人教高二数学选修-第二章随机变量及其分布综合能力检测1
高中数学 第二章 随机变量及其分布单元测评1(含解析)新人教A版选修2-3(2021年最新整理)
2017年高中数学第二章随机变量及其分布单元测评1(含解析)新人教A 版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高中数学第二章随机变量及其分布单元测评1(含解析)新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高中数学第二章随机变量及其分布单元测评1(含解析)新人教A版选修2-3的全部内容。
随机变量及其分布(时间:90分钟满分:120分)第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.若随机变量ξ的分布如下表所示,则p等于( )A.0B.错误!错误!解析:由分布列的性质可知,错误!+错误!+p=1,所以p=1-15-错误!=错误!.答案:B2.已知P(B|A)=错误!,P(A)=错误!,则P(AB)=( )A.错误!B。
错误!C.错误!D。
错误!解析:P(AB)=P(B|A)·P(A)=错误!×错误!=错误!。
答案:D3.某次市教学质量检测,甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由图中曲线可得下列说法中正确的一个是() A.甲科总体的标准差最小B.乙科总体的标准差及平均数都居中C.丙科总体的平均数最小D.甲、乙、丙的总体的平均数不相同解析:由图易知三科的平均成绩相同,甲科总体的标准差最小.答案:A4.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0。
8,0.6,0.5,则三人中至少有一人达标的概率是()A.0。
16 B.0。
24C.0。
96 D.0.04解析:三人都不达标的概率是(1-0。
高中数学选修2-3 第二章 随机变量及其分布 章末检测题 附答案解析
高中数学选修2-3第二章 随机变量及其分布 章末检测题(满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列表格可以作为ξ的分布列的是( )2.某同学通过计算机测试的概率为13,则他连续测试3次,恰有1次通过的概率为( )A.49B.29C.427D.227 3.某射手射击所得的环数X 的分布列如下:如果命中8~10环为优秀,则该射手射击一次为优秀的概率是( ) A .0.3 B .0.4 C .0.5 D .0.64.某镇互不认识的甲、乙两个体老板准备在同一天在同一车站乘车进城进货,甲乘座第一班车的概率为0.7,乙乘座第一班车的概率为0.8,则其中至少有一人乘座第一班车的概率为( )A .0.06B .0.15C .0.56D .0.94 5.已知随机变量ξ的分布列为:又变量η=4ξ+3,则η的期望是( )A.72B.52 C .-1 D .1 6.设X 是随机变量,且D (10X )=90,则D (X )等于( ) A .0.9 B .9 C .90 D .9007.若随机变量ξ的分布列为,其中m ∈(0,1),则下列结果中正确的是( )A .E (ξ)=m ,D (ξ)=n 3B .E (ξ)=n ,D (ξ)=n 2C .E (ξ)=1-m ,D (ξ)=m -m 2 D .E (ξ)=1-m ,D (ξ)=m 28.已知一次考试共有60名同学参加,考生成绩X ~N (110,52),据此估计,大约有57人的分数所在的区间为( )A .(90,100]B .(95,125]C .(100,120]D .(105,115]9.已知离散型随机变量X 等可能取值1,2,…,n ,若P (1≤X ≤3)=15,则n 的值为( )A .3B .5C .10D .1510.已知某产品的次品率为0.04,现要抽取这种产品进行检验,则要使检查到次品的概率达到95%以上,至少要选的产品个数为( )A .24B .25C .74D .7511.把10个骰子全部投出,设出现6点的骰子的个数为X ,则P (X ≤2)=( )A .C 210216⎛⎫⎪⎝⎭×856⎛⎫ ⎪⎝⎭ B .C 11016⎛⎫ ⎪⎝⎭×956⎛⎫ ⎪⎝⎭+1056⎛⎫ ⎪⎝⎭C .C 11016⎛⎫⎪⎝⎭×956⎛⎫ ⎪⎝⎭+C 210216⎛⎫⎪⎝⎭×856⎛⎫ ⎪⎝⎭D .以上都不对 12.有10件产品,其中2件次品,其余都是合格品,现不放回的从中依次抽2件,在第一次抽到次品的条件下,第二次抽到次品的概率是( )A.145B.110C.19D.25二、填空题(本大题共4小题,每小题4分,共16分.请把正确的答案填在题中的横线上)13.某人参加驾照考试,共考6个科目,假设他通过各科考试的事件是相互独立的,并且概率都是p ,若此人未能通过的科目数ξ的均值是2,则p =________.14.设A ,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为________.15.中国乒乓球队可谓高手如云,在某届世乒乓赛中,有3名世界排名前10位的运动员,据专家分析每位运动员进入前四名的概率为45,那么这三名运动员恰有2名进入前4名的概率是________.16.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=________.三、解答题(本大题共6个小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、乙的比分为1比2的概率; (2)求开始第5次发球时,甲得分领先的概率.18.(本小题满分12分)设X 是一个离散型随机变量,其分布列如下表,试求随机变量X 的期望E (X )与方差D (X ).19.(本小题满分12分)袋中装有5个乒乓球,其中2个旧球,现在无放回地每次取一球检验.(1)若直到取到新球为止,求抽取次数X 的概率分布列及其均值;(2)若将题设中的“无放回”改为“有放回”,求检验5次取到新球个数X 的均值.20.(本小题满分12分)已知随机变量X 的正态曲线如下图所示,(1)求E (2X -1),D 14X ⎛⎫⎪⎝⎭;(2)试求随机变量X 在(110,130]范围内取值的概率.21.(本小题满分13分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)22.(本小题满分13分)某班有6名班干部,其中男生4人,女生2人,任选3人参加学校的义务劳动.(1)设所选3人中女生人数为X ,求X 的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ).参考答案一、选择题1.【解析】根据分布列的性质各概率之和等于1,易知D 正确.【答案】D2.【解析】213124339P C ⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭.【答案】A3.【解析】从分布列中不难看出该射手命中环数不小于8环的概率是0.3+0.25+0.05=0.6.【答案】D4.【解析】P =1-0.3×0.2=0.94. 【答案】D5.【解析】E (ξ)=-1×12+0×18+1×38=-18E (η)=4E (ξ)+3=4×18⎛⎫- ⎪⎝⎭+3=52.【答案】B6.【解析】D (10X )=100D (X ),∴90=100D (X ),则D (X )=0.9. 【答案】A7.【解析】∵m +n =1,∴E (ξ)=n =1-m ,D (ξ)=m (0-n )2+n (1-n )2=m -m 2. 【答案】C8.【解析】∵X ~N (110,52),∴μ=110,σ=5,∴5760=0.95≈P (μ-2σ<X <μ+2σ)=P (100<X ≤120). 【答案】C9.【解析】由已知X 的分布列为P (X =k )=1n,k =1,2,3,…,n ,∴P (1≤X ≤3)=P (X =1)+P (X =2)+P (X =3)=3n =15,∴n =15.【答案】D10.【解析】由题意得1-(1-0.04)n ≥0.95,解得n ≥74. 【答案】C11.【解析】P (X ≤2)=P (X =0)+P (X =1)+P (X =2)=C 010016⎛⎫ ⎪⎝⎭×1056⎛⎫ ⎪⎝⎭+C 11016⎛⎫ ⎪⎝⎭×956⎛⎫ ⎪⎝⎭+C 210216⎛⎫ ⎪⎝⎭×856⎛⎫ ⎪⎝⎭. 【答案】D。
人教版高中数学选修三第二单元《随机变量及其分布》测试卷(有答案解析)(1)
一、选择题1.在市高二下学期期中考试中,理科学生的数学成绩()2~90,X N σ,已知(7090)0.35P X <=,则从全市理科生中任选一名学生,他的数学成绩小于110分的概率为( ) A .0.15B .0.50C .0.70D .0.852.抛掷两枚均匀骰子,观察向上的点数,记事件A 为“两个点数不同”,事件B 为“两个点数中最大点数为4”,则()P B A =( ) A .112B .16C .15D .563.从一个装有3个白球,3个红球和3个蓝球的袋中随机抓取3个球,记事件A 为“抓取的球中存在两个球同色”,事件B 为“抓取的球中有红色但不全是红色”,则在事件A 发生的条件下,事件B 发生的概率()|P B A =( ) A .37B .1237C .1219D .16214.已知随机变量ξ的取值为()0,1,2i i =.若()105P ξ==,()1E ξ=,则( ) A .()()1P D ξξ=< B .()()1P D ξξ== C .()()1P D ξξ=>D .()()115P D ξξ==5.已知随机变量ξ,η的分布列如下表所示,则( )A .E E ξη<,D D ξη<B .E E ξη<,D D ξη>C .E E ξη<,D D ξη=D .E E ξη=,D D ξη=6.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( ) A .8225B .12C .38D .347.甲、乙、丙三人每人准备在3个旅游景点中各选一处去游玩,则在“至少有1个景点未被选择”的条件下,恰有2个景点未被选择的概率是( ) A .17B .18C .114D .3148.一个盒子装有4件产品,其中有3件一等品,1件二等品.从中不放回的取两次,每次取出一件.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”.则()|P B A =( )A .34B .13C .23D .129.某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为( ) A .313B .413C .14D .1510.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)XN σ,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1≥x ”是“12x x+≥”的充分不必要条件. A .1B .2C .3D .411.把一枚骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为( ) A .14B .13C .12D .112.已知随机变量ξ服从正态分布()21,N σ,若()20.66P ξ≤=,则()0P ξ≤=( )A .0.84B .0.68C .0.34D .0.16二、填空题13.已知随机变量X 的分布列为:则随机变量X 的方差()V X 的值为______.14.由“0,1,2”组成的三位数密码中,若用A 表示“第二位数字是2”的事件,用B 表示“第一位数字是2”的事件,则(|)P A B =__________. 15.随机变量X 的概率分布为2()(1,2,3)aP X n n n n===+,其中a 是常数,则()D aX =__________.16.某工厂在试验阶段大量..生产一种零件,这种零件有A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响,若有且仅有一项技术指标达标的概率为12,至少一项技术指标达标的概率为34.按质量检验规定:两项技术指标都达标的零件为合格品,任意依次抽取该种零件4个,设ξ表示其中合格品的个数,则E ξ=______.17.从标有1,2,3,4,5的五张卡中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为________;18.抛掷红、黄两颗骰子,设事件A 为“黄色的骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于7”.当已知黄色的骰子的点数为3或6时,两颗骰子的点数之和大于7的概率为__________.三、解答题19.某班级以“评分的方式”鼓励同学们以骑自行车或步行方式“绿色出行”,培养学生的环保意识.“十一黄金周”期间,组织学生去A 、B 两地游玩,因目的地A 地近,B 地远,特制定方案如下:若甲同学去A 地玩,乙、丙同学去B 地玩,选择出行方式相互独立. (1)求恰有一名同学选择“绿色出行”方式的概率; (2)求三名同学总得分X 的分布列及数学期望EX .20.在某运动会上,有甲队女排与乙队女排以“五局三胜”制进行比赛,其中甲队是“慢热”型队伍,根据以往的经验,首场比赛甲队获胜的概率为P ,决胜局(第五局)甲队获胜的概率为23,其余各局甲队获胜的概率均为12.(1)求甲队以3:2获胜的概率; (2)现已知甲队以3:0获胜的概率是112,若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分,对方得1分,求甲队得分的分布列及数学期望.21.甲、乙两人进行投篮比赛,要求他们站在球场上的A ,B 两点处投篮,已知甲在A ,B 两点的命中率均为12,乙在A 点的命中率为p ,在B 点的命中率为212p -,且他们每次投篮互不影响.(1)若甲投篮4次,求他至多命中3次的概率;(2)若甲和乙每人在A ,B 两点各投篮一次,且在A 点命中计2分,在B 点命中计1分,未命中则计0分,设甲的得分为X ,乙的得分为Y ,写出X 和Y 的分布列,若EX EY =,求p 的值.22.现有甲、乙两个规模一致的大型养猪场,均养有1万头猪.根据猪的体重,将其分为三个成长阶段,如下表:根据以往经验,两个养猪场内猪的体重X 均近似服从正态分布()250,16N .由于我国有关部门加强对大型养猪场即将投放市场的成年期的猪的监控力度,高度重视其质量保证,为了养出健康的成年期的猪,甲、乙两个养猪场引入两种不同的防控及养殖模式.已知甲,乙两个养猪场内一头成年期的猪能通过质检合格的概率分别为43,54. (1)试估算各养猪场三个阶段的猪的数量;(2)已知甲养猪场出售一头成年期的猪,若为健康合格的猪,则可盈利400元,若为不合格的猪,则亏损200元;乙养猪场出售--头成年期的猪,若为健康合格的猪,则可盈利500元,若为不合格的猪,则亏损100元记Y 为甲,乙养猪场各出售一头成年期的猪所得的总利润,求随机变量Y 的分布列,假设两个养猪场均能把成年期的猪售完,求两个养猪场的总利润的期望值. (参考数据:若()2~,Z Nμσ,则()0.683,(22)0.954,(33)0.997P Z P Z P Z μσμσμσμσμσμσ-+≈-+≈-+≈)23.计划在某水库建一座至多安装3台发电机的水电站.过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的入流量相互独立.(1)求未来3年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:电机年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?24.近年来,我国肥胖人群的规模不断扩大,肥胖人群有很大的心血管安全隐患,目前,国际上常用身体质量指数(Bodv Mass Index,缩写BMI)来衡量人体胖瘦程度以及是否健康,其计算公式是BMI=体重(单位:千克)÷身高2(单位:2m),中国成人的BMI数值标准为:BMI<18.5为偏瘦;18.5≤BMI<24为正常;24≤BMI<28为偏胖;BMI≥28为肥胖.某单位随机调查了100名员工,测量身高、体重并计算出BMI值.(1)根据调查结果制作了如下2×2列联表,请将2×2列联表补充完整,并判断是否有99%的把握认为肥胖与不经常运动有关;人中“经常运动且不肥胖”的人数为X,求随机变量X的分布列和数学期望.附:22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d=+++.25.山竹,原产于马鲁古,具有清热泻火、生津止渴的功效,其含有丰富的蛋白质与脂类,对体弱、营养不良的人群都有很好的调养作用,因此被誉为夏季的“水果之王”,受到广大市民的喜爱.现将某水果经销商近一周内山竹的销售情况统计如下表所示:采购人数1001005020050(1)根据表格中数据,完善频率分布直方图;(2)求近一周内采购量在286箱以下(含286箱)的人数以及采购数量x的平均值;(3)以频率估计概率,若从所有采购者中随机抽取4人,记采购量不低于260箱的采购人E X.数为X,求X的分布列以及数学期望()26.某学校为了了解学生暑假期间学习数学的情况,抽取了人数相等的甲、乙两班进行调查,甲班同学每天学习数学的平均时间的频率分布直方图(将时间分成[0,1),[1,2),[2,3),[3,4),[4,5),[5,6]共6组)和乙班同学每天学习数学的平均时间的频数分布表如图所示(单位:小时).(1)从甲班每天学习数学的平均时间在[0,2)的人中随机选出3人,求3人中恰有1人学习数学的平均时间在[0,1)范围内的概率;(2)从甲、乙两个班每天学习数学平均时间不小于5个小时的学生中随机抽取4人进一步了解其他情况,设4人中乙班学生的人数为ξ,求ξ的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据正态密度曲线的对称性得出()()()110700.57090P X P X P X ≥=≤=-<≤,于是可计算出()()1101110P X P X <=-≥,于此可得出结果. 【详解】 由于()2~90,X N σ,由正态密度曲线的对称性可得()()()110700.570900.15P X P X P X ≥=≤=-<≤=,因此,()()110111010.150.85P X P X <=-≥=-=,故选D. 【点睛】本题考查正态分布在指定区间上的概率的计算,解题的关键在于利用正态密度曲线的对称性将所求概率转化为已知区间概率进行计算,属于基础题.2.C解析:C 【分析】抛掷两枚均匀骰子,构成的基本事件的总数共有36种,其中记事件A 为“两个点数不同”的基本事件共有30种,再由“两个点数不同且最大点数为4”的基本事件共有6种,利用条件概率的计算公式,即可求解. 【详解】由题意,抛掷两枚均匀骰子,构成的基本事件的总数共有36种, 其中记事件A 为“两个点数不同”的基本事件共有36630-=种,又由事件“两个点数不同且最大点数为4”的基本事件为:(1,4),(2,4),(3,4),(4,1),(4,2),(4,3),共有6种,所以6()136()30()536P A B P B A P A ⋂===,故选C . 【点睛】本题主要考查了条件概率的计算,其中解答中熟记条件概率的计算方法,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.3.C解析:C 【分析】根据题意,求出()P A 和()P AB ,由公式()()()|P AB P B A P A =即可求出解答.【详解】解:因为事件A 为“抓取的球中存在两个球同色”包括两个同色和三个同色,所以()213363393357198428C C C P A C +=== 事件A 发生且事件B 发生概率为:()12213336392363847C C C C P AB C +=== 故()()()3127|191928P AB P B A P A ===. 故选:C. 【点睛】本题考查条件概率求法,属于中档题.4.C解析:C 【分析】设()1P x ξ==,根据()f x ,()1E ξ=列方程求出x ,进而求出()D ξ,即可比较大小. 【详解】 设()1P x ξ==, 则()425P x ξ==-,则()1480121555x x E x ξ⎛⎫=⨯+⨯+-⨯=-= ⎪⎝⎭,解得()315P ξ==,()125P ξ==, 则()()()()22213120111215555D ξ=⨯-+⨯-+⨯-=, 故()()1P D ξξ=>, 故选:C. 【点睛】本题考查离散型随机变量的分布列、数学期望、方差的性质等基础知识,考查运算求解能力,是中档题.5.C解析:C 【分析】由题意分别求出E ξ,D ξ,E η,D η,由此能得到E ξ<E η,D ξ>D η. 【详解】 由题意得: E ξ111123326=⨯+⨯+⨯=116, D ξ22211111111151(1)(2)(3)636108266=-⨯+-⨯+-⨯=.E η111131236236=⨯+⨯+⨯=, D η=(1316-)216⨯+(2136-)212⨯+(3136-)21513108⨯=, ∴E ξ<E η,D ξ=D η. 故选:C . 【点睛】本题考查离散型随机变量的分布列、数学期望、方差的求法,考查运算求解能力,是中档题.6.C解析:C 【分析】利用条件概率公式,即可求得结论. 【详解】该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110, ∵设A 事件为下雨,B 事件为刮风,由题意得,P (A )415=,P (AB )110=, 则P (B |A )()()13104815P AB P A ===, 故选C . 【点睛】本题考查概率的计算,考查条件概率,考查学生的计算能力,属于基础题.7.A解析:A 【分析】设事件A 为:至少有1个景点未被选择,事件B 为:恰有2个景点未被选择,计算()P AB 和()P A ,再利用条件概率公式得到答案.【详解】设事件A 为:至少有1个景点未被选择,事件B 为:恰有2个景点未被选择331()39P AB == 3337()139A P A =-=()1()()7P AB P B A P A == 故答案选A 【点睛】本题考查了条件概率,意在考查学生对于条件概率的理解和计算.8.C解析:C 【分析】利用古典概型概率公式计算出()P AB 和()P A ,然后利用条件概率公式可计算出结果. 【详解】事件:AB 前两次取到的都是一等品,由古典概型的概率公式得()232412A P AB A ==,由古典概型的概率公式得()34P A =,由条件概率公式得()()()142233P AB P B A P A ==⨯=, 故选C. 【点睛】本题考查条件概率公式求概率,解题时要弄清楚各事件之间的关系,关键在于灵活利用条件概率公式计算,考查运算求解能力,属于中等题.9.A解析:A 【分析】根据条件概率的计算公式,分别求解公式各个部分的概率,从而求得结果. 【详解】设事件A 为“学生甲不是第一个出场,学生乙不是最后一个出场”;事件B 为“学生丙第一个出场”则()41134333555578A C C A P A A A +==,()1333555518C A P AB A A == 则()()()1837813P AB P B A P A === 本题正确选项:A 【点睛】本题考查条件概率的求解,关键是能够利用排列组合的知识求解出公式各个构成部分的概率.10.C解析:C 【分析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的;(2)中,已知()22,X N σ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所以 (2)0.5P X >=是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为ˆ23yx =-是正确; (4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,所以“1x ≥”是“12x x+≥”成立的充分不必要条件. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.11.C解析:C 【解析】分析:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,利用古典概型概率公式求出()(),P A P AB 的值,由条件概率公式可得结果. 详解:设A 表示“第一次抛出的是奇数点”,B 表示“第二次抛出的是奇数点”,()()31111,62224P A P AB ===⨯=, ()()()114|122P AB P B A P A ===,∴在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为12,故选C. 点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用,同时注意区分独立事件同时发生的概率与条件概率的区别与联系.12.C解析:C 【解析】分析:先根据正态分布得(12)0.16,P ξ≤≤=再求(01)0.16,P ξ≤≤=最后求得() 0P ξ≤=0.34.详解:由正态分布曲线得(12)0.660.50.16,P ξ≤≤=-= 所以(01)0.16,P ξ≤≤=所以()0P ξ≤=0.5-0.16=0.34. 故答案为C.点睛:(1)本题主要考查正态分布曲线的性质,意在考查学生对这些知识的掌握水平和数形结合思想和方法.(2)解答本题的关键是数形结合,要结合正态分布曲线的图像和性质解答,不要死记硬背.二、填空题13.【分析】由分布列求出然后由方差公式计算方差【详解】由题意故答案为:【点睛】本题考查随机变量的概率分布列考查随机变量的方差根据分布列计算出期望再由方差公式计算即得考查了学生的运算求解能力解析:65216【分析】由分布列求出q ,然后由方差公式计算方差. 【详解】 由题意1111362q =--=, 111()11263E X =-⨯+⨯=-,222111111165()(1)(0)()2333663216V X =⨯-++⨯++⨯+=.故答案为:65216.【点睛】本题考查随机变量的概率分布列,考查随机变量的方差.根据分布列计算出期望,再由方差公式计算即得.考查了学生的运算求解能力.14.【分析】利用古典摡型的概率计算公式分别求得结合条件概率的计算公式即可求解【详解】由012组成的三位数密码共有个基本事件又由用A 表示第二位数字是2的事件用B 表示第一位数字是2的事件可得所以故答案为:【解析:13【分析】利用古典摡型的概率计算公式,分别求得(),()P B P A B ,结合条件概率的计算公式,即可求解. 【详解】由“0,1,2”组成的三位数密码,共有33327⨯⨯=个基本事件,又由用A 表示“第二位数字是2”的事件,用B 表示“第一位数字是2”的事件, 可得33131(),()273279P B P A B ⨯====, 所以1()19(|)1()33P A B P A B P B ===. 故答案为:13.【点睛】本题主要考查了条件概率的计算与求解,其中解答中熟记条件概率的计算公式,准确运算时解答得关键,属于基础题.15.【分析】根据随机变量分布列概率和为1求出求出再由方差性质即可求解【详解】由题意得则∴则∴故答案为:【点睛】本题考查离散型随机变量分布列性质期望方差以及方差的性质考查计算求解能力属于中档题解析:608729【分析】根据随机变量分布列概率和为1求出a ,求出(),()E X D X ,再由方差性质,即可求解. 【详解】 由题意得11111311122334223344a a a a a ⎛⎫++=-+-+-== ⎪⨯⨯⨯⎝⎭, 则43a =,∴()213P X ==,()229P X ==,()139P X ==,则24113()3939E X =++=,222132********()12393999981D X ⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴2608()()729D aX a D X ==. 故答案为:608729【点睛】本题考查离散型随机变量分布列性质、期望、方差以及方差的性质,考查计算求解能力,属于中档题.16.1【分析】设两项技术指标达标的概率分别为得到求得的值进而得到可得分布列和的值得到答案【详解】由题意设两项技术指标达标的概率分别为由题意得解得所以即一个零件经过检测为合格品的概率为依题意知所以故答案为解析:1 【分析】设,A B 两项技术指标达标的概率分别为12,P P ,得到()()()()122112111231114P p P P P P ⎧-+-=⎪⎪⎨⎪---=⎪⎩,求得12,P P 的值,进而得到1(4,)4B ξ,可得分布列和E ξ的值,得到答案.【详解】由题意,设,A B 两项技术指标达标的概率分别为12,P P ,由题意,得()()()()122112111231114P p P P P P ⎧-+-=⎪⎪⎨⎪---=⎪⎩,解得1211,22P P ==, 所以1214P PP ==,即一个零件经过检测为合格品的概率为14, 依题意知1(4,)4B ξ,所以1414E ξ=⨯=.故答案为1. 【点睛】本题主要考查了随机变量的分布列及其数学期望的计算,其中解答中根据概率的计算公式,求得12,P P 的值,得到随机变量1(4,)4B ξ是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.17.【分析】设事件A 表示第一张抽到奇数事件B 表示第二张抽取偶数则P (A )P (AB )利用条件概率计算公式能求出在第一次抽到奇数的情况下第二次抽到偶数的概率【详解】解:从标有12345的五张卡片中依次抽出2 解析:12【分析】设事件A 表示“第一张抽到奇数”,事件B 表示“第二张抽取偶数”,则P (A )35=,P (AB )3235410=⨯=,利用条件概率计算公式能求出在第一次抽到奇数的情况下,第二次抽到偶数的概率. 【详解】解:从标有1、2、3、4、5的五张卡片中,依次抽出2张,设事件A 表示“第一张抽到奇数”,事件B 表示“第二张抽取偶数”,则P (A )35=,P (AB )3235410=⨯=, 则在第一次抽到奇数的情况下,第二次抽到偶数的概率为:P (A|B )()()3P AB 1103P A 25===. 【点睛】本题考查概率的求法,考查条件概率等基础知识,考查运算求解能力.18.【解析】分析:由题意知这是一个条件概率做这种问题时要从这两步入手一是做出黄色骰子的点数为或的概率二是两颗骰子的点数之和大于的概率再做出两颗骰子的点数之和大于且黄色骰子的点数为或的概率根据条件概率的公 解析:712【解析】分析:由题意知这是一个条件概率,做这种问题时,要从这两步入手,一是做出黄色骰子的点数为3或6的概率,二是两颗骰子的点数之和大于7的概率,再做出两颗骰子的点数之和大于7且黄色骰子的点数为3或6的概率,根据条件概率的公式得到结果.详解:设x 为掷红骰子的点数,y 为黄掷骰子得的点数,(),x y 共有6636⨯=种结果,则黄色的骰子的点数为3或6所有12种结果,两颗骰子的点数之和大于7所有结果有10种,利用古典概型概率公式可得()()()1211077,,363361836P A P B P AB =====,由条件概率公式可得()()()7736|1123P AB P B A P A ===,故答案为712. 点睛:本题主要考查条件概率以及古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出;(3)利用两个原理及排列组合知识.三、解答题19.(1)736;(2)分布列见解析,1225=EX . 【分析】(1)分析恰有一个同学选择“绿色出行”方式的情况,利用相互独立事件的概率计算公式求解;(2)根据题意得,X 的所有可能取值为0,1,2,3,分别计算概率,列出分布列,代入公式求解EX .【详解】(1)恰有一名同学选择绿色出行方式的概率2123111274343336P C ⎛⎫=⋅+⋅⋅⋅= ⎪⎝⎭.(2)根据题意,X 的所有可能取值为0,1,2,3,根据事件的独立性和互斥性得:1111(0)43336P X ==⨯⨯=;1231112173(1)4334363==⨯⨯+⨯⨯⨯=P X C ;21221124(2)4393343⎛⎫==⨯⨯⨯+⨯= ⎪⎝⎭P X C ;3221(3)4333==⨯⨯=P X .故X 的分布列为:所以360123369312=⨯+⨯+⨯+⨯=EX . 【点睛】本题考查了随机变量分布列问题,一般列分布列时先判断变量的可能取值,遇到比较复杂的情况可以采用列表格的方式能更直观的判断出可能取值有哪些,然后计算不同取值下的概率,需要分析清楚不同取值对应的所有情况,注意是二项分布还是超几何分布问题. 20.(1)14;(2)分布列见解析,数学期望为118. 【分析】(1)分析出第五局甲赢,前四局甲队赢两局,利用独立事件的概率乘法公式可求得所求事件的概率;(2)利用独立事件的概率乘法公式计算得出13P =,设甲队得分为X ,则X 的可能取值有0、1、2、3,计算出X 在不同取值下的概率,可得出随机变量X 的分布列,进而可求得()E X 的值. 【详解】(1)记事件A :甲队以3:2获胜,则第五局甲队胜,前面四局甲队赢两局,所以,()()33123312121123234P A P C P C ⎛⎫⎛⎫=⋅⋅⋅+-⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭;(2)记甲队以3:0获胜为事件B ,则()21112412P B P P ⎛⎫=⨯== ⎪⎝⎭,解得13P =. 记甲队得分为X ,则X 的可能取值有0、1、2、3, 若X 0=,则甲队以0:3或1:3落败,所以,()23312111111301113232328P X C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==-⋅-+⋅+-⋅⋅=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;若1X =,则甲队以2:3落败,所以,()331233111211113233238P X C C ⎛⎫⎛⎫==⋅⋅⋅+⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭;若2X =,则甲队以3:2获胜,所以,()()124P X P A ===; 若3X =,则甲队以3:0或3:1获胜,所以,()2231211111211332322324P X C ⎛⎫⎛⎫⎛⎫==⋅+⋅⋅⋅+⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以,随机变量X 的分布列如下表所示:因此,()012388448E X =⨯+⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 21.(1)1516;(2)分布列答案见解析,12p =. 【分析】(1)根据相互独立事件的概率计算“甲4次全部命中”的概率,用1减去“甲4次全部命中”的概率即可得出答案;(2)由题意得,X Y 的可能取值均为0,1,2,3,依据题意算出其概率,列出其分布列分布列,根据数学期望公式算出,EX EY ,由EX EY =建立方程解出p . 【详解】解:(1)“甲至多命中3次”的对立事件为“甲4次全部命中”,所以甲至多命中3次的概率为41151216⎛⎫-= ⎪⎝⎭.(2)X ,Y 的可能取值均为0,1,2,3. X 的分布列为所以31234442EX =⨯+⨯+⨯=. Y 的分布列为2322(1)124312122EY p p p p p p p =--++-=+-.由231222p p +-=,解得12p =.【点睛】离散型随机变量的均值与方差的常见类型及解题策略:(1)求离散型随机变量的均值与方差.可依题设条件求出离散型随机变量的分布列,然后利用均值、方差公式直接求解;(2)由已知均值或方差求参数值.可依据条件利用均值、方差公式得出含有参数的方程(组),解方程(组)即可求出参数值;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.22.(1)幼年期的猪215头,成长期的猪9540头,成年期的猪215头;(2)135450元. 【分析】(1)设各阶段猪的数量分别为123,,n n n ,根据猪的体重X 近似服从正态分布2(50,16)N ,分别求得(218)P X <,(1882)P X <,(8298)P X 即可.(2)随机变量Y 的所有可能取值为900,300,300-,分别求得其概率,列出分布列,再根据分布列利用均值公式求解. 【详解】(1)设各阶段猪的数量分别为123,,n n n , ∵猪的体重X 近似服从正态分布2(50,16)N ,0.9970.954(218)(50316502 16) 0.02152P X P X -∴<=-⨯<-⨯≈=,1100000.0215215n ∴=⨯=(头);(1882)(5021650216)0.954P X P X <=-⨯<+⨯≈2100000.9549540n ∴=⨯=(头);0.9970.954(8298)(5021650316) 0.02152P X P X -=+⨯+⨯≈=,3100000.0215215n ∴=⨯=(头)∴甲、乙两个养猪场各有幼年期的猪215头,成长期的猪9540头,成年期的猪215头. (2)随机变量Y 的所有可能取值为900,300,300-.43341137111(900),(300),(300)5455454205420P Y P Y P Y ==⨯===⨯+⨯==-=⨯=,Y ∴的分布列为()90030030063052020E Y ∴=⨯+⨯-⨯=(元),由于两个养猪场均有215头成年期的猪,且两个养猪场各出售一头成年期的猪所得的总利润的期望为630元,则总利润的期望为630215135450⨯=(元). 【点睛】方法点睛: (1)求离散型随机变量的均值与方差关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用均值、方差公式进行计算.(2)注意性质的应用:若随机变量X 的均值为E (X ),则对应随机变量aX +b 的均值是aE (X )+b ,方差为a 2D (X ). 23.(1)9721000;(2)2台. 【分析】(1)先求出年入流量X 的概率,根据二项分布可得未来3年中,至多有1年的年入流量超过120的概率;(2)分三种情况进行讨论,分别求出安装1台、2台、3台的数学期望,比较即可求解. 【详解】(1)依题意,得110(4080)0.250p P X =<<==, 235(80120)0.750p P X =≤≤==, 35(120)0.150p P X =>==. 由二项分布,记“在未来3年中,至多有1年的年入流量超过120”为事件A ,320133919729243972)101010100010001000P A C C ⎛⎫⎛⎫⎛⎫=+=+= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭( (2)记水电站年总利润为Y (单位:万元).①安装1台发电机的情形:由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润5000Y =,()500015000E Y =⨯=;②安装2台发电机的情形:依题意,当4080X <<时,一台发电机运行,此时50008004200Y =-=,因此1(4200)(4080)0.2P Y P X p ==<<==;当80X ≥时,两台发电机运行,此时5000210000Y =⨯=,因此23(10000)(80)0.8P Y P X p p ==≥=+=.由此得Y 的概率分布列如下:所以0.88840⨯=. ③安装3台发电机的情形:依题意,当4080X <<时,一台发电机运行,此时500016003400Y =-=, 因此1(3400)(4080)0.2P Y P X p ==<<==;当80120X ≤≤时,两台发电机运行,此时500028009200Y =⨯-=, 因此2(9200)(80120)0.7P Y P X p ==≤≤==;当120X >时,三台发电机运行,此时5000315000Y =⨯=,因此3(15000)(120)0.1P Y P X p ==>==,由此得Y 的概率分布列如下:所以,150000.18620+⨯=. 综上所述,欲使水电站年总利润的均值达到最大,应安装发电机2台. 【点睛】 思路点睛:求离散型随机变量的分布列及期望的一般步骤: (1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算).24.(1)列联表见解析,有;(2)分布列见解析,65.。
随机变量及其分布综合测试题一
随机变量及其分布综合测试题一一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知随机变量X 满足D (X )=2,则D (3X +2)=( ) A .2B .8C .18D .202.离散型随机变量X 的概率分布列如下,则c 等于( ) A .0.1B .0.24C .0.01D .0.763.设服从二项分布X ~B (n ,p )的随机变量X 的均值与方差分别是15和454n 、p 的值分别是( ) A .50,14B .60,14C .50,34D .60,344.某次语文考试中考生的分数X ~N (90,100),则分数在70~110分的考生占总考生数的百分比是( ) A .68.26%B .95.44%C .99.74%D .31.74%5.若随机变量X 服从正态分布,其正态曲线上的最高点的坐标是⎝⎛⎭⎫10,12,则该随机变量的方差等于( )A .10B .100 C.2πD.2π6.(2010·山东文,6)在某项项体育比赛中,七位裁判为一选手打出的分数如下: 90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A .92,2B .92,2.8C .93,2D .93,2.87.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4、0.5,则恰有一人击中敌机的概率为( ) A .0.9B .0.2C .0.7D .0.58.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( ) A .恰有1只是坏的 B .4只全是好的 C .恰有2只是好的 D .至多有2只是坏的9.某计算机网络有n 个终端,每个终端在一天中使用的概率为p ,则这个网络在一天中平均使用的终端个数为( )A .np (1-p )B .npC .nD .p (1-p )10.在高三某个班中,有14的学生数学成绩优秀,若从班中随机找出5名学生,那么,其中数学成绩优秀的学生数1X~B 5,4⎛⎫ ⎪⎝⎭,则k5-k513P(X=k)=C ?44k ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭取最大值时k 的值为( ) A .0 B .1 C .2D .311.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2.又已知E (X )=43,D (X )=29,则x 1+x 2的值为( ) A.53B.73 C .3D.11312.利用下列盈利表中的数据进行决策,应选择的方案是( )X 1 2 3 4 P0.20.30.4c自然状况A1A2A3A4S10.255070-2098S20.3065265282S30.45261678-10A.A1B.A2C.A3D.A4二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上)13.将一颗骰子连掷100次,则点6出现次数X的均值E(X)=________.14.一离散型随机变量X的概率分布列如下所示,且E(X)=1.5,则a-b=________.X 012 3P 0.1 a b 0.115.(2009·上海·理7)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望(均值)E(ξ)________(结果用最简分数表示)[答案]4 716.(2010·安徽理,15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是________(写出所有正确结论的编号).①P(B)=25;②P(B|A1)=511;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关.三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)袋中有5个大小相同的小球,其中1个白球和4个黑球,每次从中任取一球,每次取出的黑球不再放回去,直到取出白球为止.求取球次数X的均值和方差.18.(本题满分12分)9粒种子种在甲,乙,丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种.(1)求甲坑不需要补种的概率;(2)求3个坑中恰有1个坑不需要补种的概率;(3)求有坑需要补种的概率(精确到0.001).19.(本题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进进入第二次烧制,两次烧制过程相互独立.根据该厂现有技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6、0.5、0.75,Ⅰ.求第一次烧制后恰有一件产品合格概率;Ⅱ.经过前后两次烧制后,合格工艺品的个数为X,求随机变量X的均值.20.(本题满分12分)(2010·浙江杭州高二检测)甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A岗位服务的概率;(2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量X为这五名志愿者中参加A岗位服务的人数,求X的分布列.21.(本题满分12分)坛子里放着5个相同大小,相同形状的咸鸭蛋,其中有3个是绿皮的,2个是白皮的.如果不放回地依次拿出2个鸭蛋,求:(1)第一次拿出绿皮鸭蛋的概率;(2)第1次和第2次都拿到绿皮鸭蛋的概率;(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.22. (2010·山东理,20)某学校举行知识竞赛,第一轮选拔共设有A、B、C、D四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A、B、C、D分别加1分、2分、3分、6分,答错任一题减2分;②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;③每位参加者按问题A、B、C、D顺序作答,直至答题结束.假设甲同学对问题A、B、C、D回答正确的概率依次为34,12,13,14,且各题回答正确与否相互之间没有影响.(1)求甲同学能进入下一轮的概率; (2)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望Eξ.选修2-3第二章综合检测一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知随机变量X 满足D (X )=2,则D (3X +2)=( ) A .2 B .8 C .18 D .20[答案] C;[解析] D (3X +2)=9D (X )=18.2.离散型随机变量X 的概率分布列如下,则c 等于( ) A .0.1B .0.24C .0.01D .0.76[答案] A[解析] c =1-(0.2+0.3+0.4)=0.1.3.设服从二项分布X ~B (n ,p )的随机变量X 的均值与方差分别是15和454n 、p 的值分别是( ) A .50,14 B .60,14 C .50,34D .60,34[答案] B4.某次语文考试中考生的分数X ~N (90,100),则分数在70~110分的考生占总考生数的百分比是( ) A .68.26% B .95.44% C .99.74%D .31.74%[答案] B5.若随机变量X 服从正态分布,其正态曲线上的最高点的坐标是⎝⎛⎭⎫10,12,则该随机变量的方差等于( )A .10B .100 C.2πD.2π[答案] C;[解析] 由正态分布密度曲线上的最高点⎝⎛⎭⎫10,12知12π·σ=12,∴D (X )=σ2=2π. 6.(2010·山东文,6)在某项项体育比赛中,七位裁判为一选手打出的分数如下: 90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( ) A .92,2B .92,2.8C .93,2D .93,2.8[答案] B[解析] 本题考查了方差及平均值的概念,数据设置便于运算属基础题,可各减去90,得0,0,3,4,3.3+4+3+0+05=2,∴平均数为92,方差(2-0)2+(2-0)2+(2-3)2+(2-4)2+(2-3)25=2.8,选B. 7.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4、0.5,则恰有一人击中敌机的概率为( ) A .0.9B .0.2C .0.7D .0.5 [答案] D;设事件A 、B 分别表示甲、乙飞行员击中敌机,则P (A )=0.4,P (B )=0.5,事件恰有一人击中敌机的概X 1 2 3 4 P0.20.30.4c率为P(A B+A B)=P(A)·(1-P(B))+(1-P(A))·P(B)=0.5.8.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为() A.恰有1只是坏的B.4只全是好的C.恰有2只是好的D.至多有2只是坏的[答案]C; [解析]X=k表示取出的螺丝钉恰有k只为好的,则P(X=k)=C k7C4-k3C410k=1、2、3、4).∴P(X=1)=130,P(X=2)=310,P(X=3)=12,P(X=4)=16,∴选C.9.某计算机网络有n个终端,每个终端在一天中使用的概率为p,则这个网络在一天中平均使用的终端个数为()A.np(1-p) B.np C.n D.p(1-p)[答案] B[解析]每天平均使用的终端个数X~B(n,p),每天平均使用的终端个数值即E(X)=np,故答案选B.10.在高三某个班中,有14的学生数学成绩优秀,若从班中随机找出5名学生,那么,其中数学成绩优秀的学生数1X~B5,4⎛⎫⎪⎝⎭,则k5-k513P(X=k)=C?44k⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭取最大值时k的值为()A.0 B.1 C.2 D.3[答案] B11.若X是离散型随机变量,P(X=x1)=23,P(X=x2)=13,且x1<x2.又已知E(X)=43,D(X)=29,则x1+x2的值为() A.53 B.73C.3 D.113[答案]C12.利用下列盈利表中的数据进行决策,应选择的方案是()自然状况A1A2A3A4S10.255070-2098S20.3065265282S30.45261678-10A.A1B.A2C.A3D.A4[答案] C [解析]A1的均值为50×0.25+65×0.30+26×0.45=43.7.A2的均值为70×0.25+26×0.30+16×0.45=32.5.A3的均值为-20×0.25+52×0.30+78×0.45=45.7. A4的均值为98×0.25+82×0.30-10×0.45=44.6.∴选方案A3.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上)13.将一颗骰子连掷100次,则点6出现次数X 的均值E (X )=________. [答案] 503 [解析] 这是100次独立重复试验,X ~B ⎝⎛⎭⎫100,16,∴E (X )=100×16=503.14.一离散型随机变量X 的概率分布列如下所示,且E (X )=1.5,则a -b =________.X 0123P0.1 a b 0.1[答案] 0[解析] ∵⎩⎪⎨⎪⎧ a +b =0.8a +2b +0.3=1.5∴⎩⎪⎨⎪⎧a =0.4b =0.4 ∴a -b =0. 15.(2009·上海·理7)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望(均值)E (ξ)________(结果用最简分数表示)[答案] 47[解析] 本题考查概率、互斥事件、数学期望,以及运用知识解决问题的能力. 由题意,ξ的可能取值为0,1,2,则P (ξ=0)=C 25C 27=1021,P (ξ=1)=C 15C 12C 27=1021,P (ξ=2)=C 22C 27=121.∴ξ的分布列为∴ξ的数学期望E (ξ)=0×1021+1×1021+2×121=1221=47.16.(2010·安徽理,15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是________(写出所有正确结论的编号).①P (B )=25; ②P (B |A 1)=511; ③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件; ⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关. [答案] ②④[解析] 由条件概率知②正确.④显然正确.而且P (B )=P (B ∩(A 1∪A 2∪A 3)) =P (B ∩A 1)+P (B ∩A 2)+P (B ∩A 3)=P (A 1)·P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)P (B |A 3) =510·511+210·411+310·411=922. 故①③⑤不正确.三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)袋中有5个大小相同的小球,其中1个白球和4个黑球,每次从中任取一球,每次取出的黑球不再放回去,直到取出白球为止.求取球次数X 的均值和方差.[解析] 取球次数X 是一个随机变量,X 的所有可能值是1、2、3、4、5.为了求X 的均值和方差,可先求X 的分布列.P (X =1)=15=0.2, P (X =2)=45×14=0.2, P (X =3)=45×34×13=0.2,P (X =4)=45×34×23×12=0.2, P (X =5)=45×34×23×12×11=0.2. 于是,我们得到随机变量X 的分布列X 1 2 3 4 5 P0.20.20.20.20.2由随机变量的均值和方差的定义可求得:E (X )=1×0.2+2×0.2+3×0.2+4×0.2+5×0.2 =0.2×(1+2+3+4+5)=3,D (X )=(1-3)2×0.2+(2-3)2×0.2+(3-3)2×0.2+(4-3)2×0.2+(5-3)2×0.2=0.2×(22+12+02+12+22)=2. [点评] 把5个小球排成一排,在每一个位置上是白球的概率都是15,∴P (X =k )=15,k =1、2、3、4、5. 18.(本题满分12分)9粒种子种在甲,乙,丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种.(1)求甲坑不需要补种的概率; (2)求3个坑中恰有1个坑不需要补种的概率; (3)求有坑需要补种的概率(精确到0.001).[解析] (1)因为甲坑内3粒种子都不发芽的概率为(1-0.5)3=18, 所以甲坑不需要补种的概率为1-18=78=0.875.(2)3个坑恰有一个坑不需要补种的概率为C 13×78×⎝⎛⎭⎫182≈0.041.(3)因为3个坑都不需要补种的概率为⎝⎛⎭⎫783,所以有坑需要补种的概率为1-⎝⎛⎭⎫783≈0.330.19.(本题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进进入第二次烧制,两次烧制过程相互独立.根据该厂现有技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6、0.5、0.75,Ⅰ.求第一次烧制后恰有一件产品合格的概率;Ⅱ.经过前后两次烧制后,合格工艺品的个数为X ,求随机变量X 的均值. [解析] 分别记甲、乙、丙经第一次烧制后合格为事件A 1、A 2、A 3. Ⅰ.设E 表示第一次烧制后恰好有一件合格,则P (E )=P (A 1·A 2·A 3)+P (A 1·A 2·A 3)+P (A 1·A 2·A 3)=0.5×0.4×0.6+0.5×0.6×0.6+0.5×0.4×0.4=0.38. Ⅱ.解法一:因为每件工艺品经过两次烧制后合格的概率均为p =0.3,所以X ~B (3,0.3),故E (X )=np =3×0.3=0.9.解法二:分别记甲、乙、丙经过两次烧制后合格为事件A 、B 、C ,则 P (A )=P (B )=P (C )=0.3, 所以P (X =0)=(1-0.3)3=0.343,P (X =1)=3×(1-0.3)2×0.3=0.441, P (X =2)=3×0.32×0.7=0.189,P (X =3)=0.33=0.027. 于是,E (X )=1×0.441+2×0.89+3×0.027=0.9.20.(本题满分12分)(2010·浙江杭州高二检测)甲、乙等五名奥运志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量X 为这五名志愿者中参加A 岗位服务的人数,求X 的分布列. [解析] (1)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=A 33C 25A 44=140.即甲、乙两人同时参加A 岗位服务的概率是140.(2)记甲、乙两人同时参加同一岗位服务为事件E ,那么P (E )=A 44C 25A 44=110.所以,甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.(3)随机变量X 可能取的值为1,2,事件“X =2”是指有两人同时参加A 岗位服务,则P (X =2)=C 25A 33C 25A 44=14.所以P (X=1)=1-P (X =2)=34X 的分布列为:21.(本题满分12分)2个是白皮的.如果不放回地依次拿出2个鸭蛋,求:(1)第一次拿出绿皮鸭蛋的概率;(2)第1次和第2次都拿到绿皮鸭蛋的概率;(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.[解析] 设第1次拿出绿皮鸭蛋为事件A ,第2次拿出绿皮鸭蛋为事件B ,则第1次和第2次都拿出绿皮鸭蛋为事件AB .(1)从5个鸭蛋中不放回地依次拿出2个的基本事件数为μ(Ω)=A 25=20. 又μ(A )=A 13×A 14=12.于是P (A )=μ(A )μ(Ω)=1220=35. (2)因为μ(AB )=A 23=6,所以P (AB )=μ(AB )μ(Ω)=620=310.(3)解法一:由(1)(2)可得,在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率为 P (B |A )=P (AB )P (A )=31035=12.解法二:因为μ(AB )=6,μ(A )=12,所以P (B |A )=μ(AB )μ(A )=612=12.22.(本题满分14分)(2010·山东理,20)某学校举行知识竞赛,第一轮选拔共设有A 、B 、C 、D 四个问题,规则如下:①每位参加者计分器的初始分均为10分,答对问题A 、B 、C 、D 分别加1分、2分、3分、6分,答错任一题减2分;②每回答一题,计分器显示累计分数,当累计分数小于8分时,答题结束,淘汰出局;当累计分数大于或等于14分时,答题结束,进入下一轮;当答完四题,累计分数仍不足14分时,答题结束,淘汰出局;③每位参加者按问题A 、B 、C 、D 顺序作答,直至答题结束.假设甲同学对问题A 、B 、C 、D 回答正确的概率依次为34,12,13,14,且各题回答正确与否相互之间没有影响. (1)求甲同学能进入下一轮的概率;(2)用ξ表示甲同学本轮答题结束时答题的个数,求ξ的分布列和数学期望E ξ.[分析] 本题考查了相互独立事件同时发生的概率、考查了离散型随机变量的分布列以及数学期望的知识,考查了同学们利用所学知识解决实际问题的能力.解决的关键是理解题意,对于(1)问可借助对立事件解决,第(2)问的关键是分清每种情况的含义.[解析] (1)因为甲同学能进入下一轮与淘汰出局互为对立事件,所以甲同学能进入下一轮的概率为1-14×12+14×12×23+34×12×23=1324.(2)ξ可能取2,3,4,则P (ξ=2)=14×12=18;P (ξ=3)=34×12×13+34×12×23=38; P (ξ=4)=1-P (ξ=2)-P (ξ=3)=1-18-38=12, 所以ξ的分布列为数学期望E (ξ)=2×18+3×38+4×12=278.。
高二数学-选修2-3--随机变量及其分布-单元测试
高二数学-选修2-3--随机变量及其分布-单元测试-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2东莞中学高二数学 选修2-3 第二章《随机变量及其分布》单元测试一、选择题:将答案填在后面的表格里!1.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为: A.41004901C C -B.4100390110490010C C C C C + C.4100110C C D.4100390110C C C .2.位于坐标原点的一个质点P ,其移动规则是:质点每次移动一个单位,移动的方向向上或向右,并且向上、向右移动的概率都是21.质点P 移动5次后位于点(2,3)的概率是:A.5)21(B.525)21(CC.335)21(CD.53525)21(C C3.甲,乙两个工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所列,则有结论:A 甲的产品质量比乙的产品质量好一些;B 乙的产品质量比甲的产品质量好一些;C 两人的产品质量一样好;D 无法判断谁的质量好一些;4.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 A. 0.216 B.0.36 C.0.432 D.0.6485.把一枚质地不均匀.....的硬币连掷5次,若恰有一次正面向上的概率和恰有两次正面向上的概率相同(均不为0也不为1),则恰有三次正面向上的概率是: A .40243B .1027C .516D .102436.将三颗骰子各掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则概率)(B A P 等于: A 9160 B 21 C 185 D 216917.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是:A .95B .94 C .2111 D .2110 8.从甲口袋摸出一个红球的概率是31,从乙口袋中摸出一个红球的概率是21,则32是A .2个球不都是红球的概率 B. 2个球都是红球的概率C .至少有一个个红球的概率 D. 2个球中恰好有1个红球的概率9.通讯中常采取重复发送信号的办法来减少在接收中可能发生的错误,假定接收一个信号时发生错误的概率是101,为减少错误,采取每一个信号连发3次,接收时以“少数服从多数”的原则判断,则判错一个信号的概率为:A .1001 B .2507 C .2501 D .10001 10.右图中有一个信号源和五个接收器。
高中数学 第二章 随机变量及其分布学业质量标准检测练习(含解析)新人教A版高二选修2-3数学试题
第二章 学业质量标准检测时间120分钟,满分150分.一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法不正确的是( C )A .某辆汽车一年中发生事故的次数是一个离散型随机变量B .正态分布随机变量等于一个特定实数的概率为0C .公式E (X )=np 可以用来计算离散型随机变量的均值D .从一副扑克牌中随机抽取5X ,其中梅花的X 数服从超几何分布[解析] 公式E (X )=np 并不适用于所有的离散型随机变量的均值的计算,适用于二项分布的均值的计算.故选C .2.若在甲袋内装有8个白球、4个红球,在乙袋内装有6个白球、5个红球,现从两袋内各任意取出1个球,设取出的白球个数为X ,则下列概率中等于C 18C 15+C 14C 16C 112C 111的是( C )A .P (X =0)B .P (X ≤2)C .P (X =1)D .P (X =2)[解析] 由已知易知P (X =1)=C 18C 15+C 14C 16C 112C 111.3.已知10件产品中有3件是次品,任取2件,若X 表示取到次品的件数,则E (X )等于( A )A .35 B .815 C .1415D .1[解析] 由题意知,随机变量X 的分布列为∴E (X )=0×715+1×715+2×15=15=5.4.(2018·全国卷Ⅱ理,8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( C )A .112B .114C .115 D .118[解析] 不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 210=45种情况,而和为30的有7+23,11+19,13+17这3种情况,∴所求概率为345=115.故选C .5.甲、乙、丙三人参加某项测试,他们能达标的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是( C )A .0.16B .0.24C .0.96D .0.04[解析] 三人都不达标的概率是(1-0.8)×(1-0.6)×(1-0.5)=0.04,故三人中至少有一人达标的概率为1-0.04=0.96.6.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( C )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的[解析]X =k 表示取出的螺丝钉恰有k 只为好的,则P (X =k )=C k 7C 4-k3C 410(k =1、2、3、4).∴P (X =1)=130,P (X =2)=310, P (X =3)=12, P (X =4)=16,∴选C .7.(2020·全国卷Ⅲ)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( C )A .0.01B .0.1C .1D .10[解析] 因为数据ax i +b i (i =1,2,…,n )的方差是数据x i (i =1,2,…,n )的方差的a 2倍,所以所求数据方差为102×0.01=1.故选C .8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X 为该群体的10位成员中使用移动支付的人数,DX =2.4,P (X =4)<P (X =6),则p =( B )A .0.7B .0.6C .0.4D .0.3[解析] 由题意可知,10位成员中使用移动支付的人数X 服从二项分布,即X ~B (10,p ),所以DX =10p (1-p )=2.4,所以p =0.4或0.6.又因为P (X =4)<P (X =6),所以C 410p 4·(1-p )6<C 610p 6(1-p )4,所以p >0.5,所以p =0.6.二、多项选择题(本大题共4个小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.指出下列随机变量是离散型随机变量的是( AB ) A .小明回答20道选择题,答对的题数 B .某超市5月份每天的销售额C .某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差XD .某某某某市长江水位监测站所测水位在(0,29]这一X 围内变化,该水位站所测水位X [解析] A 项,小明回答的题数X 的取值可以一一列出,故X 为离散型随机变量;B 项,某超市5月份每天销售额可以一一列出,故为离散型随机变量;C 项,实际测量值与规定值之间的差值无法一一列出,不是离散型随机变量,D 项,不是离散型随机变量,水位在(0,29]这一X 围内变化,不能按次序一一列举.故选AB .10.把一条正态曲线C 1沿着横轴方向向右移动2个单位,得到一条新的曲线C 2,下列说法中正确的是( ABC )A .曲线C 2仍然是正态曲线B .曲线C 1和曲线C 2的最高点的纵坐标相等C .以曲线C 2为概率密度曲线的总体的期望比以曲线C 1为概率密度曲线的总体的期望大2D .以曲线C 2为概率密度曲线的总体的方差比以曲线C 1为概率密度曲线的总体的方差大2 [解析] 正态曲线沿着横轴方向水平移动只改变对称轴位置,曲线的形状没有改变,所得的曲线依然是正态曲线.在正态曲线沿着横轴方向水平移动的过程中,σ始终保持不变,所以曲线的最高点的纵坐标(即正态密⎭⎪⎫度函数的最大值12πσ不变,方差σ2也没有变化.设曲线C 1的对称轴为x =μ,那么曲线C 2的对称轴为x =μ+2,说明期望从μ变到了μ+2,增大了2.11.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论正确的是( ACD )A .2个球都是红球的概率为16B .2个球不都是红球的概率为13C .至少有1个红球的概率为23D .2个球中恰有1个红球的概率为12[解析] 设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2, 则P (A 1)=13,P (A 2)=12,且A 1,A 2独立;在A 中,2个球都是红球为A 1A 2,其概率为16,A 正确;在B 中,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为56,B 错误;在C 中,2个球中至少有1个红球的概率为1-P (A )P (B )=1-23×12=23,C 正确;在D中,2个球中恰有1个红球的概率为13×12+23×12=12,D 正确.故选ACD .12.甲罐中有3个红球、2个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出1个球放入乙罐,分别以A 1,A 2表示由甲罐中取出的球是红球、白球的事件,再从乙罐中随机取出1个球,以B 表示从乙罐中取出的球是红球的事件,下列命题正确的是( AD )A .P (B )=2330B .事件B 与事件A 1相互独立C .事件B 与A 2事件相互独立D .A 1,A 2互斥[解析] 由题意知P (A 1)=35,P (A 2)=25,P (B )=P (B |A 1)+P (B |A 2)=35×56+25×46==2330,A 正确;又P (A 1B )=12,因此P (A 1B )≠P (A 1)P (B ),B 错误;同理,C 错误;A 1,A 2不可能同时发生,故彼此互斥,故D 正确,故选AD .三、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知随机变量ξ的分布列如下表,则a =__0.2__,E (ξ)=__1.8__.[解析] ;E (ξ)=0×0.2+1×0.2+2×0.3+3×0.2+4×0.1=1.8.14.一盒子中装有4只产品,其中3只一等品,1只二等品,从中取产品两次,每次任取1只,做不放回抽样.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,则P (B |A )=__23__.[解析] 由条件知,P (A )=34,P (AB )=C 23C 24=12,∴P (B |A )=P AB P A =23.15.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1、A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是__②④__(写出所有正确结论的序号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.[解析] 从甲罐中取出一球放入乙罐,则A 1、A 2、A 3中任意两个事件不可能同时发生,即A 1、A 2、A 3两两互斥,故④正确,易知P (A 1)=12,P (A 2)=15,P (A 3)=310,又P (B |A 1)=511,P (B |A 2)=411,P (B |A 3)=411,故②对③错;∴P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)·P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3)=12×511+15×411+310×411=922,故①⑤错误.综上知,正确结论的序号为②④.16.在等差数列{a n }中,a 4=2,a 7=-4,现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续取数3次,假设每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为__625__.(用数字作答)[解析] 由a 4=2,a 7=-4可得等差数列{a n }的通项公式为a n =10-2n (n =1,2,3,…).{a n }的前10项分别为8,6,4,2,0,-2,-4,-6,-8,-10.由题意知三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为25,取得负数的概率为12,在三次取数中,取出的数恰好为两个正数和一个负数的概率为C 23(25)2(12)1=625.四、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少? (2)从2号箱取出红球的概率是多少?[解析] 记事件A :最后从2号箱中取出的是红球; 事件B :从1号箱中取出的是红球.P (B )=42+4=23. P (B )=1-P (B )=13.(1)P (A |B )=3+18+1=49.(2)∵P (A |B )=38+1=13,∴P (A )=P (A ∩B )+P (A ∩B ) =P (A |B )P (B )+P (A |B )P (B ) =49×23+13×13=1127. 18.(本题满分12分)(2019·全国Ⅱ卷理,18)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X 个球该局比赛结束.(1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.[解析] (1)X =2就是某局双方10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P (X =2)=0.5×0.4+(1-0.5)×(1-0.4)=0.5.(2)X =4且甲获胜,就是某局双方10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为前两球是甲、乙各得1分,后两球均为甲得分.因此所求概率为[0.5×(1-0.4)+(1-0.5)×0.4]×0.5×0.4=0.1.19.(本题满分12分)甲、乙两名工人加工同一种零件,两人每天加工的零件数相同,所得次品数分别为X ,Y ,X 和Y 的分布列如下表.试对这两名工人的技术水平进行比较.[解析]E (X )=0×610+1×110+2×310=0.7,D (X )=(0-0.7)2×610+(1-0.7)2×110+(2-0.7)2×310=0.81.工人乙生产出次品数Y 的数学期望和方差分别为E (Y )=0×510+1×310+2×210=0.7,D (Y )=(0-0.7)2×510+(1-0.7)2×310+(2-0.7)2×210=0.61.由E (X )=E (Y )知,两人生产出次品的平均数相同,技术水平相当,但D (X )>D (Y ),可见乙的技术比较稳定.20.(本题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与数学期望E (X ). [解析] (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4, 则P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为X 的数学期望E (X )=0×P (X =0)+1×P (X =1)+2×P (X =2)+3×P (X =3)+4×P (X =4)=0+1×521+2×1021+3×521+4×142=2. 21.(本题满分12分)某单位为了参加上级组织的普及消防知识竞赛,需要从两名选手中选出一人参加.为此,设计了一个挑选方案:选手从6道备选题中一次性随机抽取3题.通过考查得知:6道备选题中选手甲有4道题能够答对,2道题答错;选手乙答对每题的概率都是23,且各题答对与否互不影响.设选手甲、选手乙答对的题数分别为X ,Y . (1)写出X 的概率分布列(不要求计算过程),并求出E (X ),E (Y );(2)求D (X ),D (Y ).请你根据得到的数据,建议该单位派哪个选手参加竞赛. [解析] (1)X 的分布列为所以E (X )=1×15+2×35+3×5=2.由题意得,Y ~B (3,23),E (Y )=3×23=2.(2)由(1)得E (X )=E (Y ).D (X )=(1-2)2×15+(2-2)2×35+(3-2)2×15=25.∵Y ~B (3,23),∴D (Y )=3×23×13=23.∴D (X )<D (Y ).因此,建议该单位派甲参加竞赛.22.(本题满分12分)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.[解析] (1)令A 表示事件“三种粽子各取到1个”,由古典概型的概率计算公式有 P (A )=C 12C 13C 15C 310=14.(2)X 的可能取值为0,1,2,且 P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115综上知,X 的分布列为:故E (X )=0×715+1×15+2×15=5.。
高中数学 第2章 随机变量及其分布阶段性测试题二 新人教A版高二选修2-3数学试题
第二章 随机变量及其分布(时间:120分钟 满分:150分) 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若随机变量ξ的分布列如下表所示,则p 1的值为( )A .0B .215C .115D .1解析:由分布列的性质得15+23+p 1=1,得p 1=215.答案:B2.某校举行安全知识测试,约有2 000人参加,其测试成绩ξ~N (80,σ2)(σ>0,试卷满分100分),统计结果显示P (ξ≤65)=0.3,则此次安全知识测试成绩达到优秀(不低于95分)的学生人数约为( )A .200B .300C .400D .600解析:由正态分布密度曲线的对称性,可得P (ξ≥95)=P (ξ≤65)=0.3,所以测试成绩达到优秀的学生人数约为0.3×2 000=600,故选D.答案:D3.某射手射击所得的环数X 的分布列如下,如果命中8( ) A .0.3 B .0.4 C .0.5D .0.6解析:P =P (X =8)+P (X =9)+P (X =10)=0.3+0.25+0.05=0.6. 答案:D4.已知随机变量X 的分布列如下:X 1 2 3P0.20.5m若随机变量η=3X -1,则E (η)为( ) A .4.2 B .18.9C .5.3D .随m 变化而变化解析:因为0.2+0.5+m =1,所以m =0.3,所以E (X )=1×0.2+2×0.5+3×0.3=2.1.又η=3X -1,所以E (η)=3E (X )-1=3×2.1-1=5.3.答案:C5.设整数m 是从不等式x 2-2x -8≤0的整数解的集合S 中随机抽取的一个元素,记随机变量ξ=m ,则ξ的数学期望E (ξ)=( )A .1B .5C.147D.167解析:由x 2-2x -8≤0得,-2≤x ≤4,∴S ={-2,-1,0,1,2,3,4},∴ξ的分布列为ξ -2 -1 0 1 2 3 4 P17171717171717∴E (ξ)=-27-17+0+17+27+37+47=1,故选A.答案:A6.如图所示,在边长为1的正方形OABC 内任取一点P ,用M 表示事件“点P 恰好取自曲线y =x 2与直线y =1及y 轴所围成的曲边梯形内”,N 表示事件“点P 恰好取自阴影部分内”,则P (N |M )等于( )A.14B.15 C.16D.17解析:曲线y =x 2与直线y =1及y 轴所围成的曲边梯形的面积S M =⎠⎛01(1-x 2)d x =⎝⎛⎪⎪⎪x -⎭⎪⎫13x 310=1-13=23, 直线y =x 与曲线y =x 2围成的阴影部分的面积S N =⎠⎛01(x -x 2)d x =⎪⎪⎪⎝⎛⎭⎪⎫12x 2-13x 310=12-13=16, ∴P (M )=S MS 正方形OABC =23,P (MN )=S N S 正方形OABC =16,∴P (N |M )=P (MN )P (M )=1623=14,故选A.答案:A7.已知随机变量X ~N (μ,σ2),且P (μ-2σ<X <μ+2σ)=0.954 5,P (μ-σ<X <μ+σ)=0.682 7,若μ=4,σ=1,则P (5<X <6)=( )A .0.135 9B .0.135 8C .0.271 8D .0.271 6解析:P (5<X <6)=12[P (2<X <6)-P (3<X <5)]=12(0.954 5-0.682 7)=0.135 9.答案:A8.已知随机变量ξ,η满足ξ+η=8,且ξ服从二项分布B (10,0.6),则E (η)和D (η)的值分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6解析:由已知得E (ξ)=6,D(ξ)=2.4,所以E (η)=8-E (ξ)=2,D (η)=(-1)2D (ξ)=2.4.答案:B9.口袋中有n 个白球,3个红球,依次从口袋中任取一球,若取到红球,则继续取球,且取出的红球不放回;若取到白球,则停止取球.记取球的次数为X ,若P (X =2)=730,则下列结论错误的是( )A .n =7B .P (X =3)=7120C .E (X )=118D .D (X )=12解析:由P (X =2)=730,得C 13C 1n C 1n +3C 1n +2=730,即3n (n +3)(n +2)=730,整理得90n =7(n +2)(n+3),解得n =7⎝ ⎛⎭⎪⎫n =67舍去.X 的所有可能取值为1,2,3,4,P (X =1)=C 17C 110=710,P (X =3)=C 13C 12C 17C 110C 19C 18=7120,P (X =4)=C 13C 12C 11C 17C 110C 19C 18C 17=1120,所以E (X )=1×710+2×730+3×7120+4×1120=118,D (X )=⎝⎛⎭⎪⎫1-1182×710+⎝⎛⎭⎪⎫2-1182×730+⎝⎛⎭⎪⎫3-1182×7120+⎝⎛⎭⎪⎫4-1182×1120=77192.答案:D10.已知随机变量X 服从正态分布N (2,σ2),其正态分布密度曲线为函数ƒ(x )的图象,且⎠⎛02ƒ(x )d x =13,则P (x >4)=( )A.16B.14 C.13D.12解析:∵X ~N (2,σ2),∴ƒ(x )的图象关于x =2对称,由⎠⎛02ƒ(x )d x =13得P (0<X ≤2)=13,P (X >4)=12-P (0<X ≤2)=12-13=16,故选A. 答案:A11.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击6次,有3次命中且恰有2次连续命中的概率为( )A .C 36⎝ ⎛⎭⎪⎫126B .A 24⎝ ⎛⎭⎪⎫126C .C 24⎝ ⎛⎭⎪⎫126D .C 14⎝ ⎛⎭⎪⎫126解析:先排3次未命中结果只有一种,产生四个空位,选两个空位插入2次连续命中和1次命中,所以3次命中且恰有2次连续命中的概率为A 24⎝ ⎛⎭⎪⎫126,故选B.答案:B12.(2019·某某浙南名校联盟期末)已知随机变量X 的分布列如下表:其中a ,b ,c >0.若X 的方差D (X )≤3对所有a ∈(0,1-b )都成立,则( )A .0<b ≤13B .0<b ≤23C.13≤b <1D.23≤b <1 解析:由X 的分布列可得X 的期望为E (X )=-a +c ,又a +b +c =1, 所以X 的方差D (X )=(-1+a -c )2a +(a -c )2b +(1+a -c )2c=(a -c )2(a +b +c )-2(a -c )2+a +c =-(a -c )2+a +c=-(2a -1+b )2+1-b =-4⎝ ⎛⎭⎪⎫a -1-b 22+1-b , 因为a ∈(0,1-b ),所以当且仅当a =1-b2时,D (X )取最大值1-b .又D (X )≤13对所有a ∈(0,1-b )都成立,所以只需1-b ≤13,解得b ≥23,所以23≤b <1.故选D.答案:D第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.(2019·某某一中高二期末)已知有一匀速转动的圆盘,其中心有一个固定的小目标M ,甲、乙两人站在距离圆盘边缘2 m 处的地方向圆盘中心抛掷小圆环,他们抛掷的小圆环能套上小目标M 的概率分别为14与15,现甲、乙两人分别用小圆环向圆盘中心各抛掷一次,则小目标M 被套上的概率为________.解析:小目标M 被套上包括甲抛掷的小圆环套上、乙抛掷的小圆环没有套上;乙抛掷的小圆环套上、甲抛掷的小圆环没有套上;甲、乙抛掷的小圆环都套上,所以小目标M 被套上的概率P =14×⎝ ⎛⎭⎪⎫1-15+⎝ ⎛⎭⎪⎫1-14×15+14×15=25.答案:2514.若A ={1,2,3,-1,-2},且a∈A,b∈A,c∈A,则a ,b ,c 这三数中恰有两个正数一个负数的概率为________.解析:P =C 23×32×253=54125. 答案:5412515.若A ,B ,C 相互独立,且P (AB )=16,P (B C )=18,P (AB C )=18,则P (A )=________,P (B )=________,P (C )=________.解析:设P (A )=x ,P (B )=y ,P (C )=z ,由题意得⎩⎪⎨⎪⎧ xy =16,(1-y )z =18,xy (1-z )=18,得⎩⎪⎨⎪⎧z =14,y =12,x =13.答案:13121416.有10道数学单项选择题,每题选对得4分,不选或选错得0分,已知某考生能正确答对其中的7道题,余下的3道题每题能正确答对的概率为13.假设每题答对与否相互独立,记ξ为该考生答对的题数,η为该考生的得分,则P (ξ=9)=________,E (η)=________(用数字作答).解析:P (ξ=9)=C 23⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫1-13=29.依题意,ξ的可能取值为7,8,9,10,η=4ξ.P (ξ=7)=C 03⎝⎛⎭⎪⎫1-133=827, P (ξ=8)=C 13×13×⎝⎛⎭⎪⎫1-132=49,P (ξ=9)=29, P (ξ=10)=⎝ ⎛⎭⎪⎫133=127,∴E (ξ)=7×827+8×49+9×29+10×127=8,E (η)=E (4ξ)=4E (ξ)=32.答案:2932三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明,证明过程或演算步骤)17.(10分)设随机变量ξ的分布列为P (ξ=k )=15(k =1,2,3,4,5).求:(1)E (ξ+2)2;(2)D (2ξ-1).解:(1)∵E (ξ)=1×15+2×15+3×15+4×15+5×15=3,E (ξ2)=1×15+22×15+32×15+42×15+52×15=11,E (ξ+2)2=E (ξ2+4ξ+4)=E (ξ2)+4E (ξ)+4=11+12+4=27.(2)D (ξ)=(1-3)2×15+(2-3)2×15+(3-3)2×15+(4-3)2×15+(5-3)2×15=2,D (2ξ-1)=22×D (ξ)=8.18.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x (同一组中的数据用该组区间的中点值作代表)和样本方差s 2;(2)由直方图可以认为,这种产品的质量指标值Z 分布服从N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2.①利用该正态分布,求P (187.8<Z <212.2);②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求E (X ).附:150≈12.2,若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 7,P (μ-2σ<Z <μ+2σ)=0.954 5.解:(1)抽取产品的质量指标值的样本平均数x 和样本方差s 2分别为x =170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 7,依题意知X ~B (100,0.682 7),所以E (X )=100×0.682 7=68.27.19.(12分)(2019·某某省部分重点中学高三起点考试)为了研究学生的数学核心素养与抽象能力(指标x )、推理能力(指标y )、建模能力(指标z )的相关性,将它们各自量化为1、2、3三个等级,再用综合指标w =x +y +z 的值评定学生的数学核心素养,若w ≥7,则数学核心素养为一级;若5≤w ≤6,则数学核心素养为二级;若3≤w ≤4,则数学核心素养为三级.为了了解某校学生的数学核心素养,调查人员随机访问了某校10名学生,得到如下数据:的概率;(2)从这10名学生中任取3人,其中数学核心素养等级是一级的学生人数记为X ,求随机变量X 的分布列及数学期望.解:(1)9A 4,A 7,A 10;数学核心素养为一级的学生是A 1,A 2,A 3,A 5,A 6,A 8.记“所取的2人的建模能力指标相同”为事件A ,记“所取的2人的综合指标值相同”为事件B ,则P (B |A )=P (AB )P (A )=C 23+C 22C 24+C 25=416=14.(2)由题意可知,数学核心素养为一级的学生为A 1,A 2,A 3,A 5,A 6,A 8, 非一级的学生为余下的4人, ∴X 的可能值为0,1,2,3, P (X =0)=C 06C 34C 310=130,P (X =1)=C 16C 24C 310=310,P (X =2)=C 26C 14C 310=12,P (X =3)=C 36C 04C 310=16,∴随机变量X 的分布列为∴E (X )=0×130+1×310+2×2+3×6=5.20.(12分)(2019·某某市高三联考)现有两种投资方案,一年后投资盈亏的情况如下表:投资股市:购买基金:(1)当p =14时,求q 的值;(2)已知甲、乙两人分别选择了“投资股市”和“购买基金”进行投资,如果一年后他们中至少有一人获利的概率大于45,求p 的取值X 围;(3)丙要将家中闲置的10万元钱进行投资,决定在“投资股市”和“购买基金”这两种方案中选择一种,已知p =12,q =16,那么丙选择哪种投资方案,才能使得一年后投资收益的数学期望较大?请说明理由.解:(1)∵“购买基金”后,投资结果只有“获利”“不赔不赚”“亏损”三种,且三种投资结果相互独立,∴p +13+q =1.又p =14,∴q =512.(2)记事件A 为“甲投资股市且获利”,事件B 为“乙购买基金且获利”,事件C 为“一年后甲、乙两人中至少有一人投资获利”,则C =A B ∪A B ∪AB ,且A ,B 独立.由题意可知,P (A )=12,P (B )=p ,∴P (C )=P (A B )+P (A B )+P (AB ) =12(1-p )+12p +12p =12+12p . ∵P (C )=12+12p >45,∴p >35.又p +13+q =1,q ≥0,∴p ≤23.∴p 的取值X 围为⎝ ⎛⎦⎥⎤35,23. (3)假设丙选择“投资股市”的方案进行投资,记X 为丙投资股市的获利金额(单位:万元),∴随机变量X 的分布列为则E (X )=4×12+0×18+(-2)×8=4.假设丙选择“购买基金”的方案进行投资,记Y 为丙购买基金的获利金额(单位:万元), ∴随机变量Y 的分布列为则E (Y )=2×12+0×13+(-1)×6=6.∵E (X )>E (Y ),∴丙选择“投资股市”,才能使得一年后的投资收益的数学期望较大.21.(12分)(2019·某某省五校协作体测试)食品安全问题越来越受到人们的重视,某超市在某种蔬菜进货前,要求食品安检部门对每箱蔬菜进行三轮各项指标的综合检测,只有三轮检测都合格,蔬菜才能在该超市销售.已知每箱这种蔬菜第一轮检测不合格的概率为17,第二轮检测不合格的概率为18,第三轮检测合格的概率为89,每轮检测只有合格与不合格两种情况,且各轮检测是否合格相互之间没有影响.(1)求每箱这种蔬菜不能在该超市销售的概率;(2)如果这种蔬菜能在该超市销售,则每箱可获利400元,如果不能在该超市销售,则每箱亏损200元,现有4箱这种蔬菜,求这4箱蔬菜总收益的分布列和数学期望.解:(1)记A i (i =1,2,3)分别为事件“第一、二、三轮检测合格”,A 为事件“每箱这种蔬菜不能在该超市销售”.由题设知P (A 1)=1-17=67,P (A 2)=1-18=78, P (A 3)=89,所以P (A )=1-P (A 1)P (A 2)P (A 3)=1-67×78×89=13.(2)设这4箱蔬菜的总收益为随机变量X ,则X 的所有可能取值为1 600,1 000,400,-200,-800,且P (X =1 600)=C 44×⎝ ⎛⎭⎪⎫234×⎝ ⎛⎭⎪⎫130=1681,P (X =1 000)=C 34×⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫131=3281, P (X =400)=C 24×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫132=2481, P (X =-200)=C 14×⎝ ⎛⎭⎪⎫231×⎝ ⎛⎭⎪⎫133=881, P (X =-800)=C 04×⎝ ⎛⎭⎪⎫230×⎝ ⎛⎭⎪⎫134=181. 故X 的分布列为X 的数学期望E (X )=1 600×81+1 000×81+400×81-200×81-800×181=800.22.(12分)为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解:(1)设顾客所获的奖励额为X . ①依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.②依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为所以顾客所获的奖励额的期望为E (X )=20×2+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案 1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1的期望为E (X 1)=20×16+60×3+100×6=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003. 对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2,则X 2的分布列为X 2的期望为E (X 2)=40×16+60×3+80×6=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003. 由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.。
高中数学《选修2-3》章节能力测试题(二)(测试范围:第二章:随机变量及其分布)
章节能力测试题(二)(测试范围:第二章:随机变量及其分布)一、选择题(本大题共12题,每小题5分,共60分) 1.若ξ~N (1,41),η=6ξ,则E η等于 A.1B.23 C.6D.362.20件产品中有5件次品,从中任取两件,可为随机变量的是 A.取到产品的件数 B.取到次品的件数 C.取到两件正品 D.取到两件次品3.设ξ~N (-5,4),η~N (0,1),那么P (-7<ξ<5)等于 A.P (-6<η<0) B.P (-1<η<0) C.P (-1<η<5)D.P (-21<η<25) 4.设E η=3,则E (3+5η)等于A.3B.5C.8D.185.设某项试验的成功率是失败率的2倍,用随机变量ξ去描述1次试验的成功次数,则p (ξ=0)等于A.0B.21 C. 31 D.32 6.如果随机变量ξ~N (μ,σ2),且E ξ=3,D ξ=1,则P (-1<ξ≤1)的值为 A.2Φ(1)-1 B.Φ(4)-Φ(2) C.Φ(2)-Φ(4) D.Φ(-4)-Φ(-2) 7.,则D ξ等于 A.0 D.18.从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是52,设ξ为途中遇到红灯的次数,则随机变量ξ的方差为 A.56 B.2518 C.256 D.12518 9.一袋内装有m 个白球,(n -m )个黑球,连续不放回地从袋中取球,直到取出黑球为止.设此时取出的白球数为ξ,则32A )(nmA m n ⋅-等于A.P (ξ=3)B.P (ξ≥2)C.P (ξ≤3)D.P (ξ=2)10.某正态总体的概率密度函数是偶函数,而且该函数的最大值为(2π21)-,若总体落在区间(-∞,x )内的概率为0.0013,则x 的值是 A.3 B.-3 C.2D.-211.则E ξ等于 A.61 B.241 C.-241 D.-6112.关于正态曲线性质的叙述,正确的是①曲线关于直线x =μ对称,并且曲线在x 轴上方 ②曲线关于y 轴对称,且曲线的最高点的坐标是(0,σπ21)③曲线最高点的纵坐标是σπ21,且曲线无最低点④当σ越大,曲线越“高瘦”;σ越小,曲线越“矮胖” A.①② B.②③ C.④③ D.①③ 二、填空题(本大题共4小题,每小题4分,共16分)13.正态分布曲线与x 轴之间的图形的面积为________________. 14.则随机变量η1=1ξ的分布列为:15.设一次试验的成功率为p ,进行100次独立重复试验,当p 为 值时,成功次数的标准差的值最大,且其最大值为 .另一随机变量η=2ξ-3,则E η= 、D η= .三、解答题(本大题共6小题, 共74分, 解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)某市有210名高中学生参加数学竞赛预赛,随机调阅了60名学生的答卷,成绩列表如下:(1)求样本的数学平均成绩及标准差(精确到0.01); (2)若总体服从正态分布,求此正态曲线的近似方程. 18.(本小题满分12分)一次数学测验由25道选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确的,每个选择正确答案得4分,不作出选择或选错不得分,满分100分.某学生选对任一题的概率为0.6,求此学生在这一次测验中的成绩的期望与方差.19.(本小题满分12分)甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92,(1)求该题被乙独立解出的概率;(2)求解出该题的人数ξ的数学期望和方差 20.(本小题满分12分)海关大楼顶端镶有A、B两面大钟,它们的日走时误差分别为ξ、ξ(单位:s),其分布如下:21.(本小题满分12分)抛掷两个骰子,取其中一个的点数为点P的横坐标,另一个的点数为点P的纵坐标,求连续抛掷这两个骰子三次,点P在圆x2+y2=16内次数ξ的概率分布.22.(本小题满分14分)已知两个同学答选择题的正确率分别为0.6和0.8,而选择题的评分标准是:答对一个得2分,答错一个得-1分.给出五个选择题,限定必须作答,设这两位同学答对题目的个数分别为随机变量ξ1和ξ2.(1)试求随机变量ξ1和ξ2的分布列;(2)试求两位同学得分的期望和方差.绝密★启用前数学参考答案与解析1.C 解析:∵ξ~N (1,41),∴E ξ=1,E η=6E ξ=6. 2.B 解析:随机变量的是一系列自然数的值,任取两件中,取到次品的件数可为0,1,2,即可作为随机变量,故应选B .3.C 解析:P (-7<ξ<5)5575(5)(7)()()(5)(1)22F F φφφφ+-+=--=-=--=P (-1<η<5),故应选C .4.D 解析:E (3+5η)=3+E (5η)=3+5E η=3+5×3=18.5.C即“ξ=0”表示试验失败,“ξ=1”表示试验成功,设失败率为p ,则成功率为2p .∴由p +2p =1,得p =31.6.B 解析:对正态分布,23,1E D μξσξ====,故P (-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2).故应选B .7.B 解析:0.40.4 1.22E ξ=++=,10.400.210.40.8D ξ=⨯+⨯+⨯=, 故应选B . 8.B 解析:ξ~B (3,52),∴D ξ=3×52×53=2518.故应选B . 9.D 解析:32A )(nmA m n ⋅-为取出的三个球中有一个黑球,两个白球的概率,即为P (ξ=2),故应选D .10.B 解析::f (x )=22eπ21σσx -,σπ21=(2π21)-,σ=1.Φ(x )=0.0013,Φ(-x )=0.9987. 查表知-x =3,∴x =-3.11.D 解析:由⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-=+-+08,0241,1824121p p p p 得p=241∴E ξ=-1×21+0×(41-2×241)+1×248=-61. 12.D 解析:由正态曲线性质可知曲线关于直线x =μ对称,并且曲线在x 轴上方,即①正确; 曲线是单峰的,它关于直线x =μ对称,曲线在x =μ即②不正确; 曲线最高点的纵坐标是σπ21,且曲线无最低点,即③正确; 当μ一定时,曲线的形状由σ确定.σ越大,曲线越“矮胖”,表示总体越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中,即④不正确,故应选D .13.1解析:由正态密度曲线图象的特征可知,曲线与x 轴之间的面积为1.14.解析:由η1=21ξ,对于不同的ξ有不同的取值y =21x ,有y 1=21x 1=-1,y 2=21x 2=-21,y 3=21x 3=0,y 4=1x 4=1,y 5=1x 5=1,y 6=1x 6=3,所以η1的分布列为15.21, 5解析:设成功次数为随机变量ξ,由题意可知ξ~B (100,p ). 那么σξ=ξD =)1(100p p -, 即D ξ=100p (1-p )=100p -100p 2.把上式看作一个以p 为自变量的一元二次函数,易知当p =21时,D ξ有最大值为25. 所以ξD 的最大值为5,即当p =21时,成功次数的标准差的最大值为5. 16.3, 4.8 解析:E η=2E ξ-3=2×(1×0.1+2×0.2+3×0.4+4×0.2+5×0.1)-3=2×3-3=3; D η=22·D ξ=22×[(1-3)2×0.1+(2-3)2×0.2+(3-3)2×0.4+(4-3)2×0.2+(5-3)2×0.1]=4×(0.4+0.2+0.2+0.4)=4.8. 17.解析:(1)平均成绩 x =601(4×6+5×15+6×21+7×12+8×3+9×3)=6, s 2=601[6(4-6)2+15(5-6)2+21×(6-6)2+12×(7-6)2+3×(8-6)2+3×(9-6)2]=1.5,∴s =1.22,即样本的数学平均成绩为6分,标准差为1.22.(2)以x =6,s =1.22作为总体学生的数学的平均成绩和标准差的估计值, 即μ=6,σ=1.22.则总体服从正态分布N (6,1.222). 正态曲线的近似方程为 y =5.12)6(2eπ222.11⨯--x .18.解析:设该学生在这次数学测验中选择正确答案的个数为ξ,所得的分数(成绩)为η,则η=4ξ. 由题知ξ~B (25,0.6),∴E ξ=25×0.6=15,D ξ=25×0.6×0.4=6, E η=E (4ξ)=4E ξ=60,D η=D (4ξ)=42×D ξ=16×6=96.答:该学生在这次测验中的成绩的期望与方差分别是60与96.19.解析:(1)记甲、乙分别解出此题的事件记为,A B . 设甲独立解出此题的概率为1P ,乙为2P . 则12()0.6,()P A P P B P ===1212122222()1()1(1)(1)0.920.60.60.920.40.320.8(2)(0)()()0.40.20.08(1)()()()()0.60.20.40.80.44(2)()()0.60.80.48:P A B P A B P P P P PP P P P P P P A P B P P A P B P A P B P P A P B ξξξξ+=-⋅=---=+-=∴+-=====⋅=⨯===+=⨯+⨯===⋅=⨯=则即的概率分布为4.096.136.2)()(4.01728.00704.01568.048.0)4.12(44.0)4.11(08.0)4.10(4.196.044.048.0244.0108.0022222=-=-==++=⋅-+⋅-+⋅-==+=⨯+⨯+⨯=ξξξξξE E D D E 或利用20.解析:∵E ξ1=0,E ξ2=0, ∴E ξ1=E ξ2.∵D ξ1=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.6,D ξ2=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-1)2×0.1=1.2, ∴D ξ1<D ξ2.由上可知A 面大钟的质量较好.点评:随机变量ξ方差的意义在于描述随机变量稳定与波动或集中与分散的状况,标准差σξ=ξD ,则体现随机变量取值与其期望值的偏差. 21.解析:由题意,可知P 点的坐标可能有6×6=36种情况,而符合题意的点只有下列8个:(1,1),(1,2),(2,1),(2,2),(3,1),(1,3),(2,3),(3,2). 那么在抛掷骰子时,点P 在圆x 2+y 2=16内的概率为368=92. 由题意可知ξ~B (3,92), 所以P (ξ=0)=03C (92)0(97)3=729343, P (ξ=1)=13C (92)1(97)2=729294, P (ξ=2)=23C (92)2(97)1=72984,P (ξ=3)=33C (92)3(97)0=7298. 可得22.1P 1=0.6;对于随机变量ξ2,它在每次试验中发生的概率为P 2=0.8,并且都服从二项分布ξ1~B (5,0.6),ξ2~B (5,0.8).所以所求ξ1、ξ2的分布列分别为:P (ξ1=0)=05C (0.6)0(0.4)5=0.01024; P (ξ1=1)=15C (0.6)1(0.4)4=0.0768; P (ξ1=2)=25C (0.6)2(0.4)3=0.2304; P (ξ1=3)=C 35(0.6)3(0.4)2=0.3456; P (ξ1=4)=C 45(0.6)4(0.4)1=0.2592; P (ξ1=5)=C 55(0.6)5(0.4)0=0.07776; P (ξ2=0)=C 05(0.8)0(0.2)5=0.00032;P (ξ2=1)=C 15(0.8)1(0.2)4=0.0064; P (ξ2=2)=C 25(0.8)2(0.2)3=0.0512;P (ξ2=3)=C 35(0.8)3(0.2)2=0.2048; P (ξ2=4)=C 45(0.8)4(0.2)1=0.4096;P (ξ2=5)=C 55(0.8)5(0.2)0=0.32768.(2)由题意可设这两位同学的得分为另外两个随机变量η1和η2,并且易知随机变量η1和η2与随机变量ξ1和ξ2有如下关系: η1=2ξ1+(-1)(5-ξ1)=3ξ1-5,η2=2ξ2+(-1)(5-ξ2)=3ξ2-5. 所以E η1=E (3ξ1-5)=3E ξ1-5, E η2=E (3ξ2-5)=3E ξ2-5, D η1=D (3ξ1-5)=32D ξ1, D η2=D (3ξ2-5)=32D ξ2. 又因为ξ1~B (5,0.6),ξ2~B (5,0.8), 所以E ξ1=5×0.6=3, E ξ2=5×0.8=4,D ξ1=5×0.6×0.4=1.2, D ξ2=5×0.8×0.2=0.8.那么E η1=E (3ξ1-5)=3E ξ1-5=3×3-5=9-5=4, E η2=E (3ξ2-5)=3E ξ2-5=3×4-5=12-5=7, D η1=D (3ξ1-5)=32D ξ1=9×1.2=10.8, D η2=D (3ξ2-5)=32D ξ2=9×0.8=7.2.。
人教新课标版数学高二-A版选修2-3 第二章 随机变量及其分布 阶段测评
阶段测评(二)时间:90分钟 满分:120分一、选择题(本大题共10小题,每小题5分,共50分) 1.若随机变量ξ的分布列如下表所示,则p 1=( )A .0 B.215 C.115D .1解析:由分布列性质 i =1np i =1,n =1,2,3,…,n ,得15+23+p 1=0.∴p 1=215.答案:B2.已知事件A 、B 发生的概率都大于零,则( ) A .如果A 、B 是互斥事件,那么A 与B -也是互斥事件 B .如果A 、B 不是相互独立事件,那么它们一定是互斥事件 C .如果A 、B 是相互独立事件,那么它们一定不是互斥事件 D .如果A ∪B 是必然事件,那么它们一定是对立事件解析:对A.若A 、B 互斥,则A 与B -不互斥;对B.若A 、B 不相互独立,则它们可能互斥,也可能不互斥;对C.是正确的.对D.当A ∪B 是必然事件,A ∩B 是不可能事件时,A 、B 才是对立事件.答案:C3.已知随机变量X 服从正态分布N (μ,σ2),且P (μ-2σ<X <μ+2σ)=0.954 4,P (μ-σ<X <μ+σ)=0.682 6.若μ=4,σ=1,则P (5<X <6)=( )A .0.135 9B .0.135 8C .0.271 8D .0.271 6解析:P (5<X <6)=12[P (2<X <6)-P (3<X <5)]=12(0.954 4-0.682 6)=0.135 9. 答案:A4.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位长度,移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是( )A.⎝ ⎛⎭⎪⎫125 B .C 25⎝ ⎛⎭⎪⎫125 C .C 35⎝ ⎛⎭⎪⎫123 D .C 25C 35⎝ ⎛⎭⎪⎫125解析:由于质点每次移动一个单位长度,移动的方向为向上或向右,移动五次后位于点(2,3),所以质点P 必须向右移动二次,向上移动三次,故其概率为C 35⎝ ⎛⎭⎪⎫123·⎝ ⎛⎭⎪⎫122=C 35⎝ ⎛⎭⎪⎫125=C 25⎝ ⎛⎭⎪⎫125. 答案:B5.某普通高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有一人达标的概率为( )A .0.015B .0.005C .0.985D .0.995解析:三人都不合格的概率为(1-0.9)×(1-0.8)×(1-0.75)=0.005. ∴至少有一人合格的概率为1-0.005=0.995. 答案:D6.设由“0”“1”组成的三位数组中,若用A 表示“第二位数字为‘0’的事件”,用B 表示“第一位数字为‘0’的事件”,则P (A |B )=( )A.25B.34C.12D.18解析:∵P (B )=1×2×22×2×2=12,P (A ∩B )=1×1×22×2×2=14,∴P(A|B)=P(A∩B)P(B)=1 2.答案:C7.已知随机变量ξ~N(0,σ2),则下面四个式子中能表示图中阴影部分面积的个数为()①12-Φ(a)②Φ(-a)-12③Φ(a)④12[Φ(-a)-Φ(a)]其中Φ(a)=P(ξ≤a)A.1个B.2个C.3个D.4个解析:正态曲线与x轴之间的面积为1,且关于y轴对称,所以①是正确的;∵Φ(-a)=P(ξ≤-a),∴由对称性可知,②④也是正确的,故选C.答案:C8.一名篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的均值为2(不计其他得分情况),则ab的最大值为()A.148 B.124C.112 D.16解析:由已知,得3a+2b+0×c=2,即3a+2b=2,所以ab=16×3a×2b≤16⎝⎛⎭⎪⎫3a+2b22=16.答案:D9.两台相互独立工作的电脑,产生故障的概率分别为a,b,则产生故障的电脑台数的均值为()A.ab B.a+bC.1-ab D.1-a-b解析:设产生故障的电脑台数为随机变量X,则X的取值为0,1,2,其分布列为:∴E(X)=a(1-b)+(1-a)b+2ab=a-ab+b-ab+2ab=a+b,故选B.答案:B10.利用下列盈利表中的数据进行决策,应选择的方案是()A.A12C.A3D.A4解析:分别求出方案A1,A2,A3,A4盈利的均值,得E(A1)=43.7,E(A2)=32.5,E(A3)=45.7,E(A4)=44.6,故选C.答案:C二、填空题(本大题共4小题,每小题5分,共20分)11.设随机变量ξ的分布列为P (ξ=k )=kn (k =1,2,3,4,5,6),则P (1.5<ξ<3.5)=________.解析:由概率和为1可求得n =21,则P (1.5<ξ<3.5)=P (ξ=2)+P (ξ=3)=521. 答案:52112.在等差数列{a n }中,a 4=2,a 7=-4.现从{a n }的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为__________(用数字作答).解析:由a 4=2,a 7=-4可得等差数列{a n }的通项公式为a n =10-2n (n =1,2,…,10).由题意,三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为25,取得负数的概率为12,在三次取数中,取出的数恰好为两个正数和一个负数的概率为C 23(25)2(12)1=625. 答案:62513.将一个大正方形平均分成9个小正方形,向大正方形区域随机地投掷一个点(每次都能投中),投中最左侧3个小正方形区域的事件记为A ,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B ,则P (A |B )=________.解析:根据几何概型,得P (AB )=19,P (B )=49,所以P (A |B )=P (AB )P (B )=14.答案:1414.一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为43; ③现从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是________.解析:①恰有一个白球的概率P =C 12C 24C 36=35,故①正确;②每次任取一球,取到红球次数X ~B ⎝ ⎛⎭⎪⎫6,23,其方差为6×23×⎝ ⎛⎭⎪⎫1-23=43,故②正确;③设A ={第一次取到红球},B ={第二次取到红球}, 则P (A )=23,P (AB )=4×36×5=25,∴P (B |A )=P (AB )P (A )=35,故③错; ④每次取到红球的概率P =23, 所以至少有一次取到红球的概率为 1-⎝ ⎛⎭⎪⎫1-233=2627,故④正确.答案:①②④三、解答题(本大题共4小题,第15~17小题各12分,第18小题14分,共50分)15.一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数.)解:(1)由古典概型中的概率计算公式知所求概率为p =C 34+C 33C 39=584.(2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742,P(X=2)=C13C14C12+C23C16+C33C39=4384,P(X=3)=C22C17C39=112,故X的分布列为从而E(X)=1×1742+2×4384+3×112=4728.16.在一个暗箱中装有5个手感、材质、大小都相同的球,其中有3个黑球,2个白球.(1)如果不放回地依次抽取2个球,则在第1次抽到黑球的条件下,第2次抽到黑球的概率.(2)如果从暗箱中任取2球,求在已知其中一个球为黑球的条件下,另一个球也是黑球的概率.解:(1)方法一:设“第1次抽到黑球”为事件A,“第2次抽到黑球”为事件B,则n(A)=A13×A14=12,n(AB)=A23=6,所以P(B|A)=n(AB)n(A)=612=12.方法二:P(A)=35,P(AB)=35×24=310.所以P(B|A)=P(AB)P(A)=31035=12.(2)方法一:设事件A表示“2球中至少有一个黑球”,事件B表示“2球都是黑球”.则n(A)=C25-C22=9,n(AB)=C23=3,所以P(B|A)=n(AB)n(A)=39=13.方法二:P(A)=C25-C22C25=910,P(AB)=C23C25=310.所以P(B|A)=P(AB)P(A)=310910=13.17.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).解:(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”,因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,P(B)=0.6×0.6×0.15×2=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C03·(1-0.6)3=0.064,P(X=1)=C13·0.6(1-0.6)2=0.288,P(X=2)=C23·0.62(1-0.6)=0.432,P (X =3)=C 33·0.63=0.216.分布列为因为X ~B )=3×0.6×(1-0.6)=0.72.18.某射手每次射击击中目标的概率是23,且各次射击的结果互不影响. (1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标,另外2次未击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分.在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分.记ξ为射手射击3次后的总得分数,求ξ的分布列.解:(1)设X 为射手在5次射击中击中目标的次数,则X ~B ⎝ ⎛⎭⎪⎫5,23.在5次射击中,恰有2次击中目标的概率为P (X =2)=C 25×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-233=40243.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A 4 A 5)+P (A 1A 2A 3A 4A 5)+P (A 1 A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881. (3)设“第i 次射击击中目标”为事件A i (i =1,2,3).由题意可知ξ的所有可能取值为0,1,2,3,6.P (ξ=0)=P (A1A2A 3)=⎝ ⎛⎭⎪⎫133=127;P (ξ=1)=P (A 1A2A 3)+P (A 1A 2A 3)+P (A1A 2A 3)=23×⎝ ⎛⎭⎪⎫132+13×23×13+⎝ ⎛⎭⎪⎫132×23=29; P (ξ=2)=P (A 1A 2A 3)=23×13×23=427;P (ξ=3)=P (A 1A 2A 3)+P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫232×13+13×⎝ ⎛⎭⎪⎫232=827;P (ξ=6)=P (A 1A 2A 3)=⎝ ⎛⎭⎪⎫233=827.所以ξ的分布列为:。
高中数学第二章《随机变量及其分布》测试题新人教A版选修
高中新课标选修〔2-3〕第二章随机变量及其分布测试题一、选择题1.将一枚均匀骰子掷两次,以下选项可作为此次试验的随机变量的是〔〕A.第一次出现的点数B.第二次出现的点数C.两次出现点数之和D.两次出现相同点的种数答案:C2.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4只,那么为〔〕A.恰有1只坏的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只坏的概率答案:B3.某人射击一次击中目标的概率为,经过3次射击,设X表示击中目标的次数,那么等于〔〕A.B.C.D.答案:A4.采用简单随机抽样从个体为6的总体中抽取一个容量为3的样本,那么对于总体中指定的个体a,前两次没被抽到,第三次恰好被抽到的概率为〔〕A.B.C.D.答案:D5.设,那么等于〔〕A.B.C.D.答案:C6.在一次反恐演习中,我方三架武装直升机分别从不同方位对同一目标发动攻击〔各发射一枚导弹〕,由于天气原因,三枚导弹命中目标的概率分别为,,,假设至少有两枚导弹命中目标方可将其摧毁,那么目标被摧毁的概率为〔〕A.B.C.D.答案:D7.设,那么落在内的概率是〔〕A.B.C.D.答案:D8.设随机变量X的分布列如下表,且,那么〔〕0 12 30 0.1 .1A.B.C.D.答案:C9.任意确定四个日期,设 X表示取到四个日期中星期天的个数,那么DX等于〔〕A.B.C.D.答案:B10.有5支竹签,编号分别为1,2,3,4,5,从中任取3支,以X表示取出竹签的最大号码,那么EX的值为〔〕A.4 B.C.D.5答案:B11.袋子里装有大小相同的黑白两色的手套,黑色手套15支,白色手套10只,现从中随机地取出只手套,如果2只是同色手套那么甲获胜,2只手套颜色不同那么乙获胜.试问:甲、乙获胜的时机是〔A.甲多B.乙多C.一样多D.不确定 2〕答案:C12.节日期间,某种鲜花进货价是每束元,销售价每束理.根据前五年销售情况预测,节日期间这种鲜花的需求量5元;节日卖不出去的鲜花以每束元价格处X服从如下表所示的分布:2030405000000000.20.35.30.15假设进这种鲜花500束,那么利润的均值为〔〕A.706元B.690元C.754元D.720元答案:A二、填空题13.事件相互独立,假设,那么.答案:14.随机量X 等可能地取1,2,3,⋯,,假设,等于.n答案:15.在4次独立重复中,随机事件A恰好生1次的概率不大于其恰好生两次的概率,事件A在一次中生的概率P的取范是.答案:16.某公司有5万元金用于投开目.如果成功,一年后可利12%;一旦失,一年后将失全部金的50%.下表是去200例似目开的施果.那么该公司一年后估计可获收益的均值是元.答案:4760三、解答题17.掷3枚均匀硬币一次,求正面个数与反面个数之差X的分布列,并求其均值和方差.解:,,1,3,且;,;,1 3.18.甲、乙两人独立地破译1个密码,他们能译出密码的概率分别为和,求1〕恰有1人译出密码的概率;2〕假设到达译出密码的概率为,至少需要多少乙这样的人.解:设“甲译出密码〞为事件A;“乙译出密码〞为事件B,那么.1〕.(2〕个乙这样的人都译不出密码的概率为..解得.到达译出密码的概率为,至少需要17人.19.生产工艺工程中产品的尺寸偏差,如果产品的尺寸与现实的尺寸偏差的绝对值不超过4mm的为合格品,求生产5件产品的合格率不小于的概率.〔精确到〕.解:由题意,求得.设表示5件产品中合格品个数,那么..故生产的5件产品的合格率不小于80%的概率为.20.甲、乙、丙三名射击选手,各射击一次,击中目标的概率如下表所示:选甲乙丙手概率假设三人各射击一次,恰有k名选手击中目标的概率记为.(1) 求X的分布列;〔2〕假设击中目标人数的均值是2,求P的值.解:〔1〕;,,,的分布列为0 1232〕,,.21.张华同学上学途中必须经过四个交通岗,其中在岗遇到红灯的概率均为,在岗遇到红灯的概率均为.假设他在4个交通岗遇到红灯的事件是相互独立的,X表示他遇到红灯的次数.〔1〕假设,就会迟到,求张华不迟到的概率;〔2〕求EX.解:〔1〕;.故张华不迟到的概率为.〔2〕的分布列为01 234.22.某种工程的射击比赛,开始时在距目标100m处射击,如果命中记3分,且停止射击;假设第一次射击未命中,可以进行第二次射击,但目标已在150m处,这时命中记2分,且停止射击;假设第二次仍未命中,还可以进行第三次射击,此时目标已在200m处,假设第三次命中那么记1分,并停止射击;假设三次都未命中,那么记 0分.射手甲在100m处击中目标的概率为,他的命中率与目标的距离的平方成反比,且各次射击都是独立的.1〕求这位射手在三次射击中命中目标的概率;(2〕求这位射手在这次射击比赛中得分的均值.解:记第一、二、三次射击命中目标分别为事件,三次都未击中目标为事件D,依题意,设在m处击中目标的概率为,那么,且,,即,,,.〔1〕由于各次射击都是相互独立的,∴该射手在三次射击中击中目标的概率.〔2〕依题意,设射手甲得分为X,那么,,,,.。
【高中】2020高中数学人教A版选修23第二章随机变量及其分布综合检测
【关键字】高中第二章推理与证明(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·开封高二检测)根据偶函数定义可推得“函数f(x)=x2在R上是偶函数”的推理过程是( )A.归纳推理B.类比推理C.演绎推理D.非以上答案【解析】根据演绎推理的定义知,推理过程是演绎推理,故选C.【答案】 C2.下面四个推理不是合情推理的是( )A.由圆的性质类比推出球的有关性质B.由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的【解析】A是类比推理,B、D是归纳推理,C不是合情推理.【答案】 C3.设n为正整数,f(n)=1+++…+,计算得f(2)=,f(4)>2,f(6)>,f(8)>3,f(10)>,观察上述结果,可推测出一般结论为( )A.f(2n)=B.f(2n)>C.f(2n)≥D.f(n)>【解析】观察所给不等式,不等式左边是f(2n),右边是,故选C.【答案】 C4.(2013·厦门高二检测)已知数列{an}的前n项和为Sn,且a1=1,Sn=n2an(n∈N*),可归纳猜想出Sn的表达式为( )A. B.C. D.【解析】由a1=1,得a1+a2=2,∴a2=,S2=;又1++a3=3,∴a3=,S3==;又1+++a4=4,得a4=,S4=.由S1=,S2=,S3=,S4=可以猜想Sn=.【答案】 A5.(2013·广州高二检测)已知x>0,由不等式x+≥2=2,x+=++≥3=3,…,可以推出结论:x+≥n+1(n∈N*),则a=( )A.2n B.3nC.n2 D.nn【解析】可以推出结论(x>0):即x+≥n+1(n∈N*),所以a=nn.【答案】 D6.用数学归纳法证明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=时,从n=k 到n=k+1时,等式左边应添加的式子是( )A.(k-1)2+2k2B.(k+1)2+k2C.(k+1)2D.(k+1)[2(k+1)2+1]【解析】n=k时,左边=12+22+…+(k-1)2+k2+(k-1)2…+22+12,n=k+1时,左边=12+22+…+(k-1)2+k2+(k+1)2+k2+(k-1)2+…+22+12,∴从n=k到n=k+1,左边应添加的式子为(k+1)2+k2.【答案】 B7.在等差数列{an}中,若a10=0,则有等式a1+a2+…+an=a1+a2+…+a19-n(n<19且n∈N*)成立,类比上述性质,在等比数列{bn}中,若b11=1,则有( ) A.b1·b2·…·bn=b1·b2·…·b19-nB.b1·b2·…·bn=b1·b2·…·b21-nC.b1+b2+…+bn=b1+b2+…+b19-nD.b1+b2+…+b n=b1+b2+…+b21-n【解析】令n=10时,验证即知选B.【答案】 B8.用数学归纳法证明不等式1n+1+1n+2+…+1n+n>1324的过程中,由n=k到n=k+1时,不等式左边的变化情况为( )A .增加12k +1B .增加12k +1+12k +1C .增加12k +1+12k +1,减少1k +1D .增加12k +1,减少1k +1【解析】 当n =k 时,不等式的左边=1k +1+1k +2+…+1k +k,当n =k +1时,不等式的左边=1k +2+1k +3+…+1k +1+k +1,所以1k +2+1k +3+…+1k +1+k +1-(1k +1+1k +2+…+1k +k )=12k +1+12k +1-1k +1,所以由n =k到n =k +1时,不等式的左边增加12k +1+12k +1,减少1k +1. 【答案】 C9.(2013·黄山高二检测)将石子摆成如图1的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 012项与5的差,即a 2 012-5=( )图1A .2018×2012B .2018×2011C .1009×2012D .1009×2011【解析】 a n -5表示第n 个梯形有n -1层点,最上面一层为4个,最下面一层为n +2个.∴a n -5=n -1n +62,∴a 2 012=2 011×2 0182=1 009×2 011. 【答案】 D10.(2012·江西高考)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199【解析】 利用归纳法,a +b =1,a 2+b 2=3,a 3+b 3=4=3+1,a 4+b 4=4+3=7,a5+b 5=7+4=11,a 6+b 6=11+7=18,a 7+b 7=18+11=29,a 8+b 8=29+18=47,a 9+b 9=47+29=76,a 10+b 10=76+47=123,规律为从第三组开始,其结果为前两组结果的和.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 11.已知x ,y ∈R ,且x +y <2,则x ,y 中至多有一个大于1,在用反证法证明时,假设应为________.【解析】 “至多有一个大于1”包括“都不大于1和有且仅有一个大于1”,故其对立面为“x ,y 都大于1”.【答案】 x ,y 都大于112.设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.【解析】 由于等差数列与等比数列具有类比性,且等差数列与和差有关,等比数列与积商有关,因此当等差数列依次每4项之和仍成等差数列时,类比到等比数列为依次每4项的积的商成等比数列.即T 4,T 8T 4,T 12T 8,T 16T 12成等比数列. 【答案】T 8T 4 T 12T 813.(2013·湖北高考)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n n +12=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n , ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________.【解析】 由N (n,4)=n 2,N (n,6)=2n 2-n ,…,可以推测:当k 为偶数时,N (n ,k )=⎝ ⎛⎭⎪⎫k 2-1n 2-⎝ ⎛⎭⎪⎫k2-2n ,于是N (n ,24)=11n 2-10n .故N (10,24)=11×102-10×10=1 000. 【答案】 1 00014.(2013·中山高二检测)在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比AE EB =ACBC,把这个结论类比到空间:在三棱锥A -BCD 中(如图2所示),面DEC 平分二面角A -CD -B 且与AB 相交于E ,则得到的类比的结论是________.图2【解析】 CE 平分角ACB ,而面CDE 平分二面角A -CD -B . ∴AC BC 可类比成S △ACD S △BCD ,故结论为AE EB =S △ACDS △BCD. 【答案】AE EB =S △ACD S △BCD三、解答题(本大题共4小题,共50分.解答应写出文字说明,证明过程或演算步骤) 15.(本小题满分12分)用综合法或分析法证明: (1)如果a ,b >0,则lg a +b 2≥lg a +lg b2;(2)6+10>23+2. 【证明】 (1)当a ,b >0时,有a +b2≥ab ,∴lga +b2≥lg ab ,∴lga +b 2≥12lg ab =lg a +lg b2. (2)要证6+10>23+2, 只要证(6+10)2>(23+2)2, 即260>248,这是显然成立的, 所以,原不等式成立.16.(本小题满分12分)(2012·福建高考)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 【解】 法一 (1)选择②式,计算如下: sin 215°+cos 215°-sin 15°cos 15° =1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sinα)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 法二 (1)同法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos 2α2+1+cos 60°-2α2-sin α(cos 30°cos α+ sin 30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.17.(本小题满分12分)等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2. (1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn(n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解】 (1)由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,∴d =2.故a n =2n -1+2,S n =n (n +2). (2)由(1)得b n =S n n=n + 2.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r 互不相等)成等比数列,则b 2q =b p b r , 即(q +2)2=(p +2)(r +2), ∴(q 2-pr )+(2q -p -r )2=0,∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∴(p +r2)2=pr ,(p -r )2=0.∴p =r ,与p ≠r 矛盾.∴数列{b n }中任意不同的三项都不可能成等比数列. 18.(本小题满分14分)设f (n )=1+12+13+…+1n (n ∈N *).求证:f (1)+f (2)+…+f (n -1)=n ·[f (n )-1](n ≥2,n ∈N *). 【证明】 当n =2时,左边=f (1)=1, 右边=2(1+12-1)=1,左边=右边,等式成立. 假设n =k 时,结论成立,即f (1)+f (2)+…+f (k -1)=k [f (k )-1],那么,当n =k +1时,f (1)+f (2)+…+f (k -1)+f (k )=k [f (k )-1]+f (k ) =(k +1)f (k )-k =(k +1)[f (k +1)-1k +1]-k =(k +1)f (k +1)-(k +1) =(k +1)[f (k +1)-1], ∴当n =k +1时结论仍然成立. ∴f (1)+f (2)+…+f (n -1) =n [f (n )-1](n ≥2,n ∈N *).此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
人教新课标版数学高二-高中数学选修2-3第二章《随机变量及其分布》测试题B卷
高中数学选修2-3第二章《随机变量及其分布》测试题B 卷考试时间:100分钟,满分:150分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分)1. 抛掷两枚骰子一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为/则“25” 表示的试验结果是()A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点C.第一枚1点,第二枚6点D.第一枚6点,第二枚1点 2. 若随机变量X 的分布列如下表,则E (X )等于()X 0 1 2 3 45P2x3x lx2x 3xX1 1A •西B 9C TD.帀3. 设随机变量g 服从正态分布NQ&),则函数f (x ) = x 2+2x+(不存在零点的概率为 ( )11B ,2716 D —81 815•设(是一个离散型随机变量,其分布列为:C. 1-乎6. 五一节放假,甲去北京旅游的概率为扌,乙、丙去北京旅游的概率分别为右壬假定三人的 行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为()593 A&巧1A.-41 B.—31 C.—22 D.-34.设随机变量(〜BQ, p ), q -5(4, p ),若P@l )=即则P (吃2)的值为()32 A ," 65C~ 则q 等于() A ・1-10 1p0.5]—2qB.D ・11 1 C 2D607. —套重要资料锁在一个保险柜中,现有〃把钥匙依次分给"名学生依次开柜,但其中只有 一把真的可以打开柜门,平均来说打开柜门需要试开的次数为()A. 1B. n8. 某人抛掷一枚硬币,出现正反的概率都是扌,构造数列{血},使得9•随机变量W 服从正态分布N(OJ),如果P(c<l) = 0.841 3,则P(-l<c<0)=() A. 0.341 3B. 0.3412C. 0.342 3D. 0.441 310. 如图所示的电路,有a, b, C 三个开关,每个开关开或关的概率都是扌,且是相互独立二、填空题(每小题6分.共24分)11. _________________________ 如图所示,A 、3两点5条连线并联,它们 在单位时间内能通过的最人信息量依次为2,3,4,32 现记从中任取三条线且在单位时间内通过的最人信 息总量为&则P(28)= ・12•某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;如果失败,年后将丧失全部资金的50%. F 表是过去200例类似项目开发的实施结果:投资成功投资失败 192例8例13•若"为非负实数,随机变量的概率分布如下表,则玩的最人值为 _______________ ,Dg 的最 大值为 ________ ■1211Cln —第〃次抛掷时出现正面 第〃次抛掷时岀现反面记必=山+血+…+4QWN)则S 」=2的概率为1-2D的,则灯泡甲亮的概率为()・--8B1-2D1A14.甲罐中有5个红球,2个白球和3个照球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以如,出和缶表示由甲罐取出的球是红球,白球和照球的事件:再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是__________________ (写出所有正确结论的编号).①P(B)=$;②③事件B与事件旳相互独立;④川,去,去是两两互斥的事件.三、解答题(共计76分).15.(本题满分12分)袋中有20个大小相同的球,其中记上0号的有10个,记上”号的有〃个(n = 1,2,3,4)•现从袋中任取一球,§表示所有取球的标号.(1)求(的分布列、期望和方差:(2)若q=g+b, Efj=l, D"=ll,试求a, b 的值.16.(本题满分12分)某市公租房的房源位于A、B、C三个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的.求该市的任4位申请人中:(1)恰有2人申请A片区房源的概率:(2)申请的房源所在片区的个数个的分布列与期望.17.(本题满分12分)某公交公司对某线路客源情况统计显示,公交车从每个停靠点出发后, 乘客人数及频率如卜•表:(1(2)全线途经10个停靠点,若有2个以上(含2个)停靠点出发后乘客人数超过18人的概率人于0.9,公交公司就考虑在该线路增加一个班次,请问该线路需要增加班次吗?18.(本题满分12分)一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机投掷两次,正四面体面朝下的数字分别为… 小,记(=凶一3)2+(小一3尸.(1)分别求出f取得最犬值和最小值时的概率;(2)求g的分布列.19.(本题满分14分)根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间[0,50], (50,100], (100,150], (150,200], (200,250], (250,300]进行分组,得到频率分布直方图如下图.(1)求直方图中x的值;(2)计算一年中空气质量为良或轻微污染的天数:(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.(结果用分数表示.已知57=78 125,27=128,3 2 7 3 8 123 __ _1 825十痂十1 825十1 825十9 125 = 9 125' *5 = 73x5)20.(本题满分14分)袋中装着标有数字1,2,3A5的小球各2个.从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;(3)计分介于20分到40分之间的概率.高中数学选修2-3第二章《随机变量及其分布》测试题B卷嗾家口一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,谴把正确答案的代号填在题后的括号内(每小题5分,共50分)1.【答案】D【解析】第一枚的点数减去第二枚的点数不小于5,即只能等于5,故选D2.【答案】C【解析】由分布列的性质可得2v+ 3A + 7x+2A + 3x+x= 1, ..•x=^,°・E(X) = 0x2x+lx3x20+2><7x+3x2i+4x3x+5x=40x=g ・3.【答案】C【解析】函数f(x) = x2 +2x+^不存在零点侧△ = 4-4歹因为g~N(l,/),所以“ =1, P(§>1) = * 4. 【答案】B【解析】因为随机变量§〜B(2, p),"〜B(4, p),又P@l)=l —P(F=O)=1 —(1—"尸=|, 解得〃=扌,所以"〜3(4, 则 P(?7>2) = 1 — = 0)—P(// = 1)=1 -(1 -分-* 5. 【答案】C【解析】由分布列的性质得:6. 【答案】B【解析】 因甲、乙、丙去北京旅游的概率分别为刍右 因此,他们不去北京旅游的概率分别为彳,令,2 3 4 3至少有1人去北京旅游的概率为P=1—弼 7. 【答案】C【解析】法一:(特殊值验证法)当”=2时,P(X=1)=P(X=2)=$ E(X)=|,即打开柜门需 要的次数为|,只有C 符合.法二:已知每一位学生打开柜门的概率为+所以打开柜门需要试开的次数的平均数(即数学 期望)为 吒+2斗+…+囲=屮. 8. 【答案】C【解析】依题意得知,-54=2-表示在连续四次抛掷中恰有三次出现正面,因此“S4=2”的概10. 【答案】B【解析】理解事件之间的关系,设F 闭合”为事件儿"闭合”为事件2闭合”为事件C,••• P( 一 1 <c<0)=P(0<c<l) =1—2[1-P (齐 1)]2= 0.341 3. 0<l-2t/<l,< 0<(/2<1,.0.5 + l-2g+b=l ,9.【答案】A则灯亮应为事件AC~B ,且A, C, ~B 之间彼此独立,且P (A )=P (B )=P (C )=g 所以P (A~BC)=P(A)P (帀)P(C)=g.二' 填空题(每小题6分共24分) 411. 【答案】5【解析】法一由己知(:的取值为7S9J0,门■ CACO 2 … 、C© P(C=9)=—5厂=十 P(C=I0)=w78 9 10 P丄53 102 51 10••• P@8)=P(c= 8)+P(g=9)+Pg= 10) =2.2 .±=4 10 5 10 5・ 法二 p (&8)=1—P (g=7)=l —言=了 12. 【答案】4 760【解析】 由题意知,一年后获利6 000元的概率为0.96,获利一25 000元的概率为0.04, 故一年后收益的期望是 6 000x0.96 + (-25 000)x0.04=4 760(元). 13. 【答案】| 1【解析】麻=〃+1冬|(0印弓);Dc=—p 2—p-bl<l. 14. 【答案】②④【解析】由题意知P (B )的值是由旳,出,缶中某一个事件发生所决定的,故①③错误;1 5 •••卩(附)=船=¥=寻,故②正确; 2由互斥事件的定义知④正确,故正确结论的编号是②④. 三、解答题(共计76分)• 15. 【解析】(1工的分布列为§0 1 2 3 4 P1 1 1 3 122010205A£?=0x|+1 x 务+2x 备+3x + (1 —1.5)嗨+(2 —1.5)嗨+(3-1.5)遥+(4—1.5)琨=2.75・ 6 分1 VP ^=7)="cf =? 陀=8尸clcf+ct3_ Io*龙=(0_1.5)諾(2)由Dt]=a2Dq.得672X2.75=11,即a=±2.又E”=aEc+b,所以当a=2时,由1= 2x1.5+/?,得〃=一2;当ci=-2时,由]=-2xl.5+/>,得b=4.\a=2 \a=—2A , 或, 即为所求. ..................... 12分[b=—2 [b=416•【解析】(1)法一:所有可能的申请方式有3」种,恰有2人申请A片区房源的申请方式有C》22种,从而恰有2人申请A片区房源的概率为罟鳥. ........... 6分法二:设对每位申请人的观察为一次试验,这是4次独立重复试验.记“申请A片区房源” 为事件4,则P(A)=£.从而,由独立重复试验中事件A恰发生k次的概率计算公式知,恰有2人申请A片区房源的概率为叱)=C4(|)-(|)-=^. ......................... 6分(2疋的所有可能值为1,2,3.P((=l)=莽寻時=2)= U(笃+W)=曇(或p(g=2)=普-2)=轨P(g=3)=^f^=細P(§=3)=警諾). ................................. 10 分综上知,(有分布列1 14 4 65从而有:E(O=l x57+2x—+3x-=— ......................... 12 分17.【解析】(1)由表知,乘客人数不超过24人的频率是0.10+0.15 + 0.25 + 0.20=0.70, 则从每个停靠点出发后,乘客人数不超过24人的概率约是0.70. ...................................... 6分(2)由表知,从每个停靠点出发后,乘客人数超过18人的概率约为$设途经10个停靠站, 乘车人数超过18人的个数为X,则X〜3(10, *),・•・ P(X>2)= 1 —P(X=0)—P(X= 1)=1 -C?o(l-|)lo-Cio|x(l-|)9= 1-(分。
人教A版数学高二选修2-3第二章《随机变量分布列》练习一
5. 袋中有大小相同的5个白球和3个黑球,从中任意摸出4个,求下列事件发生的概率.(Ⅰ)摸出2个或3个白球 ; (Ⅱ)至少摸出一个黑球.6. 已知甲、乙两人投篮的命中率分别为0.4和0.6.现让每人各投两次,试分别求下列事件的概率:(Ⅰ)两人都投进两球;(Ⅱ)两人至少投进三个球.作业答案1. B2. D3. 0.054. 114 5.(Ⅰ)P (A+B )= P (A )+P (B )=481325482325C C C C C C ⋅+⋅=76; (Ⅱ) P=1-4845C C =14131411=- 6.(Ⅰ)P(两人都投进两球)=0222)6.0()4.0(C 2022)6.0()4.0(C =.0576.036.016.0=⨯ (Ⅱ)P (两人至少投进三个球)=3072.01728.00768.00576.0=++第二课时例题例1 甲、乙二人参加普法知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,甲、乙二人依次各抽一题.(Ⅰ)甲抽到选择题、乙抽到判断题的概率是多少?(Ⅱ)甲、乙二人中至少有一人抽到选择题的概率是多少?(2000年新课程卷)例2 如图,用A 、B 、C 三类不同的元件连接成两个系统N 1、N 2.当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作.已知元件A 、B 、C 正常工作的概率依次为0.80,0.90,0.90.分别求系统N 1、N 2正常工作的概率P 1、P 2. (2001年新课程卷)例3 某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).(Ⅰ)求至少3人同时上网的概率;(Ⅱ)至少几人同时上网的概率小于0.3?(2002年新课程卷)。