北师大版八下数学《平行四边形的性质》典型例题
2020-2021学年八年级数学北师大版下《平行四边形的判定与性质》训练含答案
2021北师大版八年级数学下册《平行四边形的判定与性质》综合提升训练1.若平行四边形中两个相邻内角的度数之比为1:3,则其中较小的内角是()A.45°B.30°C.60°D.36°2.如图,在▱ABCD中,∠BAD和∠ADC的平分线交于点O,且分别交直线BC于点E,F.若AB=7,BC=4,则OE2+OF2的值是()A.50B.63C.100D.1213.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2B.3C.4D.54.如图,在平行四边形ABCD中,AB=5,AD=3,∠BAD的平分线AE交CD于点E,连接BE,若∠BAD=∠BEC,则平行四边形ABCD的面积为()A.B.C.D.155.在平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:2:2:1C.1:1:2:2D.2:1:2:1 6.如图,在▱ABCD中,AB=6,BC=8,∠BCD的平分线交AD于E,交BA的延长线于F,则AF的长等于()A.2B.3C.4D.67.如图,四边形ABCD是平行四边形,P是CD上一点,且AP和BP分别平分∠DAB和∠CBA.如果AD=5cm,AP=8cm,则△ABP的面积等于()cm2.A.24B.30C.6D.128.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,且AE=3cm,AF=4cm.若▱ABCD 的周长为56cm,则BC的长为()A.14cm B.16cm C.28cm D.32cm9.如图,四边形ABCD的对角线AC,BD交于点O,则不能判断四边形ABCD是平行四边形的是()A.∠ABC=∠ADC,AD∥BC B.∠ABD=∠BDC,∠BAD=∠DCB C.∠ABD=∠BDC,OA=OC D.∠ABC=∠ADC,AB=CD10.下列说法不正确的是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行,另一组对边相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边平行,一组对角相等的四边形是平行四边形11.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF 一定是平行四边形的是()A..DE=BF B..AE=CF C..∠ADE=∠CBF D..∠AED=∠CFB.12.下列条件中,不能判定一个四边形为平行四边形的是()A.一组对边相等且平行B.一组对边平行,另一组对边相等C.两条对角线互相平分D.两组对边分别相等13.如图,在平行四边形ABCD中,BD是对角线,E,F分别是边AD,BC上不与端点重合的两点,连接EF,下列条件中使得四边形BFDE是平行四边形的是.(多选)A.AE=CF B.EF经过BD的中点C.BE∥DF D.EF⊥AD14.如图,点A、E、F、C在一条直线上,若将△DEC的边EC沿AC方向平移,平移过程中始终满足下列条件:AE=CF,DE⊥AC于E,BF⊥AC于F,且AB=CD.则当点E、F不重合时,BD与EF的关系是.15.如图,已知平行四边形ABCD中,∠BCD的平分线交边AD于E,∠ABC的平分线交AD于F,AB=10,AE=4,则EF=.16.如图,EF过▱ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD 的周长是30,OE=3,则四边形ABFE的周长是.17.已知平行四边形ABCD的一个内角平分线把一边分为3cm,5cm两部分,这个平行四边形的周长是.18.如图,在▱ABCD中,以点A为圆心,AB为半径画弧交AD于点F,分别以点B,F为圆心,同长为半径画弧交于点G,连接AG并延长交BC于点E,若BF=6,AB=5,则AE的长为.19.如图,已知平行四边形ABCD中,AD=6,AB=10,∠DAB=60°,AC、BD相交于点O,经过点O的直线EF分别交CD、AB于点E、F,则图中阴影部分的面积是.20.如图,在▱ABCD中,AC,BD相交于点O,点E,F在对角线BD上,有下列条件:①BF=DE;②AE=CF;③∠EAB=∠FCO;④AF∥CE.其中一定能判定四边形AECF是平行四边形的是.21.如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止).在运动以后,当t=时以P、D、Q、B四点组成的四边形为平行四边形.22.已知,如图所示,AB∥CD,AB=CD,点E、F在BD上.∠BAE=∠DCF,连接AF、EC,求证:(1)AE=FC;(2)四边形AECF是平行四边形.23.如图,在平行四边形ABCD中,对角线AC与BD交于点O,点M,N分别为OA、OC 的中点,求证:△AMB≌△CND.24.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E.(1)求证:AF=DE;(2)若EF=1,▱ABCD的周长为46,求BC的长.25.如图,在平行四边形ABCD中,对角线AC,BD交于点O,过点O任作直线分别交AB、CD于点E、F.(1)求证:OE=OF;(2)若CD=6,AD=5,OE=2,求四边形AEFD的周长.26.如图,已知△ABC与△ADE是等腰三角形,并且△ABC≌△ADE,连接CE、BD交于点F.(1)求证:BD=CE;(2)当四边形ABFE是平行四边形时,且AB=2,∠BAC=30°,求CF的长.27.如图,▱ABCD中,E是AD边的中点,BE的延长线与CD的延长线相交于F.(1)求证:△ABE≌△DFE.(2)连接AF、BD,若三角形DEF的面积为1,则四边形ABCF的面积为.28.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.29.已知:如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.求证:四边形CDBF是平行四边形.参考答案1.解:设平行四边形中两个相邻内角分别为x°,3x°,则x+3x=180,解得:x=45,∴其中较小的内角是45°,故选:A.2.解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠E=∠DAE,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠BAE,∴AB=BE=7,又∵BC=4,∴CE=7﹣4=3,同理可得,BF=3,∴EF=3+4+3=10,∵AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD和∠ADC的平分线交于点O,∴∠OAD+∠ODA=90°,∴∠AOD=90°=∠EOF,∴Rt△EOF中,OE2+OF2=EF2=102=100,故选:C.3.解:连接EC,过A作AM∥BC交FE的延长线于M,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥CD,∴AM∥DE∥CF,AC∥FM,∴四边形ACFM是平行四边形,∵△BDE边DE上的高和△CDE的边DE上的高相同,∴△BDE的面积和△CDE的面积相等,同理△ADE的面积和△AME的面积相等,即阴影部分的面积等于平行四边形ACFM的面积的一半,是×CF×h CF,∵△ABC的面积是12,BC=4CF,∴BC×h BC=×3CF×h CF=12,∴CF×h CF=8,∴阴影部分的面积是×16=4,故选:C.4.解:过点B作BF⊥CD于F,如图所示:∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵四边形ABCD是平行四边形,∴AB=CD=5,AD=BC=3,∠BAD=∠BCE,AB∥CD,∴∠BAE=∠DEA,∴∠DAE=∠DEA,∴AD=DE=3,∴CE=CD﹣DE=2,∵∠BAD=∠BEC,∴∠BCE=∠BEC,∴CF=EF=CE=1,BF===2,∴平行四边形ABCD的面积=BF•CD=2×5=10,故选:C.5.解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴D正确,故选:D.6.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=8,∴∠F=∠FCD,∵CE平分∠BCD,∴∠BCE=∠FCD,∴∠F=∠BCE,∴BF=BC=6,∴AF=BF﹣AB=8﹣6=2;故选:A.7.解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠P AB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠P AB+∠PBA)=90°,∴AP⊥PB,∵AP平分∠DAB且AB∥CD,∴∠DAP=∠P AB=∠DP A.∴△ADP是等腰三角形.∴AD=DP=5cm,同理可得CP=BC=5cm,∴CD=AB=10cm,∴PB===6cm,∴△ABP的面积=×6×8=24cm2,故选:A.8.解:∵▱ABCD的周长为56cm,∴BC+CD=28cm,∵▱ABCD中,AE⊥BC,AF⊥CD,∴S▱ABCD=BC•AE=CD•AF∵AE=3cm,AF=4cm,∴3BC=4CD,∴BC=16cm,CD=12cm,故选:B.9.解:A、∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=∠ADC,∴∠ADC+∠BAD=180°,∴AB∥CD,∴四边形ABCD是平行四边形,故此选项不合题意;B、∵∠ABD=∠BDC,∠BAD=∠DCB,∴∠ADB=∠CBD,∴AD∥CB,∵∠ABD=∠BDC,∴AB∥CD,∴四边形ABCD是平行四边形,故此选项不合题意;C、∵∠ABD=∠BDC,OA=OC,又∠AOB=∠COD,∴△AOB≌△COD(AAS),∴DO=BO,∴四边形ABCD是平行四边形,故此选项不合题意;D、∠ABC=∠ADC,AB=CD不能判断四边形ABCD是平行四边形,故此选项符合题意;故选:D.10.解:A、∵两组对边分别平行的四边形是平行四边形,∴选项A不符合题意;B、∵一组对边平行,另一组对边相等的四边形不一定是平行四边形,∴选项B符合题意;C、∵一组对边平行且相等的四边形是平行四边形,∴选项C不符合题意;D、∵一组对边平行,一组对角相等的四边形是平行四边形,∴选项D不符合题意;故选:B.11.解:A、由DE=BF,不能推出四边形DEBF是平行四边形,有可能是等腰梯形,故选项A符合题意;B、∵四边形ABCD是平行四边形,∴DF∥EB,AB=CD,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴DF∥EB,AB=CD,AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴DF=EB,∴四边形DEBF是平行四边形,故选项C不符合题意;D、∵四边形ABCD是平行四边形,∴DF∥EB,∴∠CFB=∠ABF,∵∠AED=∠CFB,∴∠ABF=∠AED,∴DE∥BF,∴四边形DEBF是平行四边形,故选项D不符合题意;故选:A.12.解:A、一组对边相等且平行的四边形是平行四边形,故本选项不符合题意;B、一组对边平行且另一组对边相等的四边形不一定是平行四边形,可能是等腰梯形,故本选项符合题意;C、两条对角线互相平分是平行四边形,故本选项不符合题意;D、两组对边分别相等的四边形是平行四边形,故本选项不符合题意;故选:B.13.解:∵四边形ABCD是平行四边形,∴AD∥BC,∵AE=CF,AD=BC,∴DE=BF,∴四边形BFDE是平行四边形;故A选项符合题意;若EF经过BD的中点O,∵AD∥BC,∴∠EDO=∠FBO,在△BOF和△DOE中,,∴△BOF≌△DOE(ASA),∴四边形BFDE是平行四边形;故B选项符合题意;∵DE∥BF,BE∥DF,∴四边形BFDE是平行四边形;故C选项符合题意;由EF⊥AD不能判定四边形BFDE是平行四边形;故D选项不符合题意;故答案为:A,B,C.14.解:已知AE=CF,DE⊥AC于E,BF⊥AC于F,且AB=CD且点E、F不重合,∴AE+EF=CF+EF,即AF=CE,∴∠DEC=∠BF A=90°,又已知AB=CD,∴△ABF≌△CDE,∴DE=BF,∠DOE=∠BOF,∴△DOE≌△BOF,∴OE=OF,OB=OD,∴BD和EF互相平分.故答案为:互相平分.15.解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,∴∠AFB=∠ABF,∵AB=10,AE=4,∴EF=AF﹣AE=10﹣4=6,故答案为:6.16.解:∵四边形ABCD为平行四边形,对角线的交点为O,∴AB=CD,AD=BC,OA=OC,AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,AE=CF,∵平行四边形ABCD的周长为30,∴AB+BC=×30=15,∴四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE=AB+BC+2×3=15+6=21,故答案为:21.17.解:∵ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当BE=3cm,CE=5cm,AB=3cm,则周长为22cm;②当BE=5cm时,CE=3cm,AB=5cm,则周长为26cm.故答案为:22cm或26cm.18.解:如图,连接FE,设AE交BF于点O.由作图可知:AB=AF,AE平分∠BAD,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠F AE=∠AEB=∠BAE,∴AB=BE,∴AF=BE,∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,∴AO=OE=AE,BO=OF=3,在Rt△AOB中,AO===4,∴AE=2OA=8.故答案是:8.19.解:如图,过点D作DH⊥AB于H,∵∠DAB=60°,∴∠ADH=30°,∴AH=AD=3,DH=AH=3,∴平行四边形ABCD的面积=10×3=30,∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠BAC=∠DCA,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴S△AOF=S△COE,∴图中阴影部分的面积=S△BCD=S▱ABCD=15,故答案为15.20.解:∵四边形ABD是平行四边形,∴AB∥CD,AB=CD,OB=OD,OA=OC,∵BF=DE,∴BF﹣OB=DE﹣OD,即OF=OE,∴四边形AECF是平行四边形;∵AB∥CD,∴∠ABE=∠CDF,∵∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴BE=CF,∵AO=CO,BO=DO,∴OE=OF,∴四边形AECF是平行四边形;∵AF∥CE,∴∠AFB=∠CED,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS),∴BF=DE,∴BF﹣OB=DE﹣OD,即OF=OE,又∵OA=OC,∴四边形AECF是平行四边形;∵AE=CF,不能判定△ABE≌△CDF,∴不能判定四边形AECF是平行四边形;∴一定能判定四边形AECF是平行四边形的是①④,故答案为:①④.21.解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B,方程为12﹣4t=12﹣t,此时方程t=0,此时不符合题意;②点Q的运动路线是C﹣B﹣C,方程为4t﹣12=12﹣t,解得:t=4.8;③点Q的运动路线是C﹣B﹣C﹣B,方程为12﹣(4t﹣24)=12﹣t,解得:t=8;④点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣36=12﹣t,解得:t=9.6;综上所述,t=4.8s或8s或9.6s时,以P、D、Q、B四点组成的四边形为平行四边形,故答案为:4.8s或8s或9.6s.22.证明:(1)∵AB∥CD,∴∠B=∠D.在△ABE和△CDF中,,∴△ABE≌△CDF(ASA).∴AE=CF.(2)由(1)△ABE≌△CDF得AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE.∴AE∥CF.∵AE=CF,∴四边形AECF是平行四边形.23.证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥CB,OA=OC,∴∠BAC=∠DCN,又点M,N分别为OA、OC的中点,∴AM=CN,在△AMB和△CND中,,∴△AMB≌△CND(SAS).24.证明:(1)∵四边形ABCD的平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠AFB=∠CBF,∠DEC=∠BCE,∵BF平分∠ABC,CE平分∠BCD,∴∠ABF=∠FBC=∠AFB,∠DCE=∠BCE=∠DEC,∴AB=AF,DC=DE,∴AF=DE;(2)∵▱ABCD的周长为46,∴AD+AB=23,∵EF=1,∴2AB﹣AD=EF=1,∴AB=8,AD=15,∴BC=15.25.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠EAO=∠FCO,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴OE=OF;(2)解:∵△OAE≌△OCF,∴CF=AE,∴DF+AE=AB=CD=6,又∵EF=2OE=4,∴四边形AEFD的周长=AD+DF+AE+EF=6+4+5=15.26.解:(1)证明:∵△ABC≌△ADE,AB=AC,∴AB=AC=AD=AE,∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴BD=CE;(2)∵△ABC≌△ADE,∠BAC=30°,∴∠BAC=∠DAE=30°,∵四边形ABFE是平行四边形,∴AB∥CE,AB=EF,由(1)知:AB=AC=AE,∵AB=2,∴AB=AC=AE=2,过A作AH⊥CE于H,∵AB∥CE,∠BAC=30°,∴∠ACH=∠BAC=30°,∴在Rt△ACH中,AH===1,CH===,∵AC=AE,AH⊥CE,∴CE=2CH=2,∴CF=CE﹣EF=2﹣2.27.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=DC,∴∠F=∠EBA,∵E是AD边的中点,∴DE=AE,在△ABE与△DFE中,,∴△ABE≌△DFE(AAS);(2)解:∵△ABE≌△DFE,∴DF=AB,∵AB∥CD,∴四边形ABDF是平行四边形,∵三角形DEF的面积为1,∴S▱ABCD=4S△DEF=4,∴S△BCD=S▱ABCD=×4=2,∴S四边形ABDF=S▱ABDF+S△BCD=4+2=6.28.证明:(1)∵DF∥BE,∴∠DFE=∠BEF.在△ADF和△CBE中,,∴△AFD≌△CEB(SAS);(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四边形ABCD是平行四边形.29.证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.在△CEF与△BED中,,∴△CEF≌△BED(AAS).∴CF=BD.∴四边形CDBF是平行四边形.。
北师大版2020八年级数学下学配套练习-第六章-平行四边形
【文库精品】第六章 平行四边形1.平行四边形的性质练习一基础训练1.已知平行四边形ABCD 中,200A C ∠+∠=︒,则B ∠的度数是()A.100︒B.160︒C.80︒D.60︒2.在平行四边形ABCD 中,:::A B C D ∠∠∠∠的比是()A.1:2:3:4B.1:2:2:1C.2:2:1:1D.2:1:2:13.如图,在平行四边形ABCD 中,EF AD ∥,GH CD ∥,EF ,GH 相交于O ,则图中平行四边形的个数为()A.9B.8C.6D.44.用一根30m 长的绳子围成一个平行四边形,使其两边的比为3:2,则长边为_______m ,短边为__________m .5.平行四边形两邻角之差为30︒,则这个平行四边形各内角分别为___________.6.如图,已知:等腰ABC △的腰长为8cm ,过底边BC 上任一点D 作两腰的平行线分别交两腰于E , F ,则四边形AEDF 的周为____________cm .7.在平行四边形ABCD 中,已知平行四边形的周长是30cm ,且2c m A B B C -=,求平行四边形的边长. 能力提升8.如图,已知:在平行四边形ABCD 中,55B ∠=︒,235∠=︒,10AD =,对角线8AC =,求平行四边形ABCD 的周长和面积.9.如图,在平行四边形ABCD 中,DE AB ⊥于E ,DF BC ⊥于F ,DAB ∠的平分线AP 交DE 于M ,交DF 于N .试说明:DM DN =.练习二基础训练1.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,则图中全等的三角形有()A.2对B.3对C.4对D.8对2.平行四边形一边长为10,一条对角线长为6,则它的另一条对角线长m 的取值范围是()A.416m <<B.1426m <<C.1220m <<D.832m <<3.如图,在平行四边形ABCD 中,AC 与BD 相交于点O ,则下列结论不一定...成立的是()A.BO DO =B.CD AB =C.BAD BCD ∠=∠D.AC BD =4.已知平行四边形ABCD 的两条对角线AC ,BD 互相垂直,且6cm AC =,8cm BD =,则边AB 的长为_____________cm .5.已知平行四边形ABCD 的两条对角线AC ,BD 相交于点O ,如果AOB △的面积是23cm ,那么平行四边形ABCD 的面积是_________2cm .6.在平行四边形ABCD 中,对角线AC ,BD 相交于O .如果OBC △的周长为59,BC 的长为28,14BD AC -=,那么对角线AC =__________,BD =____________.7.如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,经过点O 的直线交AB 于E ,交CD 于F .求证:OE OF =.能力提升8.如图,已知平行四边形ABCD 的对角线相交于O ,且AD CD ≠,过O 作OE AC ⊥,交AD 于点E ,若CDE △的周长为10,求平行四边形ABCD 的周长.探究实践9.如图,在平行四边形ABCD 中,BE CD ⊥,BF AD ⊥,60EBF ∠=︒,2CE =,3AF =,求平行四边形ABCD 的边长.2.平行四边形的判定练习一基础训练1.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是()A.AB BC =,CD DA =B.AB CD ∥,AD BC =C.AB CD ∥,A C ∠=∠D.A B ∠=∠,C D ∠=∠ 2.用两个全等的三角形按不同的方法拼成四边形,在这些拼出的四边形中,平行四边形最多有().A.1个B.2个C.3个D.4个3.根据下列条件,能作出平行四边形的是()A.相邻两边的长分别是3和5,且一条对角线的长为9B.两组对边的长分别是3和5C.一边的长为7,两条对角线的长分别为6和8D.一边的长为7,两条对角线的长分别为6和5 4.如图,在平行四边形ABCD 中,EF BC ∥,GH AB ∥,EF 与GH 相交于点O .除平行四边形ABCD 外,图中还有____________个平行四边形.5.在四边形ABCD 中,AC 为对角线,若AB CD =,BAC DCA ∠=∠,则四边形ABCD 为____________.6.两条对角线_______________的四边形是平行四边形.7.如图,在平行四边形ABCD 中,E ,F 是AC 上的点,且AE CF =,四边形BFDE 是平行四边形吗?试说明理由.能力提升8.如图,已知:AD 是ABC △的角平分线,DE AB ∥,在AB 上截取BF AE =.试说明:EF BD =.探究实践9.如图所示为在场地上画平行线的简单方法,将皮带尺从P 拉到A ,取AP 的中点M ,并且在点M 上竖一木桩,再将皮带从n 上的另一点B 拉向M ,使它过M ,取MC B M =,那么过P ,C 两点的直线m 就是平行于n 的一条直线.为什么?练习二基础训练1.四边形ABCD 中,对角线AC ,BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是()A.AB DC ∥,AD BC ∥B.AB DC =,AD BC =C.AO CO =,BO DO =D.AB DC ∥,AD BC = 2.在下列条件中,能判定四边形ABCD 是平行四边形的是()A.AB BC =,CD DA =B.AB CD ∥,AD BC =C.AB CD =,AD BC =D.A B ∠=∠,C D ∠=∠ 3.在四边形ABCD 中,AD BC ∥,当满足下列条件()时,四边形ABCD 是平行四边形.A.180A C ∠+∠=︒B.180B D ∠+∠=︒C.180A B ∠+∠=︒D.180B C ∠+∠=︒4.一组对边________的四边形是平行四边形;两组对边分别_______的四边形是平行四边形;两条对角线___________的四边形是平行四边形.5.如图,点M ,N 是平行四边形ABCD 对角线上的两点,要使四边形AMCN 是平行四边形,还需加上的一个条件是__________(填上你认为正确的一个即可,不必考虑所有可能的情况).6.已知AD BC ∥,要使四边形ABCD 为平行四边形,需要增加的条件是__________________(填一个你认为正确的条件).7.如图,在平行四边形ABCD 的各边AB ,BC ,CD ,DA 上,分别取K ,L ,M ,N ,使A K C M =,BL DN =,试判断四边形KLMN 是否为平行四边形.并说明理由.能力提升8.如图,已知平行四边形ABCD ,过A 作AM BC ⊥于M ,交BD 于E ,过C 作CN AD ⊥于N ,交BD 于F ,连接AF ,CE .求证:四边形AECF 为平行四边形.探究实践9.如图,在ABC △中,D 是AB 的中点,E 是AC 上的一点,EF AB ∥,DF BE ∥.(1)猜想DF 与AE 的关系是_____________;(2)请说明你的猜想.3.三角形的中位线基础训练1.如图,点D ,E ,F 分别是ABC △三边的中点,且3DEF S =△,则ABC △的面积等于()A.6B.9C.12D.152.如图,已知ABC △的周长为1,连接ABC △三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形……依此类推,则第10个三角形的周长为().A.19B.110C.912⎛⎫ ⎪⎝⎭D.1012⎛⎫ ⎪⎝⎭3.如图,在ABC △中,D ,E 分别是AB ,AC 的中点,4DE =,则BC =__________.4.如图,D ,E ,F 分别为ABC △三边上的中点.(1)线段AD 叫做ABC △的_________,线段DE 叫做ABC △的_________,DE 与AB 的位置和数量关系是___________________;(2)图中全等三角形有_________________________________;(3)图中平行四边形有___________________________________.5.三角形各边长为5,9,12,则连接各边中点所构成的三角形的周长是_____________.6.如图,D ,E ,F 分别为ABC △三边上的中点,G 为AE 的中点,BE 与DF ,DG 分别交于P ,Q 两点,则:PQ BE =______________.7.如图,要测出池塘的宽度AB ,小强在池塘边上取一个能直接到达A ,B 的点C ,量得20m AC =,25m BC =,又取AC 的中点D ,BC 的中点E ,量得12m DE =,求池塘宽AB 为多少?能力提升8.如图,ABC △中,D ,E ,F 分别是AB ,BC ,AC 的中点,若10cm AB =,6cm AC =,求四边形ADEF 的周长.探究实践9.如图,在四边形ABCD 中,AB CD >,E ,F 分别是对角线BD ,AC 的中点.求证:()12EF AB CD >-. 4.多边形的内角和与外角和基础训练1.一个多边形切去一个角(即切去一个只含原多边形一个顶点的三角形)后,得到的新多边形的内角和与原多边形内角和相比().A.多180︒B.少180︒C.多360︒D.相等2.多边形内角钝角的个数最多有().A.4个B.5个C.6个D.无数个3.一个多边形的每一个内角均为108︒,则这个多边形是().A.七边形B.六边形C.五边形D.四边形4.若一个多边形的外角和是它的内角和的14,则此多边形的边数是_____________. 5.若一个多边形的各边都相等,它的周长为96,且它的内角和是1800︒,则它的边长是________. 6.OAB △是以正多边形相邻的两个顶点A ,B 与它的中心O 为顶点的三角形,若OAB △的一个内角为70︒,则该正多边形的边数为_______________.7.一个五边形,若五个外角度数之比是1:2:4:5:6,那么这五个外角的度数分别为多少?五个内角的度数之比是多少?能力提升8.如图,在正八边形ABCDEFGH 中,四边形BCFG 的面积为220cm ,则正八边形的面积为多少?9.已知,过m 边形的一个顶点有7条对角线,n 边形没有对角线,p 边形有p 条对角线,求()nm p -的值.【复习与反思】A 卷一、填空题1.平行四边形的周长为24,一组邻边的差为2,则较短的边长为________________.2.从平行四边形的一个顶点作两条高,若这两条高的夹角为75︒,则这个平行四边形的四个内角为_________.3.如图所示,等边ABC △的边长为6,DE BC ∥,DF AC ∥,则平行四边形DECF 的周长为___________.4.如图,平行四边形ABCD 中,60ABC ∠=︒,E ,F 分别在CD 和BC 的延长线上,AE BD ∥,EF BC ⊥,EF AB 的长是_____________.5.如图,一束平行太阳光线照射到正五边形上,则1∠=___________.6.已知三角形的三边长分别是4,5,6,则它的三条中位线围成的三角形的周长是_________.7.在四边形ABCD 中对角线AC ,BD 相交于O ,当AO =__________,BO =________时,四边形ABCD 是平行四边形.8.一个平行四边形的一边长是8,一条对角线长是6,则它的另一条对角线x 的取值范围为_______. 9.已知一个多边形的内角和等于它的外角和的6倍,则这个多边形的边数n =____________. 10.各内角都相等的多边形的内角和为2520︒,则它的每一个外角为________︒,每一个内角为______︒.二、选择题11.平行四边形两邻边长分别为20cm ,16cm ,两长边之间的距离为8cm ,则两短边之间的距离为()A.10cmB.9cmC.8cmD.7cm12.点A ,B ,C ,D 在同一平面内,从①AB CD ∥;②AB CD =;③BC AD ∥;④BC AD =.这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有()A.3种B.4种C.5种D.6种13.下面给出了四边形ABCD 中A ∠,B ∠,C ∠,D ∠的度数之比,其中能判定四边形ABCD 是平行四边形的是()A.1:2:3:4B.2:2:3:3C.2:3:2:3D.2:3:3:214.如图,过正五边形ABCDE 的顶点A 作直线l BE ∥,则1∠的度数为()A.30︒B.36︒C.38︒D.45︒15.如图,在平行四边形ABCD 中,2AD AB =,CE 平分BCD ∠交AD 边于点E ,且3AE =,则AB 的长为()A.4B.3C.52D.2 16.如图,已知ABC △的周长为1,连接ABC △三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,依此类推,第2013个三角形的周长为(). A.12012 B.12013 C.201212 D.201312三、计算题17.如图所示,平行四边形ABCD 中,8cm AB =,12cm AD =,120BCD ∠=︒.求平行四边形ABCD 的面积.18.在平行四边形ABCD 中,E ,F 为对角线BD 上的三等分点.求证:四边形AFCE 是平行四边形.19.已知:平行四边形ABCD 中E ,F 是对角线AC 上的两点,且AF CE =.求证:DE BF =.20.如图,D 是ABC △的边AB 上一点,CN AB ∥,DN 交AC 于点M .若MA MC =.FED C B A(1)求证:CD AN =;(2)若AC DN ⊥,30CAN ∠=︒,1MN =,求四边形ADCN 的面积.四、解答题21.如图所示,四边形ABCD 是平行四边形,E ,F 是直线BD 上的两点,且BF DE =.那么,线段AE 与CF 有什么关系?请说明理由.22.如图所示,A ,B 两点位于池塘的两端,李华用绳子测量A ,B 间的距离,但绳子不够长,一同学帮他想了个主意:先在地上取一个可以直接达到A ,B 的点C ,找到AC ,BC 的中点D ,E ,测量出DE 的长度就可以得到AB 的长度.你同意他的观点吗?请说明原因.B 卷五、解答下列各题23.如图,在ABC △中,1A ,1B ,1C 分别是BC ,CA ,AB 的中点,2A ,2B ,2C 分别是11B C ,11C A ,11A B 的中点,…,n A ,n B ,n C 分别是1n B -,1n C -,1n C -,1n A -,1n A -,1n B -的中点,假设ABC △的周长为a .则111A B C △的周长为___________,222A B C △的周长为___________,n n n A B C △的周长为________. 24.一个多边形的所有内角与某一个外角的和为1350︒.你知道这个多边形是一个几边形吗?请说明理由.25.我们知道过n 边形的一个顶点可以做()3n -条对角线,这()3n -条对角线把三角形分割成()2n -个三角形,想一想这是为什么?如图(1).如图(2),在n 边形的边上任意取一点,连接这点与各顶点的线段可以把n 边形分成几个三角形? 想一想,利用这两个图形,怎样证明多边形的内角和定理.。
(完整word版)新北师大版八年级下册第六章平行四边形练习题
15、平行四边形 ABCD 中,∠ A=50°,则∠ D=( )A. 40 °B. 50 °C. 130 °D. 不能确定16、 用两个形状大小相同的三角形按不同的方式拼成的平行四边形有( )个 A. 1 B. 2 C. 3 D. 417、平行四边形 ABCD 中,∠A :∠B :∠ C :∠D 的值可以是( ) A .1:2:3:4B. 3 :4:4:3C. 3 :3:4:4D. 3 :4:3:4 新北师大版八年级下册第六章平行四边形练习题 一、填空题 1、如图, □ ABCD 中,∠ A=120°,则∠ 1= ° 2、□ABCD 中,∠A 比∠B 大 20°,则∠ C 的度数为 __ 3、如图,平行四边形 ABCD 中, AB =6,BC =4,∠A =60°要用一块矩 形铝板切割出这样的平行四边形, 使废料最少, 则所需铝板的面积最小 应是 _____4、在 ABCD 中,对角线 AC 、BD 相交于点 0,点 E 在边 AD 上,且 AE :DE=1: 3,连结 BE ,BE 与 AC 相交于点M,若 AC=6 ,则 M0的长 是 .5、如图所示, E 、F 分别是平行四边形 的边 、 上 的点, 与 相交于点 , 与 相交于点 ,若 △APD , △ BQC ,则阴影部分的面积为 .6、□ ABCD 中, AB :BC=1:2,周长为 24cm, 则 AB= ____ c m, AD= ____ cm7、巳知 □ABCD ,周长为 36,相邻两边的差为 4,则相邻两边的 长分别为 _______ 8、平行四边形两个邻角的平分线互相 ____ ,两个对角的平分 第四题图线互相 _____ (填“平行”或“垂直”) 9、□ ABCD 中,∠ A=150°, AB=15cm ,则 AD 与 BC 间的距离为 _____ cm10、如图,在 □ABCD 中, BC=12, AD 与 BC 间的距离为 5,AC 与 BD 交于点 O ,则△ BOC 的面积为 11、如图 , 在□ABCD 中, 过其对角线的交点 O ,引一条 直线交 BC 于 E ,交 AD 于 F 。
北师大版八年级数学下册6.1《平行四边形的性质》典型例题
6.1《平行四边形的性质》典型例题一、选择题1、在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2、如图,□ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为( )A.BE = DFB.BF = DEC.AE = CFD.∠1= ∠23、如图,在□ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CDB.AB=CDC.AC=BDD.OA=OC4、如图,在□ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,□ABCD的周长是14,则DM等于()A.1B.2C.3D.4二、填空题5、在□ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数CD FGAB为 .6、如图,在□ABCD中,AC,BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB=______cm.7、如图,在平行四边形ABCD中,13AB,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好与点C重合,则折痕的长为__________.三、解答题8、如图,在□ABCD中,AE⊥BC,交边BC于点E,点F为CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.9、如图,将平行四边形ABCD沿对角线BD进行折叠,折叠后点C落在点F处,DF交AB于点E,(1)求证:∠EDB=∠EBD;(2)判断AF与DB是否平行,并说明理由.10、在□ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.《6.1平行四边形的性质》典型例题解析BCDAEH一、选择题1、在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定解答:如图,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD+∠ADC=180°,∵∠EAD=∠BAD,∠ADE=∠ADC,∴∠EAD+∠ADE=(∠BAD+∠ADC)=90°,∴∠E=90°,∴△ADE是直角三角形,故选:B.2、如图,□ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为( )A. BE = DFB. BF = DEC. AE = CFD.∠1= ∠2答案:C解答:∵四边形ABCD为平行四边形,∴AB=CD,∠ABE=∠CDF,若BE = DF,可由SAS判定△ABE≌△CDF;若BF = DE,则BE = DF,可由SAS判定△ABE≌△CDF;若AE = CF,是SSA,不能判定△ABE≌△CDF;若∠1= ∠2,可由ASA判定△ABE≌△CDF,故选择C.3、如图,在□ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CD B.AB=CD C.AC=BD D.OA=OC答案:C解答:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OA=OC,但是AC和BD不一定相等,故选C.4、如图,在□ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,□ABCD 的周长是14,则DM 等于( )A .1B .2C .3D .4 答案:C解答:∵在□ABCD 中,BM 是∠ABC 的平分线,∴∠CBM=∠CMB=∠ABM , ∴MC=BC=2,∵□ABCD 的周长是14,∴AB=CD=5,∴DM=3,故选C.二、填空题5、在□ABCD 中,AD =BD ,BE 是AD 边上的高,∠EBD =20°,则∠A 的度数为 . 答案:55°或35°解答:本题与□ABCD 无关,可以将本题修改为:在△ABD 中,AD =BD ,BE 是AD 边上的高,∠EBD =20°,求∠A 的度数.其实质为:已知等腰三角形一腰上的高与另一腰的夹角为20°,求等腰三角形底角的度数. 因此,本题分两种情况讨论:如图①,当BE 在△ABD 的内部时,∠1=90°-∠EBD =90°-20°=70°.∴∠A =∠ABD =21(180°-∠1)=55°.如图②,当BE 在△ABD 的外部时,∠1=90°+∠EBD =90°+20°=110°.∴∠A =∠ABD =21(180°-∠1)=35°.故答案为55°或35°.6、如图,在□ABCD 中,AC ,BD 相交于点O ,AB =10cm ,AD =8cm ,AC ⊥BC ,则OB =______cm .答案:73解答:∵AC ⊥BC ,∴∠ACB =90°. ∵AB =10cm ,AD =BC=8cm ,∴AC =∵四边形ABCD 是平行四边形,∴OC =12AC =3 cm. A∴OB =7、如图,在平行四边形ABCD 中,13=AB ,AD =4,将平行四边形ABCD 沿AE 翻折后,点B 恰好与点C 重合,则折痕AE 的长为__________.答案:3解答:点B 恰好与点C 重合,且四边形ABCD 是平行四边形,∴BC=AD =4,根据翻折的性质知AE ⊥BC ,BE =CE =2,在Rt △ABE中,由勾股定理得3AE ===,故答案为3.三、解答题8、如图,在□ABCD 中,AE ⊥BC ,交边BC 于点E ,点F 为CD 上一点,且DF =BE .过点F 作FG ⊥CD ,交边AD 于点G . 求证:DG =DC .证明:∵四边形ABCD 是平行四边形,∴AB =CD ,∠B =∠D . ∵AE ⊥BC ,FG ⊥CD ,∴∠AEB =∠GFD =90°. 又∵DF =BE ,∴△ABE ≌△GDF (ASA ). ∴AB =DG ,∴DG =CD .9、如图,将平行四边形ABCD 沿对角线BD 进行折叠,折叠后点C 落在点F 处,DF 交AB 于点E ,(1)求证:∠EDB =∠EBD ;(2)判断AF 与DB 是否平行,并说明理由.证明:(1)由折叠可知:∠CDB =∠EDB ,∵四边形ABCD 是平行四边形,∴DC ∥AB ,∴∠CDB =∠EBD ,∴∠EDB =∠EB D . 解:(2)AF ∥D B .∵∠EDB =∠EBD ,∴ED =EB .∵四边形ABCD 是平行四边形,∴AB =D C . 由折叠可知DF =DC ,∴AB =DF .∵ED =EB ,∴EA =EF ,∴∠EAF =∠EFA .BC DF GA在△AEF 中,∠EAF +∠EFA +∠AEF =180°,即2∠EAF +∠AEF =180°, 同理,在△BDE 中,即2∠EBD +∠BED =180°. ∵∠AEF =∠BED ,∴∠EAF =∠EBD ,∴AF ∥DB .10、在□ABCD 中,∠BCD 的平分线与BA 的延长线相交于点E ,BH ⊥EC 于点H ,求证:CH =EH .证明:∵在□ABCD 中BE ∥CD ,∴∠E =∠DCE .∵CE 平分∠BCD ,∴∠BCH =∠DCE . ∴∠BCH =∠E .∴BE =BC .又∵BH ⊥EC ,∴CH =EH .(三线合一)BCDAE H。
2021北师大版八年级数学下第六章《平行四边形》常考综合题专练含答案
北师大版八年级下册第六章《平行四边形》常考综合题专练(一)1.如图1,在平行四边形ABCD中,过点A作AE⊥BC交BC于点E,连接ED,且ED平分∠AEC.(1)求证:AE=BC;(2)如图2,过点C作CF⊥DE交DE于点F,连接AF,BF,猜想△ABF的形状并证明.2.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC=,CD=BD,求AD的长.3.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.4.【教材呈现】如图是华师版九年级上册数学教材第80页的第3题,请完成这道题的证明.【结论应用】(1)如图②,在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F.求证:∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.5.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.6.已知:如图所示,在平行四边形ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=60°,AE=2EB,AD=4,求线段BD的长.7.如图,在平行四边形ABCD中,M、N分别是AD,BC的中点,连接AN、CM.(1)求证:△ABN≌△CDM;(2)连接MN,过点C作CE⊥MN于点E,连接DN,交OM于点O交CE于点P,若∠AND=90°,PE=1,∠1=∠2,求AN的长.8.已知:在▱ABCD中,点E是边AD上一点,点F是线段AE的中点,连接BF并延长BF至点G,使FG=BF,连接DG、EG.(1)如图1,求证:四边形CDGE是平行四边形;(2)如图2,当DA平分∠CDG时,在不添加任何辅助线的情况下,请直接写出图2中与AB相等的线段(AB除外).9.如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF(填“是”或“不是”)平行四边形.10.如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连接AF、CE.(1)求证:BM=DN;(2)求证:四边形AECF为平行四边形.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵AE⊥BC,∴∠AEC=90°,又∵ED平分∠AEC,∴∠ADE=∠CED=45°,∴∠AED=∠ADE,∴AE=AD,∴AE=BC;(2)△ABF是等腰直角三角形,证明:∵CF⊥DE,∴∠CFE=90°,又∵∠CEF=45°,∴∠ECF=45°,∴∠FEC=∠FCE=∠AEF,∴EF=CF,在△AEF和△BCF中,,∴△AEF≌△BCF(SAS),∴AF=BF,∠AFE=∠BFC,∴∠AFE﹣∠BFE=∠BFC﹣∠BFE,即∠AFB=∠EFC=90°,∴△ABF是等腰直角三角形.2.(1)证明:∵AB∥CE,∴∠CAD=∠ACE,∠ADE=∠CED.∵F是AC中点,∴AF=CF.在△AFD与△CFE中,.∴△AFD≌△CFE(AAS),∴AD=CE,∴四边形ADCE是平行四边形;(2)解:过点C作CG⊥AB于点G.∵CD=BD,∠B=30°,∴∠DCB=∠B=30°,∴∠CDA=60°.在△ACG中,∠AGC=90°,,∠CAG=45°,∴.在△CGD中,∠DGC=90°,∠CDG=60°,,∴GD=1,∴.3.(1)证明:∵AE为∠BAD的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DFA.∴∠DAF=∠DFA.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.4.【教材呈现】证明:∵P是BD的中点,M是DC的中点,∴PM=BC,同理,PN=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM,【结论应用】(1)证明:∵P是BD的中点,M是DC的中点,∴PM∥BC,∴∠PMN=∠F,同理,∠PNM=∠AEN,∵∠PMN=∠PNM,∴∠AEN=∠F;(2)解:∵PN∥AD,∴∠PNB=∠A,∵∠DPN是△PNB的一个外角,∴∠DPN=∠PNB+∠ABD=∠A+∠ABD,∵PM∥BC,∴∠MPD=∠DBC,∴∠MPN=∠DPN+∠MPD=∠A+∠ABD+∠DBC=∠A+∠ABC=122°,∵PM=PN,∴∠PMN=×(180°﹣122°)=29°,∴∠F=∠PMN=29°,故答案为:29°.5.(1)根据平行四边形的性质得到AO=OC,BO=OD,AB∥CD,AD∥BC,由三角形的中位线的性质得到MO∥BC,NO∥CD,∴MO∥AN,NO∥AM,∴四边形AMON是平行四边形;(2)解:∵AC=6,BD=4,∴AO=3,BO=2,∵∠AOB=90°,∴AB===,∴OM=AM=MB=,∴NO=AN=,四边形AMON的周长=AM+OM+AN+NO=2.6.(1)证明:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,AD=BC,∵DE、BF分别是∠ADC和∠ABC的角平分线,∴∠ADE=∠CDE,∠CBF=∠ABF,∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF,∴∠AED=∠ADE,∠CFB=∠CBF,∴AE=AD,CF=CB,∴AE=CF,∴AB﹣AE=CD﹣CF即BE=DF,∵DF∥BE,∴四边形DEBF是平行四边形.∴BD、EF互相平分;(2)∵∠A=60°,AE=AD,∴△ADE是等边三角形,∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=GE=2,∴BG=4,过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴AG=AD=2,∴DG==2,∴BD===2.7.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠CDM,∵M、N分别是AD,BC的中点,∴BN=DM,在△ABN和△CDM中,,∴△ABN≌△CDM(SAS);(2)解:∵M是AD的中点,∠AND=90°,∴MN=MD=AD,∴∠1=∠MND,∵AD∥BC,∴∠1=∠CND,∵∠1=∠2,∴∠MND=∠CND=∠2,∴PN=PC,∵CE⊥MN,∴∠CEN=90°,∴∠2=∠PNE=30°,∵PE=1,∴PN=2PE=2,∴CE=PC+PE=3,∴CN==,∵N是BC的中点,∴AD=BC=CN=,∴AN=AD×sin∠1=4=.8.解:(1)∵点F是线段AE的中点,∴AF=EF,在△ABF和△EGF中,,∴△ABF≌△EGF(SAS),∴AB=GE,∠ABF=∠FGE,∴AB∥GE,又∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴GE=CD,GE∥DC,∴四边形CDGE是平行四边形;(2)图2中与AB相等的线段为:GE,GD,DC,CE.理由:∵DA平分∠CDG,∴∠CDE=∠GDE,由(1)可得,GE∥CD,∴∠CDE=∠GED,∴∠GDE=∠GED,∴GE=GD,又∵四边形CDGE是平行四边形,∴四边形CDGE是菱形,∴CD=DG=GE=CE,又∵AB=CD,∴图2中与AB相等的线段为:GE,GD,DC,CE.9.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA)(2)解:四边形AECF是平行四边形,理由如下:由(1)得:△AOF≌△COE,∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形;故答案为:是.10.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AM⊥BC,CN⊥AD,∴AM∥CN,∴四边形AMCN为平行四边形,∴CM=AN,∴BC﹣CM=AD﹣AN,即BM=DN;(2)∵AD∥BC,∴∠ADB=∠CBD,∵AM⊥BC,CN⊥AD,∴∠EMB=∠FND=90°,在△BME和△DNF中,,∴△BME≌△DBF(ASA),∴EM=DF,∵四边形AMCN为平行四边形,∴AM=CN,AM∥CN,∴AE=CF,又∵AE∥CF,∴四边形AECF为平行四边形.。
北师大版八年级下册数学第六章平行四边形练习题以及答案
北师大版八年级下册平行四边形练习题参考答案与试题解析一.选择题(共6小题)1.平行四边形的两条对角线一定()A.互相平分B.互相垂直C.相等D.以上都不对【分析】根据平行四边形的性质即可进行判断.【解答】解:因为平行四边形的两条对角线一定互相平分,菱形的对角线互相垂直,矩形的对角线相等,所以A选项正确.故选:A.【点评】本题考查了平行四边形的性质,解决本题的关键是掌握平行四边形的性质.2.如图,在▱ABCD中,∠ABC、∠BCD的平分线BE、CF分别与AD相交于点E、F,BE 与CF相交于点G,若AB=6,BC=10,CF=4,则BE的长为()A.4B.8C.8D.10【分析】根据平行四边形两组对边分别平行可得∠ABC+∠BCD=180°,再根据角平分线的性质可得∠EBC+∠FCB=90°,可得BE⊥CF;过A作AM∥FC,交BC于M,交BE于O,证明△ABE是等腰三角形,进而得到BO=EO,再利用勾股定理计算出EO的长,进而可得答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC、∠BCD的平分线BE、CF分别与AD相交于点E、F,∴∠EBC+∠FCB=∠ABC+∠DCB=90°,∴EB⊥FC,∴∠FGB=90°.过A作AM∥FC,交BC于M,交BE于O,如图所示:∵AM∥FC,∴∠AOB=∠FGB=90°,∵BE平分∠ABC,∴∠ABE=∠EBC,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AB=AE=6,∵AO⊥BE,∴BO=EO,在△AOE和△MOB中,,∴△AOE≌△MOB(ASA),∴AO=MO,∵AF∥CM,AM∥FC,∴四边形AMCF是平行四边形,∴AM=FC=4,∴AO=2,∴EO===4,∴BE=8.故选:C.【点评】此题考查了平行四边形的性质与判定、全等三角形的判定与性质、等腰三角形的判定和性质以及勾股定理;证明AO=MO,BO=EO是解决问题的关键.3.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长是30,OE=3,则四边形ABFE的周长是()A.21B.24C.27D.18【分析】先由ASA证明△AOE≌△COF,得OE=OF,AE=CF,再求得AB+BC=15,由平行四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE,即可求得答案.【解答】解:∵四边形ABCD为平行四边形,对角线的交点为O,∴AB=CD,AD=BC,OA=OC,AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,AE=CF,∵平行四边形ABCD的周长为30,∴AB+BC=×30=15,∴四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE=AB+BC+2×3=15+6=21,故选:A.【点评】本题考查了平行四边形的性质及全等三角形的判定与性质,熟练掌握平行四边形的性质,证明三角形全等是解题的关键.4.如图,在▱ABCD中,AC,BD为对角线,BC=10,BC边上的高为6,则图中阴影部分的面积为()A.6B.15C.30D.60【分析】观察并结合平行四边形的性质可知,图中下半部分的阴影面积等于上半部分的空白面积,从而可得阴影面积等于▱ABCD面积的一半;利用底×高计算出▱ABCD面积,再乘以,即可得出答案.【解答】解:观察并结合平行四边形的性质可知,图中下半部分的阴影面积等于上半部分的空白面积,∴S阴影=S▱ABCD,∵BC=10,BC边上的高为6,∴S▱ABCD=10×6=60,∴S阴影=×60=30.故选:C.【点评】本题考查了平行四边形的性质,数形结合并熟练掌握平行四边形的性质是解题的关键.5.如图,在△ABC中,∠ACB=90°,AC=4,AB=5,D为AC上的动点,连接BD以AD、BD为边作平行四边形ADBE,则DE长的最小值为()A.2B.3C.4D.5【分析】由勾股定理可去BC=3,由平行四边形的性质可得BE∥AC,由平行线之间的距离和垂线段最短可得当DE⊥AD时,DE有最小值,即可求解.【解答】解:如图,∵∠ACB=90°,AC=4,AB=5,∴BC===3,∵四边形ADBE是平行四边形,∴BE∥AC,∴当DE⊥AD时,DE有最小值,∴DE有最小值为3,故选:B.【点评】本题考查了平行四边形的性质,勾股定理,平行线之间的距离,灵活运用这些性质是本题的关键.6.如图,在▱ABCD中,点E在BC上,且CD=CE,连接DE,过点A作AF⊥DE,垂足为F,若∠DAF=48°,则∠C的度数为()A.84°B.96°C.98°D.106°【分析】首先根据AF⊥DE,∠DAF=48°得到∠ADE=90°﹣∠DAF=90°﹣48°=42°,然后利用四边形ABCD是平行四边形得到∠CED=∠ADF=42°,再根据CD=CE,得到∠CDE=∠DEC=42°,从而利用三角形的内角和定理求得∠C=180°﹣∠DEC﹣∠EDC=180°﹣42°﹣42°=96°即可.【解答】解:∵AF⊥DE,∠DAF=48°,∴∠ADE=90°﹣∠DAF=90°﹣48°=42°,∵四边形ABCD是平行四边形,∴∠CED=∠ADF=42°,∵CD=CE,∴∠CDE=∠DEC=42°,∴∠C=180°﹣∠DEC﹣∠EDC=180°﹣42°﹣42°=96°,故选:B.【点评】考查了平行四边形的性质,解题的关键是根据平行四边形的对边平行且相等得到相关结论,难度不大.二.填空题(共18小题)7.如图,Rt△ABC中,∠BAC=90°,D,E,F分别为AB,BC,AC的中点,已知DF=5,则AE=5.【分析】根据三角形中位线定理求出BC,根据直角三角形的性质解答即可.【解答】解:∵D,F分别为AB,AC的中点,∴DF是△ABC的中位线,∴BC=2DF=10,在Rt△ABC中,E为BC的中点,∴AE=BC=5,故答案为:5.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.如图,在△ABC中,点D、E分别是边AB、AC的中点,连接DE,∠ABC的平分线BF 交DE于点F,若AB=4,BC=6,则EF的长为1.【分析】延长AF交BC于H,根据三角形中位线定理得到DE∥BC,DE=BC=3,AF =FH,证明△BF A≌△BFH,根据全等三角形的性质求出BH,结合图形计算即可.【解答】解:连接AF并延长交BC于H,∵点D、E分别为边AB、AC的中点,∴DE∥BC,DE=BC=3,AF=FH,在△BF A和△BFH中,,∴△BF A≌△BFH(AAS),∴BH=AB=4,∵AD=DB,AF=FH,∴DF=BH=2,∴EF=DE﹣DF=1,故答案为:1.【点评】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=4,则DN=2.【分析】连接CM,根据直角三角形的性质求出CM,根据三角形中位线定理得到MN=BC,MN∥BC,证明四边形NDCM是平行四边形,根据平行四边形的性质解答.【解答】解:连接CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=2,∵M、N分别是AB、AC的中点,∴MN=BC,MN∥BC,∵CD=BD,CD=BC,∴MN=CD,又MN∥BC,∴四边形NDCM是平行四边形,∴DN=CM=2,故答案为:2.【点评】本题考查的是直角三角形的性质和三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.10.如图,在△ABC中,AB=5,BC=6,AC=4,D,E,F分别为AB,BC,AC的中点,连接DF,FE,则四边形DBEF的周长为11.【分析】根据三角形中位线定理分别求出DF、EF,根据线段中点的定义分别求出BD、BE,根据四边形的周长公式计算,得到答案.【解答】解:∵D,E,F分别为AB,BC,AC的中点,∴DF=BC=3,EF=AB=2.5,BD=AB=2.5,BE=BC=3,∴四边形DBEF的周长=DB+BE+EF+DF=11,故答案为:11.【点评】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11.如图,在△ABC中,点D,E,F分别是边AB,BC,CA上的中点,且AB=10cm,AC =16cm,则四边形ADEF的周长等于26cm.【分析】根据三角形中位线定理,证明四边形ADEF是平行四边形,根据三角形中位线定理,求出DE、EF的长,即可解决问题.【解答】解:∵点D,E,F分别是边AB,BC,CA上的中点,∴DE,EF都是△ABC的中位线,∴DE=AC=8cm,DE∥AC,EF=AB=5cm,EF∥AB,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2(DE+EF)=2×13=26(cm).故答案为:26.【点评】本题主要考查三角形中位线定理、平行四边形的判定和性质等,解题的关键是运用三角形中位线平行于第三边且等于第三边的一半.12.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别为AB、AC、AD的中点.若AB =6,则EF的长度为.【分析】根据直角三角形的性质求出CD,根据三角形中位线定理求出EF.【解答】解:在Rt△ABC中,D为AB的中点,∴CD=AB=3,∵E、F分别为AC、AD的中点,∴EF是△ACD的中位线,∴EF=CD=,故答案为:.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线等于第三边的一半是解题的关键.13.如图,在△ABC中,AB=13,BC=12,D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的面积是15.【分析】根据三角形中位线定理求出AC,根据勾股定理的逆定理得到∠ACB=90°,根据三角形的面积公式计算,得到答案.【解答】解:∵D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴AC=2DE=5,∵AC2+BC2=52+122=169,AB2=169,∴AC2+BC2=AB2,∴∠ACB=90°,∴△ABC的面积=×5×12=30,∵D是AB的中点,∴△ACD的面积=△ABC的面积×=15.故答案为:15.【点评】本题考查的是三角形中位线定理、勾股定理的逆定理,掌握三角形的中位线等于第三边的一半是解题的关键.14.如图,在△ABC中,D,E,F分别是AB、CA、BC的中点,若CF=3,CE=4,EF=5,则CD的长为5.【分析】根据三角形中位线定理得到AB=2EF=10,根据勾股定理的逆定理得到∠ACB =90°,根据直角三角形的性质计算,得到答案.【解答】解:∵E,F分别是CA、BC的中点,∴AC=2CE=8,BC=2CF=6,AB=2EF=10,∵AC2+BC2=36+64=100,AB2=100,∴AC2+BC2=AB2,∴∠ACB=90°,在Rt△ACB中,D是AB的中点,∴CD=AB=5,故答案为:5.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线等于第三边的一半是解题的关键.15.如图是一块正多边形的碎瓷片,经测得∠ACB=30°,则这个正多边形的边数是12.【分析】根据∠ACB=30°推知该多边形的外角是30°,进而求得这个正多边形的边数.【解答】解:如图,延长CB,可知∠1是正多边形的外角,∵该瓷片是正多边形,∴AD=BD=BC,∠ADB=∠DBC,∴四边形ACBD是等腰梯形,∴BD∥AC.∴∠1=∠ACB=30°,∴该正多边形的边数为=12.故答案是:12.【点评】本题主要考查正多边形的外角和,掌握相关知识点是解题的关键,难度不大.16.如图,把△ABC纸片沿DE折叠,当点C落在四边形ABDE的外部时,此时测得∠1=108°,∠C=35°,则∠2=38°.【分析】根据折叠性质得出∠C′=∠C=35°,根据三角形外角性质得出∠DOC=∠1﹣∠C=73°,∠2=∠DOC﹣∠C′=73°﹣35°=38°.【解答】解:如图,设C′D与AC交于点O.∵根据折叠性质得出∠C′=∠C=35°,∵∠1=∠DOC+∠C,∴∠DOC=∠1﹣∠C=108°﹣35°=73°,∴∠2=∠DOC﹣∠C′=73°﹣35°=38°.故答案为:38°.【点评】本题考查了折叠的性质,三角形外角性质的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.17.一个n边形从一个顶点出发引出的对角线可将其分割成5个三角形,则n的值为7.【分析】一个n边形,把一个顶点与其它各顶点连接起来,形成的三角形个数为n﹣2,从而可得出答案.【解答】解:依题意有n﹣2=5,解得n=7.故答案为:7.【点评】本题主要考查多边形的对角线,一个n边形,把一个顶点与其它各顶点连接起来,形成的三角形个数为n﹣2.18.如图,在四边形ABDC中,CD∥AB,AC⊥BC于点C,若∠A=40°,则∠DCB的度数为50°.【分析】根据平行线的性质定理,垂线的定义,三角形的内角和定理即可得到结论.【解答】解:∵AC⊥BC,∴∠ACB=90°,∵CD∥AB,∴∠ACD+∠A=180°,即∠ACB+∠DCB+∠A=180°,∵∠A=40°,∴∠DCB=180°﹣∠ACB﹣∠A=180°﹣90°﹣40°=50°.故答案为:50.【点评】本题考查了三角形的内角和,平行线的性质,垂线的定义,熟练掌握平行线的性质定理,三角形的内角和定理是解题的关键.19.一个正五边形和一个正六边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠1+∠2=132°.【分析】利用正多边形的性质求出∠AOE、∠BOF、∠2,即可解决问题.【解答】解:如图:由题意:∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∴∠2=180°﹣72°﹣60°=48°,∴∠1=360°﹣108°﹣48°﹣120°=84°,∴∠1+∠2=84°+48°=132°,故答案为:132.【点评】本题考查正多边形与圆,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.一个多边形的内角和与外角和之和为2520°,则这个多边形的边数为14.【分析】依据多边形的内角和公式列方程求解即可.【解答】解:设这个多边形的边数为n.根据题意得:(n﹣2)×180°+360°=2520°.解得:n=14.故这个多边形的边数为14.故答案为:14.【点评】本题主要考查的是多边形的内角和与外角和,依据题意列出方程是解题的关键.21.一个多边形的内角和是它外角和的2倍,则它的边数是6.【分析】根据多边形的内角和公式(n﹣2)•180°以及外角和定理列出方程,然后求解即可.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.【点评】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°.22.从一个多边形的一个顶点出发一共有7条对角线,则这个多边形的边数为10.【分析】根据从多边形的一个顶点可以作对角线的条数公式(n﹣3)求出边数即可得解.【解答】解:∵多边形从一个顶点出发可引出7条对角线,∴n﹣3=7,解得n=10.故答案为:10.【点评】本题考查了一个顶点出发的对角线条数,牢记公式是解题的关键.23.如图,在△ABC中,∠A=60°,若剪去∠A得到四边形BCDE,则∠1+∠2=240°.【分析】利用∠1、∠2是△ADE的外角,利用外角性质,可得∠1=∠ADE+∠A,∠2=∠AED+∠A,利用等式性质可求∠1+∠2的值.【解答】解:∵∠1、∠2是△ADE的外角,∴∠1=∠ADE+∠A,∠2=∠AED+∠A,∴∠1+∠2=∠ADE+∠A+∠AED+∠A,又∵∠ADE+∠A+∠AED=180°,∴∠1+∠2=180°+60°=240°.故答案为:240.【点评】本题考查了了三角形内角和定理和三角形外角的性质,注意掌握三角形三个内角的和等于180°,三角形的外角等于与它不相邻的两个内角之和.24.如图,六边形ABCDEF的各角都相等,若m∥n,则∠1+∠2=180°.【分析】根据六边形ABCDEF的各角都相等,可得六边形ABCDEF的对边平行;延长DC,交直线n于点G,再根据平行线的性质解答即可.【解答】解:延长DC,交直线n于点G,∵六边形ABCDEF的各角都相等,∴AF∥DC,∴∠2=∠3,又∵m∥n,∴∠3+∠4=180°,∵∠4=∠1,∴∠1+∠2=180°,故答案为:180.【点评】本题考查了多边形的内角与外角以及平行线的判定与性质,得出AF∥DC是本题的关键.三.解答题(共6小题)25.如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.【分析】(1)根据平行四边形的性质得到AO=BO,BO=CO,AB∥CD,AD∥BC,根据三角形中位线的性质得到∴MO∥BC,NO∥CD,根据平行四边形的判定可证得结论;(2)由勾股定理求得AB=,根据直角三角形斜边的中线等于斜边的一半得到OM =AM=,进而可求得结论.【解答】(1)根据平行四边形的性质得到AO=OC,BO=OD,AB∥CD,AD∥BC,由三角形的中位线的性质得到MO∥BC,NO∥CD,∴MO∥AN,NO∥AM,∴四边形AMON是平行四边形;(2)解:∵AC=6,BD=4,∴AO=3,BO=2,∵∠AOB=90°,∴AB===,∴OM=AM=MB=,∴NO=AN=,四边形AMON的周长=AM+OM+AN+NO=2.【点评】本题主要考查了平行四边形的性质和判定,三角形中位线的性质,直角三角形斜边的中线的性质,勾股定理,根据直角三角形斜边的中线等于斜边的一半得到OM=AM=是解决问题的关键.26.如图,已知▱ABCD中,对角线AC、BD相交于点O.点E、F在对角线BD上,且EB =FD.求证:四边形AECF是平行四边形.【分析】证明四边形AECF的对角线互相平分,即可得出四边形AECF是平行四边形.【解答】证明:∵平行四边形ABCD,∴AO=CO,BO=DO,∵BE=DF,∴BO﹣BE=DO﹣DF,∴EO=FO,∴四边形AECF是平行四边形.【点评】此题主要考查了平行四边形的判定和性质:平行四边形的对角线互相平分;对角线互相平分的四边形是平行四边形.27.如图,在四边形ABCD中,对角线AC、BD相交于点O,OA=OC,AB∥CD.(1)求证:四边形ABCD是平行四边形;(2)若BE平分∠ABC,交AD于E,BC﹣AB=2,求DE长.(3)若∠AOB=2∠ADB时,则平行四边形ABCD为矩形.【分析】(1)运用ASA证明△ABO≌△CDO得AB=CD,根据“一组对边平行且相等的四边形是平行四边形”可证得结论;(2)根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度;(3)由∠AOB=2∠ADB可得∠OAD=∠ADO,由平行四边形的性质可得AC=BD,从而可得结论.【解答】解:(1)∵AB∥CD,∴∠BAO=∠DCO,在△ABO和△DCO中,,∴△ABO≌△DCO(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD是平行四边形;(2)∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴DE=AD﹣AE=BC﹣AB,∵BC﹣AB=2,∴DE=2;(3)∵∠AOB是△ADO的外角,∴∠AOB=∠OAD+∠ODA,∵∠AOB=2∠ADB,∠OAD=∠ODA,∴AO=DO,∵四边形ABCD是平行四边形,∴AO=CO,DO=BO,∴AC=BD,∴四边形ABCD是矩形.故答案为:矩.【点评】本题考查了平行四边形的判定与性质,矩形的判定以及等腰三角形的判定与性质,解题的关键是灵活运用所学知识解决问题.28.如图,已知BE∥DF,∠ADF=∠CBE,AD=BC.求证:四边形DEBF是平行四边形.【分析】根据平行线的性质可得∠BEF=∠DFE,利用AAS证明△BEF≌△DFE,可得BE=DF,利用一组对边平行且相等可证明结论.【解答】证明:∵BE∥DF,∴∠BEF=∠DFE,又∵∠ADF=∠CBE,AD=BC,∴△BEC≌△DF A(AAS),∴BE=DF,∴四边形BFDE是平行四边形.【点评】本题主要考查平行四边形的判定,掌握平行四边形的判定定理是解题的关键.29.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠C =∠D.(1)求证:四边形BCED是平行四边形;(2)已知DE=3,连接BN,若BN平分∠DBC,求CN的长.【分析】(1)根据两组对边分别平行的四边形是平行四边形即可证明;(2)根据平行四边形的性质和角平分线定义可以证明CN=CB=DE.【解答】解:(1)证明:∵∠A=∠F,∴DF∥AC,∴∠C=∠FEC,又∵∠C=∠D,∴∠FEC=∠D,∴DB∥EC,∴四边形BCED是平行四边形;(2)∵BN平分∠DBC,∴∠DBN=∠CBN,∵BD∥EC,∴∠DBN=∠BNC,∴∠CBN=∠BNC,∴CN=BC,又∵BC=DE=3,∴CN=3.【点评】本题考查了平行四边形的判定与性质,解决本题的关键是掌握平行四边形的判定与性质.30.如图,平行四边形ABCD的对角线AC、BD相交于点O、E、F是AC上的两点,且BF ∥DE.(1)求证:△BFO≌△DEO;(2)求证:四边形BFDE是平行四边形.【分析】(1)根据四边形ABCD是平行四边形,可得OB=OD,根据BF∥DE,可得∠OFB=∠OED,进而可以证明△BFO≌△DEO;(2)结合(1)根据对角线互相平分的四边形是平行四边形即可证明四边形BFDE是平行四边形.【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴OB=OD,∵BF∥DE,∴∠OFB=∠OED,在△BFO和△DEO中,,∴△BFO≌△DEO(AAS);(2)证明:∵△BFO≌△DEO,∴OE=OF,又OB=OD,∴四边形BFDE是平行四边形.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质,解决本题的关键是熟练运用平行四边形的判定与性质、全等三角形的判定与性质.第21 页共21 页。
新北师大版八年级下册数学第六章平行四边形练习题
新北师大版八年级下册数学第六章平行四边形练习题一、填空题1、在ABCD中,若∠B-∠A=60°,则∠D=________.2、平行四边形的长边是短边的2倍,一条对角线与短边垂直,•则这个平行四边形的各角是__________.3、如果一个平行四边形的一边长是8,一条对角线长为6,那么它的另一条对角线的长x的取值范围是________.4、已知△ABC中,AB:BC:CA=3:2:4且AB=9cm,D、E、F分别是AB、BC、AC的中点,则△DEF的周长是________.5、已知△ABC中,D、E分别是AB、AC的中点,F为BC上一点,EF=BC,∠EFC=35°,•则∠EDF=________.6、如图所示,ABCD中,BE⊥CD,BF⊥AD,垂足分别为E、F,∠EBF=60°AF=3,CE=4.5,则∠C= ,AB= ,BC= .|7、如图所示,在ABCD中,E,F分别是对角线BD上的两点,且BE=DF,要证明四边形AECF是平行四边形,最简单的方法是根据来证明.8、将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为______.9、已知:四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,需要增加条件 .(只需填上一个你认为正确的即可).10、已知等腰三角形的两条中位线长分别为3和5,则此等腰三角形的周长为 .11、□ABCD中,对角线AC、BD相交于点O,E、F分别是OB、OD的中点,四边形AECF是_______.12、如图,DE∥BC,AE=EC,延长DE到F,使EF=DE,连结AF、FC、CD,则图中四边形ADCF是______.13、顺次连结四边形各边中点所得到的四边形是___________.二、选择题¥14、已知:四边形ABCD中,AD∥BC,分别添加下列条件之一:①AB∥CD;② AB=CD, ③AD=BC,④∠A=∠C,⑤∠B=∠D,能使四边形ABCD成为平行四边形的条件的个数是()A.4B.3C.2D.115、把两个全等的非等腰三角形拼成平行四边形,可拼成的不同平行四边形的个数为()A.1B.2C.3D.416、在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下六个说法中,正确的说法有()(1)如果再加上条件“AD∥BC”,那么四边形ABCD一定是平行四边形;(2)如果再加上条件“AB=CD”,那么四边形ABCD一定是平行四边形;(3)如果再加上条件“∠DAB=∠DCB”那么四边形ABCD一定是平行四边形;…(4)如果再加上“BC=AD”,那么四边形ABCD一定是平行四边形;(5)如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;(6)如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形. A.3个 B.4个 C.5个 D.6个17、如图所示,D、E、F为△ABC的三边中点,则图中平行四边形有()A.1个 B2个 C 3个 D.4个18、D、E、F为△ABC的三边中点,L、M、N分别是△DEF三边的中点,若△ABC的周长为20,则△LMN的周长是()A.15B.12C.10D.519、下列条件中不能判定四边形ABCD为平行四边形的是()A.AB=CD,AD=BCB.AB∥CD,AB=CDC.AB=CD ,AD∥BCD. AB∥CD,AD∥BC1{20、以长为3cm、4cm、6cm的三条线段中的两条为边,另一条为对角线画平行四边形,可以画出不同形状的平行四边形().A.1个 B.2个 C.3个D.4个三、解答题21、已知:如图□ABCD中,DM=BN,BE=DF,求证:四边形MENF是平行四边形.22、已知:如图,△ABD、△BCE、△ACF都是等边三角形,求证:四边形ADEF•是平行四边形.}23、如图,已知E为平行四边形ABCD中DC边的延长线上一点,且CE=DC,连结AE,分别交BC、BD于点F、G,连接AC交BD于O,连结OF.求证:AB=2OF.、24、如图,△ABC中,AD是∠BAC的平分线,CE⊥AD于E,M为BC的中点,AB=•14cm,•AC=10cm,求ME的长.25、已知△ABC中,AD⊥BC于D,E、F、G分别是AB、BD、AC的中点,EG=EF,AD+EF=9cm,求△ABC面积.、26、已知:在四边形ABCD中,AB∥CD,AB⊥AD,∠AEB=∠CED.F为BC的中点.•求证:AF=DF=(BF+CE).·27、如图,在ABCD中,E、F是对角线AC的两个三等分点,•求证:四边形BFDE是平行四边形.28.已知五边形ABCDE中,AC∥ED,交BE于点P,AD∥BC,•交BE于点Q,BE∥CD,求证:△BCP≌△QDE.、29、如图,在□ABCD中,点E是AD的中点,BE的延长线与CD的延长线相交于点F(1)求证:△ABE≌△DFE;(2)试连结BD、AF,判断四边形ABDF的形状,并证明你的结论.,第29题图30、如图所示,某城市部分街道示意图,AF∥BC,EC⊥BC,BA∥DE,BD∥AE ,EF=FC,甲、乙两人同时从B站乘车到F站,甲乘1路车,路线是B→A→E→F,乙乘2路,路线是B→D→C →F ,假设两车速度相同,途中耽误时间相同,那么谁先到达F站,请说明理由.)31、如图所示,已知AD与BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.(1)求证:CD∥AB; (2)求证:△BDE≌△ACE;(3)若O为AB中点,求证:OF=BE.(、32、已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.33、如图所示,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由.34、如图所示,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?)?35、如图所示,平行四边形ABCD的对角线AC、BD相交于点O,E、F是直线AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.#36、已知:如图所示,在ABCD中,E、F分别为AB、CD的中点,求证四边形AECF是平行四边形.?37、如图所示,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF 为平行四边形.38、如图,是平行四边形的对角线上的点,.请你猜想:与有怎样的位置关系和数量关系?并对你的猜想加以证明:。
北师大版八年级下册知识点组合卷及答案《第6章 平行四边形》
14.如图,在四边形 ABCD 中,E 是 BC 上一点,AE 交 BD 于点 O,AD=BD,∠ADB=∠EDC,DE=DC. (1)求证:△ADE≌△BDC; (2)若∠AEB=36°,求∠EDC; (3)若 OB=OE,求证:四边形 ABCD 是平行四边形.
北师大版八年级下册知识点组合卷及答案《第 6 章 平行四边形》第 2 页 共 6 页
北师大版八年级下册知识点组合卷及答案《第 6 章 平行四边形》第 6 页 共 6 页
知识点组合卷:第 6 章 平行四边形参考答案
知识点 1 平行四边形的性质 1.D 2.B 3.B 4.D 5. 25°.6.(9,4).7.12. 8.(1)证明:∵AE、BF 分别平分∠DAB 和∠ABC,∴∠EAB= ∠DAB,∠ABF= ∠ABC,
∵四边形 ABCD 是平行四边形∴∠DAB+∠ABC=180°,∴∠EAB+∠ABF= ×180°=90°,∴AE⊥BF. (2)DF=CE. 证明:∵AE 平分∠DAB∴∠EAB=∠EAD,∵DC∥AB,∴∠EAD=∠EAD,∴AD=DE, 同理:FC=BC,∵四边形 ABCD 是平行四边形,∴AD=BC,∴DE=FC,∴DF=CE. 9.(1)证明:∵四边形 ABCD 是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF, ∵E 是▱ ABCD 的边 CD 的中点,∴DE=CE,
的周长是 18 厘米,则 EF= 厘米. 18.如图,D 是△ABC 内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H 分别是 AB、AC、CD、BD 的中点,
则四边形 EFGH 的周长是 . 19.如图,四边形 ABCD 中,∠A=90°,AB=3 ,AD=3,点 M,N 分别为线段 BC,AB 上的动点(含端点,但
北师大版八年级下册数学平行四边形的性质专项训练(原创)
(2)求证: ;
(3)当 为何值时,以 为顶点的四边形为平行四边形?
参考答案
1.A
【解析】
【分析】
由在平行四边形ABCD中,∠A=118°,可求得∠B的度数,又由CE⊥AB,即可求得答案.
【详解】
∵四边形ABCD是平行四边形,
∴∠B=180°−∠A=180°−118°=62°,
三、解答题
14.已知:如图,在▱ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F.求证:BF=DE
15.如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则CE=.
16.如图,E是□ABCD的边CD的中点,延长AE交BC的延长线于点F.
15.(1)见解析;(2)3.
【解析】
试题分析:根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.
试题解析:(1)如图所示:E点即为所求.
2.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于( )
A.20B.18C.16D.14
3.如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E是CD的中点,则△ODE与△AOB的面积比为( )
A.1:2B.1:3C.1:4D.1:5
4.在□ABCD中,延长AB到E,使BE=AB,连接DE交BC于F,则下列结论不一定成立的是( )
【详解】
北师大版八年级下册数学第六章 平行四边形含答案(典型题)
北师大版八年级下册数学第六章平行四边形含答案一、单选题(共15题,共计45分)1、下列结论:①一个三角形的3个外角的度数之比为2:3:4,则与之相应的3个内角度数之比为5:3:1;②在△ABC中,若∠A=2∠B=3∠C,则△ABC为直角三角形;③一个多边形的边数每增加一条,这个多边形的内角和就增加180°;④一个五边形最多有3个内角是直角;⑤两条直线被第三条直线所截,同位角的角平分线互相平行.其中正确结论有()A.2个B.3个C.4个D.5个2、四边形的四个内角( )A.可以都是锐角B.可以都是钝角C.可以都是直角D.必须有两个锐角3、如图,∠2+∠3+∠4=320°,则∠1=()A.60度B.40度C.50度D.75度4、已知一个多边形的内角和是外角和的3倍,则这个多边形的边数是A.8B.6C.5D.35、如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.180°B.360°C.540°D.720°6、下列结论中,错误结论有();①三角形三条高(或高的延长线)的交点不在三角形的内部,就在三角形的外部;②一个多边形的边数每增加一条,这个多边形的内角和就增加360º;③两条平行直线被第三条直线所截,同旁内角的角平分线互相平行;④三角形的一个外角等于任意两个内角的和;⑤在中,若,则为直角三角形;⑥顺次延长三角形的三边,所得的三角形三个外角中锐角最多有一个A.6个B.5个C.4个D.3个7、一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形8、若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°9、一个多边形的每个内角都等于135°,则这个多边形的边数为()A.5B.6C.7D.810、将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720°D.900°11、如图,从△ABC纸片中剪去△CDE,得到四边形ABDE,若∠C=60°.则∠1+∠2等于()A.240°B.120°C.230°D.200°12、如图,M是正六边形ABCDEF的边CD延长线上的一点,则∠ADM的度数是()A.135°B.120°C.108°D.60°13、把一个多边形割去一个角后,得到的多边形内角和为1440°,请问这个多边形原来的边数为()A.9B.10C.11D.以上都有可能14、把边长相等的正五边形ABGHI和正六边形ABCDEF的AB边重合,按照如图的方式叠合在一起,连接EB,交HI于点K,则∠BKI的大小为()A.90°B.84°C.72°D.88°15、正十边形的每一个内角的度数为( ).A.120ºB.135ºC.140ºD.144º二、填空题(共10题,共计30分)16、六边形是中国传统形状,象征六合、六顺之意.比如首饰盒、古建的窗户、古井的口、佛塔等等.化学上一些分子结构、物理学上的螺母,也采用六边形.正六边形,从中心向各个顶点连线是等边三角形,从工程角度,是最稳定和对称的.正六边形外角和为________.17、如果一个多边形的内角和是外角和的3倍,则这个多边形边数为________.18、已知:在▱ABCD中,∠A+∠C=160°,则∠B的度数是________.19、一机器人以0.3m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为________s.20、如图,平行四边形ABCD中,顶点A的坐标是(0,2),AD//x轴,BC交y 轴于点E,点E的纵坐标是﹣4,平行四边形ABCD的面积是24,反比例函数y=的图象经过点B和D.则k=________.21、如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是________.22、有一程序,如果机器人在平地上按如图所示的步骤行走,那么机器人回到A点处行走的路程是________.23、一个多边形的内角和为540°,并且每一个内角都相等,则这个多边形的每一个内角是________°.24、在四边形ABCD中,AB=CD,M、N分别是AD和BC的中点,延长BA和CD分别交射线NM于点E和点F,若tan∠F=, FC=FN,EN=,则EF=________25、如图,平行四边形ABCD中,∠BAD的平分线交BC边于点M,而MD平分∠AMC,若∠MDC=45°,则∠BAD=________,∠ABC=________三、解答题(共5题,共计25分)26、如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.若⊙O的半径为1,求图中阴影部分的面积(结果保留π).27、已知,如图,在△ABC中,BD是∠ABC的平分线,DE∥BC交AB于E,EF∥AC交BC于F,请判断BE与FC的数量关系,并说明理由。
北师大版八下数学《平行四边形的性质》典型例题(含答案)
《平行四边形的性质》典型例题例1 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度?例2 已知:如图,ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,AOB ∆的周长比BOC ∆的周长多8cm ,求这个平行四边形各边的长.例3 已知:如图,在ABCD 中,BD AC 、交于点O ,过O 点作EF 交AB 、CD 于E 、F ,那么OE 、OF 是否相等,说明理由.例4 已知:如图,点E 在矩形ABCD 的边BC 上,且DE AF AD DE ⊥=,,垂足为F 。
求证:.DC AF =例5 O 是ABCD 对角线的交点,OBC ∆的周长为59,38=BD ,24=AC ,则=AD ________,若OBC ∆与OAB ∆的周长之差为15,则=AB ______,ABCD 的周长=______.例6 已知:如图,ABCD 的周长是cm 36,由钝角顶点D 向AB ,BC 引两条高DE ,DF ,且cm DE 34=,cm DF 35=. 求这个平行四边形的面积.例7 如图,已知:ABCD 中,BC AE ⊥于E ,CD AF ⊥于F ,若︒=∠60EAF ,cm BE 2=,cm FD 3=.求:AB 、BC 的长和ABCD 的面积.参考答案例1 分析 根据平行四边形的对角相等,邻角互补可以求出四个内角的度数.解 设平行四边形的一个内角的度数为x ,则它的邻角的度数为3x ,根据题意,得1803=+x x ,解得45=x ,∴.1353=x∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°.例2 分析 由平行四边形对边相等,可知=+BC AB 平行四边形周长的一半=30cm ,又由AOB ∆的周长比BOC ∆的周长多8cm ,可知8=-BC AB cm ,由此两式,可求得各边的长.解 ∵四边形ABCD 为平行四边形,∴.,,OO AO BC AD CD AB ===60=+++BC AD CD AB Θ,∴.30=+BC AB8)(=++-++OC BC OB OB AB AO ,∴.8=-BC AB∴.11,19====AD BC CD AB答:这个平行四边形各边长分别为19cm ,11cm ,19cm ,11cm .说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.例3 分析 观察图形,DOF BOE CFO AEO CDO ABO ∆≅∆∆≅∆∆≅∆,,,从而可说明.OF OE =证明 在ABCD 中,BD AC 、Θ交于O ,∴.OC AO =CD AB //Θ,∴CFO AEO FCO EAO ∠=∠∠=∠,,∴)(AAS CFO AEO ∆≅∆,∴.OF OE =例4 分析 观察图形,AFD ∆与DCE ∆都是直角三角形,且锐角DEC ADF ∠=∠,斜边DE AD =,因此这两个直角三角形全等。
北师大版数学八年级下册期末复习(六) 平行四边形
期末复习(六) 平行四边形01 各个击破)命题点1 平行四边形的性质与判定【例1】 (桂林中考)如图,在▱ABCD 中,E ,F 分别是AB ,CD 的中点. (1)求证:四边形EBFD 为平行四边形;(2)对角线AC 分别与DE ,BF 交于点M ,N ,求证:△ABN≌△CDM.【思路点拨】 (1)先根据平行四边形的性质得AB∥CD,AB =CD ,再根据一组对边平行且相等的四边形是平行四边形即可得证;(2)因为AB =CD ,∠CAB =∠ACD 已知,则只需要再证明一组对应角相等即可. 【解答】 证明:(1)∵四边形ABCD 是平行四边形, ∴ABCD.∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12DC. ∴BEDF.∴四边形EBFD 为平行四边形. (2)∵四边形ABCD 是平行四边形, ∴ABCD.∴∠CAB =∠ACD.∵四边形EBFD 为平行四边形, ∴∠ABN =∠CDM. 又∵AB=CD ,∴△ABN ≌△CDM(ASA).【方法归纳】 1.判定平行四边形的基本思路:(1)若已知一组对边平行,可以证这一组对边相等或另一组对边平行;(2)若已知一组对边相等,可以证这一组对边平行或另一组对边相等;(3)若已知一组对角相等,可以证另一组对角相等;(4)若已知条件与对角线有关,可以证明对角线互相平分. 2.利用平行四边形的性质进行计算的方法:(1)利用平行四边形的性质,通过角度或线段之间的等量转化进行相应的计算;(2)找出所求线段或角所在的三角形,若三角形为直角三角形,通过直角三角形的性质或勾股定理求解;若三角形为任意三角形,可通过三角形全等的性质进行求解.1.如图,在四边形ABCD 中,已知AB =CD ,AD =BC ,AC ,BD 相交于点O ,若AC =6,则AO 的长度等于3.2.如图,已知D 是△ABC 的边AB 上一点,CE ∥AB ,DE 交AC 于点O ,且OA =OC ,猜想线段CD 与线段AE 的大小关系和位置关系,并说明理由.解:线段CD 与线段AE 的大小关系和位置关系是相等且平行. 理由:∵CE∥AB, ∴∠DAO =∠ECO.∵OA =OC ,∠AOD =∠COE, ∴△ADO ≌△CEO.∴AD =CE. 又∵AD∥CE,∴四边形ADCE 是平行四边形. ∴CD ∥AE ,CD =AE.3.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F. (1)求证:△ADE≌△FCE;(2)若∠BAF=90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD.∴∠DAE =∠F,∠D =∠ECF. ∵E 是▱ABCD 的边CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAF=∠F,∠D =∠ECF,DE =CE ,∴△ADE ≌△FCE(AAS). (2)∵△ADE≌△FCE, ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF=90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.命题点2 三角形的中位线【例2】 (邵阳中考)如图,等边三角形ABC 的边长是2,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使CF =12BC ,连接CD 和EF. (1)求证:DE =CF ; (2)求EF 的长.【思路点拨】 (1)欲证DE =CF ,由三角形中位线定理可知DE =12BC ,而条件中有CF =12BC 故易证得;(2)欲求EF 的长,可证四边形DEFC 是平行四边形,因此只需求出CD 的长.在等边三角形ABC 中,点D 是AB 的中点,因此运用勾股定理可求出,问题获解.【解答】 (1)证明:∵D,E 分别为AB ,AC 的中点,∴DE =12BC ,且DE∥BC. ∵点F 在BC 的延长线上,且CF =12BC ,∴DE ∥CF ,且DE =CF.(2)由(1)知DE∥CF,且DE =CF , ∴四边形DEFC 为平行四边形.∵△ABC 是等边三角形,边长是2,点D 是AB 的中点,AB =BC =2, ∴CD ⊥AB ,∠BDC =90°,BD =12AB =1. ∴CD =BC 2-BD 2=22-12= 3. ∵四边形DEFC 为平行四边形, ∴EF =CD = 3.【方法归纳】 若题中有中点通常考虑到三角形的中线和中位线,而在等边三角形(等腰三角形)中,中线同时也是高和角平分线.4.如图,CD 是△ABC 的中线,点E ,F 分别是AC ,DC 的中点,EF =2,则BD =4.5.如图所示,在四边形ABCD 中,AB =CD ,M ,N ,P 分别是AD ,BC ,BD 的中点,∠ABD =20°,∠BDC =70°,求∠PMN 的度数.解:∵M,N ,P 分别是AD ,BC ,BD 的中点,∴MP ,PN 分别是△ABD,△BCD 的中位线, ∴MP12AB, PN12CD.∴∠MPD =∠ABD=20°,∠BPN =∠BDC=70°. ∴∠DPN =110°.∴∠MPN =∠MPD+∠DPN=20°+110°=130°. 又∵AB=CD ,∴MP =PN. ∴∠PMN =∠PNM. ∴∠PMN =25°.命题点3 多边形的内角和与外角和【例3】(泰安中考)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3等于(B)A.90°B.180°C.210°D.270°【思路点拨】由AB∥CD,推导∠B+∠C=180°,故∠B,∠C两角的外角和是180°,根据多边形外角和等于360°可计算∠1+∠2+∠3度数.【方法归纳】对于求多边形的外角和或部分外角的和的问题,都要根据任意多边形的外角和是360°以及邻角和其补角的互补关系这两个知识点,来解决问题.6.正多边形的一个内角的度数恰好等于它的外角的度数的3倍,则这个多边形的边数为8.7.如图,在六边形ABCDEF中,AB⊥AF,BC⊥DC,∠E+∠F=260°,求两外角和α+β的度数.解:∵AB⊥AF,BC⊥DC,∴∠A=∠C=90°.又∵∠E+∠F=260°,∴∠EDC+∠ABC=(6-2)×180°-90°×2-260°=280°.∴β+α=(180°-∠EDC)+(180°-∠ABC)=360°-(∠EDC+∠ABC)=80°.故两外角和α+β的度数为80°.02整合集训一、选择题(每小题3分,共24分)1.已知平行四边形ABCD的周长为32 cm,AB=4 cm,则BC的长为(B)A.4 cm B.12 cmD.16 cm D.24 cm2.(西宁中考)如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4 C.6 D.83.(临沂中考)将一个n边形变成n+1边形,内角和将(C)A.减少180°B.增加90°C.增加180°D.增加360°4.(乐山中考)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为(D)A.5B.7C.10D.145.某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是(C)A.4和7 B.5和7C.5和8 D.4和176.(葫芦岛中考)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P 的度数是(A)A.60°B.65°C.55°D.50°7.如图,在▱ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为(B)A.2 3 B.43C.4 D.88.已知在正方形的网格中,每个小方格的边长都相等,A,B两点在小方格的顶点上,位置如图所示,则以A,B 为顶点的网格平行四边形的个数为(D)A.6个B.8个C.10个D.12个二、填空题(每小题4分,共24分)9.(陕西中考)一个正多边形的外角为45°,则这个正多边形的边数是8.10.如图所示,在▱ABCD中,E,F分别为AD,BC边上的一点,若添加一个条件AE=FC或∠ABE=∠CDF,则四边形EBFD为平行四边形.11.(娄底中考)如图,▱ABCD的对角线AC,BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO 的周长是9.12.(泉州中考)如图,顺次连接四边形ABCD四边的中点E,F,G,H,则四边形EFGH的形状一定是平行四边形.13.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,CF=3,则AB 的长为3.14.在某张三角形纸片上,取其一边的中点,沿着过这点的两条中位线分别剪去两个三角形,剩下的部分就是如图所示的四边形;经测量这个四边形的相邻两边长为10 cm ,6 cm ,一条对角线的长为8 cm ;则原三角形纸片的周长是48_cm 或(32+813)cm .三、解答题(共52分)15.(6分)一个多边形的内角和与外角和的差为1 260度,求它的边数. 解:设多边形的边数是n ,则(n -2)·180-360=1 260.解得n =11. 答:它的边数为11.16.(8分)(陕西中考)如图,在▱ABCD 中,连接BD ,在BD 的延长线上取一点E ,在DB 的延长线上取一点F ,使BF =DE ,连接AF ,CE ,求证:AF∥CE.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC. ∴∠ADB =∠CBD. ∵BF =DE ,∴BF +BD =DE +BD , 即DF =BE.在△ADF 和△CBE 中,⎩⎨⎧AD =CB ,∠ADF =∠CBE,DF =BE ,∴△ADF ≌△CBE(SAS). ∴∠AFD =∠CEB. ∴AF ∥CE.17.(8分)(永州中考)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3. (1)求证:BN =DN ; (2)求△ABC 的周长.解:(1)证明:∵AN 平分∠BAC, ∴∠BAN =∠DAN. ∵BN ⊥AN ,∴∠ANB =∠AND=90°. 又∵AN=AN ,∴△ABN ≌△ADN(ASA).∴BN=DN. (2)∵△ABN≌△ADN, ∴AD =AB =10,DN =NB. 又∵点M 是BC 中点,∴MN 是△BDC 的中位线. ∴CD =2MN =6.∴△ABC 的周长为AB +AC +BC =AB +AD +CD +BC =10+10+6+15=41.18.(10分)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,连接DE 并延长到点F ,使EF =ED ,连接CF.(1)四边形DBCF 是平行四边形吗?说明理由;(2)DE 与BC 有什么样的位置关系和数量关系?说明理由. 解:(1)四边形DBCF 是平行四边形. 理由:∵E 是AC 的中点, ∴AE =CE.又∵EF=ED ,∠CEF =∠AED, ∴△AED ≌△CEF(SAS). ∴AD =CF ,∠A =∠ECF. ∴AD ∥CF ,即CF∥BD.又∵D 为AB 的中点,∴BD =AD.∴BD=CF. ∴四边形DBCF 是平行四边形. (2)DE∥BC,DE =12BC. 理由:∵EF=ED ,∴DE =12DF. 又∵四边形DBCF 是平行四边形, ∴DF =BC ,DF ∥BC. ∴DE ∥BC ,DE =12BC.19.(10分)(怀化中考)已知:如图,在△ABC 中,DE ,DF 是△ABC 的中位线,连接EF ,AD ,其交点为点O.求证: (1)△CDE≌△DBF; (2)OA =OD.证明:(1)∵DE,DF 是△ABC 的中位线, ∴DF =CE ,DF ∥CE ,DB =DC. ∵DF ∥CE , ∴∠C =∠BDF.在△CDE 和△DBF 中,⎩⎨⎧DC =BD ,∠C =∠BDF,CE =DF ,∴△CDE ≌△DBF(SAS).(2)∵DE,DF 是△ABC 的中位线, ∴DF =AE ,DF ∥AE.∴四边形DEAF 是平行四边形. ∵EF 与AD 交于点O , ∴OA =OD.20.(10分)(扬州中考改编)如图,AC 为长方形ABCD 的对角线,将边AB 沿AE 折叠,使点B 落在AC 上的点M 处,将边CD 沿CF 折叠,使点D 落在AC 上的点N 处. (1)求证:四边形AECF 是平行四边形;(2)若AB =6,AC =10,求四边形AECF 的面积.解:(1)证明:由折叠的性质可知:AM =AB ,CN =CD ,∠FNC =∠D=90°,∠AME =∠B=90°, ∴∠ANF =90°,∠CME =90°. ∵四边形ABCD 为长方形, ∴AB =CD ,AD ∥BC.∴AM =CN ,∠FAN =∠ECM. ∴AM -MN =CN -MN , 即AN =CM.在△ANF 和△CME 中,∠FAN =∠ECM,AN =CM ,∠ANF =∠CME, ∴△ANF ≌△CME(ASA). ∴AF =CE. 又∵AF∥CE,∴四边形AECF 是平行四边形. (2)∵AB=6,AC =10,∴BC =8.设CE =x ,则EM =8-x ,CM =10-6=4. 在Rt △CEM 中,(8-x)2+42=x 2, 解得x =5.∴S 四边形AECF =EC·AB=5×6=30.。
(完整版)平行四边形的性质及判定典型例题
平行四边形的性质及判定 (典型例题)1.平行四边形及其性质例1如图,O 是卜二・ABCD 对角线的交点.△ OBC 的周长为59, BD=38 , AC=24,贝卩AD= __ 若厶OBC 与厶OAB 的周长之差为 15,贝y AB=QABCD 的周长= _____ .AC ,可得BC ,再由平行四边形对边相等知 AD=BC ,由平行四 边形的对角线互相平分,可知△ OBC 与厶OAB 的周长之差就为BC 与AB 之差,可得AB ,进而可得」ABCD 的周长.解 EBCD 中0A 二= OB = OD = |E D (平行四边形的对角线互相平分)•••△ OBC 的周长=0B + 0C +EC分析: 根据平行四边形对角线互相平先 所OC =1=19 + 12 + BC=59••• BC=28—ABCD 中,•BC=AD(平行四边形对边相等)•AD=28△ OBC的周长-△ OAB的周长=(OB + OC + BC)-(OB + OA+AB)=BC-AB=15•AB=13•••二ABCD的周长=AB + BC + CD + AD=2(AB + BC)=2(13 + 28)=82说明:本题条件中的△ OBC占厶OAB的周长之差为15”,用符号语言表示出来后,便容易发现其实质,即BC与AB之差是15 .例2判断题(1) 两条对边平行的四边形叫做平行四边形. ()(2) 平行四边形的两角相等.()(3) 平行四边形的两条对角线相等.()(4) 平行四边形的两条对角线互相平分. ()(5) 两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.()(6) 平行四边形的邻角互补.()分析:根据平行四边形的定义和性质判断.解:(1) 错两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD // BC .显然四边形ABCD 不是平行四边形.(2) 错平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.(3) 错平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).(4) 对根据平行四边形的性质定理 3 可判断是正确的.(5) 错线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.(6) 对由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.例3 .如图1,在二ABCD中,E、F是AC上的两点.且AE=CF .求证:ED // BF .分析:欲址DE // BF,只需/ DEC二/ AFB,转证=/ ABF CDF, 因卜二,ABCD,则有AB丄CD,从而有/ BAC= / CDA .再由AF=CF 得AF=CE .满足了三角形全等的条件.证明:v AE=CFAE+EF二CF+EF••• AF=CE在二ABCD中AB // CD(平行四边形的对边平行)• / BAC= / DCA(两直线平行内错角相等)AB=CD(平行四边形的对边也相等)•••△ ABF刍乂 CDE(SAS)•••/ AFB= / DCE• ED // BF(内错角相等两直线平行)说明:解决平行四边形问题的基本思想是化为三角形问题不处理.例4如图已知在△ ABC中DE // BC // FG,若BD=AF、求证; DE + FG=BC .分析1:要证DE + FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH // AB(或DM // AC),得至U DE=BH、只需证HC=FG ,因AF=BD=EH , / CEH=/ A. / AGF = Z C所以△ AFG幻/ EHC .此方法称为截长法.分析2:过C点作CK // AB交DE的延长线于K,只需证FG=EK , 转证△ AFG CKE .过E作EH // AB交于Hv DE // BC•••四边形DBHE是平行四边形(平行四边形定义)••• DB=EHDE=BH(平行四边形对边也相等)又BD=AF• AF=EHv BC // FGAGF= / C(两直线平行同位角相等)同理 / A= / CEH• △ AFG EHC(AAS)••• FG=HC••• BC二BH+HC二DE二FG.过C作CK // AB交DE的延长线于K.v DE // BC•四边形DBCK是平行四边形(平行四边形定义)•CK=BD DK=BC(平行四边形对边相等)又BD=AF•AF=CKv CK // AB• / A= / ECK(两直线平行内错角相等)v BC // FG•••/ AGF二/ AED(两直线平行同位角相等)又/ CEK二/ AED(对顶角相等)•••/ AGF= / CEK•••△ AFG S' CKE(AAS)FG=EKDE+EK=BC• DE+FG=BC例 5 如图I—ABCD 中,/ ABC=3 /A,点 E 在CD 上,CE=1 , EF丄CD交CB延长线于F,若AD=1,求BF的长.u --- ---------- r分析:根据平行四边形对角相等,邻角互补,可得/ C= / F=45°进而由勾股定理求出CF ,再根据平行四边形对边相等,得BF的长.解:在二ABCD 中,AD // BC•••/ A +/ ABC=180 (两直线平行同旁内角互补)vZ ABC=3 / A•••/ A=45 ,Z ABC=135•••Z C= Z A=45 (平行四边形的对角相等)•EF 丄CD•Z F=45°(直角三角形两锐角互余)•EF=CE=1在RtAOEF中,CF = JCE之》EF金=(勾股定理)v AD=BC=1二BF = CF”EC = Q[例6如图1,‘ ■ ABCD中,对角线AC长为10cm , Z CAB=30 , AB长为6cm,求一ABCD的面积.解:过点C作CH丄AB,交AB的延长线于点H .(图2)vZ CAB=30-■.CH 二丄= 1 X10=52 2••• S—ABCD = AB-CH = 6X5=30(cm2)答:二ABCD的面积为30cm2 .说明:由于二=底>高,题设中已知AB的长,须求出与底AB 相应的高,由于本题条件的制约,不便于求出过点D的高,故选择过点C 作高.例7如图,E、F分别在’・ABCD的边CD、BC上,且EF //求证:S△ ACE二S △ ABF分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.证明:将EF向两边延长分别交AD、AB的延长线于G、H.二ABCD DE // AB•••/ DEG= / BHF(两直线平行同位角相等)/ GDE= / DAB(同上)AD // BC•••/ DAB= / FBH(同上):丄 GDE= / FBHv DE // BH , DB // EH•四边形BHED是平行四边形V DE二BH(平行四边形对边相等)GDE 刍乂 FBH(ASA)••• S△ GDE=S △ FBH(全等三角形面积相等).GE=FH(全等三角形对应边相等).S△ ACE=S △ AFH(等底同高的三角形面积相等).S △ ADE = S △ ABF说明:平行四边形的面积等于它的底和高的积.即S二二a・ha .a 可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.例8如图,在二ABCD中,BE平分/ B交CD于点E, DF 平分/ D交AB于点F,求证BF=DE .分析EF二DE (目标)十BEDP 为口DF"d叫西3 ]1=Z 3 r Z 1=Z 2f t"S亠彩姑皤彩B口ABCD证明:T四边形ABCD是平行四边形二DE // FB,/ ABC= / ADC(平行四边形的对边也平行对角相等)•••/仁/ 3(两直线平行内错角相等)而Z]=^Z ADC,Z2=|ZABC•••/ 2= / 3• DF // BE(同位角相等两条直线平行)•四边形BEDF为平行四边形(平行四边形定义)• BF=DE .(平行四边形的对边相等)说明:此例也可通过△ ADF CBE来证明,但不如上面的方法简捷.例9如图,CD的Rt△ ABC斜边AB上的高,AE平分/ BAC 交CD于E, EF // AB,交BC于点F,求证CE=BF .分析作EG // BC,交AB于G,易得EG=BF .再由基本图, 可得EG=EC ,从而得出结论.过E点作EG // BC交AB于G点.v EF // AB••• EG=BFv CD为Rt△ ABC斜边AB上的高•/ BAC + / B=90°.Z BAC + / ACD = 90°•/ B= Z ACD•Z ACD=Z EGAv AE 平分Z BAC•Z 1= Z 2又AE=AE•△ AGE ACE(AAS)•CE=EG•CE=BF .说明:(1)在上述证法中,“平移”起着把条件集中的作用.(2)本题也可以设法平移AE .(连F点作FG // AE,交AB于G)例10如图,已知I —ABCD的周长为32cm , AB : BC=5 : 3, AE 丄BC 于E, AF 丄DC 于F,/ EAF=2 / C,求AE 和AF 的长.分析:从化简条件开始①由二ABCD的周长及两邻边的比,不难得到平行四边形的边长.口虹CD 的周长=321 fAB=10AB : BC-5 : 3 p |BC=6②/ EAF=2 / C告诉我们什么?AF i FC1 ZFAE^ZC=180°] oAE 1 EAF-2 Z C j討c=6°这样,立即可以看ADF、△ AEB都是有一个锐角为30°的直角三角形.于是有= = = 3再由勾股定理求出解:——ABCD的周长为32cm即AB+BC+CD+DA=32v AB=CD BC=DA(平行四边形的对边相等)/.AB + BC = - X32 = 16 2又AB : BC=5 : 35+3BC= —X3 = 65+3/ EAF+ / AFC+ / C+ / CEA=360 (四边形内角和等于360°v AE 丄BC / AEC=90AF 丄DC / AFC=90•••/ EAF+ / C=180/ EAF=2 / CT AB // CD(平行四边形的对边平行)•••/ ABE二/ C=60 (两直线平行同位角相等)同理/ ADF=60SRiAABE 中,ZBAE = 30* BE = |AB = 5£—■Al = ja =E^ = 5^3 (cm)在RtAADF中,ZDAF = 30° DF= ^AP = |B C=3■f-j d—iAF - 7A D3 -I>F a = M Ccm)说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.2 .平行四边形的判定例1填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则四边形AEFD是—,理由是(2)如图2, D、E分别在△ ABC的边AB、AC上,DE=EF , AE=EC , DE // BC贝卩四边形ADCF是__,理由是__ ,四边形BCFD 是—,理由是—分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC , DE=EF,由判定定理3可得四边形ADCF是平行四边形,从而得AD // CF即BD // CF,再由条件,可得四边形BCFD是平行四边形.解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.说明:平行四边形的定义(两组对边分别平行的四边形叫做平行 四边形,既是平行四边形的一个性质,又是平行四边形的一个判定 方法.例 2 女口图,四边形 ABCD 中,AB=CD . / ADB 二 /CBD=90 .求 证:四边形ABCD 是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法, 这三类也是按边、角和对角线分类,具体的五个方法如下表:CIID 从对角钱看一(5 )对角线互相平分 因此必须根据已知条件与图形结构特点,选择判定方法.证法一:v AB=CD . Z ADB= / CBD=90 , BD=DB .••• Rt △ ABD 坐 Rt △ CDB .「( 1)两组对边分别平存C I )从边看 —(2)两组对边分别相等_(3)-组对边平行且相尊 (1)从边看 (II )从角看 (4)两组对角分别相等 的四边形绘平行四边形•••/ ABD= / CDB,/ A= / C.•/ ABD+ / CBD= / CDB+ / ADB即 / ABC= / CDA .•四边形ABCD 是平行四边形(两组对角分别相等的四边形是平行四边形).证法二:vZ ADB= / CBD=90 , AB=CD、BD=DB .•Rt△ ABD 坐Rt△ CDB .•Z ABD=Z CDB.•AB //CD.(内错角相等两直线平行)•四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).证法三:由证法一知,Rt △ ABD幻Rt △ CDB .••• DA=BC又T AB二CD•四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比较,选择最简捷的证题思路.本题三种证法中,证法二与证法三比较简捷,本题还可用定义来证明.例3如图,‘「ABCD中,E、G、F、H分别是四条边上的点, 且AE=CF , BG=DH,求证:EF与GH互相平分.分析:只须证明EGFH为平行四边形.证明:连结EG 、GF、FH 、HE.T四边形ABCD是平行四边形•••/ A= / C, AD=CB .T BG=DH•AH=CG又AE=CF•△ AEH CFG(SAS)•HE=GF同理可得EG=FH•四边形EGFH 是平行四边形(两组对边分别相等的四边形是平行四边形)•EF 与GH 互相平分(平行四边形的对角线互相平分).说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题基本方法.例4如图,二ABCD中,AE丄BD于E, CF丄BD于F.求证:四边形AECF是平行四边形.分析:由平行四边形的性质,可得△ ABE CDF••• AE= CF进而可得四边形AECF是平行四边形.证明:口ABCD中,AB屯CD(平行四边形的对边平行,对边相等)•/ ABD= / CDB(两直线平行内错角相等)AE 丄BD、CF 丄BD•AE // CF / AEB= / CFD=90•△ ABE CDF(AAS)•AE=CF•四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)说明:平行四边形的定义,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例5如图,二ABCD中,E、F分别在AD、BC上,且AE=CF , AF、BE相交于G, CE、DF相交于H求证:EF与GH互相平分分析:欲证EF与GH互相平分,只需四边形EGFH为平行四边形,利用已知条件可知四边形AFCE、四边形EBFD都为平行四边形,所以可得AF // EC , BE // DF,从而四边形GEHF为平行四边形.证明:」ABCD中,AD丄BC(平行四边形对边平行且相等)v AE=CF /. DE=BFT四边形AFCE、四边形BFDE是平行四边形(一组对边平行且相等的四边形是平形四边形)二AF // CE , BE // DF(平行四边形对边平行)•••四边形EGFH是平行四边形(两组对边分别平行的四边形是平行四边形)••• GH与EF互相平分(平行四边形的对角线互相平分)说明:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的.往往更多的是求证线段的相等、角的相等、直线的平行、线段的互相平分等等.要灵活地根据题中已知条件,以及定义、定理等.先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明.例6如图,已知—ABCD中,EF在BD上,且BE=DF ,点G、H 在AD、CB上,且有AG=CH , GH与BD交于点0,求证EG丄HF分析:证EF 、GH 互相平分二GEHF 为平行四边形.证明:连 BG 、DH 、GF 、EHT ABCD 为平行四边形.••• AD 垒 BC又 AG=HC• DG 丄 BH•四边形BGDH 为平行四边形(一组对边平行且相等的四边形是平行四边形)• HO = GO , DO=BO (平行四边形的对角线互相平分) 又 BE=DF•OE=OF•四边形GEHF为平行四边形(对角线互相平分的四边形是平行四边形)••• EG丄HF.(平行四边形的对边平行相等)说明:由于条件BE=DF涉及到对角线BD,所以考虑用对角线互相平分来证明例7如图,——ABCD中,AE丄BD于E, CF丄BD于F, G、H分别为AD、BC的中点,求证:EF和GH互相平分.分析:连结EH , HF、FG、GE,只须证明EHFG为平行四边证法一:连结EH , HF、FG、GEv AE丄BD , G是AD中点.-■.GE=C J D =^AD2/ GED二 / GDE同理可得HF =HB =^EC,Z HFE =Z HEFV四边形ABCD是平行四边形••• AD 岂BC,/ GDE= / HBF••• GE=HF,/ GED= / HFB•GE // HF•四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形)•EF和GH互相平分.(平行四边形对角线互相平分)证法二:容易证明厶ABE CDF• BE=DFT四边形ABCD为平行四边形••• AD 些BCT G、H分别为AD、BC的中点•DG 丄BH•四边形BHDG为平行四边形(一组对边平行且相等的四边形是平行四边形)•BD和GH互相平分(平行四边形对角线互相平分)•OG=OH , OB=OD又BE=DF•OE=OF•EF和GH互相平分.例8如图,已知线段a、b与/ a,求作:—ABCD ,使/ ABC二/ a, AB=a , BC=b ,分析:已知两边与夹角,可先确定△ ABC,根据判定定理2(两组对边分别相等的四边形是平行四边形),再确定点D,从而平行四边形可作出.作法:(1) 作/ EBF二/ a,⑵在BE、BF上分别截取BA=a , BC=b ,⑶分别为A、C为圆心,b, a为半径作弧,两弧交于点D, 二四边形ABCD为所求.*证明:由作法可知AB=CD = aBC=AD=b二四边形ABCD 为平行四边形(两组对边分别相等的四边形为平 行四边形)且/ ABC 二 / a, AB=a , BC=b- ABCD 为所求说明:常见的平行四边形作图有以下几种:(1) 已知两邻边(AB 、BC)和夹角(/ B).(2) 已知一边(BC)和两条对角线(AC , BD).(3) 已知一边(BC)和这条边与两条对角线的夹角 (如/ DBC ,Z ACB).⑷已知一边(CD)和一个内角(/ ABC)以及过这个角的顶点的一条对角线(BD ,且BD > CD)求作平行四边形(如图)完成这些作图的关键点,都在于先作出一个三角形,然后再完成平行四边形的作图,体现了把平行四边形的问题化归为三角形问题的思想方法.。
北师大版数学八年级下册:第六章 平行四边形 专题练习(附答案)
专题1平行四边形中常见的等腰三角形解题模型类型1平行四边形与角平分线结合平行四边形+角平分线→等腰三角形,常见解题模型如下:1.如图,在▱ABCD中,∠DAB的平分线AE交CD于E,AB=6,BC=4,则EC的长为()A.2 B.2.5 C.3 D.3.5第1题图第2题图2.如图,在▱ABCD中,CE平分∠BCD,与AB交于点E,DF平分∠ADC,与AB交于点F.若AD=8,EF =3,则CD的长为()A.8 B.10 C.13 D.163.如图,在▱ABCD中,AB=2,∠ABC的平分线与∠BCD的平分线交于点E.若点E恰好在边AD上,则BE2+CE2的值为.4.如图,在▱ABCD中,BE平分∠ABC,交CD的延长线于点E,作CF⊥BE于点F.(1)求证:BF=EF;(2)若AB=6,DE=3,求▱ABCD的周长.类型2平行四边形中的折叠问题解决平行四边形中的折叠问题,常利用“平行+折叠(角平分线)→等腰三角形”解题,如图:5.如图,在▱ABCD中,将△ABD沿BD折叠,点A落在点E处.若∠ABD=40°,∠CBE=15°,则∠BDE 的度数为.第5题图第6题图6.如图,在▱ABCD中,点E,F分别在边AD,BC上,EF=2,∠DEF=60°.将四边形EFCD沿EF翻折,得到四边形EFC′D′,ED′交BC于点G,则△GEF的周长为.7.如图,将平行四边形纸片ABCD沿EF折叠,使点C与点A重合,点D落在点G处.求证:(1)AE=AF;(2)△ABE≌△AGF.专题2平行四边形的性质与判定1.如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.2.如图,在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.3.如图,在▱ABCD中,分别以AD,BC为边向内作等边△ADE和等边△BCF,连接BE,DF.求证:四边形BEDF是平行四边形.4.如图,点E是▱ABCD的边CD的中点,连接AE并延长,交BC的延长线于点F.(1)若AD的长为2,求CF的长;(2)若∠BAF=90°,试添加一个条件,并写出∠F的度数.5.如图,在▱ABCD中,点E,F分别在BC,AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE,CF,则四边形AECF是(填“是”或“不是”)平行四边形.6.如图,在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.7.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=4时,连接DF,求线段DF的长.参考答案:专题1平行四边形中常见的等腰三角形解题模型1.如图,在▱ABCD中,∠DAB的平分线AE交CD于E,AB=6,BC=4,则EC的长为(A)A.2 B.2.5 C.3 D.3.5第1题图第2题图2.如图,在▱ABCD中,CE平分∠BCD,与AB交于点E,DF平分∠ADC,与AB交于点F.若AD=8,EF =3,则CD的长为(C)A.8 B.10 C.13 D.163.如图,在▱ABCD中,AB=2,∠ABC的平分线与∠BCD的平分线交于点E.若点E恰好在边AD上,则BE2+CE2的值为16.4.如图,在▱ABCD中,BE平分∠ABC,交CD的延长线于点E,作CF⊥BE于点F.(1)求证:BF=EF;(2)若AB=6,DE=3,求▱ABCD的周长.解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CE.∴∠E=∠ABE.∵BE平分∠ABC,∴∠ABE=∠CBE.∴∠E=∠CBE.∴CB=CE.∵CF⊥BE,∴BF=EF.(2)∵四边形ABCD是平行四边形,∴AB=CD=6.∵DE=3,∴BC=CE=CD+DE=9.∴▱ABCD的周长为2(AB+BC)=30.5.如图,在▱ABCD中,将△ABD沿BD折叠,点A落在点E处.若∠ABD=40°,∠CBE=15°,则∠BDE 的度数为25°.第5题图第6题图6.如图,在▱ABCD中,点E,F分别在边AD,BC上,EF=2,∠DEF=60°.将四边形EFCD沿EF翻折,得到四边形EFC′D′,ED′交BC于点G,则△GEF的周长为6.7.如图,将平行四边形纸片ABCD沿EF折叠,使点C与点A重合,点D落在点G处.求证:(1)AE=AF;(2)△ABE≌△AGF.证明:(1)由折叠的性质可得∠CEF=∠AEF.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠CEF=∠EFA.∴∠AEF=∠EFA.∴AE=AF.(2)由折叠的性质,得AG=CD,∠EAG=∠C,∠G=∠D.∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∠BAD=∠C.∴AB=AG,∠B=∠G,∠BAD=∠EAG.∴∠BAD-∠EAF=∠EAG-∠EAF,即∠BAE=∠GAF.∴△ABE≌△AGF(ASA).专题2 平行四边形的性质与判定1.如图,在四边形ABCD 中,AD ∥BC ,∠B =∠C.E 是边BC 上一点,且DE =DC.求证:AD =BE.证明:∵DE =DC , ∴∠DEC =∠C. ∵∠B =∠C , ∴∠B =∠DEC. ∴AB ∥DE. ∵AD ∥BC ,∴四边形ABED 是平行四边形. ∴AD =BE.2.如图,在▱ABCD 中,点O 是对角线AC ,BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF =12BC ,求证:四边形OCFE 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上, ∴OE ∥CF.∴四边形OCFE 是平行四边形.3.如图,在▱ABCD 中,分别以AD ,BC 为边向内作等边△ADE 和等边△BCF ,连接BE ,DF.求证:四边形BEDF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°. ∴BF =DE ,CF =AE.∵∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE , ∴∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE (SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形.4.如图,点E 是▱ABCD 的边CD 的中点,连接AE 并延长,交BC 的延长线于点F. (1)若AD 的长为2,求CF 的长;(2)若∠BAF =90°,试添加一个条件,并写出∠F 的度数.解:(1)∵四边形ABCD 是平行四边形, ∴AD ∥CF.∴∠DAE =∠CFE ,∠ADE =∠FCE. ∵点E 是CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAE =∠CFE ,∠ADE =∠FCE ,DE =CE ,∴△ADE ≌△FCE (AAS ). ∴CF =AD =2. (2)∵∠BAF =90°,添加一个条件:当∠B =60°时,∠F =90°-60°=30°(答案不唯一).5.如图,在▱ABCD 中,点E ,F 分别在BC ,AD 上,AC 与EF 相交于点O ,且AO =CO. (1)求证:△AOF ≌△COE ;(2)连接AE ,CF ,则四边形AECF 是(填“是”或“不是”)平行四边形.证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC. ∴∠OAF =∠OCE. 在△AOF 和△COE 中,⎩⎨⎧∠OAF =∠OCE ,AO =CO ,∠AOF =∠COE ,∴△AOF ≌△COE (ASA ).6.如图,在▱ABCD 中,E ,F 分别是AB ,DC 上的点,且AE =CF ,连接DE ,BF ,AF. (1)求证:四边形DEBF 是平行四边形;(2)若AF 平分∠DAB ,AE =3,DE =4,BE =5,求AF 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴∠EAD =∠C ,AB =CD ,AD =CB.在△DAE 和△BCF 中,⎩⎨⎧AD =CB ,∠EAD =∠C ,AE =CF ,∴△DAE ≌△BCF (SAS ). ∴DE =BF.∵AB =CD ,AE =CF ,∴AB -AE =CD -CF ,即BE =DF. ∴四边形DEBF 是平行四边形. (2)∵AB ∥CD , ∴∠DFA =∠BAF. ∵AF 平分∠DAB ,∴∠DAF=∠BAF.∴∠DAF=∠DFA.∴AD=DF.∵四边形DEBF是平行四边形,∴DF=BE=5,BF=DE=4.∴AD=5.∵AE=3,DE=4,∴AE2+DE2=AD2.∴∠AED=90°.∵DE∥BF,∴∠ABF=∠AED=90°.∵AE=3,BE=5,∴AB=AE+BE=8.∴AF=AB2+BF2=82+42=4 5.7.如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=4时,连接DF,求线段DF的长.解:(1)证明:∵△ABC是等腰三角形,BC为底,∴∠ABC=∠C,∵EG∥BC,DE∥AC,∴∠AEG=∠ABC=∠C,四边形CDEG是平行四边形.∴∠DEG=∠C.∵BE=BF,∴∠BFE=∠BEF=∠AEG=∠ABC=∠C=∠DEG.∴BF∥DE.∴四边形BDEF为平行四边形.(2)∵四边形BDEF是平行四边形,∴EF=BD=4.∵∠C=45°,∴∠ABC=∠BFE=∠BEF=45°.∴△BDE,△BEF是等腰直角三角形.∴BE2+BF2=EF2.∴BF=BE=2 2.作FM⊥BD于M,则△BFM是等腰直角三角形,∴FM=BM=2.∴DM=6.在Rt△DFM中,由勾股定理,得DF=22+62=210.第11页共11页。
北师大版数学八年级下册第六章平行四边形典型题型总结
平行四边形1.平行四边形的性质题型一 利用平行四边形的性质求角度或线段的长如图,在▱ABCD 中,E 为AD 的中点,CE 的延长线交BA 的延长线于点F ,若BC=2AB ,∠FBC=70°,求∠EBC 的度数.如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F ,若∠BAF=90°,BC=5,EF=3,求CD 的长.题型二 利用平行四边形的性质证线段相等如图,在▱ABCD 中,平行于对角线AC 的直线分别交DA,DC 的延长线于点M,N ,交BA ,BC 于点P,Q.求证:MP=QN.题型三 与平行四边形有关的探究性问题如图,已知平行四边形ABCD 中,∠ABC ,∠BCD 的平分线交于点E ,且点E 刚好落在边AD 上,分别延长BE ,CD 交于点F.(1)CE 与BF 之间有什么位置关系?证明你的猜想.(2)AB 与AD 之间有什么数量关系?证明你的猜想.2.平行四边形的判定题型一 平行四边形判定方法的灵活选用如图,在四边形ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,AE=CF,BF=DE,四边形ABCD 是平行四边形吗?题型二 平行四边形的性质与判定的综合运用如图,▱ABCD 中,点E,F 在AC 上,且AF=CE ,点G ,H 分别在AB ,CD 上,且AG=CH,AC 与GH 相较于点O ,求证EG ∥FH.A B C D E题型三利用平行四边形的判定和性质解决动点问题如图,在四边形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P从点A向点D以1cm/s的速度运动,到点D即停止.点Q从点C向点B以2cm/s的速度运动,到点B即停止.直线PQ将四边形ABCD截成两个四边形,分别为四边形ABQP和四边形PQCD,已知P,Q两点同时出发,则几秒后所截得的两个四边形种,有一个为平行四边形吗?题型四平行线之间的距离如图,已知直线m∥n,点A,B为直线n上两点,点C,P为直线m上两点.(1)请写出图中面积相等的三角形:__________________________;(2)如果点A,B,C为三个定点,点P在m上移动,那么无论点P移动到什么位置,总有_________与△ABC的面积相等,理由是_________________________________ .题型五设计方案问题如图,工人师傅需将一等腰直角三角形的铁板通过切割,焊接成一个含有45°角的平行四边形,请你帮他设计一种方案,并说明理由.3.构造平行四边形解六类题类型一证角相等如图,E是BC中点,点A在DE上,且AB=CD.求证∠BAE=∠CDE.类型二证线段相等如图,线段AB,CD相交于点O,AC∥DB,AO=BO,E,F分别为OC,OD的中点,连接AE,BF.求证:AF=BE.类型三证线段互相平分如图,点O是平行四边形ABCD的对角线AC与BD的交点,四边形OCDE是平行四边形.求证:OE与AD互相平分类型四说明线段互相平分如图,在▱ABCD中,E,F分别为AC,CA延长线上的点,且CE=AF,请探讨线段BF与DE的位置及大小关系.类型五证线段的和、差、倍、分关系如图,在四边形BCED中,DE∥BC,延长边BD,CE交于点A,在边BD上截取BF=AD,过点F作FG∥BC 交EC于点G.求证:DE+FG=BC.类型六解决面积问题如图,四边形ABCD中,AD∥BC,E是AB的中点,EF⊥CD于点F,CD=6,EF=5,求四边形ABCD的面积.4.三角形的中位线题型一利用三角形的中位线定理解决折叠问题如图,D,E分别是△ABC两边AB,AC的中点,将△ABC沿线段DE所在直线折叠,使点A落在点F处,若∠B=55°,则∠BDF=_____________.题型二构造三角形中位线解决问题如图,在△ABC中,点D是AB的中点,CE平分∠ACB,AE⊥CE于点E.求证:DE∥BC.题型三利用三角形的中位线定理解决实际问题如图,A,B两点被池塘隔开,在AB外取一点C,连接AC,BC,分别取它们的中点M,N.若测得MN=15m,则A,B两点间的距离为_______________.题型四三角形中位线定理与其他知识的综合应用如图,点E是▱ABCD中DC边的延长线上一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,判断AB与OF的位置关系和数量关系,并证明你的结论.题型五运用三角形中位线定理解决规律性问题如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点…按这样的规律下去,P n M n的长为_________________(n为正整数).5.多边形的内角和与外角和题型一综合多边形的内角和与外角和求边数一个正多边形的一个内角比相邻的外角大36°,求这个正多边形的边数.题型二应用多边形内角和定理求不规则图形的内角和如图,∠A+∠B+∠BCE+∠ADF+∠E+∠F=_____________ 度.题型三多边形的裁剪问题一个多边形截去一个角后,所得多边形的内角和为2520°,则原多边形的边数是____________.题型四求多边形中某个角的度数如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是________.题型五与多边形内角和或外角和有关的实际应用题有个五边形的小公园(如图),图中∠1=95°,则王老师沿公园边由点A经B,C,D,E,一直到F的行程中共转过了________度.。
北师大版数学八年级下册61 平行四边形及其性质 知识讲解及例题演练
平行四边形及其性质【学习目标】1.理解平行四边形的概念,掌握平行四边形的性质定理和判定定理.2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.3. 了解平行四边形的不稳定性及其实际应用.4. 掌握两个推论:“夹在两条平行线间的平行线段相等”。
“夹在两条平行线间的垂线段相等” .【要点梳理】知识点一、平行四边形的定义平行四边形:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“A BCD”,读作“平行四边形ABCD”.要点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.知识点二、平行四边形的性质定理平行四边形的对角相等;平行四边形的对边相等;平行四边形的对角线互相平分;要点诠释:(1)平行四边形的性质定理中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系. (2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.知识点三、平行线的性质定理1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.2.平行线性质定理及其推论夹在两条平行线间的平行线段相等.平行线性质定理的推论:夹在两条平行线间的垂线段相等.【典型例题】类型一、平行四边形的性质1、如图,平行四边形ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC•的周长大8cm,求AB,BC的长.【答案与解析】解:∵四边形ABCD是平行四边形.∴ AB=CD,AD=BC,AO=CO,∵□ABCD的周长是60.∴2AB+2BC=60,即AB+BC=30,①又∵△ AOB的周长比△BOC的周长大8.即(AO+OB+AB)-(BO+OC+BC)=AB-BC=8,②由①②有解得∴AB,BC的长分别是19cm和11cm.【总结升华】根据平行四边形对角线互相平分,利用方程的思想解题.举一反三:【变式】如图:在平行四边形ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=4.求AE:EF:FB的值.【答案】解:∵ ABCD是平行四边形,所以AB∥CD,∠ECD=∠CEB∵CE为∠DCB的角平分线,∴∠ECD=∠ECB,∴∠ECB=∠CEB,∴BC=BE∵BC=4,所以BE=4∵AB=6,F为AB的中点,所以BF=3∴EF=BE-BF=1,AE=AB-BE=2∴AE:EF:FB=2:1:3.2、平行四边形ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD 于点M,如果△CDM的周长是40cm,求平行四边形ABCD的周长.【思路点拨】由四边形ABCD是平行四边形,即可得AB=CD,AD=BC,OA=OC,又由OM⊥AC,根据垂直平分线的性质,即可得AM=CM,又由△CDM的周长是40cm,即可求得平行四边形ABCD的周长.【答案与解析】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∵OM⊥AC,∴AM=CM,∵△CDM的周长是40,即:DM+CM+CD=DM+AM+CD=AD+CD=40,∴平行四边形ABCD的周长为:2(AD+CD)=2×40=80(cm).∴平行四边形ABCD的周长为80cm.【总结升华】此题考查了平行四边形的性质与线段垂直平分线的性质.解题的关键是注意数形结合思想的应用.举一反三:【变式】如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别相交于点E 、F ,连接EC .(1)求证:OE=OF ; (2)若EF ⊥AC ,△BEC 的周长是10,求平行四边形ABCD 的周长.【答案】(1)证明:∵四边形ABCD 是平行四边形,∴OD=OB ,DC ∥AB ,∴∠FDO=∠EBO ,在△FDO 和△EBO 中∵OD OB FOD EO FDO EB B O ⎧⎪=⎨⎪∠=∠∠∠⎩=∴△FDO ≌△EBO (AAS ),∴OE=OF ;(2)解:∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC ,OA=OC ,∵EF ⊥AC ,∴AE=CE ,∵△BEC 的周长是10∴BC+BE+CE=BC+AB=10,∴平行四边形ABCD 的周长=2(BC+AB )=20.3、如图,口ABCD 的周长为52cm ,AB 边的垂直平分线经过点D ,垂足为E ,口ABCD 的周长比△ABD 的周长多10cm .∠BDE=35°.(1)求∠C 的度数;(2)求AB 和AD 的长.【思路点拨】(1)由于DE 是AB 边的垂直平分线,得到∠ADE=∠BDE=35°,于是推出∠A═55°,根据平行四边形的性质得到∠C=55°;(2)由DE 是AB 边的垂直平分线,得到DA=DB ,根据平行四边形的性质得到AD=BC ,AB=DC ,由于口ABCD 的周长为52,于是得到AB+AD=26,根据口ABCD 的周长比△ABD 的周长多10,得到BD=16,AD=16(cm ),于是求出结论.【答案与解析】解:(1)∵DE 是AB 边的垂直平分线,∴∠ADE=∠BDE=35°,∴∠A=90°﹣∠ADE=55°,∵口ABCD ,∴∠C=∠A=55°;(2)∵DE 是AB 边的垂直平分线,∴DA=DB ,∵四边形ABCD 是平行四边形,∴AD=BC,AB=DC,∵口ABCD的周长为52,∴AB+AD=26,∵口ABCD的周长比△ABD的周长多10,∴52﹣(AB+AD+BD)=10,∴BD=16,∴AD=16(cm),∴AB=26﹣16=10(cm).【总结升华】本题主要考查了线段垂直平分线的性质,平行四边形的性质,能综合应用这两个性质是解题的关键.4、如图1,P为Rt△ABC所在平面内任一点(不在直线AC上),∠ACB=90°,M为AB的中点.操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.(1)请你猜想与线段DE有关的三个结论,并证明你的猜想;(2)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图2操作,并写出与线段DE 有关的结论(直接写答案).【思路点拨】(1)连接BE,证△PMA≌△EMB,推出PA=BE,∠MPA=∠MEB,推出PA∥BE.根据平行四边形的性质得出PA∥DC,PA=DC,推出BE∥DC,BE=DC,得出平行四边形CDEB即可;(2)连接BE,证△PMA≌△EMB,推出PA=BE,∠MPA=∠MEB,推出PA∥BE.根据平行四边形的性质得出PA∥DC,PA=DC,推出BE∥DC,BE=DC,得出平行四边形CDEB 即可.【答案与解析】(1)DE∥BC,DE=BC,DE⊥AC,证明:连接BE,∵M为AB中点,∴AM=MB,在△PMA和△EMB中∵===PM MEPMA EMB AM BM∠∠⎧⎪⎨⎪⎩,∴△PMA≌△EMB(SAS),∴PA=BE,∠MPA=∠MEB,∴PA∥BE.∵四边形PADC是平行四边形,∴PA∥DC,PA=DC,∴BE∥DC,BE=DC,∴四边形DEBC是平行四边形,∴DE∥BC,DE=BC.∵∠ACB=90°,∴BC⊥AC,∴DE⊥AC.(2)解:DE∥BC,DE=BC.【总结升华】本题考查了平行四边形性质和判定,全等三角形的性质和判定,平行线的性质和判定的综合运用.举一反三:【变式】已知:如图,在平行四边形ABCD中,DE⊥AB于点E,DF⊥BC于点F,∠DAB 的平分线交DE于点M,交DF于点N,交DC于点P.(1)求证:∠ADE=∠CDF;(2)如果∠B=120°,求证:△DMN是等边三角形.【答案】证明:(1)∵四边形ABCD是平行四边形,∴∠DAB=∠C,DC∥AB,∵DE⊥AB于点E,DF⊥BC于点F,∴∠ADE=90°-∠DAB,∠CDF=90°-∠C,∴∠ADE=∠CDF.(2)证明:∵∠DAB的平分线交DE于点M,交DF于点N,交DC于点P,∴∠DAP=∠BAP,∵DC∥AB,∴∠DPA=∠BAP,∴∠DAP=∠DPA,∴DA=DP,∵∠ADE=∠CDF,∠DAP=∠DPA,DA=DP,∴△DAM≌△DPN,∴DM=DN,∵∠B=120°,∴∠MDN=360°-∠DEB-∠EFB-∠B=360°-90°-90°-120°=60°,∴△DMN是等边三角形.类型二、平行线性质定理及其推论5、如图1,已知直线m∥n,点A、B在直线n上,点C、P在直线m上;(1)写出图1中面积相等的各对三角形:__________________;(2)如图①,A、B、C为三个顶点,点P在直线m上移动到任一位置时,总有__________与△ABC的面积相等;(3)如图②,一个五边形ABCDE,你能否过点E作一条直线交BC(或延长线)于点M,使四边形ABME的面积等于五边形ABCDE的面积.【思路点拨】(1)找出图①中同底等高的三角形,这些三角形的面积相等;(2)因为两平行线间的距离是相等的,所以点C、P到直线n间的距离相等,也就是说△ABC 与△PAB的公共边AB上的高相等,所以总有△PAB与△ABC的面积相等;(3)只要作一个三角形CEM与三角形CED的面积相等即可.【答案与解析】解:(1)∵m∥n,∴点C、P到直线n间的距离与点A、B到直线m间的距离相等;又∵同底等高的三角形的面积相等,∴图①中符合条件的三角形有:△CAB与△PAB、△BCP与△APC,△ACO与△BOP;(2)∵m∥n,∴点C、P到直线n间的距离是相等的,∴△ABC与△PAB的公共边AB上的高相等,∴总有△PAB与△ABC的面积相等;(3)连接EC,过点D作直线DM∥EC交BC延长线于点M,连接EM,线段EM所在的直线即为所求的直线.【总结升华】本题主要考查了三角形的面积及平行线的性质,利用平行线间的距离相等得到同底等高的三角形是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《平行四边形的性质》典型例题
例1 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度?
例2 已知:如图,ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,AOB ∆的周长比BOC ∆的周长多8cm ,求这个平行四边形各边的长.
例3 已知:如图,在ABCD 中,BD AC 、交于点O ,
过O 点作EF 交AB 、CD 于E 、F ,那么OE 、OF 是否相等,说明理由.
例4 已知:如图,点E 在矩形ABCD 的边BC 上,且DE AF AD DE ⊥=,,垂足为F 。
求证:.DC AF =
例5 O 是ABCD 对角线的交点,OBC ∆的周长为59,38=BD ,24=AC ,则=AD ________,若OBC ∆与OAB ∆的周长之差为15,则=AB ______,ABCD 的周长=______.
例6 已知:如图,ABCD 的周长是cm 36,由钝角顶点D 向AB ,BC 引两条高DE ,DF ,且cm DE 34=,cm DF 35=. 求这个平行四边形的面积.
例7 如图,已知:ABCD 中,BC AE ⊥于E ,CD AF ⊥于F ,
若︒=∠60EAF ,cm BE 2=,cm FD 3=.
求:AB 、BC 的长和ABCD 的面积.
参考答案
例1 分析 根据平行四边形的对角相等,邻角互补可以求出四个内角的度数.
解 设平行四边形的一个内角的度数为x ,则它的邻角的度数为3x ,根据题意,得1803=+x x ,解得45=x ,∴.1353=x
∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°.
例2 分析 由平行四边形对边相等,可知=+BC AB 平行四边形周长的一半=30cm ,又由AOB ∆的周长比BOC ∆的周长多8cm ,可知8=-BC AB cm ,由此两式,可求得各边的长.
解 ∵四边形ABCD 为平行四边形,∴.,,OO AO BC AD CD AB ===
60=+++BC AD CD AB Θ,∴.30=+BC AB
8)(=++-++OC BC OB OB AB AO ,∴.8=-BC AB
∴.11,19====AD BC CD AB
答:这个平行四边形各边长分别为19cm ,11cm ,19cm ,11cm .
说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.
例3 分析 观察图形,DOF BOE CFO AEO CDO ABO ∆≅∆∆≅∆∆≅∆,,,从而可说明.OF OE =
证明 在ABCD 中,BD AC 、Θ交于O ,∴.OC AO =
CD AB //Θ,∴CFO AEO FCO EAO ∠=∠∠=∠,,
∴)(AAS CFO AEO ∆≅∆,∴.OF OE =
例4 分析 观察图形,AFD ∆与DCE ∆都是直角三角形,且锐角DEC ADF ∠=∠,斜边DE AD =,因此这两个直角三角形全等。
在这个图形中,若连结AE ,则ABE ∆与AFE ∆全等,因此可以确定图中许多有用的相等关系。
证明 ∵四边形ABCD 是矩形,∴︒=∠90,//C BC AD ,
∴.DEC ADE ∠=∠DE AF ⊥,∴︒=∠=∠90C AFD ,
又DE AD =,∴DCE AFD ∆≅∆。
∴.DC AF =
例5 解答:ABCD 中,AC OC OA 21==,BD OD OB 2
1==. ∴ OBC ∆的周长BC AC BD BC OC OB ++=++=2121 591219=++=BC
∴ 28=BC .
在ABCD 中,AD BC =. ∴28=AD
OBC ∆的周长-OAB ∆的周长)()(AB OB OA BC OC OB ++-++=
AB BC -=15=
∴ 13=AB
∴ ABCD 的周长82)2813(2)(2=+=+=+++=BC AB AD CD BC AB
说明:本题考查平行四边形的性质,解题关键是将OBC ∆与OAB ∆的周长的差转化为两条线段的差.
例6 解答:设ycm BC xcm AB ==,.
∵ 四边形ABCD 为平行四边形,
∴ BC AD CD AB ==,.
又∵四边形ABCD 的周长为36,∴3622=+y x ①
∵ BC DF AB DE ⊥⊥,,
∴
∴ y x 3534= ②
解由①,②组成的方程组,得8,10==y x .
∴)(34034102cm DE AB =⨯=⋅=. 说明:本题考查平行四边形的性质及面积公式,解题关键是把几何问题转化为方程组的问题.
例7 分析:由已知条件︒=∠60EAF ,在四边形AECF 中,可求出︒=∠120C . 从而可知︒=∠=∠60D B ,所以︒=∠=∠30DAF BAE . 因此,在直角三角形ABE
和直角三角形ADF 中,可分别求出AB 、AD 长,从而也可求出AE 、AF 的长,则容易求出ABCD 的面积.
解答:在四边形AECF 中,
︒=∠=∠90AFC AEC (垂直定义),︒=∠60EAF (已知),
∴ ︒=︒-︒-︒-︒=∠120609090360C . 在ABCD 中,
∵BC AD CD AB //,//,
∴︒=∠+∠180C B ,︒=∠+∠180C D
∴︒=∠=∠60D B
在ABE Rt ∆中,︒=∠60B ,2=BE ,
∴42==BE AB ,
∴4==AB CD
同理,可求出6==BC AD .
在ABE Rt ∆中,根据勾股定理, 32242222=-=-=BE AB AE
∴2)(312326cm AE BC =⋅=⋅=。