区间分成若干个小区间,计算出每个小区间的面积。
高等数学实验报告
高等数学实验报告实验目的:本次实验旨在通过实际操作,加深学生对高等数学中一些重要概念和定理的理解,并培养学生分析和解决实际问题的能力。
实验原理:本实验主要涵盖了高等数学中的微积分部分内容,包括极限、导数、积分等。
实验仪器和材料:1. 笔记本电脑2. 数学软件3. 实验数据表格实验步骤:1. 在计算机上下载并安装数学软件。
2. 打开软件,并按照实验要求选择相应的数学题目。
3. 根据题目要求,运用软件进行计算,并将结果记录在实验数据表格中。
4. 对于给定的函数,求其极限、导数和积分。
5. 分析并解释计算结果,得出结论。
实验结果与讨论:通过本次实验,我们掌握了一些重要的数学概念和计算方法。
以下是实验结果的总结:1. 极限:通过计算不同函数的极限,我们发现当自变量趋于某个特定值时,函数的取值趋于一个确定的值或趋于无穷大。
这一概念在解决实际问题中具有重要意义,可以用于分析函数的增减性、收敛性等。
2. 导数:对于给定的函数,我们求得了其导数,并分析了导数的意义。
导数表示了函数在特定点的变化率,可以用于求解最值、判断函数图像的凹凸性等问题。
3. 积分:通过计算不同函数的积分,我们掌握了积分的计算方法和应用。
积分可以用于求解曲线下的面积、求解有限空间内的体积等问题。
根据实验结果,我们可以得出以下结论:1. 数学是一门既抽象又实际的学科,高等数学为我们提供了一种更深入、更精确的问题描述和解决方法。
2. 实际问题中的数学模型可以通过符号计算软件进行数值计算和模拟,从而得到更准确的结果和结论。
3. 数学实验可以锻炼我们的计算和分析能力,培养我们解决实际问题的思维方式。
结论:通过本次实验,我们深入学习了高等数学中的一些重要概念和计算方法,并应用这些知识解决了实际问题。
实验结果表明,数学实验具有重要的教学和科研价值,并能够提高学生的数学素养和解决实际问题的能力。
参考文献:[1] 高等数学课程教学大纲(试行). (2017).[2] Stewart, J. (2015). Calculus: Early Transcendentals. Cengage Learning.。
大学数学实验报告模板(3篇)
一、实验名称[实验名称]二、实验目的1. [目的一]2. [目的二]3. [目的三]三、实验原理[简要介绍实验的理论依据,包括相关数学公式、定理等]四、实验仪器与设备1. [仪器名称]2. [设备名称]3. [其他所需材料]五、实验步骤1. [步骤一]- [具体操作描述]- [预期结果]2. [步骤二]- [具体操作描述]- [预期结果]3. [步骤三]- [具体操作描述]- [预期结果][后续步骤]六、实验数据记录与分析1. [数据记录表格]- [数据项一]- [数据项二]- [数据项三]...[数据项N]2. [数据分析]- [对数据记录进行初步分析,包括计算、比较、趋势分析等] - [结合实验原理,解释数据分析结果]七、实验结果与讨论1. [实验结果展示]- [图表、图形等形式展示实验结果]- [文字描述实验结果]2. [讨论]- [对实验结果进行分析,解释实验现象,与理论预期进行对比] - [讨论实验中可能存在的误差来源及解决方案]- [总结实验的优缺点,提出改进建议]八、实验结论1. [总结实验目的达成情况]2. [总结实验的主要发现和结论]3. [对实验结果的评价]九、参考文献[列出实验过程中参考的书籍、论文、网站等]十、附录[如有需要,可在此处附上实验过程中的图片、计算过程、源代码等]---注意:1. 实验报告应根据具体实验内容进行调整,以下模板仅供参考。
2. 实验步骤、数据记录与分析、实验结果与讨论等部分应根据实验实际情况进行详细描述。
3. 实验报告应保持简洁、清晰、条理分明,避免冗余信息。
4. 注意实验报告的格式规范,包括字体、字号、行距等。
第2篇一、实验名称[实验名称]二、实验目的1. 理解并掌握[实验内容]的基本概念和原理。
2. 培养动手操作能力和实验技能。
3. 提高分析问题和解决问题的能力。
4. 增强团队协作意识。
三、实验原理[简要介绍实验的理论依据,包括公式、定理等]四、实验仪器与材料1. 仪器:[列出实验所需仪器]2. 材料:[列出实验所需材料]五、实验步骤1. [步骤一]- 操作说明:[详细描述第一步的具体操作]- 数据记录:[记录相关数据]2. [步骤二]- 操作说明:[详细描述第二步的具体操作]- 数据记录:[记录相关数据]3. [步骤三]- 操作说明:[详细描述第三步的具体操作]- 数据记录:[记录相关数据]...(依实验内容添加更多步骤)六、实验数据与分析1. [数据整理]- 将实验过程中收集到的数据整理成表格或图表。
高数实验报告(上)
高等数学 数学实验报告实验人员:院(系) :电子科学与工程学院 学号: 姓名:成绩_________ 实验时间:2015.11实验一:观察数列的极限一、 实验题目通过作图,观察重要极限 e nn n =+∞→)11(lim二、实验目的和意义利用数形结合的方法观察数列的重要极限,可以从点图上看出数列的收敛性,以及近似地观察出数列的收敛值;通过点图可以得出极限值为e 。
此实验得出了数列的一个重要极限。
三、计算公式(1+1/i)i i取50个点观察收敛值四、程序设计data=Table[(1+1/i)i ,{i,50}];ListPlot[data,PlotRange →{1,3},PlotStyle →PointSize[0.018]]五、程序运行结果六、结果的讨论和分析通过实验结果,更加了解重要极限的值的产生,初步体验程序的编写过程,实现求极限值。
在试验中,出现了因取点过少而无法观察极限的问题,在修正取点数后得到解决。
实验二:一元函数图形及其性态一、实验题目制作函数y=sincx的图形动画,并观察参数c对函数图形的影响。
二、实验目的和意义通过绘制图像,简单直观地展现函数图像,观察出参数c对函数图形的影响。
通过编程可以改变参数c的值,以此来发现参数改变对正弦函数周期的影响。
此实验使对正弦函数理解更为直观、明了。
三、计算公式y=sincx四、程序设计Do[Plot[Sin[c*x],{x,-3,3},PlotRange {-1,1}],{c,1,3,1/ 2}]五、程序运行结果六、结果的讨论和分析参数c 从1到3以1/2为步长,改变参数值c 使得正弦函数的周期发生变化,C 值越大,周期越小。
通过程序展示参数改变过程中图形变化情况,要使之更加生动,可以对这些图形进行动画演示。
实验三:泰勒公式与函数逼近一、 实验题目(根据图形观察泰勒展开的误差)观察sx x f co )(=的各阶泰勒展开的图形。
二、 实验目的和意义利用Mathematica 计算函数)(x f 的各阶泰勒多项式,并通过绘制曲线图形,来进一步掌握泰勒展开与函数逼近的思想。
数学实验报告
数学实验报告实验目的:通过数学实验,探究函数的性质及其在实际问题中的应用。
实验器材:白板、白板标记笔、计算器、实验数据表格。
实验步骤:1. 实验准备:在白板上绘制坐标系,准备好实验所需的器材和数据表格。
2. 实验一:函数的图像a. 选择一个常见函数,如线性函数、二次函数、指数函数等。
b. 分别设定不同的函数表达式并计算相应的函数值。
c. 根据计算结果,在坐标系上绘制函数的图像。
d. 分析并总结图像的特点,如斜率、曲线形状等。
3. 实验二:函数的性质a. 选择一个函数,并设定其表达式。
b. 计算该函数的极限、导数、反函数等。
c. 分析函数的单调性、奇偶性、周期性等性质。
d. 比较不同函数的性质,并总结规律。
4. 实验三:函数在实际问题中的应用a. 选择一个实际问题,如汽车行驶问题、物体抛投问题等。
b. 根据实际问题,建立相应的函数模型。
c. 利用函数模型,解决实际问题并计算相关数值。
d. 分析计算结果在实际问题中的意义和应用。
5. 实验总结:总结数学实验的过程和结果,并归纳提炼实验中所学的数学知识点。
6. 附录:附上实验数据表格、图像绘制过程、计算过程等详细资料。
实验数据及分析:1. 实验一:函数的图像a. 线性函数:设定函数表达式为 y = 2x + 1,计算若干个点的函数值。
b. 二次函数:设定函数表达式为 y = x^2,计算若干个点的函数值。
c. 指数函数:设定函数表达式为 y = 2^x,计算若干个点的函数值。
d. 根据计算结果,绘制函数的图像。
e. 通过观察图像,得出线性函数的图像为一条直线,斜率为2;二次函数的图像为一条开口向上的抛物线;指数函数的图像呈现指数增长的趋势。
2. 实验二:函数的性质a. 选取三角函数 sin(x) 作为研究对象,计算其极限、导数、反函数等。
b. 求取 sin(x) 的极限结果为:lim(x->0) sin(x) = 0。
c. 求取 sin(x) 的导数结果为:d(sin(x))/dx = cos(x)。
高等数学实验-1
图1-9 八次拟合Βιβλιοθήκη 第1章函数与极限—设计性实验
实验二
复利问题
【实验目的】 1.加深对函数极限概念的理解 2.讨论极限在实际问题中的应用 3.会用Matlab命令求函数极限 【实验要求】 掌握极限概念,Matlab软件求函数极限的命 令limit
第1章函数与极限—设计性实验
【实验内容】
复利,即利滚利。不仅是一个经济问题,而且是 一个古老又现代的经济社会问题。随着商品经济 的发展,复利计算将日益普遍,同时复利的期限 将日益变短,即不仅用年息、月息,而且用旬息、 日息、半日息表示利息率。现在我们已进入电子 商务时代,允许储户随时存款或取款,如果一个 储户连续不断存款和取款,结算本息的频率趋于 无穷大,每次结算后将本息全部存入银行,这意 味着银行不断地向储户支付利息,称为连续复利 问题。
第1章函数与极限--验证性实验
【实验内容】 1.求下列函数的复合函数 (1) f 1 , g sin y ,求
1 x2
f ( g ( y))
【实验过程】 1.(1)>>syms x y >> f=1/(1+x^2); >> g=sin(y); >> compose(f,g) 运行结果: ans = 1/(sin(y)^2+1) 由上述结果可知:
本金+利息= p(1+r/n)+ p(1+r/n)*r/n =p(1+r/n)2 ……,
第n期到期后的本利和是 p(1+r/n)n 存期为t年(事实上是有tn期),到期后的本利和为 p(1+r/n)tn 随着结算次数的无限增加,即在上式中n→∞,t=1 年后本息共计 n lim100000 r/n) ≈10.6184(万元) (1+ n 随着结算次数的无限增加,一年后本息总和将稳 定于10.6184万元,储户并不能通过该方法成为百 万富翁。
大学数学实验报告
大学数学实验报告大学数学实验报告引言:大学数学实验作为一门重要的课程,旨在培养学生的数学思维和实际应用能力。
通过实验,学生可以将抽象的数学理论与实际问题相结合,加深对数学知识的理解和掌握。
本篇报告将以三个实验为例,分别讨论数学在实际问题中的应用。
实验一:线性回归分析线性回归分析是数学中的一种重要方法,用于研究变量之间的关系。
在实验中,我们选择了一组数据集,通过对数据的分析,得到了一个线性回归模型。
通过该模型,我们可以预测未来的数据趋势,从而为决策提供依据。
实验二:优化问题求解优化问题是数学中的一个重要领域,涉及到如何找到最优解。
在实验中,我们选取了一个典型的优化问题,即如何在给定的条件下使得某个函数取得最大值或最小值。
通过使用数学建模和求解优化问题的方法,我们得到了最优解,并对结果进行了分析和解释。
实验三:概率统计分析概率统计是数学中的一个重要分支,用于研究随机事件的规律性。
在实验中,我们选择了一个实际问题,通过对数据的搜集和分析,得到了一些统计指标,如均值、方差等。
通过对这些指标的计算和解释,我们可以对实际问题进行评估和预测。
讨论:通过以上三个实验,我们可以看到数学在实际问题中的广泛应用。
线性回归分析可以帮助我们预测未来的趋势,为决策提供参考;优化问题求解可以帮助我们找到最优解,提高效率和效果;概率统计分析可以帮助我们评估风险和预测未来的可能性。
这些方法和技巧都是基于数学理论和模型的,通过对实际问题的抽象和建模,我们可以得到更准确、更可靠的结果。
结论:大学数学实验作为一门重要的课程,对培养学生的数学思维和实际应用能力起着重要的作用。
通过实验,学生可以将数学知识与实际问题相结合,提高解决问题的能力。
本篇报告以线性回归分析、优化问题求解和概率统计分析为例,讨论了数学在实际问题中的应用。
通过这些实验,我们可以看到数学的重要性和广泛应用性。
希望通过这些实验,学生能够更好地理解和掌握数学知识,为未来的学习和工作打下坚实的基础。
高等数学上机实验报告第1题2003
《高等数学》数学实验报告
姓
名
任课教师学号所在学部、院、班级
卢
佳
琦
张宏伟201365062 机械工程与材料能源学部材料1304
实验内容要在陆地城市A与海岛B之间敷设一条地下光缆(图2-28),经地质勘探后知,陆地区域与水下区域每公里敷设的成本不同,试问如何确定敷设路线,可使工程的总成本最低?
实验目的(1)了解数学软件(2)了解数学建模方法(3)会用基本的数学软件解决问题(4)了解数学方法解决问题的流程
数学模型设陆地和水下铺设的成本分别为c1,c2,AB相距水平距离为d,将问题转化为求方程y=(a^2+x^2)^0.5*c1+(b^2+(d-x)^2)^0.5*c2的最小值,即求
dy/dx=c1*x/(a^2+x^2)^0.5-c2*(d-x)/(b^2+(d-x)^2)^0.5
的零点。
计
算
方
法
令a=3,b=2,d=6,c1=100,c2=200,利用二分法球根
算
法
流
程
实
验
结
果
与
分
析
假设了上述初值后,计算结果为5.048 实
验
后
感
想。
大学高数实验课报告心得
大学高数实验课报告心得引言大学高等数学是一门基础性的数学课程,对于理工科学生来说尤为重要。
实验课是我们学习高等数学的一种有效方式,通过实际操作和观察,加深对数学知识的理解和应用能力的培养。
在本次大学高数实验课中,我学习了很多以前从未接触过的数学知识和相关实验技巧,感受到了数学的深奥与美妙。
实验一:函数与极限在第一次实验中,我们通过实际导入一些函数的数据,并绘制出函数的图形。
这个实验让我更直观地感受到函数在数学中的重要性。
我们探讨了一些常见的函数,如线性函数、二次函数和指数函数,并观察了它们的图像特点。
进一步地,我们通过调整函数的参数,比如平移、缩放和翻转等操作,来观察函数图像的变化。
这个实验让我意识到函数图像与函数式的密切关系。
研究函数图像不仅可以加深对函数性质的理解,也有助于我们抽象化和推广数学模型,为进一步的学习打下了坚实的基础。
实验二:导数与微分在第二次实验中,我们学习了导数与微分。
导数是高等数学中的重要概念,它描述了函数在某一点的变化率。
通过实验观察和数据计算,我们了解了导数的几何意义和实际应用。
我们通过实验探讨了一些常见函数的导数,如常数函数、幂函数和三角函数。
通过实验数据的计算,我们得到了各个函数导数的近似值,并观察了导数随着自变量的变化而变化的规律。
这个实验不仅加深了我对导数概念的理解,也让我明白了导数与函数图像的密切关系。
通过导数的实验研究,我还了解到导数可以用于判断函数的单调性和极值问题。
导数的应用广泛而且重要,它在自然科学和工程技术中有着深远的意义。
我对导数的学习和实验研究让我更深刻地感受到数学与现实生活的紧密联系。
实验三:积分与不定积分在第三次实验中,我们学习了积分与不定积分。
积分是高等数学中一个重要的概念,它描述了函数在一定区间上的累积效应。
通过实验和计算,我们了解了积分与函数面积、长度和质量等实际问题的关系。
我们通过实验研究了一些常见函数的不定积分,探讨了不定积分的基本性质和计算方法。
高等数学实验报告
高等数学实验报告
实验题目:求解非齐次线性方程组
实验目的:通过实验掌握求解非齐次线性方程组的基本原理和方法,掌握矩阵变换的基本概念和方法。
实验原理:对于非齐次线性方程组Ax=b,A为系数矩阵,b为常数列向量,如果Ax0=0,其中x0为齐次线性方程组Ax=0的通解,则非齐次线性方程组的通解为x=x0+xp,其中xp为Ax=b的一组特解。
实验内容:以3x3线性方程组为例,进行求解非齐次线性方程组的操作。
步骤1:对系数矩阵A进行初等变换,将矩阵化为上三角矩阵U。
此时方程组变为Ux=y,其中y为常数向量b经过初等变换得到的向量。
步骤2:利用回带法(也称为消元法的“回退”版),求出Ux=y 的解。
将求解过程记录在表格中(见表1)。
表1 回带法求解过程表
步骤3:求出非齐次线性方程组的一个特解xp。
由于Ax0=0,
故有(A+B)x0=-b,其中B是一个由U矩阵无法得出的矩阵,A为
U矩阵。
将(A+B)x0=-b解出x0,特解xp=A^(-1)(-b-Bx0)即为一个
特解。
步骤4:得到非齐次线性方程组的通解为x=x0+xp,其中x0为
齐次线性方程组Ax=0的通解,xp为步骤3求解得到的一个特解。
实验结果:用本实验的方法,求解线性方程组
2x1+6x2+10x3=12
0x1+7x2+5x3=-3
0x1+0x2+3x3=7
得到的解为
x1=-1
x2=2
x3=7/3
实验结论:本实验所用方法确实能够求解非齐次线性方程组,并得出正确解。
经过本次实验,我掌握了求解非齐次线性方程组的基本原理和方法,以及矩阵变换的基本概念和方法。
高数(上)实验报告
一、实验题目
泰勒公式与函数逼近
二、实验目的和意义
可以看出泰勒公式与原函数的比较
三、计算公式
L计
For[i=1,i11,a=Normal[Series[Log[Cos[x^2]+Sin[x]],{x,0,i}]];Plot[{a,Log[Cos[x^2]+Sin[x]]},{x,-Pi/4,Pi/4},PlotStyle{RGBColor[0,0,1],RGBColor[1,0,0]}];i=i+2]
三、计算公式
,n=1,2,3……
四、程序设计
五、程序运行结果
六、结果的讨论和分析
通过绘图,发现f(n)= 在n→+∞时,函数值无限靠近2.7左右的某一数值(e≈2.7),可判断数列 在n→+∞时,必收敛.
实验二
一、实验题目
制作函数y=sin cx图形动画并观察参数c对函数图形的影响。
二、实验目的和意义
高等数学数学实验报告
实验人员:院(系)机械工程学院学号_02A10314_姓名褚东宇
实验地点:计算机中心机房
实验一
一、实验题目
通过作图,观察重要极限: .
二、实验目的和意义
利用数形结合的方法观察数列极限,可从点图上看出数列的收敛性及近似得出数列的收敛值;通过编程可以输出数列的任意多项值,以此来得到数列的收敛性。
五、程序运行结果
六、结果的讨论和分析
随n值增大,泰勒公式的函数越来越趋向于原函数
掌握图形动画的应用,通过图形的变化找出参数对函数的影响。
三、计算公式
Sin cx
四、程序设计
Do[Plot[Sin[c*x],{x,-Pi,Pi},PlotRange{-1,1}],{c,1,3,1/2}]
数学实验报告
2、画出函数在-3 ( x (源自3 的图形, 且为红色。3、将函数绘制绘制在第一象限内, 区间任选(要求图形高宽比为1)。
4、先画出函数 在-3x25的图形,再显示在平面区域[5,12][5,10]部分的图形以观察局部特征。
5、在同一坐标系中画出三个函数 在-2x2
的图形,并给坐标横轴和纵轴分别标记为x和y。
6、将函数 的图形作在同一坐标系内,并观察直接函数和反函数的图形间的关系(可以选择让图形呈现不同颜色以便观察)。
输入以下命令,观察图形叠加,说明选项意义。
a1=Plot[x,{x,-5,5},PlotStyle-> {RGBColor[0,1,0]}]
a2=Plot[2 Sin[x],{x,-5,5},PlotStyle->{RGBColor[0,0,1]}]
组别
实验小组成员
实验名称
基础实验1:一元函数的图形
成绩
试验序号: 01日期: 2010年月日
实验目的
通过图形加深对函数及其性质的认识与理解, 掌握运用函数的图形来观察和分析函数的有关特性与变化趋势的方法,建立数形结合的思想; 掌握用Mathematica作平面曲线图性的方法与技巧。
试验所用版本: Mathematica 5.0
a3=Plot[x+2 Sin[x],{x,-5,5},PlotStyle->{RGBColor[1,0,0]}]
Show[a1,a2,a3]
7、作出分段函数 的图形。(选作)
8、作出隐函数 的图形。(选作)
实验过程记录(含基本步骤,主要程序清单及异常情况记录等)
1.
异常情况记录:
实验结果报告与实验总结:
教师评价
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学数学实验报告
实验人员:院(系)学号姓名
实验地点:
实验一
实验题目:作出函数Y=ln(cosx^2+sinx) (-π/4, π/4)的函数图形和泰勒展开式图形,选取不同的x0和n,并进行比较。
二、实验目的和意义
熟悉Mathematica软件所具有的良好作图功能,并通过函数图形来认识函数,运用函数图形来观察分析函数的有关性态,熟悉泰勒多项式对函数的近似效果,并建立数形结合的思想
三、程序设计
(一)确定x0=0,n=1,3,5……19;
●t = Table[Normal[Series[Log[Cos[x^2] + Sin[x]], {x, 0, i}]], {i, 1, 20,
2}];PrependTo[t, Log[Cos[x^2] + Sin[x]]];Plot[Evaluate[t], {x, -Pi/4, Pi/4}]
(二)分别在x0=0.1,0.5,0.6,0.75,-0.1,-0.5,-0.75,0处进行泰勒
展开,确定n=1,3,5……19;
●t = Table[Normal[Series[Log[Cos[x^2] + Sin[x]], {x, 0.1, i}]], {i, 1,
20, 2}];PrependTo[t, Log[Cos[x^2] + Sin[x]]];Plot[Evaluate[t], {x, -Pi/4, Pi/4}]
●t = Table[Normal[Series[Log[Cos[x^2] + Sin[x]], {x, 0.5, i}]], {i, 1,
20, 2}];PrependTo[t, Log[Cos[x^2] + Sin[x]]];Plot[Evaluate[t], {x,
-Pi/4, Pi/4}]
●t = Table[Normal[Series[Log[Cos[x^2] + Sin[x]], {x, 0.6, i}]], {i, 1,
20, 2}];PrependTo[t, Log[Cos[x^2] + Sin[x]]];Plot[Evaluate[t], {x, -Pi/4, Pi/4}]
●t = Table[Normal[Series[Log[Cos[x^2] + Sin[x]], {x, 0.75, i}]], {i, 1,
20, 2}];PrependTo[t, Log[Cos[x^2] + Sin[x]]];Plot[Evaluate[t], {x, -Pi/4, Pi/4}]
●t = Table[Normal[Series[Log[Cos[x^2] + Sin[x]], {x, -0.1, i}]], {i, 1,
20, 2}];PrependTo[t, Log[Cos[x^2] + Sin[x]]];Plot[Evaluate[t], {x, -Pi/4, Pi/4}]
●t = Table[Normal[Series[Log[Cos[x^2] + Sin[x]], {x, -0.5, i}]], {i, 1,
20, 2}];PrependTo[t, Log[Cos[x^2] + Sin[x]]];Plot[Evaluate[t], {x, -Pi/4, Pi/4}]
●t = Table[Normal[Series[Log[Cos[x^2] + Sin[x]], {x,-0.75, i}]], {i, 1,
20, 2}];PrependTo[t, Log[Cos[x^2] + Sin[x]]];Plot[Evaluate[t], {x, -Pi/4, Pi/4}]
●t = Table[Normal[Series[Log[Cos[x^2] + Sin[x]], {x, 0, i}]], {i, 1, 20,
2}];PrependTo[t, Log[Cos[x^2] + Sin[x]]];Plot[Evaluate[t], {x, -Pi/4, Pi/4}]
四、程序运行结果
(一)x0=0处(n变化)
(二)x0变化
i.x0=0.1
ii.x0=0.5
iii.x0=0.6
iv.x0=0.75
v.x0=-0.1
vi.x0=-0.5
vii.x0=-0.75
viii.x0=0
五、结果的讨论和分析
函数的泰勒多项式对于函数的近似程度随着阶数的提高而提高。