北师大版数学选修2-2配套作业:第一章 推理与证明 §1

合集下载

数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第1节归纳与类比

数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第1节归纳与类比

§1归纳与类比1.1 归纳推理学习目标核心素养1.了解归纳推理的含义,能利用归纳推理进行简单的推理.(重点)2.了解归纳推理在数学发展中的作用.(难点) 1.通过归纳推理概念的学习,体现了数学抽象的核心素养.2.通过归纳推理的应用的学习,体现了逻辑推理的核心素养.1.归纳推理的定义根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,这种推理方式称为归纳推理.2.归纳推理的特征归纳推理是由部分到整体,由个别到一般的推理.思考:由归纳推理得到的结论一定是正确的吗?[提示]不一定正确.因为归纳推理是由部分到整体、由个别到一般的推理,其结论还需要证明其正确性.1.下列关于归纳推理的说法错误的是( )①归纳推理是由一般到一般的推理过程;②归纳推理是一种由特殊到特殊的推理;③归纳推理得出的结论具有或然性,不一定正确;④归纳推理具有由具体到抽象的认识功能.A.①②B.②③C.①③ D.③④A[归纳推理是由特殊到一般的推理,故①②不正确,易知③④均正确,故选A.]2.若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.至多等于3 B.至多等于4C.等于5 D.大于5B [n =2时,可以;n =3时,为正三角形,可以;n =4时,为正四面体,可以;n =5时,为四棱锥,侧面为正三角形,底面为菱形且对角线长与边长相等,不可能.]3.由集合{a 1},{a 1,a 2},{a 1,a 2,a 3},……的子集个数归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为________.2n[集合{a 1}有两个子集和{a 1},集合{a 1,a 2}的子集有,{a 1},{a 2},{a 1,a 2}共4个子集,集合{a 1,a 2,a 3}有8个子集,由此可归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为2n个.]数式中的归纳推理+b 10=( )A .28B .76C .123D .199(2)已知f(x)=x1-x ,设f 1(x)=f(x),f n (x)=f n -1(f n -1(x))(n>1,且n∈N +),则f 3(x)的表达式为________,猜想f n (x)(n∈N +)的表达式为________.思路探究:(1)记a n+b n=f(n),观察f(1),f(2),f(3),f(4),f(5)之间的关系,再归纳得出结论. (2)写出前几项发现规律,归纳猜想结果.(1)C (2)f 3(x)=x 1-4x f n (x)=x 1-2n -1x [(1)记a n +b n =f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n -1)+f(n -2)(n∈N+,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a 10+b 10=123. (2)f 1(x)=f(x)=x1-x,f 2(x)=f 1(f 1(x))=x 1-x 1-x 1-x =x1-2x ,f 3(x)=f 2(f 2(x))=x 1-2x 1-2·x 1-2x=x1-4x,由f 1(x),f 2(x),f 3(x)的表达式,归纳f n (x)=x1-2n -1x.]已知等式或不等式进行归纳推理的方法1.要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律; 2.要特别注意所给几个等式(或不等式)中结构形式的特征; 3.提炼出等式(或不等式)的综合特点; 4.运用归纳推理得出一般结论.1.经计算发现下列不等式:2+18<210, 4.5+15.5<210,3+2+17-2<210,……根据以上不等式的规律,试写出一个对正实数a ,b 都成立的条件不等式:________.当a +b =20时,有a +b<210,a ,b∈R + [从上面几个不等式可知,左边被开方数的和均为20,故可以归纳为a +b =20时,a +b<210.]数列中的归纳推理【例2】 (1)在数列{a n }中,a 1=1,a n +1=-1a n +1,则a 2 019等于( )A .2B .-12C .-2D .1(2)古希腊人常用小石子在沙滩上摆成各种形状来研究数,如图:由于图中1,3,6,10这些数能够表示成三角形,故被称为三角形数,试结合组成三角形数的特点,归纳第n 个三角形数的石子个数.思路探究:(1)写出数列的前几项,再利用数列的周期性解答.(2)可根据图中点的分布规律归纳出三角形数的形成规律,如1=1,3=1+2,6=1+2+3;也可以直接分析三角形数与n 的对应关系,进而归纳出第n 个三角形数.C [(1)a 1=1,a 2=-12,a 3=-2,a 4=1,…,数列{a n }是周期为3的数列,2 019=673×3,∴a 2 019=a 3=-2.](2)[解] 法一:由1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,可归纳出第n 个三角形数为1+2+3+…+n =n (n +1)2.法二:观察项数与对应项的关系特点如下:项数 1 2 3 4 对应项1×222×323×424×52分析:各项的分母均为2,分子分别为相应项数与相应项数加1的积. 归纳:第n 个三角形数的石子数应为n (n +1)2.数列中的归纳推理在数列问题中,常常用到归纳推理猜测数列的通项公式或前n 项和. (1)通过已知条件求出数列的前几项或前几项和;(2)根据数列中的前几项或前几项和与对应序号之间的关系求解; (3)运用归纳推理写出数列的通项公式或前n 项和公式.2.已知数列{a n }满足a 1=1,a n +1=2a n +1(n =1,2,3,…). (1)求a 2,a 3,a 4,a 5; (2)归纳猜想通项公式a n . [解] (1)当n =1时,知a 1=1, 由a n +1=2a n +1, 得a 2=3,a 3=7,a 4=15,a 5=31.(2)由a 1=1=21-1,a 2=3=22-1,a 3=7=23-1,a 4=15=24-1,a 5=31=25-1, 可归纳猜想出a n =2n-1(n∈N +).几何图形中的归纳推理1.某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按如图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f(n)表示第n 堆的乒乓球总数,试求f(1),f(2),f(3),f(4)的值.[提示] 观察图形可知,f(1)=1,f(2)=4,f(3)=10,f(4)=20. 2.上述问题中,试用n 表示出f(n)的表达式.[提示] 由题意可得:下一堆的个数是上一堆个数加下一堆第一层的个数,即f(2)=f(1)+3;f(3)=f(2)+6;f(4)=f(3)+10;…;f(n)=f(n -1)+n (n +1)2.将以上(n -1)个式子相加可得 f(n)=f(1)+3+6+10+…+n (n +1)2=12[(12+22+…+n 2)+(1+2+3+…+n)] =12⎣⎢⎡⎦⎥⎤16n (n +1)(2n +1)+n (n +1)2=n (n +1)(n +2)6.【例3】 有两种花色的正六边形地面砖,按如图的规律拼成若干个图案,则第6个图案中有菱形纹的正六边形的个数是( )A .26B .31C .32D .36思路探究:解答本题可先通过观察、分析找到规律,再利用归纳得到结论. B [法一:有菱形纹的正六边形个数如下表:图案 123 … 个数6 1116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第6个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形),故第6个图案中有菱形纹的正六边形的个数为:6+5×(6-1)=31.]在题干不变的条件下,第6个图案中周围的边有多少条? [解] 各个图形周围的边的条数如下表:图案123…边条数18 26 34 …由表可知,周围边的条数依次组成一个以18为首项,8为公差的等差数列,解得第6个图形周围的边的条数为18+8×(6-1)=58条.归纳推理在图形中的应用策略通过一组平面或空间图形的变化规律,研究其一般性结论,通常需形状问题数字化,展现数字之间的规律、特征,然后进行归纳推理.解答该类问题的一般策略是:3.根据图中线段的排列规则,试猜想第8个图形中线段的条数为________.509 [分别求出前4个图形中线段的数目,发现规律,得出猜想.图形①到④中线段的条数分别为1,5,13,29,因为1=22-3,5=23-3,13=24-3,29=25-3,因此可猜想第8个图形中线段的条数应为28+1-3=509.]1.归纳推理是由部分到整体、由个别到一般的推理.(1)由归纳推理得到的结论带有猜测的性质,所以“前提真而结论假”的情况是有可能发生的,结论是否正确,需要经过理论证明或实践检验,因此,归纳推理不能作为数学证明的工具.(2)一般地,如果归纳的个别情况越多,越具有代表性,那么推广的一般性命题就越可能为真.(3)归纳推理能够发现新事实,获得新结论,是科学发现的重要手段.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.2.归纳推理的思维过程大致是:实验、观察→概括、推广→猜测一般性结论.该过程包括两个步骤: (1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想).1.判断(正确的打“√”,错误的打“×”)(1)统计学中,从总体中抽取样本,然后用样本估计总体,这种估计属于归纳推理. (2)由个别到一般的推理称为归纳推理. ( ) (3)由归纳推理所得到的结论一定是正确的. ( )[答案] (1)√ (2)√ (3)× 2.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +2C [a 1=8,a 2=14,a 3=20,猜想a n =6n +2.]3.已知12=16×1×2×3,12+22=16×2×3×5,12+22+32=16×3×4×7,12+22+34+42=16×4×5×9,则12+22+…+n 2=________.(其中n∈N *).16n(n +1)(2n +1) [根据题意归纳出12+22+…+n 2=16n(n +1)(2n +1),下面给出证明:(k +1)3-k 3=3k 2+3k +1,则23-13=3×12+3×1+1,33-23=3×22+3×2+1,……,(n +1)3-n 3=3n 2+3n +1,累加得(n +1)3-13=3(12+22+…+n 2)+3(1+2+…+n)+n ,整理得12+22+…+n 2=16n(n +1)(2n +1).]4.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2, (62+82)(22+122)≥(6×2+8×12)2, (202+102)(1022+72)≥(20×102+10×7)2.请你观察这三个不等式,猜想出一个一般性的结论,并证明你的结论. [解] 结论为:(a 2+b 2)(c 2+d 2)≥(ac+bd)2.证明:(a 2+b 2)(c 2+d 2)-(ac +bd)2=a 2c 2+a 2d 2+b 2c 2+b 2d 2-(a 2c 2+b 2d 2+2abcd) =a 2d 2+b 2c 2-2abcd =(ad -bc)2≥0.所以(a2+b2)(c2+d2)≥(ac+bd)2.1.2 类比推理学 习 目 标核 心 素 养1.通过具体实例理解类比推理的意义.(重点) 2.会用类比推理对具体问题作出判断.(难点)1.通过类比推理的意义的学习,体现了数学抽象的核心素养.2.通过应用类比推理对具体问题判断的学习,体现了逻辑推理的核心素养.1.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.类比推理是两类事物特征之间的推理. 2.合情推理合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果不一定正确.思考:合情推理的结果为什么不一定正确?[提示] 合情推理是由特殊到一般的推理,简单地说就是直接看出来的,没有通过证明,只归纳了一部分,属于不完全归纳,所以不一定正确.1.下面使用类比推理恰当的是( )A .“若a·3=b·3,则a =b ”类比推出“若a·0=b·0,则a =b”B .“(a+b)c =ac +bc”类比推出“(a·b)c=ac·bc”C .“(a+b)c =ac +bc”类比推出“a +b c =a c +bc (c≠0)”D .“(ab)n=a n b n”类比推出“(a+b)n=a n+b n” C [由实数运算的知识易得C 项正确.] 2.下列推理是合情推理的是( ) (1)由圆的性质类比出球的有关性质;(2)由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°; (3)a≥b,b≥c,则a≥c;(4)三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n 边形内角和是(n -2)×180°.A .(1)(2)B .(1)(3)(4)C .(1)(2)(4)D .(2)(4)C [(1)为类比推理,(2)(4)为归纳推理,(3)不是合情推理,故选C.]3.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是________.(填序号)①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.①②③ [正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.]类比推理在数列中的应用【例1】 在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100.类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.试写出相应的结论,判断该结论是否正确,并加以证明.思路探究:结合已知等比数列的特征可类比等差数列每隔10项和的有关性质.[解] 数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下: ∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20)同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300.1.本例是由等比类比等差,你能由等差类比出等比结论吗?完成下题:设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n (T n ≠0),则T 4,_______,_______,T 16T 12成等比数列.T 8T 4 T 12T 8[等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.]2.在本例条件不变的情况下,你能写出一个更为一般的结论吗?(不用论证)[解] 对于任意k∈N +,都有数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 是等差数列,且公差为k 2d.1.在等比数列与等差数列的类比推理中,要注意等差与等比、加与乘、减与除、乘法与乘方的类比特点.2.类比推理的思维过程观察、比较→联想、类推→猜测新的结论.即在两类不同事物之间进行对比,找出若干相同或相似之处后,推测这两类事物在其他方面的相同或相似之处.1.在等差数列{a n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有a m +a n +a p =3a r ,类比该结论,写出在等比数列{b n }中类似的结论,并用数列知识加以证明.[解] 类似结论如下:在等比数列{b n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有b m b n b p=b 3r .证明如下:设等比数列{b n }的公比为q ,则b m =b 1q m -1,b n =b 1q n -1,b p =b 1qp -1,b r =b 1qr -1,于是b m b n b p =b 1qm -1·b 1qn -1·b 1q p -1=b 31qm +n +p -3=b 31q3r -3=(b 1qr -1)3=b 3r ,故结论成立.类比推理在几何中的应用【例2】 如图所示,在平面上,设h a ,h b ,h c 分别是△ABC 三条边上的高,P 为△ABC 内任意一点,P 到相应三边的距离分别为p a ,p b ,p c ,可以得到结论p a h a +p b h b +p ch c=1.证明此结论,通过类比写出在空间中的类似结论,并加以证明.思路探究:三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.[解] p a h a =12BC·p a12BC·h a =S △PBCS △ABC,同理,p b h b =S △P AC S △ABC ,p c h c =S △PABS △ABC .∵S △PBC +S △PAC +S △PAB =S △ABC ,∴p a h a +p b h b +p c h c =S △PBC +S △PAC +S △PAB S △ABC=1. 类比上述结论得出以下结论:如图所示,在四面体ABCD 中,设h a ,h b ,h c ,h d 分别是该四面体的四个顶点到对面的距离,P 为该四面体内任意一点,P 到相应四个面的距离分别为p a ,p b ,p c ,p d ,可以得到结论p a h a +p b h b +p c h c +p dh d=1.证明:p a h a =13S △BCD ·p a13S △BCD ·h a =V P­BCDV A­BCD,同理,p b h b =V P­ACD V A­BCD ,p c h c =V P­ABD V A­BCD ,p d h d =V P­ABCV A­BCD .∵V P­BCD +V P­ACD +V P­ABD +V P­ABC =V A­BCD , ∴p a h a +p b h b +p c h c +p d h d =V P­BCD +V P­ACD +V P­ABD +V P­ABCV A­BCD=1.1.在本例中,若△ABC 的边长分别为a ,b ,c ,其对角分别为A ,B ,C ,那么由a =b·cos C+c·cos B 可类比四面体的什么性质?[解] 在如图所示的四面体中,S 1,S 2,S 3,S 分别表示△PAB,△PBC,△PCA,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.猜想S =S 1·cos α+S 2·cos β+S 3·cos γ.2.在本例中,若r 为三角形的内切圆半径,则S △=12(a +b +c)r ,请类比出四面体的有关相似性质.[解] 四面体的体积为V =13(S 1+S 2+S 3+S 4)r(r 为四面体内切球的半径,S 1,S 2,S 3,S 4为四面体的四个面的面积.1.平面图形与空间图形类比平面图形 点 线 边长 面积 线线角 三角形 空间图形线面面积体积二面角四面体2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.类比推理在其他问题中的应用1.鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.你认为该过程为归纳推理还是类比推理?[提示] 类比推理.2.已知以下过程可以求1+2+3+…+n 的和.因为(n +1)2-n 2=2n +1, n 2-(n -1)2=2(n -1)+1, ……22-12=2×1+1,有(n +1)2-1=2(1+2+…+n)+n , 所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2.类比以上过程试求12+22+32+…+n 2的和. [提示] 因为(n +1)3-n 3=3n 2+3n +1, n 3-(n -1)3=3(n -1)2+3(n -1)+1, ……23-13=3×12+3×1+1,有(n +1)3-1=3(12+22+…+n 2)+3(1+2+3+…+n)+n , 所以12+22+…+n 2=13⎝ ⎛⎭⎪⎫n 3+3n 2+3n -3n 2+5n 2=2n 3+3n 2+n 6=n (n +1)(2n +1)6.【例3】 已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x2a 2-y2b2=1(a>0,b>0)具有类似特征的性质,并加以证明. 思路探究:双曲线与椭圆类比→椭圆中的结论 →双曲线中的相应结论→理论证明[解] 类似性质:若M ,N 为双曲线x 2a 2-y2b 2=1(a>0,b>0)上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标分别为(m ,n),(x ,y),则 N(-m ,-n).因为点M(m ,n)是双曲线上的点, 所以n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2,则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b2a2(定值).1.两类事物能进行类比推理的关键是两类对象在某些方面具备相似特征.2.进行类比推理时,首先,找出两类对象之间可以确切表达的相似特征.然后,用一类对象的已知特征去推测另一类对象的特征,从而得到一个猜想.2.我们知道: 12=1,22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, ……n 2=(n -1)2+2(n -1)+1,将以上各式的左右两边分别相加,整理得n 2=2×[1+2+3+…+(n -1)]+n , 所以1+2+3+…+(n -1)=n (n -1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解] 已知: 13=1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, ……n 3=(n -1)3+3(n -1)2+3(n -1)+1, 将以上各式的左右两边分别相加,得(13+23+…+n 3)=[13+23+…+(n -1)3]+3[12+22+…+(n -1)2]+3[1+2+…+(n -1)]+n , 整理得n 3=3(12+22+…+n 2)-3n 2+3[1+2+…+(n -1)]+n , 将1+2+3+…+(n -1)=n (n -1)2代入整理可得12+22+…+n 2=2n 3+3n 2+n 6,即12+22+…+n 2=n (2n +1)(n +1)6.1.类比推理的特点(1)类比推理是从人们已经掌握的事物的特征,推测被研究的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.(2)类比推理以旧的知识作基础,推测新的结果,具有发现的功能,因此类比在数学发现中具有重要作用,但必须明确,类比并不等于论证.2.类比推理与归纳推理的比较 归纳推理类比类推相同点 根据已有的事实,经过观察、分析、比较、联想,提出猜想,都属于归纳推理不 同 点特点 由部分到整体,由个别到一般 由特殊到特殊推理过程 从一类事物中的部分事物具有的属性,猜测该类事物都具有这种属性两类对象具有类似的特征,根据其中一类对象的特征猜测另一类对象具有相应的类似特征1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误B [根据合情推理可知,合情推理必须有前提有结论.]2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可知扇形面积公式为( )A.r22 B.l 22 C.lr 2D .无法确定C [扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S =lr2.]3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.1∶8 [由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.]4.在计算“1×2+2×3+…+n(n +1)”时,有如下方法:先改写第k 项:k(k +1)=13[k(k +1)(k +2)-(k -1)k·(k+1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),……n(n +1)=13[n(n +1)(n +2)-(n -1)n(n +1)],相加得1×2+2×3+…+n(n +1)=13n(n +1)(n +2).类比上述方法,请你计算“1×3+2×4+…+n(n +2)”,将其结果写成关于n 的一次因式的积的形式.[解] 1×3=16×(1×2×9-0×1×7),2×4=16×(2×3×11-1×2×9),3×5=16×(3×4×13-2×3×11),……n(n +2)=16[n(n +1)(2n +7)-(n -1)n(2n +5)],各式相加,得1×3+2×4+3×5+…+n(n +2)=16n(n +1)(2n +7).。

北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(答案解析)(1)

北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(答案解析)(1)

一、选择题1.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( ) A .122k + B .121k + C .11+2122++k k D .112k 12k 2++- 2.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a +( ) A .都不大于2B .都不小于2C .至少有一个不大于2D .至少有一个大于23.某电影院共有(3000)n n ≤个座位.某天,这家电影院上、下午各演一场电影.看电影的是甲、乙、丙三所中学的学生,三所学校的观影人数分别是985人, 1010人,2019人(同一所学校的学生有的看上午场,也有的看下午场,但每人只能看一-场).已知无论如何排座位,这天观影时总存在这样的一个座位,上、 下午在这个座位上坐的是同一所学校的学生,那么n 的可能取值有( )A .12个B .11个C .10个D .前三个答案都不对 4.设a R ∈,则三个数2,2,23a a a a +++( )A .都大于13 B .都小于13 C .至少有一个不大于13 D .至少有一个不小于135.对命题“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的什么位置?A .正三角形的顶点B .正三角形的中心C .正三角形各边的中点D .无法确定 6.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20647.设实数a,b,c 满足a+b+c=1,则a,b,c 中至少有一个数不小于 ( )A .0B .13C .12D .18.“有些指数函数是减函数,2x y =是指数函数,所以2x y =是减函数”上述推理( )A .大前提错误B .小前提错误C .推理形式错误D .以上都不是 9.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( )A .丙被录用了B .乙被录用了C .甲被录用了D .无法确定谁被录用了10.由圆心与弦(非直径)中点的连线垂直于弦,想到球心与截面圆(不经过球心的小截面圆)圆心的连线垂直于截面,用的是( )A .类比推理B .三段论推理C .归纳推理D .传递性推理11.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变12.用数学归纳法证明“1112n n ++++…111()24n N n n +≥∈+”时,由n k =到1n k =+时,不等试左边应添加的项是( )A .12(1)k + B .112122k k +++ C .11121221k k k +-+++ D .1111212212k k k k +--++++ 二、填空题13.用数学归纳法证明(1)(2)()2135(21)+++=⋅⋅⋅-n n n n n n 的过程中,由k 到1k +时,右边应增加的因式是____________.14.我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为n S ,如11S =,22S =,32S =,44S =,……,则126S =______15.已知数列{}n a 为等差数列,则有12320a a a -+=1234330a a a a -+-=123454640a a a a a -+-+=类似上三行,第四行的结论为________________.16.已知[x]表示不大于x 的最大整数,设函数f (x )=[log 2x 219+],得到下列结论: 结论1:当2<x<3时,f (x )max=-1.结论2:当4<x<5时,f (x )max=1.结论3:当6<x<7时,f (x )max=3.……照此规律,结论6为_____ 17.某成品的组装工序流程图如图所示,箭头上的数字表示组装过程中所需要的时间(小时),不同车间可同时工作,同一车间不能同时做两种或两种以上的工作,则组装该产品所需要的最短时间是__________小时.18.观察下列等式:(1)24sinsin 033ππ+= (2)2468sinsin sin sin 05555ππππ+++= (3)2468sin sin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.19.面积为S 的平面凸四边形的第i 条边的边长记为(1,2,3,4)i a i =,此四边形内任一点P 到第i 条边的距离记为,若31241234a a a a k ====,则12342234S h h h h k +++=.类比以上性质,体积为V 的三棱锥的第i 个面的面积记为(1,2,3,4)i S i =,此三棱锥内任一点Q 到第i 个面的距离记为(1,2,3,4)i H i =,若31241234S S S S K ====,则1234234H H H H +++等于_____________. 20.如图,将全体正整数排成一个三角形数阵:根据以上排列规律,数阵中第n (3)n ≥行的从左至右的第3个数是_____.三、解答题21.已知数列{}n a 满足:()1(2)1n n na n a +=+-,且16(11)(211)a ==+⨯+. (Ⅰ)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式;(Ⅱ)试用数学归纳法证明(Ⅰ)中的猜想.22.观察下列等式:11122-= 11111123434-+-=+ 11111111123456456-+-+-=++ ……(1)根据给出等式的规律,归纳猜想出等式的一般结论;(2)用数学归纳法证明你的猜想.23.设,其中为正整数. (1)求,,的值;(2)猜想满足不等式的正整数的范围,并用数学归纳法证明你的猜想. 24.用数学归纳法证明11111112324n n n n n +++⋅⋅⋅+>++++*()n N ∈. 25.在数列{}n a ,{}n b 中,12a =,14b =,且n a ,n b ,1n a +成等差数列,n b ,1n a +,1n b +成等比数列(*n N ∈).(1)求2a ,3a ,4a 及2b ,3b ,4b ;(2)根据计算结果,猜想{}n a ,{}n b 的通项公式,并用数学归纳法证明.26.已知函数()f x 满足()()233log log .f x x x =- (1).求函数()f x 的解析式;(2).当n *∈N 时,试比较()f n 与3n 的大小,并用数学归纳法证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】求出当n k =时,左边的代数式,当1n k =+时,左边的代数式,相减可得结果.【详解】当n k =时,左边的代数式为111 12k k k k++⋯++++, 当1n k =+时,左边的代数式为11111 232122k k k k k k ++⋯++++++++, 故用1n k =+时左边的代数式减去n k =时左边的代数式的结果为:11111 212212122k k k k k +-=-+++++,故选D . 【点睛】本题考查用数学归纳法证明不等式,注意式子的结构特征,以及从n k =到1n k =+项的变化,属于中档题.2.D解析:D【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案.详解:因为1116a b c b c a +++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.3.A解析:A【解析】分析:由题意要保证三所学校的学生都看一场电影,则2007n ≥,依次验证即可得到答案. 详解:由题意要保证三所学校的学生都看一场电影, 则9851010201920072n ++≥=, 当2007n =时,则丙中学的学生2019人中分上、下场至少有12人在同一座位上; 当2008n =时,则丙中学的学生2019人中分上、下场至少有11人在同一座位上;当2018=n 时,则丙中学的学生2019人中分上、下场至少有1人在同一座位上; 当2019n =时,则甲乙丙中学的学生可以没有人在同一座位上;所以当n 有2007,2008,2009,,2018取法,即有12个取值,故选A.点睛:本题主要考查了适应应用问题,其中解答中正确理解题意,合理选择方法是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与论证能力,试题属于中档试题. 4.D解析:D【解析】分析:由题意结合反证法即可确定题中的结论.详解:不妨假设2,2,23a a a a +++都小于13, 由不等式的性质可知:()()()22231a a a a +++++<, 事实上:()()()2223a a a a +++++ 245a a =++()2211a =++≥,与假设矛盾,故假设不成立,即2,2,23a a a a +++至少有一个不小于13. 本题选择D 选项.点睛:本题主要考查不等式的性质,反证法及其应用等知识,意在考查学生的转化能力和计算求解能力. 5.B解析:B【解析】分析:由题意结合几何体的空间关系进行类比推理即可求得最终结果.详解:绘制正三棱锥的内切球效果如图所示,很明显切点在面内而不在边上,则选项AC 错误,由“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的正三角形的中心.本题选择B 选项.点睛:在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.6.B解析:B【解析】第一行数字之和为1112-=;第二行数字之和为2122-=;第三行数字之和为3142-=; 第四行数字之和为4182,...-=,第n 行数字之和为12n n a ,31041122a a ∴+=+ 810241032=+=,故选B.【方法点睛】本题主要考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.7.B解析:B【解析】∵三个数a ,b ,c 的和为1,其平均数为13 ∴三个数中至少有一个大于或等于13 假设a ,b ,c 都小于13,则1a b c ++< ∴a ,b ,c 中至少有一个数不小于13 故选B.8.C解析:C【解析】∵大前提的形式:“有些指数函数是减函数”,不是全称命题,∴不符合三段论推理形式,∴推理形式错误,故选C.9.C解析:C【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【点睛】本题考查了逻辑推理能力,属基础题.10.A解析:A【解析】将平面几何问题推广为空间几何的问题,利用了类比推理.本题选择A选项.点睛:在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.11.B解析:B【解析】【分析】表示出拎小桶者先接水时等候的时间,然后加上拎大桶者一共等候者用的时间,用(2m+2T+t)减去二者的和就是节省的时间;由此可推广到一般结论【详解】事实上,只要不按从小到大的顺序排队,就至少有紧挨着的两个人拎着大桶者排在拎小桶者之前,仍设大桶接满水需要T分钟,小桶接满水需要t分钟,并设拎大桶者开始接水时已等候了m分钟,这样拎大桶者接满水一共等候了(m+T)分钟,拎小桶者一共等候了(m+T+t)分钟,两人一共等候了(2m+2T+t)分钟,在其他人位置不变的前提下,让这两个人交还位置,即局部调整这两个人的位置,同样介意计算两个人接满水共等候了++ 2m+2t+T22m t T分钟,共节省了T t- T-t分钟,而其他人等候的时间未变,这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者之前都可以这样调整,从而使得总等候时间减少.这样经过一系列调整后,整个队伍都是从小打到排列,就打到最优状态,总的排队时间就最短.故选B.【点睛】一般的,对某些设计多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想就叫做局部调整法. 12.C解析:C【分析】分别代入,1n k n k ==+,两式作差可得左边应添加项.【详解】由n=k 时,左边为11112k k k k +++++, 当n=k+1时,左边为11111231(1)(1)k k k k k k k k +++++++++++++ 所以增加项为两式作差得:11121221k k k +-+++,选C. 【点睛】 运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n 取第一个值n 0(n 0∈N *)时命题成立,第二步是归纳递推(或归纳假设)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立,只要完成这两步,就可以断定命题对从n 0开始的所有的正整数都成立,两步缺一不可.二、填空题13.【分析】根据右边式子的含义以及n 的变化给式子带来的变化进行求解【详解】当时右式为当时右式为则右边应增加的因式是故答案为:【点睛】本题考查数学归纳法中由到时增加项的求解解题的关键是理解左边式子的意义属 解析:2(21)k +【分析】 根据右边式子的含义,以及n 的变化给式子带来的变化,进行求解.【详解】当(*)n k k N =∈时,右式为2135(21)k k ⋅⋅⋅-,当1n k =+时,右式为12135(21)(21)22135(21)(21)k k k k k k +⋅⋅⋅-+=⋅⋅⋅⋅-+, 则右边应增加的因式是2(21)k +,故答案为:2(21)k +【点睛】本题考查数学归纳法中由n k =到1n k =+时增加项的求解,解题的关键是理解左边式子的意义,属于容易.14.【分析】将杨辉三角中的奇数换成1偶数换成0可得第1次全行的数都为1的是第2行第2次全行的数都为1的是第4行…由此可知全奇数的行出现在2n 的行数即第n 次全行的数都为1的是第2n 行126=27﹣2故可得解析:【分析】将杨辉三角中的奇数换成1,偶数换成0,可得第1次全行的数都为1的是第2行,第2次全行的数都为1的是第4行,…,由此可知全奇数的行出现在2n 的行数,即第n 次全行的数都为1的是第2n 行.126=27﹣2,故可得.所以第128行全是1,那么第127行就是101010…101,第126行就是11001100…110011,问题得以解决.【详解】解:由题意,将杨辉三角中的奇数换成1,偶数换成0,可得第1次全行的数都为1的是第2行,第2次全行的数都为1的是第4行,…,由此可知全奇数的行出现在2n 的行数,即第n 次全行的数都为1的是第2n 行.126=27﹣2,故可得第128行全是1,那么第127行就是101010…101,第126行就是11001100…110011,11又126÷4=31+2,∴S 126=2×31+2=64,故答案为:64点睛:本题考查归纳推理,属中档题.15.【解析】观察前三个式子可知三个式子的项数分别是所以第四个式子有项前三个式子奇数项为正偶数项为负项的系数满足二项式定理系数的形式所以第四项的结论:故答案为【方法点睛】本题通过观察几组多项式式归纳出一般 解析:1234565101050a a a a a a -+-+-=【解析】观察前三个式子,可知三个式子的项数分别是3,4,5,所以第四个式子有6项,前三个式子奇数项为正,偶数项为负,项的系数满足二项式定理系数的形式,所以第四项的结论:1234565101050a a a a a a -+-+-=,故答案为1234565101050a a a a a a -+-+-=.【方法点睛】本题通过观察几组多项式式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.16.当时【解析】由题意得当时其中根据上述的运算规律可以归纳得出结论当时点睛:本题考查归纳推理的应用解答中根据给定式子的计算得到计算的规律是解答的关键归纳推理属于合情推理对于合情推理主要包括归纳推理和类比解析:当1213x <<时,()122392max f x =⨯-= 【解析】 由题意得,当1213x <<时,其中()max f x 根据上述的运算规律,可以归纳得出结论当1213x <<时,()max 122392f x =⨯-=. 点睛:本题考查归纳推理的应用,解答中根据给定式子的计算,得到计算的规律是解答的关键,归纳推理属于合情推理,对于合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.(而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下). 17.11【解析】A 到E 的时间为2+4=6小时或5小时A 经C 到D 的时间为3+4=7小时故A 到F 的最短时间就为9小时则A 经F 到G 的时间为9+2=11小时即组装该产品所需要的最短时间是11小时解析:11【解析】A 到E 的时间,为2+4=6小时,或5小时,A 经C 到D 的时间为3+4=7小时,故A 到F 的最短时间就为9小时,则A 经F 到G 的时间为9+2=11小时,即组装该产品所需要的最短时间是11小时18.(或)【解析】由式子可知第n 个式子分母是2n+1共2n 项所以 解析:24sin sin 2121n n ππ+++++24sin sin 02121k n n n ππ++=++(或212sin021n k k n π==+∑) 【解析】 由式子可知,第n 个式子,分母是2n+1,共2n 项。

北师大数学选修2-2配套课件:第一章 推理与证明 §1

北师大数学选修2-2配套课件:第一章 推理与证明 §1
• 类比推理是由_______到_______的推理, 是两类事物特征之间的推理.
• 利用类比推理得出的结论不一定是正确的 .一般地,如果类比的两类对象的相似性 越多,相似的性质与推测的性质之间越相
• 1.如图是2017年元宵节灯展中一款五角星 灯连续旋转闪烁所成的三A个图形,照此规 律闪烁,下一个呈现出来的图形是( )
• ③运用归纳推理得出一般结论.
• (2)归纳推理在图形中的应用策略
• 〔跟踪练习1〕 • 下图是用同样规格的灰、白两色正方形瓷
砖铺设的若干图案4n+,8 则按此规律,第n个图 案中需用灰色瓷砖________块(用含n的代 数式表示).
• [解析] 第(1),(2),(3),…个图案灰色瓷 砖数依次为15-3=12,24-8=16,35-15= 20,……
• D.“(ab)n=anbn”类比推出“(a+b)n=an +bn”
• [解析] 结合实数的运算律知C是正确的.
• 3.等差数列{an}中,an>0,公差d>0,则 有a4·a6>a3·a7,类比上述性质,在等比数 b4列+b{8>bb5n+}b中7 ,若bn>0,q>1,写出b5,b7,b4 ,b8的一个不等关系________________.
• 本章我们将学习两种基本推理——合情推 理与演绎推理.学习数学证明的基本方法
§1 归纳与比
1 自主预习


2 互动探究


3 课时作业


自主预习学案
• 《内经·针刺篇》记载了这样一个故事 :有一个患
•头痛的樵夫上山砍柴,一次不慎碰破脚趾 ,出了一
•点血,但头不疼了.当时他没有注意.后 来头疼复

(常考题)北师大版高中数学高中数学选修2-2第一章《推理与证明》检测(含答案解析)(1)

(常考题)北师大版高中数学高中数学选修2-2第一章《推理与证明》检测(含答案解析)(1)

一、选择题1.我国南宋数学家杨家辉所著的《详解九章算法》一书中记录了一个由正整数构成的三角形数表,我们通常称之为杨辉三角.以下数表的构造思路就来源于杨辉三角.( )从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数a ,则a 的值为( )A .100820182⨯B .100920182⨯C .100820202⨯D .100920202⨯2.设,,(0,1)a b c ∈,则1a b +,1b c +,1c a+( ) A .都不大于2 B .都不小于2 C .至少有一个不大于2D .至少有一个大于23.下面几种推理过程是演绎推理的是 ( ).A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式4.某个命题与正整数n 有关,如果当()n k k N +=∈时命题成立,那么可推得当1n k =+时命题也成立. 现已知当8n =时该命题不成立,那么可推得 ( ) A .当7n =时该命题不成立 B .当7n =时该命题成立 C .当9n =时该命题不成立 D .当9n =时该命题成立5.设k 1111S k 1k 2k 32k=+++⋯++++,则1k S +=( ) A .()k 1S 2k 1++B .()k 11S 2k 12k 1++++ C .()k 11S 2k 12k 1+-++ D .()k 11S 2k 12k 1+-++6.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确7.一位数学老师在黑板上写了三个向量(,2)a m =,(1,)b n =,(4,4)c =-,其中m ,n 都是给定的整数.老师问三位学生这三个向量的关系,甲回答:“a 与b 平行,且a 与c 垂直”,乙回答:“b 与c 平行”,丙回答:“a 与c 不垂直也不平行”,最后老师发现只有一位学生判断正确,由此猜测m ,n 的值不可能为( ) A .3m =,2n =B .2m =-,1n =-C .2m =,1n =D .2m n ==-8.“有些指数函数是减函数,2x y =是指数函数,所以2x y =是减函数”上述推理( ) A .大前提错误B .小前提错误C .推理形式错误D .以上都不是9.在平面几何中,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的13.”拓展到空间中,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的( ) A .12B .14C .16D .1810.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分 A .16 B .21 C .22 D .2311.由圆心与弦(非直径)中点的连线垂直于弦,想到球心与截面圆(不经过球心的小截面圆)圆心的连线垂直于截面,用的是( )A .类比推理B .三段论推理C .归纳推理D .传递性推理 12.下面推理过程中使用了类比推理方法,其中推理正确的是( ) A .平面内的三条直线,若,则.类比推出:空间中的三条直线,若,则 B .平面内的三条直线,若,则.类比推出:空间中的三条向量,若,则C .在平面内,若两个正三角形的边长的比为,则它们的面积比为.类比推出:在空间中,若两个正四面体的棱长的比为,则它们的体积比为D .若,则复数.类比推理:“若,则”二、填空题13.如图是一个三角形数阵,满足第n 行首尾两数均为n ,(),A i j 表示第()2i i ≥行第j 个数,则()100,2A 的值为__________.14.在平面几何中有如下结论:若正三角形ABC 的内切圆周长为1C ,外接圆周长为2C ,则1212C C =.推广到空间几何可以得到类似结论:若正四面体ABCD 的内切球表面积为1S ,外接球表面积为2S ,则12S S =__________. 15.“开心辞典”中有这样一个问题:给出一组数,要你根据规律填出后面的第几个数.现给出一组数:11315,,,,228432---,…,则第8个数可以是__________.16.如图所示为计算机科学中的蛇形模型,则第20行从左到右第4个数字为__________.17.在平面几何中有如下结论:正三角形ABC 的内切圆面积为1S ,外接圆面积为2S ,则1214S S =,推广到空间可以得到类似结论:已知正四面体P ABC -的内切球体积为1V ,外接球体积为2V ,则12V V =____. 18.已知,,a b c 为三条不同的直线,给出如下两个命题:①若,a b b c ⊥⊥,则//a c ;②若//,a b b c ⊥,则a c ⊥.试类比以上某个命题,写出一个正确的命题:设,,αβγ为三个不同的平面,__________.19.研究问题:“已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>”,有如下解法:由22110()()0ax bx c a b c x x-+>⇒-+>,令1y x =,则1(,1)2y ∈,所以不等式20cx bx a -+>的解集为1(,1)2,类比上述解法,已知关于x 的不等式0k x b x a x c ++<++的解集为(2,1)(2,3)--⋃,则关于x 的不等式1011kx bx ax cx -+<--的解集为__________.20.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“•=•”;②“(m+n )t=mt+nt”类比得到“(+)•=•+•”; ③“t≠0,mt=nt ⇒m=n”类比得到“≠0,•=•⇒=”; ④“|m•n|=|m|•|n|”类比得到“|•|=||•||”.以上类比得到的正确结论的序号是 _________ (写出所有正确结论的序号).三、解答题21.在数列{}n a 中,11a =,()*121n n n a a n N n++=+∈. (1)求2a 、3a 、4a 的值;(2)猜想{}n a 的通项公式,并用数学归纳法证明. 22.已知函数2()1f x x =-,数列{}n a 的前n 项和为n S ,且满足2425()n n S n n f a +=+. (1)求1234,,,a a a a 的值;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 23.已知数列{}n a 满足1a a =,112n na a +=-(*n N ∈); (1)求2a 、3a 、4a ; (2)猜想数列{}n a 的通项公式; (3)用数学归纳法证明你的猜想;24.已知函数()()211xx f x a a x -=+>+. (1)判断()f x 在()1,-+∞上的单调性并证明; (2)用适当的方法证明方程()0f x =没有负根. 25.数列{}n a 满足2(n n S n a n =-∈N *). (1)计算1234,,,a a a a ,并由此猜想通项公式n a ; (2)用数学归纳法证明(1)中的猜想.26.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据每一行的第一个数的变化规律即可得到结果. 【详解】解:第一行第一个数为:0112=⨯; 第二行第一个数为:1422=⨯; 第三行第一个数为:21232=⨯; 第四行第一个数为:33242=⨯;,第n 行第一个数为:1n 2n n a -=⨯;一共有1010行,∴第1010行仅有一个数:10091008a 1010220202=⨯=⨯; 故选C . 【点睛】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.2.D解析:D 【解析】分析:利用举反例和反证法证明每一个命题,即得正确答案. 详解:因为1116a b c b c a+++++>与都不大于2矛盾,所以A 错误. 若1315,,2,343a b a b ==+=<所以B 错误. 若111,,,222a b c <<<则a>2,b>2,c>2,所以C 错误. 故答案为D 点睛:(1)本题主要考查推理证明和反证法,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)对于含有“至少”“至多”等概念的命题常用反证法.3.C解析:C 【解析】分析:根据归纳推理、类比推理、演绎推理得概念判断选择.详解:某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人,这个是归纳推理;由三角形的性质,推测空间四面体的性质,是类比推理;平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分,是演绎推理;在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式,是归纳推理,因此选C.点睛:本题考查归纳推理、类比推理、演绎推理,考查识别能力.4.A解析:A 【解析】分析:利用互为逆否的两个命题同真同假的原来,当()P n 对n k =不成立时,则对1n k =-也不成立,即可得到答案.详解:由题意可知,原命题成立的逆否命题成立, 命题()P n 对8n =不成立时,则()P n 对7n =也不成立, 否则当7n =时命题成立,由已知必推得8n =也成立, 与当8n =时命题不成立矛盾,故选A .点睛:本题主要考查了数学归纳法以及归纳法的性质,互为逆否的两个命题同真同假的性质应用,其中正确四种命题的关系是解答的关键,着重考查了推理与论证能力,属于基础题.5.C解析:C 【解析】分析:由题意将k 替换为1k +,然后和k S 比较即可. 详解:由题意将k 替换为1k +,据此可得:()()()()1111111121321k S k k k k +=+++++++++++()111123421k k k k =++++++++()11111123422121k k k k k k =+++++++++++()111111111234221211k k k k k k k k =+++++++-+++++++ ()1111111123422121k k k k k k k =++++++-++++++ ()112121k S k k =+-++. 本题选择C 选项.点睛:本题主要考查数学归纳法中由k 到k +1的计算方法,意在考查学生的转化能力和计算求解能力.6.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题7.D解析:D 【解析】分析:讨论三种情况,甲判断正确,乙、丙判断不正确;乙判断正确,甲、丙判断不正确;丙判断正确,甲、乙判断不正确,由向量平行和垂直的条件,解方程结合选项即可得到结论.详解:若甲判断正确,乙、丙判断不正确, 可得2mn =且480m -+=,解得2,1m n ==, 则()()()2,2,1,1,4,4a b c ===-, 可得b 与c 不平行,a 与c 垂直, 则乙、丙判断不正确符合题意; 若判断正确,甲、丙判断不正确,可得44n -=且480m -+=且48m =-,解得2,1m n ==-或2,1m n =-=-, 则()()()2,2,1,1,4,4a b c ==-=-或()()()2,2,1,1,4,4a b c =-=-=- 可得b 与c 不平行,a 与c 垂直, 则甲、丙判断不正确,符合题意; 若丙判断正确,甲、乙判断不正确, 可得480m -+≠且48m ≠-且44n -≠ 解得2m ≠且2m ≠-且1n ≠-,则3,2m n ==成立;2,1m n =-=-也成立;2,1m n ==也成立.2m n ==-,则甲乙丙判断均错.故选D.点睛:本题考查向量的平行和垂直的坐标表示,考查判断能力和运算能力,以及推理能力.8.C解析:C 【解析】∵大前提的形式:“有些指数函数是减函数”,不是全称命题,∴不符合三段论推理形式,∴推理形式错误,故选C.9.B解析:B 【解析】从平面图形类比空间图形,从二维类比三维,可得如下结论:正四面体的内切球半径等于这个正四面体高的14.证明如下:球心到正四面体一个面的距离即球的半径r ,连接球心与正四面体的四个顶点.把正四面体分成四个高为r 的三棱锥,所以4×13S•r=13•S•h ,r=14h . (其中S 为正四面体一个面的面积,h 为正四面体的高) 故选B .点睛:平面图形类比空间图形,二维类比三维得到类比平面几何的结论,则正四面体的内切球半径等于这个正四面体高的14,证明方法是等积法(平面上等面积,空间等体积). 10.C解析:C【解析】可以用归纳思想,1条弦,分圆成2个部分。

北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(包含答案解析)(1)

北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(包含答案解析)(1)

一、选择题1.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= A .()f xB .()f x -C .()g xD .()g x -2.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲B .乙C .丙D .丁3.体育课上,小红、小方、小强、小军四位同学都在进行足球、篮球、羽毛球、乒乓球等四项体自运动中的某一种,四人的运动项目各不相同,下面是关于他们各自的运动项目的一些判断:①小红没有踢足球,也没有打篮球; ②小方没有打篮球,也没有打羽毛球;③如果小红没有打羽毛球,那么小军也没有踢足球; ④小强没有踢足球,也没有打篮球.已知这些判断都是正确的,依据以上判断,请问小方同学的运动情况是( ) A .踢足球 B .打篮球 C .打羽毛球 D .打乒乓球4.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .325.用数学归纳法证明 11151236n n n ++⋅⋅⋅+≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .112313233k k k +-+++ C .11331k k -++ D .133k + 6.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .5057.已知甲、乙、丙三人中,一人是数学老师、一人是英语老师、一人是语文老师.若丙的年龄比语文老师大;甲的年龄和英语老师不同;英语老师的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是数学老师、乙是语文老师、丙是英语老师B .甲是英语老师、乙是语文老师、丙是数学老师C .甲是语文老师、乙是数学老师、丙是英语老师D .甲是语文老师、乙是英语老师、丙是数学老师8.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.1259.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩 10.用反证法证明“自然数,,a b c 中至多有一个偶数”时,假设原命题不成立,等价于( )A .,,a b c 没有偶数B .,,a b c 恰好有一个偶数C .,,a b c 中至少有一个偶数D .,,a b c 中至少有两个偶数11.请观察这些数的排列规律,数字1位置在第一行第一列表示为(1,1),数字14位置在第四行第三列表示为(4,3),根据特点推算出数字2019的位置A .(45,44)B .(45,43)C .(45,42)D .该数不会出现12.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( ) A .乙B .甲C .丁D .丙二、填空题13.某个产品有若千零部件构成,加工时需要经过6道工序,分别记为A,?B,C,?D,?E,?F .其中,有些工序因为是制造不同的零部件,所以可以在几台机器上同时加工;有些工序因为是对同一个零部件进行处理,所以存在加工顺序关系.若加工工序Y 必须要在工序X 完成后才能开工,则称X 为Y 的紧前工序.现将各工序的加工次序及所需时间(单位:小时)列表如下: 工序 ABCDEF加工时间 3 42 221紧前工序无C 无C ,A BD现有两台性能相同的生产机器同时加工该产品,则完成该产品的最短加工时间是__________小时.(假定每道工序只能安排在一台机器上,且不能间断).14.设数列{}n a 的前n 项和为n S ,已知*()n n S n a n N =-∈,猜想n a =__________.15.点()00,x y 到直线0Ax By c ++=的距离公式为0022Ax By c d A B++=+,通过类比的方法,可求得:在空间中,点()1,1,2到平面230x y z +++=的距离为___.16.在平面内,点,,P A B 三点共线的充要条件是:对于平面内任一点O ,有且只有一对实数,x y ,满足向量关系式OP xOA yOB =+,且1x y +=.类比以上结论,可得到在空间中,,,,P A B C 四点共面的充要条件是:对于平面内任一点O ,有且只有一对实数,,x y z 满足向量关系式__________.17.在ABC ∆中,D 为BC 的中点,则()12AD AB AC =+,将命题类比到三棱锥中去得到一个类比的命题为__________.18.已知结论“1a ,*2R a ∈,且121a a +=,则12114a a +≥;若1a 、2a 、*3R a ∈,且1231a a a ++=,则1239111a a a ++≥”,请猜想若1a 、2a 、…、*R n a ∈,且121n a a a +++=,则12111na a a +++≥__________. 19.在平面几何中有如下结论:正三角形ABC 的内切圆面积为1S ,外接圆面积为2S ,则1214S S =,推广到空间可以得到类似结论:已知正四面体P ABC -的内切球体积为1V ,外接球体积为2V ,则12V V =____. 20.如图所示,在三棱锥S ﹣ABC 中,SA ⊥SB ,SB ⊥SC ,SC ⊥SA ,且SA ,SB ,SC 和底面ABC 所成的角分别为α1,α2,α3,△SBC ,△SAC ,△SAB 的面积分别为S 1,S 2,S 3,类比三角形中的正弦定理,给出空间图形的一个猜想是________.三、解答题21.设等差数列{}n a 的前n 项和为n S ,23a =-,()4521S a =+,数列{}n b 的前n 项和为n T ,满足11b =-,()*11n n n b T T n N ++=∈.(1)求数列{}n a 、{}n b 的通项公式; (2)记nn na c T =,*n N ∈,证明:()122214n c c c n n +++<+. 22.已知数列{}n a 中,12a a =.()2122,n n a a a n n a *-=-≥∈N . (1)写出2a 、3a 、4a ;(2)猜想n a 的表达式,并用数学归纳法证明. 23.选修4-5:不等式选讲 已知,,函数的最小值为.(1)求的值;(2)证明:与不可能同时成立.24.正项数列{}n a 的前n 项和n S 满足1n n a S n =-. (Ⅰ)求1a ,2a ,3a ;(Ⅱ)猜想{}n a 的通项公式,并用数学归纳法证明.25.给出下面的数表序列:其中表()1,2,3,...n n =有n 行,第1行的n 个数是1,3,5,…,21n -,从第2行起,每行中的每个数都等于它肩上的两数之和.(1)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表()3n n ≥(不要求证明)(2)每个数表中最后一行都只有一个数,它们构成数列1,4,12,…,记此数列为{}n b ,求数列{}n b 的前n 项和26.已知f (x )=f (0)+f (1),f (﹣1)+f (2),f (﹣2)+f (3),然后归纳猜想一般性结论,并证明你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】由归纳推理可知偶函数的导数是奇函数,因为()f x 是偶函数,则()()g x f x '=是奇函数,所以()()g x g x -=-,应选答案D .2.D解析:D 【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁.【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾, 假设乙打碎了玻璃,甲、乙说了谎,矛盾, 假设丙打碎了玻璃,丙、乙说了谎,矛盾, 假设丁打碎了玻璃,只有丁说了谎,符合题意, 所以是丁打碎了玻璃; 故选:D 【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.3.A解析:A【解析】分析:由题意结合所给的逻辑关系进行推理论证即可. 详解:由题意可知:小红、小方、小强都没有打篮球,故小军打篮球; 则小军没有踢足球,且已知小红、小强都没有踢足球,故小方踢足球. 本题选择A 选项.点睛:本题主要考查学生的推理能力,意在考查学生的转化能力和计算求解能力.4.B解析:B 【解析】分析:利用第八项为1出发,按照规则,逆向逐项即可求解n 的所有可能的取值. 详解:如果正整数n 按照上述规则施行变换后第八项为1, 则变换中的第7项一定为2, 变换中的第6项一定为4,变换中的第5项可能为1,也可能是8, 变换中的第4项可能是2,也可能是16,变换中的第4项为2时,变换中的第3项是4,变换中的第2项是1或8,变换中的第1项是2或6,变换中的第4项为16时,变换中的第3项是32或5,变换中的第2项是64或108,变换中的第1项是128或21或20,或3,则n 的所有可能的取值为2,3,16,20,21,128,共6个,故选B.点睛:本题主要考查了归纳推理的应用,其中解答中正确理解题意,利用变换规则,进行逆向逐项推理、验证是解答的关键,着重考查了推理与论证能力,试题有一定的难度,属于中档试题.5.B解析:B 【详解】分析:分析n k =,1n k =+时,左边起始项与终止项,比较差距,得结果. 详解:n k =时,左边为111123k k k++⋅⋅⋅+++,1n k =+时,左边为111111233313233k k k k k k ++⋅⋅⋅++++++++++, 所以左边需添加的项是11111123132331313233k k k k k k k ++-=+-+++++++,选B. 点睛:研究n k =到1n k =+项的变化,实质是研究式子变化的规律,起始项与终止项是什么,中间项是如何变化的.6.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.7.C解析:C 【解析】丙的年龄比语文老师大,则丙是数学老师或英语老师,不是语文老师;甲的年龄和英语老师不同,则甲是数学老师或语文老师,不是英语老师;选项B 错误; 英语老师的年龄比乙小,则乙是数学老师或语文老师,不是英语老师;选项D 错误; 选项A 中,英语老师的年龄比乙大,选项A 错误; 据此可得:甲是语文老师、乙是数学老师、丙是英语老师. 本题选择C 选项.8.C解析:C 【解析】 设圆的半径为1,正多边形的圆心角为3600.5720︒︒=,边长为2sin0.25︒==,所以7202sin0.252π︒⨯=,即0π720sin0.25=故选:C9.D解析:D 【解析】 【分析】根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案【详解】解:四人所知只有自己看到,老师所说及最后甲说话, 甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁也为一优一良,丁知自己的成绩,给甲看乙丙成绩,甲不知道自已的成绩,说明乙丙一优一良,假定乙丙都是优,则甲是良,假定乙丙都是良,则甲是优,那么甲就知道自已的成绩了.给乙看丙成绩,乙没有说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲是优,则丁是良,丁肯定知道自已的成绩了 故选:D . 【点睛】本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,属于中档题.10.D解析:D 【解析】“至多一个”的反面是“至少2个”所以原命题等价命题是“a,b,c 中至少有两个偶数 ”选D.11.C解析:C 【分析】由所给数的排列规律得到第n 行的最后一个数为2n ,然后根据2452025=可推测2019所在的位置. 【详解】由所给数表可得,每一行最后一个数为2221,2,3,,由于22441936,452025==,2244201945<<, 所以故2019是第45行的倒数第4个数, 所以数字2019的位置为(45,42). 故选C . 【点睛】(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识. (2)解决归纳推理问题的基本步骤①发现共性,通过观察特例发现某些相似性(特例的共性或一般规律); ②归纳推理,把这种相似性推广为一个明确表述的一般命题(猜想).12.A解析:A【分析】由题意,这个问题的关键是四人中有两人说真话,另外两人说了假话,通过这一突破口,进行分析,推理即可得到结论.【详解】在甲、乙、丙、丁四人的供词中,可以得出乙、丁两人的观点是一致的,因此乙丁两人的供词应该是同真同假(即都是真话或都是假话,不会出现一真一假的情况);假设乙、丁两人所得都是真话,那么甲、丙两人说的是假话,由乙说真话可推出丙是犯罪的结论;由甲说假话,推出乙、丙、丁三人不是犯罪的结论;显然这两人是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙的供词可以断定乙是犯罪的,乙、丙、丁中有一人是犯罪的,由丁说假话,丙说真话推出乙是犯罪的,综上可得乙是犯罪的,故选A.【点睛】本题主要考查了推理问题的实际应用,其中解答中结合题意,进行分析,找出解决问题的突破口,然后进行推理是解答的关键,着重考查了推理与论证能力.二、填空题13.【解析】分析:由题意根据题意两台性能相同的生产机器同时加工该产品确定好加工顺序即可得到答案详解:由题意可确定如图所示的加工顺序如图所示可得用两台性能相同的生产机器同时加工该产品要完成该产品的最短加工解析:【解析】分析:由题意,根据题意两台性能相同的生产机器同时加工该产品,确定好加工顺序,即可得到答案.详解:由题意,可确定如图所示的加工顺序,如图所示,可得用两台性能相同的生产机器同时加工该产品,要完成该产品的最短加工时间为8小时.点睛:本题主要考查了实际应用问题,其中解答中正确理解题意,分析工艺的流程,确定好加工的顺序,得出加工顺序的图形是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与论证能力.14.【解析】分析:令可求得由得两式相减得可依次求出观察前四项找出规律从而可得结果详解:中令可求得由得两式相减得即可得…归纳可得故答案为点睛:归纳推理的一般步骤:一通过观察个别情况发现某些相同的性质二从已解析:21 2nn【解析】分析:令1n =,可求得112a =,由()n n S n a n N *=-∈,得()1112n n S n a n --=--≥, 两式相减,得()1122n n a a n -+=≥,可依次求出234,,a a a ,观察前四项,找出规律,从而可得结果.详解:n n S n a =- 中令1n ,=可求得1a =1112122-=由()n n S n a n N *=-∈,得()1112n n S n a n --=--≥,两式相减,得11n n n a a a -=-+, 即()1122n n a a n -+=≥, 可得222321;42a -==333721;82a -==4341521;182a -==… 归纳可得212n n na -=,故答案为212n n -. 点睛:归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.15.【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可详解:类比点到直线的距离可知在空间中点到平面的距离故答案是点睛:该题考查的是类比推理利用平面内点到直线的距离公式类比着得解析:2. 【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可. 详解:类比点00(,)P x y 到直线0Ax By C ++=的距离d =,可知在空间中点(0,1,1)-到平面230x y z +++=的距离d ==. 点睛:该题考查的是类比推理,利用平面内点到直线的距离公式类比着得出空间中点到平面的距离公式,代入求得结果,属于简单题目.16.且【解析】此类比仅是数量的变化即在空间中四点共面的充要条件是:对于平面内任一点有且只有一对实数满足向量关系式且解析:OP xOA yOB zOC =++,且1x y z ++= 【解析】此类比仅是数量的变化,即在空间中,,,,P A B C 四点共面的充要条件是:对于平面内任一点O ,有且只有一对实数,,x y z 满足向量关系式OP xOA yOB zOC =++,且1x y z ++=17.在四面体A -BCD 中G 为△BCD 的重心则【解析】由类比四面体中点类比重心有由类比可得在四面体中为的重心则有故答案为在四面体中为的重心则有点睛:本题考查了从平面类比到空间属于基本类比推理利用类比推理可解析:在四面体A -BCD 中,G 为△BCD 的重心,则1()3AG AB AC AD =++ 【解析】由“ABC ”类比“四面体A BCD -”,“中点”类比“重心”有,由类比可得在四面体A BCD -中,G 为BCD 的重心,则有1()3AG AB AC AD =++,故答案为在四面体A BCD -中,G 为BCD 的重心,则有1()3AG AB AC AD =++. 点睛: 本题考查了从平面类比到空间,属于基本类比推理.利用类比推理可以得到结论、证明类比结论时证明过程与其类比对象的证明过程类似或直接转化为类比对象的结论,属于基础题;由条件根据类比推理,由“ABC ”类比“四面体A BCD -”,“中点”类比“重心”,从而得到一个类比的命题.18.【解析】由题意知:结论左端各项分别是和为的各数的倒数右端时为时为故时结论为故答案为【方法点睛】本题通过观察几组不等式归纳出一般规律来考察归纳推理属于中档题归纳推理的一般步骤:一通过观察个别情况发现某 解析:2n【解析】由题意,知:结论左端各项分别是和为1的各数i a 的倒数()1,2,...,i n =,右端2n =时为242,3n ==时为293=,故12,...1i n a R a a a +∈+++=时,结论为()212111...2nn n a a a +++≥≥,故答案为2n . 【方法点睛】本题通过观察几组不等式,归纳出一般规律来考察归纳推理,属于中档题.归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.19.【解析】设正四面体的棱长为高为四个面的面积为内切球半径为外接球半径为则由得;由相似三角形的性质可求得所以考点:类比推理几何体的体积 解析:127【解析】设正四面体ABCD 的棱长为a ,高为h ,四个面的面积为S ,内切球半径为r ,外接球半径为R ,则由11433Sr Sh ⨯=,得1144r h ===;由相似三角形的性质,可求得R =,所以12V V =3311()().327r R ==考点:类比推理,几何体的体积.20.【解析】试题分析:在△DEF 中由正弦定理得于是类比三角形中的正弦定理在四面体S ﹣ABC 中我们猜想成立故答案为考点:类比推理解析:312123sin sin sin S S S ααα== 【解析】试题分析:在△DEF 中,由正弦定理,得sin sin sin d e fD E F==.于是,类比三角形中的正弦定理,在四面体S ﹣ABC 中,我们猜想312123sin sin sin S S S ααα==成立.故答案为312123sin sin sin S S S ααα==. 考点:类比推理.三、解答题21.(1)21n a n =-+,()1,11,21n n b n n n -=⎧⎪=⎨≥⎪-⎩.(2)见解析【分析】(1)根据等差数列的通项公式和前n 项和公式列方程组求出1a 和d ,进而可得{}n a 的通项公式;由11n n n b T T ++=⋅,得1111n n T T +-=-,可得1n T n=-,利用1n n n b T T -=-,可得{}n b 的通项公式;(2)利用数学归纳法, ①当1n =时,左边1=,右边4=②假设n k =时成立,即()12214k c c c k k +++<+,证明当1n k =+时,不等式也成立. 【详解】解:(1)设首项为1a ,公差为d ,则()111346241a d a d a d +=-⎧⎨+=++⎩,解得11a =-,2d =-,故21n a n =-+, 由11n n n b T T ++=⋅,得11n n n n T T T T ++=⋅-,即1111n n T T +-=-,11T =-,所以1nn T =-,即1n T n=-,所以()()1121n n n b T T n n n -=-=≥-,故()1,11,21n n b n n n -=⎧⎪=⎨≥⎪-⎩. (2)由(1)知n c =()12214n c c c n +++<+, ①当1n =时,左边1=,右边4=②假设n k =时成立,即()12214k c c c k +++<+, 即当1n k =+时,()21214k k c c c c k k+++++<++()214k k ⎡=++⎢⎢⎣()21k k=++⎣ 224k k ⎡⎢=++⎢⎣))()2243123k k k k k <+++=++. 即当1n k =+时,不等式也成立.由①,②可知,不等式()1212n c c c n +++<+对任意*n N ∈都成立. 【点睛】本题考查等差数列的通项公式以及n S 法求数列的通项公式,考查数列归纳法,是中档题. 22.(1)232a a =,343a a =,454a a =;(2)猜想1n n a a n+=,证明见解析.【分析】(1)利用递推公式可计算出2a 、3a 、4a 的值; (2)根据数列{}n a 的前四项可猜想出()1n n a a n N n*+=∈,然后利用数学归纳法即可证明出猜想成立. 【详解】(1)()2122,n n a a a n n a *-=-≥∈N ,12a a =,则222132222a a a a a a a a =-=-=,2232242223332a a a a a a a a a a =-=-=-=,2243352224443a a a a a a a aa a =-=-=-=; (2)猜想()1n n a a n N n*+=∈,下面利用数学归纳法证明. 假设当()n k k N *=∈时成立,即1k k a a k+=, 那么当1n k =+时,2212222111k k a a k k a a a a a ak a k k ak++=-=-=-=+++, 这说明当1n k =+时,猜想也成立. 由归纳原理可知,()1n n a a n N n*+=∈. 【点睛】本题考查利用数列递推公式写出数列中的项,同时也考查了利用数学归纳法证明数列通项公式,考查计算能力与推理能力,属于中等题. 23.(1) (2)见解析【解析】试题分析:(Ⅰ)首先利用三角绝对值不等式的性质求得最小值的表达式,然后结合已知条件求解即可;(Ⅱ)首先由(1)及基本不等式,得,然后假设与同时成立,推出且,与相矛盾,即证得结论.试题 (1)∵,∴. (2)∵且,由基本不等式知道:,∴假设与同时成立,则由及,得.同理,∴,这与矛盾,故与不可能同时成立.考点:1、基本不等式;2、三角绝对值不等式的性质;3、反证法.24.(Ⅰ)123135a a a ===,,(Ⅱ)猜想21n a n ,=-证明见解析【解析】分析:(1)直接给n 取值求出1a ,2a ,3a .(2)猜想{}n a 的通项公式,并用数学归纳法证明.详解:(Ⅰ)令1n =,则10a =,又11S a =,解得11a =;令2n =,则2211a a =⇒=,解得23a =;令3n =,则3322a a =⇒=,解得35a =. (Ⅱ)由(Ⅰ)猜想21n a n =-; 下面用数学归纳法证明21n a n =-. 由(Ⅰ)可知当1n =时,21n a n =-成立;假设当()*n k k N =∈时,21k a k =-,则21k k a k S k =-⇒=.那么当1n k =+时,()2111k k k a k S a k +++=⇒=-,由()22111k k k k a S S a k k +++=-=-- 2112k k a ka ++=-,所以()21121k k k a a +++=,又0n a >,所以121k a k +=+,所以当1n k =+时,()121211k a k k +=+=+-. 综上,21n a n =-.点睛:(1)本题主要考查数学归纳法,意在考查学生对该基础知识的掌握水平和基本计算能力.(2) 数学归纳法的步骤:①证明当n=1时,命题成立。

高中数学第一章推理与证明1归纳与类比课后篇巩固提升含解析北师大版选修2_2

高中数学第一章推理与证明1归纳与类比课后篇巩固提升含解析北师大版选修2_2

第一章DIYIZHANG推理与证明§1归纳与类比课后篇巩固提升A组1.下列图形都是由同样大小的正方形按一定的规律组成,其中第1个图形由1个小正方形组成,第2个图形由3个小正方形组成,第3个图形由7个小正方形组成,第4个图形由13个小正方形组成,……,那么第8个图形中小正方形的个数是()A.72B.73C.57D.581个图形中的小正方形个数为1;第2个图形中的小正方形个数为1+2=3;第3个图形中的小正方形个数为1+2+4=7;第4个图形中的小正方形个数为1+2+4+6=13;所以第8个图形中的小正方形个数为1+2+4+6+8+10+12+14=57.故选C.2.下列几种推理中是合情推理的是()①由圆的性质类比出球的有关性质.②由直角三角形、等腰三角形、等边三角形的内角和均为180°,归纳出所有三角形的内角和均为180°.③教室内有一把椅子坏了,猜想该教室内所有的椅子都坏了.④由a1=1,a2=3,a3=5,a4=7,归纳出数列{a n}的通项公式为a n=2n-1.A.①②B.①③④C.①②④D.②④是类比推理,②④是归纳推理,故①②④都是合情推理.3.下面使用类比推理恰当的是()A.“若a·3=b·3,则a=b”类比推出“若a·0=b·0,则a=b”B.“(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc”C.“(a+b)c=ac+bc”类比推出“a+bc =ac+bc(c≠0)”D.“(ab)n=a n b n”类比推出“(a+b)n=a n+b n”4.已知数对如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…,则第60个数对是()A.(3,8)B.(4,7)C.(4,8)D.(5,7),数对中两数之和为2的有1个,为3的有2个,为4的有3个,…,为11的有10个,则根据数对规律可推出第56个数对为(1,11),往下的数对依次为(2,10),(3,9),(4,8),(5,7),(6,6),….故选D .5.在平面直角坐标系中,点(x 0,y 0)到直线Ax+By+C=0的距离d=00√A 2+B 2,类比可得在空间直角坐标系中,点(2,3,4)到平面x+2y+2z-4=0的距离为( ) A.4B.5C.163D.203,点(x 0,y 0,z 0)到平面Ax+By+Cz+D=0的距离为d=000√A 2+B 2+C 2,故点(2,3,4)到平面x+2y+2z-4=0的距离d=√12+22+22=4.故选A .6.若数列{a n }是等差数列,则数列b n =a n+1+a n+2+…+a n+mm(m ∈N *)也为等差数列,类比上述性质,相应地,若正项数列{c n }是等比数列,则数列d n = 也是等比数列.√c n+1c n+2…c n+m7.观察下列等式:sin30°+sin90°cos30°+cos90°=√3,sin15°+sin75°cos15°+cos75°=1,sin20°+sin40°cos20°+cos40°=√33. 照此规律,对于一般的角α,β,有等式 .,发现tan 30°+90°2=√3,tan15°+75°2=1,tan20°+40°2=√33,故对于一般的角α,β的等式为sinα+sinβcosα+cosβ=tan α+β2.tanα+β28.阅读以下求1+2+3+…+n (n ∈N +)的过程:因为(n+1)2-n 2=2n+1,n 2-(n-1)2=2(n-1)+1,…,22-12=2×1+1, 以上各式相加得(n+1)2-12=2(1+2+…+n )+n ,所以1+2+3+…+n=n 2+2n -n2=n (n+1)2.类比上述过程,可得12+22+32+…+n 2= (n ∈N +).(n+1)3-n 3=3n 2+3n+1,n 3-(n-1)3=3(n-1)2+3(n-1)+1,…,23-13=3×12+3×1+1,以上各式相加得(n+1)3-13=3(12+22+…+n 2)+3(1+2+…+n )+n ,所以12+22+32+…+n 2=n (n+1)(2n+1)6.9.已知数列{a n }满足a 1=1,a na n+1=nn+1(n ∈N +).(1)求a 2,a 3,a 4,a 5,并猜想通项公式a n ;(2)根据(1)中的猜想,有下面的数阵:S1=a1S2=a2+a3S3=a4+a5+a6S4=a7+a8+a9+a10S5=a11+a12+a13+a14+a15试求S1,S1+S3,S1+S3+S5,并猜想S1+S3+S5+…+S2n-1的值.因为a1=1,由a na n+1=nn+1,知a n+1=n+1na n,故a2=2,a3=3,a4=4,a5=5,可归纳猜想出a n=n(n∈N+).(2)根据(1)中的猜想,数阵为:S1=1S2=2+3=5S3=4+5+6=15S4=7+8+9+10=34S5=11+12+13+14+15=65故S1=1=14S1+S3=1+15=16=24S1+S3+S5=1+15+65=81=34可猜想S1+S3+S5+…+S2n-1=n4.10.在Rt△ABC中,∠C=90°,当n>2时,有c n>a n+b n成立,请你类比直角三角形的这个性质,猜想一下空间四面体的性质.,与Rt△ABC对应的是四面体P-DEF;与Rt△ABC的两条边交成一个直角相对应的是四面体P-DEF的三个面在一个顶点D处构成3个直二面角;与Rt△ABC直角边a,b相对应的是四面体P-DEF 的平面△DEF,△FPD,△DPE的面积S1,S2,S3;与Rt△ABC的斜边c相对应的是四面体P-DEF的平面△PEF的面积S.由此猜想:当n>2时,S n>S1n+S2n+S3n.B组1.已知点P(10,3)在椭圆C:x2a2+y299=1上.若点N(x0,y0)在圆M:x2+y2=r2上,则圆M过点N的切线方程为x0x+y0y=r2.由此类比得椭圆C在点P处的切线方程为()A.x33+y11=1 B.x110+y99=1C.x11+y33=1 D.x99+y110=1P(10,3)在椭圆C:x 2a2+y299=1上,故可得100a 2+999=1,解得a 2=110.由类比可得椭圆C 在点P 处的切线方程为10x110+3y99=1,整理可得x11+y33=1.故选C .2.如图,坐标纸上的每个单元格的边长为1,由下往上的六个点1,2,3,4,5,6的横、纵坐标分别对应数列{a n }{n ∈N +}的前12项(即横坐标为奇数项,纵坐标为偶数项),按如此规律下去,则a 2 013+a 2 014+a 2015=()A.1 006B.1 007C.1 008D.2 015,偶数项的值等于其项数的一半,则a 4n-3=n ,a 4n-1=-n ,a 2n =n ,∵2013=4×504-3,2015=4×504-1, ∴a 2013=504,a 2015=-504,a 2014=1007. ∴a 2013+a 2014+a 2015=1007.3.记等差数列{a n }的前n 项和为S n ,利用倒序求和法,可将S n 表示成首项a 1,末项a n 与项数n 的一个关系式,即S n =n (a 1+a n )2;类似地,记等比数列{b n }的前n 项积为T n ,且b n >0(n ∈N +),试类比等差数列求和的方法,可将T n 表示成首项b ,末项b n 与项数n 的一个关系式,即T n =( ) A.n (b 1+b n )2B.(b 1+b n )n2C.√b 1b n nD.(b 1b n )n 2,若m+n=p+q ,则b m ·b n =b p ·b q ,利用倒序求积法可得{T n =b 1·b 2·…·b n ,T n =b n ·b n -1·…·b 1,两式相乘得T n 2=(b 1b n )n ,故T n =(b 1b n )n2.4.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据以上式子可以猜想:1+122+12+…+120212< .:1+122<32,1+122+132<53,1+122+132+142<74,…,1+122+132+…+1n 2<2n -1n,故可得1+122+132+…+120212<40412021.5.在长方形ABCD 中,对角线AC 与两邻边所成的角分别为α,β,则cos 2α+cos 2β=1,请在立体几何中,给出类比猜想.,如图.ABCD中,cos2α+cos2β=(ac )2+(bc)2=a2+b2c2=c2c2=1.于是类比到长方体中,猜想其体对角线与共顶点的三条棱所成的角分别为α,β,γ,则cos2α+cos2β+cos2γ=1.证明如下:cos2α+cos2β+cos2γ=(ml )2+(nl)2+(gl)2=m2+n2+g2l2=l2l2=1.6.一种十字绣作品由相同的小正方形构成,图①②③④分别是制作该作品前四步所对应的图案,按照如此规律,第n步完成时对应图案中所包含小正方形的个数记为f(n).(1)求出f(2),f(3),f(4),f(5)的值;(2)利用归纳推理,归纳出f(n+1)与f(n)的关系式;(3)猜想f(n)的表达式,并写出推导过程.图①中只有一个小正方形,得f(1)=1;图②中有3层,以第2层为对称轴,有1+3+1=5(个)小正方形,得f(2)=5;图③中有5层,以第3层为对称轴,有1+3+5+3+1=13(个)小正方形,得f(3)=13;图④中有7层,以第4层为对称轴,有1+3+5+7+5+3+1=25(个)小正方形,得f(4)=25;第五步所对应的图案中有9层,以第5层为对称轴,有1+3+5+7+9+7+5+3+1=41(个)小正方形,得f(5)=41.(2)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,f(5)=41,∴f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,∴f(n+1)-f(n)=4n.∴f(n+1)与f(n)的关系式为f(n+1)-f(n)=4n.(3)猜想f(n)的表达式为f(n)=2n2-2n+1.由(2)可知f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,……f(n)-f(n-1)=4×(n-1)=4n-4,将上述n-1个式子相加,得f(n)-f(1)=4[1+2+3+4+…+(n-1)],则f(n)=2n2-2n+1.。

北师大数学选修22配套作业:第一章 推理与证明 §1 含解析

北师大数学选修22配套作业:第一章 推理与证明 §1 含解析

第1章 §1 归纳与类比A 级 基础巩固一、选择题1.下面几种推理是合情推理的是( C )①由圆的周长为C =πd 类比出球的表面积为S =πd 2;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试,张军的成绩是100分,由此推出全班同学的成绩都是100分;④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,归纳出n 边形的内角和是(n -2)·180°.A .①②B .①③④C .①②④D .②④[解析] 由合情推理的概念知①②④符合题意. 2.根据给出的数塔猜测123 456×9+7等于( B ) 1×9+2=11, 12×9+3=111, 123×9+4=1 111, 1 234×9+5=11 111, 12 345×9+6=111 111, …… A .1 111 110 B .1 111 111 C .1 111 112D .1 111 113[解析] 利用归纳推理,由已知可推测等号右侧应有7个1.3.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( C )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r (S 1、S 2、S 3、S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h (h 为四面体的高)[解析]设△ABC的内心为O,连接OA、OB、OC,将△ABC分割为三个小三角形,这三个小三角形的高都是r,底边长分别为a、b、c;类比:设四面体A-BCD的内切球的球心为O,连接OA、OB、OC、OD,将四面体分割为四个以O为顶点,以原来面为底面的四面体,高都是r,所以有V=13(S1+S2+S3+S4)r.4.如图,在所给的四个选项中,最适合填入问号处,使之呈现一定的规律性的为(A)[解析]观察第一组中的三个图,可知每一个黑色方块都从右向左循环移动,每次移动一格,由第二组图的前两个图,可知选A.5.平面几何中,有边长为a的正三角形内任一点到三边距离之和为定值32a,类比上述命题,棱长为a的正四面体内任一点到四个面的距离之和为(B)A.43a B.63aC.54a D.64a[解析]将正三角形一边上的高32a类比到正四面体一个面上的高63a,由正三角形“分割成以三条边为底的三个三角形面积的和等于正三角形的面积”,方法类比为“将四面体分割成以各面为底的三棱锥体积之和等于四面体的体积”证明.二、填空题6.(2018·聊城模拟)高三某班一学习小组的A、B、C、D四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A不在散步,也不在打篮球;②B不在跳舞,也不在散步;③“C在散步”是“A在跳舞”的充分条件;④D不在打篮球,也不在散步;⑤C不在跳舞,也不在打篮球.以上命题都是真命题,那么D在画画__.[解析]∵以上命题都是真命题,∴对应的情况是:打篮球画画跳舞散步∵③“C∴C在散步,则D在画画,故答案为画画.7.观察下列等式:①cos2α=2cos2α-1;②cos4α=8cos4α-8cos2α+1;③cos6α=32cos6α-48cos4α+18cos2α-1;④cos8α=128cos8α-256cos6α+160cos4α-32cos2α+1;⑤cos10α=m cos10α-1 280cos8α+1 120cos6α+n cos4α+p cos2α-1.可以推测,m-n+p=962__.[解析]观察每一个等式中最高次幂的系数:2,8,32,128,m,构成一个等比数列,公比为4,故m=128×4=512.观察每一个等式中cos2α的系数:2,-8,18,-32,p,规律是1×2,-2×4,3×6,-4×8,故p=5×10=50.每一个式子中的系数和为1,故m-1 280+1 120+n+p-1=1,代入m和p,可求得n=-400,故m-n+p=512+400+50=962.8.设函数f(x)=xx+2(x>0),观察:f1(x)=f(x)=xx+2,f 2(x )=f (f 1(x ))=x3x +4, f 3(x )=f (f 2(x ))=x7x +8, f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得: 当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=x(2-1)x +2 .[解析] 本题主要考查了归纳推理及分析解决问题的能力. 依题意:f 1(x )=x x +2=x(2-1)x +2,f 2(x )=x 3x +4=x (22-1)x +22, f 3(x )=x 7x +8=x (23-1)x +23, f 4(x )=x 15x +16=1(24-1)x +24.∴当n ∈N *且n ≥2时,f n (x )=x(2n -1)x +2n.三、解答题 9.已知S n =11×2+12×3+13×4+…+1n (n +1),写出S 1,S 2,S 3,S 4的值,并由此归纳出S n 的表达式.[解析] S 1=11×2=1-12=12;S 2=11×2+12×3=(1-12)+(12-13)=1-13=23;S 3=11×2+12×3+13×4=(1-12)+(12-13)+(13-14)=1-14=34;S 4=11×2+12×3+13×4+14×5=(1-12)+(12-13)+(13-14)+(14-15)=1-15=45;由此猜想:S n =nn +1(n ∈N +).10.在△ABC 中,余弦定理可叙述为a 2=b 2+c 2-2bc cos A ,其中a 、b 、c 依次为角A 、B 、C 的对边,类比上述定理,给出空间四面体性质的猜想.[解析] 如图,S 1,S 2,S 3,S 分别表示△P AB ,△PBC ,△PCA ,△ABC 的面积,α、β、γ依次表示平面P AB 与平面PBC 、平面PBC 与平面PCA 、平面PCA 与平面ABP 之间所成二面角的大小.故猜想余弦定理类比推理到三维空间的表现形式为:S 2=S 21+S 22+S 23-2S 1S 2cos α-2S 2S 3cos β-2S 2S 1cos γ.B 级 素养提升一、选择题1.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据以上式子可以猜想:1+122+132+…+120192<( C )A.40352019B.40362019C.40372019D.40392019[解析] 本题考查了归纳的思想方法.观察可以发现,第n (n ≥2)个不等式左端有n +1项,分子为1,分母依次为12、22、32、…、(n +1)2;右端分母为n +1,分子成等差数列,首项为3,公差为2,因此第n 个不等式为1+122+132+…+1(n +1)2<2n +1n +1, 所以当n =2018时不等式为: 1+122+132+…+120192<40372019. 2.类比三角形中的性质: (1)两边之和大于第三边 (2)中位线长等于底边长的一半 (3)三内角平分线交于一点 可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的14(3)四面体的六个二面角的平分面交于一点 其中类比推理方法正确的有( C )A .(1)B .(1)(2)C .(1)(2)(3)D .都不对[解析] 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.二、填空题3.在以原点为圆心,半径为r 的圆上有一点P (x 0,y 0),则圆的面积S 圆=πr 2,过点P 的圆的切线方程为x 0x +y 0y =r 2.在椭圆x 2a 2+y 2b2=1(a >b >0)中,当离心率e 趋近于0时,短半轴b就趋近于长半轴a ,此时椭圆就趋近于圆.类比圆的面积公式得椭圆面积S 椭圆=πab .类比过圆上一点P (x 0,y 0)的圆的切线方程,则过椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P (x 1,y 1)的椭圆的切线方程为x 1a 2·x +y 1b2·y =1.[解析] 当椭圆的离心率e 趋近于0时,椭圆趋近于圆,此时a ,b 都趋近于圆的半径r ,故由圆的面积S =πr 2=π·r ·r ,猜想椭圆面积S 椭=π·a ·b ,其严格证明可用定积分处理.而由切线方程x 0·x +y 0·y =r 2变形得x 0r 2·x +y 0r 2·y =1,则过椭圆上一点P (x 1,y 1)的椭圆的切线方程为x 1a 2·x+y 1b2·y =1,其严格证明可用导数求切线处理. 4.如图,直角坐标系中每个单元格的边长为1,由下往上的6个点1,2,3,4,5,6的横纵坐标(x i ,y i )(i =1,2,3,4,5,6)分别对应数列{a n }(n ∈N *)的前12项,如下表所示:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a 12 x 1y 1x 2y 2x 3y 3x 4y 4x 5y 5x 6y 6201720182019的值为1009_.[解析] 由题图知a 1=x 1=1,a 3=x 2=-1,a 5=x 3=2,a 7=x 4=-2,…,则a 1+a 3=a 5+a 7=…=a 2017+a 2019=0.又a 2=y 1=1,a 4=y 2=2,a 6=y 3=3,…,则a 2018=1009,所以a 2017+a 2018+a 2019=1009.三、解答题 5.我们知道:12=1,22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, ……n 2=(n -1)2+2(n -1)+1, 左右两边分别相加,得n 2=2×[1+2+3+…+(n -1)]+n , ∴1+2+3+…+n =n (n +1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解析] 我们记S 1(n )=1+2+3+…+n ,S 2(n )=12+22+32+…+n 2,…,S k (n )=1k +2k +3k +…+n k (k ∈N *). 已知 13=1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, ……n 3=(n -1)3+3(n -1)2+3(n -1)+1. 将左右两边分别相加,得S 3(n )=[S 3(n )-n 3]+3[S 2(n )-n 2]+3[S 1(n )-n ]+n . 由此知S 2(n )=n 3+3n 2+2n -3S 1(n )3=2n 3+3n 2+n6=n (n +1)(2n +1)6.6.(2019·隆化县高二检测)在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明理由.[解析] 如图(1)所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC ,∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2. 又BC 2=AB 2+AC 2, ∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2. ∴1AD 2=1AB 2+1AC2. 类比AB ⊥AC ,AD ⊥BC 猜想:四面体ABCD 中,AB 、AC 、AD 两两垂直, AE ⊥平面BCD . 则1AE 2=1AB 2+1AC 2+1AD2. 如图(2),连接BE 延长交CD 于F ,连接AF . ∵AB ⊥AC ,AB ⊥AD , ∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF . 在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AF2. 在Rt △ACD 中,AF ⊥CD , ∴1AF 2=1AC 2+1AD2 ∴1AE 2=1AB 2+1AC 2+1AD2,故猜想正确. C 级 能力拔高(2019·烟台高二检测)已知椭圆具有如下性质:若M ,N 是椭圆C 上关于原点对称的两点,点P 是椭圆上任意一点,若直线PM ,PN 的斜率都存在,并记为k PM ,k PN ,那么k PM 与k PN 之积是与点P 位置无关的定值.试对双曲线x 2a 2-y 2b2=1,写出具有类似的性质,并加以证明.[解析] 类似的性质为:若M ,N 是双曲线x 2a 2-y 2b 2=1上关于原点对称的两点,点P 是双曲线上任意一点,若直线PM ,PN 的斜率都存在,并记为k PM ,k PN ,那么k PM 与k PN 之积是与点P位置无关的定值.证明如下:设M(m,n),P(x,y),则N(-m,-n),因为点M(m,n)在双曲线上,所以n2=b2a2m2-b2.同理,y2=b2a2x2-b2.则k PM·k PN=y-nx-m ·y+nx+m=y2-n2x2-m2=b2a2·x2-m2x2-m2=b2a2(定值).。

北师大版高中数学选修2-2第一章《推理与证明》数学归纳法(1)

北师大版高中数学选修2-2第一章《推理与证明》数学归纳法(1)
7
1 思考:问题 问题2中证明数列的通项公式 思考 问题 中证明数列的通项公式 an = 这个猜想 n
由条件知,n=1时猜想成立 时猜想成立. 由条件知 时猜想成立 如果n=k时猜想成立 即 a = 1 ,那么当 时猜想成立,即 那么当n=k+1时猜 如果 时猜想成立 那么当 时猜 k k 1 想也成立,即 想也成立 即 a k +1 =
k +1
与上述多米诺骨牌游戏有相似性吗?你能类比多米诺骨 与上述多米诺骨牌游戏有相似性吗 你能类比多米诺骨 牌游戏解决这个问题吗? 牌游戏解决这个问题吗
事实上, 事实上
a k +1 =
ak 1 = = 1 + ak 1 + 1 k + 1 k
8
1 k
时猜想也成立. 即n=k+1时猜想也成立 时猜想也成立
1 an = n
不完全归 纳法
问题3:某人看到树上乌鸦是黑的, 问题 :某人看到树上乌鸦是黑的, 深有感触地说全世界的乌鸦都是黑的。 深有感触地说全世界的乌鸦都是黑的。

4
问题情境二
费马(Fermat) 曾经提出一个猜想: 曾经提出一个猜想: 费马
2n+1(n=0,1,2…)的数都是质数 形如F 形如 n=2 的纳法得到的某些与自然数有关 自然数的数学命题我们常采用下面的方法来证明它 们的正确性: 们的正确性:
(1)证明当n取第一个值n0(例如n0=1) 时命题 证明当n取第一个值n 例如n 成立; 成立; 【归纳奠基】 归纳奠基】 (2)假设当n=k(k∈N* ,k≥ n0)时命题成立 假设当n=k(k∈N 证明当n=k+1时命题也成立. 归纳递推】 证明当n=k+1时命题也成立【归纳递推】 n=k+1时命题也成立.

高中数学第一章推理与证明1归纳与类比教材习题点拨北师大选修2-2

高中数学第一章推理与证明1归纳与类比教材习题点拨北师大选修2-2

高中数学第一章推理与证明1归纳与类比教材习题点拨北师大选修2-2高中数学第一章推理与证明 1 归纳与类比教材习题点拨北师大版选修2-2练习(P7)1.解:杨辉三角形的第8行是:1 7 21 35 35 21 7 1 杨辉三角形中的一般规律:(1)表中每个数都是组合数,第n行的第r+1个数是Cn?rn!.r!(n?r)!(2)三角形的两条斜边上都是数字1,而其余的数都等于它肩上的两个数字相加,也就是rr?1r=CnCn?1+Cn?1.rr?1(3)杨辉三角具有对称性(对称美),即Cn=Cn.(4)杨辉三角的第n行是二项式(a+b)展开式,即01r(a+b)=Cna+Cnab+?+Cnab+?+Cnb的二项式系数.nnn-11n-rrnnn2.答案:(1)证明:如图所示,P是等边△ABC内一点,PD⊥AB,PE⊥AC,PF⊥BC,111PD・AB+PE・AC+PF・BC, 2221111因为AB=BC=AC,所以S△ABC=PD・AB+PE・AB+PF ・AB=(PD+PE+PF)AB,2222则S△ABC=S△ABP+S△ACP+S△BCP=所以PD+PE+PF=2AB. S?ABC因为等边△ABC的面积和边长AB为一定值,所以PD+PE+PF为定值. 所以结论成立.(2)猜想:将上述结论从平面类比到空间,可以得出的结论是:正四面体内一点到四面体的各个面的距离之和是一个定值。

证明:设P是正四面体ABCD内一点,PE,PF,PM,PN分别是点P到正四面体ABCD四个面的距离, 则VABCD=1(PE+PF+PM+PN)S(S为正四面体ABCD一个面的面积), 3所以PE+PF+PM+PN=3S.VABCD因为S,VABCD为一定值,所以PE+PF+PM+PN为定值. 所以结论成立.1习题1-1(P7)1.解:可以得出的结论是:37×3n=n×111(n=1,2,?,9).思路分析:通过对各个等式的观察,注意其数量变化规律,就可以得出相应的通式.33222.解:1+2=3=(1+2). 333221+2+3=6=(1+2+3), 3333221+2+3+4=10=(1+2+3+4), ??对上述各式进行归纳,可以得出如下结论:n(n?1)2n2(n?1)21+2+3+?+n=(1+2+3+?+n)=[]=.24333323.解:1层六边形的点数和为S1=5=5×1,2层六边形的点数和为S2=5+5+4=14=5×2+4,3层六边形的点数和为S3=5+5+4+5+4+4=27=5×3+4×3, ??对上述各式进行归纳,可以得出n层六边形的点数和为:Sn=5+5+4+5+4+4?+5+4+4+?+4=5n+4×n(n?1)2=5n+2n(n-1)=2n+3n. 24.解:类比1+2+?+n的求和的过程可得:3322因为n-(n-1)=n+n(n-1)+(n-1),3322(n-1)-(n-2)=(n-1)+(n-1)(n-2)+(n-2), ?? 33222-1=2+2×1+1,3322222从而有n-1=n+2(n-1)+2(n-2)?+2×2+1+n(n-1)+(n-1)(n-2)+ ?+2×1, 22222222=n+2(n-1)+2(n-2)?+2×2+1+n-n+(n-1)-n-1+?+2-2+1-122222=3[n+(n-1)?+2+1]-[n+(n-1)+ ?+2+1]-n-1n(n?1)2-n-1, 2222n(n?1)(2n?1)所以有1+2+?+n=.6=3[n+(n-1)?+2+1]?22225.解:与平面向量的坐标表示相类比,可以得出空间向量的坐标表示: 空间直角坐标系中的坐标:已知空间直角坐标系和向量a,设i,j,k为坐标向量,则存在唯一的有序实数组(a1,a2,a3),使a=a1i+a2j+a3k,有序实数组(a1,a2,a3)叫作向量a在空间直角坐标系O-xyz中的坐标,记作a=(a1,a2,a3).在空间直角坐标系O-xyz中,对空间任一点A,存在唯一的有序实数组(x,y,z),使OA=xi+yj+zk,有序实数组(x,y,z)叫做点A在空间直角坐标系O-xyz中的坐标,记作A(x,y,z),x叫横坐标,y叫纵坐标,z叫竖坐标. STS类比推理的具体应用1915年4月22日,第一次世界大战期间,德军和英法联军在比利时的伊普雷发生激战,德军使用了180吨的液态氯气攻击对方阵地,致使英法联军1 500人中毒,5 000多人丧命.毒气区的大量家禽、野生动物也遭厄运.但令人惊奇的是野猪安然无恙.2这一现象引起了英法联军的极大兴趣,难道野猪天生有抗毒、解毒的腺细胞吗?经军事科研人员的多次试验观察,野猪并没有这种腺细胞,而是发挥了拱土的天赋才能幸免于难.原来,当毒气袭来时,野猪的呼吸道受到毒气的刺激,野猪不堪忍受,就拼命用嘴巴拱土.把土拱起后,将嘴埋在松软的泥土中.含有毒气的空气通过土壤大小不同的疏松颗粒时,毒气被土壤颗粒吸附,而野猪吸到的已是经过净化的空气.科研人员由此受到启发,根据这一原理找到了既能吸附有毒物质又能畅通空气的木炭并很快设计制造出世界上首批防毒面具.向动物学习,古已有之,20世纪60年代甚至由此兴起一门新的学科――仿生学.这是专门研究生物(主要是动物)系统的结构和功能并创造出模拟它们的技术系统.例如,青蛙的眼睛是跟踪运动目标――飞虫的非常完善的器官,人们研究蛙眼的结构与反应原理,并设计出模拟蛙眼的“电子蛙眼”,它能跟踪天上的卫星以及监视空中的飞机.在茫茫雪原上,由于摩擦力减小,胶轮汽车前进极为困难,可是,生活在冰天雪地的南极的企鹅,只要扑倒在地,把肚子贴在雪地表面上,蹬动起双脚,就能以每小时达30千米的速度滑行前进.受此启示,人们设计制造了一种“极地越野车”,它宽阔的底部贴在雪地上,用转动的轮勺扒雪前进,行驶的速度达每小时50千米.以上事例都是类比推理的具体应用.类比推理是这样的推理:它根据两个(或两类)对象在一系列属性上是相同或相似的,且已知其中一个(类)对象还具有其他的属性,由此推出另一个(类)对象也具有同样的其他属性.科研人员受野猪启发设计制造防毒面具的思路就是:土壤有大小不同疏松的颗粒,能吸附毒气且能畅通空气,木炭同样具有大小不同疏松的颗粒,因此,木炭也能吸附毒气且能畅通空气.3感谢您的阅读,祝您生活愉快。

2018版数学北师大版选修2-2学案:第一章 推理与证明

2018版数学北师大版选修2-2学案:第一章 推理与证明

学习目标 1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.知识点数学归纳法对于一个与正整数有关的等式n(n-1)(n-2)…(n-50)=0.思考1验证当n=1,n=2,…,n=50时等式成立吗?答案成立.思考2能否通过以上等式归纳出当n=51时等式也成立?为什么?答案不能,上面的等式只对n取1至50的正整数成立.梳理(1)数学归纳法的定义用来证明某些与正整数n有关的命题,可按下列步骤进行:①验证:当n取第一个值n0(如n0=1或2等)时,命题成立;②在假设当n=k(k≥n0,k∈N+)时命题成立的前提下,推出当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.这种证明方法叫作数学归纳法.(2)数学归纳法的框图表示类型一用数学归纳法证明等式例1(1)用数学归纳法证明(n+1)·(n+2)·…·(n+n)=2n×1×3×…×(2n-1)(n∈N+),“从k 到k+1”左端增乘的代数式为________.答案2(2k+1)(2)用数学归纳法证明当n ∈N +时,1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n .证明 ①当n =1时,左边=1-12=12,右边=12.左边=右边,等式成立.②假设当n =k (k ∈N +,k ≥1)时,等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k ,当n =k +1时,1-12+13-14+…+12k -1-12k +12k +1-12k +2=1k +1+1k +2+…+12k +12k +1-12k +2=1k +2+1k +3+…+12k +1+(1k +1-12k +2) =1k +2+1k +3+…+12k +1+12k +2 =1(k +1)+1+1(k +1)+2+…+12(k +1).∴当n =k +1时,等式成立.由①②可知,对一切n ∈N +等式成立. 反思与感悟 数学归纳法证题的三个关键点(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定是1.(2)递推是关键:数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n =k 到n =k +1时,等式的两边会增加多少项、增加怎样的项.(3)利用假设是核心:在第二步证明当n =k +1成立时,一定要利用归纳假设,即必须把归纳假设“当n =k 时命题成立”作为条件来导出“n =k +1”,在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项,这是数学归纳法的核心,不用归纳假设的证明就不是数学归纳法.跟踪训练1 用数学归纳法证明:1+3+5+…+(2n -3)+(2n -1)+(2n -3)+…+5+3+1=2n 2-2n +1.证明 (1)当n =1时,左边=1,右边=2×12-2×1+1=1,等式成立. (2)假设当n =k (k ∈N +)时,等式成立,即1+3+5+…+(2k -3)+(2k -1)+(2k -3)+…+5+3+1=2k 2-2k +1, 则当n =k +1时,左边=1+3+5+…+(2k -3)+(2k -1)+(2k +1)+(2k -1)+(2k -3)+…+5+3+1 =2k 2-2k +1+(2k -1)+(2k +1)=2k 2+2k +1=2(k +1)2-2(k +1)+1. 即当n =k +1时,等式成立.由(1)(2)知,对任意n ∈N +,等式都成立. 类型二 利用数学归纳法证明不等式例2 求证:1n +1+1n +2+…+13n >56(n ≥2,n ∈N +).证明 (1)当n =2时,左边=13+14+15+16=5760,故左边>右边,不等式成立.(2)假设当n =k (k ≥2,k ∈N +)时,命题成立, 即1k +1+1k +2+…+13k >56,则当n =k +1时,1(k +1)+1+1(k +1)+2+…+13k +13k +1+13k +2+13(k +1)=1k +1+1k +2+…+13k +(13k +1+13k +2+13k +3-1k +1)>56+(13k +1+13k +2+13k +3-1k +1).(*) 方法一 (分析法) 下面证(*)式≥56,即13k +1+13k +2+13k +3-1k +1≥0, 只需证(3k +2)(3k +3)+(3k +1)(3k +3)+(3k +1)(3k +2)-3(3k +1)(3k +2)≥0, 只需证(9k 2+15k +6)+(9k 2+12k +3)+(9k 2+9k +2)-(27k 2+27k +6)≥0, 只需证9k +5≥0,显然成立. 所以当n =k +1时,不等式也成立. 方法二 (放缩法)(*)式>(3×13k +3-1k +1)+56=56,所以当n =k +1时,不等式也成立.由(1)(2)可知,原不等式对一切n ≥2,n ∈N +均成立. 引申探究把本例改为求证:1n +1+1n +2+1n +3+…+1n +n >1124(n ∈N +).证明 (1)当n =1时,左边=12>1124,不等式成立.(2)假设当n =k (k ∈N +,k ≥1)时,不等式成立, 即1k +1+1k +2+1k +3+…+1k +k >1124, 则当n =k +1时,1k +2+1k +3+…+12k +12k +1+12k +2=1k +1+1k +2+1k +3+…+12k +12k +1+12k +2-1k +1>1124+12k +1+12k +2-1k +1, ∵12k +1+12k +2-1k +1=2(k +1)+(2k +1)-2(2k +1)2(k +1)(2k +1)=12(k +1)(2k +1)>0, ∴1k +1+1k +2+1k +3+…+12k +12k +1+12k +2-1k +1>1124+12k +1+12k +2-1k +1>1124,∴当n =k +1时,不等式成立.由(1)(2)知,对于任意正整数n ,不等式均成立. 反思与感悟 用数学归纳法证明不等式的四个关键(1)验证第一个n 的值时,要注意n 0不一定为1,若n >k (k 为正整数),则n 0=k +1. (2)证明不等式的第二步中,从n =k 到n =k +1的推导过程中,一定要用到归纳假设,不应用归纳假设的证明不是数学归纳法,因为缺少归纳假设.(3)用数学归纳法证明与n 有关的不等式一般有两种具体形式:一是直接给出不等式,按要求进行证明;二是给出两个式子,按要求比较它们的大小,对第二类形式往往要先对n 取前几个值的情况分别验证比较,以免出现判断失误,最后猜出从某个n 值开始都成立的结论,常用数学归纳法证明.(4)用数学归纳法证明不等式的关键是由当n =k 时成立得当n =k +1时成立,主要方法有比较法、分析法、综合法、放缩法等.跟踪训练2 用数学归纳法证明对一切n ∈N +,1+122+132+…+1n 2≥3n2n +1.证明 (1)当n =1时,左边=1,右边=3×12×1+1=1,不等式成立.(2)假设当n =k (k ≥1,k ∈N +)时,不等式成立, 即1+122+132+…+1k 2≥3k 2k +1,则当n =k +1时,要证1+122+132+…+1k 2+1(k +1)2≥3(k +1)2(k +1)+1, 只需证3k 2k +1+1(k +1)2≥3(k +1)2(k +1)+1. 因为3(k +1)2k +3-[3k 2k +1+1(k +1)2]=34(k +1)2-1-1(k +1)2=1-(k +1)2(k +1)2[4(k +1)2-1]=-k (k +2)(k +1)2(4k 2+8k +3)≤0, 所以3k 2k +1+1(k +1)2≥3(k +1)2(k +1)+1, 即1+122+132+…+1k 2+1(k +1)2≥3(k +1)2(k +1)+1, 所以当n =k +1时,不等式成立. 由(1)(2)知,不等式对一切n ∈N +都成立. 类型三 归纳—猜想—证明例3 已知数列{a n }的前n 项和为S n ,其中a n =S n n (2n -1),且a 1=13.(1)求a 2,a 3;(2)猜想数列{a n }的通项公式,并证明. 解 (1)a 2=S 22(2×2-1)=a 1+a 26,a 1=13,则a 2=115,同理求得a 3=135.(2)由a 1=11×3,a 2=13×5,a 3=15×7,…,猜想a n =1(2n -1)(2n +1).证明:①当n =1时,a 1=S 11×(2×1-1)⇒a 1=13,等式成立;②假设当n =k (k ≥1,k ∈N +)时猜想成立, 即a k =1(2k -1)(2k +1),那么当n =k +1时,由题设a n =S nn (2n -1),得a k =S kk (2k -1),a k +1=S k +1(k +1)(2k +1),所以S k =k (2k -1)a k=k (2k -1)1(2k -1)(2k +1)=k2k +1.S k +1=(k +1)(2k +1)a k +1,a k +1=S k +1-S k =(k +1)(2k +1)a k +1-k2k +1,因此,k (2k +3)a k +1=k2k +1,所以a k +1=1(2k +1)(2k +3)=1[2(k +1)-1][2(k +1)+1].所以当n =k +1时,命题成立.由①②可知,命题对任何n ∈N +都成立.反思与感悟 (1)“归纳—猜想—证明”的解题步骤(2)归纳法的作用归纳法是一种推理方法,数学归纳法是一种证明方法.归纳法帮助我们提出猜想,而数学归纳法的作用是证明猜想.“观察—猜想—证明”是解答与自然数有关命题的有效途径. 跟踪训练3 设a >0,f (x )=axa +x,令a 1=1,a n +1=f (a n ),n ∈N +. (1)写出a 2,a 3,a 4的值,并猜想{a n }的通项公式; (2)用数学归纳法证明你的结论. 解 (1)因为a 1=1,a n +1=f (a n ), 所以a 2=f (a 1)=f (1)=aa +1,a 3=f (a 2)=f (a a +1)=a ·a a +1a +a a +1=aa +2,a 4=f (a 3)=f (a a +2)=a ·a a +2a +a a +2=aa +3,猜想a n =aa +(n -1)(n ∈N +).(2)①易知当n =1时,结论成立;②假设当n =k (k ≥1,k ∈N +)时,猜想成立, 即a k =aa +(k -1).则当n =k +1时,a k +1=f (a k )=a ×aa +(k -1)a +a a +(k -1)=a a +(k -1)+1=a a +k =aa +[(k +1)-1],即当n =k +1时,猜想也成立.由①②知,对一切n ∈N +,都有a n =aa +(n -1).1.用数学归纳法证明1+122+132+…+1(2n -1)2<2-12n-1(n ≥2,n ∈N +)的第一步需证明( ) A .1<2-12-1B .1+122<2-122-1C .1+122+132<2-122-1D .1+122+132+142<2-122-1答案 C2.用数学归纳法证明“1+a +a 2+…+a 2n +1=1-a 2n +21-a(a ≠1)”.在验证n =1时,左端计算所得项为( ) A .1+a B .1+a +a 2 C .1+a +a 2+a 3 D .1+a +a 2+a 3+a 4答案 C解析 将n =1代入a 2n+1得a 3,故选C.3.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N +)的过程如下: (1)当n =1时,左边=1,右边=21-1=1,等式成立.(2)假设当n =k (k ∈N +)时等式成立,即1+2+22+…+2k -1=2k -1,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1.所以当n =k +1时,等式也成立.由此可知对于任何n ∈N +,等式都成立. 上述证明,错误是________. 答案 未用归纳假设解析 本题在由n =k 成立证明n =k +1成立时, 应用了等比数列的求和公式,而未用上归纳假设,这与数学归纳法的要求不符. 4.请观察以下三个式子:(1)1×3=1×2×96;(2)1×3+2×4=2×3×116;(3)1×3+2×4+3×5=3×4×136,归纳出一般的结论,并用数学归纳法证明该结论.解 结论:1×3+2×4+3×5+…+n (n +2)=n (n +1)(2n +7)6.证明:①当n =1时,左边=3,右边=3,所以命题成立. ②假设当n =k (k ≥1,k ∈N +)时,命题成立, 即1×3+2×4+3×5+…+k (k +2)=k (k +1)(2k +7)6,则当n =k +1时,1×3+2×4+…+k (k +2)+(k +1)(k +3) =k (k +1)(2k +7)6+(k +1)(k +3)=k +16(2k 2+7k +6k +18)=k +16(2k 2+13k +18)=(k +1)(k +2)(2k +9)6=(k +1)[(k +1)+1][2(k +1)+7]6,所以当n =k +1时,命题成立. 由①②知,命题成立.在应用数学归纳法证题时应注意以下几点:(1)验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1.(2)递推是关键:正确分析由n =k 到n =k +1时,式子项数的变化是应用数学归纳法成功证明问题的保障.(3)利用假设是核心:在第二步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明就不是数学归纳法证明.课时作业一、选择题1.某个命题与正整数有关,如果当n =k (k ∈N +)时,该命题成立,那么可推得当n =k +1时,该命题也成立.现在已知当n =5时,该命题成立,那么可推导出( ) A .当n =6时命题不成立 B .当n =6时命题成立C .当n =4时命题不成立D .当n =4时命题成立 答案 B2.一个与正整数n 有关的命题中,当n =2时命题成立,且由n =k 时命题成立,可以推得n =k +2时命题也成立,则( ) A .该命题对于n >2的自然数n 都成立 B .该命题对于所有的正偶数都成立 C .该命题何时成立与k 取值无关 D .以上答案都不对 答案 B解析 由当n =k 时命题成立,可以推出当n =k +2时命题也成立,且n =2.故对所有的正偶数都成立.3.设f (x )是定义在正整数集上的函数,且f (x )满足:“当f (k )≥k 2成立时,总可推出f (k +1)≥(k +1)2成立”,那么,下列命题总成立的是( ) A .若f (3)≥9成立,则当k ≥1时,均有f (k )≥k 2成立 B .若f (5)≥25成立,则当k ≤5时,均有f (k )≥k 2成立 C .若f (7)<49成立,则当k ≥8时,均有f (k )<k 2成立 D .若f (4)=25成立,则当k ≥4时,均有f (k )≥k 2成立 答案 D解析 对于D ,∵f (4)=25≥42, ∴当k ≥4时,均有f (k )≥k 2.4.设S k =1k +1+1k +2+1k +3+…+12k ,则S k +1为( )A .S k +12k +2B .S k +12k +1+12k +2C .S k +12k +1-12k +2D .S k +12k +2-12k +1答案 C解析 S k +1=1k +2+1k +3+…+12k +12k +1+12k +2=S k +12k +1+12k +2-1k +1=S k +12k +1-12k +2. 5.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( )A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13+14C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14答案 D解析 观察分母的首项为n ,最后一项为n 2,公差为1, ∴项数为n 2-n +1.6.在数列{a n }中,a 1=2,a n +1=a n3a n +1(n ∈N +),依次计算a 2,a 3,a 4,归纳推测出a n 的通项表达式为( ) A.24n -3 B.26n -5 C.24n +3 D.22n -1答案 B解析 由a 1=2,a 2=27,a 3=213,a 4=219,…,可推测a n =26n -5,故选B.7.某同学回答“用数学归纳法证明n 2+n <n +1(n ∈N +)”的过程如下:证明:(1)当n =1时,显然命题是正确的;(2)假设当n =k (k ≥1,k ∈N +)时,有k (k +1)<k +1,那么当n =k +1时,(k +1)2+(k +1)=k 2+3k +2<k 2+4k +4=(k +1)+1,所以当n =k +1时,命题成立.由(1)(2)可知对于任意n ∈N +命题成立.以上证法是错误的,错误在于( )A .从k 到k +1的推理过程没有使用归纳假设B .归纳假设的写法不正确C .从k 到k +1的推理不严密D .当n =1时,验证过程不具体 答案 A 二、填空题8.用数学归纳法证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n ,第一步应验证的等式是________. 答案 1-12=129.用数学归纳法证明关于n 的恒等式,当n =k 时,表达式为1×4+2×7+…+k (3k +1)=k (k +1)2,则当n =k +1时,表达式为____________________________________________.答案 1×4+2×7+…+k (3k +1)+(k +1)(3k +4)=(k +1)(k +2)210.证明:假设当n =k (k ∈N +)时等式成立,即2+4+…+2k =k 2+k ,则当n =k +1时,2+4+…+2k +2(k +1)=k 2+k +2(k +1)=(k +1)2+(k +1),即当n =k +1时,等式也成立.因此对于任何n ∈N +等式都成立.以上用数学归纳法证明“2+4+…+2n =n 2+n (n ∈N +)”的过程中的错误为____________________.答案 缺少步骤归纳奠基三、解答题11.用数学归纳法证明(1-14)(1-19)(1-116)·…·(1-1n 2)=n +12n(n ≥2,n ∈N +). 证明 (1)当n =2时,左边=1-14=34,右边=2+12×2=34,所以左边=右边,所以当n =2时等式成立.(2)假设当n =k (k ≥2,k ∈N +)时等式成立,即(1-14)(1-19)(1-116)·…·(1-1k 2)=k +12k, 那么当n =k +1时,(1-14)(1-19)(1-116)·…·(1-1k 2)[1-1(k +1)2]=k +12k [1-1(k +1)2]=k +12k ·k (k +2)(k +1)2=k +22(k +1)=(k +1)+12(k +1), 即当n =k +1时,等式成立.综合(1)(2)知,对任意n ≥2,n ∈N +,等式恒成立.12.用数学归纳法证明:122+132+142+…+1n 2<1-1n(n ≥2,n ∈N +). 证明 (1)当n =2时,左式=122=14,右式=1-12=12. 因为14<12,所以不等式成立. (2)假设当n =k (k ≥2,k ∈N +)时,不等式成立,即122+132+142+…+1k 2<1-1k, 则当n =k +1时,122+132+142+…+1k 2+1(k +1)2<1-1k +1(k +1)2=1-(k +1)2-k k (k +1)2=1-k 2+k +1k (k +1)2<1-k (k +1)k (k +1)2=1-1k +1, 所以当n =k +1时,不等式也成立.综上所述,对任意n ≥2的正整数,不等式都成立.13.设数列{a n }满足a n +1=a 2n -na n +1,n =1,2,3,….(1)当a 1=2时,求a 2,a 3,a 4,并由此猜想出a n 的一个通项公式;(2)当a 1≥3时,证明对所有的n ≥1,n ∈N +,有a n ≥n +2.(1)解 由a 1=2,得a 2=a 21-a 1+1=3,由a 2=3,得a 3=a 22-2a 2+1=4,由a 3=4,得a 4=a 23-3a 3+1=5,由此猜想a n 的一个通项公式:a n =n +1(n ≥1,n ∈N +).(2)证明 ①当n =1时,a 1≥3=1+2,不等式成立.②假设当n =k (k ≥1,n ∈N +)时,不等式成立,即a k ≥k +2,那么当n =k +1时,a k +1=a k (a k -k )+1≥(k +2)(k +2-k )+1≥k +3.即当n =k +1时,a k +1≥(k +1)+2.由①②可知,对任意的n ≥1,n ∈N +,都有a n ≥n +2.四、探究与拓展14.用数学归纳法证明121×3+223×5+…+n 2(2n -1)(2n +1)=n (n +1)2(2n +1),推证当n =k +1时等式也成立,只需证明等式__________________________成立即可.答案 k (k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)解析 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3)=k (k +1)2(2k +1)+(k +1)2(2k +1)(2k +3), 故只需证明k (k +1)2(2k +1)+(k +1)2(2k +1)(2k +3)=(k +1)(k +2)2(2k +3)即可. 15.数列{a n }满足a n >0(n ∈N +),S n 为数列{a n }的前n 项和,并且满足S n =12(a n +1a n),求S 1,S 2,S 3的值,猜想S n 的表达式,并用数学归纳法证明.解 由a n >0,得S n >0,由a 1=S 1=12(a 1+1a 1),整理得a 21=1, 取正根得a 1=1,所以S 1=1.由S 2=12(a 2+1a 2)及a 2=S 2-S 1=S 2-1,得S 2=12(S 2-1+1S 2-1), 整理得S 22=2,取正根得S 2= 2. 同理可求得S 3= 3.由此猜想S n =n (n ∈N +). 用数学归纳法证明如下:(1)当n =1时,上面已求出S 1=1,结论成立.(2)假设当n =k (k ∈N +)时,结论成立,即S k =k . 那么,当n =k +1时,S k +1=12(a k +1+1a k +1)=12(S k +1-S k +1S k +1-S k ) =12(S k +1-k +1S k +1-k). 整理得S 2k +1=k +1,取正根得S k +1=k +1. 即当n =k +1时,结论也成立. 由(1)(2)可知,对任意n ∈N +,S n =n 都成立.。

北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(答案解析)

北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(答案解析)

一、选择题1.我国南宋数学家杨家辉所著的《详解九章算法》一书中记录了一个由正整数构成的三角形数表,我们通常称之为杨辉三角.以下数表的构造思路就来源于杨辉三角.( )从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数a ,则a 的值为( )A .100820182⨯B .100920182⨯C .100820202⨯D .100920202⨯2.体育课上,小红、小方、小强、小军四位同学都在进行足球、篮球、羽毛球、乒乓球等四项体自运动中的某一种,四人的运动项目各不相同,下面是关于他们各自的运动项目的一些判断:①小红没有踢足球,也没有打篮球; ②小方没有打篮球,也没有打羽毛球;③如果小红没有打羽毛球,那么小军也没有踢足球; ④小强没有踢足球,也没有打篮球.已知这些判断都是正确的,依据以上判断,请问小方同学的运动情况是( ) A .踢足球 B .打篮球 C .打羽毛球 D .打乒乓球 3.设a R ∈,则三个数2,2,23a a a a +++( ) A .都大于13B .都小于13C .至少有一个不大于13D .至少有一个不小于134.周末,某高校一学生宿舍甲乙丙丁四位同学正在做四件事情,看书、写信、听音乐、玩游戏,下面是关于他们各自所做事情的一些判断: ①甲不在看书,也不在写信; ②乙不在写信,也不在听音乐;③如果甲不在听音乐,那么丁也不在看书; ④丙不在看书,也不写信.已知这些判断都是正确的,依据以上判断,请问乙同学正在做的事情是( ) A .玩游戏 B .写信 C .听音乐 D .看书5.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n填入n n⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n阶幻方.记n阶幻方的一条对角线上数的和为n N(如:在3阶幻方中,315N=),则10N=()A.1020 B.1010 C.510 D.5056.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅,…,癸酉,甲戌,乙亥,丙子,…,癸未,甲申、乙酉、丙戌,…,癸巳,…,共得到60个组成,周而复始,循环记录,2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的()A.乙亥年B.戊戌年C.庚子年D.辛丑年7.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为()A.0720sin1B.0720sin0.5C.0720sin0.25D.0720sin0.125 8.根据给出的数塔猜测12345697⨯+=()19211⨯+=1293111⨯+=123941111⨯+=12349511111⨯+=1234596111111⨯+=…A.1111110B.1111111C.1111112D.11111139.根据给出的数塔猜测12345697⨯+()19211⨯+= 1293111⨯+=123941111⨯+= 12349511111⨯+=1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111310.请观察这些数的排列规律,数字1位置在第一行第一列表示为(1,1),数字14位置在第四行第三列表示为(4,3),根据特点推算出数字2019的位置A .(45,44)B .(45,43)C .(45,42)D .该数不会出现11.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队 B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变12.已知,,(0,2)a b c ∈,则(2),(2),(2)a b b c c a ---中( ) A .至少有一个不小于1 B .至少有一个不大于1 C .都不大于1D .都不小于1二、填空题13.对于自然数方幂和()12kkk k S n n =+++(n *∈N ,k *∈N ),1(1)()2n n S n +=,2222()12S n n =+++,求和方法如下:23﹣13=3+3+1, 33﹣23=3×22+3×2+1, ……(n +1)3﹣n 3=3n 2+3n +1,将上面各式左右两边分别,就会有(n +1)3﹣13=23()S n +13()S n +n ,解得2()S n =16n (n +1)(2n +1),类比以上过程可以求得54324()A B C D E F S n n n n n n =+++++,A ,B ,C ,D ,E ,F ∈R 且与n 无关,则A +F 的值为_______.14.点()00,x y 到直线0Ax By c ++=的距离公式为0022Ax By c d A B++=+,通过类比的方法,可求得:在空间中,点()1,1,2到平面230x y z +++=的距离为___. 15.利用数学归纳法证明不等式“()*11112,23212n n n n N +++⋯+>≥∈-”的过程中,由“n k =”变到“1n k =+”时,左边增加了_____项.16.观察下面的数阵,则第40行最左边的数是__________.17.甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时, 甲说:丙没有考满分; 乙说:是我考的; 丙说:甲说真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是_____. 18.研究问题:“已知关于x 的不等式20ax bx c -+>的解集为(1,2),解关于x 的不等式20cx bx a -+>”,有如下解法:由22110()()0ax bx c a b c x x-+>⇒-+>,令1y x=,则1(,1)2y ∈,所以不等式20cx bx a -+>的解集为1(,1)2,类比上述解法,已知关于x 的不等式0k x b x a x c ++<++的解集为(2,1)(2,3)--⋃,则关于x 的不等式1011kx bx ax cx -+<--的解集为__________.19.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.20.用反证法证明“,a b N ∈,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,应假设_______.三、解答题21.设数列{}n a 的前n 项和为n S ,且对任意的正整数n 都满足()21n n n S a S -=.(1)求1S ,2S ,3S 的值,猜想n S 的表达式;(2)用数学归纳法证明(1)中猜想的n S 的表达式的正确性.22.已知数列{}n a 的前n 项和为n S ,满足1n a ≥,且()241n n S a =+,n N +∈.(1)求1a ,2a ,3a 的值;(2)猜想数列{}n a 的通项公式,并用数学归纳法予以证明.23.已知各项均不为零的数列{}n a 的前n 项和为n S ,且()141n n n S a a n N *+=⋅+∈,其中11a =.(1)求证:135,,a a a 成等差数列; (2)求证:数列{}n a 是等差数列;(3)设数列{}n b 满足()121nb nn N a *=+∈,且n T 为其前n 项和,求证:对任意正整数n ,不等式212log n n T a +>恒成立.24.(1)求证:当2a >时,222a a a ++-<; (2)证明:不可能是同一个等差数列中的三项.25.设a >0,f (x )=axa x+,令a 1=1,a n +1=f (a n ),n ∈N *. (1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论.26.已知集合{}0,1A =,{}()11,lg ,20=->aB a a a ,请用反证法证明:{}1AB ≠.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据每一行的第一个数的变化规律即可得到结果. 【详解】解:第一行第一个数为:0112=⨯; 第二行第一个数为:1422=⨯; 第三行第一个数为:21232=⨯; 第四行第一个数为:33242=⨯;,第n 行第一个数为:1n 2n n a -=⨯;一共有1010行,∴第1010行仅有一个数:10091008a 1010220202=⨯=⨯; 故选C . 【点睛】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.2.A解析:A【解析】分析:由题意结合所给的逻辑关系进行推理论证即可. 详解:由题意可知:小红、小方、小强都没有打篮球,故小军打篮球; 则小军没有踢足球,且已知小红、小强都没有踢足球,故小方踢足球. 本题选择A 选项.点睛:本题主要考查学生的推理能力,意在考查学生的转化能力和计算求解能力.3.D解析:D 【解析】分析:由题意结合反证法即可确定题中的结论. 详解:不妨假设2,2,23a a a a +++都小于13, 由不等式的性质可知:()()()22231a a a a +++++<,事实上:()()()2223aa a a +++++245a a =++ ()2211a =++≥,与假设矛盾,故假设不成立,即2,2,23a a a a +++至少有一个不小于13. 本题选择D 选项.点睛:本题主要考查不等式的性质,反证法及其应用等知识,意在考查学生的转化能力和计算求解能力.4.D解析:D【解析】由①知甲在听音乐或玩游戏,由②知乙在看书或玩游戏,由④知丙在听音乐或玩游戏,由③知,丁在看书,则甲在听音乐,丙在玩游戏,乙在看书,故选D.5.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=阶幻方共有n 行,∴每行的和为()()2221122n nn nn++=,即()()2210110101,50522nn nN N+⨯+=∴==,故选D.6.C解析:C【解析】2015年是“干支纪年法”中的乙未年,2016年是“干支纪年法”中的丙申年,那么2017年是“干支纪年法”中的丁酉年,2018是戊戌年,2019年是己亥年,以此类推记得到2020年是庚子年.故答案为C.7.C解析:C【解析】设圆的半径为1,正多边形的圆心角为3600.5 720︒︒=,边长为2sin0.25︒==,所以7202sin0.252π︒⨯=,即0π720sin0.25=故选:C8.B解析:B【解析】由1×9+2=11;12×9+3=111;123×9+4=1111;1234×9+5=11111;…归纳可得:等式右边各数位上的数字均为1,位数跟等式左边的第二个加数相同,∴123456×9+7=1111111,本题选择B选项.9.A解析:A【解析】【分析】根据数塔,归纳可知,等式右边各数位上的数字均为1,位数跟等式左边的加数相同,从而可得结果.【详解】由19211⨯+=;1293111⨯+=; 123941111⨯+=; 12349511111⨯+=,...,归纳可得,等式右边各数位上的数字均为1,位数跟等式左边的加数相同,123456*********∴⨯+=,故选A.【点睛】本题主要考查归纳推理的应用,属于中档题. 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想) .10.C解析:C 【分析】由所给数的排列规律得到第n 行的最后一个数为2n ,然后根据2452025=可推测2019所在的位置. 【详解】由所给数表可得,每一行最后一个数为2221,2,3,,由于22441936,452025==,2244201945<<, 所以故2019是第45行的倒数第4个数, 所以数字2019的位置为(45,42). 故选C . 【点睛】(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识. (2)解决归纳推理问题的基本步骤①发现共性,通过观察特例发现某些相似性(特例的共性或一般规律); ②归纳推理,把这种相似性推广为一个明确表述的一般命题(猜想).11.B解析:B 【解析】 【分析】表示出拎小桶者先接水时等候的时间,然后加上拎大桶者一共等候者用的时间,用(2m+2T+t )减去二者的和就是节省的时间;由此可推广到一般结论 【详解】事实上,只要不按从小到大的顺序排队,就至少有紧挨着的两个人拎着大桶者排在拎小桶者之前,仍设大桶接满水需要T 分钟,小桶接满水需要t 分钟,并设拎大桶者开始接水时已等候了m 分钟,这样拎大桶者接满水一共等候了(m+T )分钟,拎小桶者一共等候了(m+T+t )分钟,两人一共等候了(2m+2T+t )分钟,在其他人位置不变的前提下,让这两个人交还位置,即局部调整这两个人的位置,同样介意计算两个人接满水共等候了22m t T ++ 2m+2t+T分钟,共节省了T t - T-t分钟,而其他人等候的时间未变,这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者之前都可以这样调整,从而使得总等候时间减少.这样经过一系列调整后,整个队伍都是从小打到排列,就打到最优状态,总的排队时间就最短. 故选B. 【点睛】一般的,对某些设计多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想就叫做局部调整法.12.B解析:B 【分析】用反证法证明,假设同时大于1,推出矛盾得出结果 【详解】假设()21a b ->,()21b c ->,()21c a ->, 三式相乘得()()()2221a b b c c a -⋅-⋅->,由()02a b c ,,,∈,所以()220212a a a a -+⎛⎫<-≤= ⎪⎝⎭,同理()21b b -≤,()21c c -≤,则()()()2221a a b b c c -⋅-⋅-≤与()()()2221a b b c c a -⋅-⋅->矛盾,即假设不成立,所以()()()222a b b c c a ---,,不能同时大于1,所以至少有一个不大于1, 故选B 【点睛】本题考查的是用反证法证明数学命题,把要证的结论进行否定,在此基础上推出矛盾,是解题的关键,同时还运用了基本不等式,本题较为综合二、填空题13.【解析】分析:先根据推导过程确定AF 取法即得A +F 的值详解:因为所以所以所以点睛:本题考查运用类比方法求解问题考查归纳观察能力解析:15. 【解析】分析:先根据推导过程确定A,F 取法,即得A +F 的值. 详解:因为4432(1)4641n n n n n +-=+++,55432(1)5101051n n n n n n +-=++++,所以4321(1)14()6()4()n S n S n S n n +-=+++,54321(1)15()10()10()5()n S n S n S n S n n +-=++++所以43231231()4S n n a n a n a n =+++, 543241()5S n n Bn Cn Dn En =++++,所以11,055A F A F ==+=,. 点睛:本题考查运用类比方法求解问题,考查归纳观察能力.14.【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可详解:类比点到直线的距离可知在空间中点到平面的距离故答案是点睛:该题考查的是类比推理利用平面内点到直线的距离公式类比着得解析:2. 【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可. 详解:类比点00(,)P x y 到直线0Ax By C ++=的距离d =,可知在空间中点(0,1,1)-到平面230x y z +++=的距离d ==. 点睛:该题考查的是类比推理,利用平面内点到直线的距离公式类比着得出空间中点到平面的距离公式,代入求得结果,属于简单题目.15.【分析】分析题意根据数学归纳法的证明方法得到时不等式左边的表示式是解答该题的突破口当时左边由此将其对时的式子进行对比得到结果【详解】当时左边当时左边观察可知增加的项数是故答案是【点睛】该题考查的是有解析:2k . 【分析】分析题意,根据数学归纳法的证明方法得到1n k =+时,不等式左边的表示式是解答该题的突破口,当1n k =+时,左边11111112321221k k k +=+++⋯+++⋯+--,由此将其对n k =时的式子进行对比,得到结果.【详解】当n k =时,左边11112321k =++++-…, 当1n k =+时,左边11111112321221k k k +=+++⋯+++⋯+--, 观察可知,增加的项数是1121(21)222k k k k k ++---=-=,故答案是2k .【点睛】该题考查的是有关数学归纳法的问题,在解题的过程中,需要明确式子的形式,正确理解对应式子中的量,认真分析,明确哪些项是添的,得到结果.16.1522【解析】由题意得每一行数字格式分别为它们成等差数列则前行总共有个数所以第40行最左的数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数 解析:1522【解析】由题意得,每一行数字格式分别为1231,3,5,21n a a a a n ====-, 它们成等差数列,则前39行总共有13939()39(12391)152122a a ++⨯-==个数, 所以第40行最左的数字为1522.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n 项和公式,共涉及五个量1,,,,n n a a d n S 知其中三个就能求另外两个,体现了用方程的思想解决问题.. 17.甲【详解】分析题意只有一人说假话可知假设只有甲说的是假话即丙考满分则乙也是假话故假设不成立;假设只有乙说的是假话则甲和丙说的都是真话即乙没有得满分丙没有得满分故甲考满分假设只有丙说的是假话即甲和乙说 解析:甲【详解】分析题意只有一人说假话可知,假设只有甲说的是假话,即丙考满分,则乙也是假话,故假设不成立;假设只有乙说的是假话,则甲和丙说的都是真话,即乙没有得满分,丙没有得满分,故甲考满分.假设只有丙说的是假话,即甲和乙说的是真话,即丙说了真话,矛盾,故假设不成立. 综上所述,得满分的是甲.18.【解析】 解析:111,,1232⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭【解析】关于x 的不等式1011kx bx ax cx -+<--可化为1011b k x a c x x-+<--, 则由题设中提供的解法可得:1111(2,1)(2,3)(,)(,1)232x x -∈--⋃⇒∈--⋃,则关于x 的不等式1011kx bx ax cx -+<--的解集为111(,)(,1)232--,应填答案111(,)(,1)232--. 19.1和3【详解】根据丙的说法知丙的卡片上写着和或和;(1)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;所以甲的说法知甲的卡片上写着和;(2)若丙的卡片上写着和根据乙的说法知乙的卡片上写着和;又加 解析:1和3.【详解】根据丙的说法知,丙的卡片上写着1和2,或1和3;(1)若丙的卡片上写着1和2,根据乙的说法知,乙的卡片上写着2和3;所以甲的说法知,甲的卡片上写着1和3;(2)若丙的卡片上写着1和3,根据乙的说法知,乙的卡片上写着2和3;又加说:“我与乙的卡片上相同的数字不是2”;所以甲的卡片上写的数字不是1和2,这与已知矛盾;所以甲的卡片上的数字是1和3.20.中没有能被整除的数【分析】反证法证明中假设时只需要对结论进行否定即可【详解】至少有个的否定是最多有个故应假设中没有一个能被5整除【点睛】本题考查了反证法的定义注意对于像含有至少至多都或且等特殊词语命 解析:,a b 中没有能被5整除的数【分析】反证法证明中,假设时只需要对结论进行否定即可.【详解】“至少有n 个”的否定是“最多有1n -个”,故应假设a ,b 中没有一个能被5整除.【点睛】本题考查了反证法的定义,注意对于像含有“至少”“至多”“都”“或”“且”等特殊词语命题的否定,属于简单题.三、解答题21.(1)112S =,223S =,334S =,1n n S n =+,*n N ∈;(2)证明见解析. 【分析】(1)1n =时,可求出1S ,2n ≥时,利用1n n n a S S -=-可得到关于n S 的递推关系,即可求出2S ,3S 的值,进而猜想出n S 的表达式;(2)根据数学归纳法的步骤证明即可.【详解】(1)当1n =时,()22111S S -=,∴112S =,当2n ≥时,()()211n n n n S S S S --=-,∴112n n S S -=-, ∴223S =,334S =, 猜想1n n S n =+,*n N ∈; (2)下面用数学归纳法证明: ①当1n =时,112S =,112n n =+,猜想正确; ②假设n k =时,猜想正确,即1k k S k =+, 那么当1n k =+时, 可得()111121121k k k S k S k k ++===-++-+,即1n k =+时,猜想也成立. 综上可知,对任意的正整数n ,1n n S n =+都成立. 【点睛】本题考查数学猜想和数学归纳法的应用,属于中档题.22.(1)11a =,23a =,35a =(2)猜想21n a n =-,证明见解析.【分析】 (1)利用24(1)n n S a =+代入计算,可得结论;(2)猜想21n a n =-,然后利用归纳法进行证明,检验1n =时等式成立,假设n k =时命题成立,证明当1n k =+时命题也成立.【详解】(1)1n a ≥,且24(1)n n S a =+,∴当1n =时,21(1)1a -=,11a ∴=, 当2n =时,()22241(1)a a +=+,23a ∴=,或21(a =-舍),当3n =时,()23344(1)a a +=+,35a ∴=,或33(a =-舍), 11a ∴=,23a =,35a =;(2)由(1)猜想21n a n =-,下面用数学归纳法证明:①当1n =时,11a =,显然成立,②假设n k =时,结论成立,即21k a k =-,则当1n k =+时,由24(1)k k S a =+,有()2211144(1)(1)k k k k k a S S a a +++=-=+-+, ()()22111124121210k k k k a a k a k a k ++++∴--+=--+-=,121k a k +∴=+,或121(k a k +=-+舍),1n k ∴=+时结论成立,由①②知当*n N ∈,21n a n =-均成立.【点睛】本题考查了归纳法的证明,归纳法一般三个步骤:()1验证1n =成立;()2假设n k =成立;()3利用已知条件证明1n k =+也成立,从而求证,这是数列的通项一种常用求解的方法,属中档题.23.(1)证明见解析;(2)证明见解析;(3)证明见解析.【详解】(1)解:141n n n S a a +=+①;1141n n n S a a --=+②;①-②,化简可得114n n a a +--=,53314a a a a -=-=,得证;(2)解:由11a =,得23a =,结合第(1)问结论,可得21n a n =-,即{}n a 是等差数列;(3)解:根据题意,22log 21n n b n =-,22462log 13521n n T n =⨯⨯⨯⨯-…;要证2122log log (21)n n T a n +>=+,即证246213521n n ⨯⨯⨯⨯>-…当1n =时,2>假设当n k =时,246213521k k ⨯⨯⨯⨯>-…当1n k =+时,24622222135212121k k k k k k ++⨯⨯⨯⨯⨯>-++…=>2(22)(21)(23)k k k +>++,展开后显然成立, 所以对任意正整数n ,不等式212log n n T a +>恒成立.24.(1)证明过程详见试题解析; (2)证明过程详见试题解析.【分析】(1)利用综合法证明即可;(2)利用反证法证明,假设2是同一个等差数列中的三项,分别设为a m ,a n ,a p ,推出m n a a d m n -==-253m p a a d m p m p m p ---===---为有理数,矛盾,即可证明不可能是等差数列中的三项.【详解】解:(1)∵(22a a ++-)2=2a +22a +•2a -,2a +>0,2a ->0且a +2≠a ﹣2,∴()()2222224a a a a a a a +++-+++-=<, ∴22a a ++-<2a(2)假设235,,是同一个等差数列中的三项,分别设为a m ,a n ,a p ,则23m n a a d m n m n--==--为无理数,又253m p a a d m p m p m p ---===---为有理数,矛盾. 所以,假设不成立,即235,,不可能是同一个等差数列中的三项.【点睛】反证法是属于“间接证明法”一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得.应用反证法证明的具体步骤是:①反设:作出与求证结论相反的假设; ②归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;③结论:说明反设成立,从而肯定原命题成立.25.(1)见解析(2)见解析【解析】试题分析:(1)根据递推关系依次求出a 2,a 3,a 4的值,并根据分母变化规律猜想数列a n }的通项公式;(2)先证明起始项成立,再根据递推关系证明n=k+1成立,最后总结 试题(1)因为a 1=1,所以a 2=f (a 1)=f (1)=,a 3=f (a 2)=,a 4=f (a 3)=,猜想a n = (n ∈N *). (2)证明:①易知,n =1时,猜想正确;②假设n =k (k ∈N *)时, a k =成立,则a k +1=f (a k )====. 这说明,n =k +1时成立.由①②知,对于任何n ∈N *,都有a n =.26.证明见解析【分析】假设{}1A B ⋂=,则111a -=或lg 1a =或21a =,分三种情况讨论,都能推出矛盾,从而否定假设,得到结论正确.【详解】假设{}1A B ⋂=,则111a -=或lg 1a =或21a =,若111a -=,则10a =,此时lg lg101a ==,集合B 不满足元素的互异性;若lg 1a =,则10a =,此时111a -=,集合B 不满足元素的互异性; 若21a =,则0a =,与已知0a >矛盾; 所以假设{}1A B ⋂=不成立,故{}1AB ≠成立. 【点睛】关键点点睛:掌握反证法证题的方法以及利用集合中元素的互异性推出矛盾是解题关键.。

新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)(1)

新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试题(含答案解析)(1)

一、选择题1.甲、乙、丙、丁四位同学一起去向老师询问数学考试的成绩老师说:你们四人中有两位优秀、两位良好,我现在给乙看甲、丙的成绩,给甲看丙的成绩,给丁看乙的成绩,看后乙对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .甲可以知道四人的成绩 B .丁可以知道四人的成绩 C .甲、丁可以知道对方的成绩D .甲、丁可以知道自己的成绩2.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,,则此数列的前55项和为( )A .4072B .2026C .4096D .20483.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .B .C .D .4.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= A .()f xB .()f x -C .()g xD .()g x -5.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲B .乙C .丙D .丁6.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第n 个图案中正六边形的个数是()f n .由(1)1f =,(2)7f =,(3)19f ,…,可推出(10)f =( ) A .271B .272C .273D .2747.已知a ,b ,c 均为正实数,则a b ,b c ,ca的值( ) A .都大于1B .都小于1C .至多有一个不小于1D .至少有一个不小于18.演绎推理“因为0'()0f x =时,0x 是()f x 的极值点,而对于函数3()f x x =,'(0)0f =,所以0是函数3()f x x =的极值点.”所得结论错误的原因是( )A .大前提错误B .小前提错误C .推理形式错误D .全不正确9.我们把顶角为的等腰三角形称为黄金三角形......其作法如下:①作一个正方形;②以的中点为圆心,以长为半径作圆,交延长线于;③以为圆心,以长为半径作D ;④以为圆心,以长为半径作A 交D 于,则为黄金三角形.根据上述作法,可以求出( )A .B .C .D .10.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .201620172⨯B .201501822⨯C .201520172⨯D .201601822⨯11.由圆心与弦(非直径)中点的连线垂直于弦,想到球心与截面圆(不经过球心的小截面圆)圆心的连线垂直于截面,用的是( )A .类比推理B .三段论推理C .归纳推理D .传递性推理12.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队 B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变二、填空题13.已知从2开始的连续偶数蛇形排列成宝塔形的数表,第一行为2,第二行为4,6,第三行为12,10,8,第四行为14,16,18,20,…,如图所示,在该数表中位于第i 行、第j 行的数记为ij a ,如3,210=a ,5,424=a .若2018ij a =,则i j +=__________.14.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=15.对于自然数方幂和()12k kk k S n n =+++(n *∈N ,k *∈N ),1(1)()2n n S n +=,2222()12S n n =+++,求和方法如下:23﹣13=3+3+1, 33﹣23=3×22+3×2+1, ……(n +1)3﹣n 3=3n 2+3n +1,将上面各式左右两边分别,就会有(n +1)3﹣13=23()S n +13()S n +n ,解得2()S n =16n (n +1)(2n +1),类比以上过程可以求得54324()A B C D E F S n n n n n n =+++++,A ,B ,C ,D ,E ,F ∈R 且与n 无关,则A +F 的值为_______.16.我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨辉三角形”.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数表,由上往下数,记第n 行各数字的和为n S ,如11S =,22S =,32S =,44S =,……,则126S =______17.在平面几何中有如下结论:若正三角形ABC 的内切圆周长为1C ,外接圆周长为2C ,则1212C C =.推广到空间几何可以得到类似结论:若正四面体ABCD 的内切球表面积为1S ,外接球表面积为2S ,则12S S =__________. 18.如图所示为计算机科学中的蛇形模型,则第20行从左到右第4个数字为__________.19.给出下列命题:①定义在R 上的函数()f x 满足()()21f f >,则()f x 一定不是R 上的减函数;②用反证法证明命题“若实数,a b ,满足220a b +=,则,a b 都为0”时,“假设命题的结论不成立”的叙述是“假设,a b 都不为0”; ③把函数sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位长度,所得到的图象的函数解析式为sin2y x =;④“0a =”是“函数()()32f x x axx R =+∈为奇函数”的充分不必要条件.其中所有正确命题的序号为__________.20.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖__________________块.三、解答题21.在数列{}n a 中,11a =,()*121n n n a a n N n++=+∈. (1)求2a 、3a 、4a 的值;(2)猜想{}n a 的通项公式,并用数学归纳法证明.22.对任意正整数n ,设n a 表示n 的所有正因数中最大奇数与最小奇数的等差中项,n S 表示数列{}n a 的前n 项和.(1)求1a ,2a ,3a ,4a ,5a 的值; (2)是否存在常数s ,t ,使得()()212246mmm s t S-+⋅+=对一切m 1≥且*m N ∈恒成立?若存在,求出s ,t 的值,并用数学归纳法证明;若不存在,请说明理由. 23.已知1111,,,,,112123123n+++++++,其前n 项和为n S .(1)计算1234,,,S S S S ;(2)猜想n S 的表达式,并用数学归纳法进行证明. 24.给出下列等式: 1=1, 1-4=-(1+2), 1-4+9=1+2+3, 1-4+9-16=-(1+2+3+4), ……(1)写出第5个和第6个等式,并猜想第n(n ∈N *)个等式; (2)用数学归纳法证明你猜想的等式. 25.用数学归纳法证明11111112324n n n n n +++⋅⋅⋅+>++++*()n N ∈. 26.设等差数列的公差,且,记(1)用分别表示,并猜想;(2)用数学归纳法证明你的猜想.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D【分析】先由乙不知道自己成绩出发得知甲、丙和乙、丁都是一优秀、一良好,那么甲、丁也就结合自己看的结果知道自己成绩了.【详解】解:乙看后不知道自己成绩,说明甲、丙必然是一优秀、一良好,则乙、丁也必然是一优秀、一良好;甲看了丙的成绩,则甲可以知道自己和丙的成绩;丁看了乙的成绩,所以丁可以知道自己和乙的成绩,故选D.【点睛】本题考查了推理与证明,关键是找到推理的切入点.2.A解析:A【分析】利用n次二项式系数对应杨辉三角形的第n+1行,然后令x=1得到对应项的系数和,结合等比数列和等差数列的公式进行转化求解即可.【详解】解:由题意可知:每一行数字和为首项为1,公比为2的等比数列,则杨辉三角形的前n项和为S n1212n-==-2n﹣1,若去除所有的为1的项,则剩下的每一行的个数为1,2,3,4,……,可以看成构成一个首项为1,公差为1的等差数列,则T n()12n n+ =,可得当n=10,所有项的个数和为55,则杨辉三角形的前12项的和为S12=212﹣1,则此数列前55项的和为S12﹣23=4072,故选A.【点睛】本题主要考查归纳推理的应用,结合杨辉三角形的系数与二项式系数的关系以及等比数列等差数列的求和公式是解决本题的关键,综合性较强,难度较大.3.C解析:C【分析】结合题意可知,代入数据,即可.【详解】A选项,13不满足某个数的平方,故错误;B选项,,故错误;C选项,故正确;D选项,,故错误.故选C.【点睛】本道题考查了归纳推理,关键抓住利用边长点数计算总点数,难度中等.4.D解析:D 【解析】由归纳推理可知偶函数的导数是奇函数,因为()f x 是偶函数,则()()g x f x '=是奇函数,所以()()g x g x -=-,应选答案D .5.D解析:D 【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁. 【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾, 假设乙打碎了玻璃,甲、乙说了谎,矛盾, 假设丙打碎了玻璃,丙、乙说了谎,矛盾, 假设丁打碎了玻璃,只有丁说了谎,符合题意, 所以是丁打碎了玻璃; 故选:D 【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.6.A解析:A 【分析】观察图形,发现,第一个图案中有一个正六边形,第二个图案中有7个正六边形;… 根据这个规律,即可确定第10个图案中正六边形的个数. 【详解】由图可知,()11f =,()212667f =+⨯-=, ()()312362619f =++⨯-⨯=, ()()212362619f =++⨯-⨯=, ()()4123463637f =+++⨯-⨯=,…()()101234...10696271.f =+++++⨯-⨯=故选A. 【点睛】此类题要能够结合图形,发现规律:当2n ≥时,()()()161.f n f n n --=-7.D解析:D 【解析】分析:对每一个选项逐一判断得解. 详解:对于选项A,如果a=1,b=2,则112a b =<,所以选项A 是错误的.对于选项B,如果a=2,b=1,则21ab=>,所以选项B 是错误的.对于选项C,如果a=4,b=2,c=1,则421,2a b ==>2211b c ==>,所以选项C 是错误的.对于选项D,假设1,1,1a b cb c a<<<,则3,3a b c a b c b c a b c a ++<++≥=,显然二者矛盾,所以假设不成立,所以选项D 是正确的.故答案为D.点睛:(1)本题主要考查反证法,意在考查学生对该知识的掌握水平.(2)三个数,,a b c 至少有一个不小于1的否定是 1.1, 1.a b c <<<8.A解析:A 【解析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为()0'0f x =时,0x 是()f x 的极值点,而对于函数()3f x x =,()'00f =,所以0是函数()3f x x =的极值点.”中,大前提:()0'0f x =时,f x '()在0x 两侧的符号如果不相反,则0x 不是()f x 的极值点,故错误,故导致错误的原因是:大前提错误, 故选:A .点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题9.B解析:B 【分析】不妨假设2AD =,则1DG =,故cos36︒= 故选B.10.B解析:B 【详解】由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为20142, 故第1行的从右往左第一个数为:122-⨯, 第2行的从右往左第一个数为:032⨯, 第3行的从右往左第一个数为:142⨯, …第n 行的从右往左第一个数为:2(1)2n n -+⨯ , 表中最后一行仅有一个数,则这个数是201501822⨯.11.A解析:A【解析】将平面几何问题推广为空间几何的问题,利用了类比推理. 本题选择A 选项.点睛:在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.12.B解析:B 【解析】 【分析】表示出拎小桶者先接水时等候的时间,然后加上拎大桶者一共等候者用的时间,用(2m+2T+t )减去二者的和就是节省的时间;由此可推广到一般结论 【详解】事实上,只要不按从小到大的顺序排队,就至少有紧挨着的两个人拎着大桶者排在拎小桶者之前,仍设大桶接满水需要T 分钟,小桶接满水需要t 分钟,并设拎大桶者开始接水时已等候了m 分钟,这样拎大桶者接满水一共等候了(m+T )分钟,拎小桶者一共等候了(m+T+t )分钟,两人一共等候了(2m+2T+t )分钟,在其他人位置不变的前提下,让这两个人交还位置,即局部调整这两个人的位置,同样介意计算两个人接满水共等候了22m t T ++ 2m+2t+T 分钟,共节省了T t - T-t分钟,而其他人等候的时间未变,这说明只要存在有紧挨着的两个人是拎大桶者在拎小桶者之前都可以这样调整,从而使得总等候时间减少.这样经过一系列调整后,整个队伍都是从小打到排列,就打到最优状态,总的排队时间就最短. 故选B. 【点睛】一般的,对某些设计多个可变对象的数学问题,先对其少数对象进行调整,其他对象暂时保持不变,从而化难为易,取得问题的局部解决.经过若干次这种局部的调整,不断缩小范围,逐步逼近目标,最终使问题得到解决,这种数学思想就叫做局部调整法.二、填空题13.72【解析】分析:先求出2018排在第几行再找出它在这一行的第几列即得的值详解:第1行有1个偶数第2行有2个偶数第n 行有n 个偶数则前n 行共有个偶数2018在从2开始的偶数中排在第1009位所以当n=解析:72 【解析】分析:先求出2018排在第几行,再找出它在这一行的第几列,即得i j +的值. 详解:第1行有1个偶数,第2行有2个偶数,,第n 行有n 个偶数,则前n 行共有(1)1+2+3++2n n n +=个偶数,2018在从2开始的偶数中排在第1009位, 所以(1)1009,45.2n n n +≥∴≥ 当n=44时,第44个偶数为44(441)219802+⨯=,所以第44行结束时最右边的偶数为1980,由题得2018排在第45行的第27位,所以i j +=45+27=72. 故答案为72.点睛:(1)本题主要考查归纳推理和等差数列的性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是通过解不等式(1)10092n n +≥找到2018所在的行. 14.【解析】分析:由题意结合所给等式的规律归纳出第个等式即可详解:首先观察等式左侧的特点:第1个等式开头为1第2个等式开头为2第3个等式开头为3第4个等式开头为4则第n 个等式开头为n 第1个等式左侧有1个解析:2(1)(32)(21)n n n n ++++-=-.【解析】分析:由题意结合所给等式的规律归纳出第n 个等式即可. 详解:首先观察等式左侧的特点: 第1个等式开头为1,第2个等式开头为2, 第3个等式开头为3,第4个等式开头为4, 则第n 个等式开头为n ,第1个等式左侧有1个数,第2个等式左侧有3个数, 第3个等式左侧有5个数,第4个等式左侧有7个数, 则第n 个等式左侧有2n -1个数, 据此可知第n 个等式左侧为:()()132n n n ++++-,第1个等式右侧为1,第2个等式右侧为9, 第3个等式右侧为25,第4个等式右侧为49,则第n 个等式右侧为()221n -, 据此可得第n 个等式为()()()213221n n n n ++++-=-.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.15.【解析】分析:先根据推导过程确定AF 取法即得A +F 的值详解:因为所以所以所以点睛:本题考查运用类比方法求解问题考查归纳观察能力解析:15. 【解析】分析:先根据推导过程确定A,F 取法,即得A +F 的值. 详解:因为4432(1)4641n n n n n +-=+++,55432(1)5101051n n n n n n +-=++++,所以4321(1)14()6()4()n S n S n S n n +-=+++,54321(1)15()10()10()5()n S n S n S n S n n +-=++++所以43231231()4S n n a n a n a n =+++, 543241()5S n n Bn Cn Dn En =++++,所以11,055A F A F ==+=,. 点睛:本题考查运用类比方法求解问题,考查归纳观察能力.16.【分析】将杨辉三角中的奇数换成1偶数换成0可得第1次全行的数都为1的是第2行第2次全行的数都为1的是第4行…由此可知全奇数的行出现在2n 的行数即第n 次全行的数都为1的是第2n 行126=27﹣2故可得解析:【分析】将杨辉三角中的奇数换成1,偶数换成0,可得第1次全行的数都为1的是第2行,第2次全行的数都为1的是第4行,…,由此可知全奇数的行出现在2n 的行数,即第n 次全行的数都为1的是第2n 行.126=27﹣2,故可得.所以第128行全是1,那么第127行就是101010…101,第126行就是11001100…110011,问题得以解决. 【详解】解:由题意,将杨辉三角中的奇数换成1,偶数换成0,可得第1次全行的数都为1的是第2行,第2次全行的数都为1的是第4行,…, 由此可知全奇数的行出现在2n 的行数,即第n 次全行的数都为1的是第2n 行.126=27﹣2,故可得第128行全是1,那么第127行就是101010…101,第126行就是11001100…110011,11又126÷4=31+2,∴S126=2×31+2=64,故答案为:64点睛:本题考查归纳推理,属中档题.17.【解析】分析:平面图形类比空间图形二维类比三维得到类比平面几何的结论确定正四面体的外接球和内切球的半径之比即可求得结论详解:平面几何中圆的周长与圆的半径成正比而在空间几何中球的表面积与半径的平方成正解析:1 9【解析】分析:平面图形类比空间图形,二维类比三维得到,类比平面几何的结论,确定正四面体的外接球和内切球的半径之比,即可求得结论.详解:平面几何中,圆的周长与圆的半径成正比,而在空间几何中,球的表面积与半径的平方成正比,因为正四面体的外接球和内切球的半径之比是13,1219SS∴=,故答案为19.点睛:本题主要考查类比推理,属于中档题.类比推理问题,常见的类型有:(1)等差数列与等比数列的类比;(2)平面与空间的类比;(3)椭圆与双曲线的类比;(4)复数与实数的类比;(5)向量与数的类比.18.194【解析】由题意得前行共有个数第行最左端的数为第行从左到右第个数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数列的特征进而判断出该数列的解析:194【解析】由题意得,前19行共有19(119)1902+=个数,第19行最左端的数为190,第20行从左到右第4个数字为194.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n项和公式求解,体现了用方程的思想解决问题.19.①③【解析】对于①定义在R上的函数f(x)满足f(2)>f(1)则f(x)在R上不一定是增函数但f(x)一定不是R上的减函数;故正确对于②由于ab全为0(ab∈R)的否定为:ab至少有一个不为0故不解析:①③.【解析】对于①定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不一定是增函数,但f(x)一定不是R 上的减函数;故正确对于②由于“a、b全为0(a、b∈R)”的否定为:“a、b至少有一个不为0”,故不正确;对于③把函数2236y sin x sin x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象向右平移6π个单位长度,所得到的图象的函数解析式为y =sin2x ,故正确,对于④函数()()32f x x axx R =+∈为奇函数⇔f (−x )+f (x )=0⇔2a 2x =0,∀x ∈R ,2a 2x =0⇔a =0.因此“a =0”是“函数()()32f x x ax x R =+∈为奇函数”的充要条件,故不正确,故答案为①③.20.4n+2【解析】解:观察分析图案得到规律第1个第2个第3个…个图案有白色地板砖分别是61014…个组成一个公差是4首项为6的等差数列因此第n 个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4解析:4n+2 【解析】解:观察、分析图案,得到规律,第1个、第2个,第3个…个图案有白色地板砖分别是6,10,14…个,组成一个 公差是4,首项为6的等差数列.因此第n 个图案中有白色地面砖有6+(n-1)×4=6+4n-4=4n+2. 故答案为4n+2.三、解答题21.(1)24a =,39a =,416a =;(2)2n a n =,证明见解析.【分析】(1)根据数列递推关系,把1n =、2、3分别代入,求出2a 、3a 、4a 的值;(2)先假设n k =时,2k a k =成立,再证明1n k =+时,猜想也成立.【详解】 (1)11a =,1n a +21n n a n+=+,22314a a ∴=+=,32219a a =+=,4351163a a =+=;(2)由(1)猜想2n a n =,用数学归纳法证明如下: ①当1n =时,11a =,猜想显然成立; ②设n k =时,猜想成立,即2k a k =, 则当1n k =+时,()22121211k k k a a k k k k++=+=++=+, 即当1n k =+时猜想也成立, 由①②可知,猜想成立,即2n a n =. 【点睛】运用数学归纳法证明命题时,要求严格按照从特殊到一般的思想证明,特别是归纳假设一定要用到,否则算是没有完成证明.22.(1)11a =,21a =,32a =,41a =,53a =;(2)11s t =-⎧⎨=⎩,见解析.【分析】(1)根据定义计算即可;(2)先由11211S S -==,23214S S -==,372114S S -==确定出s ,t 的值,再利用数学归纳法证明. 【详解】(1)1的最大正奇因数为1,最小正奇因数为1,所以11a =, 2的最大正奇因数为1,最小正奇因数为1,所以21a =, 3的最大正奇因数为3,最小正奇因数为1,所以32a =, 4的最大正奇因数为1,最小正奇因数为1,所以41a =, 5的最大正奇因数为5,最小正奇因数为1,所以53a =.(2)由(1)知,11211S S -==,23214S S -==,372114S S -==,所以()()()()()()2241644446884146s t s t s t ⎧++=⎪⎪⎪++=⎨⎪⎪++=⎪⎩,解得11s t =-⎧⎨=⎩. 下面用数学归纳法证明: ①当1m =时,()()121212416S--+==,成立;②假设当m k =(1k ,*k N ∈)时,结论成立,即()()2121246k kk S--+=,那么当1m k =+时,易知当n 为奇数时,12n n a +=;当n 为偶数时,2nn a a =. 所以()()111112132421212122k k k k S a a a a a a a a a ++++----=+++=+++++++()()1221122k k a a a -=+++++++()21122k k S -=++++()212122k k k S -+=+()()()321221246k k k k ⨯++-+=()21123246k k +++⨯-=()()1121246k k ++-+=.所以当1m k =+时,结论成立.综合①②可知,()()2121246mmm S --+=对一切m 1≥且*m N ∈恒成立.【点睛】本题考查数列中的新定义问题,利用数学归纳法证明等式,考查学生的逻辑推理能力,是一道有一定难度的题. 23.(1)4381,,,325;(2)21n nS n =+,证明见解析. 【解析】 【分析】(1)由题可得前4项,依次求和即可得到答案; (2)由(1)得到前四项和的规律可猜想21n nS n =+,由数学归纳法,即可做出证明,得到结论。

北师大版高中数学选修2-2第一章推理与证明同步练习(一)

北师大版高中数学选修2-2第一章推理与证明同步练习(一)

高中数学学习材料(灿若寒星精心整理制作)第一章推理与证明同步练习(一)1. 观察右图的规律,在其下面一行的空格内画上合适的图形,应是()☆●◇▲△★○◆◇▲☆●A. △★○◆B. ○◆△★C. ○★△◆D. ◇●☆▲2. 如图,把三角形数中三角形内的点去掉形成了下列数列,则第8个三角形点数是()(5)(4)(3)(2)(1)A. 15B. 21C. 27D. 283. 数列 5,13,25,x ,61,… 中的x 等于( ) A. 35 B. 39 C. 41 D. 534. 已知βαβα⊂⊂=b a l ,, ,若b a ,为异面直线,则( )A. b a ,都与l 相交B. b a ,至少有一条与l 相交C. b a ,至多有一条与l 相交D. b a ,都不与l 相交5. 用数学归纳法证明命题“当n 为正奇数时,x +1能整除1+n x ”的第二步假设递推过程时,正确的证法是( )A. 假设当)(*N k k n ∈=时命题成立,证明当1+=k n 时命题也成立B. 假设当k n =(k 是正奇数)时命题成立,证明当1+=k n 时命题也成立C. 假设当)(12*N k k n ∈+=时命题成立,证明当1+=k n 时命题也成立D. 假设当k n =(k 是正奇数)时命题成立,证明当2+=k n 时命题也成立6. 在否定结论“至少有三个解”的说法中,正确的是( )A. 至多有两个解B. 至多有三个解C. 有一个或两个解D. 有两个解7. 类比边长为a 2的正三角形内的一点到三边的距离之和为a 3,对棱长为a 6的正四面体,正确的结论是( )A. 正四面体内部的一点到六条棱的距离的和为a 32B. 正四面体内部的一点到四面的距离的和为a 62C. 正四面体的中心到四面的距离的和为a 62D. 正四面体的中心到六条棱的距离的和为a 298. 已知n a a a a ,,,,321 为各项都大于零的等比数列,公比1≠q ,则( )A .5481a a a a +>+B .5481a a a a +<+C .5481a a a a +=+D .81a a +与54a a +的大小关系不能由已知条件确定9. 某个命题与自然数n 有关,若n =k ( k ∈N ) 时该命题成立,那么推得当n =k +1时该命题也成立,现已知当n =5时该命题不成立,那么可推得( )A .当n =6时该命题成立B .当n =6时该命题不成立C .当n =4时该命题成立D .当n =4时该命题不成立10. 等差数列{}n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )A .170B .130C .260D .21011. 用数学归纳法证明等式)(!2)()33)(22)(11(*N n n n n n ∈⋅=++++ 时,从“k n =”到“1+=k n ”需要增添的因式是___________________。

第1章推理与证明-北师大版高中数学选修2-2章节练习

第1章推理与证明-北师大版高中数学选修2-2章节练习
欲证明 ,
只需证 ,
只需证 ,
即证 ,
由已知得最后一个不等式成立,
故原不等式成立;
假设 , , 不都大于零,即至少有一个小于零或等于零
若某一个等于零,由 ,与 矛盾.
若某一个小于零,不妨设 ,由 ,得 ,
由 ,得 ,
那么 ,得 ,即 ,
结合 ,得 与 矛盾.
结合 、 知 , , 都大于零.
【试题解析】本题考查了反证法和分析法,属于较难题.
只需证明 ,
时,显然成立,
所以原不等式成立.
所以用分析法证明 时,索的因是 .
故选C.
8.【参考答案】
【试题解析】【分析】
本题主要考查了反证法原理的应用,属于基础题.
根据反证法的原理可直接判断得到结果.
【解答】
解:反证法证明即只需证明该命题的否定命题,
由题意可知,
“至少存在一个”的否定是“不存在任意实数”
对 ,因为“原命题成立,则逆否命题一定成立”,所以只能得出:若 成立,则 成立,不能得出:若 成立,则 成立;
对 ,当 或 时,不一定有 成立;
对 , ,
对于任意的 ,均有 成立.
故选D.
11.参考答案】
【试题解析】【分析】本题考查归纳推理,属于中档题.
由特殊到一般找规律进而得出 ,可得 .
【解答】解: ,
在 中,平面向量 , , 不满足运算 ,故C错误;
在 中,“正方形的内切圆切于各边的中点”类比推出“正方体的内切球切于各面的中心”,故D正确.
故选D.
5.【参考答案】
【试题解析】解:先整理题干信息,可知:
①猴子观海 妙笔生花 美人梳妆;
②阳关三叠 仙人晒靴;
③禅心向天 仙人晒靴.

新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(含答案解析)(1)

新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(含答案解析)(1)

一、选择题1.甲、乙、丙、丁四位同学一起去向老师询问数学考试的成绩老师说:你们四人中有两位优秀、两位良好,我现在给乙看甲、丙的成绩,给甲看丙的成绩,给丁看乙的成绩,看后乙对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .甲可以知道四人的成绩 B .丁可以知道四人的成绩 C .甲、丁可以知道对方的成绩 D .甲、丁可以知道自己的成绩 2.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28B .76C .123D .1993.下面几种推理过程是演绎推理的是 ( ).A .某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B .由三角形的性质,推测空间四面体的性质C .平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D .在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式 4.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .45.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .326.若实数,,a b c 满足1a b c ++=,给出以下说法:①,,a b c 中至少有一个大于13;②,,a b c 中至少有一个小于13;③,,a b c 中至少有一个不大于1;④,,a b c 中至少有一个不小于14.其中正确说法的个数是( ) A .3B .2C .1D .07.在等差数列{}n a 中,如果,,,m n p r N *∈,且3m n p r ++=,那么必有3m n p r a a a a ++=,类比该结论,在等比数列{}n b 中, 如果,,,m n p r N *∈,且3m n p r ++=,那么必有( )A .3++=m n p r b b b bB .3++=m n p r b b b b C .3=m n p r b b b b D .3m n p r b b b b =8.用数学归纳法证明 11151236n n n ++⋅⋅⋅+≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .112313233k k k +-+++ C .11331k k -++ D .133k + 9.对命题“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的什么位置? A .正三角形的顶点B .正三角形的中心C .正三角形各边的中点D .无法确定10.在平面几何中,可以得出正确结论:“正三角形的内切圆半径等于这个正三角形的高的13.”拓展到空间中,类比平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的( ) A .12B .14C .16D .1811.圆周率是指圆的周长与圆的直径的比值,我国南北朝时期的数学家祖充之用“割圆术”将圆周率算到了小数后面第七位,成为当时世界上最先进的成就,“割圆术”是指用圆的内接正多边形的周长来近似替代圆的周长,从正六边形起算,并依次倍增,使误差逐渐减小,如图所示,当圆的内接正多边形的边数为720时,由“割圆术”可得圆周率的近似值可用代数式表示为( )A .0720sin1B .0720sin 0.5C .0720sin 0.25D .0720sin 0.12512.在平面直角坐标系中,方程1x ya b+=表示在x 轴、y 轴上的截距分别为,a b 的直线,类比到空间直角坐标系中,在x 轴、y 轴、z 轴上的截距分别为(),,0a b c abc ≠的平面方程为( ) A .1x y z a b c++= B .1x y z ab bc ca++= C .1xy yz zx ab bc ca++= D .1ax by cz ++=二、填空题13.《聊斋志异》中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术,得诀自诩无所阻,额上纹起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:222233=,333388=,44441515=,55552424=……则按照以上规律,若100100100100n n=,具有“穿墙术”,则n =_____. 14.已知函数()11112f x x x x =++++,由()111111f x x x x -=++-+是奇函数,可得函数()f x 的图象关于点()1,0-对称,类比这一结论,可得函数()237126x x x g x x x x +++=++++++的图象关于点___________对称. 15.观察下面的数阵,则第40行最左边的数是__________.16.古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n个三角形数为22n n+,记第n 个k 边形数为(,)(3)N n k k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数:211(,3)22N n n n =+;正方形数:2(,4)N n n =;五边形数:231(,5)22N n n n =-;六边形数:2(,6)2N n n n =-,…,由此推测(8,8)N =__________.17.观察下列数表:1 3 5 7 9 11 1315 17 19 21 23 25 27 29设2017是该表第m 行的第n 个数,则m n +的值为__________.18.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同,现了解到已下情况:(1)甲不是最高的;(2)最高的是没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步.可以判断丙参加的比赛项目是__________.19.用数学归纳法证明某命题时,左式为(n 为正偶数),从“n=2k”到“n=2k+2”左边需增加的代数式为________. 20.给出下列等式:;;,由以上等式推出一个一般结论: 对于=________________________.三、解答题21.已知点P n (a n ,b n )满足a n +1=a n ·b n +1,b n +1=214nnb a -(n ∈N *),且点P 1的坐标为(1,-1).(1)求过点P 1,P 2的直线l 的方程;(2)试用数学归纳法证明:对于n ∈N *,点P n 都在(1)中的直线l 上 22.用数学归纳法证明:()2135(21)N n nn ++++⋯+-=∈.23.数列{}n a 满足()*2N n n S n a n =-∈.(1)计算123a a a 、、,并猜想n a 的通项公式; (2)用数学归纳法证明(1)中的猜想. 24.已知数列11111,,,,,12233445(1)n n ⨯⨯⨯⨯⨯+,…的前n 项和为n S .(1)计算1234,,,S S S S 的值,根据计算结果,猜想n S 的表达式; (2)用数学归纳法证明(1)中猜想的n S 表达式. 25.已知n *∈N ,(1)(2)(),n S n n n n =+++213(21)n n T n =⨯⨯⨯⨯-.(Ⅰ)求 123123,,,,,S S S T T T ;(Ⅱ)猜想n S 与n T 的关系,并用数学归纳法证明. 26.设a ,b 均为正数,且a b .证明:(1)664224a b a b a b +>+(2>【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先由乙不知道自己成绩出发得知甲、丙和乙、丁都是一优秀、一良好,那么甲、丁也就结合自己看的结果知道自己成绩了. 【详解】解:乙看后不知道自己成绩,说明甲、丙必然是一优秀、一良好,则乙、丁也必然是一优秀、一良好;甲看了丙的成绩,则甲可以知道自己和丙的成绩;丁看了乙的成绩,所以丁可以知道自己和乙的成绩,故选D. 【点睛】本题考查了推理与证明,关键是找到推理的切入点.2.C解析:C 【详解】 由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=,294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.3.C解析:C 【解析】分析:根据归纳推理、类比推理、演绎推理得概念判断选择.详解:某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人,这个是归纳推理;由三角形的性质,推测空间四面体的性质,是类比推理;平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分,是演绎推理;在数列{a n }中,a 1=1,23a =,36a =,410a =,由此归纳出{a n }的通项公式,是归纳推理,因此选C.点睛:本题考查归纳推理、类比推理、演绎推理,考查识别能力.4.C解析:C 【详解】分析:根据题意,利用类比推理的概念逐一判定,即可得到结论.详解:由题意,对于①中,根据复数的表示和复数的几何意义,可知“若复数12,z z ,则1212z z z z +≤+”是正确的;对于②中,根据平面与空间的类比推理可得:“在半径为R 的球内接长方体中,正方体的体积最大”是正确的;对于③中,由球的体积公式为343V R π=,其表面积公式为24S R π=,所以V S '=,所以是正确的;对于④中,如在极坐标系中,点(1,0),(1,)2C D π,此时CD 的中点坐标为(,)24π,不满足“极坐标系中两点1122(,),(,)C D ρθρθ的中点坐标为1212(,)22ρρθθ++”,所以不正确,综上,正确命题的个数为三个,故选C .点睛:本题主要考查了命题的真假判定,以及类比推理的应用,其中熟记类比推理的概念和应用,以及命题的真假判定是解答的关键,着重考查了分析问题和解答问题,以及推理与论证能力.5.B解析:B 【解析】分析:利用第八项为1出发,按照规则,逆向逐项即可求解n 的所有可能的取值. 详解:如果正整数n 按照上述规则施行变换后第八项为1, 则变换中的第7项一定为2, 变换中的第6项一定为4,变换中的第5项可能为1,也可能是8, 变换中的第4项可能是2,也可能是16,变换中的第4项为2时,变换中的第3项是4,变换中的第2项是1或8,变换中的第1项是2或6,变换中的第4项为16时,变换中的第3项是32或5,变换中的第2项是64或108,变换中的第1项是128或21或20,或3,则n 的所有可能的取值为2,3,16,20,21,128,共6个,故选B.点睛:本题主要考查了归纳推理的应用,其中解答中正确理解题意,利用变换规则,进行逆向逐项推理、验证是解答的关键,着重考查了推理与论证能力,试题有一定的难度,属于中档试题.6.B解析:B 【解析】分析:根据反证法思想方法,可判定③④是正确的,通过举例子,可判定①②是错误的. 详解:由题意,,a b c 满足1a b c ++=, 则在①、②中,当13a b c ===时,满足1a b c ++=,所以命题不正确; 对于③中,假设,,a b c 三个数列都大于1,则1a b c ++>,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不大于1,所以是正确的; 对于④中,假设,,a b c 三个数列都小于14,则1a b c ++<,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不小于14,所以是正确的; 综上可知,正确的命题由两个,故选B.点睛:本题主要考查了 命题个数的真假判定,其中解答中涉及反证法的思想的应用,着重考查了分析问题和解答问题的能力.7.D解析:D 【详解】分析:结合等差数列与等比数列具有的类比性,且等差数列与和差有关,等比数列与积商有关的特点,即可类比得到结论.详解:由题意,类比上述性质:在等比数列{}n b 中,则由“如果,,,m n p r N *∈,且3m n p r ++=”,则必有“3m n p r b b b b =”成立,故选D.点睛:本题主要考查了等差数列与等比数列之间的类比推理,其中类比推理的一般步骤:①找出等差数列与等比数列之间的相似性或一致性;②用等差数列的性质取推测等比数列的性质,得到一个明确的结论(或猜想).8.B解析:B 【详解】分析:分析n k =,1n k =+时,左边起始项与终止项,比较差距,得结果.详解:n k =时,左边为111123k k k++⋅⋅⋅+++, 1n k =+时,左边为111111233313233k k k k k k ++⋅⋅⋅++++++++++, 所以左边需添加的项是11111123132331313233k k k k k k k ++-=+-+++++++,选B. 点睛:研究n k =到1n k =+项的变化,实质是研究式子变化的规律,起始项与终止项是什么,中间项是如何变化的.9.B解析:B 【解析】分析:由题意结合几何体的空间关系进行类比推理即可求得最终结果.详解:绘制正三棱锥的内切球效果如图所示,很明显切点在面内而不在边上,则选项AC 错误,由“正三角形的内切圆切于三边的中点”可类比猜想出:四面都为正三角形的正四面体的内切球切于四个面的正三角形的中心. 本题选择B 选项.点睛:在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.10.B解析:B 【解析】从平面图形类比空间图形,从二维类比三维,可得如下结论:正四面体的内切球半径等于这个正四面体高的14.证明如下:球心到正四面体一个面的距离即球的半径r ,连接球心与正四面体的四个顶点.把正四面体分成四个高为r 的三棱锥,所以4×13S•r=13•S•h ,r=14h . (其中S 为正四面体一个面的面积,h 为正四面体的高) 故选B .点睛:平面图形类比空间图形,二维类比三维得到类比平面几何的结论,则正四面体的内切球半径等于这个正四面体高的14,证明方法是等积法(平面上等面积,空间等体积). 11.C解析:C 【解析】 设圆的半径为1,正多边形的圆心角为3600.5720︒︒=,边长为()112cos0.521cos0.52sin0.25︒︒︒+-=-=,所以7202sin0.252π︒⨯=,即0π720sin0.25=故选:C12.A解析:A 【分析】平面上直线方程的截距式推广到空间中的平面方程的截距式是1x y za b c++=. 【详解】由类比推理得:若平面在x 轴、y 轴、z 轴上的截距分别为,,a b c ,则该平面的方程为:1x y za b c++=,故选A. 【点睛】平面中的定理、公式等类比推理到空间中时,平面中的直线变为空间中的直线或平面,平面中的面积变为空间中的体积.类比推理得到的结论不一定正确,必要时要对得到的结论证明.如本题中,可令0,0x y ==,看z 是否为c .二、填空题13.9999【解析】分析:观察所告诉的式子找到其中的规律问题得以解决详解:按照以上规律可得故答案为9999点睛:常见的归纳推理类型及相应方法常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数解析:9999 【解析】分析:观察所告诉的式子,找到其中的规律,问题得以解决.详解:=,==,,按照以上规律=210019999n =-=. 故答案为9999.点睛:常见的归纳推理类型及相应方法 常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等. (2)形的归纳主要包括图形数目归纳和图形变化规律归纳.14.【解析】由题得所以是奇函数所以函数的图象关于点对称故填解析:7,62⎛⎫- ⎪⎝⎭【解析】 由题得234567()6111111123456x x x x x x g x x x x x x x ++++++-=-+-+-+-+-+-++++++ 111111123456x x x x x x =+++++++++++ 7111111()67777772123456222222g x x x x x x x --=+++++-+-+-+-+-+-+ 7111111()6()5311352222222g x f x x x x x x x --=+++++=---+++ 111111()()531135222222f x f x x x x x x x ∴-=+++++=--------+-+-+所以()f x 是奇函数,所以函数()237126x x x g x x x x +++=++++++的图象关于点7,62⎛⎫- ⎪⎝⎭对称.故填7,62⎛⎫- ⎪⎝⎭. 15.1522【解析】由题意得每一行数字格式分别为它们成等差数列则前行总共有个数所以第40行最左的数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数 解析:1522【解析】由题意得,每一行数字格式分别为1231,3,5,21n a a a a n ====-, 它们成等差数列,则前39行总共有13939()39(12391)152122a a ++⨯-==个数, 所以第40行最左的数字为1522.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n 项和公式,共涉及五个量1,,,,n n a a d n S 知其中三个就能求另外两个,体现了用方程的思想解决问题.. 16.176【解析】原已知式子可化为:正方形数:五边形数六边形数……由此推测由归纳推理可得故解析:176【解析】 原已知式子可化为:211,322N n n n ==+() 正方形数:()22,402N n n n ==+ 五边形数()231,5?22N n n n ==- 六边形数()242,6?22N n n n ==- ……由此推测由归纳推理可得()224,22k k N n k n n --=+ 故()2648,88817622N =⨯+⨯= 17.【解析】根据数表的数的排列规律都是连续奇数第一行有个数第二行有个数且第一个数是;第三行有个数且第一个数是;第四行有个数且第一个数是第行有个数且第一个数是在第行是第行的第个数故答案为解析:508【解析】根据数表的数的排列规律,1,3,5,...都是连续奇数第一行,有1个数,第二行,有2个数,且第一个数是221-;第三行,有3个数,且第一个数是321-;第四行,有4个数,且第一个数是42 1...-,第n 行,有n 个数,且第一个数是21n - ,1011211023,212047-=-=, 2017∴在第10行,()20171023+12,498n n =-⨯=,2017∴是第10行的第498个数,10498508m n ∴+=+=,故答案为508.18.跑步【解析】由题意得由(4)可知乙参加了铅球比赛由(2)可知乙不是最高的所以三人中身高居中;再由(1)可知甲是最矮的参加了跳远丙是最高的参加了跑步比赛解析:跑步【解析】由题意得, 由(4)可知,乙参加了铅球比赛,由(2)可知乙不是最高的,所以三人中身高居中;再由(1)可知,甲是最矮的,参加了跳远,丙是最高的,参加了跑步比赛. 19.(写也给分)【解析】当n=2k 时左式为当n=2k+2时左式为所以增加的代数式为 解析:112122k k -++(写 也给分) 【解析】 当n=2k 时,左式为111111.234212k k -+-++--, 当n=2k+2时,左式为11111111.2342122122k k k k -+-++-+--++ 所以增加的代数式为112122k k -++. 20.1-【解析】解:根据已知的表达式可以观察归纳得到=1-解析:1-1(1)2nn +⋅. 【解析】解:根据已知的表达式可以观察归纳得到=1-三、解答题21.(1)2x +y =1(2)证明见解析【解析】【分析】(1)求出P 2的坐标,列出直线的两点式方程,化简即可;(2)由(1)知,n=1时,2a 1+b 1=1成立,假设n=k 时,2a k +b k =1成立,进而证得当n=k+1时,2a k+1+b k+1=1也成立,故n ∈N *,P n 都在直线l 上.【详解】(1)由题意得a 1=1,b 1=-1,故b 2=111413-=-⨯,a 2=1×13=13,∴P 211,33⎛⎫ ⎪⎝⎭. ∴直线l 的方程为11111133y x +-=+-,即2x +y =1. (2)证明:①当n =1时,由(1)知,2a 1+b 1=2×1+(-1)=1成立,②假设n =k(k≥1且k ∈N *)时,2a k +b k =1成立.当n =k +1时,则()()111112122221211141212k k k k k k k k k k k k k kb b a a b a b b a b a a a a +++++-+=⋅+=+⋅=+⋅===--- ∴当n =k +1时,2a k+1+b k+1=1也成立.由①②知,对于n ∈N *,都有2a n +b n =1,即点P n 在直线l 上.【点睛】 本题考查了直线的两点式方程;考查了数学归纳法的证明,一般步骤为: ①证明n 取第一个值n 0时命题成立;②假设n=k(k≥n 0且k ∈N *)时命题成立,证明n =k +1时命题也成立,即可确认命题从n 0开始的所有正整数都成立;注意,在证明n=k 到n=k+1成立时,一定要用到n=k 时得到的中间过渡式.22.证明见解析【分析】直接按照数学归纳法的步骤证明即可.【详解】当1n =时,左边211==右边,结论成立;当2n =时,左边2132+==右边,结论成立;假设n k =时结论成立,即2135(21)k k +++⋯+-=;当1n k =+时,左边135(21)[2(1)1]k k =+++⋯+-++-22[2(1)1]21k k k k =++-=++2(1)k =+=右边,所以,原命题结论成立.【点睛】用数学归纳法证明结论的步骤是:(1)验证0n n =时结论成立;(2)假设n k =时结论正确,证明1n k =+时结论正确(证明过程一定要用假设结论);(3)得出结论.23.(1) 11a =;232a =;374a =;()*121N 2n n n a n --=∈. (2)证明见解析.【详解】 分析:(1)将n 进行赋值,分别求得前三项的数值,猜想归纳处通项;(2)利用数学归纳法的证明步骤,证明猜想即可.详解:(1)当1n =时,1112a S a ==-,∴11a =;当2n =时,122222a a S a +==⨯-, ∴232a =; 当3n =时,1233323a a a S a ++==⨯-, ∴374a =; 由此猜想()*121N 2n n n a n --=∈; (2)证明:①当1n =时,11a =结论成立,②假设n k =(1k ≥,且*N k ∈)时结论成立,即1212k k k a --=, 当1n k =+时,()11121k k k k a S S k a +++=-=+- 122k k k k a a a +-+=+-,∴122k k a a +=+,∴1122122k k k k a a +++-==, ∴当1n k =+时结论成立,由①②可知对于一切的自然数*N n ∈,1212n n n a --=成立. 点睛:这个题目考查的是数列通项公式的求法;数列通项的求法中有常见的已知n S 和n a 的关系,求n a 表达式,一般是写出1n S -做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等24.(1)12341234,,,2345S S S S ====,1n n S n =+(2)见解析 【解析】分析:(1)计算可求得1234,,,S S S S ,由此猜想n S 的表达式;(2)利用数学归纳法,先证明当1n =时,等式成立,再假设当()*n k k N =∈时,等式成立,即()111111223344511k k k k +++++=⨯⨯⨯⨯⨯++,去证明当1n k =+时,等式也成立即可.详解:(I )12341234,,,2345S S S S ==== 猜想1n n S n =+ (II )①当1n =时,左边=112S =,右边=111112n n ==++, 猜想成立.②假设当()*n k k N =∈时猜想成立,即 ()111111223344511k k k k +++++=⨯⨯⨯⨯⨯++,那么 ()()()()()111111112233445112112k k k k k k k k ++++++=+⨯⨯⨯⨯⨯++⨯+++⨯+ ()()()()()()()()()()222112112121212k k k k k k k k k k k k k ⨯++++=+==+⨯++⨯++⨯+++ ()11211k k k k ++==+++, 所以,当1n k =+时猜想也成立.根据①②可知,猜想对任何*n N ∈都成立.点睛:本题考查归纳推理的应用,着重考查数学归纳法,考查运算推理能力,属于中档题.25.(Ⅰ) 1122332,12,120S T S T S T ======; (Ⅱ)详见解析.【分析】(Ⅰ)由题意可求得1122332,12,120S T S T S T ======;(Ⅱ)结合(I)的结论猜想n n S T =(*n N ∈),然后用数学归纳法进行证明即可.【详解】(Ⅰ)1122332,12,120S T S T S T ======;(Ⅱ)猜想:n n S T =(*n N ∈)证明:(1)当1n =时,11S T =;(2)假设当()*1n k k k N =≥∈且时,k k S T =,即()()()()1221321k k k k k k +++=⨯⨯⨯-,则当1n k =+时 ()()()()111)1211111k S k k k k k k k k (+=++++++-+++++=()()()()()2322122k k k k k ++++=()()()2132121221k k k k k ⨯⨯⨯-⨯+++ =()()112132121k k k k T ++⨯⨯⨯-+=.即1n k =+时也成立,由(1)(2)可知*n N ∈,n n S T =成立26.(1)证明见解析;(2)证明见解析.【分析】(1)运用作差比较法()()()()26642242222+a b a ba b a b a b+-+=-,判断差的符号,可得证;(2)运用作差比较法2-=,判断差的符号,可得证.【详解】(1)因为a ,b 均为正数,且a b ,所以()()()()664224642624a b a b a b a a b b a b +-+=-+- ()()()()()()242242222442222++>0a a b b b a a b a b a b a b =--=--=-, 所以()()664224>0a b a b a b +-+, 所以664224a b a b a b +>+成立.(2)因为a ,b 均为正数,且ab ,所以-=()2a b-==,>. 【点睛】本题考查用作差比较法证明不等式,把差式化成因式乘积的形式,是解题的关键,属于中档题.。

高中数学 第一章《推理与证明》同步练习 北师大版选修2-2

高中数学 第一章《推理与证明》同步练习 北师大版选修2-2

一、选择题:(每小题5分,共60分) 1.已知数列{}n a 满足12a =,111nn na a a ++=-(*n ∈N ),1232007a a a a ⋅⋅⋅⋅L 的值为: A.2007 B.2006 C.3 D.-3 2. 已知2()(1),(1)1()2f x f x f f x +==+*x N ∈(),猜想(f x )的表达式为: A.4()22xf x =+; B.2()1f x x =+; C.1()1f x x =+; D.2()21f x x =+. 3. 某纺织厂的一个车间有技术工人m 名(m N *∈),编号分别为1、2、3、……、m ,有n台(n N *∈)织布机,编号分别为1、2、3、……、n ,定义记号i j a :若第i 名工人操作了第j 号织布机,规定1i j a =,否则0i j a =,则等式41424343n a a a a ++++=L L 的实际意义是:A.第4名工人操作了3台织布机;B.第4名工人操作了n 台织布机;C.第3名工人操作了4台织布机;D.第3名工人操作了n 台织布机. 4. 已知*111()1()23f n n N n =++++∈L ,计算得3(2)2f =,(4)2f >,5(8)2f >,(16)3f >,7(32)2f >,由此推测:当2n ≥时,有不等式:A. 222+>n f n )(B. 222+>n n f )( C. 2122+>n f n )( D. 2122+>n n f )(5.函数()f x 由下表定义:若05a =,1()n n a f a +=,0,1,2,n =L ,则2007a =A.2B.3C.4D.56.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝, 第二件首饰是由6颗珠宝构成如图1所示的正六边形, 第三件首饰是由15颗珠宝构成如图2所示的正六边形, 第四件首饰是由28颗珠宝构成如图3所示的正六边形, 第五件首饰是由45颗珠宝构成如图4所示的正六边形, 以后每件首饰都在前一件上,按照这种规律增加一定数量的珠宝,使它构成更大的正六边形,依此推断第6件首饰上的颗珠宝数是:A.97B.103C.88D.91 7.将正奇数按下表排成5列第1列 第2列 第3列 第4列 第5列 第1行1357x2 53 1 4()f x123 45图1 图2 图3第2行 15 13 11 9 第3行 17 19 21 23 …………2725那么2003所在的行数和列数分别是:A.252 ,3B.251,3C.261,4D.253,58.如右上图,一个小朋友按如图所示的规则练习数数,1大拇指,2食指,3中指,4无名指,5小指,6无名指,...,一直数到2008时,对应的指头是(填指头的名称):A.大母指;B.食指;C.中指;D.无名指。

新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(1)

新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试题(包含答案解析)(1)

一、选择题1.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,,则此数列的前55项和为( )A .4072B .2026C .4096D .20482.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .B .C .D .3.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28B .76C .123D .1994.某个命题与正整数n 有关,如果当()n k k N +=∈时命题成立,那么可推得当1n k =+时命题也成立. 现已知当8n =时该命题不成立,那么可推得 ( ) A .当7n =时该命题不成立 B .当7n =时该命题成立 C .当9n =时该命题不成立 D .当9n =时该命题成立 5.已知一列数按如下规律排列,1,3,-2,5,-7,12,-19,31,…,则第9个数是( )A .50B .42C .-50D .-426.命题“若,x y >则()()()()332222x y x y x yx xy y -+=--+”的证明过程:“要证明()()()()332222x y x y x y x xy y -+=--+, 即证()()()()()3322.x y x y x y x y x xy y -+=-+-+因为,x y >即证()()3322x y x y x xy y +=+-+,即证33322223,x y x x y xy x y xy y +=-++-+ 即证3333,x y x y +=+因为上式成立,故原等式成立应用了( ) A .分析法B .综合法C .综合法与分析法结合使用D .演绎法7.用数学归纳法证明“l+2+3+…+n 3=632n n+,n ∈N*”,则当n=k+1时,应当在n=k 时对应的等式左边加上( ) A .k 3+1 B .(k 3+1)+(k 3+2)+…+(k+1)3C .(k+1)3D .63(1)(1)2k k +++8.下列四个类比中,正确的个数为(1)若一个偶函数在R 上可导,则该函数的导函数为奇函数。

新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(包含答案解析)(1)

新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试(包含答案解析)(1)

一、选择题1.从计算器屏幕上显示的数为0开始,小明进行了五步计算,每步都是加1或乘以2.那么不可能是计算结果的最小的数是( ) A .12B .11C .10D .92.观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= A .()f xB .()f x -C .()g xD .()g x -3.若实数,,a b c 满足1a b c ++=,给出以下说法:①,,a b c 中至少有一个大于13;②,,a b c 中至少有一个小于13;③,,a b c 中至少有一个不大于1;④,,a b c 中至少有一个不小于14.其中正确说法的个数是( ) A .3B .2C .1D .04.下面结论正确的是( )①“所有2的倍数都是4的倍数,某数m 是2的倍数,则m 一定是4的倍数”,这是三段论推理,但其结论是错误的.②在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适. ③由平面三角形的性质推测空间四面体的性质,这是一种合情推理.④一个数列的前三项是1,2,3,那么这个数列的通项公式必为()n a n n =∈*N .A .①③B .②③C .③④D .②④5.利用数学归纳法证明不等式()()1111++++,2,232n f n n n N +<≥∈的过程中,由n k =变成1n k =+时,左边增加了( )A .1项B .k 项C .12k -项D .2k 项6.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) A .甲B .乙C .丙D .丁7.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( ) A .乙可以知道四人的成绩 B .丁可以知道四人的成绩 C .乙、丁可以知道对方的成绩 D .乙、丁可以知道自己的成绩8.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分A .16B .21C .22D .239.用反证法证明“自然数,,a b c 中至多有一个偶数”时,假设原命题不成立,等价于( )A .,,a b c 没有偶数B .,,a b c 恰好有一个偶数C .,,a b c 中至少有一个偶数D .,,a b c 中至少有两个偶数10.用数学归纳法证明“11112321n++++- ”时,由(1)n k k =>不等式成立,推证1n k =+时,左边应增加的项数是( )A .12k -B .21k -C .2kD .21k +11.利用反证法证明“若220x y +=,则0x =且0y =”时,下列假设正确的是( ) A .0x ≠且0y ≠ B .0x =且0y ≠ C .0x ≠或0y ≠D .0x =或0y = 12.已知,,(0,2)a b c ∈,则(2),(2),(2)a b b c c a ---中( ) A .至少有一个不小于1 B .至少有一个不大于1 C .都不大于1D .都不小于1二、填空题13.已知数列{},{}n n a b 的通项公式分别为*31,2,nn n a n b n N =-=∈,将{}n a 与{}n b 中的各项混合,并按照从小到大的顺序排成一个新数列(相同元素以一个计):2,4,5,8,11,,记新的数列为{}n c ,若2021n c =,则n =___________.14.已知从2开始的连续偶数蛇形排列成宝塔形的数表,第一行为2,第二行为4,6,第三行为12,10,8,第四行为14,16,18,20,…,如图所示,在该数表中位于第i 行、第j 行的数记为ij a ,如3,210=a ,5,424=a .若2018ij a =,则i j +=__________.15.我们称形如以下形式的等式具有“穿墙术”:222233=333388=44441515=55552424=…. 按照以上规律,若11111111n n=“穿墙术”,则n =_______. 16.观察下列不等式: (1)221sin cos 1αα≤≤+ (2)441sin cos 12αα≤≤+ (3)661sin cos 14αα≤≤+ …… …… …… …… …… ……由此规律推测,第n 个不等式为:__________.17.在数列{a n }中,a 1=2,a n +1=31nn a a + (n ∈N *),可以猜测数列通项a n 的表达式为________. 18.观察下列式子:,,,,…,根据以上规律,第个不等式是_________.19.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了”.丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是__________.20.用反证法证明“,a b N ∈,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,应假设_______.三、解答题21.设数列{}n a 的前n 项和为n S ,对任意*n ∈N 都有2132n n S n a =+. (1)求数列{}n a 的通项公式;(2)记*4()n n b a n N =+∈,证明:*12232()3nn n N b b b +++<+∈ 22.已知数列{}n a 满足:()1(2)1n n na n a +=+-,且16(11)(211)a ==+⨯+. (Ⅰ)求2a ,3a ,4a 的值,并猜想数列{}n a 的通项公式; (Ⅱ)试用数学归纳法证明(Ⅰ)中的猜想. 23.设,其中为正整数. (1)求,,的值;(2)猜想满足不等式的正整数的范围,并用数学归纳法证明你的猜想.24.数列{}n a 满足()*2N n n S n a n =-∈.(1)计算123a a a 、、,并猜想n a 的通项公式; (2)用数学归纳法证明(1)中的猜想.25.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式.26.记S n =1+2+3+…+n ,T n =12+22+32+…+n 2. (Ⅰ)试计算312123,,S S S T T T 的值,并猜想n nS T 的通项公式. (Ⅱ)根据(Ⅰ)的猜想试计算T n 的通项公式,并用数学归纳法证明之.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意,可列出树形图,逐步列举,即可得到答案. 【详解】由题意,列出树形图,如图所示由树形图可知,不可能是计算结果的最小数是11,故选B.【点睛】本题主要考查了简单的合情推理,以及树形图的应用,其中解答中认真分析题意,列出树形图,结合树形图求解是解答的关键,着重考查了推理与论证能力,属于基础题.2.D解析:D由归纳推理可知偶函数的导数是奇函数,因为()f x 是偶函数,则()()g x f x '=是奇函数,所以()()g x g x -=-,应选答案D .3.B解析:B 【解析】分析:根据反证法思想方法,可判定③④是正确的,通过举例子,可判定①②是错误的. 详解:由题意,,a b c 满足1a b c ++=, 则在①、②中,当13a b c ===时,满足1a b c ++=,所以命题不正确; 对于③中,假设,,a b c 三个数列都大于1,则1a b c ++>,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不大于1,所以是正确的; 对于④中,假设,,a b c 三个数列都小于14,则1a b c ++<,这与已知条件是矛盾的,所以假设不成立,则,,a b c 中失少有一个不小于14,所以是正确的; 综上可知,正确的命题由两个,故选B.点睛:本题主要考查了 命题个数的真假判定,其中解答中涉及反证法的思想的应用,着重考查了分析问题和解答问题的能力.4.A解析:A 【解析】①“所有2的倍数都是4的倍数,某数m 是2的倍数,则m 一定是4的倍数”这是三段论推理,但其结论是错误的,原因是大前提“所有2的倍数都是4的倍数”错误,故①正确;②在类比时,平面中的三角形与空间中的四面体作为类比对象较为合适,故②错误;③由平面三角形的性质推测空间四面体的性质,这是一种合情推理,且是类比推理,正确;④一个数列的前三项是1,2,3,那么这个数列的通项公式是()n a n n N *=∈错误,如数列1,2,3,5,故④错误,∴正确的命题是①③,故选A.5.D解析:D 【分析】分别写出n k =、1n k =+时,不等式左边的式子,从而可得结果. 【详解】当n k =时,不等式左边为1111232k++++,当1n k =+时,不等式左边为1111111232212k k k +++++++++,则增加了112(21)1222k k k k k++-++=-=项,故选D.项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.6.C解析:C【详解】若甲是获奖的歌手,则四句全是假话,不合题意;若乙是获奖的歌手,则甲、乙、丁都说真话,丙说假话,与题意不符;若丁是获奖的歌手,则甲、丁、丙都说假话,丙说真话,与题意不符;当丙是获奖的歌手,甲、丙说了真话,乙、丁说了假话,与题意相符.故选C.点睛:本题主要考查的是简单的合情推理题,解决本题的关键是假设甲、乙、丙、丁分别是获奖歌手时的,甲乙丙丁说法的正确性即可.7.D解析:D【解析】【分析】根据四人所知只有自己看到,老师所说及最后甲说话,继而可以推出正确答案【详解】解:四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁也为一优一良,丁知自己的成绩,给甲看乙丙成绩,甲不知道自已的成绩,说明乙丙一优一良,假定乙丙都是优,则甲是良,假定乙丙都是良,则甲是优,那么甲就知道自已的成绩了.给乙看丙成绩,乙没有说不知道自已的成绩,假定丙是优,则乙是良,乙就知道自己成绩.给丁看甲成绩,因为甲不知道自己成绩,乙丙是一优一良,则甲丁也是一优一良,丁看到甲成绩,假定甲是优,则丁是良,丁肯定知道自已的成绩了故选:D.【点睛】本题考查了合情推理的问题,关键掌握四人所知只有自己看到,老师所说及最后甲说话,属于中档题.8.C解析:C【解析】可以用归纳思想,1条弦,分圆成2个部分。

新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试卷(有答案解析)(1)

新北师大版高中数学高中数学选修2-2第一章《推理与证明》测试卷(有答案解析)(1)

一、选择题1.我国南宋数学家杨家辉所著的《详解九章算法》一书中记录了一个由正整数构成的三角形数表,我们通常称之为杨辉三角.以下数表的构造思路就来源于杨辉三角.( )从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数a ,则a 的值为( )A .100820182⨯B .100920182⨯C .100820202⨯D .100920202⨯2.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点()3,4A -,且法向量为(1,2)n =-的直线(点法式)方程为:()()()13240x y ⨯++-⨯-=,化简得2110x y -+=.类比以上方法,在空间直角坐标系中,经过点()1,2,3A ,且法向量为(1,2,1)m =--的平面的方程为( ) A .220x y z +--= B .220x y z ---= C .220x y z ++-=D .220x y z +++=3.某个命题与正整数n 有关,如果当()n k k N +=∈时命题成立,那么可推得当1n k =+时命题也成立. 现已知当8n =时该命题不成立,那么可推得 ( ) A .当7n =时该命题不成立 B .当7n =时该命题成立 C .当9n =时该命题不成立D .当9n =时该命题成立4.设ABC ∆的三边长分别为a ,b ,c ,面积为S ,内切圆半径为r ,则()12S r a b c =++.类比这个结论可知:四面体S ABC -的四个面的面积分别为1S ,2S ,3S ,4S ,体积为V ,内切球半径为R ,则V =( )A .()1234R S S S S +++B .()123412R S S S S +++ C .()123413R S S S S +++ D .()123414R S S S S +++ 5.用反证法证明命题①:“已知332p q +=,求证:2p q +≤”时,可假设“2p q +>”;命题②:“若24x =,则2x =-或2x =”时,可假设“2x ≠-或2x ≠”.以下结论正确的是( ) A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确,②的假设错误D .①的假设错误,②的假设正确6.体育课上,小红、小方、小强、小军四位同学都在进行足球、篮球、羽毛球、乒乓球等四项体自运动中的某一种,四人的运动项目各不相同,下面是关于他们各自的运动项目的一些判断:①小红没有踢足球,也没有打篮球; ②小方没有打篮球,也没有打羽毛球;③如果小红没有打羽毛球,那么小军也没有踢足球; ④小强没有踢足球,也没有打篮球.已知这些判断都是正确的,依据以上判断,请问小方同学的运动情况是( ) A .踢足球 B .打篮球 C .打羽毛球 D .打乒乓球 7.下面结论正确的是( )①“所有2的倍数都是4的倍数,某数m 是2的倍数,则m 一定是4的倍数”,这是三段论推理,但其结论是错误的.②在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适. ③由平面三角形的性质推测空间四面体的性质,这是一种合情推理. ④一个数列的前三项是1,2,3,那么这个数列的通项公式必为()n a n n =∈*N .A .①③B .②③C .③④D .②④8.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅,…,癸酉,甲戌,乙亥,丙子,…,癸未,甲申、乙酉、丙戌,…,癸巳,…,共得到60个组成,周而复始,循环记录,2014年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的( ) A .乙亥年B .戊戌年C .庚子年D .辛丑年9.用反证法证明命题:“若x ,那么(1)f ,(2)f ,(3)f 中至少有一个不小于12”时,反设正确的是( ) A .假设(1)f ,(2)f ,(3)f 至多有两个小于12 B .假设(1)f ,(2)f ,(3)f 至多有一个小于12C .假设(1)f ,(2)f ,(3)f 都不小于12D .假设(1)f ,(2)f ,(3)f 都小于1210.“因为e 2.71828=是无限不循环小数,所以e 是无理数”,以上推理的大前提是( )A .实数分为有理数和无理数B .e 不是有理数C .无限不循环小数都是无理数D .无理数都是无限不循环小数11.请观察这些数的排列规律,数字1位置在第一行第一列表示为(1,1),数字14位置在第四行第三列表示为(4,3),根据特点推算出数字2019的位置A .(45,44)B .(45,43)C .(45,42)D .该数不会出现12.已知 222233+=,333388+=,44441515+=,m mm mt t+=()*,2m t N m ∈≥且,若不等式30m t λ--<恒成立,则实数λ的取值范围为( ) A .)22,⎡+∞⎣B .(),22-∞C .(),3-∞D .[1,3]二、填空题13.已知[x]表示不大于x 的最大整数,设函数f (x )=[log 2x 219+],得到下列结论:结论1:当2<x<3时,f (x )max=-1. 结论2:当4<x<5时,f (x )max=1. 结论3:当6<x<7时,f (x )max=3. ……照此规律,结论6为_____14.观察下面的数阵,则第40行最左边的数是__________.15.观察下列各式:(1) 2()2x x '=,(2) 43()4x x '=,(3) (cos )sin x x '=-,……,根据以上事实,由归纳推理可得:若定义在R 上的偶函数()f x 的导函数为()g x ,则(0)g =____. 16.现有这么一列数,2,32,54,78,( ),1332,1764,…,按照规律,( )中的数应为__________.17.把“二进制”数(2)1011001化为“十进制”数是 .18.甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时, 甲说:丙没有考满分; 乙说:是我考的; 丙说:甲说真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是_____. 19.面积为S 的平面凸四边形的第i 条边的边长记为(1,2,3,4)i a i =,此四边形内任一点P 到第i 条边的距离记为,若31241234a a a a k ====,则12342234Sh h h h k+++=.类比以上性质,体积为V 的三棱锥的第i 个面的面积记为(1,2,3,4)i S i =,此三棱锥内任一点Q 到第i 个面的距离记为(1,2,3,4)i H i =,若31241234S S S S K ====,则1234234H H H H +++等于_____________. 20.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.三、解答题21.汉诺塔问题是源于印度一个古老传说的益智游戏.这个游戏的目的是将图(1)中按照直径从小到大依次摆放在①号塔座上的盘子,移动到③号塔座上,在移动的过程中要求:每次只可以移动一个盘子,并且保证任何一个盘子都不可以放在比自己小的盘子上.记将n 个直径不同的盘子从①号塔座移动到③号塔座所需要的最少次数为a n .(1)试写出a 1,a 2,a 3,a 4值,并猜想出a n ;(无需给出证明)(2)著名的毕达哥拉斯学派提出了形数的概念.他们利用小石子摆放出了图(2)的形状,此时小石子的数目分别为1,4,9,16,由于小石子围成的图形类似正方形,于是称b n =n 2这样的数为正方形数.当n ≥2时,试比较a n 与b n 的大小,并用数学归纳法加以证明.22.用数学归纳法证明:111111111234212122n n n n n-+-+⋯+-=++⋯+-++. 23.将下列问题的解答过程补充完整.依次计算数列1,121++,12321++++,1234321++++++,…的前四项的值,由此猜测123(1)(1)321n a n n n =++++-++-++++的有限项的表达式,并用数学归纳法加以证明. 解:计算 11=,1214++=,12321++++= ① ,1234321++++++= ② ,由此猜想123(1)(1)321n a n n n =++++-++-++++= ③ .(*)下面用数学归纳法证明这一猜想.(i )当1n =时,左边1=,右边1=,所以等式成立. (ⅱ)假设当(,1)n k k k *=∈N ≥时,等式成立,即 123(1)(1)321k a k k k =++++-++-++++= ④ .那么,当1n k =+时,1k a += ⑤k a =+ ⑥= ⑦ .等式也成立.根据(i )和(ⅱ)可以断定,(*)式对任何n *∈N 都成立. 24.若数列{}n a 的前n 项和为n S ,且13a =,()211324222n n S S n n n -=+-+≥. (1)求2a ,3a ,4a ;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 25.当*n N ∈时,111111234212n S n n=-+-++--,11111232n T n n n n=+++++++ (Ⅰ)求1S ,2S ,1T ,2T ;(Ⅱ)猜想n S 与n T 的关系,并用数学归纳法证明. 26.已知数列{}n a 满足()*12n n n a a n n +⋅=∈+N ,11a =2. (I )求2a ,3a ,4a 的值;(Ⅱ)归纳猜想数列{}n a 的通项公式,并用数学归纳法证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据每一行的第一个数的变化规律即可得到结果. 【详解】解:第一行第一个数为:0112=⨯; 第二行第一个数为:1422=⨯; 第三行第一个数为:21232=⨯; 第四行第一个数为:33242=⨯;,第n 行第一个数为:1n 2n n a -=⨯;一共有1010行,∴第1010行仅有一个数:10091008a 1010220202=⨯=⨯; 故选C . 【点睛】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.2.A解析:A 【分析】类比平面中求动点轨迹方程的方法,在空间任取一点P (x ,y ,z ),则AP =(x ﹣1,y ﹣2,z ﹣3),利用平面法向量为n =(﹣1,﹣2,1),即可求得结论. 【详解】类比平面中求动点轨迹方程的方法,在空间任取一点P (x ,y ,z ),则AP =(x ﹣1,y ﹣2,z ﹣3)∵平面法向量为n =(﹣1,﹣2,1), ∴﹣(x ﹣1)﹣2×(y ﹣2)+1×(z ﹣3)=0 ∴x +2y ﹣z ﹣2=0, 故选A . 【点睛】本题考查了类比推理,考查了空间向量数量积的坐标运算,由于平面向量与空间向量的运算性质相似,利用求平面曲线方程的办法,构造向量,利用向量的性质解决空间内平面方程的求解问题,属于中档题.3.A解析:A 【解析】分析:利用互为逆否的两个命题同真同假的原来,当()P n 对n k =不成立时,则对1n k =-也不成立,即可得到答案.详解:由题意可知,原命题成立的逆否命题成立, 命题()P n 对8n =不成立时,则()P n 对7n =也不成立, 否则当7n =时命题成立,由已知必推得8n =也成立, 与当8n =时命题不成立矛盾,故选A .点睛:本题主要考查了数学归纳法以及归纳法的性质,互为逆否的两个命题同真同假的性质应用,其中正确四种命题的关系是解答的关键,着重考查了推理与论证能力,属于基础题.4.C解析:C 【解析】分析:根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可.详解:设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R , 所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和. 则四面体的体积为1234123411111()33333A BCD V S R S R S R S R S S S S R -=+++=+++ 故答案为:C.点睛:(1)本题主要考查类比推理和几何体体积的计算,意在考查学生对这些知识的掌握水平和空间想象能力.(2)类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).5.C解析:C 【解析】分析:利用命题的否定的定义判断即可.详解:①2p q +≤的命题否定为2p q +>,故①的假设正确.2x =-或2x =”的否定应是“2x ≠-且2x ≠”② 的假设错误, 所以①的假设正确,②的假设错误,故选C.点睛:本题主要考查反证法,命题的否定,属于简单题. 用反证法证明时,假设命题为假,应为原命题的全面否定.6.A解析:A【解析】分析:由题意结合所给的逻辑关系进行推理论证即可. 详解:由题意可知:小红、小方、小强都没有打篮球,故小军打篮球; 则小军没有踢足球,且已知小红、小强都没有踢足球,故小方踢足球. 本题选择A 选项.点睛:本题主要考查学生的推理能力,意在考查学生的转化能力和计算求解能力.7.A解析:A 【解析】①“所有2的倍数都是4的倍数,某数m 是2的倍数,则m 一定是4的倍数”这是三段论推理,但其结论是错误的,原因是大前提“所有2的倍数都是4的倍数”错误,故①正确;②在类比时,平面中的三角形与空间中的四面体作为类比对象较为合适,故②错误;③由平面三角形的性质推测空间四面体的性质,这是一种合情推理,且是类比推理,正确;④一个数列的前三项是1,2,3,那么这个数列的通项公式是()n a n n N*=∈错误,如数列1,2,3,5,故④错误,∴正确的命题是①③,故选A.8.C解析:C 【解析】2015年是“干支纪年法”中的乙未年,2016年是“干支纪年法”中的丙申年,那么2017年是“干支纪年法”中的丁酉年,2018是戊戌年,2019年是己亥年,以此类推记得到2020年是庚子年. 故答案为C .9.D解析:D 【解析】试题分析:根据题意,由于反证法证明命题:“若2()f x x px q =++,那么(1)f ,(2)f ,(3)f 中至少有一个不小于12”时,即将结论变为否定就是对命题的反设,因此可知至少有一个的否定是一个也没有,或者说假设(1)f ,(2)f ,(3)f 都小于12,故选D. 考点:反证法.10.C解析:C 【解析】由题意得: 大前提是无限不循环小数都是无理数,选C.11.C解析:C 【分析】由所给数的排列规律得到第n 行的最后一个数为2n ,然后根据2452025=可推测2019所在的位置. 【详解】由所给数表可得,每一行最后一个数为2221,2,3,,由于22441936,452025==,2244201945<<, 所以故2019是第45行的倒数第4个数, 所以数字2019的位置为(45,42). 故选C . 【点睛】(1)数的归纳包括数字归纳和式子归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识. (2)解决归纳推理问题的基本步骤①发现共性,通过观察特例发现某些相似性(特例的共性或一般规律); ②归纳推理,把这种相似性推广为一个明确表述的一般命题(猜想).12.C解析:C 【解析】分析:由等式归纳得出m 和t 的关系,从而得出关于m 的恒等式,利用函数单调性得出最小值即可得出λ的范围.=21t m =-, 30m t λ--<恒成立,即220m m λ--<恒成立,m N *∈且2m ≥,222m m m mλ+∴<=+.令()2f m m m =+,()221f m m='-, 2m ≥,()0f m ∴'>,()f m ∴单调递增,∴当2m =时,()f m 取得最小值()23f =,3λ∴<. 故选:C.点睛:若f (x )≥a 或g (x )≤a 恒成立,只需满足f (x )min ≥a 或g (x )max ≤a 即可,利用导数方法求出f (x )的最小值或g (x )的最大值,从而问题得解.二、填空题13.当时【解析】由题意得当时其中根据上述的运算规律可以归纳得出结论当时点睛:本题考查归纳推理的应用解答中根据给定式子的计算得到计算的规律是解答的关键归纳推理属于合情推理对于合情推理主要包括归纳推理和类比解析:当1213x <<时,()122392max f x =⨯-= 【解析】由题意得,当1213x <<时,其中()max f x 根据上述的运算规律, 可以归纳得出结论当1213x <<时,()max 122392f x =⨯-=. 点睛:本题考查归纳推理的应用,解答中根据给定式子的计算,得到计算的规律是解答的关键,归纳推理属于合情推理,对于合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.(而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).14.1522【解析】由题意得每一行数字格式分别为它们成等差数列则前行总共有个数所以第40行最左的数字为点睛:本题非常巧妙的将数表的排列问题和数列融合在一起首先需要读懂题目所表达的具体含义以及观察所给定数解析:1522 【解析】由题意得,每一行数字格式分别为1231,3,5,21n a a a a n ====-,它们成等差数列,则前39行总共有13939()39(12391)152122a a ++⨯-==个数, 所以第40行最左的数字为1522.点睛:本题非常巧妙的将数表的排列问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和,另外,本题的难点在于根据数表中的数据归纳数列的知识,利用等差数列的通项公式及前n 项和公式,共涉及五个量1,,,,n n a a d n S 知其中三个就能求另外两个,体现了用方程的思想解决问题..15.0【解析】由(x2)=2x 中原函数为偶函数导函数为奇函数;(x4)=4x3中原函数为偶函数导函数为奇函数;(cosx)=﹣sinx中原函数为偶函数导函数为奇函数;…我们可以推断偶函数的导函数为奇函数解析:0【解析】由(x2)'=2x中,原函数为偶函数,导函数为奇函数;(x4)'=4x3中,原函数为偶函数,导函数为奇函数;(cosx)'=﹣sinx中,原函数为偶函数,导函数为奇函数;…我们可以推断,偶函数的导函数为奇函数.若定义在R上的函数f(x)满足f(﹣x)=f(x),则函数f(x)为偶函数,又∵g(x)为f(x)的导函数,则g(x)奇函数故g(﹣x)+g(x)=0,即g(﹣0)=﹣g(0),g(0)=0故答案为:0.16.【解析】由题意可得分子为连续的质数分母依次为首项为2公比为2的等比数列故括号中的数应该为点睛:归纳推理是由部分到整体由特殊到一般的推理由归纳推理所得的结论不一定正确通常归纳的个体数目越多越具有代表性解析:11 16【解析】由题意可得,分子为连续的质数,分母依次为首项为2、公比为2的等比数列,故括号中的数应该为11 16.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.17.【解析】把二进制数化为十进制数是应填答案解析:89【解析】把“二进制”数(2)1011001化为“十进制”数是6543012021212001289⨯+⨯+⨯+⨯+++⨯=,应填答案89。

北京师范大学附属中学高中数学选修2-2第一章《推理与证明》测试题(答案解析)

北京师范大学附属中学高中数学选修2-2第一章《推理与证明》测试题(答案解析)

一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种 2.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( )A .122k +B .121k + C .11+2122++k k D .112k 12k 2++- 3.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法,可以求出过点()3,4A -,且法向量为(1,2)n =-的直线(点法式)方程为:()()()13240x y ⨯++-⨯-=,化简得2110x y -+=.类比以上方法,在空间直角坐标系中,经过点()1,2,3A ,且法向量为(1,2,1)m =--的平面的方程为( ) A .220x y z +--= B .220x y z ---= C .220x y z ++-=D .220x y z +++=4.已知数组1()1,12(,)21,123()321,,,…,121(,,,,)121n nn n --,…,记该数组为1()a ,23(,)a a ,456(,,)a a a ,…,则200a =( )A .911B .1011C .1112D .9105.已知a ,b ,c 均为正实数,则a b ,b c ,ca的值( ) A .都大于1B .都小于1C .至多有一个不小于1D .至少有一个不小于16.在等差数列{}n a 中,如果,,,m n p r N *∈,且3m n p r ++=,那么必有3m n p r a a a a ++=,类比该结论,在等比数列{}n b 中, 如果,,,m n p r N *∈,且3m n p r ++=,那么必有( )A .3++=m n p r b b b bB .3++=m n p r b b b b C .3=m n p r b b b b D .3m n p r b b b b =7.数列0,75-,135,6317-,…的一个通项公式是( ) A .()312111n n n +--+ B .()32111nn n --+C .()312111n n n ---- D .()32111nn n ---8.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .5059.用反证法证明“平面四边形中至少有一个内角不超过90︒”,下列假设中正确的是( ) A .假设有两个内角超过90︒ B .假设有三个内角超过90︒ C .假设至多有两个内角超过90︒D .假设四个内角均超过90︒10.一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( ) A .aB .bC .cD .d11.根据给出的数塔猜测12345697⨯+( )19211⨯+=1293111⨯+= 123941111⨯+=12349511111⨯+= 1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111312.已知,,(0,2)a b c ∈,则(2),(2),(2)a b b c c a ---中( ) A .至少有一个不小于1 B .至少有一个不大于1 C .都不大于1D .都不小于1二、填空题13.已知数列{},{}n n a b 的通项公式分别为*31,2,nn n a n b n N =-=∈,将{}n a 与{}n b 中的各项混合,并按照从小到大的顺序排成一个新数列(相同元素以一个计):2,4,5,8,11,,记新的数列为{}n c ,若2021n c =,则n =___________.14.对于自然数方幂和()12k k k k S n n =+++(n *∈N ,k *∈N ),1(1)()2n n S n +=,2222()12S n n =+++,求和方法如下:23﹣13=3+3+1, 33﹣23=3×22+3×2+1, ……(n +1)3﹣n 3=3n 2+3n +1,将上面各式左右两边分别,就会有(n +1)3﹣13=23()S n +13()S n +n ,解得2()S n =16n (n +1)(2n +1),类比以上过程可以求得54324()A B C D E F S n n n n n n =+++++,A ,B ,C ,D ,E ,F ∈R 且与n 无关,则A +F 的值为_______. 15.点()00,x y 到直线0Ax By c ++=的距离公式为d =,通过类比的方法,可求得:在空间中,点()1,1,2到平面230x y z +++=的距离为___.16.学校建议孩子们周末去幸福广场看银杏叶,舒缓高三学习压力,返校后甲、乙、丙、丁四位同学被问及情况.甲说:“我没去”;乙说:“丁去了”;丙说:“乙去了”;丁说:“我没去”.班主任了解到这四位同学中只有一位同学去了幸福广场,但只有一位说了假话,则去了幸福广场的这位同学是_______.17.观察下列各式:(1) 2()2x x '=,(2) 43()4x x '=,(3) (cos )sin x x '=-,……,根据以上事实,由归纳推理可得:若定义在R 上的偶函数()f x 的导函数为()g x ,则(0)g =____. 18.观察下列数表: 1 3 5 7 9 11 1315 17 19 21 23 25 27 29设2017是该表第m 行的第n 个数,则m n +的值为__________.19.36的所有约数之和可以按以下方法得到:因为223623=⨯,所以36的所有正约数之和为()()()()()22222222133223232232312213391++++⋅+⋅++⋅+⋅=++++=,参照上述方法,可求得200的所有正约数之和为__________. 20.给出下列等式:;;,由以上等式推出一个一般结论: 对于=________________________.三、解答题21.设数列{}n a 的前n 项和为n S ,对任意*n ∈N 都有2132n n S n a =+. (1)求数列{}n a 的通项公式;(2)记*4()n n b a n N =+∈,证明:*12111232()3nn n N b b b +++<+∈ 22.已知数列{}n a 满足关系式()10a a a =>,()1122,1n n n a a n n N a --=≥∈+. (1)用a 表示2a ,3a ,4a ;(2)根据上面的结果猜想用a 和n 表示n a 的表达式,并用数学归纳法证之.23.(1)当1x >时,求2()1x f x x =-的最小值.(2)用数学归纳法证明:11111222n n n +++≥++*()n N ∈. 24.数列{}n a 满足2()n n S n a n =-∈*N .(Ⅰ)计算1a ,2a ,3a ,并由此猜想通项公式n a ; (Ⅱ)用数学归纳法证明(Ⅰ)中的猜想. 25.设等差数列的公差,且,记(1)用分别表示,并猜想;(2)用数学归纳法证明你的猜想.26.在各项为正的数列{a n }中,数列的前n 项和S n 满足11()2n n na S a +=. (1)求123,,a a a (2)由(1)猜想数列{}n a 的通项公式,并用数学归纳法证明你的猜想.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.D解析:D 【分析】求出当n k =时,左边的代数式,当1n k =+时,左边的代数式,相减可得结果. 【详解】当n k =时,左边的代数式为11112k k k k++⋯++++, 当1n k =+时,左边的代数式为11111232122k k k k k k ++⋯++++++++, 故用1n k =+时左边的代数式减去n k =时左边的代数式的结果为:11111212212122k k k k k +-=-+++++,故选D . 【点睛】本题考查用数学归纳法证明不等式,注意式子的结构特征,以及从n k =到1n k =+项的变化,属于中档题.3.A解析:A 【分析】类比平面中求动点轨迹方程的方法,在空间任取一点P (x ,y ,z ),则AP =(x ﹣1,y ﹣2,z ﹣3),利用平面法向量为n =(﹣1,﹣2,1),即可求得结论. 【详解】类比平面中求动点轨迹方程的方法,在空间任取一点P (x ,y ,z ),则AP =(x ﹣1,y ﹣2,z ﹣3)∵平面法向量为n =(﹣1,﹣2,1), ∴﹣(x ﹣1)﹣2×(y ﹣2)+1×(z ﹣3)=0 ∴x +2y ﹣z ﹣2=0, 故选A . 【点睛】本题考查了类比推理,考查了空间向量数量积的坐标运算,由于平面向量与空间向量的运算性质相似,利用求平面曲线方程的办法,构造向量,利用向量的性质解决空间内平面方程的求解问题,属于中档题.4.B解析:B 【解析】 【分析】设a 200在第n 组中,则()()1120022n n n n -+≤<(n ∈N *),由等差数列求和得:a 200在第20组中,前19组的数的个数之和为:19202⨯=190, 再进行简单的合情推理得:a 20010102010111==-+,得解.【详解】由题意有,第n 组中有数n 个,且分子由小到大且为1,2,3…n ,设a 200在第n 组中,则()()1120022n n n n -+≤<(n ∈N *),解得:n =20,即a 200在第20组中,前19组的数的个数之和为:19202⨯=190, 即a 200在第20组的第10个数,即为10102010111=-+,a 2001011=, 故选B .【点睛】本题考查了阅读理解及等差数列求和与进行简单的合情推理能力,属中档题.5.D解析:D 【解析】分析:对每一个选项逐一判断得解. 详解:对于选项A,如果a=1,b=2,则112a b =<,所以选项A 是错误的.对于选项B,如果a=2,b=1,则21ab=>,所以选项B 是错误的.对于选项C,如果a=4,b=2,c=1,则421,2a b ==>2211b c ==>,所以选项C 是错误的.对于选项D,假设1,1,1a b cb c a<<<,则3,3a b c a b c b c a b c a ++<++≥=,显然二者矛盾,所以假设不成立,所以选项D 是正确的.故答案为D.点睛:(1)本题主要考查反证法,意在考查学生对该知识的掌握水平.(2)三个数,,a b c 至少有一个不小于1的否定是 1.1, 1.a b c <<<6.D解析:D 【详解】分析:结合等差数列与等比数列具有的类比性,且等差数列与和差有关,等比数列与积商有关的特点,即可类比得到结论.详解:由题意,类比上述性质:在等比数列{}n b 中,则由“如果,,,m n p r N *∈,且3m n p r ++=”,则必有“3m n p r b b b b =”成立,故选D.点睛:本题主要考查了等差数列与等比数列之间的类比推理,其中类比推理的一般步骤:①找出等差数列与等比数列之间的相似性或一致性;②用等差数列的性质取推测等比数列的性质,得到一个明确的结论(或猜想).7.A解析:A 【解析】在四个选项中代n=2,选项B,D 是正数,不符,A 选项值为75-,符合,C 选项值为73-,不符.所以选A. 【点睛】对于选择题的选项是关于n 的关系式,可以考虑通过赋特殊值检验法,来减少运算,或排除选项.8.D解析:D 【解析】n阶幻方共有2n个数,其和为()222112...,2n nn n++++=阶幻方共有n行,∴每行的和为()()2221122n nn nn++=,即()()2210110101,50522nn nN N+⨯+=∴==,故选D.9.D解析:D【解析】“至少有一个内角不超过90︒”的反面含义为“四个内角没有一个不超过90︒”,即四个内角均超过90︒,选D.10.A解析:A【解析】由题意得,甲同学说:1号门里是b,3号门里是c,乙同学说:2号门里是b,3号门里是d;丙同学说:4号门里是b,2号门里是c;丁同学说:4号门里是a,3号门里是c c,若他们每人猜对了一半,则可判断甲同学中1号门中是b是正确的;乙同学说的2号门中有d是正确的;并同学说的3号门中有c是正确的;丁同学说的4号门中有a是正确的,则可判断在1,2,3,4四扇门中,分别存有,,,b dc a,所以4号门里是a,故选A.点睛:本题主要考查了归纳推理问题,通过具体事例,根据各位同学的说法给出判断,其中正确理解题意,合理作出推理是解答此类问题的关键,同时注意仔细审题,认真梳理.11.A解析:A【解析】【分析】根据数塔,归纳可知,等式右边各数位上的数字均为1,位数跟等式左边的加数相同,从而可得结果.【详解】由19211⨯+=;1293111⨯+=;123941111⨯+=;12349511111⨯+=,...,归纳可得,等式右边各数位上的数字均为1,位数跟等式左边的加数相同,123456*********∴⨯+=,故选A.【点睛】本题主要考查归纳推理的应用,属于中档题. 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想) .12.B解析:B 【分析】用反证法证明,假设同时大于1,推出矛盾得出结果 【详解】假设()21a b ->,()21b c ->,()21c a ->, 三式相乘得()()()2221a b b c c a -⋅-⋅->,由()02a b c ,,,∈,所以()220212a a a a -+⎛⎫<-≤= ⎪⎝⎭,同理()21b b -≤,()21c c -≤,则()()()2221a a b b c c -⋅-⋅-≤与()()()2221a b b c c a -⋅-⋅->矛盾,即假设不成立,所以()()()222a b b c c a ---,,不能同时大于1,所以至少有一个不大于1, 故选B 【点睛】本题考查的是用反证法证明数学命题,把要证的结论进行否定,在此基础上推出矛盾,是解题的关键,同时还运用了基本不等式,本题较为综合二、填空题13.【分析】由等差数列和等比数列的通项公式求得它们的公共项归纳它们之间的项数计算可得所求值【详解】由可得:::可得与中的公共项为:且到之间有两个元素到之间有个元素到之间有个元素到之间有个元素到之间有个元 解析:679【分析】由等差数列和等比数列的通项公式,求得它们的公共项,归纳它们之间的项数,计算可得所求值. 【详解】由*31,2,nn n a n b n N =-=∈可得:{}n a :2,5,8,11,14,17,20,23,26,29,32,35,,{}n b :2,4,8,16,32,64,128,256,512,1024,2048,, 可得{}n a 与{}n b 中的公共项为:2,8,32,128,512,2048,,且2到8之间有两个元素,8到32之间有8个元素,32到128之间有32个元素,128到512之间有128个元素,512到2048之间有512个元素;由2832128512682++++=,而102420212048<<, 且2021在数列{}n a 中, 而2021到2048之间有8个元素, 则68258679n =+-=; 故答案为:679. 【点睛】关键点睛:本题主要考查归纳推理的应用.利用{}n a 与{}n b 的通项公式得到{}n a 与{}n b 的公共项,归纳它们之间的项数是解决本题的关键.14.【解析】分析:先根据推导过程确定AF 取法即得A +F 的值详解:因为所以所以所以点睛:本题考查运用类比方法求解问题考查归纳观察能力解析:15. 【解析】分析:先根据推导过程确定A,F 取法,即得A +F 的值. 详解:因为4432(1)4641n n n n n +-=+++,55432(1)5101051n n n n n n +-=++++,所以4321(1)14()6()4()n S n S n S n n +-=+++,54321(1)15()10()10()5()n S n S n S n S n n +-=++++所以43231231()4S n n a n a n a n =+++, 543241()5S n n Bn Cn Dn En =++++,所以11,055A F A F ==+=,. 点睛:本题考查运用类比方法求解问题,考查归纳观察能力.15.【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可详解:类比点到直线的距离可知在空间中点到平面的距离故答案是点睛:该题考查的是类比推理利用平面内点到直线的距离公式类比着得解析:2. 【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可. 详解:类比点00(,)P x y 到直线0Ax By C ++=的距离d =,可知在空间中点(0,1,1)-到平面230x y z +++=的距离d ==2. 点睛:该题考查的是类比推理,利用平面内点到直线的距离公式类比着得出空间中点到平面的距离公式,代入求得结果,属于简单题目.16.乙【解析】假设甲去过则甲说了假话乙说了假话丙说了假话丁说了真话与只有一位说了假话矛盾假设乙去过则甲说了真话乙说了假话丙说了真话丁说了真话与只有一位说了假话一致故填乙解析:乙【解析】假设甲去过,则甲说了假话,乙说了假话,丙说了假话,丁说了真话,与只有一位说了假话矛盾.假设乙去过,则甲说了真话,乙说了假话,丙说了真话,丁说了真话,与只有一位说了假话一致.故填乙.17.0【解析】由(x2)=2x 中原函数为偶函数导函数为奇函数;(x4)=4x3中原函数为偶函数导函数为奇函数;(cosx )=﹣sinx 中原函数为偶函数导函数为奇函数;…我们可以推断偶函数的导函数为奇函数解析:0 【解析】由(x 2)'=2x 中,原函数为偶函数,导函数为奇函数; (x 4)'=4x 3中,原函数为偶函数,导函数为奇函数; (cosx )'=﹣sinx 中,原函数为偶函数,导函数为奇函数; …我们可以推断,偶函数的导函数为奇函数. 若定义在R 上的函数f (x )满足f (﹣x )=f (x ), 则函数f (x )为偶函数,又∵g (x )为f (x )的导函数,则g (x )奇函数 故g (﹣x )+g (x )=0,即g (﹣0)=﹣g (0),g (0)=0 故答案为:0.18.【解析】根据数表的数的排列规律都是连续奇数第一行有个数第二行有个数且第一个数是;第三行有个数且第一个数是;第四行有个数且第一个数是第行有个数且第一个数是在第行是第行的第个数故答案为 解析:508【解析】根据数表的数的排列规律,1,3,5,...都是连续奇数第一行,有1个数,第二行,有2个数,且第一个数是221-;第三行,有3个数,且第一个数是321-;第四行,有4个数,且第一个数是42 1...-,第n 行,有n 个数,且第一个数是21n - ,1011211023,212047-=-=, 2017∴在第10行,()20171023+12,498n n =-⨯=,2017∴是第10行的第498个数,10498508m n ∴+=+=,故答案为508.19.【解析】试题分析:类比的所有正约数之和的方法有:的所有正约数之和可按如下方法得到:因为所以的所有正约数之和为所以的所有正约数之和为故应填考点:1合情推理解析:465. 【解析】试题分析:类比36的所有正约数之和的方法有:200的所有正约数之和可按如下方法得到:因为3220025=⨯,所以200的所有正约数之和为232(1222)(155)465+++++=,所以200的所有正约数之和为465,故应填465.考点:1、合情推理.20.1-【解析】解:根据已知的表达式可以观察归纳得到=1-解析:1-1(1)2nn +⋅.【解析】解:根据已知的表达式可以观察归纳得到=1-三、解答题21.(1)6n a n =;(2)证明见解析. 【分析】(1)由2132n n S n a =+,可得21113(1)2n n S n a ++=++,两式相减得1126n n a a n ++=+,故有()211216n n a a n +++=++,两式相减可得212n n a a +-=.故{}n a 中奇数项,偶数项分别成公差是12的等差数列,分别取出通项公式,可得n a ;(2)求出n b .法一:222(3231)642323231n n n b n n n n ==<=+-++++-,可证不等式成立.法二:利用数学归纳法(结合分析法、放缩法等)证明. 【详解】 (1)2132n n S n a =+,21113(1)2n n S n a ++∴=++,1126n n a a n +∴+=+,()211216n n a a n ++∴+=++,两式相减可得212n n a a +-=.{}n a ∴中奇数项,偶数项分别成公差是12的等差数列.2132n n S n a =+中,令n =1,得16a =, 令2n =可得:22211212,2S a a ∴=+=. ()()211121126621k a a k k k -∴=+-=-=⨯-, ()221211262k a a k k k =+-==⨯,综上所述可得6n a n =. (2)法一:64n b n =+.1n b ==<=,12[(52)(85)(3231)]3nn nb ++<-+-+++--=< 法二:数学归纳法(结合分析法、放缩法等)证明:①当n=1时,左边==,右边所以不等式成立. ②假设当()n k k N *=∈时,1kb+<则当n=k+1时11k b+++<<3<,<=.1610k =<+是成立的, 所以n=k+1时,不等式成立.根据①②知原不等式对于任意n *∈N 成立.【点睛】本题考查求数列的通项公式,考查利用数学归纳法证明不等式,属于中档题.22.(1)221a a a =+,3413a a a =+,4817aa a =+(2)猜想:()112121n n n a a a --=+-,证明见解析 【分析】(1)根据递推关系依次代入求解,(2)根据规律猜想,再利用数学归纳法证明 【详解】解:(1)1a a =,∴221a a a =+,3413a a a =+,4817aa a=+; (2)猜想:()112121n n n aa a--=+-. 证明:当1n =时,结论显然成立;假设n k =时结论成立,即()112121k k k aa a--=+-,则1n k =+时,()()()1111122121221211121k k k k k kk a a a a aaa--+--⋅+-==+-++-,即1n k =+时结论成立. 综上,对*n N ∈时结论成立. 【点睛】本题考查归纳猜想与数学归纳法证明,考查基本分析论证能力,属基础题 23.(1)4(2)见证明 【解析】 【分析】(1)由题意,化简函数的解析式为21()1211x f x x x x ==-++--,利用基本不等式,即求解其最小值;(2)利用数学归纳证明方法,即可作出证明. 【详解】(1)当1x >时,10x ->,2211(1)(1)11()12241111x x x x f x x x x x x -++-+====-++≥=----当且仅当2x =时等号成立,故2()1x f x x =-的最小值为4.⑵证明:①当n 1=时,左边1122=≥,所以当n 1=时,命题成立; ②假设当n k =时,命题成立 则有()*1111k N k 1k 22k 2+++≥∈++ , 则当n k 1=+时,左边111k 2k 32k 2++++++ 11111111112k 1k 22k 2k 12k 2k 122k 2k 12⎛⎫=+++++-≥+⨯-= ⎪+++++++⎝⎭ , 所以当n k 1=+时,命题也成立, 综上①②可知原命题成立. 【点睛】本题主要考查了利用基本不等式求最值,以及数学归纳证明不等式,其中解答中合理化简、构造 “一正、二定、三相等”,合理利用基本不等式求解,以及熟记数学归纳法的证明方法是解答的关键,着重考查了推理与运算能力,属于基础题. 24.(Ⅰ)见解析;(Ⅱ)见解析. 【解析】分析:(Ⅰ)计算出123371,,24a a a ===,由此猜想1212n n n a --=.( Ⅱ)利用数学归纳法证明猜想.详解:(Ⅰ)123371,,.24a a a ===,由此猜想1212n n n a --=;(Ⅱ)证明:当1n =时,11a =,结论成立;假设n k =(1k ≥,且k N +∈),结论成立,即1212k k k a --=,当+1n k =(1k ≥,且k N +∈)时,()11112122k k k k k k k a S S k a k a a a ++++=-=+--+=+-,即122k k a a +=+,所以()111+112122212222k k k k k k a a +-+--++-===,这就是说,当1n k =+时,结论成立, 根据(1)和(2)可知对任意正整数结论都成立,即1212n n n a --= ()n N +∈.点睛:(1)本题主要考查不完全归纳法和数学归纳法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)数学归纳法证明的关键是证明当n=k+1时命题成立,这时要利用已知和假设. 25.(1).;(2)见解析.【解析】试题分析:(1)分别求出的值,观察共有性质,从而可归纳猜想出;(2)根据数学归纳法的基本原理,①当n =1时,验证猜想正确,②假设当n =k 时(k ∈N *)时结论成立,证明当n =k +1时结论正确即可. 试题 (1)T 1==; T 2=+=×=×=; T 3=++=×=×=由此可猜想T n =.(2)证明:①当n =1时,T 1=,结论成立.②假设当n =k 时(k ∈N *)时结论成立, 即T k =.则当n =k +1时,T k +1=T k +=+==.即n =k +1时,结论成立. 由①②可知,T n =对于一切n ∈N *恒成立.26.(1)见解析. (2)见解析. 【解析】试题分析:(I )由112n n n S a a ⎛⎫=+ ⎪⎝⎭,n 分别取1,2,3,代入计算,即可求得结论,猜想1n a n n =-(II )用数学归纳法证明的关键是n=k+1时,变形利用归纳假设. 试题(1)当1n =时,111112a a a ⎛⎫=+ ⎪⎝⎭,∴11a =或11a =-(舍,0n a >). 当2n =时,1222112a a a a ⎛⎫+=+ ⎪⎝⎭,∴221a =. 当3n =时,12333112a a a a a ⎛⎫++=+ ⎪⎝⎭,∴232a =. 猜想:1n a n n =- (2)证明:①当1n =时,显然成立. ②假设n k =时,1k a k k -成立, 则当1n k =+时,1111111122k k k k k k k a S S a a a a ++++⎛⎫⎛⎫=-=+-+ ⎪ ⎪⎝⎭⎝⎭,即1111k kk ka aa a++⎛⎫-=-+=-=-⎪⎝⎭∴1ka+.由①、②可知,*n N∀∈,na点睛:数学归纳法两个步骤的关系:第一步是递推的基础,第二步是递推的根据,两个步骤缺一不可,有第一步无第二表,属于不完全归纳法,论断的普遍性是不可靠的;有第二步无第一步中,则第二步中的假设就失去了基础.只有把第一步结论与第二步结论联系在一起,才可以断定命题对所有的自然数n都成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章 §1 归纳与类比A 级 基础巩固一、选择题1.下面几种推理是合情推理的是( C )①由圆的周长为C =πd 类比出球的表面积为S =πd 2;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试,张军的成绩是100分,由此推出全班同学的成绩都是100分;④三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,归纳出n 边形的内角和是(n -2)·180°.A .①②B .①③④C .①②④D .②④[解析] 由合情推理的概念知①②④符合题意. 2.根据给出的数塔猜测123 456×9+7等于( B ) 1×9+2=11, 12×9+3=111, 123×9+4=1 111, 1 234×9+5=11 111, 12 345×9+6=111 111, …… A .1 111 110 B .1 111 111 C .1 111 112D .1 111 113[解析] 利用归纳推理,由已知可推测等号右侧应有7个1.3.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( C )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r (S 1、S 2、S 3、S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h (h 为四面体的高)[解析] 设△ABC 的内心为O ,连接OA 、OB 、OC ,将△ABC 分割为三个小三角形,这三个小三角形的高都是r ,底边长分别为a 、b 、c ;类比:设四面体A -BCD 的内切球的球心为O ,连接OA 、OB 、OC 、OD ,将四面体分割为四个以O 为顶点,以原来面为底面的四面体,高都是r ,所以有V =13(S 1+S 2+S 3+S 4)r .4.如图,在所给的四个选项中,最适合填入问号处,使之呈现一定的规律性的为( A )[解析] 观察第一组中的三个图,可知每一个黑色方块都从右向左循环移动,每次移动一格,由第二组图的前两个图,可知选A.5.平面几何中,有边长为a 的正三角形内任一点到三边距离之和为定值32a ,类比上述命题,棱长为a 的正四面体内任一点到四个面的距离之和为( B )A.43a B.63a C.54a D.64a [解析] 将正三角形一边上的高32a 类比到正四面体一个面上的高63a ,由正三角形“分割成以三条边为底的三个三角形面积的和等于正三角形的面积”,方法类比为“将四面体分割成以各面为底的三棱锥体积之和等于四面体的体积”证明.二、填空题6.(2018·聊城模拟)高三某班一学习小组的A 、B 、C 、D 四位同学周五下午参加学校的课外活动,在课外活动中,有一人在打篮球,有一人在画画,有一人在跳舞,另外一人在散步,①A 不在散步,也不在打篮球;②B 不在跳舞,也不在散步;③“C 在散步”是“A 在跳舞”的充分条件;④D 不在打篮球,也不在散步;⑤C 不在跳舞,也不在打篮球.以上命题都是真命题,那么D 在画画__.[解析] ∵以上命题都是真命题, ∴对应的情况是:∵③“C∴C在散步,则D在画画,故答案为画画.7.观察下列等式:①cos2α=2cos2α-1;②cos4α=8cos4α-8cos2α+1;③cos6α=32cos6α-48cos4α+18cos2α-1;④cos8α=128cos8α-256cos6α+160cos4α-32cos2α+1;⑤cos10α=m cos10α-1 280cos8α+1 120cos6α+n cos4α+p cos2α-1.可以推测,m-n+p=962__.[解析]观察每一个等式中最高次幂的系数:2,8,32,128,m,构成一个等比数列,公比为4,故m=128×4=512.观察每一个等式中cos2α的系数:2,-8,18,-32,p,规律是1×2,-2×4,3×6,-4×8,故p=5×10=50.每一个式子中的系数和为1,故m-1 280+1 120+n+p-1=1,代入m和p,可求得n=-400,故m-n+p=512+400+50=962.8.设函数f(x)=xx+2(x>0),观察:f1(x)=f(x)=xx+2,f2(x)=f(f1(x))=x3x+4,f3(x)=f(f2(x))=x7x+8,f 4(x )=f (f 3(x ))=x15x +16,……根据以上事实,由归纳推理可得: 当n ∈N *且n ≥2时,f n (x )=f (f n -1(x ))=x(2n -1)x +2n.[解析] 本题主要考查了归纳推理及分析解决问题的能力. 依题意:f 1(x )=x x +2=x(2-1)x +2,f 2(x )=x 3x +4=x (22-1)x +22, f 3(x )=x 7x +8=x (23-1)x +23, f 4(x )=x 15x +16=1(24-1)x +24.∴当n ∈N *且n ≥2时,f n (x )=x(2n-1)x +2n.三、解答题 9.已知S n =11×2+12×3+13×4+…+1n (n +1),写出S 1,S 2,S 3,S 4的值,并由此归纳出S n 的表达式.[解析] S 1=11×2=1-12=12;S 2=11×2+12×3=(1-12)+(12-13)=1-13=23;S 3=11×2+12×3+13×4=(1-12)+(12-13)+(13-14)=1-14=34;S 4=11×2+12×3+13×4+14×5=(1-12)+(12-13)+(13-14)+(14-15)=1-15=45;由此猜想:S n =nn +1(n ∈N +).10.在△ABC 中,余弦定理可叙述为a 2=b 2+c 2-2bc cos A ,其中a 、b 、c 依次为角A 、B 、C 的对边,类比上述定理,给出空间四面体性质的猜想.[解析] 如图,S 1,S 2,S 3,S 分别表示△P AB ,△PBC ,△PCA ,△ABC 的面积,α、β、γ依次表示平面P AB 与平面PBC 、平面PBC 与平面PCA 、平面PCA 与平面ABP 之间所成二面角的大小.故猜想余弦定理类比推理到三维空间的表现形式为:S 2=S 21+S 22+S 23-2S 1S 2cos α-2S 2S 3cos β-2S 2S 1cos γ.B 级 素养提升一、选择题1.观察下列式子:1+122<32,1+122+132<53,1+122+132+142<74,…,根据以上式子可以猜想:1+122+132+…+120192<( C )A.40352019B.40362019C.40372019D.40392019[解析] 本题考查了归纳的思想方法.观察可以发现,第n (n ≥2)个不等式左端有n +1项,分子为1,分母依次为12、22、32、…、(n +1)2;右端分母为n +1,分子成等差数列,首项为3,公差为2,因此第n 个不等式为1+122+132+…+1(n +1)2<2n +1n +1, 所以当n =2018时不等式为: 1+122+132+…+120192<40372019. 2.类比三角形中的性质: (1)两边之和大于第三边 (2)中位线长等于底边长的一半 (3)三内角平分线交于一点 可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于该顶点所对的面面积的14(3)四面体的六个二面角的平分面交于一点 其中类比推理方法正确的有( C ) A .(1) B .(1)(2) C .(1)(2)(3)D .都不对 [解析] 以上类比推理方法都正确,需注意的是类比推理得到的结论是否正确与类比推理方法是否正确并不等价,方法正确结论也不一定正确.二、填空题3.在以原点为圆心,半径为r 的圆上有一点P (x 0,y 0),则圆的面积S 圆=πr 2,过点P 的圆的切线方程为x 0x +y 0y =r 2.在椭圆x 2a 2+y 2b2=1(a >b >0)中,当离心率e 趋近于0时,短半轴b就趋近于长半轴a ,此时椭圆就趋近于圆.类比圆的面积公式得椭圆面积S 椭圆=πab .类比过圆上一点P (x 0,y 0)的圆的切线方程,则过椭圆x 2a 2+y 2b2=1(a >b >0)上一点P (x 1,y 1)的椭圆的切线方程为x1a2·x+y1b2·y=1.[解析]当椭圆的离心率e趋近于0时,椭圆趋近于圆,此时a,b都趋近于圆的半径r,故由圆的面积S=πr2=π·r·r,猜想椭圆面积S椭=π·a·b,其严格证明可用定积分处理.而由切线方程x0·x+y0·y=r2变形得x0r2·x+y0r2·y=1,则过椭圆上一点P(x1,y1)的椭圆的切线方程为x1a2·x+y1b2·y=1,其严格证明可用导数求切线处理.4.如图,直角坐标系中每个单元格的边长为1,由下往上的6个点1,2,3,4,5,6的横纵坐标(x i,y i)(i=1,2,3,4,5,6)分别对应数列{a n}(n∈N*)的前12项,如下表所示:2017201820191009_.[解析]由题图知a1=x1=1,a3=x2=-1,a5=x3=2,a7=x4=-2,…,则a1+a3=a5+a7=…=a2017+a2019=0.又a2=y1=1,a4=y2=2,a6=y3=3,…,则a2018=1009,所以a2017+a2018+a2019=1009.三、解答题5.我们知道:12=1,22=(1+1)2=12+2×1+1,32=(2+1)2=22+2×2+1,42=(3+1)2=32+2×3+1,……n2=(n-1)2+2(n-1)+1,左右两边分别相加,得n 2=2×[1+2+3+…+(n -1)]+n , ∴1+2+3+…+n =n (n +1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解析] 我们记S 1(n )=1+2+3+…+n ,S 2(n )=12+22+32+…+n 2,…,S k (n )=1k +2k +3k +…+n k (k ∈N *). 已知 13=1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, ……n 3=(n -1)3+3(n -1)2+3(n -1)+1. 将左右两边分别相加,得S 3(n )=[S 3(n )-n 3]+3[S 2(n )-n 2]+3[S 1(n )-n ]+n . 由此知S 2(n )=n 3+3n 2+2n -3S 1(n )3=2n 3+3n 2+n6=n (n +1)(2n +1)6.6.(2019·隆化县高二检测)在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明理由.[解析] 如图(1)所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC , ∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2. 又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC 2. ∴1AD 2=1AB 2+1AC2. 类比AB ⊥AC ,AD ⊥BC 猜想:四面体ABCD 中,AB 、AC 、AD 两两垂直, AE ⊥平面BCD .则1AE 2=1AB 2+1AC 2+1AD 2. 如图(2),连接BE 延长交CD 于F ,连接AF . ∵AB ⊥AC ,AB ⊥AD , ∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF . 在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AF 2. 在Rt △ACD 中,AF ⊥CD , ∴1AF 2=1AC 2+1AD2 ∴1AE 2=1AB 2+1AC 2+1AD2,故猜想正确. C 级 能力拔高(2019·烟台高二检测)已知椭圆具有如下性质:若M ,N 是椭圆C 上关于原点对称的两点,点P 是椭圆上任意一点,若直线PM ,PN 的斜率都存在,并记为k PM ,k PN ,那么k PM 与k PN 之积是与点P 位置无关的定值.试对双曲线x 2a 2-y 2b2=1,写出具有类似的性质,并加以证明.[解析] 类似的性质为:若M ,N 是双曲线x 2a 2-y 2b 2=1上关于原点对称的两点,点P 是双曲线上任意一点,若直线PM ,PN 的斜率都存在,并记为k PM ,k PN ,那么k PM 与k PN 之积是与点P 位置无关的定值.证明如下:设M (m ,n ),P (x ,y ), 则N (-m ,-n ),因为点M (m ,n )在双曲线上,所以n 2=b 2a 2m 2-b 2. 同理,y 2=b 2a 2x 2-b 2. 则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).由Ruize收集整理。

相关文档
最新文档