《基于单片机的温度控制系统的设计》
基于STM32单片机的温度控制系统设计
基于STM32单片机的温度控制系统设计一、本文概述本文旨在探讨基于STM32单片机的温度控制系统的设计。
我们将从系统需求分析、硬件设计、软件编程以及系统测试等多个方面进行全面而详细的介绍。
STM32单片机作为一款高性能、低功耗的微控制器,广泛应用于各类嵌入式系统中。
通过STM32单片机实现温度控制,不仅可以精确控制目标温度,而且能够实现系统的智能化和自动化。
本文将介绍如何通过STM32单片机,结合传感器、执行器等硬件设备,构建一套高效、稳定的温度控制系统,以满足不同应用场景的需求。
在本文中,我们将首先分析温度控制系统的基本需求,包括温度范围、精度、稳定性等关键指标。
随后,我们将详细介绍系统的硬件设计,包括STM32单片机的选型、传感器和执行器的选择、电路设计等。
在软件编程方面,我们将介绍如何使用STM32的开发环境进行程序编写,包括温度数据的采集、处理、显示以及控制策略的实现等。
我们将对系统进行测试,以验证其性能和稳定性。
通过本文的阐述,读者可以深入了解基于STM32单片机的温度控制系统的设计过程,掌握相关硬件和软件技术,为实际应用提供有力支持。
本文也为从事嵌入式系统设计和开发的工程师提供了一定的参考和借鉴。
二、系统总体设计基于STM32单片机的温度控制系统设计,主要围绕实现精确的温度监测与控制展开。
系统的总体设计目标是构建一个稳定、可靠且高效的环境温度控制平台,能够实时采集环境温度,并根据预设的温度阈值进行智能调节,以实现对环境温度的精确控制。
在系统总体设计中,我们采用了模块化设计的思想,将整个系统划分为多个功能模块,包括温度采集模块、控制算法模块、执行机构模块以及人机交互模块等。
这样的设计方式不仅提高了系统的可维护性和可扩展性,同时也便于后续的调试与优化。
温度采集模块是系统的感知层,负责实时采集环境温度数据。
我们选用高精度温度传感器作为采集元件,将其与STM32单片机相连,通过ADC(模数转换器)将模拟信号转换为数字信号,供后续处理使用。
基于单片机的温度控制系统设计
基于单片机的温度控制系统设计摘要随着国民经济的发展,人们需要对各中加热炉、热处理炉、反应炉和锅炉中温度进行监测和控制。
采用单片机来对他们控制不仅具有控制方便,简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。
本设计采用无ROM的8031作为主控制芯片。
8031的接口电路有8155、2764。
8155用于键盘/LED显示器接口,2764可作为8031的外部ROM存储器。
其中温度控制电路是通过可控硅调功器实现的。
双向可控硅管和加热丝串联接在交流220V,50HZ交流试点回路,在给定周期内,8031只要改变可控硅管的接通时间便可改变加热丝功率,以达到调节温度的目的。
关键字:温度控制;接口电路;可控硅Design of Temperature Control System Based on SCMLibing(College of Zhangjiajie, Jishou University, Jishou,Hunan 416000)AbstractAlong with national economy development, the people need to each heating furnace、the heat-treatment furnace、in the reactor and the boiler the temperature carry on the monitor and the control. Not only uses the monolithic integrated circuit to come to them to control has the control to be convenient, simple and flexibility big and so on merits, moreover may enhance large scale is accused the temperature technical specification, thus can big enhance the product the quality and quantity.This design uses non-ROM8031to take the master control chip. 8031 connection electric circuits have8155、2764.8155uses in the keyboard /LED monitor connection, 2764 may take 8031 exterior ROM memories,one temperature-control circuit is adjusts the merit realization through the silicon-controlled rectifier. The bidirectional silicon-controlled rectifier tube and the heater series connection in exchange 220V,50HZ exchange city electricity return route, in assigns in the cycle, 8031 so long as the change silicon-controlled rectifier tube puts through the timethen to be possible to change the heater power, achieves the attemperation the goal. Key words:Temperature control;Connection electric circuit;Silicon-controlled rectifier目录绪论 (3)第一章单片机温度控制系统方案简介 (2)第二章单片机 (3)2.1 单片机内部模块 (3)2.1.1 MCS-51单片机内部结构 (4)2.1.2 MCS-51输入/输出端口的结构与功能 (4)2.1.3 MCS—51单片机的引脚及其功能 (5)2.1.4 8031系统扩展设计 (6)2.2 单片机外总线结构 (6)2.3 芯片的扩展设计 (6)2.4 单片机温控模块 (7)第三章系统硬件设计 (9)3.1 系统总体设计 (9)3.2 8155接口电路 (9)3.3 A/D转换电路 (11)3.4 可控硅控制电路 (11)第四章系统软件设计 (14)4.1 主程序流程图 (14)4.2 T0中断服务程序 (14)4.3 采样子程序 (18)4.4 数字滤波程序 (19)总结 (22)参考文献 (23)绪论温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的基于单片机的温度控制系统设计绪论温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。
基于单片机的pid温度控制系统设计
一、概述单片机PID温度控制系统是一种利用单片机对温度进行控制的智能系统。
在工业和日常生活中,温度控制是非常重要的,可以用来控制加热、冷却等过程。
PID控制器是一种利用比例、积分、微分三个调节参数来控制系统的控制器,它具有稳定性好、调节快等优点。
本文将介绍基于单片机的PID温度控制系统设计的相关原理、硬件设计、软件设计等内容。
二、基本原理1. PID控制器原理PID控制器是一种以比例、积分、微分三个控制参数为基础的控制系统。
比例项负责根据误差大小来控制输出;积分项用来修正系统长期稳态误差;微分项主要用来抑制系统的瞬时波动。
PID控制器将这三个项进行线性组合,通过调节比例、积分、微分这三个参数来实现对系统的控制。
2. 温度传感器原理温度传感器是将温度变化转化为电信号输出的器件。
常见的温度传感器有热电偶、热敏电阻、半导体温度传感器等。
在温度控制系统中,温度传感器负责将环境温度转化为电信号,以便控制系统进行监测和调节。
三、硬件设计1. 单片机选择单片机是整个温度控制系统的核心部件。
在设计单片机PID温度控制系统时,需要选择合适的单片机。
常见的单片机有STC89C52、AT89S52等,选型时需要考虑单片机的性能、价格、外设接口等因素。
2. 温度传感器接口设计温度传感器与单片机之间需要进行接口设计。
常见的温度传感器接口有模拟接口和数字接口两种。
模拟接口需要通过模数转换器将模拟信号转化为数字信号,而数字接口则可以直接将数字信号输入到单片机中。
3. 输出控制接口设计温度控制系统通常需要通过继电器、半导体元件等控制输出。
在硬件设计中,需要考虑输出接口的类型、电流、电压等参数,以及单片机与输出接口的连接方式。
四、软件设计1. PID算法实现在单片机中,需要通过程序实现PID控制算法。
常见的PID算法包括位置式PID和增量式PID。
在设计时需要考虑控制周期、控制精度等因素。
2. 温度采集和显示单片机需要通过程序对温度传感器进行数据采集,然后进行数据处理和显示。
基于单片机的温度控制系统论文.
基于单片机的温度控制系统设计基于单片机的温度控制系统设计摘要:现今,单片机在检测和控制系统中得到了广泛的应用。
与此同时,温度是一个系统经常需要测量、控制和保持的量,而温度是一个模拟量,不能直接与单片机交换信息,因此需要采用适当的技术将模拟的温度量转化为数字量,在原理上虽然不困难但成本却较高,还会遇到其它方面的问题。
因此对单片机温度控制系统的研究有重要目的和意义。
The design of the temperature control system based on singlechip Abstract: Nowadays,the singlechip has a extensive application in the detect and control system.Meanwhile,the temperature is a variable parameter which need to test ,control and maintain in the system,however,the temperature is a analog quantity so that we cannot exchange message with the singlechip directly.In case that we should take appropriate technology to turn the temperature of the analog into the digital quantity. Even though the theory is not difficuilt ,the cost is sharply high.what is more,we would encounter others problems,too.Therefore,the research of the temperature control system based on singlechip is of high significance.一、系统参数要求:1.1温度参数:要求温度控制为(学号+50)℃,在本方案中标准温度为63℃;1.2外设口地址:以(学号+30)H为起始地址,本方案中以63H为起始地址,同时每增加一个外设,口地址+1。
基于单片机的温度控制系统设计原理
基于单片机的温度控制系统设计原理基于单片机的温度控制系统设计概述•温度控制系统是在现代生活中广泛应用的一种自动控制系统。
它通过测量环境温度并对温度进行调节,以维持设定的温度范围内的稳定状态。
本文将介绍基于单片机的温度控制系统的设计原理。
单片机简介•单片机是一种集成电路芯片,具有强大的计算能力和丰富的输入输出接口。
它可以作为温度控制系统的核心控制器,通过编程实现温度的测量和调节功能。
温度传感器•温度传感器是温度控制系统中重要的部件,用于测量环境温度。
常见的温度传感器有热敏电阻、热电偶和数字温度传感器等。
在设计中,需要选择适合的温度传感器,并通过单片机的模拟输入接口对其进行连接。
温度测量与显示•单片机可以通过模拟输入接口读取温度传感器的信号,并进行数字化处理。
通过数值转换算法,可以将传感器输出的模拟信号转换为温度数值,并在显示器上进行显示。
常见的温度显示方式有数码管和LCD等。
温度控制算法•温度控制系统通常采用PID(比例-积分-微分)控制算法。
这种算法通过比较实际温度和设定温度,计算出调节量,并通过输出接口控制执行机构,实现温度的调节。
在单片机程序中,需要编写PID控制算法,并根据具体系统进行参数调优。
执行机构•执行机构是温度控制系统中的关键部件,用于实际调节环境温度。
常见的执行机构有加热器和制冷器。
通过单片机的输出接口,可以控制执行机构的开关状态,从而实现温度的调节。
界面与交互•温度控制系统还可以配备界面与交互功能,用于设定目标温度、显示当前温度和执行机构状态等信息。
在单片机程序中,可以通过按键、液晶显示屏和蜂鸣器等外设实现界面与交互功能的设计。
总结•基于单片机的温度控制系统设计涉及到温度传感器、温度测量与显示、温度控制算法、执行机构以及界面与交互等多个方面。
通过合理的设计和编程实现,可以实现对环境温度的自动调节,提高生活和工作的舒适性和效率。
以上是对基于单片机的温度控制系统设计原理的简要介绍。
基于单片机的温度智能控制系统的设计与实现共3篇
基于单片机的温度智能控制系统的设计与实现共3篇基于单片机的温度智能控制系统的设计与实现1基于单片机的温度智能控制系统的设计与实现随着人们对生活质量的需求越来越高,温度控制变得愈发重要。
在家庭、医院、实验室、生产车间等场合,温度控制都是必不可少的。
本文将介绍一种基于单片机的温度智能控制系统的设计与实现。
设计思路本文所设计的温度智能控制系统主要由单片机、温度传感器、继电器和液晶屏幕等部件组成。
其中,温度传感器负责采集温度数据,单片机负责处理温度数据,并实现温度智能控制功能。
继电器用于控制加热设备的开关,液晶屏幕用于显示当前温度和系统状态等信息。
在实现温度智能控制功能时,本设计采用了PID控制算法。
PID控制算法是一种经典的控制算法,它基于目标值和当前值之间的误差来调节控制量,从而实现对温度的精确控制。
具体来说,PID控制器包含三个部分:比例控制器(P)用于对误差进行比例调节,积分控制器(I)用于消除误差的积累,微分控制器(D)用于抑制误差的未来变化趋势。
这三个控制器的输出信号加权叠加后,作为继电器的控制信号,实现对加热设备的控制。
系统实现系统硬件设计在本设计中,我们选择了常见的AT89S52单片机作为核心控制器。
该单片机运行速度快、稳定性好,易于编程,并具有较强的扩展性。
为了方便用户调节温度参数和查看当前温度,我们还选用了4 * 20的液晶屏。
温度传感器采用LM35型温度传感器,具有高精度、线性输出特性,非常适用于本设计。
系统电路图如下所示:系统软件设计在单片机的程序设计中,我们主要涉及到以下几个部分:1. 温度采集模块为了实现温度智能控制功能,我们首先需要获取当前的温度数据。
在本设计中,我们使用了AT89S52单片机的A/D转换功能,通过读取温度传感器输出的模拟电压值,实现对温度的采集。
采集到的温度数据存储在单片机的内部存储器中,以供后续处理使用。
2. PID控制模块PID控制模块是本设计的核心模块,它实现了对温度的精确控制。
基于单片机的温度控制系统设计及仿真
三、结论
本次演示设计并仿真了一个基于单片机的温度控制系统。该系统通过AT89C51 单片机实现温度的精确控制,并采用PID算法对加热和散热装置进行实时调节。 仿真结果表明,该系统具有良好的控制性能和稳定性。在实际应用中,
可以根据具体场景选择合适的硬件设备和参数调整策略,以满足不同的温度控 制需求。
本次演示将探讨如何设计一个基于单片机的温度控制系统,并对其进行仿真。
一、系统设计
1、1系统架构
基于单片机的温度控制系统主要由温度传感器、单片机控制器、加热装置和散 热装置四部分组成。温度传感器负责实时监测环境温度,并将模拟信号转换为 数字信号传递给单片机。单片机接收到这个数字信号后,根据预设的控制算法,
时及时停机并报警,保证系统的安全运行。未来研究方向可以包括进一步优化 控制算法、加入更多的智能化功能以及拓展应用领域等。
谢谢观看
通过深入研究以上方面,有望进一步提高基于单片机的温度控制系统的性能和 可靠性。
参考内容
摘要本次演示旨在设计一种基于单片机的温度控制系统,以提高温度控制的精 度和稳定性。首先,本次演示将介绍温度控制系统的重要性及其在工业生产和 日常生活中的应用。接着,通过对现有技术的分析,指出其存在的不足和缺陷。
二、系统仿真
为了验证系统的有效性,我们使用MATLAB对系统进行仿真。通过设定不同的 温度控制目标,我们可以观察系统的响应时间、稳定性和控制精度。在 MATLAB中,我们可以用S函数来描述控制系统的动态行为。通过调整PID参数, 我们可以观察系统在不同控制策略下的表现。
仿真结果表明,该基于单片机的温度控制系统在PID算法的控制下,能够快速、 准确地达到设定温度,并保持良好的稳定性。
软件设计软件部分采用C语言编写,主要包括数据采集、数据处理和控制输出 三个模块。数据采集模块负责读取温度传感器的数据,并进行初步处理;数据 处理模块根据预设的控制算法对采集到的温度数据进行计算,得到控制输出信 号;
《2024年基于51单片机的温度控制系统设计与实现》范文
《基于51单片机的温度控制系统设计与实现》篇一一、引言在现代工业控制领域,温度控制系统的设计与实现至关重要。
为了满足不同场景下对温度精确控制的需求,本文提出了一种基于51单片机的温度控制系统设计与实现方案。
该系统通过51单片机作为核心控制器,结合温度传感器与执行机构,实现了对环境温度的实时监测与精确控制。
二、系统设计1. 硬件设计本系统以51单片机为核心控制器,其具备成本低、开发简单、性能稳定等优点。
硬件部分主要包括51单片机、温度传感器、执行机构(如加热器、制冷器等)、电源模块等。
其中,温度传感器负责实时监测环境温度,将温度信号转换为电信号;执行机构根据控制器的指令进行工作,以实现对环境温度的调节;电源模块为整个系统提供稳定的供电。
2. 软件设计软件部分主要包括单片机程序与上位机监控软件。
单片机程序负责实时采集温度传感器的数据,根据设定的温度阈值,输出控制信号给执行机构,以实现对环境温度的精确控制。
上位机监控软件则负责与单片机进行通信,实时显示环境温度及控制状态,方便用户进行监控与操作。
三、系统实现1. 硬件连接将温度传感器、执行机构等硬件设备与51单片机进行连接。
具体连接方式根据硬件设备的接口类型而定,一般采用串口、并口或GPIO口进行连接。
连接完成后,需进行硬件设备的调试与测试,确保各部分正常工作。
2. 软件编程编写51单片机的程序,实现温度的实时采集、数据处理、控制输出等功能。
程序采用C语言编写,易于阅读与维护。
同时,需编写上位机监控软件,实现与单片机的通信、数据展示、控制指令发送等功能。
3. 系统调试在完成硬件连接与软件编程后,需对整个系统进行调试。
首先,对单片机程序进行调试,确保其能够正确采集温度数据、输出控制信号。
其次,对上位机监控软件进行调试,确保其能够与单片机正常通信、实时显示环境温度及控制状态。
最后,对整个系统进行联调,测试其在实际应用中的性能表现。
四、实验结果与分析通过实验测试,本系统能够实现对环境温度的实时监测与精确控制。
基于单片机的温度控制系统设计及实现
基于单片机的温度控制系统设计及实现温度控制系统是一种常见的自动化控制系统,在很多领域都有广泛的应用。
本文将以基于单片机的温度控制系统设计与实现为主题,依次介绍系统设计和功能实现的相关内容。
一、系统设计1. 概述:本文所设计的基于单片机的温度控制系统旨在实现对温度的监测和控制,具有高精度、稳定性和可靠性。
2. 系统结构:温度控制系统包括温度传感器、单片机、执行机构和显示部分。
温度传感器负责采集环境温度数据,单片机进行数据处理和控制算法的实现,执行机构根据控制命令实时调整环境温度,显示部分将实时温度显示给用户。
3. 硬件设计:- 选型:根据系统需求和经济因素选择适合的单片机和温度传感器。
- 电路连接:将温度传感器连接到单片机的模拟输入引脚,执行机构连接到单片机的输出引脚,液晶显示器连接到单片机的数字输出引脚。
- 电源设计:为系统提供稳定的电源供电,保证系统的正常运行。
4. 软件设计:- 入口函数设计:设置系统初始化参数和变量,配置单片机的引脚输入输出。
- 温度采集:根据采样频率,读取温度传感器的模拟数值,并转换为真实温度值。
- 温度控制算法设计:根据温度数据和设定的控制策略,计算得到控制命令。
- 控制命令输出:将控制命令经过电平转换后输出到执行机构,实现对环境温度的调控。
- 显示设计:将实时温度值显示在液晶显示器上,方便用户观察和调试。
二、功能实现1. 温度采集功能:系统能够实时采购环境温度,通过温度传感器将模拟数值转化为数字信号,以便后续处理。
2. 控制算法实现:根据采集到的温度数据和设定的控制策略,系统能够计算得到相应的控制命令,并及时将命令传输到执行机构。
3. 温度控制功能:执行机构能够根据系统传输的控制命令实时调整温度,保持环境温度在设定范围内。
4. 温度显示功能:系统能够将实时温度值显示在液晶显示屏上,方便用户查看和监控。
5. 报警功能:当温度超出设定范围时,系统能够发出报警信号,以提醒用户注意环境温度的异常情况。
(完整版)基于单片机的温度控制系统本科生毕业设计
上海电力学院本科毕业设计(论文)题目:基于单片机的温度测量系统院系:自动化工程学院指导教师:马进明【摘要】温度测量在实际生产和人们生活中都有广泛应用,为此我设计了一个温度测量系统。
本系统利用AT89S52单片机作为主控制器件,DS18B20作为测温传感器通过LED数码管串口实现温度显示,通过按键电路设置上下限报警温度。
并且在到达报警温度后,系统会自动报警。
本文设计是从测温电路、主控电路、报警电路等几个方面来分析说明的该系统利用DS18B20测温范围广、测温分辨率高、外围电路简单、功耗低等特点,与AT89S52构成比较简单的测温电路。
该系统设计灵活、抗干扰性好,可以在恶劣的工作环境中进行温度测量。
关键字:单片机;温度传感器;温度计;报警【Abstract】.In this design using the AT89S52 microcontroller as the main control device, DS18B20 as an LED digital temperature sensor tube to achieve temperature display.The key circuit sed the temperature to set the alarm on the lower temperature. And the temperature reaching the alarm, the system will automatically alarm. This design is from the temperature measurement circuit, main control circuit, alarm circuit, and several other aspects of the note.The system uses DS18B20 temperature measurement range, and peripheral circuit is simple, low power consumption, compared with AT89S52 devices constitute a simple temperature measurement circuit. The system design of flexible, anti-interference performance is good, can be in the poor working environment for temperature measurement. Keywords:AT89S52;DS18B20;thermometer;alarm目录1 引言 (1)1.1 选题的背景 (1)1.2 选题的目的及意义 (2)2 系统设计的整体方案 (2)2.1 设计的主要内容 (2)2.2 设计性能要求 (3)3 器件的选择 (3)3.1 单片机的选择 (4)3.1.1 AT89S52的基本组成及特征 (4)3.1.2 AT89S52的引脚功能 (5)3.1.3 AT89S52的工作模式及注意事项 (9)3.2 温度传感器的选择 (11)3.2.1 DS18B20的特点及选择原因 (11)3.2.2 DS18B20的测温原理 (13)3.3 显示器的选择 (14)3.4 蜂鸣器 (15)3.5 排阻 (16)4 电路原理 (17)4.1单片机电路 (17)4.1.1 晶振电路 (18)4.1.2 复位电路 (20)4.3 温度显示电路 (22)4.4 温度上下限设置电路 (22)4.5 温度过限报警电路 (23)4.6 系统总电路图电路 (24)5 系统流程图 (24)5.1 主程序 (24)5.2 读出温度子程序 (25)5.3 温度转换命令子程序 (26)5.4 计算温度子程序 (27)5.5显示数据刷新子程序 (27)6 软件仿真 (27)6.1 软件设计流程 (28)6.2 原理图的绘制 (28)6.3 单片机程序的调试与编译 (30)6.4 仿真过程 (31)7 总结 (32)7.1 设计总结 (32)7.2 设计前景 (34)8 致谢 (34)参考文献 (36)附录 (36)附录1:系统总图 (36)1 引言1.1 选题的背景随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的。
基于单片机的温度测控系统的设计
基于单片机的温度测控系统的设计在现代的工业领域和生活中,温度测控系统被广泛应用,以监测和控制温度。
本文将介绍一个基于单片机的温度测控系统设计。
1.系统概述该系统的设计目标是能够测量和监控环境中的温度,并能自动调节温度以保持设定的温度。
该系统由传感器模块、数据处理模块和执行器模块组成。
2.传感器模块传感器模块用于测量环境中的温度。
在该系统中,我们可以使用温度传感器来实现温度测量。
常见的温度传感器有热电偶、热电阻等。
传感器模块将温度数据传输给数据处理模块。
3.数据处理模块数据处理模块基于单片机来实现。
单片机通过接收传感器模块传输的温度数据,进行数据处理和判断,并决定是否需要调节温度。
数据处理模块还可以设置一个温度阈值,当环境温度超过或低于该阈值时,触发执行器模块进行温度调节。
4.执行器模块执行器模块是用来调节环境温度的关键。
在该系统中,我们可以使用电热器或制冷器来调节温度。
执行器模块会根据数据处理模块的控制信号来决定是否打开或关闭电热器或制冷器,以达到设定的温度。
5.界面设计为了方便用户的操作和监控,我们可以设计一个用户界面模块。
用户界面模块可以通过LCD显示屏展示当前环境温度和设定的温度,并提供一些按键用于设置温度阈值。
用户可以通过按键来设置温度阈值,同时可以看到当前温度和设定的温度。
6.系统工作流程系统的工作流程如下:-传感器模块测量环境温度,并将温度数据传输给数据处理模块。
-数据处理模块接收温度数据,并进行处理和判断。
-如果环境温度超过或低于设定的温度阈值,数据处理模块触发执行器模块进行温度调节。
-执行器模块根据数据处理模块的控制信号,打开或关闭电热器或制冷器,以调节环境温度。
-用户可以通过用户界面模块设置温度阈值,同时可以实时监控当前温度和设定的温度。
7.系统优化为了进一步优化系统的性能,我们可以考虑以下几个方面:-引入PID控制算法,以提高温度的稳定性和控制精确度。
-添加温度报警功能,当环境温度超过一定范围时,触发警报。
基于 51 单片机的温度控制系统设计
基于 51 单片机的温度控制系统设计一、概述随着科技的不断进步,单片机技术在各个领域得到了广泛的应用,其中温度控制系统是其重要的应用之一。
温度控制系统的设计可以帮助我们在工业、农业、生活等领域实现精确的温度控制,提高生产效率和产品质量,降低能源消耗,提升人们的生活舒适度。
本文将讨论基于 51 单片机的温度控制系统设计。
二、系统设计原理1. 温度传感器原理温度传感器是温度控制系统中的关键元件,用于感知环境温度并将其转换为电信号。
常见的温度传感器包括热电偶、热敏电阻、半导体温度传感器等。
本系统选择半导体温度传感器,其工作原理是利用半导体材料的温度特性,通过材料的电阻、电压、电流等参数的变化来测量温度。
2. 控制系统原理温度控制系统的核心是控制器,它根据温度传感器采集到的温度信号进行逻辑判断,然后控制执行元件(如风扇、加热器等)来调节环境温度。
基于 51 单片机的控制系统,通过采集温度传感器信号,使用自身的算法进行温度控制,并输出控制信号给执行元件,从而实现温度的精确控制。
三、系统硬件设计1. 单片机选型本系统选择 51 单片机作为控制器,考虑到其成本低、易于编程和广泛的开发工具支持等优点。
常用的型号包括 STC89C51、AT89S51 等。
2. 温度传感器选型温度传感器的选型最终决定了系统测量的精度和稳定性。
选择适合的半导体温度传感器,如 LM35、DS18B20 等,其精度、响应时间、成本等因素需综合考虑。
3. 控制元件选型根据实际需要选择对应的执行元件,比如风扇、加热器、制冷器等,用于实现温度控制目标。
四、系统软件设计1. 控制算法设计控制系统应当具备良好的控制算法,通过对温度传感器信号的采集和处理,根据设定的温度范围和控制策略来输出对应的控制信号。
经典的控制算法包括比例积分微分(PID)控制算法、模糊控制算法等。
2. 硬件与软件接口设计单片机与传感器、执行元件之间的接口设计尤为重要,应当保证稳定可靠的通信。
(完整版)基于单片机的水温控制系统毕业设计论文
优秀论文审核通过未经允许切勿外传基于单片机的水温控制系统设计摘要温度控制系统可以说是无所不在,热水器系统、空调系统、冰箱、电饭煲、电风扇等家电产品以至手持式高速高效的计算机和电子设备,均需要提供温度控制功能。
本系统的设计可以用于热水器温度控制系统和饮水机等各种电器电路中。
它以单片机AT80C51为核心,通过3个数码管显示温度和4个按键实现人机对话,使用单总线温度转换芯片DS18B20实时采集温度并通过数码管显示,并提供各种运行指示灯用来指示系统现在所处状态,如:温度设置、加热、停止加热等,整个系统通过四个按键来设置加热温度和控制运行模式。
关键词:单片机、数码管显示、单总线、DS18B20.Based Temperature Control SystemAbstractTemperature control system can be said to be ubiquitous, water can be used for drinking water -machine dialogue, the use of single-chip bus temperature conversion temperature DS18B20 real-time acquisition and through the digital display and offers a variety of operating light to indicate system now live in the state, such as: temperature setting, ,共同点。
输出控制接点的共同接点。
●NC:Normal Close常闭点。
以Com为共同点,NC与COM在平时是呈导通状态的。
●NO:Normal Open常开点。
NO与COM在平时是呈开路状态的,当继电器动作时,NO与COM导通,NC与COM则呈开路状态。
基于单片机的温度控制系统设计
基于单片机的温度控制系统设计温度控制系统是指通过对温度进行监控和控制,使温度维持在设定的范围内的一种系统。
单片机作为电子技术中的一种集成电路,具有控制灵活、精度高、反应迅速等优点,被广泛应用于温度控制系统。
一、系统硬件设计1.温度传感器:温度传感器是温度控制系统中的核心设备之一。
通过对环境温度的监测,将实时采集到的温度值传到单片机进行处理。
目前主要的温度传感器有热敏电阻、热电偶、晶体温度计等。
其中热敏电阻价格低廉、精度高,使用较为广泛。
2.单片机:单片机作为温度控制系统的基本控制模块,要求其具有高速、大容量、低功耗、稳定性强的特点。
常用单片机有STM32、AVR、PIC等,其中STM32具有性能优良、易于上手、接口丰富的优点。
3.继电器:温度控制系统中的继电器用于控制电源开关,当温度超出设定范围时,继电器将给单片机发送一个信号,单片机再通过控制继电器使得温度回到正常范围内。
4.数码管:数码管用于显示实时采集到的温度值。
在实际开发中,可以采用多位数码管来显示多个温度值,提高温度控制的精度性和准确性。
二、程序设计1.程序框架:程序框架最关键是实时采集环境温度,然后判断当前温度是否超出正常范围,若超出则控制继电器将电源关断,实现温度控制。
程序框架可参考以下流程:2.温度采集:采用热敏电阻作为温度传感器,利用AD转换实现数字化。
然后通过查表法或算法将AD值转化为环境温度值。
3.温度控制:将温度设定值与实时采集到的温度进行比较,若温度超出设定值范围,则控制继电器实现自动关断。
4.数码管控制:实时显示温度传感器采集到的温度值。
三、系统调试和性能测试1.系统调试:对系统进行硬件电路的检测和单片机程序的调试,确保系统各部分正常工作。
2.性能测试:利用实验室常温环境,将温度传感器置于不同的温度环境,测试系统的温度控制精度、反应速度和稳定性等性能指标。
在此基础上对系统进行优化,提高控制精度和稳定性。
四、总结基于单片机的温度控制系统通过对环境温度的实时监测和控制,实现自动化温度调节。
基于单片机的智能温度控制系统设计
基于单片机的智能温度控制系统设计智能温度控制系统设计是一种基于单片机的物联网应用,旨在实现对温度的自动感知和调控。
本文将对这一任务进行详细的内容描述和设计实现思路。
一、任务概述智能温度控制系统是一种自动化控制系统,通过感知环境温度并与用户设定的温度阈值进行比较,实现对温度的自动调节。
它经常应用于室内温度调控、温室环境控制、电子设备散热等场景。
本系统基于单片机进行设计,具有实时监测、精确定时和高效控制的特点。
二、设计方案1. 单片机选择为了实现智能温度控制系统,我们选择一款适合高性能、低功耗的单片机作为核心控制器。
例如,我们可以选择常见的STM32系列或者Arduino等开源硬件平台。
2. 温度感知系统需要具备温度感知的能力,以实时获取环境温度数据。
可选用温度传感器(如DS18B20)通过单片机的GPIO接口进行连线,并通过相应的驱动程序获取温度数据。
3. 温度控制算法智能温度控制系统的关键在于控制算法的设计。
可以采用PID(Proportional-Integral-Derivative)控制算法,根据温度的实际情况和设定值进行比较,通过调整控制器输出控制执行器(如加热器或制冷器)的工作状态。
4. 控制执行器根据温度控制算法的输出,系统需要实现对执行器(如加热器或制冷器)的控制。
通过合适的驱动电路和接口实现对执行器的实时控制,以实现温度的精确调节。
5. 用户界面为了用户方便地设定温度阈值和实时查看环境温度,系统需要设计一个用户界面。
可以通过液晶显示屏或者OLED屏幕来展示温度信息,并提供物理按键或者触摸界面进行温度设定。
6. 数据存储与远程访问系统还可以考虑将温度数据通过网络传输至云端服务器进行存储和分析,以实现温度数据的长期保存和远程监控。
可以选择WiFi或者蓝牙等无线通信方式来实现数据传输。
7. 辅助功能除了基本的温度控制外,系统还可以增加一些辅助功能,如温度数据的图表绘制、报警功能、定时开关机功能等。
基于单片机的温度控制系统设计
基于单片机的温度控制系统设计引言:随着技术的不断发展,人们对于生活质量的要求也越来越高。
在许多领域中,温度控制是一项非常重要的任务。
例如,室内温度控制、工业过程中的温度控制等等。
基于单片机的温度控制系统能够实现智能控制,提高控制精度,降低能耗,提高生产效率。
一、系统设计原理系统设计的原理是通过传感器检测环境温度,并将温度值传递给单片机。
单片机根据设定的温度值和当前的温度值进行比较,然后根据比较结果控制执行器实现温度控制。
二、硬件设计1.传感器:常见的温度传感器有NTC热敏电阻和DS18B20数字温度传感器。
可以根据具体需求选择适合的传感器。
2. 单片机:常见的单片机有ATmega、PIC等。
选择单片机时需要考虑性能和接口的需求。
3.执行器:执行器可以是继电器、电机、气动元件等。
根据具体需求选择合适的执行器。
三、软件设计1.初始化:设置单片机的工作频率、引脚输入输出等。
2.温度读取:通过传感器读取环境温度,并将温度值存储到变量中。
3.设定温度:在系统中设置一个目标温度值,可以通过按键输入或者通过串口通信等方式进行设置。
4.温度控制:将设定温度和实际温度进行比较,根据比较结果控制执行器的开关状态。
如果实际温度高于设定温度,执行器关闭,反之打开。
5.显示:将实时温度和设定温度通过LCD或者LED等显示出来,方便用户直观判断当前状态。
四、系统优化1.控制算法优化:可以采用PID控制算法对温度进行控制,通过调节KP、KI、KD等参数来提高控制精度和稳定性。
2.能耗优化:根据实际需求,通过设置合理的控制策略来降低能耗。
例如,在温度达到目标设定值之后,可以将执行器关闭,避免过多能量的消耗。
3.系统可靠性:在系统设计中可以考虑加入故障检测和自动切换等功能,以提高系统的可靠性。
总结:基于单片机的温度控制系统设计可以实现智能温度控制,提高生活质量和工作效率。
设计过程中需要考虑硬件和软件的设计,通过合理的算法和控制策略来优化系统性能,提高控制精度和稳定性。
基于单片机的温度控制系统的设计
基于单片机的温度控制系统的设计摘要:目前基于单片机的温度控制系统设计方面的研究不是很多,单片机在温度控制系统设计中起到核心作用。
希望通过本文对基于单片机的温度控制的设计研究,给温度控制设计提供思路和依据。
关键词:温度;软硬件;程序框图;设计中图分类号:tp277 文献标识码:a 文章编号:1674-7712 (2013)08-0000-01一、温度控制系统的架构(一)系统架构(二)mcs-51单片机的概述及使用范围2.mcs-51系列单片机结构化程序设计。
结构化程序设计主要遵循功能模块化和过程结构化的设计原则,它的主要观点是采用自顶向下、逐步求精的程序设计方法,即应先考虑总体,后考虑细节;先考虑全局目标,后考虑局部目标。
程序设计的质量将直接影响到计算机系统的运行效率和可靠性。
结构化程序设计的步骤是将处理特定任务的代码和数据分成多个模块,与程序其余部分隔离,形成中断服务子程序。
这种方法可以使得各个模块具有专门的功能,处理特定的任务,降低了程序设计的复杂性,为程序的修改、检错和调试都带来方便。
二、温控系统的数据采集模块通常设计采集温度数据模块的时候,根据数据需求及精确度的高低,有以下两种方式:(1)数据精确度不高的时候,设计基于msc-51单片机及adc0809的温度采集控制系统。
该系统利用单片机中空余的i/o接口,以中断的方式实现温度的实时采集与控制,充分利用cpu的资源空间,简化了测量电路以及程序调试的复杂过程。
(2)数据精确度较高低的时候,以热电偶、热电阻为检测元件的单片机温度控制系统电路,但是组成的温度测量电路复杂,软件调试繁琐。
三、温控系统的控制模块温控系统的控制模块在本次设计模块中占据重要比例。
在8031对温度的控制中,双向可控硅管起到主要作用。
我们在220v/50hz 市电回路中,将双向可控硅管和加热丝串接连接。
预先设定一个温度管控时间t,然后再规定的时间内,通过改变8031的接通时间,从而改变加热丝的功率,而最终实现对温度控制的功能。
基于单片机的温度控制系统设计
基于单片机的温度控制系统设计温度控制系统是现代生活中不可或缺的一部分,常见于家庭的的空调、电饭煲、烤箱等家用电器,以及工业生产中的各种自动化设备。
本文基于单片机设计针对室内温度控制系统的实现方法进行说明,包括温度采集、温度控制器的实现和人机交互等方面。
一、温度采集温度采集是温度控制系统的核心部分。
目前比较常见的温度采集器主要有热电偶、热敏电阻和半导体温度传感器。
在本文中我们以半导体温度传感器为例进行说明。
常见的半导体温度传感器有DS18B20、LM35等,本次实验中采用DS18B20进行温度采集。
DS18B20是一种数字温度传感器,可以直接与单片机通信,通常使用仅三根导线连接。
其中VCC为控制器的电源正极,GND为电源负极,DATA为数据传输引脚。
DS18B20通过快速菲涅耳射线(FSR)读取芯片内部的温度数据并将其转换为数字信号。
传感器能够感知的温度范围通常为-55℃至125℃,精度通常为±0.5℃。
为了方便使用,DS18B20可以通过单片机内部的1-Wire总线进行控制和数据传输。
具体实现方法如下:1.首先需要引入相关库文件,如:#include <OneWire.h> //引用1-Wire库#include <DallasTemperature.h> //引用温度传感器库2.创建实例对象,其中参数10代表连接传感器的数字I/O引脚:OneWire oneWire(10); //实例化一个1-Wire示例DallasTemperature sensors(&oneWire); //实例化一个显示温度传感器示例3.在setup中初始化模块:sensors.begin(); // 初始化DS18B204.在主循环中,读取传感器数据并将温度值输出到串口监视器:sensors.requestTemperatures(); //请求温度值float tempC = sensors.getTempCByIndex(0); // 读取温度值Serial.println(tempC); //输出温度值二、温度控制器的实现温度控制器是本次实验的关键部件,主要实现对温度的控制和调节,其基本原理是根据温度变化情况来控制输出电压或模拟脚电平,驱动继电器控制电器设备工作。
基于单片机的温度控制系统设计
目录摘要 (1)第一章前言 (3)1.1课题背景与意义 (3)1.2温度控制系统的应用 (3)第二章系统方案 (5)2。
1水温控制系统设计任务和要求 (5)2.2水温控制系统部分 (5)2。
3控制方式 (7)第三章系统硬件设计 (8)3。
1总体设计框图及说明 (8)3.2外部电路设计 (8)3。
3 单片机系统电路设计 (9)第四章结论 (1)参考文献 (21)基于单片机的水温控制系统【摘要】温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能难以提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。
为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS单片机为核心,以PID算法控制以及PID参数整定相结合的控制方法来实现的水温控制系统,其硬件电路还包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。
该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。
【关键词】单片机AT89C51;温度控制;温度传感器PT1000;PID调节算法第一章前言1.1课题背景与意义在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。
例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制.采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。
目前,温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距.现在,我国在这方面总体技术水平处于20世纪80年代中后期水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序号(学号):040930727长春大学光华学院毕业设计(论文)姓名魏明岩系别专业班级0409307指导教师马春龙年月日目录摘要 (1)第一章前言 (3)1.1课题背景和意义 (3)1.2温度控制系统的使用 (3)1.3毕业设计任务 (4)第二章系统方案 (5)2.1水温控制系统设计任务和要求 (5)2.2水温控制系统部分 (5)2.3控制方式 (7)第三章系统硬件设计 (8)3.1总体设计框图及说明 (8)3.2外部电路设计 (8)3.3单片机系统电路设计 (9)第四章系统软件设计和调试 (13)4.1 程序框架结构 (13)4.2程序流程图及部分程序 (13)4.3 系统安装调试和测试 (17)第五章结论 (18)致谢 (19)参考文献 (20)附件1(程序代码) (20)附件2(电路原理图) (27)基于单片机的水温控制系统【摘要】温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能难以提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。
为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS单片机为核心,以PID算法控制以及PID参数整定相结合的控制方法来实现的水温控制系统,其硬件电路还包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。
该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。
【关键词】单片机AT89C51;温度控制;温度传感器PT1000;PID 调节算法The summary: Temperature is the main control of industrial control of parameters,In temperature control, due to temperature controlled object properties (such as inertia big, big, lagging effect of nonlinear, etc.), to improve performance, some process temperature control of its direct impact on the quality of the product, and designed a kind of ideal temperature control system is a very valuable.In order to realize high precision temperature measurement and control, this paper introduces a meter taking Atmel company low-power high-performance CMOS chip as the core, and the PID control algorithm with PID parameters combination of control method to realize the temperature control system, the hardware circuit including temperature, temperaturecontrol, temperature gathering, keyboard input and RS232 interface circuits, etc. The system can realize the measurement for temperature, and can according to value of temperature adjustment, and realize the objective temperature control.Keywords:AT89C51 microcontroller, Temperature control, PT1000 temperature sensor, PID algorithm第一章前言1.1课题背景和意义在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。
例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。
采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。
目前,温度控制系统在国内各行各业的使用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同国外的日本、美国、德国等先进国家相比,仍然有着较大的差距。
现在,我国在这方面总体技术水平处于20世纪80年代中后期水平。
成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适应一般温度系统控制,难于控制滞后复杂时变温度系统控制,而且适应于较高控制场合的智能化、自适应控制仪表国内技术还不十分成熟,形成商品化并广泛使用的控制仪表较少。
随着嵌入式系统开发技术的快速发展及其在各个领域的广泛使用,人们对电子产品的小型化和智能化要求越来越高,作为高新技术之一的单片机以其体积小、价格低、可靠性高、适用范围大以及本身的指令系统等诸多优势,在各个领域、各个行业使用广泛。
1.2温度控制系统的使用盐浴炉温度控制系统利用S型铂铑-铑热电偶检测温度,热电偶进行冷端补偿,热电偶检测的信号通过放大、采样保持、模数转换再送单片机保存,采用分段查表法获取各点温度。
选用可控硅过零触发自动控制盐浴炉温度,控制周期为100个三相交流市电周期,即2s。
由单片机控制可按预设温度曲线进行加热,并可实时显示加温曲线。
大型粮库采用主机为PC上位机,从机为68HC08GP32为主控芯片的分机(下位机)。
下位机采用DALLAS的数字式温度传感器芯片DS1820,可以在三根线(电源线、地线、信号线)上同时并联多个温度探测点。
每个分机上可以连接10跟电缆,每根电缆上可并联几十个点。
分机利用了68HC08GP32的片内FLASH功能,实现了DS1820的序列号在68HC08GP32中的动态存取,从而节省了大量存储器。
温度数据保存在68HC08GP32的片内RAM里并且利用了充分利用了68HC08GP32的片内的A/D实现了湿度数据的测量。
有的还用PLC来控制总之温度控制系统的控制方式是多种多样的。
1.3课程设计任务本文主要介绍单片机温度控制系统的设计过程,其中涉及系统结构设计、元器件的选取和控制算法的选择、程序的调试和系统参数的整定。
以AT89C51为CPU,温度信号由PT1000和电压放大电路提供。
电压放大电路用超低温漂移高精度运算放大器OP07将温度--电压信号进行放大,用单片机控制SSR固态继电器的通断时间以控制水温,系统控制对象为1升净水,容器为搪瓷器皿。
水温可以在环境温度降低时实现自动控制,以保持设定的温度基本不变,具有较好的快速性和较小的超调。
第二章系统方案2.1 水温控制系统设计任务和要求设计一个水温自动控制系统,控制对象为1升净水,水温可以在一定范围内由人工设定,并能在环境温度降低时实现自动调整,以保持设定的温度基本不变,系统设计具体要求:温度设定范围为40℃,目标温度的±5℃;加热棒功率2KW,控制器为继电器;用十进制数码管显示水的实际温度。
2.2 水温控制系统部分水温控制系统是一个过程控制系统,组成框图如图1所示,由控制器、执行器、被控对象其反馈作用的测量变送组成。
测量变送试通过温度传感器Pt1000来传送的。
控制器是通过单片机来完成。
图1 控制系统框图2.2.1 CPU中央处理器方案一:采用8031作为控制核心,使用最为普遍的器件ADC0804作模数转换,控制上使用对加热棒加电对水槽里的水升温。
此方案简易可行,器件价格便宜,但8031内部没有程序存储器需扩展,增加了电路的复杂性。
方案二:此方案采用8951单片机实现,可用编程实现各种控制算法和逻辑控制。
进行数据转换,控制电路部分采用SSR固态继电器控制加热棒的通断,此方案电路简单并且可以满足题目中的各项要求的精度。
比较两个方案可知,采用Atmel单片机来实现本题目,不管是从结构上,还是从工作量上都占有很大的优势,所以最后决定使用AT89C51作为该控制系统的核心。
根据温度变化慢,并且控制精度不易掌握的特点,设计了水箱温度自动控制系统,总体框图如图2所示。
温度控制采用改进的PID数字控制算法,显示采用用3位LED静态显示。
(2)温度控制系统算法分析系统算法控制图2 控制器设计总体框图y采用工业上常用的位置型PID数字控制,并且结合特定的系统加以算法的改进,形成了变速t积分PID —积分分离PID 控制相结合的自动识别的控制算法。
该方法不仅大大减小了超调量,而且有效地克服了积分饱和的影响,使控制精度大大提高。
PID 控制适用于负荷变化大、容量滞后较大、控制品质要求又很高的控制系统。
PID 调节器有三个可设定参数,即比例放大系数p K 、积分时间常数i K 、微分时间常数d K 。
比例调节的作用是使调节过程趋于稳定,但会产生稳态误差;积分作用可消除被调量的稳态误差,但可能会使系统振荡甚至使系统不稳定; 微分作用能有效的减小动态偏差。
如图3所示。
图3 比例积分微分控制 由图4可知PID 调节器是一种线性调节器,这种调节器是将设定值w 和实际输出值y 进行比较构成偏差e=w-y 。
并将其比例、积分、微分通过线性组合构成控制量。
其动态方程为:dt t de K dt t e K t e K t u d i p )()()()(⎰++=(其中Kp 为比例放大系数;Ki 为积分时间常数;Kd 为微分时间常数)PID 调节器的离散化表达式为;)]1()([)()()(--++=k e k e T K k Te K k e K k u d i p 其增量表达形式为(T 为采样周期):)1()()(--=∆k u k u k u)]2()1(2)([/)()]1()([-+--++--=k e k e k e T K k Te K k e k e K d i p图4 模拟PID 控制2.3 控制方式该控制系统是把输出量检测出来,经过物理量的转换,再反馈到输入端去和给定量进行比较(综合),并利用控制器形成的控制信号通过执行机构SSR 对控制对象进行控制,抑制内部或外部扰动对输出量的影响,减小输出量的误差,达到控制目的。