山东省菏泽市2016年高考预测金卷(数学文)及答案解析(Word版)

合集下载

2016年山东高考数学文科卷解析

2016年山东高考数学文科卷解析

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)文科数学解析戴又发本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,将将本试卷和答题卡一并交回. 注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号.答案卸载试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式: 如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)设集合{}{}3,4,5=,1,3,5=A ,6},{1,2,3,4,5=U B ,则=)(B A C U (A )}6,2{ (B )}6,3{ (C )}5,4,3,1{ (D )}6,4,2,1{【解析】 由题意}5,4,3,1{=A B ,所以=)(B A C U }6,2{,故选(A )(2)若复数-iz 12=,其中i 为虚数为单位,则=z(A )i +1 (B )-i 1 (C )i -+1(D )-i -1【解析】因为i -iz +1=12=,所以=z -i 1,故选(B )(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是 (A )56 (B )60 (C )120 (D )140【解析】 由图可知组距为2.5, 每周的自习时间少于22.5小时的频率为0.30=2.5×)0.1+0.02(所以,每周自习时间不少于22.5小时的人数是140=0.301×200)(-人,故选(D ).(4)若变量y x ,满足⎪⎩⎪⎨⎧≥≤-≤+09322x y x y x ,则22y x +的最大值是(A )4 (B )9 (C )10 (D )12【解析】 由22y x +是点),(y x 到原点距离的平方, 故只需求出三直线的交点),(),,(),,(133020--, 所以),(13-是最优解,22y x +的最大值是10,故选C(5)一个半球和四棱锥组成的几何体,其三 视图如右图所示,则该几何体的体积为(A )π32+31(B )π32+31 (C )π62+31 (D )π62+1【解析】 由三视图可知,半球的体积为π62, 四棱锥的体积为31,所以该几何体的体积为π62+31,故选C .(6)已知直线b a ,分别在两个不同的平面βα、内,则“直线a 和直线b 相交”是“平面α和平面α相交”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件【解析】 由直线a 和直线b 相交,可知平面βα、有公共点,所以平面α和平面β相交. 又如果平面α和平面β相交,直线a 和直线b 不一定相交.故选(A ).(7)已知圆)0>(0=2+:M 22a ay -y x 截直线0=+y x 所得线段长度是22,则圆M 与1=)1(+)1(:22y -x -N 的位置关系是(A )内切 (B )相交 (C )外切 (D )相离【解析】 由圆0=2+:M 22ay -y x 的圆心坐标为),(a M 0,半径为a ,M 到直线0=+y x 所得距离为2=a d ,由2222=-da ,得2=a ,又圆1=)1(+)1(:22y -x -N 的圆心),(11N ,半径为1,由2=MN ,1+2<2<12-,可知圆M 与圆N 与相交,故选(B ).(8)ABC 中,角C B,A,的对边分别为a,b,c ,已知)sin 1(2=,=22A -b a c b ,则=A(A )43π(B )3π (C )4π (D )6π【解析】由余弦定理,得A bc -c b a cos 2+=222,又)sin 1(2=,=22A -b a c b ,所以有 )sin 1(2=cos 22222A -b A b -b ,即A A sin =cos ,4=πA ,故选(C ).(9)已知函数)(x f 的定义域为R ,当0<x 时,1-x x f 3=)(;当11≤≤x -时,)(—=)(x f -x f ;当21>x 时,)(=)+(2121x -f x f ,则=)(6f (A )—2(B )—1(C )0 (D )2【解析】由)(=)+(2121x -f x f ,知当21>x 时,)(x f 的周期为1,所以)(=)(16f f .又当11≤≤x -时,)x (f )x (f -=-,所以)(—=)(11-f f . 于是2111163=---=--==])[()()()(f f f .故选(D ).(10)若函数)(=x f y 的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称)(=x f y 具有T 性质.下列函数具有T 性质的是 (A )x y sin = (B )x y ln =(C )x e y =(D )3x y =【解析】 因为函数x y ln =,xe y =的图象上任何一点的切线的斜率都是正数; 函数3x y =的图象上任何一点的切线的斜率都是非负数.都不可能在这两点处的切线互相垂直,即不具有T 性质.故选(A ).第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分. (11)执行右边的程序框图,若输入n 的值为3, 则输出的S 的值为【解析】1=i 时,执行循环体后-12=S ,3≥i 不成立;2=i 时,执行循环体后2--3+12=S ,3≥i 不成立;3=i 时,执行循环体后3-2--4+3+12=S ,3≥i 成立,退出循环;所以输出1=12=4+3+12=S -3-2--,故填1.(12)观察下列等式:2×1×34=)32(sin +)3(sin 22--ππ;3×2×34=)54(sin +)53(sin +)52(sin +)5(sin 2222----ππππ;4×3×34=)76(sin ++)73(sin +)72(sin +)7(sin 2222----ππππ ;5×4×34=)98(sin +)93(sin +)92(sin +)9(sin 2222----ππππ;…… 照此规律,=)1+22(sin +)1+23(sin +)1+22(sin +)1+2(sin2222----n πn n πn πn π. 【解析】显然34在各式中均保留;第一式乘以2×1,第二式乘以3×2,第三式乘以4×3,…,第n 式应乘以)1+(×n n ,所以应填)1+(××34n n .(13)已知向量)4,6(=),1,1(=-b -a .若)+(b ta a ⊥,则实数t 的值为【解析】 因为10=4+6=·b a ,2=2a , 由)+(b ta a ⊥,得0=)+(•b ta a ,即0=+2ab t a ,0=10+2t ,所以实数t 的值为-5,应填-5.(14)已知双曲线)>,>(=:0012222b a by -a x E ,矩形ABCD 的四个顶点在E 上,CDAB ,的中点为E 的两个焦点,且BC 3=AB 2,则E 的离心率为 【解析】由题意c 2=BC ,所以3c =AB ,于是点),23(c c 在双曲线E 上,代入方程,得1492222=bc -a c ,在由2c b a =+22得E 的离心率为2==ace ,应填2.(15)在已知函数=)(x fb ,使得关于x 的方程x f =)(【解析】因为m mx -x x g 422+=)(的对称轴为m x =,所以m x >时m mx -x x f 422+=)(单调递增,只要b 大于m mx -x x g 422+=)(的最小值24m m —时,关于x 的方程b x f =)(在m x >时有一根;又x x h =)(在m x ≤,0>m 时,存在实数b ,使方程b x f =)(在m x ≤时有两个根,只需m b ≤<0;故只需m m m <—24即可,解之,注意0>m ,得3>m ,故填),(∞+3.三、解答题:本答题共6小题,共75分. (16)(本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动,参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.若两次记录的数分别为y x ,.奖励规则如下: ① 若3≤xy ,则奖励玩具一个; ② 若8≥xy ,则奖励水杯一个; ③ 其余情况奖励饮料一瓶.假定转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由. 【解析】(Ⅰ)由于每次获得各区域数的概率相等,两次结果互相独立. 将两次转的结果列表如下:共可转出16种不同结果.其中满足3≤xy 的共有5种,所以小亮获得玩具的概率为165; (Ⅱ)满足8≥xy 的共有6种,所以小亮获得水杯的概率为83=166; 由165=1661651--知小亮获得饮料的概率为165. 所以,小亮获得水杯的概率比获得饮料的概率大.(17)(本小题满分12分)设2)cos (sin sin sin 32=)(x x -x --x πx f )(. (Ⅰ)求)(x f 的单调递增区间;(Ⅱ)把)(=x f y 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得的图象向左平移3π个单位,得到)(=x g y 的图象,求)6(πg 的值.【解析】(Ⅰ)因为2)cos (sin sin sin 32=)(x x -x --x πx f )(12sin +sin 32=2x -x 13+2cos 32sin =-x x -13+32sin 2=-πx -)(.)(x f 的单调递增区间因满足)∈(,2+2≤32≤2+2Z k πk ππx -πk π-即πk πx πk π-2+6522+6≤≤, πk πx πk π-+125+12≤≤, 所以)(x f 的单调递增区间为]+125+12[πk ππk π-,,)(Z k ∈.(Ⅱ)把)(=x f y 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到13+3sin2-πx -)(, 再把所得的图象向左平移3π个单位,得到13+sin 2=)(=-x x g y ,所以3=13+21×2=)6(-πg 的值. BEFGH(18)(本小题满分12分)在如图所示的几何体中,D 是AC 的中点,EF//DB . (Ⅰ)已知EC =AE BC,=AB .求证:FB ⊥AC ;(Ⅱ)已知H G ,分别是EC 和FB 的中点.求证://GH 平面ABC . 【解析】(Ⅰ)因为EF//DB ,所以BDEF 在一个平面内,又EC =AE BC,=AB ,D 是AC 的中点, 所以ED AC BD,AC ⊥⊥,⊂BD 平面BDEF ,⊂ED 平面BDEF ,E =ED BD ,所以⊥AC 平面BDEF ,而⊂FB 平面BDEF ,所以FB ⊥AC . (Ⅱ)连结ED ,取ED 的中点为M ,连结HM GM,,则HM//BD GM//AC,,⊂GM 平面GHM ,⊂HM 平面GHM ,⊂AC 平面ABC ,⊂BD 平面ABC ,M =HM GM ,所以平面GHM//平面ABC .又⊂GH 平面GHM ,所以//GH 平面ABC .(19)(本小题满分12分)已知数列{}n a 的前n 项和n n S n 832+=,{}n b 是等差数列,且1++=n n n b b a . (Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令nn n n n b a c )2()1(1++=+.求数列{}n c 的前n 项和n T . 【解析】(Ⅰ)因为数列{}n a 的前n 项和n n S n 832+=, 所以111=a ,当2≥n 时,56)1(8)1(383221+=----+=-=-n n n n n S S a n n n ,又56+=n a n 对1=n 也成立,所以56+=n a n .又因为{}n b 是等差数列,设公差为d ,则d b b b a n n n n +=+=+21. 当1=n 时,d b -=1121;当2=n 时,d b -=1722, 解得3=d ,所以数列{}n b 的通项公式为132+=-=n da b n n . (Ⅱ)由1112)33()33()66()2()1(+++⋅+=++=++=n nn n n n n n n n n b a c , 于是14322)33(2122926+⋅+++⋅+⋅+⋅=n n n T , 两边同乘以2,得21432)33(2)3(29262++⋅++⋅++⋅+⋅=n n n n n T ,两式相减,得214322)33(23232326++⋅+-⋅++⋅+⋅+⋅=-n n n n T2222)33(21)21(2323+⋅+---⋅+⋅=n n n222232)33()21(2312++⋅=⋅++-⋅+-=n n n n n n T .(20)(本小题满分13分)设x x x f ln =)(-.,)12(+2R a x a -ax ∈(Ⅰ)令)(′=)(x f x g ,求)(x g 的单调区间; (Ⅱ)已知)(x f 在1=x 处取得极大值.求实数a 的取值范围.【解析】(Ⅰ) 因为a ax x -a -ax x -x f x g 2+2ln =12+2ln +1=)(′=)(. 求导数)0>(,21=)(′x a xx g -. 当0≤a 时,0>)(′x g ,)(x g 单调递增区间为∞)(0,+; 当0>a 时,xaxx g -21=)(′,当a x 21=时,0=)(′x g . 此时)(x g 单调递增区间为)21(0,a ;单调递减区间为∞),21(+a. (Ⅱ)由(Ⅰ)可知0=)1(′f ,(1) 当0≤a 时,)(′x f 单调递增区间为∞)(0,+, 所以),(10∈x 时0<)(′x f ;当),(∞∈+1x 时,0>)(′x f ; )(x f 在1=x 处取得极小值,不合题意.(2)当21≤<0a 时,1≥21a ,由(Ⅰ)可知)(′x f 在区间)21(0,a上为增函数, 于是在区间),(10上0<)(′x f ,)(x f 在区间),(10上是减函数,不合题意.(3)当21>a 时,1<21<0a ,由(Ⅰ)可知)(′x f 在区间)21(0,a上为增函数,在区间∞)21(+,a 上为减函数.所以在区间)21(1,a上0>)(′x f ,在区间∞)(+1,上0<)(′x f , 此时)(x f 在1=x 处取得极大值,符合题意.所以,实数a 的取值范围是21>a .(21)(本小题满分14分)已知椭圆)0>>(1=+:2222b a by a x C 的长轴长为4,焦距为22.(Ⅰ)求椭圆C 的方程;(Ⅱ)过动点0)>m)(m 0,M (的直线交x 轴于点N ,交C 于点P ,A (P 在第一象限),且M 是线段PN 的中点,过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 段于点B .(i )设直线QM PM,的斜率分别为k ′k,,证明kk ′为定值; (ii )求直线AB 的斜率的最小值. 【解析】(Ⅰ)由长轴长为4,知2=a ,又焦距为22,得2=c ,所以2==222-c a b .所以,椭圆C 的方程为1=2+422y x . (Ⅱ)(i )设P 点坐标为)0>,0>(),y ,P 0000y x x (,由点0)>m)(m 0,M (可得,)2,(),,2m P 00m -x Q x (直线, 所以直线PM 的斜率0=x m k ,直线QM 的斜率03==′x m -k , 于是3=k k ′-,所以kk ′为定值3-. (ii )设),(),,(2211y x B y x A ,直线PA 的方程为m kx y +=,直线QB 的方程为m kx -y +3=,将m kx y +=代入1=2+422y x ,得 0=42+4+)2+1222-m kmx x k (. 所以22102+142=k -m x x ,0221)2+1(42=x k -m x , m x k -m m kx y +)2+1()22k(=+=02211. 同理0222)18+1(42=x k -m x ,m x k -m -y +)18+1()26k(=0222. 所以0222202202212)2+1)(18+1()2(32k =)2+1(42)18+1(42=x k k -m -x k -m -x k -m -x x 0222202202212)2+1)(18+1()21)(+k 6(8=)2+1()22k()18+1()26k(=x k k -m k -x k -m -x k -m --y y 于是)1+6(41=41+6==k 21212AB kk k k -x x -y y . 0>∴,0>,0>0k x m ,26≥)1+6(41=k AB k k ,当且仅当66=k 时等号成立. 所以直线AB 的斜率的最小值为26.。

【精品】2016年山东文数高考试题文档版(含答案)

【精品】2016年山东文数高考试题文档版(含答案)

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð=(A ){2,6}(B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} (2)若复数21i z =-,其中i 为虚数单位,则z = (A )1+i (B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56(B )60 (C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x2+y2的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )12+π33 (B )12+π33 (C )12+π36 (D )21+π6(6)已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆N :22(1)1x y +-=(-1)的位置关系是(A )内切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A= (A )3π4(B )π3(C )π4(D )π6(9)已知函数f(x)的定义域为R.当x <0时,f(x)=x3-1;当-1≤x ≤1时,f(-x)= —f(x);当x >12时,f(x+12)=f(x —12).则f(6)=(A )-2 (B )-1 (C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是学科&网(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

【精校版】2016年山东省高考数学(文)试题(Word版,含答案)

【精校版】2016年山东省高考数学(文)试题(Word版,含答案)

2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分、共4页。

满分150分。

考试用时120分钟。

考试结束后、将将本试卷和答题卡一并交回。

注意事项:1.答卷前、考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后、用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动、用橡皮擦干净后、在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答、答案必须写在答题卡各题目指定区域内相应的位置、不能写在试卷上;如需改动、先划掉原来的答案、然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案、解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥、那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题、每小题5分、共50分、在每小题给出的四个选项中、只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===、则()U A B ð= (A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}(2)若复数21i z =-、其中i 为虚数单位、则z = (A )1+i (B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时)、制成了如图所示的频率分布直方图、其中自习时间的范围是[17.5、30]、样本数据分组为[17.5、20)、 [20、22.5)、 [22.5,25)、[25、27.5)、[27.5、30).根据直方图、这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x 、y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体、其三视图如图所示.则该几何体的体积为(A )12+π33(B)1+π33(C)1+π36(D)1+π6(6)已知直线a 、b 分别在两个不同的平面α、b 内、则“直线a 和直线b 相交”是“平面α和平面b 相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是、则圆M 与圆N :22(1)1x y +-=(-1)的位置关系是(A )内切(B )相交(C )外切(D )相离(8)ABC △中、角A 、B 、C 的对边分别是a 、b 、c 、已知22,2(1sin )b c a b A ==-,则A =(A )3π4(B )π3(C )π4(D )π6 (9)已知函数f(x )的定义域为R.当x <0时、f(x )=x 3-1;当-1≤x ≤1时、f(-x )= —f(x );当x >12时、f(x +12)=f(x —12).则f(6)= (A )-2 (B )-1(C )0 (D )2(10)若函数()y f x =的图象上存在两点、使得函数的图象在这两点处的切线互相垂直、则称()y f x =具有T 性质.下列函数中具有T 性质的是(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =第II 卷(共100分)二、填空题:本大题共5小题、每小题5分、共25分。

2016年高考山东文科数学试题及答案(word解析版)

2016年高考山东文科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(山东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年山东,文1,5分】设集合{}{}1,2,3,4,5,6,1,3,5,{3,4,5}U A B ===,则()U A B =U ð( )(A ){}2,6 (B ){}3,6 (C ){}1,3,4,5 (D ){}1,2,4,6 【答案】A【解析】={1,34,5}A B U ,,()={2,6}U A B U ð,故选A . 【点评】考查集合的并集及补集运算,难度较小.(2)【2016年山东,文2,5分】若复数21iz =-,其中i 为虚数单位,则z =( )(A )2i - (B )2i (C )2- (D )2 【答案】B【解析】22(1i)=1i 1i 2z -==+-,1i z =-,故选B .【点评】复数的运算题目,考察复数的除法及共轭复数,难度较小. (3)【2016年山东,文3,5分】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( ) (A )56 (B )60 (C )120 (D )140 【答案】D【解析】由图可知组距为2.5,每周的自习时间少于22.5小时的频率为(0.020.1) 2.50.30+⨯=, 所以,每周自习时间不少于22.5小时的人数是()20010.30140⨯-=人,故选D . 【点评】频率分布直方图题目,注意纵坐标为频率/组距,难度较小.(4)【2016年山东,文4,5分】若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则22x y +的最大值是( )(A )4(B )9 (C )10 (D )12【答案】C 【解析】由22x y +是点(),x y 到原点距离的平方,故只需求出三直线的交点()()()0,2,0,3,3,1--,所以()3,1-是最优解,22x y +的最大值是10,故选C .(5)【2016年山东,文5,5分】有一个半球和四棱锥组成的几何体,其三视图如右图所示,则该几何体的体积为( )(A )1233+π (B )1233+π (C )1236+π (D )216+π【答案】C【解析】由三视图可知,此几何体是一个正三棱锥和半球构成的,体积为3142112111+=+3323ππ⨯⨯⨯⨯(),故选C .【点评】考察三视图以及几何体的体积公式,题面已知是半球和四棱锥,由三视图可看出是正四棱锥,难度较小. (6)【2016年山东,文6,5分】已知直线,a b 分别在两个不同的平面α,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A【解析】若直线相交,一定有一个交点,该点一定同时属于两个平面,即两平面相交,所以是充分条件;两平面相交,平面内两条直线关系任意(平行、相交、异面),即充分不必要条件,故选A .(7)【2016年山东,文7,5分】已知圆()22:200M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆22:(1)+(1)=1N x y --的位置关系是( )(A )内切 (B )相交 (C )外切 (D )相离 【答案】B【解析】圆()22:200M x y ay a +-=>化成标准形式222()(0)x y a a a +-=>解法1:圆心(0, )a 到直线0x y +=的距离为2ad =,由勾股定理得2222a a ⎛⎫+= ⎪⎝⎭, 解得2,0,2a a a =±>∴=Q ,圆M 与圆22:(1)+(1)=1N x y --的圆心距为22(10)(12)2-+-=,圆M 半 径12R =,圆N 半径212121,2,R R R R R =-<<+∴Q 圆M 与圆N 相交,故选B .解法2:直线0x y +=斜率为1-,倾斜角为135︒,可知2,2BM OB OM a ==∴==,B 点坐标为()1,1-,即为圆N 的圆心.圆心在圆M 中,且半径为1,即两圆相交,故选B .(8)【2016年山东,文8,5分】ABC ∆中,角,,A B C 的对边分别是,,a b c ,已知b c =,222(1sin )a b A =-,则A=( )(A )34π (B )3π (C )4π (D )6π【答案】C【解析】222222(1sinA),2cos 2(1sinA),a b b c bc A b =-∴+-=-Q 又b c =Q ,2222cos b b A ∴-22(1sin )b A =-,cos sin A A ∴=,在ABC ∆中,(0,),A 4A ππ∈∴=,故选C .(9)【2016年山东,文9,5分】已知函数()f x 的定义域为R ,当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则()6f =( )(A )2- (B )1- (C )0 (D )2 【答案】D【解析】由1122f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,知当12x >时,()f x 的周期为1,所以()()61f f =.又当11x -≤≤时,()()f x f x -=-,所以()()11f f =--.于是()()()()3611112f f f ⎡⎤==--=---=⎣⎦,故选D .(10)【2016年山东,文10,5分】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数具有T 性质的是( )(A )sin y x = (B )ln y x = (C )x y e = (D )3y x = 【答案】A【解析】因为函数ln y x =,x y e =的图象上任何一点的切线的斜率都是正数;函数3y x =的图象上任何一点的切线的斜率都是非负数.都不可能在这两点处的切线互相垂直,即不具有T 性质,故选A .第II 卷(共100分)二、填空题:本大题共5小题,每小题5分. (11)【2016年山东,文11,5分】执行右边的程序框图,若输入n 的值为3,则输出的S 的值为 . 【答案】1【解析】根据题目所给框图,当输入3n =时,依次执行程序为:1,0i S ==,021=21S =+--,13i =≥不成立,12i i =+=,213231S =-+-=-,23i =≥不成立,13i i =+=,3143211S =-+-=-=,33i =≥成立,故输出的S 的值为1.(12)【2016年山东,文12,5分】观察下列等式:2224sin sin 12333ππ--⎛⎫⎛⎫+=⨯⨯ ⎪ ⎪⎝⎭⎝⎭ 22222344sin sin sin sin 2355553ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22222364sin sin sin sin 3477773ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22222384sin sin sin sin 4599993ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭……2222232sin sin sin sin 21212121n n n n n ππππ----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭ . 【答案】()413n n+【解析】由题干中各等式左端各项分母的特点及等式右端所表现出来的规律经过归纳推理即得.(13)【2016年山东,文13,5分】已知向量()1,1a =-r ,()6,4b =-r .若()a tab ⊥+r r r,则实数t 的值为 .【答案】5-【解析】由已知条件可得()6,4ta b t t +=+--r r,又因()a ta+b ⊥r r r 可得()=a ta+b ⋅r r r 0,即()()()6141642100t t t t t +⨯+--⨯-=+++=+=,即得5t =-.(14)【2016年山东,文14,5分】已知双曲线()2222:10,0x y E a b a b-=>>,若矩形ABCD 的四个顶点在E 上,,AB CD的中点为E 的两个焦点,且23AB BC =,则E 的离心率为 .【答案】2【解析】由题意BC 2c =,所以2AB 3BC =,于是点3,2c c ⎛⎫⎪⎝⎭在双曲线E 上,代入方程,得2222914c c a b -=,在由222a b c +=得E 的离心率为2ce a==.(15)【2016年山东,文15,5分】在已知函数()2,24,x x mf x x mx m x m⎧≤⎪=⎨-+>⎪⎩,其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是 .【答案】()3,+∞【解析】因为()224g x x mx m =-+的对称轴为x m =,所以x m >时()224f x x mx m =-+单调递增,只要b 大于()224g x x mx m =-+的最小值24m m -时,关于x 的方程()f x b =在x m >时有一根;又()h x x =在x m ≤,0m >时,存在实数b ,使方程()f x b =在x m ≤时有两个根,只需0b m <≤;故只需24m m m -<即可,解之,注意0m >,得3m >,故填()3+∞,. 三、解答题:本大题共6题,共75分.(16)【2016年山东,文16,12分】某儿童乐园在“六一”儿童节推出了一项趣味活动,参加活动的儿 童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设 两次记录的数分别为x ,y .奖励规矩如下:①若3xy ≤,则奖励玩具一个;②若8xy ≥,则奖 励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此活动.(1)求小亮获得玩具的概率; (2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解:(1)设获得玩具记为事件A ,获得水杯记为事件B ,获得一瓶饮料记为事件C ,转盘转动两次后获得的数据记为(),x y ,则基本事件空间为()()()()()()()()1,11,21,31,42,12,22,32,4、、、、、、、、()()()()()()()()3,13,23,33,44,14,24,34,4、、、、、、、共16种,事件A 为()()()()()1,11,21,32,13,1、、、、,共5种, 故小亮获得玩具的概率()516A P =. (2)事件B 为()()()()()()2,43,33,44,24,34,4、、、、、共6种,故小亮获得水杯的概率()63168B P ==,获得饮料的指针2431A概率()()()5116C A B P P P =--=.因为()()B C P P >,所以小亮获得水杯比获得饮料的概率大. (17)【2016年山东,文17,12分】设2())sin (sin cos )f x x x x x π=---.(1)求()f x 的单调递增区间;(2)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移3π个单位,得到函数()y g x =的图象,求6y g π⎛⎫= ⎪⎝⎭的值.解:(1)()()()2sin sin sin cos 2sin sin cos 2sin cos ()2sin 21f x x x x x x x x x x x x π=---=-+-+-sin 2212sin 2212sin 12213x x x x x π⎛⎫⎛⎫=-=-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭ ()222232k x k k Z πππππ-+≤-≤+∈,()51212k x k k Z ππππ-+≤≤+∈, 所以单调递增区间为()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦. (2)经变换()2sin1g x x =,6g π⎛⎫= ⎪⎝⎭(18)【2016年山东,文18,12分】在如图所示的几何体中,D 是AC 的中点,//EF DB .(1)已知AB BC =,AE EC =.求证:AC FB ⊥;(2)已知G ,H 分别是EC 和FB 的中点.求证://GH ABC 平面. 解:(1)连接ED ,AB BC =Q ,AE EC =.AEC ∴∆和ABC ∆为等腰三角形.又D Q 是AC 的中点,ED AC ∴⊥,BD AC ⊥;AC ∴⊥平面EDB .又//EF DB Q , ∴平面EDB 与平面EFBD 为相同平面;AC ∴⊥平面EFBD .FB ⊆Q 平面EFBD ;AC FB ∴⊥. (2)取ED 中点I ,连接IG 和IH .在EDC ∆中I 和G 为中点;//IG CD ∴.//EF DB Q ;∴四边形EFBD 为梯形.I Q 和H 分别 为ED 和FB 中点;//IH BD ∴.又IH Q 和IG 交与I 点,CD 与BD 交与D 点;∴平面//GIH 平面BDC .又GH ⊆Q 平面GIH ; //GH ∴平面ABC .(19)【2016年山东,文19,12分】已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(1)求数列{}n b 的通项公式;(2)令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T .解:(1)因为数列{}n a 的前n 项和238n S n n =+,所以111a =,当2n ≥时,221383(1)8(1)65n n n a S S n n n n n -=-=+----=+,又65n a n =+对1n =也成立,所以65n a n =+.又因为{}n b 是等差数列,设公差为d ,则12n n n n a b b b d +=+=+.当1n =时,1211b d =-;当2n =时,2217b d =-,解得3d =,所以数列{}n b 的通项公式为312n n a db n -==+. (2)由111(1)(66)(33)2(2)(33)n n n n n n nn a n c n b n +++++===+⋅++,于是23416292122(33)2n n T n +=⋅+⋅+⋅+++⋅L , 两边同乘以2,得341226292(3)2(33)2n n n T n n ++=⋅+⋅++⋅++⋅L ,两式相减,得 2341262323232(33)2n n n T n ++-=⋅+⋅+⋅++⋅-+⋅L 22232(12)32(33)212n n n +⋅-=⋅+-+⋅-2221232(12)(33)232n n n n T n n ++=-+⋅-++⋅=⋅.(20)【2016年山东,文20,13分】设2()ln (21)f x x x ax a x =-+-,a R ∈.AA(1)令()'()g x f x =,求()g x 的单调区间;(2)已知()f x 在1x =处取得极大值,求实数a 取值范围. 解:(1)定义域()0+∞,,()()ln 1221g x f x x ax a '==+-+-,()12g x a x'=-. ①当0a ≤时,()0g x '>恒成立,()g x 在()0+∞,上单调递增; ②当0a >时,令()0g x '=,得12x a =.()g x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减. 综上所述,当0a ≤时,单调递增区间为()0+∞,,当0a >时,单调递增区间为10,2a ⎛⎫⎪⎝⎭, 单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (2)∵()f x 在1x =处取得极大值,∴()10g =,ln112210a a +-+-=在a 取任何值时恒成立.①当0a ≤时,()g x 在()0+∞,上单调递增,即()0,1x ∈时,()0g x <;()1,x ∈+∞时,()0g x >, 此时()f x 在1x =处取得极小值,不符合题意;②当0a >时,()g x 在10,2a ⎛⎫ ⎪⎝⎭上单调递增, 在1,2a ⎛⎫+∞ ⎪⎝⎭上单调递减.只需令112a <,即12a >.综上所述,a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭.(21)【2016年山东,文21,14分】已知椭圆2222:1x y C a b+=()0a b >>的长轴长为4,焦距为(1)求椭圆C 的方程; (2)过动点()()0,0M m m >的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M是线段PN 的中点,过点P 做x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B .(i )设直线PM ,QM 的斜率分别为k ,'k ,证明'k k为定值;(ii )求直线AB 的斜率的最小值.解:(1)由题意得222242a c a b c =⎧⎪=⎨⎪=+⎩,解得2a b c =⎧⎪=⎨⎪=⎩22142x y +=.(2)(i )设(,0),(,),N P P N x P x y 直线:+PA y kx m =,因为点N 为直线PA 与x 轴的交点,所以N mx k=-, 因为点()0,M m 为线段PN 的中点,所以00,22N P P x x y m ++==,得,2P P mx y m k==, 所以点,2m Q m k ⎛⎫- ⎪⎝⎭,所以()2=30m m k k m k--=--’,故3k k =-’为定值.(ii )直线:+PA y kx m =与椭圆方程联立22142y kx m x y =+⎧⎪⎨+=⎪⎩,得:222(21)4240k x kmx m +++-=,所以222222164(21)(24)328160k m k m k m ∆=-+-=-+>① 12122242,2121kmx mx x y y k k -+=+=++, 所以222264,(21)21k m m k m A k k k ⎛⎫+-- ⎪++⎝⎭,直线:3+QM y kx m =-与椭圆方程联立223142y kx mx y =-+⎧⎪⎨+=⎪⎩, 得()22218112240k x kmx m +-+-=,所以121222122,181181km mx x y y k k +=+=++,所以()()22224916,181181m k k m m B k k k ⎛⎫++ ⎪- ⎪++⎝⎭,26131424B A ABB A y y k k k x x k k -+===+-, 因为点P 在椭圆上,所以2224142m m k +=,得2224k m =② 将②代入①得()2240k >+1恒成立, 所以20k ≥,所以0k ≥,所以3124AB k k k =+≥k =时取“=”), 所以当k 时,AB k .。

2016年山东省高考数学文科试题(Word版)AKMqUP

2016年山东省高考数学文科试题(Word版)AKMqUP

2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B U ð=(A ){2,6}(B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} (2)若复数21i z =-,其中i 为虚数单位,则z = (A )1+i (B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )12+π33(B )12+π33 (C )123(D )2 (6)已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆N :22(1)1x y +-=(-1)的位置关系是(A )内切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =(A )3π4(B )π3(C )π4(D )π6(9)已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= (A )-2 (B )-1(C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年高考山东文科数学试卷+解析

2016年高考山东文科数学试卷+解析

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B U ð= (A ){2,6}(B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}(2)若复数21i z =-,其中i 为虚数单位,则z =(A )1+i(B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56(B )60(C )120(D )140(4)若变量x,y满足2,239,0,x yx yx+≤⎧⎪-≤⎨⎪≥⎩则x2+y2的最大值是(A)4 (B)9 (C)10 (D)12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A)12+π33(B)123(C)12π3(D)2(6)已知直线a,b分别在两个不同的平面α,b内,则“直线a和直线b相交”是“平面α和平面b相交”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M 与圆N :22(1)1x y +-=(-1)的位置关系是(A )内切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A= (A )3π4(B )π3(C )π4(D )π6(9)已知函数f(x)的定义域为R.当x <0时,f(x)=x3-1;当-1≤x ≤1时,f(-x)= —f(x);当x >12时,f(x+12)=f(x —12).则f(6)=(A )-2 (B )-1 (C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是(A )sin y x =(B )ln y x =(C )e xy =(D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年高考文科数学山东卷及答案解析

2016年高考文科数学山东卷及答案解析

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分150分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号填写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B +=+第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合}{=1,2,3,4,5,6U ,}{=1,3,5A ,}{=3,4,5B ,则u AB =()ð( )A .{}26,B .{}36,C .{}1345,,,D .{}1246,,,2. 若复数2z=1i-,其中i 为虚数单位,则z =( )A .1i +B .1i -C .1i -+D .1i --3. 某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5[]30,,样本数据分组为17.5[)20,,[20,22.5),22.5[)25,,252[)7.5,,27.5[)30,.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .1404. 若变量x ,y 满足+22390x y x y x ⎧⎪-⎨⎪⎩≤,≤,≥,则22+x y 的最大值是( )A .4B .9C .10D .125. 一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A .12+33πB.1+33C.13D.16. 已知直线a ,b 分别在两个不同的平面αβ,内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7. 已知圆2220(0)x y ay a M +-=>:截直线0x y +=所得线段的长度是M 与圆22(1)(1) 1N x y -+-=:的位置关系是 ( )A .内切B .相交C .外切D .相离8. ABC △中,角A B C ,,的对边分别是a b c ,,.已知b c =,222(1sin )A a b =-,则A =( )A .34πB .3π C .4πD .6π9. 已知函数()f x 的定义域为R .当0x <时,()1f x x -3=;当x -1≤≤1时,()f x -=()f x -;当12x >时,11(+)()22f x f x -=.则(6)f =( )A .2-B .1-C .0D .210. 若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是 ( )A .y=sin xB .y=ln xC .xy=eD .3y=x-----------在-------------------此-------------------卷-------------------上-------------------答-------------------题-------------------无-------------------效-----------姓名________________ 准考证号_____________第II 卷(共100分)二、选择题:本大题共5小题,每小题5分,共25分.11. 执行如图的程序框图,若输入n 的值为3,则输出的S 的值为_______.12. 观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯;2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯;2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯;2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯;……照此规律, 2222π2π3π2π(sin )(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++________.13. 已知向量a 1(1,)=-,b 4(6,)=-.若a ⊥(t a + b ),则实数t 的值为________.14. 已知双曲线2222y100E a b a bx =>>-:(,).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2||3||AB BC =,则E 的离心率是_______.15. 已知函数2 24 () x x m x x mx m x m f =⎧⎪⎨-+⎪⎩||,≤,,>,其中0m >.若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_______.三、解答题:本大题共6小题,共75分. 16. (本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下: ①若3xy ≤,则奖励玩具一个; ②若8xy ≥,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项 活动.(Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明 理由.17. (本小题满分12分)设2()π)sin (sin cos )f x x x x x =---. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数()y g x =的图象,求π()6g 的值.18. (本小题满分12分)在如图所示的几何体中,D 是AC 的中点,EF DB ∥. (Ⅰ)已知AB BC =,AE EC =.求证:AC FB ⊥;(Ⅱ)已知G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC .19. (本小题满分12分)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(Ⅰ)求数列{}n b 的通项公式;(Ⅱ)令1(1)(2)n n n nn a c b ++=+,求数列{}n c 的前n 项和n T .20. (本小题满分13分)设2ln 1)2()(f x x x ax a x =-+-,a ∈R .(Ⅰ)令()()g x x f '=,求()g x 的单调区间;(Ⅱ)已知()f x 在1x =处取得极大值,求实数a 的取值范围.21. (本小题满分14分)已知椭圆222210y a b a ax C +=>>:()的长轴长为4,焦距为. (Ⅰ)求椭圆C 的方程;(Ⅱ)过动点()(,)00M m m >的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B .(i )设直线PM ,QM 的斜率分别为k 、'k ,证明'k k为定值. (ii )求直线AB 的斜率的最小值.A B={1,3,4A B)=U【提示】主要考察集合的并集、补集.=-cos0cosπ1=,y=e x【答案】5-(6ta b t+=+-,,()(64)(1,1)2100a tab t t t+=+---=+=,,解得【提示】从()a ta b⊥+出发,转化成为平面向量的数量积的计算.【考点】平面向量的数量积【解析】依题意,不妨设64AB AD==,,作出图象如下图所示2c4m m m+,【提示】利用数形结合思想,通过对函数图象的分析,转化得到代数不等式【考点】函数的图象与性质、数形结合思想、分段函数BD DE D=,所以(Ⅱ)设FC的中点为I ,连GI HI ,.在CEF △中,因为G 是CE 的中点,所以GI EF ∥,又EF DB ∥,所以GI DB ∥. 在CFB △中,因为H 是FB 的中点,所以HI BC ∥,又G IH I I =,所以GHI ABC 平面∥平面,因为GH ⊂平面GHI ,所以GH ∥平面ABC .【提示】(Ⅰ)根据EF DB ∥,知EF 与BD 确定一个平面,连接DE ,得到DE AC ⊥,BD AC ⊥,从而AC ⊥平面BDEF ,证得AC FB ⊥.(Ⅱ)设FC 的中点为I ,连GI HI ,,在CEF △,CFB △中,由三角形中位线定理可得线线平行,证得GHI ABC 平面∥平面,进一步得到GH ∥平面ABC . 【考点】平行关系,垂直关系. 19.【答案】(Ⅰ)31n b n =+(Ⅱ)232n n T n +=【解析】(Ⅰ)由题意知,当2n ≥时,165n n n a S S n -=-=+, 当1n =时,1111a S ==,符合上式,所以65n a n =+.设数列的公差为d ,由112223a b b a b b =+⎧⎨=+⎩,即111121723b db d=+⎧⎨=+⎩,解得14b =,3d =,所以31n b n =+.11)2n -, n c ++,得23232(1)n +⨯+++2(1)n ⨯+++,12224(21)2(1)234(1)23221n n n n n n n n ++++⎡⎤-⎤++-+⨯=⨯+-+⨯=-⎢⎥⎦-⎣⎦22n n +(Ⅰ)由题意得11)2n -,424)2n +++,利用错位相减法即得n T . 【考点】等差数列的通项公式,等比数列的求和,错位相减法。

【精校版】2016年山东省高考数学(文)试题(Word版,含答案)

【精校版】2016年山东省高考数学(文)试题(Word版,含答案)

2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð=(A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}(2)若复数21i z =-,其中i 为虚数单位,则z = (A )1+i (B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )12+π33(B)1+π33(C)1+π36(D)1+π6。

2016年高考山东卷文科数学 【答案加解析】

2016年高考山东卷文科数学 【答案加解析】

2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð= (A ){2,6}(B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6} (2)若复数21i z =-,其中i 为虚数单位,则z = (A )1+i (B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )12+π33(B )1+π33(C )1+π36(D )1+π6(6)已知直线a ,b 分别在两个不同的平面βα,内,则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M与圆N :22(1)1x y +-=(-1)的位置关系是 (A )内切(B )相交(C )外切(D )相离(8)ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =(A )3π4(B )π3(C )π4(D )π6 (9)已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= (A )-2 (B )-1(C )0 (D )2(10)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

山东省2016年高考文科数学试题(带答案)

山东省2016年高考文科数学试题(带答案)

山东省2016年高考文科数学试题(带答案)2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第I卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合,则 = (A)(B)(C)(D)(2)若复数,其中i为虚数单位,则 = (A)1+i (B)1−i (C)−1+i (D)−1−i (3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20), [20,22.5), [22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A)56 (B)60 (C)120 (D)140 (4)若变量x,y满足则x2+y2的最大值是(A)4(B)9(C)10(D)12 (5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A)(B)(C)(D)(6)已知直线a,b分别在两个不同的平面α,内,则“直线a和直线b相交”是“平面α和平面相交”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(7)已知圆M:截直线所得线段的长度是,则圆M与圆N:的位置关系是(A)内切(B)相交(C)外切(D)相离(8)中,角A,B,C的对边分别是a,b,c,已知 ,则A= (A)(B)(C)(D) (9)已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)= ―f(x);当x>时,f(x+ )=f(x― ).则f(6)= (A)-2 (B)-1 (C)0 (D)2 (10)若函数的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称具有T性质.下列函数中具有T 性质的是(A)(B)(C)(D)第II卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

数学-2016年高考真题--山东卷(文)(精校解析版)

数学-2016年高考真题--山东卷(文)(精校解析版)

2016年普通高等学校招生全国统一考试 (山东卷)文科数学第Ⅰ卷一、选择题:本大题共10小题;每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2016·山东,1)设集合U ={1,2,3,4,5,6},A ={1,3,5},B ={3,4,5},则∁U (A ∪B )等于( ) A .{2,6} B .{3,6} C .{1,3,4,5} D .{1,2,4,6}2.(2016·山东,2)若复数z =21-i,其中i 为虚数单位,则z =( ) A .1+i B .1-i C .-1+i D .-1-i3.(2016·山东,3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A .56B .60C .120D .140 4.(2016·山东,4)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .125.(2016·山东,5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 6.(2016·山东,6)已知直线a ,b 分别在两个不同的平面α ,β内,则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.(2016·山东,7)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A .内切 B .相交 C .外切 D .相离8.(2016·山东,8)△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A 等于( )A.3π4B.π3C.π4D.π69.(2016·山东,9)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12.则f (6)等于( ) A .-2 B .-1 C .0 D .210.(2016·山东,10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( ) A .y =sin x B .y =ln x C .y =e xD .y =x 3第Ⅱ卷二、填空题(本大题共5小题,每小题5分,共25分.)11.(2016·山东,11)执行如图所示的程序框图,若输入n 的值为3,则输出的S 的值为________.12.(2016·山东,12)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4; ⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5; …照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=__________. 13.(2016·山东,13)已知向量a =(1,-1),b =(6,-4).若a ⊥(t a +b ),则实数t 的值为________.14.(2016·山东,14)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.15.(2016·山东,15)已知函数f (x )=⎩⎪⎨⎪⎧|x |,x ≤m ,x 2-2mx +4m ,x >m , 其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________. 三、解答题本大题共6小题,共75分.16.(2016·山东,16)(本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y .奖励规则如下:①若xy ≤3,则奖励玩具一个; ②若xy ≥8,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动. (1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.17.(2016·山东,17)(本小题满分12分)设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数y =g (x )的图象,求g ⎝⎛⎭⎫π6的值. 18.(2016·山东,18)(本小题满分12分)在如图所示的几何体中,D 是AC 的中点,EF ∥DB .(1)已知AB =BC ,AE =EC .求证:AC ⊥FB ;(2)已知G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC .19.(2016·山东,19)(本小题满分12分)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n.求数列{c n }的前n 项和T n .20.(2016·山东,20)(本小题满分13分)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值.求实数a 的取值范围.21.(2016·山东,21)(本小题满分14分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴长为4,焦距为2 2.(1)求椭圆C 的方程;(2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B . ①设直线PM 、QM 的斜率分别为k 、k ′,证明k ′k 为定值.②求直线AB 的斜率的最小值.答案解析1.解析 ∵A ∪B ={1,3,4,5},∴∁U (A ∪B )={2,6},故选A. 答案 A2.解析 ∵z =2(1+i )(1-i )(1+i )=1+i ,∴z =1-i ,故选B.答案 B3.解析 由题图知,组距为2.5,故每周的自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,∴人数是200×0.7=140,故选D. 答案 D4.解析 满足条件⎩⎨⎧x +y ≤2,2x -3y ≤9,x ≥0的可行域如下图阴影部分(包括边界).x 2+y 2是可行域上动点(x ,y )到原点(0,0)距离的平方,显然当x =3,y =-1时,x 2+y 2取最大值,最大值为10.故选C.答案 C5.解析 由三视图知,半球的半径R =22,四棱锥为底面边长为1,高为1的正四棱锥,∴V =13×1×1×1+12×43π×⎝⎛⎭⎫223=13+26π,故选C. 答案 C6.解析 若直线a 和直线b 相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b 可能平行或异面或相交,故选A. 答案 A7.解析 ∵圆M :x 2+(y -a )2=a 2,∴圆心坐标为M (0,a ),半径r 1为a ,圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝⎛⎭⎫|a |22+(2)2=a 2,解得a =2.∴M (0,2),r 1=2.又圆N 的圆心坐标N (1,1),半径r 2=1, ∴|MN |=(1-0)2+(1-2)2=2,r 1+r 2=3,r 1-r 2=1.∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交,故选B. 答案 B8.解析 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A , ∵b =c ,∴a 2=2b 2(1-cos A ),又∵a 2=2b 2(1-sin A ), ∴cos A =sin A ,∴tan A =1, ∵A ∈(0,π),∴A =π4,故选C.答案 C9.解析 当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12, 即f (x )=f (x +1),∴T =1, ∴f (6)=f (1).当x <0时,f (x )=x 3-1且-1≤x ≤1,f (-x )=-f (x ), ∴f (6)=f (1)=-f (-1)=[(-1)3-1]=2,故选D. 答案 D10.解析 对于函数y =sin x ,得y ′=cos x ,当x =0时,该点处切线l 1的斜率k 1=1;当x =π时,该点处切线l 2的斜率k 2=-1,∴k 1·k 2=-1,∴l 1⊥l 2; 对于y =ln x ,y ′=1x 恒大于0,斜率之积不可能为-1;对于y =e x ,y ′=e x 恒大于0,斜率之积不可能为-1;对于y =x 3,y ′=2x 2恒大于等于0,斜率之积不可能为-1.故选A. 答案 A11.解析 输入n 的值为3,第1次循环:i =1,S =2-1,i <n ;第2次循环:i =2,S =3-1,i <n ; 第3次循环:i =3,S =1,i =n . 输出S 的值为1. 答案 112.解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.答案 43×n ×(n +1)13.解析 ∵a ⊥(t a +b ),∴t a 2+a ·b =0, 又∵a 2=2,a ·b =10,∴2t +10=0,∴t =-5. 答案 -514.解析 由已知得|AB |=2b 2a ,|BC |=2c ,∴2×2b 2a=3×2c .又∵b 2=c 2-a 2,整理得:2c 2-3ac -2a 2=0,两边同除以a 2得2⎝⎛⎭⎫c a 2-3c a -2=0,即2e 2-3e -2=0,解得e =2. 答案 215.解析 如图,当x ≤m 时,f (x )=|x |.当x >m 时,f (x )=x 2-2mx +4m , 在(m ,+∞)为增函数.若存在实数b ,使方程f (x )=b 有三个不同的根, 则m 2-2m ·m +4m <|m |.∵m >0,∴m 2-3m >0,解得m >3. 答案 (3,+∞)16.解 (1)用数对(x ,y )表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S ={(x ,y )|x ∈N ,y ∈N,1≤x ≤4,1≤y ≤4}一一对应.因为S 中元素的个数是4×4=16. 所以基本事件总数n =16. 记“xy ≤3”为事件A ,则事件A 包含的基本事件数共5个, 即(1,1),(1,2),(1,3),(2,1),(3,1), 所以P (A )=516,即小亮获得玩具的概率为516.(2)记“xy ≥8”为事件B ,“3<xy <8”为事件C . 则事件B 包含的基本事件数共6个. 即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4). 所以P (B )=616=38.事件C 包含的基本事件数共5个, 即(1,4),(2,2),(2,3),(3,2),(4,1). 所以P (C )=516.因为38>516,所以小亮获得的水杯的概率大于获得饮料的概率. 17.解 (1)由f (x )=23sin(π-x )sin x -(sin x -cos x )2 =23sin 2x -(1-2sin x cos x ) =3(1-cos 2x )+sin 2x -1 =sin 2x -3cos 2x +3-1 =2sin ⎝⎛⎭⎫2x -π3+3-1. 由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ).所以f (x )的单调递增区间是⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z )⎝⎛⎭⎫或⎝⎛⎭⎫k π-π12,k π+5π12(k ∈Z ). (2)由(1)知f (x )=2sin ⎝⎛⎭⎫2x -π3+3-1,把y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变). 得到y =2sin ⎝⎛⎭⎫x -π3+3-1的图象. 再把得到的图象向左平移π3个单位,得到y =2sin x +3-1的图象, 即g (x )=2sin x +3-1. 所以g ⎝⎛⎭⎫π6=2sin π6+3-1= 3. 18.证明 (1)因为EF ∥DB ,所以EF 与DB 确定平面BDEF , 如图,连接DE .因为AE =EC ,D 为AC 的中点,所以DE ⊥AC .同理可得BD ⊥AC . 又BD ∩DE =D ,所以AC ⊥平面BDEF . 因为FB ⊂平面BDEF ,所以AC ⊥FB . (2)设FC 的中点为I ,连接GI ,HI .在△CEF 中,因为G 是CE 的中点, 所以GI ∥EF .又EF ∥DB , 所以GI ∥DB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC . 又HI ∩GI =I ,所以平面GHI ∥平面ABC ,因为GH ⊂平面GHI ,所以GH ∥平面ABC .19.解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5. 当n =1时,a 1=S 1=11,符合上式.所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1.. 又T n =c 1+c 2+…+c n .得T n =3×[2×22+3×23+…+(n +1)×2n +1].2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2] =3×⎣⎢⎡⎦⎥⎤4+4(1-2n )1-2-(n +1)×2n +2=-3n ·2n +2. 所以T n =-3n ·2n +2.20.解 (1)由f ′(x )=ln x -2ax +2a .可得g (x )=ln x -2ax +2a ,x ∈(0,+∞),则g ′(x )=1x -2a =1-2ax x. 当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增;当a >0时,x ∈⎝⎛⎭⎫0,12a 时,g ′(x )>0时,函数g (x )单调递增,x ∈⎝⎛⎭⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.所以当a ≤0时,g (x )的单调递增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝⎛⎭⎫0,12a ,单调减区间为⎝⎛⎭⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减,当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,所以f (x )在x =1处取得极小值,不合题意.②当0<a <12时,12a >1,由(1)知f ′(x )在⎝⎛⎭⎫0,12a 内单调递增.可得当x ∈(0,1)时,f ′(x )<0,x ∈⎝⎛⎭⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝⎛⎭⎫1,12a 内单调递增.所以f (x )在x =1处取得极小值,不合题意.③当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减.所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<12a <1,当x ∈⎝⎛⎭⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意 .综上可知,实数a 的取值范围为a >12.21.(1)解 设椭圆的半焦距为c .由题意知2a =4,2c =2 2.所以a =2,b =a 2-c 2= 2.所以椭圆C 的方程为x 24+y 22=1.(2)①证明 设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ). 所以直线PM 的斜率k =2m -m x 0=mx 0.直线QM 的斜率k ′=-2m -m x 0=-3mx 0.此时k ′k =-3.所以k ′k 为定值-3.②解 设A (x 1,y 1),B (x 2,y 2). 直线P A 的方程为y =kx +m .直线QB 的方程为y =-3kx +m .联立⎩⎪⎨⎪⎧ y =kx +m ,x 24+y 22=1,整理得(2k 2+1)x 2+4mkx +2m 2-4=0, 由x 0x 1=2m 2-42k 2+1,可得x 1=2(m 2-2)(2k 2+1)x 0,所以y 1=kx 1+m =2k (m 2-2)(2k 2+1)x 0+m .同理x 2=2(m 2-2)(18k 2+1)x 0,y 2=-6k (m 2-2)(18k 2+1)x 0+m .所以x 2-x 1=2(m 2-2)(18k 2+1)x 0-2(m 2-2)(2k 2+1)x 0=-32k 2(m 2-2)(18k 2+1)(2k 2+1)x 0,y 2-y 1=-6k (m 2-2)(18k 2+1)x 0+m -2k (m 2-2)(2k 2+1)x 0-m=-8k (6k 2+1)(m 2-2)(18k 2+1)(2k 2+1)x 0,所以k AB =y 2-y 1x 2-x 1=6k 2+14k =14⎝⎛⎭⎫6k +1k ,由m >0,x 0>0,可知k >0, 所以6k +1k ≥26,当且仅当k =66时取“=”.因为P (x 0,2m )在椭圆x 24+y 22=1上, 所以x 0=4-8m 2,故此时2m -m 4-8m 2-0=66,即m =147,符合题意.所以直线AB 的斜率的最小值为62.。

【精校版】2016年山东省高考数学(文)试题(Word版,含答案)

【精校版】2016年山东省高考数学(文)试题(Word版,含答案)

2016年普通高等学校招生全国统一考试(山东卷)数学(文科)本试卷分第Ⅰ卷和第Ⅱ卷两部分、共4页。

满分150分。

考试用时120分钟。

考试结束后、将将本试卷和答题卡一并交回。

注意事项:1.答卷前、考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后、用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动、用橡皮擦干净后、在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答、答案必须写在答题卡各题目指定区域内相应的位置、不能写在试卷上;如需改动、先划掉原来的答案、然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案、解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥、那么P(A+B)=P(A)+P(B).第I 卷(共50分)一、选择题:本大题共10小题、每小题5分、共50分、在每小题给出的四个选项中、只有一项是符合题目要求的.(1)设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===、则()U A B ð= (A ){2,6} (B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}(2)若复数21i z =-、其中i 为虚数单位、则z = (A )1+i (B )1−i (C )−1+i (D )−1−i(3)某高校调查了200名学生每周的自习时间(单位:小时)、制成了如图所示的频率分布直方图、其中自习时间的范围是[17.5、30]、样本数据分组为[17.5、20)、 [20、22.5)、 [22.5,25)、[25、27.5)、[27.5、30).根据直方图、这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60 (C )120 (D )140(4)若变量x 、y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是(A )4(B )9(C )10(D )12(5)一个由半球和四棱锥组成的几何体、其三视图如图所示.则该几何体的体积为(A )12+π33(B)1+π33(C)1+π36(D)1+π6(6)已知直线a 、b 分别在两个不同的平面α、b 内、则“直线a 和直线b 相交”是“平面α和平面b 相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件(7)已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是、则圆M 与圆N :22(1)1x y +-=(-1)的位置关系是(A )内切(B )相交(C )外切(D )相离(8)ABC △中、角A 、B 、C 的对边分别是a 、b 、c 、已知22,2(1sin )b c a b A ==-,则A =(A )3π4(B )π3(C )π4(D )π6 (9)已知函数f(x )的定义域为R.当x <0时、f(x )=x 3-1;当-1≤x ≤1时、f(-x )= —f(x );当x >12时、f(x +12)=f(x —12).则f(6)= (A )-2 (B )-1(C )0 (D )2(10)若函数()y f x =的图象上存在两点、使得函数的图象在这两点处的切线互相垂直、则称()y f x =具有T 性质.下列函数中具有T 性质的是(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =第II 卷(共100分)二、填空题:本大题共5小题、每小题5分、共25分。

金卷:2016年高考数学(文)冲刺卷 09(山东卷)(考试版)

金卷:2016年高考数学(文)冲刺卷 09(山东卷)(考试版)

绝密★启用前2016年高考冲刺卷(9)(山东卷)文科数学试卷考试时间:120分钟;满分150分第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,若5()2a a R i+∈-是纯虚数,则a 的值为( ) A .-3 B. -2 C. -1 D. 22.已知集合{}221=|,|40A y y B x x x ⎧⎫==-≤⎨⎬⎩⎭,则A B =( )A .[]2,2- B. ()2,2- C. (]0,2 D. [)(]2,00,2-3.已知,,a b m R ∈,则“lg lg a b >”是“22am bm >”的( ) A .充分不必要条件 B. 必要不充分条件 C .充要条件 D. 既不充分也不必要条件4.如图所示是某组数据的茎叶图,已知该组数据的平均数为252,则41a b+的最小值为( )A .32 B. 2 C.52D. 3 5.设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,表示的平面区域,则区域D 内的点为(),x y ,则()221x y-+的最小值为( )A .1 B. 15 C. 4 D.456.函数()1f x x x=+的大致图像是( )A BC D7.某几何体的三视图如图所示,则该几何体的体积为( )B.2C.3D.8.数列()()12121n a n n =-+,其前n 项和为919,则在平面直角坐标系中,直线()20n x y n +++=在y 轴上的截距为( )A .-10 B. 10 C. -9 D. 9 9. 若函数()21log x f x x a +⎛⎫=⎪-⎝⎭是奇函数,则使得()1f x ≥成立的x 的取值范围为( )A .[)3,1-- B. (]1,3 C. ()1,+∞ D. [)(]3,11,3--10.已知双曲线()2222:10,0x y t a b a b-=>>的一条渐近线与函数1ln ln 3y x =++的图像相切,则双曲线的离心率为( )A .C.D.第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11. 已知圆2220x y x +-=,过点()2,3P 引该圆作切线,则切线方程为 .12. 已知实数[]1,20x ∈,执行如图所示的程序框图,则输出的x 不小于65的概率为 .13. 已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,角α的终边与圆心在坐标原点的单位圆相交于第四象限内的点3,5P P x ⎛⎫ ⎪⎝⎭,则tan 2α= .14.已知函数()()ln 5f x a x ax a R =-+∈的图象在点()()2,2f 处的切线的倾斜角为4π,若函数()()322m g x x x f x ⎡⎤'=++⎢⎥⎣⎦在区间()2,3上不是单调函数,则实数m 的取值范围为 .15.定义在[)1,+∞上的函数()f x 满足:①()1,123,23x x f x x x -≤≤⎧=⎨-<≤⎩,②()()33f x f x =;设()()()13F x f x a a =-<<,在()11,3n n N ++⎡⎤∈⎣⎦上的零点从小到大依次为123,,,,n x x x x ,则123n x x x x ++++= .三、解答题 (本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16. (本小题满分12分)50名高中学生某次数学考试成绩(均90分以上,满分150分)的频率分布直方图如下:(I)求频率分布直方图中a 的值;(II)分别求出成绩落在[)100,110与[)110,120中的学生人数;(III)从成绩在[)100,120的学生中任选2人,求此2人的成绩都在[)110,120中的概率.17. (本小题满分12分)已知向量()()2sin ,cos ,cos ,2cos m x x n x t x ωωωω==,设函数()f x m n t =⋅-(其中0,0t ω>>)的最大值为2,直线12,x x x x ==是()y f x =图像的任意两条对称轴,且12x x -的最小值为2π. (I)求函数()y f x =的解析式;(II)设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,若()0f A =且6,ABC b c S ∆+==求边a 的长度.18. (本小题满分12分)如图①,在等边ABC ∆中,,E F 分别是AB AC 、的点,//,4,2EF BC BC EF a ==,将此三角形沿EF 对折,使平面AEF ⊥平面EFCB ,O 为EF 中点(如图②). (I)求证:AO BE ⊥;(II)在线段AB 上是否存在一点Q ,使得//EQ 平面AOC ?若存在,找出这样的点Q ;若不存在,请说明理由.图① 图②AEFCB19. (本小题满分12分)观察下式:2222112343345675456789107=++=++++=++++++=…………n 个等式为:n n c =n c 关于n 的关系式; 的前n 项和n T . 13分)已知12,F F 分别是椭圆()222210x y a b a b+=>>的左右焦点,过2F 的直N 两点,且1197,22F M F N MN +==,72MN =,椭圆的离心率12e =.2F 且互相垂直的直线12l l 、分别与椭圆交于A B 、和C D 、,试判断. 14分)已知函数()()1ln 0xf x k kx+=≠ )的单调区间; ()11f x x ≥+恒成立,求实数k 的取值范围; )()11121233n n n ee n N ⎛⎫++++ ⎪⎝⎭+⨯⨯⨯>∈。

山东省菏泽市2016届高三下学期第二次模拟考试文数试题 含答案

山东省菏泽市2016届高三下学期第二次模拟考试文数试题 含答案

数学试卷(文科)第Ⅰ卷一、选择题:本大题共10个小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项 是符合题目要求的.1。

设集合{210}A x x =+>,集合{3,1,0,1,2}B =--,则A B 等于()A .{1,2}B .{0,1,2}C .{1,3}-D .{1,0,1,2}-2.已知复数532iz i i=-+,则z 等于( )A .22B 5C 3D 23. 某学校采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做视力检查,现将800名学生从1到800进行编号,已知从1—16这16个数中被抽到的数是11,则编号在33—48中抽到的数是( )A .39B .41C .43D .454。

已知向量(1,2)a =-,(3,1)b =-,则下列结论正确的是( ) A .a b ⊥ B .//a b C .()a a b ⊥+ D .()a a b ⊥- 5.若函数()21xf x b =+- ()b R ∈的图象不经过第二象限,则有( )A .1b ≥B .1b ≤C .0b ≥D .0b ≤6.已知曲线()a f x x x=+在点(1,(1))f 处的切线的斜率为为1-,则函数()f x 在(0,)+∞上的最小值为( )A .22B .2C 2D .17. “11m -<<”是“圆22(1)()5x y m -+-=被x 轴所截的弦长大于2”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.如图是一个正方体被一个平面截去一部分后得到的几何体的三视图,则该几何体的体积是原正方体的体积的( ) A .34B .14C .12D .389.如果实数,x y 满足条件220200x y x y x a +-≥⎧⎪-+≥⎨⎪-≤⎩,若11y z x -=+的最小值小于12,则实数a的取值范围是( )A .(,1)-∞B .(1,)+∞C .1(,1)5D .1(,)5+∞10。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省菏泽市2016届高考预测金卷文科数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1. 已知复数z 满足5)2(=-z i ,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2. 设集合{}2320M x x x =++<,集合⎭⎬⎫⎩⎨⎧≤=4)21(x x N ,则 M N = ( )A .{}2x x ≥- B .{}1x x >- C .{}1x x <- D .{}2x x ≤- 3.设βα,是两个不同的平面,直线α⊥m ,则“β⊥m ”是“βα//”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 4. 某几何体的三视图如图所示,则它的表面积为( ).A .6πB .5πC .4πD .3π5.某校从高一年级学生中随机抽取部分学生, 将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为( )A .588B .480C .450D .1206.按照如图的程序运行,已知输入x 的值为22log 3+, 则输出y 的值为( )A. 7B. 11C. 12D. 247.已知}{n a 是公差为21的等差数列,n S 为}{n a 的前n 项和.若1462,,a a a 成等比数列,则=5S ( ) A .235 B .35 C .225 D .258. 设0>ω,函数)sin(ϕω+=x y )(πϕπ<<-的图象向左平移3π个单位后,得到下面的图像,则ϕω,的值为( )O ππ3211A .3,1πϕω-== B .3,2πϕω-==C .32,1πϕω== D.32,2πϕω==9. 已知函数()22,0lg ,0x x x f x x x ⎧+⎪=⎨>⎪⎩≤,则函数()()11g x f x =--的零点个数为( )A.1B.2C. 3D.410. 已知双曲线()0,012222>>=-b a by a x ,1A 、2A 是实轴顶点,F 是右焦点,),0(b B 是虚轴端点,若在线段BF 上(不含端点)存在不同的两点()1,2iP i =,使得()121,2i PA A i ∆=构成以21A A 为斜边的直角三角形,则双曲线离心率的取值范围是 ( ) A5 11. 已知向量b a ,,满足)3,1(=a ,)()(b a b a -⊥+,则=||b . 12. 已知函数()y f x =的图象在点()()2,2M f 处的切线方程是4y x =+,则()()22f f '+= .13. 若x ,y 满足约束条件则目标函数z=﹣2x+y 的最小值为 .14.现定义一种运算“⊕”;对任意实数,a b ,,1,1b a b a b a a b -≥⎧⊕=⎨-<⎩,设2()(2)(3)f x x x x =-⊕+,若函数()()g x f x k =+的图象与x 轴恰有二个公共点,则实数k 的取值范围是__________. 15. 已知圆22:9C x y +=,直线1:10l x y --=与2:2100l x y +-=的交点设为P 点,过点P 向圆C 作两条切线,a b 分别与圆相切于,A B 两点,则ABP S =△ 。

三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16. (本小题满分12分)随着“全面二孩”政策推行,我市将迎来生育高峰.今年新春伊始,泉城各医院产科就已经是一片忙碌,至今热度不减.卫生部门进行调查统计,期间发现各医院的新生儿中,不少都是“二孩”;在市第一医院,共有40个猴宝宝降生,其中20个是“二孩”宝宝;市妇幼保健院e共有30个猴宝宝降生,其中10个是“二孩”宝宝.(I )从两个医院当前出生的所有宝宝中按分层抽样方法抽取7个宝宝做健康咨询. ①在市第一医院出生的一孩宝宝中抽取多少个?②若从7个宝宝中抽取两个宝宝进行体检,求这两个宝宝恰出生不同医院且均属“二孩”的概率; (II )根据以上数据,能否有85%的把握认为一孩或二孩宝宝的出生与医院有关?()()()()22k n ad bc a b c d a c b d -=++++()17.(本小题满分12分)在ABC ∆中,内角C B A ,,的对边为c b a ,,,已知b a A c 2cos 2=+. (1)求角C 的值;(2)若2=c ,且ABC ∆的面积为3,求b a ,.18. (本小题满分12分)在三棱柱111ABC A B C -中,12AB BC CA AA ====,侧棱1AA ⊥平面ABC ,且D ,E 分别是棱11A B ,1AA 的中点,点F 在棱AB 上,且14AF AB =.(1)求证://EF 平面1BDC ; (2)求三棱锥1D BEC -的体积.19. (本小题满分12分) 已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,且3550S S +=,1413,,a a a 成等比数列.(1)求数列{}n a 的通项公式;(2)设{}nnb a 是首项为1公比为2 的等比数列,求数列{}n b 前n 项和n T . 20. (本小题满分13分)已知椭圆的离心率为,直线l :y=x+2与以原点O 为圆心,椭圆的短轴长为直径的圆O 相切. (1)求椭圆C 的方程;(2)求椭圆C 与直线y=kx (k >0)在第一象限的交点为A . ①设,且OA ⋅ ,求k 的值;②若A 与D 关于x 的轴对称,求△AOD 的面积的最大值.21. (本小题满分14分)设函数)(ln )(2x x b ax x f -+=,x b x x g )1(21)(2-+-=.已知曲线)(x f y =在点))1(,1(f 处的切线与直线01=+-y x 垂直.(1)求a 的值;(2)求函数)(x f 的极值点;(3)若对于任意),1(+∞∈b ,总存在],1[,21b x x ∈,使得m x g x g x f x f +->--)()(1)()(2121成立,求实数m 的取值范围.2016山东高考压轴卷数学文word 版参考答案1.【答案】A 【解析】 由题意得55(2)22(2)(2)i z i i i i +===+--+,所以z 在复平面内对应的点位于第一象限,故选A. 2.【答案】A 【解析】由已知{|21}A x x =-<<-,{|2}N x x =≥-,所以{|2}M N x x =≥- .故选A . 3.【答案】C 【解析】一条直线垂直于两个不同的平面,则这两个平面平行;反之也成立(面面平行的判定与性质)。

故选C.考点:充分条件和必要条件. 4. 【答案】B 【解析】由三视图可知几何体为圆锥和半球的组合体.半球的半径为1,圆锥的高为为3=,故几何体的表面积21411352S πππ=⨯⨯+⨯⨯=. 5.【答案】B 【解析】根据频率分布直方图,成绩不少于60分的频率,然后根据频数=频率×总数,可求出所求.根据频率分布直方图,成绩不少于60分的学生的频率为8.0)015.0005.0(101=+⨯-.由于该校高一年级共有学生600人,利用样本估计总体的思想,可估计该校高一年级模块测试成绩不少于60分的人数为4808.0600=⨯.故选B.6.【答案】D 【解析】由程序框图,22log 34x =+<,因此x 值变为222log 313log 34++=+>,此时计算223log 3log 332228324y +==⨯=⨯=.故选D .7.【答案】C 【解析】 因为}{n a 是公差为21的等差数列,n S 为}{n a 的前n 项和,1462,,a a a 成等比数列,所以2111111(5)()(13)222a a a +⨯=++⨯,解得132a =,所以535412552222S ⨯=⨯+⨯=,故选C.8.【答案】D 【解析】试题分析:因为0>ω,函数)sin(ϕω+=x y )(πϕπ<<-的图象向左平移3π个单位后,得到sin ()sin()33y x x ππωφωωφ⎡⎤=++++⎢⎥⎣⎦,由函数的图像可知,2,,22362T T Tπππππω=+=∴=∴== 所以2sin(2)3y x πφ∴=++,又因为函数的图像过点5(,1)sin()1126ππφ-∴+=-,因为πφπ-<< 22,3πωφ==,应选D.9.【答案】C 【解析】22(1)2(1)1,1042,1()(1)1lg(1)1,10lg(1)1,1x x x x x x g x f x x x x x ⎧⎧-+---≤-+≥⎪⎪=--==⎨⎨--->--<⎪⎪⎩⎩,所以,当1x ≥时,函数()g x 有1个零点,当1x <时,函数有两个零点,所以函数的零点共有3个,故选C.10.【答案】B 【解析】 由已知()121,2i PA A i ∆=是以21A A 为斜边的直角三角形,则12,P P 在以12A A 为直径的圆上,所以以12A A 为直径的圆与线段BF 相交,直线BF 的方程为1x yc b+=,即0bx cy bc +-=,所以a <且b a >,整理得222(1)121e e e -<-且e >2e <<e >e <<B . 11.【答案】10 【解析】由)()(b a b a -⊥+,即22()()0a b a b a b +⋅-=-= ,即22a b =,所以||||b a === .12.【答案】7 【解析】由函数在某点的导数等于函数在该点的切线的斜率可知1)2(='f ,有点M 必在切线上,代入切线方程4y x =+,可得6)2(=f ,所以有7)2()2(=+'f f .13.【答案】-4 【解析】由题意作平面区域如下,,目标函数z=﹣2x+y 可化为y=2x+z , 故结合图象可知, 当过点B (3,2)时, z 有最小值为﹣2×3+2=﹣4; 故答案为﹣4.14. 【答案】()(]{}3,28,71--⋃--⋃ 【解析】由题意得出函数()()()2341214x x x f x x x x ⎧+≥≤-⎪=⎨--<<⎪⎩或,作出函数()f x 的图象如图所示,若函数()()g x f x k =+的图象与x 轴恰有二个公共点,则方程()0f x k +=即()f x k =-恰有二个不同实根,则1k -=-或23k <-<或78k ≤-<,所以k 的取值范围是()(]{}3,28,71--⋃--⋃,故答案应填()(]{}3,28,71--⋃--⋃.15.【答案】19225【解析】由圆22:9C x y +=,得圆心()0,0O ,半径3r =;直线12l l 和的交点坐标为()4,3P ,切线长4PA PB ==,PA OA ⊥,3OA OB r ===;设AB OP 与的交点为M ,则AB OP ⊥,POB PBM ∆~∆,得161255PM BM ==,,所以2425AB BM ==,1162419225525ABP S =⨯⨯=△.16.【答案】 (I )①2个;②221(II )没有85%的把握认为一孩、二孩宝宝的出生与医院有关. .【解析】(Ⅰ)①由分层抽样知在市第一医院出生的宝宝有4747=⨯个,其中一孩宝宝有2个.…… 2分 ②在抽取7个宝宝中,市一院出生的一孩宝宝2人,分别记为11,B A ,二孩宝宝2人,分别记为11,b a ,妇幼保健院出生的一孩宝宝2人,分别记为22,B A ,二孩宝宝1人,记为2a ,从7人中抽取2人的一切可能结果所组成的基本事件空间为{}),(),,(),,(),,(),(),,(),,(),,(),,(),,(),,(),,(),,(),(),,(),,(),,(),,(),,(),,(,),(222222212121212121112121211111212121111111a B a A B A a b B b A b a a B a A a b a a B B B A B b B a B a A B A A A b A a A B A =Ω… 5分 用A 表示:“两个宝宝恰出生不同医院且均属二孩”,则)},(),,{(2121a b a a A =212)(=∴A P………… 7分(Ⅱ)22⨯列联表………… 9分()072.2944.1367030403040202010207022<≈=⨯⨯⨯⨯-⨯⨯=K ,故没有85%的把握认为一孩、二孩宝宝的出生与医院有关. ………… 12分 17.【答案】(1)3π=C ;(2)2==b a .【解析】(1)∵b a A c 2cos 2=+,∴B A A C sin 2sin cos sin 2=+, ∴)sin(2sin cos sin 2C A A A C +=+,∴C A C A A A C sin cos 2cos sin 2sin cos sin 2+=+, ∴C A A cos sin 2sin =,∴21cos =C . 又∵C 是三角形的内角,∴3π=C .(2)3=∆ABC S ,∴33sin 21=πab ,∴4=ab , 又∵C ab b a c cos 2222-+=,∴ab ab b a --+=2)(42,∴4=+b a ,∴2==b a .18.【答案】(1)详见解析;(2. 【解析】试题分析:(1)设O 为AB 的中点,连结1A O ,根据条件首先证明四边形1A DBO 为平行四边形,即可得到//EF BD ,再根据线面平行的判定即可得证;(2)利用11D BEC C BDE V V --=将体积进行转化,求得底面积与高即可求解.试题解析:(1)设O 为AB 的中点,连结1A O ,∵14AF AB =,O 为AB 的中点,∴F 为AO 的中点,又∵E 为1AA 的中点,∴1//EF AO ,又∵D 为11A B 的中点,O 为AB 的中点,∴1A D OB =, 又∵1//A D OB ,∴四边形1A DBO 为平行四边形,∴1//AO BD ,又∵1//EF AO ,∴//EF BD , 又∵EF ⊄平面1DBC ,BD ⊂平面1DBC ,∴//EF 平面1DBC ;(2)∵12AB BC CA AA ====, D ,E 分别为11A B ,1AA 的中点,14AF AB =,∴1C D ⊥面11ABB A ,而11D BEC C BDE V V --=, 1111BDE ABA B BDB ABE A DES S S S S ∆∆∆∆=---1113222121112222=⨯-⨯⨯-⨯⨯-⨯⨯=,∵1C D =1111133322D BEC C BDE BDE V V S C D --∆==⋅=⨯=.19.【答案】(1)21n a n =+;(2)1(21)2n n T n ++-⋅【解析】(1)依题得1121113254355022(3)(12)a d a d a d a a d ⨯⨯⎧+++=⎪⎨⎪+=+⎩解得132a d =⎧⎨=⎩1(1)32(1)21n a a n d n n ∴=+-=+-=+,即21n a n ∴=+(2)1112,2(21)2n n n n n n nb b a n a ---==⋅=+⋅ 0121325272(21)2-∴=-⨯+⨯+⨯+++⋅ n n T n ①12312325272(21)2(21)2-=⨯+⨯+⨯++-⋅++⋅ n n n T n n ②两式相减得:()121232(21)212--=--⨯++⋅-n n n T n1(21)2=+-⋅n n20.【答案】(1)(2【解析】(1)由题设可知,圆O 的方程为x 2+y 2=b 2,因为直线l :x ﹣y+2=0与圆O 相切,故有, 所以. 因为,所以有a 2=3c 2=3(a 2﹣b 2),即a 2=3. 所以椭圆C 的方程为.(2)设点A (x 0,y 0)(x 0>0,y 0>0),则y 0=kx 0. 由解得,①∵OA ⋅=(k=0舍去). ②∵, (当且仅当时取等号),∴S △AOD 的最大值为.21. 【答案】(1)21-=a ;(2)证明见解析;(3)1-≤m . 【解析】 (1))11(2)(-+='x b ax x f ,所以12)1(-=='=a f k ,所以21-=a . (2))(ln 21)(2x x b x x f -+-=,其定义域为),0(+∞, xb bx x x b x x f +--=-+-='2)11()(, 令),0(,)(2+∞∈+--=x b bx x x h ,b b 42+=∆,①当04≤≤-b 时,042≤+=∆b b ,有0)(≤x h ,即0)(≤'x f ,所以)(x f 在区间),0(+∞上单调递减,故)(x f 在区间),0(+∞无极值点.②当4-<b 时,0>∆,令0)(=x h ,有24,242221b b b x b b b x ++-=+--=,012>>x x , 当),0(1x x ∈时,0)(<x h ,即0)(<'x f ,得)(x f 在),0(1x 上递减;当),(21x x x ∈时,0)(>x h ,即0)(>'x f ,得)(x f 在),(21x x 上递增;当),(2+∞∈x x 时,0)(<x h ,即0)(<'x f ,得)(x f 在),(2+∞x 上递减,此时)(x f 有一个极小值点242b b b +--和一个极大值点242b b b ++-. ③当0>b 时,0>∆,令0)(=x h ,有024,0242221>++-=<+--=b b b x b b b x , 当),0(2x x ∈时,0)(<x h ,即0)(<'x f ,得)(x f 在),0(2x 上递增;当),(2+∞∈x x 时,0)(<x h ,即0)(<'x f ,得)(x f 在),(2+∞x 上递减,此时)(x f 有唯一的极大值点242b b b ++-.综上可知,当4-<b 时,函数)(x f 有一个极小值点242b b b +--和一个极大值点242b b b ++-; 当04≤≤-b 时,函数)(x f 在),0(+∞无极值点;当0>b 时,函数)(x f 有唯一的极大值点242b b b ++-,无极小值点. (3)令],1[),()()(b x x g x f x F ∈-=, 则x x b x b x x x b x x F -=-+---+-=ln ])1(21[)(ln 21)(22, 若总存在],1[,21b x x ∈,使得m x g x g x f x f +->--)()(1)()(2121成立,即总存在],1[,21b x x ∈,使得1)()()()(2211++->-m x g x f x g x f 成立,即总存在],1[,21b x x ∈,使得1)()(21+>-m x F x F 成立,即1)()(min max +>-m x F x F , xx b x b x F -=-='1)(,因为],1[b x ∈,所以0)(≥'x F ,即)(x F 在],1[b 上单调递增, 所以1ln )1()()()(min max +-=-=-b b b F b F x F x F ,即11ln +>+-m b b b 对任意),1(+∞∈b 成立,即m b b b >-ln 对任意),1(+∞∈b 成立,构造函数),1[,ln )(+∞∈-=b b b b b t ,b b t ln )(=',当),1[+∞∈b 时,0)(≥'b t ,∴)(b t 在),1[+∞上单调递增,∴对于任意),1[+∞∈b ,1)1()(-=>t b t ,所以1-≤m .。

相关文档
最新文档