八年级数学下册___分式知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 分式
1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A
叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
(0≠C ) 3.分式的通分和约分:关键先是分解因式
4.分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则:分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd ±±±=±=±=
混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。
;a c ac a c a d ad
b d bd b d b
c bc •=÷=•=()n
n n a a b b =A A C B B C
•=•A A C B B C
÷=÷
5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1
=- ()0≠a
6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)
(1)同底数的幂的乘法:m n m n a a a +•=;
(2)幂的乘方:()m n mn a a =;
(3)积的乘方:
()n n n ab a b =; (4)同底数的幂的除法:m n m n a a a -÷=( a ≠0);
(5)商的乘方:()n
n n a a b
b =;(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。 解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤 :
4)顺水逆水问题v v v 顺水水流静水=+、v v v 顺水水流
静水=- 8.科学记数法:把一个数表示成n a 10⨯的形式(其中101<≤a ,n 是整
数)的记数方法叫做科学记数法.
用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n 用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)
一、选择题
1.下列式子是分式的是( )
A .2x
B .x 2
C .πx
D .2y x +
2.下列各式计算正确的是( )
A .11--=b a b a
B .ab b a b 2=
C .()0,≠=a ma na m n
D .a m a n m n ++=
3.下列各分式中,最简分式是( )
A .()()y x y x +-73
B .n m n m +-22
C .2222ab b a b
a +- D .22222y xy x y x +-- 4.化简2293m m
m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m -3
5.若把分式xy y
x +中的x 和y 都扩大2倍,那么分式的值( )
A .扩大2倍
B .不变
C .缩小2倍
D .缩小4倍
6.若分式方程x a x a x +-=+-32
1有增根,则a 的值是( ) A .1 B .0 C .—1 D .—2
7.已知432c b a ==,则c b a +的值是( )
A .54 B. 47 C.1 D.45
8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方
程( )
A .x x -=+306030100
B .306030100-=+x x
C .x x +=-306030100
D .306030100+=-x x
9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。设原计划行军的速度为xkm/h ,,则可列方程( )
A .1%206060++=x x B. 1%206060-+=x x C. 1%2016060++=)(x x D. 1%2016060-+=)(x x
二、填空题
11.计算2323()a b a b --÷= .
12.用科学记数法表示—0.000 000 0314= .
13.计算22142a a a -=-- .
14.方程3470x x =-的解是 .
15.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到
巴尔末公式,从而打开了光谱奥秘的大门。请你尝试用含你n 的式子表示巴尔末公式 .
16.如果记
221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12)表示当x=12时y 的值,即