八年级数学下册___分式知识点总结
分式数学知识点归纳总结
分式数学知识点归纳总结一、分式的定义和基本性质1. 分式是由分子和分母组成的数,分子和分母都是整数,并且分母不为零。
2. 分式可以表示有理数,有理数包括整数和分数。
3. 分式可以看作是代数式的特殊形式,其中分母不为零。
4. 分式的分子和分母可以约分,即分子和分母同时除以一个相同的非零数。
5. 分式可以相加、相减、相乘和相除,也可以化简和合并。
6. 分式的大小比较可以用分式的加减乘除性质进行比较。
二、分式的化简和合并1. 化简分式:化简分式是指对分式的分子和分母进行约分,使分数的值保持不变的基础上,得到最简分数。
2. 合并分式:合并分式是指将两个分式相加或者相减,得到一个最简分式。
三、分式的加减乘除性质1. 分式的加法性质:分式相加时,首先要找到它们的公分母,然后将分子相加,分母保持不变。
2. 分式的减法性质:分式相减时,首先要找到它们的公分母,然后将分子相减,分母保持不变。
3. 分式的乘法性质:分式相乘时,分子相乘,分母相乘。
4. 分式的除法性质:分式相除时,将除数分子分母互换,再将所得的分式作为乘数分式进行运算。
四、分式的大小比较1. 分式的大小比较:分式大小的比较可以用分式的加减乘除性质进行比较。
对于两个分式a/b和c/d来说,若a/b<c/d,则ad<bc;若a/b>c/d,则ad>bc。
2. 分式的大小比较练习:比较分式大小时,可以将分式通分进行比较,也可以将分式转化为小数进行比较。
五、分式方程的解法1. 分式方程的定义:分式方程是含有分式的代数方程。
2. 分式方程的解法:对于分式方程的解法,首先要通过分式的化简和合并,将分式方程化为最简分式方程,然后可以通过分式方程的乘法性质和除法性质进行求解。
六、分式在实际应用中的问题求解1. 分式在应用问题中的运用:分式在实际生活中有着广泛的应用,包括比例、百分数、利率、比率、工程问题等。
2. 分式应用问题求解:在实际应用问题中,我们可以将问题中的条件转化为分式形式,然后通过分式的运算法则进行求解。
八年级下册数学《分式》分式的认识 知识点整理
15.1分式的认识一、本节学习指导这一节是学习本章节的基础,分式是比较繁琐的知识点,它和我们小学学的分数有很大的差别,难度也更大。
分式的有误意义是选择题和填空题的最爱,分式的化简却贯穿了整个初中数学的计算,希望同学们多做练习题,一定要牢牢的掌握这一节的知识。
二、知识要点1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。
2、分式有意义、无意义的条件:①分式有意义的条件:分式的分母不等于0;例:若分式2x/(x-5)有意义,则x 的取值是?分析:根据上面的理论我们可以知道,分式没意义的条件是分母不为零,即此题中x-5≠0即可,那么很容易的出来x≠5。
结论:当x≠5时,分式2x/(x-5)有意义②分式无意义的条件:分式的分母等于0。
3、分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。
注:分式的值是在分式有意义的前提下才可以考虑的,所以使分式A/B为0的条件是A =0,且B≠0。
例:若分式x/(|x|-1)的值为零,则x的取值为?分析:根据上面的理论我们知道,分式的值为零,则分子为零即可。
此题中的分子 x=0,所以当x=0时,分式值为零。
结论:当x=0时,分式x/(|x|-1)值为零。
注意:分式的值为0的条件是:分子等于0,分母不等于0,二者缺一不可。
首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。
4、 分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为 (0≠C ),其中A 、B 、C 是整式注意:①“C 是一个不等于0的整式”是分式基本性质的一个制约条件;②应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;③若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C ;④分式的基本性质是分式进行约分、通分和符号变化的依据。
八年级数学分式知识点
八年级数学分式知识点八年级数学分式知识点概述一、分式的定义分式(Fraction)是指一个表达式,其中包含一个分子(Numerator)和一个分母(Denominator),形式为 a/b,其中 a 是分子,b 是分母,b 不等于零。
二、分式的基本性质1. 等值变换:分式的分子和分母同时乘以或除以一个非零的数或式子,分式的值不变。
2. 约分:通过找出分子和分母的公因数并约去,使分式化为最简分式。
3. 通分:将两个或多个分式,使其具有相同的分母,这样的操作称为通分。
三、分式的运算1. 分式的加减法:- 同分母分式相加减:分母不变,分子相加减。
- 异分母分式相加减:先通分,再按照同分母分式进行加减。
2. 分式的乘法:- 分子乘分子,分母乘分母。
3. 分式的除法:- 除以一个分式等于乘以它的倒数。
4. 分式的混合运算:- 先乘方,再乘除,最后加减。
- 遇到括号,先计算括号内的运算。
四、分式的条件应用1. 分式方程:- 解分式方程时,通常需要去分母转化为整式方程求解。
2. 分式不等式:- 解分式不等式时,需要注意不等号的性质,通常也需要去分母处理。
3. 分式函数:- 分式可以作为函数的表达式,如 y = f(x) = (ax + b) / (cx + d),其中 a, b, c, d 为常数,且cx + d ≠ 0。
五、分式的化简与求值1. 化简:- 通过约分和通分,将复杂的分式化为最简形式。
2. 求值:- 在已知分式中某些字母的值的情况下,可以通过代入法求出分式的数值。
六、分式的实际应用1. 比例问题:- 分式常用于解决比例问题,如速度、时间和距离的关系。
2. 利率问题:- 分式在计算利息、本金和本息和等问题中有广泛应用。
七、分式的图形表示1. 函数图像:- 分式函数的图像可以通过描点法绘制,注意分母不能为零的点。
2. 几何应用:- 分式在计算几何图形的面积、周长等方面也有应用。
八、分式的综合练习1. 练习题:- 通过解决各种分式相关的数学问题,加深对分式知识点的理解和应用。
八年级数学下册知识点总结(全)
八年级数学下册知识点总结(全)八年级数学下册知识点总结一、代数式1. 代数式的概念和基本性质。
2. 一元一次方程的概念、解法和实际应用。
3. 一元一次不等式的概念、解法和实际应用。
4. 一元二次方程的概念、解法和实际应用。
5. 代数式的加减乘除、化简和因式分解。
6. 二元一次方程组的概念、解法和实际应用。
7. 一元二次不等式的概念、解法和实际应用。
8. 质因数分解和最大公因数、最小公倍数的求法。
9. 分式的基本概念和运算方法。
二、几何1. 平面图形的基本性质和分类。
2. 勾股定理及其应用。
3. 三角形的相似性质和判定方法。
4. 三角形的内角和及其计算。
5. 空间图形的基本性质和分类。
6. 直线与平面的位置关系及其应用。
7. 圆的基本性质和相关定理。
8. 空间中直线与平面的交角问题和判定方法。
9. 圆锥曲线(椭圆、双曲线、抛物线)的基本性质。
三、概率统计1. 事件和概率的基本概念。
2. 古典概型和几何概型的概率计算。
3. 条件概率和独立性的概念和计算方法。
4. 排列和组合的概念和应用。
5. 随机变量和概率分布的定义和联系。
6. 统计分布(频数分布、累积频率分布)和直方图、折线图的绘制。
7. 样本统计量(平均数、中位数、众数、标准差)的概念和计算方法。
8. 正态分布的概念和应用。
9. 假设检验的基本概念和方法。
以上就是八年级数学下册的全部知识点总结。
在学习过程中,应该注意掌握基本概念和定理,并能够熟练地运用到实际问题中去。
同时,还应该注重应用能力的培养,多做一些与日常生活和实际问题有关的题目,提高自己的解决问题的能力。
八年级下册数学分式讲解
八年级下册数学分式讲解
分式的基本性质是分式的分子与分母同时乘以或除以同一个非零的数或式子,分式的值不变。
这个性质为分式的约分提供了理论依据。
具体来说,如果一个分式的分子与分母同时乘以或除以同一个数或式子,分式的值不变。
这个性质可以表示为:(形式的变化) × k = (形式的变化) ÷ k(k≠0)。
例如,假设分式为 1/x,如果我们将分式的分子和分母都乘以2,得到 2/x。
此时,分式的值不变,仍然为 1/x。
这是因为 2 和
x 不同时为零,所以乘以或除以 2 对分式的值没有影响。
利用这个性质,我们可以进行分式的约分。
例如,假设分式为x + y/x - y,我们可以将分子进行通分,得到 (x - y + 2y)/ (x - y)。
此时,我们可以约去分母中多余的项,得到 2y/(x - y)。
这个过程就是利用了分式的基本性质。
当然,分式的基本性质不仅仅是用来进行约分,还可以用来求出某些问题的答案。
例如,如果一个分式的值为 1,那么根据分式的基本性质,分子和分母必须成反比例关系。
这为解决某些问题提供了思路。
总之,理解并掌握分式的基本性质,对于正确进行分式的约分、求某些问题的答案等都具有重要意义。
同时,这也是进一步学习分
数运算、导数、微积分等数学知识的基础。
苏科版八年级数学下_10.2分式的基本性质
别除以它们的公因式,叫做分式的约分.
2. 找公因式的方法
(1)当分子、分母都是单项式时,先找分子、分母系数的最
大公约数,再找相同字母的最低次幂,它们的积就是公
因式;
(2)当分子、分母都是多项式时,先把多项式分解因式,再
按(1)中的方法找公因式.
感悟新知
3. 约分的方法
知2-讲
(1)若分式的分子、分母都是单项式,就直接约去分子、分
(1) 1255xx2yy2=
(
3x 5y
);(2)a+ab22b=(a2a+22ba2b );
(3)
x23-x xy=
3
(x-y
).
知1-讲
解题秘方:观察等号两边已知的分子或分母发生了
什么样的变化,再根据分式的基本性质
用相同的变化确定所要填的式子.
感悟新知
知1-讲
解法提醒: 解决与分式的恒等变形有关的填空题时,一般从分子
常取最简公分母.
感悟新知
3. 通分的一般步骤 (1)确定最简公分母;
知3-讲
(2)用最简公分母分别除以各分母求商;
(3)用所得的商分别乘各分式的分子、分母得出同分母分式.
4. 约分与通分的关系
感悟新知
例 7 把下列各组分式通分:
(1) 6x52yz3和 4x33y2z;
(2)
x-a y,
3x-b 3y,
式,再按照分母都是单项式时求最简公分母的方法,
从系数、相同因式、不同因式三个方面去确定.
感悟新知
知2-讲
解:(1)分母 6x2yz3、4x3y2z 的的最简公分母是 12x3y2z3, 6x52yz3= 6x52·yz32·xy2xy= 1120xx3yy2z3, 4x33y2z= 4x33·y2z3·z23z2= 129xz32y2z3;
八年级下册数学《分式》分式方程 知识点整理
分式方程一、本节学习指导解分式方程和我们前面学习的解方程有很多相似之处,期间会运用到很多分式的计算方式,就这一节来说并不难。
做适当练习即能掌握。
二、知识要点1、分式方程:含分式,并且分母中含未知数的方程叫做分式方程。
(1)、分式方程的解法:解分式方程的基本思想方法是:分式方程转化去分母整式方程.解分式方程的一般方法和步骤:①去分母:即在方程的两边都同时乘以最简公分母,把分式方程化为整式方程,依据是等式的基本性质;②解这个整式方程;③检验:把整式方程的解代入最简公分母,使最简公分母不等于0的解是原方程的解,使最简公分母等于0的解不是原方程的解,即说明原分式方程无解。
注意:①去分母时,方程两边的每一项都乘以最简公分母,不要漏乘不含分母的项;②解分式方程必须要验根,千万不要忘了!(2)、解分式方程的步骤:能化简的先化简;方程两边同乘以最简公分母,化为整式方程;解整式方程;验根.(3)、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
(4)、含有字母的分式方程的解法:在数学式子的字母不仅可以表示未知数,也可以表示已知数,含有字母已知数的分式方程的解法,也是去分母,解整式方程,检验这三个步骤,需要注意的是要找准哪个字母表示未知数,哪个字母表示未知数,还要注意题目的限制条件。
计算结果是用已知数表示未知数,不要混淆。
2、列分式方程解应用题(1)列分式方程解应用题的步骤:①审:审清题意;②找: 找出相等关系;③设:设未知数;④ 列:列出分式方程;⑤ 解:解这个分式方程;⑥ 验:既要检验根是否是所列分式方程的解,又要检验根是否符合题意;⑦ 答:写出答案。
(2)应用题有几种类型;基本公式是什么常见的有以下五种:①行程问题 基本公式:路程=速度×时间 而行程问题中又分相遇问题、追及问题. ②数字问题:在数字问题中要掌握十进制数的表示法.③工程问题 基本公式:工作量=工时×工效.④顺水逆水问题 v v v v v v =+•=-顺水静水水逆水静水水3、科学记数法:把一个数表示成的形式10n a ⨯(其中101<≤a ,n 是整数)的记数方法叫做科学记数法.(1)、用科学记数法表示绝对值大于1的数时,应当表示为10n a ⨯的形式,其中1≤︱a ︱<10,n 为原整数部分的位数减1;(2)、用科学记数法表示绝对值小于1的数时,则可表示为10n a -⨯的形式,其中n 为原数第1个不为0的数字前面所有0的个数(包括小数点前面的那个0),1≤︱a ︱<10.三、经验之谈:这一节考点比较多的应该是分式方程的应用题和科学计数法,但应用题基本不会单独命题,步骤虽繁琐,但是难度并不大。
关于初二数学下册必备知识点归纳
关于初二数学下册必备知识点归纳初二数学下册必备知识点归纳第一章分式1、分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变。
2、分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的'积作为积的分子,分母的积作为积的分母。
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;。
异分母分式相加减,先通分,变为同分母的分式,再加减。
3、整数指数幂的加减乘除法。
4、分式方程及其解法。
第二章反比例函数1、反比例函数的表达式、图像、性质。
图像:双曲线。
表达式:y=k/x(k不为0)性质:两支的增减性相同;2、反比例函数在实际问题中的应用。
第三章勾股定理1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。
2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章四边形1、平行四边形。
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。
(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。
(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
数学八年级下册分式知识点总结2篇
数学八年级下册分式知识点总结数学八年级下册分式知识点总结精选2篇(一)数学八年级下册分式的知识点总结包括:1. 分式的定义:分式是由分子和分母组成的有理数表达式,分子和分母都是整数。
2. 分数的运算:加减乘除四则运算的规则同整数的运算规则。
3. 分式化简:将分子和分母的公因式约去,将分数化简为最简形式。
4. 分数的乘除法:乘法时,分子乘以分子,分母乘以分母。
除法时,乘以倒数,即分子乘以分母的倒数。
5. 分式的加减法:分式加减法也要找到分母的最小公倍数,然后分子相加减,分母不变。
6. 分式的混合运算:先进行分数的乘除法运算,再进行分数的加减法运算。
7. 分式方程的解:分式方程的解与分式的定义域有关,需要注意排除分母为零的情况。
8. 分式不等式的解:将分数不等式转化为分母为正数的不等式,根据分母正负的不同确定解的范围。
9. 分式的应用:分式在实际问题中的应用包括比例、速度、利润等方面。
数学八年级下册分式知识点总结精选2篇(二)第一章的主要知识点如下:1.数的性质:正数、负数、零,以及它们在数轴上的表示和比较大小;绝对值的概念和计算方法。
2.整数的四则运算:加法、减法、乘法和除法的进一步应用和拓展,包括负数的运算规律。
3.乘方:乘方的定义和表示方法;乘方的运算法则,如乘方的乘法法则、乘方的除法法则等。
4.科学记数法:科学记数法的概念和表示方法;科学记数法的运算、比较大小等基本操作。
5.约数和倍数:约数的概念和判断方法;最大公约数和最小公倍数的求解方法。
6.有理数的概念和表示:有理数的基本性质,如有理数的加法、减法、乘法和除法规律。
这些知识点涵盖了数轴、计算方法、运算法则和数的运算特性等方面,是数学八年级上册的基础知识点。
八年级下册数学知识点分式
八年级下册数学知识点分式八年级下册数学知识点——分式一、定义分式是指由分子和分母以及分割符号(如:横线或斜线等)组成的算式,通常表示为a/b的形式,其中a、b均为整数,b不为0。
二、基本概念1. 真分数:分子小于分母的分式称为真分数,如1/2、2/3等。
2. 假分数:分子大于或等于分母的分式称为假分数,如5/3、9/4等。
3. 通分:对于分母不同的分式,将它们的分母约分至相同,即将它们化为相同分母的分式,这个过程称为通分。
4. 约分:对于分子分母有公共因数的分式,可以将它们约分成最简分式,即分子分母同时除以它们的公共因数,得到的分式称为最简分式。
三、分式的四则运算1. 加减法分式的加减法其实就是先通分,再将分子按照加减法的规则相加减,然后将结果约分为最简分式。
例如:7/10 + 5/6 = 21/30 + 25/30 = 46/30 = 23/152. 乘法分式的乘法就是将两个分式的分子和分母分别相乘,然后将结果约分为最简分数。
例如:2/3 × 3/4 = 6/12 = 1/23. 除法分式的除法相当于将分式的乘数乘上被除数的倒数,即将分子与被除数的分母相乘,分母与被除数的分子相乘,得到的结果再约分为最简分数。
例如:3/4 ÷ 2/3 = 3/4 × 3/2 = 9/8四、分式的应用1. 分式在比例问题中的应用分式在比例问题中的应用非常广泛,例如在解题时需要求出比例中某一部分的值,在这种情况下,就可以通过分式的运算来求解。
例如:若三个数的比例为a : b : c,且a = 3/4,b = 1/2,求c的值。
根据比例的定义,可得a : b = 3/4 : 1/2 = 3/2,那么c : a = 3/2 : 1,即c = (3/2) ÷ 1 × a = (3/2) × (3/4) = 9/8。
因此c = 9/8。
2. 分式在解方程中的应用在解方程中,有时需要将方程变形成分式的形式,然后进行分式的运算,最后再将分式恢复为方程,从而得到方程的解。
初中数学分式知识点归纳
初中数学分式知识点归纳分式是初中数学中的一个重要内容,分式的概念和运算在解决实际问题中有着广泛的应用。
在这篇文章中,我将对初中数学中常见的分式知识点进行归纳,帮助学生更好地理解和掌握分式。
一、分式的定义和基本性质分式可以表示为a/b的形式,其中a称为分子,b称为分母。
分式的值可以为整数、小数或无理数。
在分式中,分子和分母都可以是整数、代数式或其他形式。
1.1 分式的定义分式是用一个数的算式表示另一个数。
1.2 分式的基本性质(1)两个分数相等的充要条件是分子与分母分别相等。
(2)分子分母的积是一个确定的数,即a/b * b/a = 1。
(3)一个分数乘以或除以一个非零数,其值不变,即a/b * c = ac/b,a/b ÷ c = a/b * 1/c。
(4)分子分母同时乘(或除)以同一个非零数,不改变分数的值,即a/b = a * c /b * c,a/b = a ÷ c /b ÷ c。
二、分式的基本运算分式的运算包括加法、减法、乘法和除法四种基本运算,下面将逐一介绍这些运算的具体方法。
2.1 分式的加法和减法(1)同分母的分式相加(减):保持分母不变,分子相加(减),结果的分子写在分数线上,分母不变。
(2)异分母的分式相加(减):找到它们的公倍数作为新的分母,然后将分子按照原来的分母和新分母的比例相加(减),得到的结果即为最简分数,如果需要化简,在得到的结果上进行约分。
2.2 分式的乘法分式的乘法中,将两个分式的分子相乘作为新的分子,分母相乘作为新的分母,并将结果化简为最简分数。
2.3 分式的除法分式的除法可以转化为分式的乘法,即将除号转化为乘号,同时将除数的分子与被除数的分母相乘作为新的分子,将除数的分母与被除数的分子相乘作为新的分母,并将结果化简为最简分数。
三、分式的化简和分式方程的解法化简分式的目的是将分式转化为最简分数的形式,使得分子和分母互质。
化简分式的方法包括约分和转换为连分数等。
数学八下分式
数学八下分式
八年级下册数学课程中有关分式的主题主要包括分式的运算、分式的化简、分式方程等内容。
以下是八年级下册数学中关于分式的一些常见知识点:
1. 分式的乘法和除法:学习如何进行分式的乘法和除法运算,包括分子乘法、分母乘法、分子除法和分母除法等。
2. 分式的加法和减法:掌握分式的加法和减法运算规则,包括通分、合并同类项等操作。
3. 分式的化简:学习如何化简分式,包括约分、提取公因式、分子分母同乘同除等方法,使分式的表达更简洁。
4. 分式方程:解决涉及分式的方程,包括一元一次分式方程和一元二次分式方程等,掌握解题的方法和技巧。
5. 分式的应用:了解分式在实际问题中的应用,如物品分配、比例关系、时间速度等问题,通过分式运算解决实际生活中的计算问题。
八年级下册数学中的分式知识是数学学习中的重要内容,需要通过练习和实践来加深理解和掌握。
建议学生多做练习题,加强对分式运算规则的理解和掌握,提高解决问题的能力和技巧。
初二数学分式知识点总结(精选20篇)
初二数学分式知识点总结(精选20篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、合同协议、心得体会、条据书信、规章制度、礼仪常识、自我介绍、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, contract agreements, personal experiences, normative letters, rules and regulations, etiquette knowledge, self introduction, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!初二数学分式知识点总结(精选20篇)初二数学分式知识点总结(精选20篇)初二数学分式知识点总结篇11全等三角形的对应边、对应角相等2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5边边边公理(SSS)有三边对应相等的两个三角形全等6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7定理1在角的平分线上的点到这个角的两边的距离相等8定理2到一个角的两边的距离相同的点,在这个角的平分线上9角的平分线是到角的两边距离相等的所有点的集合10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)21推论1等腰三角形顶角的平分线平分底边并且垂直于底边22等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合23推论3等边三角形的各角都相等,并且每一个角都等于60°24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)25推论1三个角都相等的三角形是等边三角形26推论2有一个角等于60°的等腰三角形是等边三角形27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半28直角三角形斜边上的中线等于斜边上的一半29定理线段垂直平分线上的点和这条线段两个端点的距离相等30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上初二数学分式知识点总结篇2第一章一次函数1 函数的定义,函数的定义域、值域、表达式,函数的图像2 一次函数和正比例函数,包括他们的表达式、增减性、图像3 从函数的观点看方程、方程组和不等式第二章数据的描述1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点条形图特点:(1)能够显示出每组中的具体数据;(2)易于比较数据间的差别扇形图的特点:(1)用扇形的面积来表示部分在总体中所占的百分比;(2)易于显示每组数据相对与总数的大小折线图的特点;易于显示数据的变化趋势直方图的特点:(1)能够显示各组频数分布的情况;(2)易于显示各组之间频数的差别2 会用各种统计图表示出一些实际的问题第三章全等三角形1 全等三角形的性质:全等三角形的对应边、对应角相等2 全等三角形的判定边边边、边角边、角边角、角角边、直角三角形的HL定理3 角平分线的性质角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在角的平分线上.第四章轴对称1 轴对称图形和关于直线对称的两个图形2 轴对称的性质轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;线段垂直平分线上的点到线段两个端点的距离相等;到线段两个端点距离相等的点在这条线段的垂直平分线上3 用坐标表示轴对称点(X,y)关于X轴对称的点的坐标是(X,-y),关于y轴对称的点的坐标是(-X,y),关于原点对称的点的坐标是(-X,-y).4 等腰三角形等腰三角形的两个底角相等;(等边对等角)等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)一个三角形的两个相等的角所对的边也相等.(等角对等边)5 等边三角形的性质和判定等边三角形的三个内角都相等,都等于60度;三个角都相等的三角形是等边三角形;有一个角是60度的等腰三角形是等边三角形;推论:直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半.在三角形中,大角对大边,大边对大角.第五章整式1 整式定义、同类项及其合并2 整式的加减3 整式的乘法(1)同底数幂的乘法:(2)幂的乘方(3)积的乘方(4)整式的乘法4 乘法公式(1)平方差公式(2)完全平方公式5 整式的除法(1)同底数幂的除法(2)整式的除法6 因式分解(1)提共因式法(2)公式法(3)十字相乘法初二下册知识点第一章分式1 分式及其基本性质分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变2 分式的运算(1)分式的乘除乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减3 整数指数幂的加减乘除法4 分式方程及其解法第二章反比例函数1 反比例函数的表达式、图像、性质图像:双曲线表达式:y=k/X(k不为0)性质:两支的增减性相同;2 反比例函数在实际问题中的应用第三章勾股定理1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形.第四章四边形1 平行四边形性质:对边相等;对角相等;对角线互相平分.判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形.推论:三角形的中位线平行第三边,并且等于第三边的一半.2 特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半.(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形.(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质.3 梯形:直角梯形和等腰梯形等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形.第五章数据的分析加权平均数、中位数、众数、极差、方差初二数学分式知识点总结篇3轴对称1.如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
八年级数学 分式章节知识点总结及典型例题解析
八年级数学分式章节知识点总结及典型例题解析1.分式的定义:分式是由分子、分母两个整式组成的表达式,分母不能为零。
例:下列式子中,有分式的是:$\frac{2x+1}{3xy^3a^{-b}5a^{-b}159a^{2}15xy^{11}}$、$\frac{8a^2b}{2}$、$\frac{1}{x-y}$、$\frac{4x-3y}{2x+y}$、$\frac{2}{b^2-5a^2}$、$\frac{-x-2xy^2}{x-7}$。
2.分式有意义和无意义:1)使分式有意义:令分母不等于零,解方程求解;2)使分式无意义:令分母等于零,解方程求解;注意:$(x+1)^2 \neq 0$ 有意义。
例如:分式$\frac{x-5}{2-x}$,当$x=2$时,分式无意义;当$x=5$时,分式有意义。
3.分式的值为零:使分式的值为零:令分子等于零且分母不等于零。
注意:当分子等于使分母等于零时,要舍去。
例如:分式$\frac{x^2-11}{x-2a}$,当$x=\sqrt{11}$时,分式的值为零。
4.分式的基本性质的应用:分式的分子与分母同乘或除以一个不等于零的整式,分式的值不变。
例如:$\frac{A}{B}=\frac{AC}{BC}$,$\frac{A}{B}=\frac{A/C}{B/C}$。
没有明显问题的段落,无需删除或改写。
1.如果成立,那么a的取值范围是什么?2.例2:求出33/(ab)的值。
3.例3:将分式(1-b+c)/(a(b-c))中的a和b扩大10倍后,分式的值会怎样变化?4.例4:将分式10x/(x+y)中的x和y都扩大10倍后,分式的值会怎样变化?5.例5:将分式xy/(x+y)中的x和y都扩大2倍后,分式的值会怎样变化?6.例6:将分式(x-y)/(x+y)中的x和y都扩大2倍后,分式的值会怎样变化?7.例7:将分式(x-y)/xy中的x和y都扩大2倍后,分式的值会怎样变化?8.例8:将分式2x/(x+3y)中的x和y都缩小12倍后,分式的值会怎样变化?9.例9:将分式3x^3/(2y^2)中的x和y都扩大2倍后,分式的值保持不变的是什么?10.根据分式的基本性质,分式(ABC-D)/(a-b)可变形为(a+b)(D-ABC)/(a-b)。
八年级下册数学分式知识点
八年级下册数学分式知识点分式是初中数学重要的知识点之一,也是学习高中数学和其他学科的基础。
在八年级下册数学教学中,分式作为一个重要的知识点,将持续出现。
一、分式的概念分式是指一个数可以表示为非整数的两个整数的比值,分子和分母。
分式一般写作a/b,其中a为分子,b为分母。
分子表示分式的被除数,分母表示除数。
例如,7/3是一个分式,其中7是分子,3是分母。
二、分式的化简化简分式是指将分式化为最简整数形式。
最简整数形式是指分子和分母不含公因数(除了1)的分式。
取出分子和分母的公因数,并将其约掉,即可将分式化简为最简整数形式。
例如,将12/20化简为最简整数形式,步骤如下:- 取出公因数,得到12=2×2×3, 20=2×2×5- 约掉公因数2×2,得到12/20 = 3/5三、分式的四则运算分式的四则运算是指分式间的加、减、乘、除运算。
1. 加减运算若要对分式进行加减运算,则需要先将分式化为通分分式,即将分母相同的分式合并到一起。
例如,将2/3和1/4相加,步骤如下:- 将2/3表示为8/12,将1/4表示为3/12- 将8/12和3/12相加,得到11/122. 乘法运算若要对分式进行乘法运算,则将分式的分子、分母分别相乘即可。
例如,将2/3和3/4相乘,步骤如下:- 分子相乘,得到2×3=6- 分母相乘,得到3×4=12- 将6/12化简为最简整数形式,得到1/23. 除法运算若要对分式进行除法运算,则需要将除数的分子和分母调换位置,再将被除数与调换后的除数相乘。
例如,将3/4除以2/5,步骤如下:- 将除数调换位置得到5/2- 将3/4和5/2相乘,得到15/8四、分式的应用分式在实际生活和工作中有广泛的应用,如商业折扣、物品配方、工作效率计算等。
例如,某商场举办打折活动,若某商品原价为60元,打8折后价格为多少?- 打八折后,商品价格为60×0.8=48元- 商品的打折折扣为原价和打折后价格的比值,即8/10或4/5五、分式的重要性学习分式对于初中数学知识和高中数学知识的学习来说,都具有重要的作用。
八年级数学《分式》知识点
八年级数学《分式》知识点一、分式的概念形如 A/B(A、B 是整式,B 中含有字母且 B 不等于 0)的式子叫做分式。
其中 A 叫做分子,B 叫做分母。
理解分式的概念时,需要注意以下几点:1、分式的分母中必须含有字母。
例如:5/x 是分式,而 5/3 就不是分式,因为它的分母 3 是常数。
2、分母的值不能为 0。
如果分母 B 的值为 0,那么分式就没有意义。
3、分式是两个整式相除的商,其中分子是被除式,分母是除式。
4、整式和分式统称为有理式。
二、分式有意义的条件分式有意义的条件是分母不等于 0。
即:对于分式 A/B,当B≠0 时,分式有意义。
例如:对于分式 2/(x 1),要使其有意义,则x 1≠0,即x≠1。
三、分式的值为 0 的条件分式的值为 0 时,需要同时满足两个条件:1、分子等于 0,即 A = 0。
2、分母不等于 0,即B≠0。
例如:对于分式(x 2)/(x + 1),当 x 2 = 0 且 x +1≠0 时,分式的值为 0。
由 x 2 = 0 得 x = 2,又因为 x +1≠0,即x≠ 1,所以当 x = 2 时,该分式的值为 0。
四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不等于 0 的整式,分式的值不变。
即:A/B = A×M/B×M,A/B = A÷M/B÷M(M 为不等于 0 的整式)例如:将分式 2x/(3y)的分子分母同时乘以 2,得到 4x/(6y),分式的值不变。
利用分式的基本性质,可以进行分式的约分和通分。
五、约分把一个分式的分子和分母的公因式约去,叫做约分。
约分的关键是确定分子和分母的公因式。
确定公因式的方法:1、系数:取分子和分母系数的最大公约数。
例如:在分式 8x/12 中,8 和 12 的最大公约数是 4,所以分子分母同时除以 4 进行约分。
2、字母:取分子和分母相同字母的最低次幂。
例如:在分式 x²y/xy²中,相同字母是 x 和 y,x 的最低次幂是 1,y 的最低次幂是 1,所以公因式是 xy,约分后为 x/y。
2024年八年级数学下册第十六章分式知识点总结
分式的知识点解析与培优一、分式的定义:假如A 、B 表示两个整式,并且B 中含有字母,那么式子叫做分式。
BA二、判断分式的依据: 例:下列式子中,、8a 2b 、-、y x +15239ay x b a --25、、2-、、 、、、4322b a -a 2m165xy x 121212+x 、、中分式的个数为( )πxy3yx +3ma 1+A 、 2 B 、 3 C 、 4 D 、 5练习题:(1)下列式子中,是分式的有 .(1)275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹. (7)78x π+(8)3y y (9)234x +二、分式故意义的条件是分母不为零;【B ≠0】分式没故意义的条件是分母等于零;【B=0】分式值为零的条件分子为零且分母不为零。
【B ≠0且A=0 即子零母不零】例2.注意:(≠0)12+x 例1:当x 时,分式故意义; 51-x 例2:分式中,当初,分式没故意义xx -+212____=x 例3:当x 时,分式故意义。
112-x 例4:当x 时,分式故意义12+x x例5:,满足关系 时,分式无意x y x yx y-+义;例6:无论x取什么数时,总是故意义的分式是( )A. B. C. D.122+x x 12+x x 133+x x 25x x -例7:使分式2+x x故意义的x的取值范围为( )A .2≠x B.2-≠x C .2->x D .2<x 例8:分式无意义,则x 的值为)3)(1(2-+-x x x ( )A. 2 B.-1或-3 C. -1 D.3三、分式的值为零:使分式值为零:令分子=0且分母≠0,注意:当分子等于0时,看看是否使分母=0了,假如使分母=0了,那么要舍去。
例1:当x 时,分式的值为0. 121+-a a例2:当x 时,分式的值为0.112+-x x 例3:假如分式的值为零,则a 的值为( ) 22+-a a A. B.2 C .-2 D..以上全不对2±222xy x y +例4:能使分式的值为零的所有的值是 ( )122--x xx x A . x=0 B.x-1 C .x=0 或x=1 D.或0=x 1±=x 例5:要使分式的值为0,则x 的值为65922+--x x x ( )A.3或-3 B.3 C.-3 D 2例6:若,则a是( )01=+aaA.正数B.负数C.零 D.任意有理数例9:当X= 时,分式的值为零。
初二下册数学知识点归纳:分式的概念
初二下册数学知识点归纳:分式的概念
知识点对朋友们的学习非常重要,大家一定要认真掌握,查字典数学网为大家整理了初二下册数学知识点归纳:分式的概念,让我们一起学习,一起进步吧!
A
1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子B叫做分式。
2、对于分式概念的理解,应把握以下几点:
(1)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线起除号和括号的作用;(2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;(3)分母不能为零。
3、分式有意义、无意义的条件
(1)分式有意义的条件:分式的分母不等于0;(2)分式无意义的条件:分式的分母等于0。
4、分式的值为0的条件:
A
当分式的分子等于0,而分母不等于0时,分式的值为0。
即,使B=0的条件是:A=0,B≠0。
5、有理式整式和分式统称为有理式。
整式分为单项式和多项式。
分类:有理式
单项式:由数与字母的乘积组成的代数式;多项式:由几个
单项式的和组成的代数式。
只要这样踏踏实实完成每天的计划和小目标,就可以自如地应对新学习,达到长远目标。
由查字典数学网为您提供的初二下册数学知识点归纳:分式的概念,祝您学习愉快!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 分式
1.分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子B A
叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零。
2.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
(0≠C ) 3.分式的通分和约分:关键先是分解因式
4.分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则:分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减,a b a b a c ad bc ad bc c c c b d bd bd bd ±±±=±=±=
混合运算:运算顺序和以前一样。
能用运算率简算的可用运算率简算。
;a c ac a c a d ad
b d bd b d b
c bc •=÷=•=()n
n n a a b b =A A C B B C
•=•A A C B B C
÷=÷
5. 任何一个不等于零的数的零次幂等于1, 即)0(10≠=a a ;当n 为正整数时,n n a a 1
=- ()0≠a
6.正整数指数幂运算性质也可以推广到整数指数幂.(m,n 是整数)
(1)同底数的幂的乘法:m n m n a a a +•=;
(2)幂的乘方:()m n mn a a =;
(3)积的乘方:
()n n n ab a b =; (4)同底数的幂的除法:m n m n a a a -÷=( a ≠0);
(5)商的乘方:()n
n n a a b
b =;(b ≠0) 7. 分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤 :
4)顺水逆水问题v v v 顺水水流静水=+、v v v 顺水水流
静水=- 8.科学记数法:把一个数表示成n a 10⨯的形式(其中101<≤a ,n 是整
数)的记数方法叫做科学记数法.
用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是1-n 用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)
一、选择题
1.下列式子是分式的是( )
A .2x
B .x 2
C .πx
D .2y x +
2.下列各式计算正确的是( )
A .11--=b a b a
B .ab b a b 2=
C .()0,≠=a ma na m n
D .a m a n m n ++=
3.下列各分式中,最简分式是( )
A .()()y x y x +-73
B .n m n m +-22
C .2222ab b a b
a +- D .22222y xy x y x +-- 4.化简2293m m
m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.m m -3
5.若把分式xy y
x +中的x 和y 都扩大2倍,那么分式的值( )
A .扩大2倍
B .不变
C .缩小2倍
D .缩小4倍
6.若分式方程x a x a x +-=+-32
1有增根,则a 的值是( ) A .1 B .0 C .—1 D .—2
7.已知432c b a ==,则c b a +的值是( )
A .54 B. 47 C.1 D.45
8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方
程( )
A .x x -=+306030100
B .306030100-=+x x
C .x x +=-306030100
D .306030100+=-x x
9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。
设原计划行军的速度为xkm/h ,,则可列方程( )
A .1%206060++=x x B. 1%206060-+=x x C. 1%2016060++=)(x x D. 1%2016060-+=)(x x
二、填空题
11.计算2323()a b a b --÷= .
12.用科学记数法表示—0.000 000 0314= .
13.计算22142a a a -=-- .
14.方程3470x x =-的解是 .
15.瑞士中学教师巴尔末成功地从光谱数据9162536,,,,5122132中得到
巴尔末公式,从而打开了光谱奥秘的大门。
请你尝试用含你n 的式子表示巴尔末公式 .
16.如果记
221x y x =+ =f(x),并且f(1)表示当x=1时y 的值,即f(1)=2211211=+;f(12)表示当x=12时y 的值,即
f(1
2)=22
1()12151()2=+;……那么f(1)+f(2)+f(12)+f(3)+f(13)+…+f(n)+f(1
n )= (结果用含n 的代数式表示).
三、解答题
17.计算:
(1))2(216322b a a bc a b -⋅÷ ; (2)
93234962
22-⋅+-÷-+-a a b a b a a . 18.解方程求x :
(1)114112=---+x x x ; (2)0(,0)1m n m n mn x x -=≠≠+.
19.(7分)有一道题: “先化简,再求值:22241(
)244x x x x x -+÷+-- 其中,x=—3”. 小玲做题时把“x=—3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?。