【备战2016】(四川版)高考数学分项汇编 专题14 推理与证明、新定义(含答案解析)理

合集下载

三年高考2014_2016高考数学试题分项版专题14推理与证明理(含解析)

三年高考2014_2016高考数学试题分项版专题14推理与证明理(含解析)

三年高考(2014-2016)数学(理)试题分项版解析第十四章 推理与证明一、选择题1. 【2015高考广东,理8】若空间中n 个不同的点两两距离都相等,则正整数n 的取值( )A .大于5 B. 等于5 C. 至多等于4 D. 至多等于3【答案】C .【解析】显然正三角形和正四面体的顶点是两两距离相等的,即3n =或4n =时命题成立,由此可排除A 、B 、D ,故选C .【考点定位】空间想象能力,推理能力,含有量词命题真假的判断.【名师点睛】本题主要考查学生的空间想象能力,推理求解能力和含有量词命题真假的判断,此题属于中高档题,如果直接正面解答比较困难,考虑到是选择题及选项信息可以根据平时所积累的平面几何、空间几何知识进行排除则不难得出正确答案C ,由于3n =时易知正三角形的三个顶点是两两距离相等的从而可以排除A 、B ,又当4n =时易知正四面体的四个顶点也是两两距离相等的从而可以排除D .2. 【2014福建,理10】用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出若干个球的所有取法可由()()b a ++11的展开式ab b a +++1表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球,面“ab ”用表示把红球和篮球都取出来.以此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的篮球都取出或都不取出的所有取法的是A. ()()()555432111c b a a a a a +++++++B.()()()554325111c b b b b b a +++++++ C. ()()()554325111c b b b b b a +++++++ D.()()()543255111c c c c c b a +++++++ 【答案】A考点:1.新定义.2.二项式展开式.【名师点睛】解决本题的关键是读懂题意,盯住关键字眼,就可以快速破解,如5个无区别的篮球都取出或都不取出,有()51b +种不同取法,看选项没有()51b +这一项的,直接排除,由此可排除B ,C ,D ,故选A.3.【2014山东.理4】 用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是( )A.方程02=++b ax x 没有实根B.方程02=++b ax x 至多有一个实根C.方程02=++b ax x 至多有两个实根D.方程02=++b ax x 恰好有两个实根【答案】A【名师点睛】本题考查反证法.解答本题关键是理解反证法的含义,明确至少有一个的反面是一个也没有.本题属于基础题,难度较小.4.【2015高考浙江,理6】设A ,B 是有限集,定义(,)()()d A B card A B card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件;命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( )A. 命题①和命题②都成立B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立【答案】A.【解析】命题①显然正确,通过如下文氏图亦可知),(C A d 表示的区域不大于),(),(C B d B A d +的区域,故命题②也正确,故选A.【考点定位】集合的性质【名师点睛】本题是集合的阅读材料题,属于中档题,在解题过程中需首先理解材料中相关概念与已知的集合相关知识点的结合,即可知命题①正确,同时注重数形结合思想的运用,若用韦恩图表示三个集合A ,B ,C ,则可将问题等价转化为比较集合区域的大小,即可确定集合中元素个数大小的比较.5. 【2014年.浙江卷.理8】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x y x y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+ 答案:D考点:向量运算的几何意义.【名师点睛】本题在处理时要结合着向量加减法的几何意义,将a b a b a b +-,,, 放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法”,“特殊值”代入法等也许是一种更快速,更有有效的方法.6. 【2014高考北京理第8题】学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人 B.3人 C.4人 D.5人【答案】B【解析】试题分析:用A、B、C分别表示优秀、及格和不及格,依题意,事件A、B、C中都最多只有一个元素,所以只有AC,BB,CA满足条件,故选B.考点:合情推理,中等题.【名师点睛】本题考查计数问题,本题属于基础题,但要求学生对题目中“学生甲比学生乙成绩好”这个定义要读懂,还考查学生的分析问题的能力.7. 【2015高考北京,理8】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油【答案】D【解析】“燃油效率”是指汽车每消耗1升汽油行驶的里程,A 中乙车消耗1升汽油,最多行驶的路程为乙车图象最高点的纵坐标值,A 错误;B 中以相同速度行驶相同路程,甲燃油效率最高,所以甲最省油,B 错误,C 中甲车以80千米/小时的速度行驶1小时,甲车每消耗1升汽油行驶的里程10km,行驶80km ,消耗8升汽油,C 错误,D 中某城市机动车最高限速80千米/小时. 由于丙比乙的燃油效率高,相同条件下,在该市用丙车比用乙车更省油,选D.考点:本题考点定位为函数应用问题,考查学生对新定义“燃油效率”的理解和对函数图象的理解.【名师点睛】本题考查对新定义“燃油效率”的理解和读图能力,本题属于中等题,有能力要求,贴近学生生活,要求按照“燃油效率”的定义,汽车每消耗1升汽油行驶的里程,可以断定“燃油效率”高的车省油,相同的速度条件下,“燃油效率”高的汽车,每消耗1升汽油行驶的里程必然大,需要学生针对四个选择只做出正确判断.8.【2014年普通高等学校招生全国统一考试湖北卷6】若函数)(x f 、)(x g 满足⎰-=110)()(dx x g x f ,则称)(x f 、)(x g 在区间]1,1[-上的一组正交函数,给出三组函数:①x x g x x f 21cos )(,21sin)(==;②1)(,1)(-=+=x x g x x f ;③2)(,)(x x g x x f ==. 其中为区间]1,1[-的正交函数的组数是( )A.0B.1C.2D.3【答案】C考点:新定义题型,微积分基本定理的运用,容易题.【名师点睛】以高等数学中的正交函数为载体,重点考查微积分基本定理的应用,充分体现了数学基础知识的应用能力,能较好的考查学生识记和理解数学基本概念的能力、基础知识在实际问题中的运用能力以及较强的数学计算能力.9. 【2014年普通高等学校招生全国统一考试湖北卷8】《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.355113 【答案】B【解析】试题分析:设圆锥底面圆的半径为r ,高为h ,依题意,r L π2=,h r h r 22)2(75231ππ=, 所以275831ππ=,即π的近似值为258,故选B. 考点:《算数书》中π的近似计算,容易题. 【名师点睛】以数学史为背景,重点考查圆锥的体积计算问题,其解题的关键是读懂文字材料,正确理解题意,建立方程关系.充分体现了方程思想在实际问题中的应用,能较好的考查学生运用基础知识的能力和简单近似计算能力.10. 【2015高考湖北,理9】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(A B x x y y x y A ⊕=++∈∈,则A B ⊕中元素的个数为( ) A .77 B .49 C .45 D .30【答案】C【考点定位】1.集合的相关知识,2.新定义题型.【名师点睛】新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.二、填空题1. 【2014课标Ⅰ,理14】甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________【答案】A【解析】由丙说可知,乙至少去过A,B,C 中的一个城市,由甲说可知,甲去过A,C 且比乙去过的城市多,故乙只去过一个城市,且没去过C 城市,故乙只去过A 城市.【考点定位】推理.【名师点睛】本题主要考查了命题的逻辑分析、简单的合情推理, 题目设计巧妙,解题时要抓住关键,逐步推断,本题主要考查考生分析问题,解决问题的能力.2. 【2014山东.理15】已知函数R x x f y ∈=),(,对函数I x x g y ∈=),(,定义)(x g 关于)(x f 的对称函数为函数I x x h y ∈=),(,)(x h y =满足:对于任意I x ∈,两个点))(,()),(,(x g x x h x 关于点()),(x f x 对称,若)(x h 是24)(x x g -=关于b x x f +=3)(的“对称函数”,且)()(x g x h >恒成立,则实数b 的取值范围是_________.【答案】).+∞【名师点睛】本题考查阅读理解能力、学习能力、运算能力、直线与圆的位置关系.解答本题的关键,是理解新定义运算,将问题转化成3x b +恒成立,利用数形结合思想,再将问题转化成直线与圆的位置关系问题.本题属于新定义问题,是一道创新能力题,中等难度之上.在考查阅读理解能力、学习能力、运算能力、直线与圆的位置关系等的同时,考查转化与化归思想及数形结合思想.3. 【2015高考山东,理11】观察下列各式:014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++= .【答案】14n -【考点定位】1、合情推理;2、组合数.【名师点睛】本题考查了合情推理与组合数,重点考查了学生对归纳推理的理解与运用,意在考查学生观察、分析、归纳、推理判断的能力,关键是能从前三个特殊的等式中观察、归纳、总结出一般的规律,从而得到结论.此题属基础题.4. 【2016高考新课标2理数】有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 .【答案】1和3【解析】试题分析:由题意分析可知甲的卡片上数字为1和3,乙的卡片上数字为2和3,丙卡片上数字为1和2.考点: 逻辑推理.【名师点睛】逻辑推理即演绎推理,就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程.演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用.逻辑推理包括演绎、归纳和溯因三种方式.5. 【2014高考陕西版理第14题】观察分析下表中的数据:猜想一般凸多面体中,E V F ,,所满足的等式是_________. 【答案】2F V E +-=考点:归纳推理.【名师点晴】本题主要考查的是归纳推理,属于中档题,解题时注意观察,归纳三棱锥、五棱锥、立方体等几何体面数(F )、顶点数(V )、棱数(E )之间的关系,归纳猜想一般凸多面体中,E V F ,,所满足的等式.当然,如果平时能够记忆这个关系,则可以得到事半功倍的效果6.【2014四川,理15】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -.例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题:①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,a D ∃∈,()f a b =”;②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2()ln(2)1x f x a x x =+++(2x >-,a R ∈)有最大值,则()f x B ∈. 其中的真命题有 .(写出所有真命题的序号)【答案】①③④【考点定位】1、新定义;2、函数的定义域值域.【名师点睛】新定义问题一般先考察对定义的理解,这时只需一一验证定义中各个条件即可.二是考查满足新定义的函数的简单应用,如在某些条件下,满足新定义的函数有某些新的性质,这也是在新环境下研究“旧”性质,此时需结合新函数的新性质,探究“旧”性质.三是考查综合分析能力,主要将新性质有机应用在“旧”性质,创造性证明更新的性质.7. 【2014年普通高等学校招生全国统一考试湖北卷14】设()x f 是定义在()+∞,0上的函数,且()0>x f ,对任意0,0>>b a ,若经过点))(,(a f a ,))(,(b f b -的直线与x 轴的交点为()0,c ,则称c 为b a ,关于函数()x f 的平均数,记为),(b a M f ,例如,当())0(1>=x x f 时,可得2),(b a c b a M f +==,即),(b a M f 为b a ,的算术平均数. (1)当())0_____(>=x x f 时,),(b a M f 为b a ,的几何平均数;(2)当())0_____(>=x x f 时,),(b a M f 为b a ,的调和平均数ba ab +2; (以上两空各只需写出一个符合要求的函数即可)【答案】(1))0()(>=x x x f ;(2))0()(>=x x x f .考点:两个数的几何平均数与调和平均数,难度中等.新定义型试题是高考的热点试题,考生错误往往有二,其一为不能正确理解题意,将新问题转化为所熟悉的数学问题;其二,不具备归纳、猜想、推理、传化等数学能力.但纵观湖北近四年高考试题,新定义型试题是必考试题,在专题复习中应加强训练.【名师点睛】以新定义为背景,以函数为依托,重点考查两个数的几何平均数与调和平均数,涉及构造函数,充分体现了函数思想在高中数学中的重要地位,其易错点有二,其一为不能正确理解题意,将新问题转化为所熟悉的数学问题;其二,不具备归纳、猜想、推理、传化等数学能力.8.【2015高考福建,理15】一个二元码是由0和1组成的数字串()*12n x x x n N ∈ ,其中()1,2,,k x k n = 称为第k 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0),已知某种二元码127x x x 的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩其中运算⊕ 定义为:000,011,101,110⊕=⊕=⊕=⊕=.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于 .【答案】5.【解析】由题意得相同数字经过运算后为0,不同数字运算后为1.由45670x x x x ⊕⊕⊕=可判断后4个数字出错;由23670x x x x ⊕⊕⊕=可判断后2个数字没错,即出错的是第4个或第5个;由13570x x x x ⊕⊕⊕=可判断出错的是第5个,综上,第5位发生码元错误.【考点定位】推理证明和新定义.【名师点睛】本题以二元码为背景考查新定义问题,解决时候要耐心读题,并分析新定义的特点,按照所给的数学规则和要求进行逻辑推理和计算等,从而达到解决问题的目的,.三、解答题1. 【2014高考北京理第20题】(本小题满分13分)对于数对序列1122:(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112(){(),}(2)k k k k T P b Max T P a a a k n -=++++≤≤,其中112{(),}k k Max T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数. (1)对于数对序列:(2,5),(4,1)P ,求12(),()T P T P 的值;(2)记m 为a ,b ,c ,d 四个数中最小的数,对于由两个数对(,),(,)a b c d 组成的数对序列:(,),(,)P a b c d 和:(,),(,)P c d a b ',试分别对m a =和m d =两种情况比较2()T P 和2()T P '的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).【答案】(1)7,8;(2)无论a m =还是d m =,都有)()(22P T P T '≤成立;(3)10)(1=P T ,26)(2=P T ,42)(3=P T ,50)(4=P T ,52)(5=P T .【解析】试题分析:根据条件中的定义,对于数对序列1122:(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112(){(),}(2)k k k k T P b Max T P a a a k n -=++++≤≤,其中112{(),}k k Max T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数,求解. 试题解析:依题意,752)(1=+=P T ,8}6,7{1}42),({1)(12=+=++=Max P T Max P T .(3)数对序列:(4,6),(11,11),(16,11),(11,8),(5,2)的)(5P T 值最小.10)(1=P T ,26)(2=P T ,42)(3=P T ,50)(4=P T ,52)(5=P T .考点:新定义题型.【名师点睛】近年北京卷理科压轴题一直为新信息题,本题考查学生对新定义的理解能力和使用能力,本题属于偏难问题,反映出学生对于新的信息的的理解和接受能力,题目给出新的定义:1()()k T P T P 、并对定义中max{T k -1(P ),a 1+a 2+…+a k }做出解释,第一步尝试对于数对序列P :(2,5),(4,1)使用定义,求得T 1(P ),T 2(P ),初步使用定义,加深对定义的理解,第二步中的比较大小及第三步中的求最值就是在第一步的基础上的深化研究,毕竟是一个新的信息题,在一个全新的环境下进行思维,所以学生做起来还是很费力的.2. 【2015高考北京,理20】已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.【答案】(1){6,12,24}M =,(2)证明见解析,(3)8 (Ⅲ)由于M 中的元素都不超过36,由136a ≤,易得236a ≤,类似可得36n a ≤,其次M 中的元素个数最多除了前面两个数外,都是4的倍数,因为第二个数必定为偶数,由n a 的定义可知,第三个数及后面的数必定是4的倍数,另外,M 中的数除以9的余数,由定义可知,1n a +和2n a 除以9的余数一样,①若n a 中有3的倍数,由(2)知:所有的n a 都是3的倍数,所以n a 都是3的倍数,所以n a 除以9的余数为为3,6,3,6,...... ,或6,3,6,3......,或0,0,0,...... ,而除以9余3且是4的倍数只有12,除以9余6且是4的倍数只有24,除以9余0且是4的倍数只有36,则M 中的数从第三项起最多2项,加上前面两项,最多4项. ②n a 中没有3的倍数,则n a 都不是3的倍数,对于3a 除以9的余数只能是1,4,7,2,5,8中的一个,从3a 起,n a 除以9的余数是1,2,4,8,7,5,1,2,4,8,...... ,不断的6项循环(可能从2,4,8,7或5开始),而除以9的余数是1,2,4,8,5且是4的倍数(不大于36),只有28,20,4,8,16,32,所以M 中的项加上前两项最多8项,则11a =时,{1,2,4,8,16,32,28,20}M =,项数为8,所以集合M 的元素个数的最大值为8.考点定位:1.分段函数形数列通项公式求值;2.归纳法证明;3.数列元素分析.【名师点睛】本题考查数列的有关知识及归纳法证明方法,即考查了数列(分段形函数)求值,又考查了归纳法证明和对数据的分析研究,考查了学生的分析问题能力和逻辑推理能力,本题属于拔高难题,特别是第二、三两步难度较大,适合选拔优秀学生.3. 【2014上海,理22】(本题满分16分)本题共3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.在平面直角坐标系xoy 中,对于直线l :0ax by c ++=和点),,(),,(22211y x P y x P i 记1122)().ax by c ax by c η=++++(若η<0,则称点21,P P 被直线l 分隔.若曲线C 与直线l没有公共点,且曲线C 上存在点21P P ,被直线l 分隔,则称直线l 为曲线C 的一条分隔线.⑴ 求证:点),(),(012,1-B A 被直线01=-+y x 分隔;⑵若直线kx y =是曲线1422=-y x 的分隔线,求实数k 的取值范围;⑶动点M 到点)(2,0Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为E ,求证:通过原点的直线中,有且仅有一条直线是E 的分割线.【答案】(1)证明见解析;(2)11(,][,)22k ∈-∞-+∞;(3)证明见解析.【解析】试题分析:本题属于新定义问题,(1)我们只要利用题设定义求出η的值,若0η<,则结论就可得证;(2)直线y kx =是曲线2241x y -=的分隔线,首先直线与曲线无交点,即直线方程与曲线方程联立方程组2241x y y kx⎧-=⎨=⎩,方程组应无实解,方程组变形为22(14)10k x --=,此方程就无实解,注意分类讨论,按二次项系数为0和不为0分类,然后在曲线上找到两点位于直线y kx=的两侧.则可得到所求范围;(3)首先求出轨迹E 的方程1x =,化简为2221(2)x y x+-=,过原点的直线中,当斜率存在时设其方程为y kx =,然后解方程组2221(2)x y x y kx ⎧+-=⎪⎨⎪=⎩,变形为2221(1)44k x kx x +-+=,这个方程有无实数解,直接判断不方便,可转化为判断函数22()(1)44F x k x kx =+-+与21()G x x =的图象有无交点,而这可利用函数图象直接判断.()y F x =是开口方向向上的二次函数,()y G x =是幂函数,其图象一定有交点,因此直线y kx =不是E 的分隔线,过原点的直线还有一条就是0x =,它显然与曲线E 无交点,又曲线E 上两点(1,2),(1,2)-一定在直线0x =两侧,故它是分隔线,结论得证.(3)由题得,设(,)M x y 1x =,化简得,点M 的轨迹方程为222[(2)]1x y x +-⋅=①当过原点的直线斜率存在时,设方程为y kx =.联立方程,2222432[(2)]1(1)4410x y x k x kx x y kx⎧+-⋅=⇒+-+-=⎨=⎩. 令2432()(1)441F x k x kx x =+-+-,因为2(0)(2)(1)[16(1)15]0F F k =-⋅-+<,所以方程()0F x =有实解,直线y kx =与曲线E 有交点.直线y kx =不是曲线E 的分隔线. ②当过原点的直线斜率不存在时,其方程为0x =.显然0x =与曲线222[(2)]1x y x +-⋅=没有交点,又曲线E 上的两点(1,2),(1,2)-对于直线0x =满足110η=-⋅<,即点(1,2),(1,2)-被直线0x =分隔.所以直线0x =是E 分隔线.综上所述,仅存在一条直线0x =是E 的分割线.【考点】新定义,直线与曲线的公共点问题.【名师点睛】判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.即⎩⎪⎨⎪⎧ Ax +By +C =0,F x ,y =0,消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.。

四川新高考考前三个月数学理二轮专题复习4.3推理与证明(含答案详析)

四川新高考考前三个月数学理二轮专题复习4.3推理与证明(含答案详析)

第三讲推理与证明(1)概括推理的一般步骤:①经过察看某些个别状况发现某些同样性质;②从已知的同样性质中推出一个明确表述的一般性命题(猜想 ).(2)类比推理的一般步骤:①找出两类事物之间的相像性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想 ).(3)综合法的特色是:从“已知”看“可知”,逐渐推向“未知”,要求逐渐推理,实际上是找寻它的必需条件.(4)剖析法的特色是:从“未知”看“需知”,逐渐聚拢“已知”,即从要证明的结论出发,逐渐追求使它建立的充足条件,直至最后,即把要证明的结论归纳为判断一个明显建立的条件为止.(5)适适用反证法证明的四类数学命题:①独一性命题;②结论波及“至多”“起码”“无穷”的命题;③否认性命题;④直接证明较繁琐或困难的命题.(6)数学概括法数学概括法证明的步骤①证明当 n 取第一个值 n0 0∈N*)时结论建立;(n②假定 n= k(k∈N*,且 k≥ n0)时结论建立,证明n= k+1 时结论也建立.由①②可知,对随意n≥n0,且 n∈N*时,结论都建立.1. (2013 ·建福 )设 S, T 是R的两个非空子集,假如存在一个从S 到 T 的函数 y= f(x)知足:(1)T={ f(x)|x∈ S} ;(2) 对随意 x1,x2∈S,当 x1<x2时,恒有 f(x1)<f(x2).那么称这两个会合“保序同构”.以下会合对不是“保序同构”的是() A. A=N*,B=NB. A= { x|- 1≤ x≤3} , B= { x|x=- 8 或 0<x≤ 10}C. A= { x|0<x<1} , B=RD. A=Z,B=Q答案D分析关于 A,取 f(x)= x+ 1,知足题意.- 8, x=- 1,关于 B ,取 f(x)=x+ 1,- 1< x<0,知足题意 .2x + 1, 0≤ x≤ 3,1关于 C,取 f(x)= tan[ π(x-2)] ,知足题意.清除法,选 D.2. (2013 陕·西 )察看以下等式12= 112- 22=- 312- 22+ 32= 612- 22+ 32- 42=- 10,,照此规律,第n 个等式可为 ________.答案2222n+1 2n+1n n+ 1 1 - 2+3 -4+, + (-1)n = (- 1)·2分析察看等式左侧的式子,每次增添一项,故第n 个等式左侧有 n 项,指数都是2,且正、负相间,所以等式左侧的通项为(- 1)n+1n2.等式右侧的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21 , ,.设此数列为 { a n} ,则 a2- a1= 2, a3-a2=3, a4- a3= 4,a5- a4= 5,,, a n- a n-1= n,各式相加得a n- a1=2+ 3+ 4+ ,+ n,即 a n= 1+2+3+ ,+ n =n n+ 1.所以第n个等式为22+ 32- 42+, +(- 1)n+1 21)n+2 1 - 2n = (-1n n+12.3. (2013 湖·北 )古希腊毕达哥拉斯学派的数学家研究过各样多边形数,如三角形数1,3,6,10,, ,第 n 个三角形数为n n+1=121n,记第 n 个 k 边形数为 N(n,k)(k≥ 3),22n +2以以下出了部分k 边形数中第 n 个数的表达式:三角形数121N(n,3)= n+ n,22正方形数N(n,4)=n2,五边形数321N(n,5)= n- n,22六边形数N(n,6)=2n2- n ,,,,,,,,,,,,,,,能够推测 N( n,k)的表达式,由此计算N(10,24)= ___________.答案 1 000分析22k - 224- k由 N( n,4)= n ,N( n,6)= 2n - n ,能够推测: 当 k 为偶数时, N(n ,k)=2n +2n ,∴ N(10,24) =24- 2× 100+4- 24× 1022= 1 100- 100=1 000.4. (2012 陕·西 )察看以下不等式:1 3 1+22<2,1 1 51+22+ 32<3,1 1 1 71+22+ 32+42<4,,,照此规律,第五个不等式为 ________....答案11 111 111+ 22222< 62 +3 +4 +5 +6分析概括察看法.察看每行不等式的特色, 每行不等式左端最后一个分数的分母与右端值的分母相等,且每行右端分数的分子组成等差数列.∴ 第五个不等式为 1+ 1 1 1 1 1 112 + 2+ 2+ 2+ 2< 6 .2 3 4 5 62ab为 a ,b 的调解均匀数.如图,C 为线段 AB 上的点, 5. (2010 湖·北 )设 a >0,b > 0,称 a + b且 AC =a , CB = b ,O 为 AB 中点,以 AB 为直径作半圆.过点C 作 AB 的垂线交半圆于 D ,连接 OD ,AD ,BD.过点 C 作 OD 的垂线,垂足为E.则图中线段 OD 的长度是 a ,b 的算术均匀数, 线段 ________的长度是 a ,b 的几何均匀数, 线段 ________的长度是 a ,b 的调解均匀数.答案CD DE分析 在 Rt △ ABD 中, CD 是斜边 AB 上的高,所以 CD 2 =AC ·CB ,所以 CD = AC ·CB = ab ,所以线段 CD 的长度是 a , b 的几何均匀数.在 Rt △OCD 中,由于 CE ⊥ OD ,所以DE = CD,CD OD 2CDab2ab所以线段 DE 的长度=== .2所以线段 DE 的长度是 a ,b 的调解均匀数.题型一 合情推理 1 x - a n 例 1(1)设数列 { a n 是首项为 0 * ,f nsin ,x ∈ n , a n +1 ],} 的递加数列, n ∈ N (x)= n[a知足:关于随意的b ∈ [0,1) ,f n (x)= b 总有两个不一样的根, 则{ a n } 的通项公式为 _______.x 2 y 2(2)若 P 0(x 0,y 0)在椭圆 a 2+b 2= 1(a>b>0) 外,则过 P 0 作椭圆的两条切线的切点为 P 1,P 2,则切点弦 P 1P 2 所在直线方程是 x 0 x y 0y= 1.那么关于双曲线则有以下命题: 若 P 0(x 0,y 0)a 2 + 2 在双曲线 x 22 b 2 y 2P 0 作双曲线的两条切线的切点为 P ,P ,则切a -b = 1(a>0, b>0)外,则过1 2点弦 P 1P 2 所在的直线方程是 ________.审题破题(1) 先求数列 { a n } 的前几项,概括项的规律,作出猜想; (2) 双曲线和椭圆方程对比,形式近似,只需注意到椭圆的切线方程中x 2,y 2 分别换成了 x 0x , y 0y 即可.答案 (1) a =n n - 1 π(2)x 0x - y 0 yn 2a 2 2 =1b分析 (1) ∵a 1= 0,当 n = 1 时, f 1(x) =|sin(x - a 1)|= |sin x|,x ∈ [0, a 2] ,又 ∵ 对随意的 b ∈ [0,1) , f 1(x)= b 总有两个不一样的根,∴ a 2= π;2sin 1 x - a 2 = sin 1 x - πf ( x)= 2 2= cos x , x ∈ [ π, a 3],2∵ 对随意的 b ∈[0,1) ,f 2(x)= b 总有两个不一样的根,1 ∴ a 3= 3π; f 3 (x)= sin 3 x - a 31 1= sin 3 x - 3π = sin 3x , x ∈ [3 π, a 4],∵ 对随意的 b ∈[0,1) ,f 3(x)= b 总有两个不一样的根,∴ a 4= 6π.由此可得 a n + 1- a n = n π, ∴a n = n n - 1 π2.x 2 y 2x 0x y 0y所在直线方程 22 →yy2 2 P 1P 2 2 2 = 1,x→ xx ,y0.类比,(2)关于椭圆 a + b = 1,切点弦 a +bx 2 y 2 x 0x y 0 y双曲线 a 2- b 2= 1 的切点弦 P 1P 2 所在直线方程为 a2- b 2 =1.反省概括 应用合情推理应注意的问题:(1)在进行概括推理时,要先依据已知的部分个体,把它们合适变形,找出它们之间的联系,进而概括出一般结论.(2)在进行类比推理时,要充足考虑已知对象性质的推理过程,而后类比推导类比对象的性质.注意:概括推理重点是找规律,类比推理重点是看共性.变式训练 1(1) 若从点 O 所作的两条射线OM 、 ON 上分别有点 M 1、 M 2 与点 N 1、 N 2,则三S 角形面积之比SOM 1N 1=OM 1 ON 1O 所作的不在同一平面内的三条射线· .如图,若从点OM 2 ON 2OM 2N 2OP 、OQ 和 OR 上分别有点 P 1、P 2,点 Q 1、Q 2 和点 R 1、R 2,则近似的结论为 ________.答案 V O P 1Q 1 R 1= OP 1 OQ 1 OR 1· ·VO P 2Q 2 R 2OP 2 OQ 2 OR 2分析考察类比推理问题,由图看出三棱锥P 1-OR 1Q 1 及三棱锥 P 2- OR 2Q 2 的底面面积之比为 OQ 1 OR 1 ,又过极点分别向底面作垂线,获得高的比为 OP 1,故体积之比为OQ 2 ·OP 2 OR 2VO P 1Q 1R 1= OP 1 OQ 1 OR 1V O P 2 Q 2R 2 · · .OP 2 OQ 2 OR 2(2)已知命题:若数列 { a n } 为等差数列,且 a m = a , a n = b (m ≠ n , m 、 n ∈ N *),则 a m +n = bn - am;现已知等比数列 { b n } ( b ≠0, n ∈N * ), b m = a ,b n = b (m ≠n , m 、 n ∈ N * ),若类n -m比上述结论,则可获得b m + n = __________.答案 n - m b na m分析等差数列中的 bn 和 am 能够类比等比数列中的b n 和 a m ,等差数列中的 bn - amb nbn - amn - m b n能够类比等比数列中的am,等差数列中的 n - m 能够类比等比数列中的am,故 b m + n = n -m b na m . 题型二 直接证明与间接证明例 2设实数数列 { a n } 的前 n 项和 S n 知足 S n + 1= a n +1S n (n ∈ N * ). (1)若 a 1, S 2,- 2a 2 成等比数列,求 S 2 和 a 3;(2)求证:对 k ≥ 3 4有 0≤ a k + 1≤ a k ≤ .3审题破题 (1) 依据 S 22=- 2a 1a 2 及 S 2= a 2a 1 从方程的角度求出 S 2.再由 S 3= a 3S 2= S 2+ a 3,求出 a 3.(2)依据 S n + 1= a n +1S n (n ∈ N * )的关系,找寻 a n + 1 与 a n 的递推关系,再用不等式放缩法、剖析法、反证法的思想方法求解.(1)解 S 22=- 2a 1a 2 ,由题意 得 S 22=- 2S 2,S 2= a 2S 1= a 1a 2,由 S 2 是等比中项知 S 2≠ 0.所以 S 2=- 2.由 S 2+ a 3=S 3=a 3S 2 解得 a 3=S 2- 222-1=- 2-1=3.S(2)证明由题设条件有 S n + a n +1= a n +1S n ,Sa n +1n故 S n ≠ 1, a n +1≠ 1 且 a n +1=S n - 1, S n = a n + 1- 1,进而对 k ≥ 3 有S k - 1= a k - 1+S k - 2a k =S k -1- 1 a k - 1+ S k - 2- 1a k -1+ a k - 1 2a k -1- 1= a k -1a k 1= 2 -a - + 1.①--a k -1+ a k 1k 1a k -1- - 1121 2 3 2因 a k -1 -a k - 1+1= a k - 1- + >0 且 a k - 1≥ 0,2 4由 ①得 a k ≥0.2要证 a ≤ 4,由 ① 只需证 2≤ 4,a k - 1k3k -1- a k-1+ 1 3a即证 3a k 2- 1≤ 4(a k 2 -1- a k -1+ 1),即 (a k - 1- 2)2≥ 0,此式明显建立.所以a k ≤ 4(k ≥ 3).a k 23>a k ,最后证 a k + 1≤ a k ,若否则 a k + 1= 2a k - a k +1又因 a k ≥ 0,故 2 a k >1,即 ( a k - 1)2<0. 矛盾.a k - a k +1 所以 a k + 1≤ a k (k ≥ 3).综上,当 k ≥ 3 时有 0≤ a k + 1≤a k ≤ 4.3反省概括综合法与剖析法是直接证明中的“ 姊妹证明 ” 方法.往常状况下, 运用剖析法,由果索因,找到一个正确的结论或已知条件,而后运用综合法正确推理书写.在进 行立体几何证明中, 我们常从结论出发找寻问题的打破口, 但在逆推时也可能遇到阻碍,这时再从已知出发顺推搜寻中间细节, 问题即可得以解决. 自然,若所证命题从正面难以下手时,不如使用反证法.变式训练 2 (2013 ·陕西 )设 { a n } 是公比为 q 的等比数列.(1)推导 { a n } 的前 n 项和公式;(2)设 q ≠ 1,证明:数列 { a n +1} 不是等比数列. (1)解设 { a n } 的前 n 项和为 S n ,当 q =1 时, S n =a 1+a 1+, + a 1= na 1;2n - 1①当 q ≠1 时, S n =a 1+a 1q + a 1q + , + a 1q .qS n = a 1q +a 1 q 2+a 1q 3+ , + a 1q n ,②① - ②得, (1- q)S n = a 1- a 1 q n ,n∴ S n =a 1 1- q ,1- qna 1, q = 1,n∴ S n = a 1 1- q,q ≠ 1.1-q(2)证明假定 { a n + 1} 是等比数列,则对随意的k ∈ N * ,(a k +1+ 1)2= (a k + 1)(a k + 2+ 1),2a k + 1+ 2a k + 1+1= a k a k + 2+a k + a k +2 +1,a 21q 2k + 2a 1 q k = a 1q k - 1·a 1q k +1+ a 1q k -1+ a 1q k +1,kk - 1k + 1∵ a 1≠ 0, ∴ 2q = q + q .∵ q ≠0, ∴ q 2- 2q + 1= 0, ∴ q =1,这与已知矛盾.∴ 假定不建立,故 { a n +1} 不是等比数列.题型三 数学概括法例 3已知数列 { a n } 知足关系式 a n +1= n+ 2, n ∈ N * ,且 a 1= 2.a n(1)求 a 2, a 3, a 4;(2)求证: n + 1≤ a n < n + 1+ 1;(3)求证:n + 1- 1< 1 + 1 +, + 1<2( n + 3- 3).a 1 a 2 a na + = n审题破题(1) 依据递推式和初始值求解即可; (2)依据已知的递推式+ 2,使用n 1 a n数学概括法进行证明;(3)依据 (2) 的结果进行证明.(1)解由题意,知 a 2=5, a 3= 14,a 4= 43.25 14(2)证明由 a n + 1= n+2 及 a 1= 2,知 a n >0.a n下边用数学概括法证明:① 当 n = 1 时, a 1= 2 知足 1+ 1≤ a 1< 1+1+ 1,建立. ② 假定当 n = k (k ∈N * )时,k + 1≤ a k < k +1+ 1 建立,则当 n = k + 1 时, a + = k+ 2> k + 2= k + 1+ 1.k 1 a kk + 1+ 1a k + 1= k+ 2≤ k + 2.a k k + 1下边用剖析法证明: k+ 2< k + 2+ 1.k + 1欲证k + 2<k +2+ 1,k +1只需证 k + k + 1<( k + 1) k + 2,只需证 (k + k + 1)2 <[( k + 1) k + 2] 2, 只需证 2 k + 1>0 ,此式明显建立.所以 k + 2< k +2+ 1 建立.k +1进而 a + = k+ 2≤ k + 2< k + 2+ 1.k 1a kk + 1由 ①② 可知,对全部 k ∈N *, n + 1≤a n < n + 1+1 建立.(3)证明 由(2) 知 1 < 1 ≤1 ,n n + 1 n + 1+1 a而 1 ≥ 1 = n +1- n ,n + 1+ 1 n + 1+ n 1 =2<2n +1n +1 +n + 3+ n + 2n + 1= 2( n + 3- n + 2),所以 n + 1- n< 1<2( n + 3- n + 2),a n所以 ( 2- 1)+, +(n + 1- n)< 1 + 1 + , + 1a 1 a 2 a n <2( 4- 3)+ ,+ 2( n + 3- n + 2),所以 n + 1- 1< 1 + 1+, + 1 <2( n + 3- 3).a 1 a 2 a n反省概括 在递推数列问题中,假如给出的是形如 a n + 1= f(a n )的递推式,则能够考虑用数学概括法进行证明, 这是由于在设出 a k 知足的结论后, 能够依据 a n + 1= f(a n )获得 a k +1知足的结论.在使用数学概括法证明问题时,在概括假定后,概括假定就是证明n = k+ 1 时的已知条件, 把概括假定当已知条件证明后续结论时, 能够使用综合法、 剖析法、反证法,也能够再次使用数学概括法.变式训练 1 1 1 1 3 1 *3 已知 f(n)= 1+ 3 3 3 3 , g(n)= - 2n 22 +3 +4 + , + n 2 , n ∈ N . (1)当 n = 1,2,3 时,试比较 f(n)与 g(n)的大小关系;(2)猜想 f(n)与 g(n)的大小关系,并给出证明.解 (1)当 n = 1 时, f(1)= 1, g(1)= 1,所以 f(1)= g(1);当 n =2 时, f(2) =98, g(2)= 118,所以 f(2)< g(2) ; 当 n =3 时, f(3) = 251, g(3) =312,所以 f(3)< g(3).216216(2)由 (1),猜想 f(n)≤ g(n),下边用数学概括法给出证明:① 当 n = 1,2,3 时,不等式明显建立.② 假定当 n = k(k ≥ 3, k ∈ N * )时,不等式建立,1 1 1 1 3 1 即 1+23+ 33+ 43+ , +k 3<2-2k 2,那么,当 n = k +1 时, f(k + 1)= f(k)+13<3- 12+ 1 1 3,k +1 2 2k k +1 1 1 k + 3 1 - 3k - 1 由于2 k +1 2 - 2k 2- k + 13 =2 k + 1 3- 2k 2= 2 k + 1 3k 2<0, 所以 f(k + 1)<3- 1 2= g(k + 1).2 2 k + 1∴ 当 n = k + 1 时 f(n)≤ g(n)建立.由 ①② 可知对全部 n ∈N * ,都有 f(n)≤ g(n)建立.典例 (1)(2012·江西 )察看以下各式: a + b = 1, a 2 + b 2 = 3, a 3+ b 3= 4, a 4+ b 4= 7, a 5+ b 5= 11,, ,则 a 10+ b 10 等于()A . 28B .76C .123D .199分析察看规律,概括推理.从给出的式子特色察看可推知, 等式右端的值, 从第三项开始, 后一个式子的右端值等于它前方两个式子右端值的和,照此规律,则 a 10+ b 10= 123.答案C(2)记等差数列 { a n } 的前 n 项和为 S n ,利用倒序乞降的方法,可将S n 表示成首项 a 1、末 项 a n 与项数 n 的一个关系式, 即公式 S n = n a 1+ a n;近似地, 记等比数列 { b n } 的前 n 项2积为 T n ,且 b n >0 (n ∈ N * ),试类比等差数列乞降的方法,可将 T n 表示成首项 b 1、末项b n 与项数 n 的一个关系式,即公式 T n = ________.分析 利用等比数列的性质:若m + n = p + q ,则 b m ·b n = b p ·b q ,利用倒序求积方法有T n =b 1b 2·, ·b n ,n两式相乘得 T n 2= ( b 1 b n )n ,即 T n = (b 1b n ) 2 .T n =b n b n - 1·, ·b 1,n答案(b 1b n )2得分技巧合情推理的重点是追求规律, 明确已知结论的性质或特色. 高考取此类问题的指向性很强,要获得正确结论的概括或类比.阅卷老师提示(1)在进行概括推理时,要先依据已知的部分个体,把它们合适变形,找出它们之间的联系,进而概括出一般结论.(2)在进行类比推理时,要充足考虑已知对象性质的推理过程,而后经过类比,推导出类比对象的性质.(3)概括推理重点是找规律,类比推理重点是看共性.1. 已知数列 { a n } 的前 n 项和 S n = n 2a n ( n ≥2),而 a 1= 1,经过计算a 2, a 3,a 4,猜想 a n 等于()22A. n + 1 2B.n n + 122 C.2n- 1D.2n - 1答案 B分析a n = S n - S n - 1=n 2a n -( n -1) 2a n -1,∴ (n - 1)2n - 1a n - 1= ( n -1)( n + 1)a n .∴ a n =a n -1.n + 1由 a 1=1 知: a 2= 1,a 3=1.3 6∴ 猜想 a n = 2,应选 B.n n + 12. 以下四个图形中, 着色三角形的个数挨次组成一个数列的前4 项,则这个数列的一个通项公式为()A . a n = n -1B .a n = 3 n3C . a n = 3n - 2nD . a n = 3n -1+2n - 3答案 A分析a 1= 1, a 2= 3,a 3= 9, a 4= 27,故猜 a n = 3n -1.3. 以下推理中属于概括推理且结论正确的选项是()A .设数列 { a n } 的前 n 项和为 S n ,由 a n = 2n - 1,求出 S 1= 12, S 2= 22, S 3= 32,, ,推断: S n = n 2B .由 f(x) = xcos x 知足 f(- x)=- f(x)对 ?x ∈ R 都建立,推测: f(x)= xcos x 为奇函数2222x 2 y 2C .由圆 x + y = r 的面积 S = πr ,推测:椭圆 a 2+ b 2= 1(a>b>0)的面积 S = πabD .由 (1+ 1)2>21, (2+ 1)2>2 2, (3+ 1)2>23,, ,推测:对全部 n ∈N * , (n + 1)2>2n 答案 A分析注意到,选项 A 由一些特别案例得出一般性结论, 且注意到数列 { a n } 是等差数列,其前 n 项和等于 S n = n 1+ 2n - 1= n 2,选项 D 中的推理属于概括推理, 但结论不正确. 因2 此选 A.2Sa 、b 、c ,△ ABC 的面积为 S ,内切圆半径为 r ,则 r = ;a + b + c类比这个结论可知:四周体S — ABC 的四个面的面积分别为S 1 、S 2 、S 3、 S 4,内切球的半径为 R ,四周体 P — ABC 的体积为 V ,则 R 等于()V2VA. +S +S +SB.+S +S +SS 12 3 4 S 1 2343V4VC.+S +S +SD.+S +S +SS 1 234S 1234答案 C分析此题考察类比推理,用体积切割的方法,能够得出3VR =+S +S +S.S 1 2345. 察看等式: 1+1=2,1+1+1=3,1+1+1+1=4,根1×2 2×3 31× 2 2×3 3× 44 1× 22×3 3×4 4×55据以上规律,第四个等式为________.答案1 +1× 212× 3+1 + 3× 41 + 4× 51 =5 5×6 66. 设等差数列 { a n } 的前 n 项和为S n ,则 S 4, S 8- S 4 , S 12- S 8, S 16- S 12 成等差数列.类比以上结论有:设等比数列 { b n } 的前 n 项积为 T n ,则 T 4,________,________,T 16成等比数T 12列.答案T 8 T 12T 4 T 8分析等差数列类比于等比数列,和类比于积,减法类比于除法,可得类比结论为:设等比数列 { b n } 的前 n 项积为 T n ,则 T 4,T 8, T 12,T 16成等比数列.T 4 T 8 T 12专题限时规范训练一、选择题1. 察看以下各式: 72= 49,73= 343,74= 2 401,, ,则 72 014 的末两位数字为()A . 01B .43C .07D . 49答案 D分析由于 71= 7,72 =49,73= 343,74= 2 401,7 5= 16 807,76= 117 649, , ,所以这些数的末两位数字呈周期性出现, 且周期 T = 4.又由于 2 014= 4× 503+ 2,所以 72 014 的末两位 数字与 72 的末两位数字同样,应选D.2. 定义一种运算“ * ”:关于自然数n 知足以下运算性质: (ⅰ )1*1=1,( ⅱ )(n+1)*1= n*1+1,则 n*1 等于()A . nB .n + 1C .n - 1D . n 2答案 A分析由 (n + 1)*1 = n*1 + 1,得 n*1 = (n - 1)*1 + 1= (n - 2)*1 + 2= , = 1]3. 定义 A* B ,B*C ,C*D ,D * A 的运算分别对应以下图中的 (1)(2)(3)(4) ,那么以下图中的(A)(B)所对应的运算结果可能是( )A .B*D ,A* DB .B*D , A*C C .B*C ,A*D D .C*D ,A*D答案 B分析由 (1)(2)(3)(4) 图得 A 表示 |,B 表示 □ ,C 表示 — ,D 表示 ○,故图 (A)(B) 表示 B* D和 A*C.1,2, 1, 3,2, 1, 4, 3,2, 1,, ,依它的前10 项的规律,这个数列的4. 已知数列: 1 1 21 2 3 1 2 3 4第 2 013 项 a2 013知足()11≤ a2 013<1A. 0<a2 013< B.1010C. 1≤ a2 013≤ 10D. a2 013>10答案A分析数列中项的规律:分母每一组中从小到大摆列:(1) , (1,2) ,(1,2,3) ,(1,2,3,4) , ,;分子每一组中从大到小摆列(1), (2,1), (3,2,1) , (4,3,2,1) ,, ,由上规律4 1知 a2 013=60=15.5.给出若干数字按以下图排成倒三角形,此中第一行各数挨次是1,2,3, , , 2 011,从第二行起每个数分别等于上一行左、右两数之和,最后一行只有一个数M,则这个数M 是()2 009A. 2 012 2·2 010B. 2 011 2·2 011C. 2 010 2·2 007D. 2 010 2·答案A分析第一行公差为1;第二行公差为2;,,;第 2010 行公差为22 009,第 2011 行只有 M,发现规律,得M= (1+ 2 011)2 0092·.或从第一行为 1,2,3 及 1,2,3,4,5 的两个“小三角形”联合选项概括得结果为 (3+1及 (5+ 1)×3n- 2.1)×2 2 ,猜一般规律为 (n+ 1) ·2+,若 a+ d= b+ c且 |a- d|<|b-c|,则有() 6.设 a,b, c, d∈RA. ad= bc B .ad<bc C.ad>bc D. ad≤ bc答案C分析|a - d|<|b- c|?( a-d)2<(b- c)2?a2+ d2-2ad<b2+ c2- 2bc,又∵a+ d= b+ c? (a +d)2= (b+ c)2? a2+ d2+ 2ad= b2+ c2+ 2bc,∴- 4ad<- 4bc,∴ ad>bc.a2+ b2127.已知 a>b>0,且 ab= 1,若 0<c<1, p= log c, q= log c() ,则 p, q 的大小2a+ b关系是()A. p>q B .p<qC. p= q D. p≥ q答案 Ba 2+b 2a 2+b 2分析∵>ab = 1, ∴ p = log c 22<0.12111又 q =log c () = log c>log c= log c >0, ∴q>p.a + ba +b + 2 ab4 ab4378. 对大于1 的自然数 m 的三次幂可用奇数进行以下方式的“分裂”:23, 3 3 9,511134315,, .仿此,若 m 3 的“分裂数”中有一个是59,则 m 的值为()17 19A . 5B .6C .7D . 8答案 D分析由已知可察看出m 3 可分裂为 m 个连续奇数,最小的一个为 (m - 1)m + 1.当 m =8时,最小的数为 57,第二个即是59.∴ m = 8.二、填空题9.察看以下等式1= 12+ 3+ 4= 9 3+ 4+5+ 6+ 7= 254+ 5+ 6+7+ 8+ 9+ 10= 49,,照此规律,第 n 个等式为 ________.答案n + (n + 1)+ (n + 2)+, + (3n - 2)= (2n - 1)2分析 第 n 个等式是首项为n ,公差为 1,项数为 2n - 1 的等差数列,即 n + (n + 1)+ (n+ 2)+, + (3n - 2)= (2n - 1) 2.110.若数列 { a n } 的通项公式 a n = n + 1 2,记 f(n)= 2(1-a 1 ) ·(1- a 2), (1- a n ),试经过计算f(1),f(2) ,f(3)的值,推测出 f(n)= ________.n + 2答案n + 13 1+ 2分析 f(1) = 2(1-a 1)=2= 1+ 1,1 1f(2) =2(1- a 1)(1 -a 2)= 2 1- 4 1- 9=4=2+ 2,3 2+1f(3) =2(1- a 1)(1 -a 2)(1 - a 3)=2 1- 1 1-1 1- 1=5= 3+2,4 9 16 4 3+1n + 2可猜想 f(n)=n + 1.11.二维空间中圆的一维测度(周长 )l = 2πr ,二维测度 (面积 )S = πr 2,察看发现 S ′= l ;三维空间中球的二维测度 (表面积 )S = 4πr 2,三维测度 (体积 )V =43,察看发现 V ′= S.则四3πr维空间中“超球”的四维测度 W = 2πr 4,猜想其三维测度 V = ________.答案 8πr 3分析 由已知, 可得圆的一维测度为二维测度的导函数; 球的二维测度是三维测度的导函数.类比上述结论, “ 超球 ”的三维测度是四维测度的导函数, 即 V = W ′ = (2πr 4)′= 8πr 3.12.函数 f(x)的定义域为 A ,若 x 1,x 2∈ A ,且 f(x 1 )= f(x 2)时总有 x 1= x 2,则称 f(x)为单函数. 例如 f(x)= 2x + 1 (x ∈ R )是单函数,以下命题:①函数f(x)= x 2 (x ∈ R )是单函数;②指数函数 f(x)= 2x (x ∈ R )是单函数,③若 f(x)为单函数, x 1, x 2∈ A 且 x 1≠ x 2,则 f(x 1)≠ f(x 2);④在定义域上拥有单一性的函数必定是单函数.此中的真命题是 __________( 写出全部真命题的编号 ). 答案 ②③④分析由 x 12= x 22,未必有 x 1= x 2,故 ① 不正确;关于 f(x)= 2x ,当 f(x 1)= f(x 2 )时必定有 x 1= x 2,故 ② 正确;当 f(x)为单函数时,有 f(x 1)= f( x 2)? x 1= x 2,则其逆否命题 f(x)为单函数时,x 1≠ x 2? f(x 1)≠ f(x 2) 为真命题,故 ③ 正确;当函数在其定义域上单一时, 必定有 f(x 1)= f(x 2) ? x 1= x 2,故 ④ 正确.三、解答题13. (2012 ·建福 )某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:① sin 213°+ cos 217°- sin 13 cos ° 17 ;°2 2 °- sin 15 cos ° 15 ;°② sin 15 °+ cos 15 22°- sin 18 cos ° 12 ;°③ sin 18 °+ cos 12④ sin 2(- 18°)+cos 248°-sin(- 18°)cos 48 ;°⑤ sin 2(- 25°)+cos 255°-sin(- 25°)cos 55 . °(1)试从上述五个式子中选择一个,求出这个常数;(2)依据 (1) 的计算结果,将该同学的发现推行为三角恒等式,并证明你的结论.解方法一 (1)选择 ② 式,计算以下:sin 215°+ cos 215°- sin 15 cos ° 15 °1 sin 30 =°1- 1 3= 1- 4 = .2 4 (2)三角恒等式为322sin α+ cos (30 °- α)- sin αcos(30 -°α)= 4.证明以下:sin 2α+ cos 2(30 °- α)- sin αcos(30 -°α)= sin 2α+(cos 30 cos ° α+ sin 30 sin ° α)2- sin α(cos 30 °cos α+ sin 30 sin ° α)23231 23 1 23 2323.= sin α+ cos α+2 sin αcos α+ sin α-2sin αcos α- sin α= sin α+ cos α= 442 4 4 4方法二 (1)同解法一.223 (2)三角恒等式为 sin α+ cos (30 °- α)- sin αcos(30 -°α)= 4. 证明以下:22sin α+ cos (30 °- α)- sin αcos(30 -°α)= 1-cos 2α 1+ cos 60°- 2αα(cos 30 cos ° α+ sin 30 sin ° α)2+2- sin= 1-1 1+ 1 312α2 2cos 2α+ 2 2(cos 60 cos ° 2α+ sin 60 sin ° 2α)- 2 sin αcos α- 2sin1 1 cos 2α+ 1 + 1 3 sin 2α- 3= - 2 2 cos 2α+ 4 4sin 2α-2 41 1 1 1 3(1 -cos 2α)= 1- cos 2α-+ cos 2α= .44 4 4414.设会合 W 是知足以下两个条件的无量数列 { a n } 的会合.① a n + a n +2≤ a n +1;② a n ≤ M ,此中 n ∈ N * , M 是与 n 没关的常数.2(1)若 { a n } 是等差数列, S n 是其前 n 项的和, a 3= 4, S 3= 18,尝试究 { S n } 与会合 W 之间的关系;(2)若数列 { b n } 的通项为 b n = 5n - 2n ,且 { b n } ∈ W , M 的最小值为 m ,求 m 的值;(3)在 (2)的条件下,设 1 nc n = [ b n + (m - 5) ] + 2,求证:数列 { c n } 中随意不一样的三项都不5 能成为等比数列. (1)解 ∵ a 3= 4, S 3= 18,∴ a 1= 8, d =- 2,2 S n + S n + 2∴ S n =- n + 9n , 2 <S n + 1 知足条件 ① ,9S n =- n - 2 + 81,当 n = 4 或 5 时, S n 取最大值 20.2 4 ∴ S n ≤ 20 知足条件 ② ,∴ { S n } ∈ W.(2)解b n + 1- b n = 5- 2n 可知 { b n } 中最大项是 b 3= 7,∴M ≥7, M 的最小值为 7.(3)证明 由(2) 知 c n =n + 2,假定 { c n } 中存在三项 c p 、c q 、 c r (p 、 q 、 r 互不相等 )成等比数列,则 c 2q = c p ·c r ,∴ (q + 2)2= (p + 2)(r + 2),∴ (q 2- pr)+ (2q - p - r ) 2= 0.q 2 = pr ,∵ p 、q 、 r ∈ N * , ∴2q - p - r = 0,消去 q 得 (p- r )2= 0,∴p=r ,与 p≠ r 矛盾.∴{ c n} 中随意不一样的三项都不可以成为等比数列.。

【备战2016】(陕西版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理科

【备战2016】(陕西版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理科

专题14 推理与证明、新定义一.基础题组1. 【2010高考陕西版理第12题】观察下列等式:13+23=32,13+23+32=62,13+23+33+43=102,……, 根据上述规律,第五个等式为 _13+23+__32__+43____+53__=212___________.【答案】13+23+33+43+53+63=212考点:推理与证明,容易题.2. 【2012高考陕西版理第11题】观察下列不等式213122+<, 231151233++<, 222111512343+++<, ……照此规律,第五个...不等式为____________________. 【答案】6116151413121122222<+++++考点:推理与证明,容易题.二.能力题组1. 【2006高考陕西版理第12题】为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a +2b ,2b +c ,2c +3d ,4d ,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( ) A .4,6,1,7 B .7,6,1,4 C .6,4,1,7 D .1,6,4,7【答案】C【解析】考点:推理与证明.2. 【2008高考陕西版理第12题】为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012i a a a a ,{01}∈,(012i =,,),传输信息为00121h a a a h ,其中001102h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( )A .11010B .01100C .10111D .00011【答案】C考点:推理与证明.3.【2011高考陕西版理第13题】观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49……照此规律,第n 个等式为 .【答案】2(1)(32)(21)n n n n ++++-=-考点:推理与证明.5. 【2013高考陕西版理第14题】观察下列等式12=112-22=-312-22+32=612-22+32-42=-10……照此规律,第n 个等式可为__________.【答案】12-22+32-42+…+(-1)n +1n 2=(-1)n +112n n (+) 考点:推理与证明.5. 【2014高考陕西版理第14题】观察分析下表中的数据: 面 9 猜想一般凸多面体中,E V F ,,所满足的等式是_________.【答案】2F V E +-=考点:归纳推理.。

备战2016(重庆版)高考数学分项汇编专题14推理与证明、新定义(含解析)理

备战2016(重庆版)高考数学分项汇编专题14推理与证明、新定义(含解析)理

专题14 推理与证明、新定义
1. 【2005高考重庆理第22题】(本小题满分12分)
数列{a n }满足)1(2
1)11(1211≥+++==+n a n n a a n n n 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;
(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数 e=2.71828….
2. (本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)
设m 个不全相等的正数12,,,(7)m a a a m ≥ 依次围成一个圆圈.
(Ⅰ)若2009m =,且121005,,,a a a 是公差为d 的等差数列,而1200920081006,,,,a a a a 是公比为q d =的等比数列;数列12,,,m a a a 的前n 项和()n S n m ≤满足:320092007115,12S S S a ==+,求通项()n a n m ≤; (Ⅱ)若每个数()n a n m ≤是其左右相邻两数平方的等比中项,求证:22
16712m m a a a a ma a a +++++> ;
3. 【2013高考重庆理第22题】(本小题满分12分,(1)小问4分,(2)小问8分.)对正整数n ,记I n ={1,2,…,
n },,n n n P I k I ⎫=∈∈⎬⎭
.
(1)求集合P7中元素的个数;
(2)若P n的子集A中任意两个元素之和不是
..整数的平方,则称A为“稀疏集”.求n的最大值,使P n能分成两个不相交的稀疏集的并.。

【备战2016】(四川版)高考数学分项汇编 专题13 推理与证明、新定义(含解析)文

【备战2016】(四川版)高考数学分项汇编 专题13 推理与证明、新定义(含解析)文

第十三章 推理与证明、新定义一.基础题组1.【四川,文】【2009四川,文12】已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是( )A . 0B .21 C . 1 D . 25 【答案】A2.【2009四川,文16】设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a .若映射:f V V →满足:对所有a b V ∈、及任意实数,λμ都有()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换.现有下列命题:①设f 是平面M 上的线性变换,a b V ∈、,则()()()f a b f a f b +=+②若e 是平面M 上的单位向量,对,()a V f a a e ∈=+设,则f 是平面M 上的线性变换;③对,()a V f a a ∈=-设,则f 是平面M 上的线性变换;④设f 是平面M 上的线性变换,a V ∈,则对任意实数k 均有()()f ka kf a =.其中的真命题是 (写出所有真命题的编号)【答案】①③④3.【2010四川,文16】设S 为实数集R 的非空子集.若对任意x,y S ∈,都有x y,x y,xy S +-∈,则称S 为封闭集.下列命题:○1集合{S a =+ a,b 为整数}为封闭集;○2若S 为封闭集,则一定有0S ∈; ○3封闭集一定是无限集; ○4若S 为封闭集,则满足S T C ⊆⊆的任意集合T 也是封闭集. 其中真命题是 (写出所有真命题的序号)【答案】①②则1x y T -=-∉,所以T 不是封闭集.故填①②.【命题意图】本题主要考察新概念问题,属于创新问题,考查学生对新概念的理解、认知能力及知识的迁移能力.4.【2011四川,文16】函数()f x 的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数.例如,函数()f x =2x +1(x ∈R )是单函数.下列命题:①函数2()f x x =(x ∈R )是单函数;②指数函数()2x f x =(x ∈R )是单函数;③若()f x 为单函数,12,x x A ∈且12x x ≠,则12()()f x f x ≠;④在定义域上具有单调性的函数一定是单函数.其中的真命题是_________.(写出所有真命题的编号)【答案】②③④5.【2014四川,文15】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -。

三年高考(2014-2016)数学(理)真题分项版解析—— 专题14 推理与证明

三年高考(2014-2016)数学(理)真题分项版解析—— 专题14 推理与证明

推理与证明1.用反证法证明命题“设b a ,为实数,则方程02=++b ax x 至少有一个实根”时,要做的假设是()A.方程02=++b ax x 没有实根B.方程02=++b ax x 至多有一个实根C.方程02=++b ax x 至多有两个实根D.方程02=++b ax x 恰好有两个实根2.学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人C.4人D.5人3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油4.甲、乙、丙三位同学被问到是否去过C B A ,,三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________5.有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是.6.观察分析下表中的数据:多面体面数(F )顶点数(V )棱数(E )三棱锥569五棱锥6610立方体6812猜想一般凸多面体中,E V F ,,所满足的等式是_________.7.一个二元码是由0和1组成的数字串()*12n x x x n N ∈ ,其中()1,2,,k x k n = 称为第k 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0),已知某种二元码127x x x 的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩其中运算⊕定义为:000,011,101,110⊕=⊕=⊕=⊕=.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于.。

高考数学真题分类汇编 专题14 推与证明、新定义 理

高考数学真题分类汇编 专题14 推与证明、新定义 理

专题十四 推理与证明、新定义1.【2015高考湖北,理9】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30 【答案】C【解析】因为集合22{(,)1,,}A x y x y x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即25个点):即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111D C B A 中的整点(除去四个顶点),即45477=-⨯个.【考点定位】1.集合的相关知识,2.新定义题型.【名师点睛】新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.2.【2015高考广东,理8】若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A .大于5 B. 等于5 C. 至多等于4 D. 至多等于3 【答案】C .【解析】显然正三角形和正四面体的顶点是两两距离相等的,即3n =或4n =时命题成立,由此可排除A 、B 、D ,故选C .【考点定位】空间想象能力,推理能力,含有量词命题真假的判断.【名师点睛】本题主要考查学生的空间想象能力,推理求解能力和含有量词命题真假的判断,此题属于中高档题,如果直接正面解答比较困难,考虑到是选择题及选项信息可以根据平时所积累的平面几何、空间几何知识进行排除则不难得出正确答案C ,由于3n =时易知正三角形的三个顶点是两两距离相等的从而可以排除A 、B ,又当4n =时易知正四面体的四个顶点也是两两距离相等的从而可以排除D .3.【2015高考浙江,理6】设A ,B 是有限集,定义(,)()()d A B card A B card A B =-U I ,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集A ,B ,“A B ≠”是“ (,)0d A B >”的充分必要条件;命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C ≤+,( ) A. 命题①和命题②都成立 B. 命题①和命题②都不成立 C. 命题①成立,命题②不成立 D. 命题①不成立,命题②成立 【答案】A.【考点定位】集合的性质【名师点睛】本题是集合的阅读材料题,属于中档题,在解题过程中需首先理解材料中相关概念与已知的集合相关知识点的结合,即可知命题①正确,同时注重数形结合思想的运用,若用韦恩图表示三个集合A ,B ,C ,则可将问题等价转化为比较集合区域的大小,即可确定集合中元素个数大小的比较.4.【2015高考北京,理8】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油 【答案】D【解析】“燃油效率”是指汽车每消耗1升汽油行驶的里程,A 中乙车消耗1升汽油,最多行驶的路程为乙车图象最高点的纵坐标值,A 错误;B 中以相同速度行驶相同路程,甲燃油效率最高,所以甲最省油,B 错误,C 中甲车以80千米/小时的速度行驶1小时,甲车每消耗1升汽油行驶的里程10km,行驶80km ,消耗8升汽油,C 错误,D 中某城市机动车最高限速80千米/小时. 由于丙比乙的燃油效率高,相同条件下,在该市用丙车比用乙车更省油,选D.考点:本题考点定位为函数应用问题,考查学生对新定义“燃油效率”的理解和对函数图象的理解.【名师点睛】本题考查对新定义“燃油效率”的理解和读图能力,本题属于中等题,有能力要求,贴近学生生活,要求按照“燃油效率”的定义,汽车每消耗1升汽油行驶的里程,可以断定“燃油效率”高的车省油,相同的速度条件下,“燃油效率”高的汽车,每消耗1升汽油行驶的里程必然大,需要学生针对四个选择只做出正确判断.5.【2015高考福建,理15】一个二元码是由0和1组成的数字串()*12n x x x n N ∈L ,其中()1,2,,k x k n =L 称为第k 位码元,二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0),已知某种二元码127x x x L 的码元满足如下校验方程组:4567236713570,0,0,x x x x x x x x x x x x ⊕⊕⊕=⎧⎪⊕⊕⊕=⎨⎪⊕⊕⊕=⎩其中运算⊕ 定义为:000,011,101,110⊕=⊕=⊕=⊕=.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于 . 【答案】5.【考点定位】推理证明和新定义.【名师点睛】本题以二元码为背景考查新定义问题,解决时候要耐心读题,并分析新定义的特点,按照所给的数学规则和要求进行逻辑推理和计算等,从而达到解决问题的目的. 6.【2015高考山东,理11】观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=L .【答案】14n -【考点定位】1、合情推理;2、组合数.【名师点睛】本题考查了合情推理与组合数,重点考查了学生对归纳推理的理解与运用,意在考查学生观察、分析、归纳、推理判断的能力,关键是能从前三个特殊的等式中观察、归纳、总结出一般的规律,从而得到结论.此题属基础题. 7.【2015江苏高考,23】(本小题满分10分)已知集合{}3,2,1=X ,{})(,,3,2,1*N n n Y n ∈=Λ,{,),(a b b a b a S n 整除或整除=}n Y b X a ∈∈,,令()f n 表示集合n S 所含元素的个数.(1)写出(6)f 的值;(2)当6n ≥时,写出()f n 的表达式,并用数学归纳法证明.【答案】(1)13(2)()2,623112,612322,622312,632312,6423122,6523n n n n t n n n n t n n n n t f n n n n n t n n n n t n n n n t ⎧⎛⎫+++= ⎪⎪⎝⎭⎪⎪--⎛⎫+++=+⎪ ⎪⎝⎭⎪⎪-⎛⎫+++=+⎪ ⎪⎪⎝⎭=⎨-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪-⎛⎫⎪+++=+ ⎪⎪⎝⎭⎪--⎛⎫⎪+++=+ ⎪⎪⎝⎭⎩【解析】试题分析:(1)根据题意按a 分类计数:1,1,2,3,4,5,6;a b ==2,1,2,4,6;a b ==3,1,3,6;a b ==共13个(2)由(1)知1,1,2,3,,;a b n ==L 2,1,2,4,,2;a b k ==L *3,1,3,,3;()a b k k N ==∈L ,所以当6n ≥时,()f n 的表达式要按236⨯=除的余数进行分类,最后不难利用数学归纳法进行证明试题解析:(1)()613f =.()2,1k +,()3,1k +中产生,分以下情形讨论:1)若16k t +=,则()615k t =-+,此时有()()12132323k k f k f k k --+=+=++++ ()111223k k k ++=++++,结论成立; 2)若161k t +=+,则6k t =,此时有()()112123k kf k f k k +=+=++++ ()()()11111223k k k +-+-=++++,结论成立;3)若162k t +=+,则61k t =+,此时有()()11122223k k f k f k k --+=+=++++ ()()1211223k k k +-+=++++,结论成立; 4)若163k t +=+,则62k t =+,此时有()()2122223k k f k f k k -+=+=++++ ()()1111223k k k +-+=++++,结论成立;5)若164k t +=+,则63k t =+,此时有()()1122223k kf k f k k -+=+=++++()()1111223k k k +-+=++++,结论成立; 6)若165k t +=+,则64k t =+,此时有()()1112123k k f k f k k -+=+=++++ ()()()11121223k k k +-+-=++++,结论成立.综上所述,结论对满足6n ≥的自然数n 均成立. 【考点定位】计数原理、数学归纳法【名师点晴】用数学归纳法证明一个与正整数有关的命题时,其步骤为: ①归纳奠基:证明当取第一个自然数0n 时命题成立;②归纳递推:假设n k =,(k N *∈,0k n ≥)时,命题成立,证明当1n k =+时,命题成立; ③由①②得出结论.8.【2015高考北京,理20】已知数列{}n a 满足:*1a ∈N ,136a ≤,且121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,()12n =,,…. 记集合{}*|n M a n =∈N .(Ⅰ)若16a =,写出集合M 的所有元素;(Ⅱ)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (Ⅲ)求集合M 的元素个数的最大值.【答案】(1){6,12,24}M =,(2)证明见解析,(3)8 【解析】(Ⅰ)由已知121823618n n n n n a a a a a +⎧=⎨->⎩,≤,,可知:12346,12,24,12,a a a a ===={6,12,24}M ∴=(Ⅱ)因为集合M 存在一个元素是3的倍数,所以不妨设k a 是3的倍数,由已知121823618n n n nn a a a a a +⎧=⎨->⎩,≤,,,可用用数学归纳法证明对任意n k ≥,n a 是3的倍数,当1k =时,则M 中的所有元素都是3的倍数,如果1k >时,因为12k k a a -=或1236k a --,所以12k a -是3的倍数,于是1k a -是3的倍数,类似可得,21,......k a a -都是3的倍数,从而对任意1n ≥,n a 是3的倍数,因此M 的所有元素都是3的倍数.考点定位:1.分段函数形数列通项公式求值;2.归纳法证明;3.数列元素分析.【名师点睛】本题考查数列的有关知识及归纳法证明方法,即考查了数列(分段形函数)求值,又考查了归纳法证明和对数据的分析研究,考查了学生的分析问题能力和逻辑推理能力,本题属于拔高难题,特别是第二、三两步难度较大,适合选拔优秀学生.【2015高考上海,理23】对于定义域为R 的函数()g x ,若存在正常数T ,使得()cos g x 是以T 为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期.已知()f x 是以T 为余弦周期的余弦周期函数,其值域为R .设()f x 单调递增,()00f =,()4f πT =. (1)验证()sin3xh x x =+是以π6为周期的余弦周期函数; (2)设b a <.证明对任意()(),c f a f b ∈⎡⎤⎣⎦,存在[]0,x a b ∈,使得()0f x c =; (3)证明:“0u 为方程()cos 1f x =在[]0,T 上得解”的充要条件是“0u +T 为方程()cos 1f x =在[],2T T 上有解”,并证明对任意[]0,x ∈T 都有()()()f x f x f +T =+T .【答案】(1)详见解析(2)详见解析(3)详见解析(2)由于()f x 的值域为R ,所以对任意()(),c f a f b ∈⎡⎤⎣⎦,c 都是一个函数值,即有0R x ∈,使得()0f x c =.若0x a <,则由()f x 单调递增得到()()0c f x f a =<,与()(),c f a f b ∈⎡⎤⎣⎦矛盾,所以0x a ≥.同理可证0x b ≤.故存在[]0,x a b ∈使得()0f x c =.(3)若0u 为()cos 1f x =在[]0,T 上的解,则()0cos 1f u =,且[]0,2u +T∈T T ,()()00cos cos 1f u f u +T ==,即0u +T 为方程()cos 1f x =在[],2T T 上的解.同理,若0u +T 为方程()cos 1f x =在[],2T T 上的解,则0u 为该方程在[]0,T 上的解. 以下证明最后一部分结论.由(2)所证知存在012340x x x x x =<<<<=T ,使得()i f x i π=,0i =,1,2,3,4. 而[]1,i i x x +是函数()cos f x 的单调区间,0i =,1,2,3.与之前类似地可以证明:0u 是()cos 1f x =-在[]0,T 上的解当且仅当0u +T 是()cos 1f x =-在[],2T T 上的解.从而()cos 1f x =±在[]0,T 与[],2T T 上的解的个数相同.故()()4i i f x f x π+T =+,0i =,1,2,3,4. 对于[]10,x x ∈,()[]0,f x π∈,()[]4,5f x ππ+T ∈,而()()cos cos f x f x +T =,故()()()()4f x f x f x f π+T =+=+T . 类似地,当[]1,i i x x x +∈,1i =,2,3时,有()()()f x f x f +T =+T . 结论成立.【考点定位】新定义问题【名师点睛】新定义问题一般先考察对定义的理解,这时只需一一验证定义中各个条件即可.二是考查满足新定义的函数的简单应用,如在某些条件下,满足新定义的函数有某些新的性质,这也是在新环境下研究“旧”性质,此时需结合新函数的新性质,探究“旧”性质.三是考查综合分析能力,主要将新性质有机应用在“旧”性质,创造性证明更新的性质.。

【备战2016】(北京版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

【备战2016】(北京版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

专题14 推理与证明、新定义1. 【2006高考北京理第8题】下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C 的机动车辆数如图所示,图中123,,x x x 分别表示该时段单位时间通过路段,,AB BC CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则20,30;35,30;55,50 ( ) (A )123x x x >> (B )132x x x >> (C )231x x x >> (D )321x x x >> 【答案】C2. 【2009高考北京理第8题】点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是 ( )A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点”C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”【答案】A考点:创新题型.3. 【2014高考北京理第8题】学生的语文、数学成绩均被评为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人 B.3人 C.4人 D.5人【答案】B考点:合情推理,中等题.4. 【2005高考北京理第14题】已知n 次式项式n n n n n a x a x a x a x P ++++=--1110)( .如果在一种算法中,计算),,4,3,2(0n k x k=的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P 10(x 0)的值共需要 次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=x P k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P 10(x 0)的值共需要 次运算. 【答案】1(3)22n n n + 考点:信息题。

2016届高考数学全国名校试题分项汇编(江苏特刊)专题14推理与证明、新定义(第01期)(解析版)

2016届高考数学全国名校试题分项汇编(江苏特刊)专题14推理与证明、新定义(第01期)(解析版)

第十四章 推理与证明、新定义一.基础题组1. 【2015年高考模拟试卷南通市数学学科基地命题(6)】若对任意的x ∈D ,均有f 1(x)≤f(x)≤f 2(x)成立,则称函数f(x)为函数f 1(x)到函数f 2 (x)在区间D 上的“折中函数”.已知函数f(x)=(k -1)x -1,g(x)=0,h(x)=(x +1)ln x ,且f(x)是g(x)到h(x)在区间[1,2e]上的“折中函数”,则实数k 的取值集合为________. 【答案】{2}考点:新定义,不等式恒成立,导数与单调性.2. 【】用火柴棒摆“金鱼”,如图所示:按照上面的规律,第○n 个“金鱼”图需要火柴棒的根数是 . 【答案】62n + 【解析】试题分析:由题意得:“金鱼”图需要火柴棒的根数依次构成一个等差数列,首项为8,公差为6,因此第n 项为62n + 考点:等差数列3. 【淮安市2014-2015学年度第二学期高二调查测试】对于数列{n a },定义数列{n n a a -+1}为数列{n a }的“差数列”,若21=a ,{n a }的“差数列”的通项为n2,则数列{n a }的前n 项和n S = .【答案】122n +- 【解析】试题分析:由题意得:12nn n a a +-=,所以1122(12)22222212n n n n n a ----=++++=+=-,所以n S 122n +=-考点:等比数列求和,累加法求通项4. 【淮安市2014-2015学年度第二学期高二调查测试】已知函数()2log 1f x a x =+(0a ≠),定义函数()()(),0,0f x x F x f x x ⎧>⎪=⎨-<⎪⎩,给出下列命题:① ()()F x f x =;②函数()F x 是偶函数;③当0a <时,若01m n <<<,则有()()0F m F n -<成立;④当0a >时,函数()2y F x =-有4个零点.其中正确命题的个数为 .【答案】3考点:函数性质5. 【2015年高考模拟试卷南通市数学学科基地命题(5)】一个非空集合中的各个元素之和是3的倍数,则称该集合为“好集”.记集合 {1,2,3,…,3n }的子集中所有“好集”的个数为f (n ). (1)求f (1),f (2)的值;(2)求f (n )的表达式.【答案】(1)f (1)=3,f (2)=23;(2)f (n )=2n (4n -1)3+2n-1.试题解析:(1)易得f(1)=3;当n=2时,集合{1,2,3,4,5,6}的子集中是“好集”的有:单元集:{3},{6}共2个,双元集{1,2},{1,5},{2,4},{4,5},{3,6}共5个,三元集有:{1,2,3},{1,2,6},{1,3,5},{1,5,6},{4,2,3},{4,2,6},{4,3,5},{4,5,6}共8个,四元集有{3,4,5,6},{2, 3,4,6},{1,3,5,6},{1,2,3,6},{1,2,4 ,5}共五个,五元集{1,2,4,5,6},{1,2,3,4,5}共2个,还有一个全集.故f(2)=1+(2+5)×2+8=23.(2)首先考虑f(n+1)与f(n)的关系.集合{1,2,3,…,3n,3n+1,3n+2,3n+3}在集合{1,2,3,…,3n}中加入3个元素3n+1,3n+2,3n+3.故f(n+1)的组成有以下几部分:①原有的f(n)个集合;②含有元素3n+1的“好集”是{1,2,3,…,3n}中各元素之和被3除余2的集合,含有元素是3n+2的“好集”是{1,2,3,…,3n}中各元素之和被3除余1的集合,含有元素是3n+,3的“好集”是{1,2,3,…,3n}中各元素之和被3除余0的集合,合计是23n;③含有元素是3n+1与3n+2的“好集”是{1,2,3,…,3n}中各元素之和被3除余0的集合,含有元素是3n+2与3n+3的“好集”是{1,2,3,…,3n}中各元素之和被3除余1的集合,含有元素是3n+1与3n+3的“好集”是{1,2,3,…,3n}中各元素之和被3除余2的集合,合计是23n ;④含有元素是3n +1,3n +2,3n +3的“好集”是{1,2,3,…,3n }中“好集”与它的并,再加上{3n +1,3n +2,3n +3}. 所以,f (n +1)=2 f (n )+2×23n +1. 两边同除以2n +1,得f (n +1)2n +1-f (n )2n =4n +12n +1,所以 f (n )2n =4n -1+4n -2+…+4+12n +12n -1+…+122+32=4n -13+1-12n , 即f (n )=2n (4n -1)3+2n-1. 考点:新定义,子集,归纳推理.6. 【2015年高考模拟试卷南通市数学学科基地命题(2)】汽车从刹车开始到完全静止所用的时间叫做刹车时间;所经过的距离叫做刹车距离.某型汽车的刹车距离s(单位米)与时间t(单位秒)的关系为32510s t k t t =-⋅++,其中k 是一个与汽车的速度以及路面状况等情况有关的量.(1)当k =8时,且刹车时间少于1秒,求汽车刹车距离;(2)要使汽车的刹车时间不小于1秒钟,且不超过2秒钟,求k 的取值范围. 【答案】(1)6752210米;(2)⎥⎦⎤⎢⎣⎡∈461,8k .(2)汽车的瞬时速度为'v s =,所以21521v t kt =-+ 汽车静止时0v =,故问题转化为215210t kt -+=在[]1,2内有解又21511215t k t t t+==+,115t t +≥Q,当且仅当115,t t t ==Q []1,2t =,∴记1()15f t t t=+, '21()15f t t =-,[1,2]t ∈,'21()150f t t ∴=->,()f t ∴单调递增, ⎥⎦⎤⎢⎣⎡∈∴261,16)(t f ,⎥⎦⎤⎢⎣⎡∈261,162k ,即⎥⎦⎤⎢⎣⎡∈461,8k ,故k 的取值范围为⎥⎦⎤⎢⎣⎡∈461,8k . 考点:导数的物理意义,方程有解问题.7. 【2015年高考模拟试卷南通市数学学科基地命题(3) 】若数列{}n C1n c +≤,②存在常数(M M 与n 无关),使n c M ≤.则称数列{}n c 是“和谐数列”.(1)设n S 为等比数列{}n a 的前n 项和,且442,30a S ==,求证:数列{}n S 是“和谐数列”; (2)设{}n a 是各项为正数,公比为q 的等比数列,n S 是{}n a 的前n 项和,求证:数列{}n S 是“和谐数列”的充要条件为01q <<.【答案】(1)详见解析(2)详见解析试题解析:(1)设公比为q ,则3411414161(1)21a a q a a q q s q ⎧==⎧⎪⎪⇒⎨⎨-==⎪⎪⎩-⎩, 所以51322n n s -=-.(32=532(22n n --+4223222n -≤+141322n n S +-=-=.且513232.2n n S -=-<即存在常数32,所以,数列{}n S 是“和谐数列”.(1)当1,q =则1,n S na =因为10,a >所以,不存在M ,使1na M <对1n N -∈恒成立;当1q >,则111(1)111n n n a q a aS q q q q -==---- 所以,对于给定的正数M ,若11,11n a aq M q q ->-- 因为,1q >,所以,11log (1).q q n M a ->+ 即当11log (1)q q n M a ->+时,有n S M >. 所以,不存在常数M ,使.n S M ≤ 所以,0 1.q <<综上,数列{}n S 是“和谐数列”的充要条件为其公比为01q <<.考点:充要关系,新定义8.【江苏省南京一中等五校2015届高三联考(四模)数学】已知两个无穷数列{}{},n n a b 分别满足12n n a a +-=,2214n n b b +=,且111,1a b ==-.(1)若数列{}{},n n a b 都为递增数列,求数列{}{},n n a b 的通项公式;(2)若数列{}n c 满足:存在唯一的正整数()r r N *∈,使得1r r c c +<,称数列{}n c 为“梦r 数列”;设数列{}{},n n a b 的前n 项和分别为,n n S T , ① 若数列{}n a 为“梦5数列”,求n S ;② 若{}n a 为“梦1r 数列”,{}n b 为“梦2r 数列”,是否存在正整数m ,使得1m m S T +=,若存在,求m 的最大值;若不存在,请说明理由.【答案】(1)21n a n =-,11,12,2n n n b n --=⎧=⎨≥⎩(2)①22,5420,6n n n S n n n ⎧≤⎪=⎨-+≥⎪⎩②max 6m =试题解析:(1)数列{}{},n n a b 都为递增数列,∴12n n a a +-=,21212,2,n n b b b b n N *++=-=∈,∴21n a n =-,11,12,2n n n b n --=⎧=⎨≥⎩; ………4分(2)①∵数列{}n a 满足:存在唯一的正整数=5r ,使得1r r a a +<,且12n n a a +-=,∴数列{}n a 必为1,3,5,7,9,7,9,11,⋅⋅⋅,即前5项为首项为1,公差为2的等差数列,从第6项开始为首项7,公差为2的等差数列,故22,5420,6n n n S n n n ⎧≤⎪=⎨-+≥⎪⎩; ………8分②∵2214n n b b +=即12n n b b +=±,1||2n n b -∴= ………9分 而数列{}n b 为“梦数列”且11b =-,∴数列{}n b 中有且只有两个负项.假设存在正整数m ,使得+1m m S T =,显然1m ≠,且m T 为奇数,而{}n a 中各项均为奇数,∴m 必为偶数. ………10分首先证明:6m ≤.若7m >,数列{}n a 中()()21max 1321(1)m S m m +=++⋅⋅⋅++=+,而数列{}n b 中,m b 必然为正,否则()()1121212122230m m m m T b ---=-++⋅⋅⋅+-≤-++⋅⋅⋅++-=-<,显然矛盾;(※) ∴()()()13211min 12+22223m m m m m T ----=-++⋅⋅⋅++-+=-, 设122(1)3m m c m -=-+-,易得11223,m m m m d c c m -+=-=-- 而11220m m m d d -+-=->,()7m >,∴{}m d ()7m >为增数列,且70d >进而{}m c ()7m >为增数列,而80c >, ∴()()min max m m T S >,即6m ≤. ………14分 当6m =时,构造:{}n a 为1,3,1,3,5,7,9,⋅⋅⋅,{}n b 为1,2,4,8,16,32,64,--⋅⋅⋅ 此时12r =,24r =所以max 6m =,对应的12r =,24r = ………16分 考点:1.等差数列;2等比数列;3.新定义;4.递增数列;9. 【江苏省扬州中学2015届高三4月双周测数学试题】(本小题满分16分)设数列{}n a 的通项公式为n a pn q =+(,0)n N p *∈>,数列{}n b 定义如下:对于正整数m ,m b 是使得不等式n a m ≥成立的所有n 中的最小值.(1)若11,23p q ==-,求3b ; (2)若2,1p q ==-,求数列{}m b 的前2m 项和公式;(3)是否存在p 和q ,使得32m b m =+()m N *∈?如果存在,求p 和q 的取值范围?如果不存在,请说明理由.【答案】(1)37b =;(2)22m m +;(3)121,[,]333p q =∈--. 【解析】试题分析:(1)已知说明1123n a n =-,要求3b ,只要求得不等式11323n -≥的最小整数解即可;(2)同样21n a n =-,为了求m b ,我们要解不等式21n m -≥,即12m n +≥,因此按m的奇偶分类讨论:当21m k =-时,()m b k k N *=∈,当2m k =时,1()m b k k N *=+∈,这样在求数列{}m b 的前2m 项和2m S 时也要分组求和,奇数项一起,偶数项一起分别求和;(3)存在性命题,都是假设存在,然后计算,本题假设存在的意思就是说不等式pn q m +≥的最小整数解为32m +,由于0p >,因此m q n p ->,则3132m qm m p-+<≤+,即2(31)p q p m p q --≤-<--对任意的正整数m 都成立.于是有310p -=,13p =,代入上式又得2133q -≤<-.故结论为存在.考点:不等式的整数解,分类讨论,分组求和,存在性命题.二.能力题组1. 【2015年高考模拟(南通市数学学科基地命题)(2)】(本小题满分10分)一个非空集合中的各个元素之和是3的倍数,则称该集合为“好集”. 记集合 {1,2,3,…,3n }的子集中所有“好集”的个数为f (n ). (1)求f (1),f (2)的值; (2)求f (n )的表达式.【答案】(1)f (1)=3,f (2)=23;(2)f (n )=2n (4n -1)3+2n -1.试题解析:(1)易得f (1)=3;当n =2时,集合{1,2,3,4,5,6}的子集中是“好集”的有:单元集:{3},{6}共2个,双元集{1,2},{1,5},{2,4},{4,5},{3,6}共5个,三元集有:{1,2,3},{1,2,6},{1,3,5},{1,5,6},{4,2,3},{4,2,6},{4,3,5},{4,5,6}共8个,四元集有{3,4,5,6},{2,3,4,6}, {1,3,5,6},{1,2,3,6},{1,2,4 ,5}共五个,五元集{1,2,4,5,6},{1,2,3,4,5}共2个,还有一个全集.故f (2)=1+(2+5)×2+8=23. (2)首先考虑f (n +1)与f (n )的关系.集合{1,2,3,…,3n ,3n +1,3n +2,3n +3}在集合{1,2,3,…,3n }中加入3个元素3n +1,3n +2,3n +3.故f (n +1)的组成有以下几部分:①原有的f (n )个集合;②含有元素3n +1的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合,含有元素是3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合,含有元素是3n +,3的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合,合计是23n ;③含有元素是3n +1与3n +2的“好集”是{1,2,3,…,3n }中各元素之和被3除余0的集合,含有元素是3n +2与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余1的集合,含有元素是3n +1与3n +3的“好集”是{1,2,3,…,3n }中各元素之和被3除余2的集合,合计是23n ;④含有元素是3n +1,3n +2,3n +3的“好集”是{1,2,3,…,3n }中“好集”与它的并,再加上{3n +1,3n +2,3n +3}.所以,f (n +1)=2 f (n )+2×23n +1.两边同除以2n +1,得f (n +1)2n +1-f (n )2n =4n +12n +1,所以 f (n )2n =4n -1+4n -2+…+4+12n +12n -1+…+122+32=4n -13+1-12n ,即f (n )=2n (4n -1)3+2n -1. 考点:新定义,子集,归纳推理.2. 【扬州市2014—2015学年度第四次调研测试试题高三数学】 设集合{1,0,1}M =-,集合123{(,,)|,1,2,,}n n i A x x x x x M i n =∈=,,, 集合n A 中满足条件“121||||||n x x x m ≤+++≤”的元素个数记为n mS . ⑴求22S 和42S 的值;⑵当m n <时,求证:n m S 111322n m n +++<+-.【答案】⑴228S =,4232S =;⑵见试题解析.试题解析:⑴228S =,4232S =;因为当0k n ≤≤时,1k n C ≥,故10k n C -≥所以1122222n m m m n n n S C C C =+++ 001122112(222)(1)2(1)2m m m m n n n n n n n n C C C C C C ++<+++++-++- 0011221112(222222)(222)m m m m n n m m n n n n n n n C C C C C C ++++=+++++++-++ 11(12)(22)n n m ++=+--11322n n m ++=-+. 考点:1.集合;2.排列组合;3.推理证明。

高考数学试题分项版解析 专题14 推理与证明、新定义 理(精析版)

高考数学试题分项版解析 专题14 推理与证明、新定义 理(精析版)

第十四章 推理与证明、新定义一.基础题组1.【2013年普通高等学校招生全国统一考试福建卷】设T S ,是R 的两个非空子集,如果存在一个从S 到T 的函数)(x f y =满足:)(i {}S x x f T ∈=)(;)(ii 对任意S x x ∈21,,当21x x <时,恒有)()(21x f x f <,那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是( )A. N B N A ==*,B. {}{}1008,31≤<-==≤≤-=x x x B x x A 或C. {}R B x x A =<<=,10D. Q B Z A ==,2.【2013年普通高等学校招生全国统一考试(陕西卷)】观察下列等式:211=22123-=-2221263+-=2222124310-+-=-…照此规律, 第n 个等式可为 .3.【2013年普通高等学校招生全国统一考试(上海卷)理】对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y f x -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =二.能力题组4.【2013年普通高等学校招生全国统一考试数学浙江理】在空间中,过点A 作平面π的垂线,垂足为B ,记)(A f B π=.设βα,是两个不同的平面,对空间任意一点P ,)]([)],([21P f f Q P f f Q βααβ==,恒有21PQ PQ =,则( )A. 平面α与平面β垂直B. 平面α与平面β所成的(锐)二面角为045 C. 平面α与平面β平行 D.平面α与平面β所成的(锐)二面角为0605.【2013年普通高等学校招生全国统一考试(山东卷)】定义“正对数”:0,01ln ln ,1x x x x +<<⎧=⎨≥⎩,现有四个命题: ①若0,0a b >>,则()lnln b a b a ++=; ②若0,0a b >>,则()ln ln ln ab a b +++=+;③若0,0a b >>,则ln ln ln a a b b +++⎛⎫≥-⎪⎝⎭ ④若0,0a b >>,则()lnln ln ln 2a b a b ++++≤++6.【2013年普通高等学校招生全国统一考试福建卷理】当1,<∈x R x 时,有如下表达式: x x x x n -=⋅⋅⋅++⋅⋅⋅+++1112 两边同时积分得:⎰⎰⎰⎰⎰-=⋅⋅⋅+⋅⋅⋅+++2102102102210210111dxx dx x dx x xdx dx n从而得到如下等式:.2ln )21(11)21(31)21(21211132=⋅⋅⋅+⨯++⋅⋅⋅+⨯+⨯+⨯+n n请根据以上材料所蕴含的数学思想方法,计算:=⨯++⋅⋅⋅+⨯+⨯+⨯+132210)21(11)21(31)21(2121n n n n n n C n C C C .231012n n n n n 1111111C C C C 2223212n n +⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 231123n+1n+1n+1n+1n+111111=C C C C n+12222n +⎡⎤⎛⎫⎛⎫⎛⎫+⨯+⨯++⨯⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=11111n+12n +⎡⎤⎛⎫+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦113112n n +⎡⎤⎛⎫=-⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦7.【2013年普通高等学校招生全国统一考试湖北卷理科】古希腊毕达哥拉斯学派的数学家研究过各种多边形数. 如三角形数1,3,6,10,, 第n 个三角形数为2(1)11222n n n n +=+. 记第n 个k 边形数为(,)(3)N n k k ≥,以下列出 了部分k 边形数中第n 个数的表达式:三角形数 211(,3)22N n n n =+, 正方形数 2(,4)N n n =,五边形数 231(,5)22N n n n =-, 六边形数 2(,6)2N n n n =-,………………………………………可以推测(,)N n k 的表达式,由此计算(10,24)N =_________.8.【2013年普通高等学校招生全国统一考试(四川卷)理科】设12,,,n P P P ⋅⋅⋅为平面α内的n 个点.在平面α内的所有点中,若点P 到点12,,,n P P P ⋅⋅⋅的距离之和最小,则称点P 为点12,,,n P P P ⋅⋅⋅的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.现有下列命题:①若三个点,,A B C 共线,C 在线段AB 上,则C 是,,A B C 的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点,,,A B C D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是_______.(写出所有真命题的序号)三.拔高题组9.【2013年普通高等学校统一考试江苏数学试题】设数列{}n a :111,2,2,3,3,3,4,4,4,4,,(1),,(1)k k k k k --------⋅⋅⋅-⋅⋅⋅-⋅⋅⋅个,,即当(1)(1)()22k k k k n k N *-+<≤∈时,记1(1)k n a k -=-.记12()n n S a a a n N *=++⋅⋅⋅+∈. 对于l N *∈,定义集合{|l n p n S =是n a 的整数倍,n N *∈,且1}n l ≤≤.(1)求集合11p 中元素的个数;(2)求集合2000p 中元素的个数.而(1)(21)(22)(1,2,,22)i i j a i j i +++=-+=⋅⋅⋅+,∴(1)(21)(1)(21)(22)(21)(1)(22)i i j i i S S j i i i j i +++++=-+=++-+不是(1)(21)i i j a +++(1,2,,22)j i =⋅⋅⋅+的倍数,故当(21)l i i =+时,集合l p 中元素的个数为213(21)i i ++⋅⋅⋅+-=,。

【备战2016】(北京版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)文

【备战2016】(北京版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)文

专题14 推理与证明、新定义1. 【2009高考北京文第8题】设D 是正123PP P ∆及其内部的点构成的集合,点0P 是123PP P ∆的中心,若集合0{|,||||,1,2,3}i S P P D PP PP i =∈≤=,则集合S 表示的平面区域是 ( ) A . 三角形区域 B .四边形区域C . 五边形区域D .六边形区域2. 【2006高考北京文第8题】下图为某三岔路口交通环岛的简化模型.在某高峰时段,单位时间进出路口A 、B 、C 的机动车辆数如图所示.图中x 1,x 2,x 3分别表示该时段单位时间通过路段的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则 A.x 1>x 2>x 3B.x 1>x 3>x 2C.x 2>x 3>x 1D.x 3>x 2>x 13. 【2011高考北京文第14题】设(0,0),(4,0),(4,3),(,3)(A B C t D t t +∈R )。

记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则(0)N = ; ()N t 的所有可能取值为 。

4. 【2014高考北京文第14题】顾客请一位工艺师把A 、B 两件玉石原料各制成一件工艺品,工艺师带一位徒弟完成这项任务,每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客,两件原料每道工序所需时间(单位:工作日)如下:则最短交货期为 工作日.5. 【2009高考北京文第14题】设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 个.6. 【2011高考北京文第20题】(本小题共13分)若数列12,:,(2)n n A a a a n ⋯≥满足1k k a a +|-|=1 (1,2,,1)k n =⋯-,则称n A 为E 数列。

四川省高考数学备考复习(文科)专题十四:推理与证明

四川省高考数学备考复习(文科)专题十四:推理与证明

四川省高考数学备考复习(文科)专题十四:推理与证明姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分) (2016高二下·福建期末) 如图所示的分数三角形,称为“莱布尼茨三角形”.这个三角形的规律是:各行中的每一个数,都等于后面一行中与它相邻的两个数之和(例如第4行第2个数等于第5行中的第2个数与第3个数之和).则在“莱布尼茨三角形”中,第10行从左到右第2个数到第8个数中各数的倒数之和为()A . 5010B . 5020C . 10120D . 101302. (2分) (2019高二下·吉林期中) 用反证法证明命题“已知,,,则 ,中至多有一个不小于0”时,假设正确的是()A . 假设 , 都不大于0B . 假设 , 至多有一个大于0C . 假设 , 都小于0D . 假设 , 都不小于03. (2分) (2019高二下·安徽月考) 将正整数依次排列如下:123456789101112131415161718192021………………由表知第5行第3列的数是13,若第2020行第2列的数是,则的各位数字中,数字0的个数为()A . 0B . 1C . 2D . 34. (2分)用数学归纳法证明多边形内角和定理时,第一步应验证()A . n=1成立B . n=2成立C . n=3成立D . n=4成立5. (2分)“所有9的倍数的数都是3的倍数,5不是9的倍数,故5不是3的倍数.”上述推理()A . 是三段论推理,但大前提错B . 是三段论推理,但小前提错C . 不是三段论推理,但结论正确D . 不是三段论推理,且结论不正确6. (2分)下列说法错误的是()A . 一辆汽车在高速公路上行驶的过程中,行驶路程是时间的函数B . 汽车加油站常用圆柱体储油罐储存汽油,储油量是油面宽度的函数C . 某十字路口,通过汽车的数量是时间的函数D . 在一定量的水中加入蔗糖(非饱和溶液),所加蔗糖的质量是糖水的质量浓度的函数7. (2分)某店从水果批发市场购得椰子两筐,总共花了300元,回来后发现有12个是坏的,不能将它们出售,余下的椰子按高出成本价1元/个售出,售完后共赚78元.则这两筐椰子原来的总个数为()A . 180B . 160C . 140D . 1208. (2分) (2017高二下·合肥期中) 一个关于自然数n的命题,如果验证当n=1时命题成立,并在假设当n=k(k≥1且k∈N*)时命题成立的基础上,证明了当n=k+2时命题成立,那么综合上述,对于()A . 一切正整数命题成立B . 一切正奇数命题成立C . 一切正偶数命题成立D . 以上都不对9. (2分)用数学归纳法证明不等式2n>n2时,第一步需要验证n0=_____时,不等式成立()A . 5B . 2和4C . 3D . 110. (2分)演绎推理“因为指数函数y=ax(a>0,a≠1)是增函数,而函数y=0.5x是指数函数,所以y=0.5x是增函数”,所得结论错误的原因是()A . 大前提错误B . 小前提错误C . 推理形式错误D . 大前提与小前提均错误11. (2分) (2019高一上·长春月考) 数学老师给出一个定义在R上的函数f(x),甲、乙、丙、丁四位同学各说出了这个函数的一条性质:甲:在(-∞,0)上函数单调递减; 乙:在[0,+∞] 上函数单调递增;丙:函数f(x)的图象关于直线x=1对称;丁: f(0)不是函数的最小值.老师说:你们四个同学中恰好有三个人说的正确,则说法错误的同学是()A . 甲B . 乙C . 丙D . 丁12. (2分)用反证法证明命题:“三角形的内角中至少有一个不大于60°”时,假设正确的是()A . 假设三内角都不大于60°B . 假设三内角都大于60°C . 假设三内角至多有一个大于60°D . 假设三内角至多有两个大于60°13. (2分)有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b⊄平面α,直线a⊂平面α,直线b∥平面α,则直线b∥直线a”的结论显然是错误的,是因为()A . 大前提错误B . 小前提错误C . 推理形式错误D . 非以上错误14. (2分) (2018高二上·济宁月考) 等差数列 , 的前项和分别为 , ,若 ,则 =()A .B .C .D .15. (2分) (2019高二下·绍兴期中) 用数学归纳法证明“ ”,从“ 到”左端需增乘的代数式为()A .B .C .D .16. (2分) (2020高二下·莆田期中) 在利用函数计算时,可推得结论()A .B .C .D .二、填空题 (共5题;共9分)17. (1分) (2018高三上·邹城期中) 观察下列各式:… … …照此规律,则第个等式应为________.18. (3分)已知,则的值为________19. (2分)(2017·包头模拟) 已知A,B,C三人中,一个是油漆工,一个是木工,一个是泥瓦工,但不知A,B,C三人具体谁是什么工种,三人合作一件工程,由于其中的某一个人而做糟了,为了弄清楚责任,分别询问三人,得到的回答如下:A说:“C做坏了,B做好了”;B说:“我做坏了,C做好了”;C说:“我做坏了,A做好了”.现在又了解到,油漆工从来不说假话,泥瓦工从来不说真话,而木工说的话总是时真时假,则该负责任的是________.20. (1分) (2017高二下·徐州期中) 由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形.写一个“三段论”形式的推理,则作为大前提、小前提和结论的依次为________(写序号).21. (2分) (2016高二下·东莞期中) 观察下列式子:1+ <,1+ + <,1+ + +<,…,则可归纳出________.三、综合题 (共5题;共50分)22. (10分) (2020高二下·上海期末) 若实数x、y、m满足,则称x比y远离m.(1)若x比y远离1且,求实数x的取值范围;(2)设,其中,求证:x比y更远离;(3)若,试问:y与哪一个更远离,并说明理由.23. (10分) (2017高二下·温州期末) 已知数列{an},{bn}满足a1=2,b1=4,且 2bn=an+an+1 ,an+12=bnbn+1 .(Ⅰ)求 a 2 , a3 , a4 及b2 , b3 , b4;(Ⅱ)猜想{an},{bn} 的通项公式,并证明你的结论;(Ⅲ)证明:对所有的n∈N* ,• •…• << sin .24. (10分)(2017·孝义模拟) 数列{an}满足an+5an+1=36n+18,n∈N* ,且a1=4.(1)写出{an}的前3项,并猜想其通项公式;(2)用数学归纳法证明你的猜想.25. (10分)用数学归纳法证明:26. (10分)(2012·全国卷理) 设函数f(x)=ax+cosx,x∈[0,π].(1)讨论f(x)的单调性;(2)设f(x)≤1+sinx,求a的取值范围.参考答案一、单选题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共5题;共9分) 17-1、18-1、19-1、20-1、21-1、三、综合题 (共5题;共50分) 22-1、22-2、22-3、24-1、24-2、25-1、26-1、26-2、。

四川省高考数学备考复习(文科)专题十四:推理与证明

四川省高考数学备考复习(文科)专题十四:推理与证明

四川省高考数学备考复习(文科)专题十四:推理与证明姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)如图所示,有三根针和套在一根针上的个金属片,按下列规则,把金属片从一根针上全部移到另一根针上。

(1)每次只能移动一个金属片;(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面。

若将个金属片从1号针移到3号针最少需要移动的次数记为,则=()A . 33B . 31C . 17D . 152. (2分)设a、b、c都是正数,则三个数()A . 都大于2B . 都小于2C . 至少有一个大于2D . 至少有一个不小于23. (2分) (2020高一下·上海期末) 德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即 );如果n是奇数,则将它乘3加1(即 ),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n(首项)按照上述规则施行变换后的第6项为1(注:1可以多次出现),则n的所有不同值的个数为()A . 3B . 4C . 5D . 324. (2分)函数的图像可由函数的图像()A . 向左平移个单位得到B . 向右平移个单位得到C . 向左平移个单位得到D . 向左平移个单位得到5. (2分)(2020·淮北模拟) 2020年高校招生实施强基计划,其主要选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生,聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,有36所大学首批试点强基计划某中学积极应对,高考前进行了一次模拟笔试,甲、乙、丙、丁四人参加,按比例设定入围线,成绩公布前四人分别做猜测如下:甲猜测:我不会入围,丙一定入围;乙猜测:入围者必在甲、丙、丁三人中丙猜测:乙和丁中有一人入围;丁猜测:甲的猜测是对的成绩公布后,四人中恰有两人预测正确,且恰有两人入围,则入围的同学是()A . 甲和丙B . 乙和丁C . 甲和丁D . 乙和丙6. (2分) (2019高二下·安徽月考) 某次测试中有4道选择题,每题1分,每道题在选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这4道题的得分:1234得分甲C A B A3乙C C B C2丙B B B A1则甲同学答错的题目的题号是()A . 1B . 2C . 3D . 47. (2分) (2020高二下·成都月考) 甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,回答如下:甲说:丙没有考满分;乙说:是我考的;丙说:甲说的是真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是()A . 甲B . 乙C . 丙D . 甲或乙8. (2分) (2019高二上·辽宁月考) 下面四个判断中,正确的是()A . 式子,当时为1B . 式子,当时为C . 式子,当时为D . 设,则9. (2分) (2019高二下·东莞期中) 现有命题“ ,”,不知真假。

【备战2019】(四川版)高考数学分项汇编专题14推理与证明、新定义(含解析)理

【备战2019】(四川版)高考数学分项汇编专题14推理与证明、新定义(含解析)理

第十四章推理与证明、新定义一.基础题组1.【2009四川,理12】已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有x (1)f x =(1)x ()f x ,则5(())2f f 的值是()(A )0 (B )12(C )1 (D )522.【2018四川,理16】函数()f x 的定义域为A ,若1212()()x x A f x f x ,且时总有12()x x f x ,则称为单函数.例如,函数()21()f x x x R 是单函数.下列①函数2()()f x x x R 是单函数;②若()f x 为单函数,121222,A ()()x x x x f x f x 且,则;③若:f A B 为单函数,则对于任意b B ,它至多有一个原象;④函数()f x 在某区间上具有单调性,则()f x 一定是单函数.其中的真【答案】②③3.【2018四川,理15】设12,,,n P P P 为平面内的n 个点,在平面内的所有点中,若点P 到12,,,n P P P 点的距离之和最小,则称点P 为12,,,n P P P 点的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.则有下列①若,,A B C 三个点共线,C 在线段上,则C 是,,A B C 的中位点;②直角三角形斜边的点是该直角三角形三个顶点的中位点;③若四个点,,,A B C D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真4.【2018四川,理15】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x 组成的集合:对于函数()x ,存在一个正数M ,使得函数()x 的值域包含于区间[,]M M .例如,当31()x x ,2()sin x x 时,1()x A ,2()x B .现有如下①设函数()f x 的定义域为D ,则“()f x A ”的充要条件是“b R ,a D ,()f a b ”;②函数()f x B 的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ,()g x B ,则()()f x g x B ;④若函数2()ln(2)1xf x a x x (2x ,a R )有最大值,则()f x B .其中的真【考点定位】1、新定义;2、函数的定义域值域. 二.能力题组1.【2009四川,理16】设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V ,记a 的象为()f a .若映射:f V V 满足:对所有,a b V 及任意实数,都有()()()f a b f a f b ,则f 称为平面M 上的线性变换.现有下列命题:①设f 是平面M 上的线性变换,则(0)0f ②对,()2a V f a a 设,则f 是平面M 上的线性变换;③若e 是平面M 上的单位向量,对,()a V f a a e 设,则f 是平面M 上的线性变换;④设f 是平面M 上的线性变换,,ab V ,若,a b 共线,则(),()f a f b 也共线.其中真2.【2018四川,理16】设S 为复数集C 的非空子集.若对任意x,y S ,都有x y,x y,xy S ,则称S 为封闭集.下列①集合S a bi (a,b 为整数,i 为虚数单位)为封闭集;②若S 为封闭集,则一定有0S ;③封闭集一定是无限集;④若S 为封闭集,则满足S T C 的任意集合T 也是封闭集.其中真3.【2018四川,理16】记[]x 为不超过实数x 的最大整数,例如,[2]2,[1.5]1,[0.3]1。

【备战2016】(四川版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

【备战2016】(四川版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

第十四章 推理与证明、新定义一.基础题组1.【2009四川,理12】已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有x (1)f x +=(1)x +()f x ,则5(())2f f 的值是( )(A )0 (B )12 (C )1 (D )522.【2011四川,理16】函数()f x 的定义域为A ,若1212()()x x A f x f x ∈=,且时总有12()x x f x =,则称为单函数.例如,函数()21()f x x x R =+∈是单函数.下列命题:①函数2()()f x x x R =∈是单函数;②若()f x 为单函数,121222,A ()()x x x x f x f x ∈≠≠且,则;③若:f A B →为单函数,则对于任意b ∈B ,它至多有一个原象;④函数()f x 在某区间上具有单调性,则()f x 一定是单函数.其中的真命题是 .(写出所有真命题的编号) 【答案】②③3.【2013四川,理15】设12,,,n P P P 为平面α内的n 个点,在平面α内的所有点中,若点P 到12,,,n P P P 点的距离之和最小,则称点P 为12,,,n P P P 点的一个“中位点”.例如,线段AB 上的任意点都是端点,A B的中位点.则有下列命题: ①若,,A B C 三个点共线,C 在线段上,则C 是,,A B C 的中位点;②直角三角形斜边的点是该直角三角形三个顶点的中位点;③若四个点,,,A B C D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号)4.【2014四川,理15】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -.例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题:①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,a D ∃∈,()f a b =”; ②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2()ln(2)1x f x a x x =+++(2x >-,a R ∈)有最大值,则()f x B ∈. 其中的真命题有 .(写出所有真命题的序号)【考点定位】1、新定义;2、函数的定义域值域.二.能力题组1.【2009四川,理16】设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a .若映射:f V V →满足:对所有,a b V ∈及任意实数,λμ都有()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换.现有下列命题:①设f 是平面M 上的线性变换,则(0)0f =②对,()2a V f a a ∈=设,则f 是平面M 上的线性变换; ③若e 是平面M 上的单位向量,对,()a V f a a e ∈=-设,则f 是平面M 上的线性变换;④设f 是平面M 上的线性变换,,a b V ∈,若,a b 共线,则(),()f a f b 也共线.其中真命题是 (写出所有真命题的序号)2.【2010四川,理16】设S 为复数集C 的非空子集.若对任意x,y S ∈,都有x y,x y,xy S +-∈,则称S 为封闭集.下列命题:①集合S a bi =∣+∣ (a,b 为整数,i 为虚数单位)为封闭集; ②若S 为封闭集,则一定有0S ∈;③封闭集一定是无限集;④若S 为封闭集,则满足S T C ⊆⊆的任意集合T 也是封闭集.其中真命题是 (写出所有真命题的序号)3.【2012四川,理16】记[]x 为不超过实数x 的最大整数,例如,[2]2=,[1.5]1=,[0.3]1-=-。

(湖北版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

(湖北版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

,那么C.
年普通高等学校招生全国统一考试湖北卷
究数。

比如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。

下列数中既是三角形数又是正方形数的是()
A.289
B.1024
C.1225
D.1378
意给定的等比数列
保等比数列函数
7.【2012
曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,求其直径
上的一组正交函数,给出三组函数:①x
7850113
到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出
=
111111111
3..【
13】回文数是指从左到右读与从右到左读都一样的正整
个:11
n
个数的表达式:
【解析】
试题分析:观察。

【备战2019】(湖北版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

【备战2019】(湖北版)高考数学分项汇编 专题14 推理与证明、新定义(含解析)理

,那么C.
年普通高等学校招生全国统一考试湖北卷
究数。

比如:
他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数。

下列数中既是三角形数又是正方形数的是()
A.289
B.1024
C.1225
D.1378
意给定的等比数列
保等比数列函数
7.【2012
曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径,求其直径
上的一组正交函数,给出三组函数:①x
7850113
到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出
=
111111111
3..【
13】回文数是指从左到右读与从右到左读都一样的正整
个:11
n
个数的表达式:
【解析】
试题分析:观察。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章 推理与证明、新定义
一.基础题组
1.【2009四川,理12】已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有
x (1)f x +=(1)x +()f x ,则5(())2
f f 的值是( )(A )0 (B )12 (C )1 (D )52
2.
【2011四川,理16】函数()f x 的定义域为A ,若1212()()x x A f x f x ∈=,且时总有12()x x f x =,则称为单函数.例如,函数()21()f x x x R =+∈是单函数.下列命题:
①函数2()()f x x x R =∈是单函数;
②若()f x 为单函数,121222,A ()()x x x x f x f x ∈≠≠且,则;
③若:f A B →为单函数,则对于任意b ∈B ,它至多有一个原象;
④函数()f x 在某区间上具有单调性,则()f x 一定是单函数.
其中的真命题是 .(写出所有真命题的编号)
【答案】②③
3.【2013四川,理15】设12,,,n P P P 为平面α内的n 个点,在平面α内的所有点中,若点P 到12,,,n P P P 点的距离之和最小,则称点P 为12,,
,n P P P 点的一个
“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.则有下列命题: ①若,,A B C 三个点共线,C 在线段上,则C 是,,A B C 的中位点;
②直角三角形斜边的点是该直角三角形三个顶点的中位点;
③若四个点,,,A B C D 共线,则它们的中位点存在且唯一;
④梯形对角线的交点是该梯形四个顶点的唯一中位点.
其中的真命题是____________.(写出所有真命题的序号)
4.【2014四川,理15】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -.例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题:
①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b R ∀∈,a D ∃∈,()f a b =”; ②函数()f x B ∈的充要条件是()f x 有最大值和最小值;
③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2()ln(2)1
x f x a x x =+++(2x >-,a R ∈)有最大值,则()f x B ∈. 其中的真命题有 .(写出所有真命题的序号)
【考点定位】1、新定义;2、函数的定义域值域.
二.能力题组
1.【2009四川,理16】设V 是已知平面M 上所有向量的集合,对于映射:,f V V a V →∈,记a 的象为()f a .若映射:f V V →满足:对所有,a b V ∈及任意实数,λμ都有()()()f a b f a f b λμλμ+=+,则f 称为平面M 上的线性变换.现有下列命题:①设f 是平面M 上的线性变换,则(0)0f =②对,()2a V f a a ∈=设,则f 是平面M 上的线性变换; ③若e 是平面M 上的单位向量,对,()a V f a a e ∈=-设,则f 是平面M 上的线性变换;④设f 是平面M 上的线性变换,,a b V ∈,若,a b 共线,则(),()f a f b 也共线.其中真命题是 (写出所有真命题的序号)
2.【2010四川,理16】设S 为复数集C 的非空子集.若对任意x,y S ∈,都有x y,x y,xy S +-∈,则称S 为封闭集.下列命题:
①集合S a bi =∣+∣ (a,b 为整数,i 为虚数单位)为封闭集;
②若S 为封闭集,则一定有0S ∈;
③封闭集一定是无限集;
④若S 为封闭集,则满足S T C ⊆⊆的任意集合T 也是封闭集.
其中真命题是 (写出所有真命题的序号)
3.【2012四川,理16】记[]x 为不超过实数x 的最大整数,例如,[2]2=,[1.5]1=,[0.3]1-=-。

设a 为
正整数,数列{}n x 满足1x a =,1[
][]()2n n
n a x x x n N *++=∈,现有下列命题:
①当5a =时,数列{}n x 的前3项依次为5,3,2;
②对数列{}n x 都存在正整数k ,当n k ≥时总有n k x x =;
③当1n ≥
时,1n x >;
④对某个正整数k ,若1k k x x +≥
,则n x =。

其中的真命题有____________。

(写出所有真命题的编号)。

相关文档
最新文档