(数学试卷九年级)第22章一元二次方程复习练习题
中考复习——一元二次方程及分式方程(附答案)
一元二次方程及分式方程专题训练一、填空题:(每题 3 分,共 36 分)1、当 a ____时,方程 (a-1) x2+x-2=0 是一元二次方程。
2、方程 2x (1+x)=3 的一般形式为_________。
3、当 x=____时,分式x+1x+2的值等于45。
4、方程 2x2=32 的解为____。
5、方程21-x2-1=11+x的解为____。
6、方程 x2-5x-6=0 可分解成____与____两个一元一次方程。
7、已知 m 是方程 x2-x-23=0 的一个根,则 m2-m=____。
8、2x2+4x+10=2 (x+___)2+____。
9、以-2 和 3 为根的一元二次方程为______(写出一个即可)。
10、如果方程 x2-3x+m=0 的一根为 1,那么方程的另一根为____。
11、如果方程x+1x-2-1=m2-x有增根,那么 m=____。
12、长 20m、宽 15m 的会议室,中间铺一块地毯,地毯的面积是会议室面积的12,若四周未铺地毯的留空宽度相同,则留空的宽度为____。
二、选择题:(每题 4 分,共 24 分)1、下列方程中是一元二次方程的是()A、x+3=5B、xy=3C、x2+1x=0 D、2x2-1=02、若关于 x 的方程2x-ax-1=1 无解,则 a 的值等于()A、0B、1C、2D、4 3、方程 2x (x-2)=3 (x-2) 的根是()A、x=32B、x=2C、x1=32,x2=2 D、x=-324、把方程 x2+3=4x 配方得()A、(x-2)2=7B、(x-2)2=1C、(x+2)2=1D、(x+2)2=25、某车间原计划 x 天内生产零件 50 个,由于采用新技术,每天多生产零件 5 个,因此提前3 天完成任务,则可列出的方程为()A、50x-3=50x-5 B、50x=50x-3-5 C、50x-3=50x-5 D、50x=50x-3-56、把一个小球以 20m/s 的速度竖直向上弹出,它在空中高度 h (m) 与时间 t (s) 满足关系:h=20t-5t2,当 h=20 时,小球的运动时间为()A、20sB、2sC、(22+2) sD、(22-2) s三、解下列方程:(每题 6 分,共 36 分)1、x (x+5)=24 2、2x2=(2+3) x 3、x2-4x=5 4、4 (x-1)2=(x+1)25、5x=7x-26、x+1x-1-1=4x2-1四、解答题:(每题 8 分,共 32 分)1、解关于 x 的方程ax-ab=1+x(a≠b)2、方程 x2+3x+m=0 的一个根是另一根的 2 倍,求 m 的值。
华师大版九年级上第22章一元二次方程单元复习题有答案解析
华师大版九年级上册第22章一元二次方程单元复习题姓名:;成绩:;一、选择题(4分×10=40分)1、(随州)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x-6)2=—4+36 B、(x-6)2=4+36C.(x-3)2=—4+9D、(x-3)2=4+92、(安顺)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A. 14 B. 12 C. 12或14 D.以上都不对3、(扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定4、(随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,约为20万人次,约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.85、(兰州)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x-1)(x-2)=18 D.x2+3x+16=0 6、(烟台)如果x2﹣x﹣1=(x+1)0,那么x的值为()A. 2或﹣1 B. 0或1 C. 2D.﹣17、(达州)方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围()A. m>B. m≤且m≠2C. m≥3D. m≤3且m≠28、(安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一9、(株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=110、(贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a 和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣511、(广州)定义运算:a★b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b★b﹣a★a的值为()A.0 B.1 C.2 D.与m有关12、(南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y 的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个二、填空题(4分×6=24分)13、(荆州)将二次三项式x2+4x+5化成(x+p)2+q的形式应为.14、(抚顺)若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为.15. (南通)设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=.16. (内蒙古)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为m.17. (如皋市校级二模)已知n是关于x的一元二次方程x2+m2x﹣2m=0(m为实数)的一个实数根,则n的最大值是.18. (安徽模拟)对于实数a、b定义:a*b=a+b,a#b=ab,如:2*(﹣1)=2+(﹣1)=1,2#(﹣1)=2×(﹣1)=﹣2.以下结论:①[2+(﹣5)]#(﹣2)=6;②(a*b)#c=c(a*b);③a*(b#a)=(a*b)#a;④若x>0,且满足(1*x)#(1#x)=1,则x=.正确的是(填序号即可)三、解答题(8分+6分=14分)19、(1)(山西)解方程:2(x﹣3)2=x2﹣9.(2)解方程:m2﹣6m﹣9991=0;20、解方程:(x2﹣5)2﹣3(x2﹣5)﹣4=0;四、解答题(10分×4=40分)21、(朝阳)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.22、(梅州)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.(1)求实数k的取值范围.(2)若方程两实根x1、x2满足x1+x2=﹣x1x2,求k的值.23、(重庆校级模拟)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=4, =14, =194;(2)2x2﹣7x+2=0(x≠0),求的值.24、(鄂州)关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=+x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.五、解答题(12分×2=24分)24、(荆州)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.25、(韶关模拟)如图,点A(2,2)在双曲线y1=(x>0)上,点C在双曲线y2=﹣(x<0)上,分别过A、C向x轴作垂线,垂足分别为F、E,以A、C为顶点作正方形ABCD,且使点B在x轴上,点D在y轴的正半轴上.(1)求k的值;(2)求证:△BCE≌△ABF;(3)求直线BD的解析式.华师大版九年级上册第22章一元二次方程单元复习题的解析一、选择题1、(随州)用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x-6)2=—4+36 B、(x-6)2=4+36C.(x-3)2=—4+9D、(x-3)2=4+9考点:解一元二次方程-配方法.分析:根据配方法,可得方程的解.解答:解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.点评:本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.2、(安顺)三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A. 14 B. 12 C. 12或14 D.以上都不对考点:解一元二次方程-因式分解法;三角形三边关系.分析:易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.解答:解:解方程x2﹣12x+35=0得:x=5或x=7.当x=7时,3+4=7,不能组成三角形;当x=5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12,故选B.点评:本题主要考查三角形三边关系,注意在求周长时一定要先判断是否能构成三角形.3、(扬州)已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定【分析】将M与N代入N﹣M中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.4、(随州)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,约为20万人次,约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是()A.20(1+2x)=28.8 B.28.8(1+x)2=20C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8【分析】设这两年观赏人数年均增长率为x,根据“约为20万人次,约为28.8万人次”,可得出方程.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8,故选C.【点评】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.5、(兰州)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x-1)(x-2)=18 D.x2+3x+16=0 【分析】可设原正方形的边长为xm,则剩余的空地长为(x﹣1)m,宽为(x﹣2)m.根据长方形的面积公式方程可列出.【解答】解:设原正方形的边长为xm,依题意有=18,故选C.【点评】本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键.6、(烟台)如果x2﹣x﹣1=(x+1)0,那么x的值为()A. 2或﹣1 B. 0或1 C. 2 D.﹣1考点:解一元二次方程-因式分解法;零指数幂.分析:首先利用零指数幂的性质整理一元二次方程,进而利用因式分解法解方程得出即可.解答:解:∵x2﹣x﹣1=(x+1)0,∴x2﹣x﹣1=1,即(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,当x=﹣1时,x+1=0,故x≠﹣1,故选:C.点评:此题主要考查了因式分解法解一元二次方程以及零指数幂的性质,注意x+1≠0是解题关键.7、(达州)方程(m﹣2)x2﹣x+=0有两个实数根,则m的取值范围()A. m>B. m≤且m≠2C. m≥3D. m≤3且m≠2考点:根的判别式;一元二次方程的定义.分析:根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到,然后解不等式组即可.解答:解:根据题意得,解得m≤且m≠2.故选B.8、(安顺)若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第()象限.A.四B.三C.二D.一考点:根的判别式;一次函数图象与系数的关系.分析:根据判别式的意义得到△=(﹣2)2+4m<0,解得m<﹣1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m﹣1图象经过的象限.解答:解:∵一元二次方程x2﹣2x﹣m=0无实数根,∴△<0,∴△=4﹣4(﹣m)=4+4m<0,∴m<﹣1,∴m+1<1﹣1,即m+1<0,m﹣1<﹣1﹣1,即m﹣1<﹣2,∴一次函数y=(m+1)x+m﹣1的图象不经过第一象限,故选D.9、(株洲)有两个一元二次方程M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c.下列四个结论中,错误的是()A.如果方程M有两个相等的实数根,那么方程N也有两个相等的实数根B.如果方程M的两根符号相同,那么方程N的两根符号也相同C.如果5是方程M的一个根,那么是方程N的一个根D.如果方程M和方程N有一个相同的根,那么这个根必是x=1考点:根的判别式;一元二次方程的解;根与系数的关系.分析:利用根的判别式判断A;利用根与系数的关系判断B;利用一元二次方程的解的定义判断C与D.解答:解:A、如果方程M有两个相等的实数根,那么△=b2﹣4ac=0,所以方程N 也有两个相等的实数根,结论正确,不符合题意;B、如果方程M的两根符号相同,那么方程N的两根符号也相同,那么△=b2﹣4ac≥0,>0,所以a与c符号相同,>0,所以方程N的两根符号也相同,结论正确,不符合题意;C、如果5是方程M的一个根,那么25a+5b+c=0,两边同时除以25,得c+b+a=0,所以是方程N的一个根,结论正确,不符合题意;D、如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误,符合题意;故选D.10、(贵港)若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a 和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣5【分析】根据方程的解析式结合根与系数的关系找出a+b=3、ab=p,利用完全平方公式将a2﹣ab+b2=18变形成(a+b)2﹣3ab=18,代入数据即可得出关于p的一元一次方程,解方程即可得出p的值,经验证p=﹣3符合题意,再将+变形成﹣2,代入数据即可得出结论.【解答】解:∵a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,∴a+b=3,ab=p,∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,∴p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,∴p=﹣3符合题意.+===﹣2=﹣2=﹣5.故选D.【点评】本题考查了根与系数的关系、解一元一次方程以及完全平方公式的应用,解题的关键是求出p=﹣3.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.11、(广州)定义运算:a★b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b★b﹣a★a的值为()A.0 B.1 C.2 D.与m有关【分析】由根与系数的关系可找出a+b=1,ab=m,根据新运算,找出b★b﹣a★a=b(1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.【解答】解:∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,ab=m.∴b★b﹣a★a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.故选A.【点评】本题考查了根与系数的关系,解题的关键是找出a+b=1,ab=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.12、(南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y 的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m﹣2n≤1,其中正确结论的个数是()A.0个B.1个C.2个D.3个考点:根与系数的关系;根的判别式.专题:计算题.分析:①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出m2﹣2n≥0以及n2﹣2m≥0,进而得解;③可以采用举例反证的方法解决,据此即可得解.解答:解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1x2=2n>0,y1y2=2m>0,y1+y2=﹣2n<0,x1+x2=﹣2m<0,这两个方程的根都为负根,①正确;②由根判别式有:△=b2﹣4ac=4m2﹣8n≥0,△=b2﹣4ac=4n2﹣8m≥0,4m2﹣8n=m2﹣2n≥0,4n2﹣8m=n2﹣2m≥0,m2﹣2m+1+n2﹣2n+1=m2﹣2n+n2﹣2m+2≥2,(m﹣1)2+(n﹣1)2≥2,②正确;③∵y1+y2=﹣2n,y1y2=2m,∴2m﹣2n=y1+y2+y1y2,∵y1与y2都是负整数,不妨令y1=﹣3,y2=﹣5,则:2m﹣2n=﹣8+15=7,不在﹣1与1之间,③错误,其中正确的结论的个数是2,故选C.点评:本题主要考查了根与系数的关系,以及一元二次方程的根的判别式,还考查了举例反证法,有一定的难度,注意总结.二、填空题13、(荆州)将二次三项式x2+4x+5化成(x+p)2+q的形式应为(x+2)2+1.【分析】直接利用完全平方公式将原式进行配方得出答案.【解答】解:x2+4x+5=x2+4x+4+1=(x+2)2+1.故答案为:(x+2)2+1.【点评】此题主要考查了配方法的应用,正确应用完全平方公式是解题关键.14. (抚顺)若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为a ≤且a≠1.【分析】由一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a﹣1≠0,即a≠1,且△≥0,即△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,然后解两个不等式得到a的取值范围.【解答】解:∵一元二次方程(a﹣1)x2﹣x+1=0有实数根,∴a﹣1≠0即a≠1,且△≥0,即有△=(﹣1)2﹣4(a﹣1)=5﹣4a≥0,解得a≤,∴a的取值范围是a≤且a≠1.故答案为:a≤且a≠1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程的定义.15. (南通)设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)= 3.【分析】由题意可知x22﹣3x2=1,代入原式得到x1+x2,根据根与系数关系即可解决问题.【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,∴x12﹣3x1﹣1=0,x22﹣3x2﹣1=0,x1+x2=3,∴x22﹣3x2=1,∴x1+x2(x22﹣3x2)=x1+x2=3,故答案为3.【点评】本题考查根与系数关系、一元二次方程根的定义,解题的关键是灵活运用根与系数的关系定理,属于中考常考题型.16. (内蒙古)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为2m.【分析】设人行道的宽度为x米,根据矩形绿地的面积之和为480米2,列出一元二次方程.【解答】解:设人行道的宽度为x米,根据题意得,(30﹣3x)(24﹣2x)=480,解得x1=20(舍去),x2=2.即:人行通道的宽度是2m.故答案是:2.【点评】本题考查了一元二次方程的应用,利用两块相同的矩形绿地面积之和为480米2得出等式是解题关键.17. (如皋市校级二模)已知n是关于x的一元二次方程x2+m2x﹣2m=0(m为实数)的一个实数根,则n的最大值是1.【分析】由n是方程的根可得nm2﹣2m+n2=0且△=(﹣2)2﹣4nn2≥0,继而可得n的取值范围,即可知n的最大值.【解答】解:∵n是方程x2+m2x﹣2m=0(m为实数)的一个实数根,∴nm2﹣2m+n2=0,且△=(﹣2)2﹣4nn2≥0,即4﹣4n3≥0,∴n3≤1,则n≤1,∴n的最大值为1,故答案为:1.【点评】本题主要考查一元二次方程的解与根的判别式,根据题意得出关于n的不等式是解题的关键.18. (安徽模拟)对于实数a、b定义:a*b=a+b,a#b=ab,如:2*(﹣1)=2+(﹣1)=1,2#(﹣1)=2×(﹣1)=﹣2.以下结论:①[2+(﹣5)]#(﹣2)=6;②(a*b)#c=c(a*b);③a*(b#a)=(a*b)#a;④若x>0,且满足(1*x)#(1#x)=1,则x=.正确的是①②④(填序号即可)【分析】先读懂题意,根据题意求出每个式子的左边和右边,再判断是否正确即可.【解答】解:∵[2+(﹣5)]#(﹣2)=(﹣3)#(﹣2)=6,∴①正确;∵(a*b)#c=(a+b)#c=(a+b)c=ac+bc,c(a*b)=c(a+b)=ac+bc,∴②正确;∵a*(b#a)=a*ab=a+ab,(a*b)#a=(a+b)#a=(a+b)a=a2+ab,∴③错误;∵(1*x)#(1#x)=1,∴(1+x)#(x)=1,(1+x)x=1,x2+x﹣1=0,解得:x2=,x2=,∵x>0,∴x=,∴④正确.故答案为:①②④.【点评】本题考查了整式的混合运算,解一元二次方程,有理数的混合运算的应用,能正确根据运算法则和新运算进行化简和计算是解此题的关键.三、解答题19、(1)(山西)解方程:2(x﹣3)2=x2﹣9.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.(2)解方程:m2﹣6m﹣9991=0;【分析】①先进行配方,然后直接开平方求出方程的解;【解答】解:①∵m2﹣6m﹣9991=0,∴m2﹣6m+9﹣9﹣9991=0,∴(m﹣3)2=10000,∴m﹣3=±100,∴m1=103,m2=﹣97;20、解方程:(x2﹣5)2﹣3(x2﹣5)﹣4=0;【分析】把x2﹣5看成一个整体,利用因式分解法解方程即可;【解答】解:∵(x2﹣5)2﹣3(x2﹣5)﹣4=0,∴(x2﹣5)2﹣3(x2﹣5)+﹣﹣4=0,∴(x2﹣5﹣)2=,∴x2﹣=±,∴x2=,∴x2=或x2=,x=±2或x=±3,∴x1=2,x2=﹣2,x3=3,x4=﹣3;四、解答题21、(朝阳)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.【分析】设每个粽子的定价为x元,由于每天的利润为800元,根据利润=(定价﹣进价)×销售量,列出方程求解即可.【解答】解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.【点评】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22、(梅州)关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1、x2.(1)求实数k的取值范围.(2)若方程两实根x1、x2满足x1+x2=﹣x1x2,求k的值.【分析】(1)根据根与系数的关系得出△>0,代入求出即可;(2)根据根与系数的关系得出x1+x2=﹣(2k+1),x1x2=k2+1,根据x1+x2=﹣x1x2得出﹣(2k+1)=﹣(k2+1),求出方程的解,再根据(1)的范围确定即可.【解答】解:(1)∵原方程有两个不相等的实数根,∴△=(2k+1)2﹣4(k2+1)>0,解得:k>,即实数k的取值范围是k>;(2)∵根据根与系数的关系得:x1+x2=﹣(2k+1),x1x2=k2+1,又∵方程两实根x1、x2满足x1+x2=﹣x1x2,∴﹣(2k+1)=﹣(k2+1),解得:k1=0,k2=2,∵k>,∴k只能是2.【点评】本题考查了根与系数的关系和根的判别式的应用,能正确运用性质进行计算是解此题的关键,题目比较好,难度适中.23、(重庆校级模拟)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=4, =14, =194;(2)2x2﹣7x+2=0(x≠0),求的值.【分析】(1)模仿例题利用完全平方公式即可解决.(2)模仿例题利用完全平方公式以及立方和公式即可.【解答】解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.【点评】本题考查一元一次方程的解、完全平方公式、立方和公式,解决问题的关键是灵活应用完全平方公式,记住两边平方不能漏项(利用完全平方公式整体平方),属于中考常考题型.24、(鄂州)关于x的方程(k﹣1)x2+2kx+2=0.(1)求证:无论k为何值,方程总有实数根.(2)设x1,x2是方程(k﹣1)x2+2kx+2=0的两个根,记S=+x1+x2,S的值能为2吗?若能,求出此时k的值;若不能,请说明理由.【分析】(1)分两种情况讨论:①当k=1时,方程是一元一次方程,有实数根;②当k ≠1时,方程是一元二次方程,所以证明判别式是非负数即可;(2)由韦达定理得x1+x2=﹣,x1x2=,代入到+x1+x2=2中,可求得k 的值.【解答】解:(1)当k=1时,原方程可化为2x+2=0,解得:x=﹣1,此时该方程有实根;当k≠1时,方程是一元二次方程,∵△=(2k)2﹣4(k﹣1)×2=4k2﹣8k+8=4(k﹣1)2+4>0,∴无论k为何实数,方程总有实数根,综上所述,无论k为何实数,方程总有实数根.(2)由根与系数关系可知,x1+x2=﹣,x1x2=,若S=2,则+x1+x2=2,即+x1+x2=2,将x1+x2、x1x2代入整理得:k2﹣3k+2=0,解得:k=1(舍)或k=2,∴S的值能为2,此时k=2.【点评】本题主要考查一元二次方程的定义、根的判别式、根与系数的关系,熟练掌握方程的根与判别式间的联系,及根与系数关系是解题的关键.五、解答题25、(荆州)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【分析】(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,再根据方程有两个整数根得△>0,得出m>0或m<﹣,符合题意,分别把m=1和﹣1代入方程后解出即可.(3)根据(1)中k的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算得出m的等式,并由根的判别式组成两式可做出判断.【解答】解:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△>0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4)>0,则m>0或m<﹣;∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1x2==1﹣,∴1﹣为整数,∴m=1或﹣1,由(1)知k≠1,则m+2≠1,m≠﹣1∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3;(3)|m|≤2成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==n,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×n=(﹣1)2,m2﹣4n=1,n=①,△=(3m)2﹣4(2﹣k)(3﹣k)n=9m2﹣48n≥0②,把①代入②得:9m2﹣48×≥0,m2≤4,则|m|≤2,∴|m|≤2成立.【点评】本题考查了一元二次方程的根与系数的关系,考查了根的判别式及分式方程的解;注意:①解分式方程时分母不能为0;②一元二次方程有两个整数根时,根的判别式△为完全平方数.25、(韶关模拟)如图,点A(2,2)在双曲线y1=(x>0)上,点C在双曲线y2=﹣(x<0)上,分别过A、C向x轴作垂线,垂足分别为F、E,以A、C为顶点作正方形ABCD,且使点B在x轴上,点D在y轴的正半轴上.(1)求k的值;(2)求证:△BCE≌△ABF;(3)求直线BD的解析式.【解答】(1)解:把点A(2,2)代入y1=,得:2=,∴k=4;(2)证明:∵四边形ABCD是正方形,∴BC=AB,∠ABC=90°,BD=AC,∴∠EBC+∠ABF=90°,∵CE⊥x轴,AF⊥x轴,∴∠CEB=∠BFA=90°,∴∠BCE+∠EBC=90°,∴∠BCE=∠ABF,在△BCE和△ABF中,,∴△BCE≌△ABF(AAS);(3)解:连接AC,作AG⊥CE于G,如图所示:则∠AGC=90°,AG=EF,GE=AF=2,由(2)得:△BCE≌△ABF,∴BE=AF=2,CE=BF,设OB=x,则OE=x+2,CE=BF=x+2,∴OE=CE,∴点C的坐标为:(﹣x﹣2,x+2),代入双曲线y2=﹣(x<0)得:﹣(x+2)2=﹣9,解得:x=1,或x=﹣5(不合题意,舍去),∴OB=1,BF=3,CE=OE=3,∴EF=2+3=5,CG=1=OB,B(﹣1,0),AG=5,在Rt△BOD和Rt△CGA中,,∴Rt△BOD≌Rt△CGA(HL),∴OD=AG=5,∴D(0,5),设直线BD的解析式为:y=kx+b,把B(﹣1,0),D(0,5)代入得:,。
第22章 一元二次方程数学九年级上册-单元测试卷-华师大版(含答案)
第22章一元二次方程数学九年级上册-单元测试卷-华师大版(含答案)一、单选题(共15题,共计45分)1、一元二次方程x2+2x=0的根是()A.x=0B.x=﹣2C.x=0或x=﹣2D.x=0或x=22、共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x,则所列方程正确的为()A.1000(1+x)2=1000+440B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4403、已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是( )A.a<2B.a>2C.a<2且a≠1D.a<-24、若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为()A.1B.2C.﹣1D.﹣25、用配方法解一元二次方程x2﹣6x﹣8=0,下列变形正确的是()A.(x﹣6)2=﹣8+36B.(x﹣6)2=8+36C.(x﹣3)2=8+9 D.(x﹣3)2=﹣8+96、用配方法解方程2-4 +2=0,下列配方正确的是()A.( -2) 2 =2B.( +2) 2 =2C.( -2) 2 =-2D.(-2) 2 =67、若关于x的一元二次方程kx2 - 6x + 9 = 0有两个不相等的实数根,则k的取值范围是()A.k<1B.k<1且k≠0C.k≠0D.k>18、矩形ABCD的一条对角线长为5,边AB的长是方程x2﹣6x+8=0的一个根,则矩形ABCD的面积为()A.12B.20C.2D.12或29、下列方程是关于X的一元二次方程的是()A.x 2+3y-4=0B.2x 3-3x-5=0C.D.x 2+1=0.10、某厂一月份的总产量为500吨,三月份的总产量达到为720吨。
若平均每月增率是x,则可以列方程();A.500(1+2x)=720B.500(1+x)2=720C.500(1+x2)=720 D.720(1+x)2=50011、若关于x的一元二次方程的两根分别为,,则p、q的值分别是()A.-3、2B.3、2C.-2、3D.2、312、某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为()A.120(1-x)2=100B.100(1-x)2=120C.100(1+x)2=120 D.120(1+x)2=10013、方程x2﹣9=0的根是()A.x=﹣3B.x1=3,x2=﹣3 C.x1=x2=3 D.x=314、关于x的方程x2-2x+m=0有两个相等的实数根,则实数m的取值范围为( )A.m≥1B.m<1C.m=1D.m<-115、方程x2﹣2(x+2)(x﹣4)=10化为一般形式为()A.x 2﹣4x﹣6=0B.x 2+2x+14=0C.x 2+2x﹣14=0D.x 2﹣2x+14=0二、填空题(共10题,共计30分)16、一元二次方程+px-2=0的一个根为2,则p的值________.17、一元二次方程x(x﹣5)=0的根为________.18、已知关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个实数根,则m的取值范围是________.19、一元二次方程的根是________.20、若是方程的一个根,那么k的值等于________.21、方程x2+(k﹣1)x﹣3=0的一个根是1,则k的值是________,另一个根是________.22、若0是一元二次方程(m﹣1)x2+6x+m2﹣1=0的一个根,则m的值为________;23、不解方程3x2+5x﹣4=0,可以判断它的根的情况是________.24、方程x2﹣3x+1=0的一次项系数是________.25、把方程x(x+1)=2化成一般形式是________ .三、解答题(共5题,共计25分)26、用配方法解方程:x2﹣2x﹣8=0.27、设a,b,c为互不相等的实数,且满足关系式:b2+c2=2a2+16a+14①bc=a2﹣4a﹣5②.求a的取值范围.28、如图,在宽为20m,长为27m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为450 ,求道路的宽.29、已知关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有两个不相等的实数根.(1)求实数k的取值范围;(2)0可能是方程的一个根吗?若是,请求出它的另一个根;若不是,请说明理由.30、如图,某小区规划在一个长40米,宽为26米的矩形场地ABCD上,修建三条同样宽的道路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每块草坪的面积都为144平方米,求道路的宽度.参考答案一、单选题(共15题,共计45分)1、C2、A3、C4、D5、C6、A8、D9、D10、B11、A12、A13、B14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、30、。
九年级上第22章一元二次方程测试题及答案
一元二次方程 单元测试卷时间:120分钟 满分;120分一、选择题(每题3分;共30分)1.已知x=1是一元二次方程x 2-2mx+1=0的一个解;则m 的值是( )A .1B .0C .0或1D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根;那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.根据下列表格中二次函数2y ax bx c =++的自变量x 与函数值y 的对应值;判断方程20ax bx c ++=(0a a b c ≠,,,为常数)的一个解x 的范围是( )A. B.C.6.18 6.19x << D.6.19 6.20x <<4.等腰三角形的底和腰是方程x 2-6x+8=0的两根;则这个三角形的周长为( )A.8B.10C.8或10D.不能确定5.某城市2007年底已有绿化面积300公顷;经过两年绿化;绿化面积逐年增加;到底增加到363公顷.设绿化面积平均每年的增长率为x ;由题意;所列方程正确的是A .300(1+x )=363B .300(1+x )2=363C .300(1+2x )=363D .363(1-x )2=3006.现定义某种运算()a b a a b ⊗=>;若2(2)2x x x +⊗=+;那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x > (D )1x <-7、已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根;则式子b a a b +的值是( )A .22n +B .22n -+C .22n -D .22n -- 8、用配方法将代数式a 2+4a -5变形;结果正确的是( )A.(a +2)2-1B. (a +2)2-5C. (a +2)2+4D. (a +2)2-99、关于x 的一元二次方程222310x x a --+=的一个根为2;则a 的值是( )A .1BC .D .10、某商品经过两次连续降价;每件售价由原来的55元降到了35元.设平均每次降价的百分率为x ;则下列方程中正确的是( )A .55 (1+x )2=35B .35(1+x )2=55C .55 (1-x )2=35D .35(1-x )2=55二、填空题(每题3分;共30分)11.已知一元二次方程有一个根是2;那么这个方程可以是 (填上你认为正确的一个方程即可).12.已知实数x 满足4x 2-4x+l=0;则代数式2x+x21的值为________. 13.如果αβ、是一元二次方程23 1 0x x +-=的两个根;那么2+2ααβ-的值是___________。
华师大版九年级数学上册第22章 一元二次方程达标测试卷 含答案
第22章达标测试卷一、选择题(每题3分,共30分)1.下列各方程中,是一元二次方程的是()A.3x+2=3 B.x3+2x+1=0C.x2=1 D.x2+2y=02.关于x的方程x2+3x+a=0有一个根为-1,则a的值为() A.1 B.-1 C.2 D.-23.将一元二次方程-3x2-2=-4x化成一般形式,下列正确的为() A.3x2-4x+2=0 B.3x2-4x-2=0C.3x2+4x+2=0 D.3x2+4x-2=04.[2018·宜宾]一元二次方程x2-2x=0的两根分别为x1和x2,则x1x2为() A.-2 B.1 C.2 D.05.方程x2+6x-5=0的左边配成完全平方式后所得方程为() A.(x+3)2=14 B.(x-3)2=14C.(x+3)2=4 D.(x-3)2=46.若关于x的一元二次方程(m-1)x2+x+m2-5m+3=0有一个根为1,则m的值为()A.1 B.3 C.0 D.1或37.已知a、b、c为实数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0的根的情况是()A.有两个相等的实数根B.无实数根C.有两个不相等的实数根D.有一根为08.[2018·舟山]欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=a2,AC=b,再在斜边AB上截取BD=a2,如图,则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长9.已知关于x的一元二次方程kx2-2x+1=0有实数根,若k为非负整数,则k 等于()A.0 B.1 C.0,1 D.210.如图,在△ABC中,∠ABC=90°,AB=8 cm,BC=6 cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1 cm/秒,点Q的速度为2 cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ 的面积为15 cm2的是()A.2秒B.3秒C.4秒D.5秒二、填空题(每题3分,共18分)11.[2018·淮安]一元二次方程x2-x=0的根是__________.12.写出一个二次项系数为1,且一个根是3的一元二次方程__________.13.[2018·黔西南州]三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的解,则此三角形的周长是__________.14.[2018·南通]若关于x的一元二次方程12x2-2mx-4m+1=0有两个相等的实数根,则(m-2)2-2m(m-1)的值为__________.15.有三个连续偶数,第三个数的平方等于前两个数的平方和,则这三个数分别为__________.16.关于x的方程a(x+m)2+b=0的解是x1=2,x2=-1(a,b,m均为常数,a≠0),则方程a(x+m+2)2+b=0的解是__________.三、解答题(17~20题每题8分,21~22题每题10分,共52分)17.用适当的方法解下列方程:(1)2x2-4x=1;(2)(2x+3)2-2(2x+3)=0.18.已知关于x的方程2x2-kx+1=0的一个解与方程2x+11-x=4的解相同.求:(1)k的值;(2)方程2x2-kx+1=0的另一个解.19.已知关于x的一元二次方程x2-3x+m-1=0.(1)若方程有两个不相等的实数根,求实数m的取值范围;(2)若方程有两个相等的实数根,求此时方程的根.20.“低碳环保,绿色出行”,自行车逐渐成为人们喜爱的交通工具.某品牌共享自行车在某区域的投放量自2018年逐月增加,据统计,该品牌共享自行车1月份投放了1 600辆,3月份投放了2 500辆.若该品牌共享自行车前4个月的投放量的月平均增长率相同,求4月份投放了多少辆?21.[2018·德州]为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10 000万元的年利润,则该设备的销售单价应是多少万元?22.[2018·常州]阅读材料:各类方程的解法.求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似地,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)问题:方程x3+x2-2x=0的解是x1=0,x2=________,x3=________;(2)拓展:用“转化”思想求方程2x+3=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8 m,宽AB=3 m,小华把一根长为10 m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点 C.求AP的长.答案一、1.C 2.C 3.A 4.D 5.A6.B 点拨:把x =1代入(m -1)x 2+x +m 2-5m +3=0,得m 2-4m +3=0,解得m 1=3,m 2=1,而m -1≠0,所以m =3.故选B .7.C 点拨:∵(a -c )2=a 2+c 2-2ac >a 2+c 2,∴ac <0.在方程ax 2+bx +c =0中,Δ=b 2-4ac ,∵b 2≥0,ac <0,∴Δ=b 2-4ac >0,∴方程ax 2+bx +c =0有两个不相等的实数根.故选:C.8.B 点拨:x 2+ax =b 2可化为⎝ ⎛⎭⎪⎫x +a 22=b 2+⎝ ⎛⎭⎪⎫a 22,结合勾股定理可得该方程的一个正根是AD 的长,故选:B.9.B 点拨:由题意可知:⎩⎨⎧4-4k ≥0,k ≠0,k ≥0,∴0<k ≤1,由于k 是整数,∴k =1.10.B 点拨:设动点P ,Q 运动t 秒后,能使△PBQ 的面积为15 cm 2,则BP为(8-t )cm ,BQ 为2t cm ,由三角形的面积计算公式得,12×(8-t )×2t =15,解得t 1=3,t 2=5(不合题意,舍去).故动点P ,Q 运动3秒时,能使△PBQ 的面积为15 cm 2.二、11.x 1=0,x 2=112.x 2-3x =0(答案不唯一)13.1314.72 点拨:由题意可知:4m 2-4×12×(1-4m )=4m 2+8m -2=0,∴m 2+2m =12,∴(m -2)2-2m (m -1)=-m 2-2m +4=-12+4=72.15.6,8,10或-2,0,2 点拨:设最小的偶数为x ,根据题意得(x +4)2=x 2+(x +2)2,解得x =6或-2.当x =6时,x +2=8,x +4=10;当x =-2时,x +2=0,x +4=2,因此这三个数分别为6,8,10或-2,0,2.16.x =0或x =-3 点拨:∵关于x 的方程a (x +m )2+b =0的解是x 1=2,x 2=-1(a ,m ,b 均为常数,a ≠0),∴方程a (x +m +2)2+b =0变形为a [(x +2)+m ]2+b =0,即此方程中x +2=2或x +2=-1,解得x =0或x =-3.三、17. 解:(1)二次项系数化为1,得x 2-2x =12.配方,得x 2-2x +1=12+1,即(x -1)2=32. 直接开平方,得x -1=±62.故x 1=2+62,x 2=2-62.(2)原方程可化为(2x +3)(2x +3-2)=0,即(2x +3)(2x +1)=0.可得2x +3=0或2x +1=0.解得x 1=-32,x 2=-12.18.解:(1)解方程2x +11-x =4得x =12.经检验,x =12是分式方程的解,且符合题意. 将x =12代入方程2x 2-kx +1=0,有2×⎝ ⎛⎭⎪⎫122-12k +1=0,解得k =3. (2)当k =3时,一元二次方程即为2x 2-3x +1=0,解得x 1=12,x 2=1,故另一个解为x =1.19.解:(1)∵方程有两个不相等的实数根,∴Δ=(-3)2-4(m -1)>0. 解得m <134.(2)当方程有两个相等的实数根时,Δ=0,即(-3)2-4(m -1)=0,解得m =134.当m =134时,方程为x 2-3x +134-1=0,即⎝ ⎛⎭⎪⎫x -322=0, 故x 1=x 2=32.20.解:设月平均增长率为x ,根据题意,得1 600(1+x )2=2 500, 解得:x 1=0.25=25%,x 2=-2.25(不合题意,舍去),∴月平均增长率为25%,∴4月份投放了2 500(1+x )=2 500×(1+25%)=3 125(辆).21.解:(1)设年销售量y 与销售单价x 的函数关系式为y =kx +b (k ≠0),将(40,600)、(45,550)代入得:⎩⎨⎧40k +b =600,45k +b =550,解得:⎩⎨⎧k =-10,b =1000,∴年销售量y 与销售单价x 的函数关系式为y =-10x +1 000.(2)每台设备的利润为(x -30)万元,销售量为(-10x +1 000)台,根据题意得: (x -30)(-10x +1 000)=10 000,整理,得:x 2-130x +4 000=0,解得:x 1=50,x 2=80.∵此设备的销售单价不得高于70万元.∴该设备的销售单价应是50万元.22.解:(1)-2;1(2)方程的两边平方,得2x +3=x 2,即x 2-2x -3=0,(x -3)(x +1)=0,∴x 1=3,x 2=-1,当x =-1时,2x +3=1=1≠-1,当x =3时,2x +3=3=x , 所以方程2x +3=x 的解是x =3.(3)因为四边形ABCD 是矩形,所以∠A =∠D =90°,AB =CD =3 m. 设AP =x m ,则PD =(8-x )m ,因为BP +CP =10,BP =AP 2+AB 2,CP =CD 2+PD 2, ∴9+x 2+(8-x )2+9=10, ∴(8-x )2+9=10-9+x 2,两边平方,得(8-x )2+9=100-209+x 2+9+x 2, 整理,得5x 2+9=4x +9,两边平方并整理,得x 2-8x +16=0,即(x -4)2=0,∴x 1=x 2=4.经检验,x =4是方程的解.答:AP 的长为4 m.。
一元二次方程测试题和答案
九年级数学第二十二章一元二次方程测试题〔人教版〕一、选择题 (每题3分,共30分):1.以下方程中不一定是一元二次方程的是( )A.(a-3〕x 2=8 (a ≠3) 2+bx+c=0 C.(x+3)(x-2)=x+5232057x +-= 2.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的选项是( )A. 23162x ⎛⎫-= ⎪⎝⎭;B.2312416x ⎛⎫-= ⎪⎝⎭;C. 231416x ⎛⎫-= ⎪⎝⎭; 3.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,那么a 值为〔 〕A 、1B 、1-C 、1或1-D 、124.三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 那么这个三角形的周长为( )A.11B.17C.17或19D.195.一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,那么这个直角三角形的斜边长是〔 〕AB 、3C 、6D 、96、〔x 2+y 2+1〕〔x 2+y 2+3〕=8,那么x 2+y 2的值为〔 〕.A .-5或1B .1C .5D .5或-12561x x x --+ 的值等于零的x 是( )A.6B.-1或62-4y-3=3y+4有实根,那么k 的取值范围是( ) A.k>-74≥-74 且k ≠≥-74 D.k>74 且k ≠022=+x x ,那么以下说中,正确的选项是〔 〕〔A 〕方程两根和是1 〔B 〕方程两根积是2〔C 〕方程两根和是1- 〔D 〕方程两根积比两根和大210.某超市一月份的营业额为200万元,第一季度的总营业额共1000万元, 如果平均每月增长率为x,那么由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2=1000二、填空题:(每题3分,共30分)11方程3(x-2)2=2x-4的解为________.12.如果2x 2+1与4x 2-2x-5互为相反数,那么x 的值为________.21x -2x -8=0,那么1x 的值是________2+bx+c=0(a ≠0)有一个根为-1,那么a 、b 、c 的关系是______.2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 那么a= ______, b=______.2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.x 2+mx+7=0的一个根,那么m=________,另一根为_______.α,β是方程x 2+2006x+1=0的两个根,那么〔1+2021α+α2〕〔1+2021β+β2〕的值为___________.x x 12,是方程x x 2210--=的两个根,那么1112x x +等于__________.x 的二次方程20x mx n ++=有两个相等实根,那么符合条件的一组,m n 的实数值可以是 m = __________.n = __________..三、用适当方法解方程:〔每题4分,共12分〕21.22(3)5x x -+=22.230x ++= 23.〔x+3〕2+3〔x+3〕-4=0.四、列方程解应用题:〔每题5分,共48分〕24.某电视机厂方案用两年的时间把某种型号的电视机的本钱降低36%, 假设每年下降的百分数一样,求这个百分数.围墙养鸡场18m 25.如下图,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,〔互相垂直〕,把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路应为多宽?26.如图、如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙〔墙长18m 〕,另三边用木栏围成,木栏长35m 。
九年级数学 第22章一元二次方程达标检测卷含试卷分析
第22章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列方程是一元二次方程的是()A.1x2-1x=0 B.xy+x2=9C.7x+6=x2D.(x-3)(x-5)=x2-4x2.一元二次方程3x2-4x-5=0的二次项系数、一次项系数、常数项分别是() A.3,-4,-5 B.3,-4,5C.3,4,5 D.3,4,-53.方程2(x+3)(x-4)=x2-10的一般形式为()A.x2-2x-14=0 B.x2+2x+14=0C.x2+2x-14=0 D.x2-2x+14=04.下列方程中,常数项为零的是()A.x2+x=1 B.2x2-x-12=12 C.2(x2-1)=3(x-1) D.2(x2+1)=x+25.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为300元的药品进行连续两次降价后为243元,设平均每次降价的百分率为x,则下面所列方程正确的是() A.300(1-x)2=243 B.243(1-x)2=300C.300(1-2x)=243 D.243(1-2x)=3006.下列方程,适合用因式分解法解的是()A.x2-42x+1=0 B.2x2=x-3C.(x-2)2=3x-6 D.x2-10x-9=07.(·烟台)关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是()A.-1或5 B.1 C.5 D.-18.三角形的一边长为10,另两边长是方程x2-14x+48=0的两个实数根,则这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形9.(·安顺)若一元二次方程x2-2+1)x+m-1的图象不经过第()象限.A.四B.三C.二D.一10.一个三角形的两边长分别为3和6,第三边的长是方程(x-2)(x-4)=0的根,则这个三角形的周长是()A.11 B.11或13 C.13 D.以上选项都不正确二、填空题(每题3分,共30分)11.当m________时,关于x的方程(m-2)x2+n+n2的值为________.13.若将方程=________.14.如果关于x的方程ax2+2x+1=0有两个不相等的实数根,那么实数a的取值范围是________.15.(·内江)已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k的值是________.16.2月28日,前央视知名记者柴静推出了关于雾霾的纪录片——《穹顶之下》,引起了极大的反响.某市准备加大对雾霾的治理力度,第一季度投入资金100万元,第二季度和第三季度计划共投入资金260万元,求这两个季度计划投入资金的平均增长率.设这两个季度计划投入资金的平均增长率为x,根据题意可列方程为____________.17.(·毕节)关于x的两个方程x2-4x+3=0与1x-1=2x+a有一个解相同,则a=________.18.小明的妈妈周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,她周三买了________瓶酸奶.19.现定义运算“★”:对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5.若x★2=6,则实数x的值是________.(第20题)20.(·贵阳)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以 2 cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t s(0<t<8),则t=________时,S1=2S2.三、解答题(21题8分,22、23题每题6分,24、25题每题9分,26题10分,27题12分,共60分)21.用适当的方法解下列方程.(1)x2-x-1=0; (2)x2-2x=2x+1;(3)x(x-2)-3x2=-1; (4)(x+3)2=(1-2x)2.22.关于-2)+3=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.23.晓东在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得[(x+2)-2][(x+2)+2]=6.(x+2)2-22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得x1=-2+10,x2=-2-10.我们称晓东这种解法为“平均数法”.(1)下面是晓东用“平均数法”解方程(x+2)(x+6)=5时写的解题过程.解:原方程可变形,得[(x+□)-○][(x+□)+○]=5.(x+□)2-○2=5,(x+□)2=5+○2.直接开平方并整理,得x1=☆,x2=¤.上述过程中的“□”,“○”,“☆”,“¤”表示的数分别为________,________,________,________.(2)请用“平均数法”解方程:(x-3)(x+1)=5.24.已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请说明理由.(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.25.(·随州)楚天汽车销售公司5月份销售某种型号汽车.当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30辆.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润为25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价-进价)26.如图,A ,B ,C ,D 为矩形的四个顶点,AB =16 cm ,AD =6 cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以3 cm /s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm /s 的速度向D 移动.(1)P ,Q 两点从出发开始到几秒时,四边形PBCQ 的面积为33 cm 2? (2)P ,Q 两点从出发开始到几秒时,点P 和点Q 之间的距离是10 cm?(第26题)27.目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,A 地到宁波港的路程比原来缩短了120 km .已知运输车速度不变时,行驶时间将从原来的103h 缩短到2 h .(1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,某车货物从A 地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8 320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:1车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?答案一、1.C点拨:因为1x2-1x=0中分母含有未知数,B中xy+x2=9含有两个未知数,所以A、B都不是一元二次方程,D中可变形为x2-8x+15=x2-4x.化简后不含x2,故不是一元二次方程,故选C .2.A 3.A 4.D5.A 点拨:第一次降价后的价格为300×(1-x)元,第二次降价后的价格为300×(1-x)×(1-x)元,则列出的方程是300(1-x)2=243.6.C 7.D8.C 点拨:由x 2-14x +48=0,得x 1=6,x 2=8.因为62+82=102,所以该三角形为直角三角形.9.D 10.C二、11.≠2 12.1 13.4 14.a <1且a ≠015.2 点拨:∵x 2-6x +k =0的两根分别为x 1,x 2, ∴x 1+x 2=6,x 1x 2=k. ∴1x 1+1x 2=x 1+x 2x 1x 2=6k=3. 解得k =2.经检验,k =2满足题意. 16.100(1+x)+100(1+x)2=260点拨:根据题意知:第二季度计划投入资金100(1+x)万元,第三季度计划投入资金100(1+x)2万元.∴100(1+x)+100(1+x)2=260.17.1 点拨:由方程x 2-4x +3=0,得 (x -1)(x -3)=0, ∴x -1=0,或x -3=0. 解得x 1=1,x 2=3;当x =1时,分式方程1x -1=2x +a 无意义;当x =3时,13-1=23+a ,解得a =1,经检验a =1是方程13-1=23+a的解.18.4 点拨:设她周三买了x 瓶酸奶,根据题意得(x +2)·⎝⎛⎭⎫10x -0.5=10+2,化简得x 2+6x -40=0,解得x 1=4,x 2=-10(舍去).19.-1或4 点拨:根据题中的新定义将x ★2=6变形得x 2-3x +2=6,即x 2-3x -4=0,解得x 1=4,x 2=-1,则实数x 的值是-1或4.20.6 点拨:∵在Rt △ABC 中,∠BAC =90°,AB =AC =16 cm ,AD 为BC 边上的高,∴AD =BD =CD =8 2 cm .又∵AP =2t cm ,∴S 1=12AP·BD =12×2t ×82=8t(cm 2),PD =(82-2t)cm .易知PE =AP =2t cm ,∴S 2=PD·PE =(82-2t)·2t cm 2.∵S 1=2S 2,∴8t =2(82-2t)·2t.解得t 1=0(舍去),t 2=6.三、21.解:(1)(公式法)a =1,b =-1,c =-1, 所以b 2-4ac =(-1)2-4×1×(-1)=5.所以x =-b±b 2-4ac 2a =1±52,即原方程的根为x 1=1+52,x 2=1-52.(2)(配方法)原方程可化为x 2-4x =1, 配方,得x 2-4x +4=1+4,(x -2)2=5. 两边开平方,得x -2=±5, 所以x 1=2+5,x 2=2- 5.(3)(公式法 )原方程可化为2x 2+2x -1=0,所以a =2,b =2,c =-1,b 2-4ac =22-4×2×(-1)=12. 所以x =-2±122×2=-1±32,即原方程的根为x 1=-1+32,x 2=-1-32.(4)(因式分解法)移项,得(x +3)2-(1-2x)2=0, 因式分解,得(3x +2)(-x +4)=0, 解得x 1=-23,x 2=4.22.解:(1)∵关于-2)+3=0有两个不相等的实数根, ∴m -2≠0且Δ=(2m)2-4(m -2)(m +3)=-4(m -6)>0. 解得m<6且m ≠2.(2)在m<6且m ≠2的范围内,最大整数为5. 此时,方程化为3x 2+10x +8=0. 解得x 1=-2,x 2=-43.23.解:(1)4;2;-1;-7(最后两空可交换顺序); (2)(x -3)(x +1)=5,原方程可变形,得[(x -1)-2][(x -1)+2]=5, (x -1)2=5+22,即(x -1)2=9, 直接开平方并整理,得x 1=4,x 2=-2.24.解:(1)Δ=4a 2-4a(a -6)=24a ,∵一元二次方程有两个实数根,∴Δ≥0,即a ≥0.又∵a -6≠0,∴a ≠6.∴a ≥0且a ≠6.由题可知x 1+x 2=2a 6-a ,x 1x 2=aa -6.∵-x 1+x 1x 2=4+x 2,即x 1x 2=4+x 1+x 2,∴a a -6=4+2a6-a.解得a =24,经检验,符合题意.∴存在实数a ,a 的值为24;(2)(x 1+1)(x 2+1)=x 1+x 2+x 1x 2+1=2a 6-a +aa -6+1=-6a -6.∵-6a -6为负整数,∴整数a 的值应取7,8,9,12.25.解:(1)当x ≤5时,y =30.当5<x ≤30时,y =30-(x -5)×0.1=-0.1x +30.5.∴y =⎩⎪⎨⎪⎧30,(x ≤5,且x 为正整数),-0.1x +30.5,(5<x ≤30,且x 为正整数).(2)当x ≤5时,(32-30)x =2x ≤10<25,不合题意. 当5<x ≤30时,(32+0.1x -30.5)x =25, ∴x 2+15x -250=0.解得x 1=-25(舍去),x 2=10. 答:该月需售出10辆汽车.(第26题)26.解:(1)设P ,Q 两点从出发开始到2,则AP =3,所以PB =(16-3x)cm .因为(PB +CQ)×BC ×12=33,所以(16-3x +2x)×6×12=33.解得x =5,所以P ,Q 两点从出发开始到5 s 时,四边形PBCQ 的面积为33 cm 2.(2)设P ,Q 两点从出发开始到a s 时,点P 和点Q 之间的距离是10 cm . 如图,过点Q 作QE ⊥AB 于E ,易得EB =QC ,EQ =BC =6 cm , 所以PE =|PB -BE|=|PB -QC|=|16-3a -2a|=|16-5a|(cm ).在直角三角形PEQ 中,PE 2+EQ 2=PQ 2,所以(16-5a)2+62=102,即25a 2-160a +192=0,解得a 1=85,a 2=245,所以P ,Q 两点从出发开始到85 s 或245 s 时,点P 和点Q 之间的距离是10 cm .27.解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x km , 由题意得x +120103=x2,解得.(2)1.8×180+28×2=380(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是380元.(3)设这批货物有y 车,由题意得y[800-20×(y -1)]+380y =8 320,整理得y 2-60y +416=0,解得y 1=8,y 2=52(不合题意,舍去),∴这批货物有8车.。
第22章一元二次方程测试题
第22章一元二次方程测试题(满分100分 时间120分钟) 班级 姓名 考号 成绩一、填空题(每小题20分,共30分)1.关于x 的方程m x 2+(m -1)x +5=0是一元二次方程的条件为 。
2. 把方程2(1)5322x x -+=化成一元二次方程的一般形式为 。
3.方程(3x -2)2=3x -2的根是 。
4.已知x 2-4x y -5y =0且χy ≠0,则χ:y = 。
5.已知关于χ的方程220xx m -+=的一个根是2+,则另一个根为 ,m= 。
6.若4x 2+m x +49是完全平方式,则m= 。
7.若0ac <,则关于x 的方程20ax bx c ++=的根的情况是 。
8.已知x 1、x 2是方程2x 2-3x -1=0的两根,则x 1-x 2= 。
9.某制药厂生产的某种药品,通过两次降价,售价变为原来的81%,则平均每次降价的百分率为 。
10.一元二次方程x 2-2x -3=0的两根之和为 ,则两根之积为 。
二、选择题,将正确答案的番号填入下表内(每小题3分,共30分)11. 下列关于x 的方程中,一定是一元二次方程的是( )A .2(3)10a a x -+= B. 22(3)410a x x ---= C .2(3)570a x x ++-= D. 22(3)410a x x +--= 12. 如果x =-3是方程230x mx ++=的一个根,那么m 的值是( ) A .-4 B. 4 C. 3 D. -313. 已知2530ax x -+=是一元二次方程,则不等式36a +>0的解是( ) A .2a > B. 2a <- C. 12a >-D. 20a a >-≠且14. 关于x 的方程2()(0)x m n n -=>的根为( )A .x m = B. x m =x =x m = 15. 方程(2)x x x +=的根为( )A .0x = B. 2x =- C. 120,2x x ==- D. 120,1x x ==- 16. 如果关于x 的方程210x px ++=的一个实数根的倒数恰好是它本身,则p 的值为( )A .2 B. ±2 C. 1 D. ±117. 有下列方程:①2450x x --=;②2168;x x +=③24370;x x -+=④23.x +=其中有两个实数根的方程有( )A .1个 B. 2个 C. 3个 D. 4个 18.若两个连续整数的积是56,则它们的和是( ) A .15 B. -15 C. ±15 D. 11 19.关于x 的方程220x kx k -+-=的根的情况是( ) A .有两个不相等的实数根 B. 有两个相等的实数根 C. 没有实数根 D. 无法确定20. 关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 的值为( ) A .1 B. -1 C. 1或-1 D.12三、解方程(每小题5分,共15分)21. 24(2)490;x --= 22. 2570x x --=; 23. (21)(2)3x x +-=四、解答题(24题7分,25题8分,26、27题每小题10分,共35分)24. 设a b 、为任意实数,说明方程()()1x a x a b ---=必有两个不相等的实数根。
华师大版九年级上册数学第22章 一元二次方程含答案(考试真题)
华师大版九年级上册数学第22章一元二次方程含答案一、单选题(共15题,共计45分)1、一元二次方程x2+2x=0的解为()A.x=﹣2B.x=2C.x1=0,x2=﹣2 D.x1=0,x2=22、方程的解为()A. B.0或4 C.4 D. 或03、方程2x2﹣kx﹣1=0的根的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关4、一个矩形的长比宽多2cm,面积是7cm2.若设矩形的宽为xcm,则可列方程()A. x(x+2)=7B. x(x﹣2)=7C. x(x+2)=7D. x(x﹣2)=75、一元二次方程x2﹣2x+1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根6、方程x(x+3)=x+3的解是()A.x=1B.x1=0,x2=-3 C.x1=1,x2=3 D.x1=1,x2=-37、已知m 整数,且满足,则关于的一元二次方程m2x2-4x-2=(m+2)x2+3x+4 的解为()A.x1=-2,x2=- 或 x=- B.x1=2,x2= C.x=-D.x1=-2,x2=-8、方程x2-8x+6=0的左边配成完全平方式后,所得的方程是().A.(x-6)2=10B.(x-4)2=10C.(x-6)2=6D.(x-4)2=69、已知x1, x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( )A. B.- C.4 D.-110、近年来,欧债危机严重影响了世界经济,受欧债危机的影响,某商品原价为200元,连续两次降价a%后售价为148元,下面所列方程正确的是()A. 200(1+a%)2=148B. 200(1-a%)2=148C. 200(1-2a%)=148 D. 200(1-a2%)=14811、下列关于x的方程一定有实数解的是()A. B.C. D.12、下列方程中,是一元二次方程的有()个.①ax2+bx+c=0;②2x(x﹣3)=2x2+1;③x2=4;④(2x)2=(x﹣1)2⑤=2x2.A.4B.3C.2D.113、若关于x的一元二次方程(m+1)x2+5x+m2+3m+2=0的常数项为0,则m的值为()A.﹣1B.﹣2C.﹣1或﹣2D.014、三角形两边长分别为6和5,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.15或13B.15C.15或17D.1315、若关于x的方程有实数根,则a满足()A. B. 且 C. 且 D.二、填空题(共10题,共计30分)16、国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是________.17、某种商品原售价200元,由于产品换代,现连续两次降价处理,按72元的售价销售.已知两次降价的百分率相同,若设降价的百分率为x,则可列出方程为________.18、已知是关于的一元二次方程的一个根,则________.19、将一元二次方程2x2=x﹣1化成一般形式是________.20、方程x2-4=0的根是________ .21、如果x=1是方程x2+kx+k﹣5=0的一个根,则该方程的另一个根为________.22、在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程x2-(2k+1)x+5(k- )=0的两个实数根,则△ABC的周长为________.23、若方程x2﹣4x﹣5=0的两根为x1, x2,则x12+x22的值为________.24、如果是一元二次方程的两个实数根,则________.25、若关于x的一元二次方程ax2+2x﹣1=0无解,则a的取值范围是________.三、解答题(共5题,共计25分)26、解下列方程:5x2﹣18=9x.27、(1)解不等式:;(2)用配方法解方程:x2+4x﹣1=0.28、某工厂今年3月份的产值为100万元,由于受国际金融风暴的影响,5月份的产值下降到81万元,求平均每月产值下降的百分率.29、阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2-7x+6=0,= ,∵△=49-48>0,∴x1= .x2∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?30、如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、A5、A6、D7、A8、B9、A10、B12、C13、A14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
第22章 一元二次方程 华东师大版九年级数学上册单元测试卷(含答案)
第22章测试卷一、选择题:本大题共10小题,每小题3分,合计30分.1. 用公式法解一元二次方程3x2﹣4x=8时,化方程为一般式,当中的a,b,c依次为( )A.3,﹣4,8B.3,﹣4,﹣8C.3,4,﹣8D.3,4,8【答案】B解:∵3x2﹣4x=8,∴3x2﹣4x﹣8=0,则a=3,b=﹣4,c=﹣8,故选:B.2. (2020秋•内乡县期末)设a,b是方程x2+x﹣2021=0的两个实数根,则a2+b2+a+b的值是( )A.0B.2020C.4040D.4042【答案】D【分析】根据一元二次方程的解及根与系数的关系可得出a2+a=2021、b2+b=2021、a+b =﹣1,将其代入则a2+b2+a+b中即可求出结论.解:∵a,b是方程x2+x﹣2020=0的两个实数根,∴a2+a=2021、b2+b=2021、a+b=﹣1,∴则a2+b2+a+b=(a2+a)+(b2+b)=2021+2021=4042.故选:D.3. (2020秋•洛阳新安期中)某食品厂七月份生产面包52万个,第三季度生产面包共196万个,若x满足的方程是52+52(1+x)+52(1+x)2=196,则x表示的意义是( )A.该厂七月份的增长率B.该厂八月份的增长率C.该厂七、八月份平均每月的增长率D.该厂八、九月份平均每月的增长率【答案】D【分析】一般增长后的量=增长前的量×(1+增长率),根据方程结合题意确定x的意义即可.解:依题意得八、九月份的产量为52(1+x)、52(1+x)2,∴52+52(1+x)+52(1+x)2=196中的x表示的意义是该厂八、九月份平均每月的增长率,故选:D.4. (2020秋•宛城区期末)欧几里得的《原本》记载,方程x2+ax=b2的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=BC.则该方程的一个正根是( )A.AC的长B.CD的长C.AD的长D.BC的长【答案】C【分析】在Rt△ABC中,由勾股定理可得出AC2+BC2=AB2,结合AB=AD+BD,AC=b,BD=BC=,即可得出AD2+aAD=b2,进而可得出AD的长是方程x2+ax=b2的一个正根.解:在Rt△ABC中,由勾股定理可得AC2+BC2=AB2.∵AC=b,BD=BC=,∴b2+()2=(AD+)2=AD2+aAD+()2,∴AD2+aAD=b2.∵AD2+aAD=b2与方程x2+ax=b2相同,且AD的长度为正数,∴AD的长是方程x2+ax=b2的一个正根.故选:C.5. (2020驻马店新蔡期中)已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2-12x+m+2=0的两根,则m的值是()A. 34B.30C.30或34D.30或36【答案】A.【解析】分两种情况讨论:①若4为等腰三角形底边长,则a,b是两腰,∴方程x2-12x+m+2=0有两个相等实根,∴△=(-12)2-4×1×(m+2)=136-4m=0,∴m=34.此时方程为x2-12x+36=0,解得x1=x2=6.∴三边为6,6,4,满足三边关系,符合题意.②若4为等腰三角形腰长,则a,b中有一条边也为4,∴方程x2-12x+m+2=0有一根为4.∴42-12×4+m+2=0,解得,m=30.此时方程为x2-12x+32=0,解得x1=4,x2=8.∴三边为4,4,8,不满足三边关系,故舍去.综上,m的值为34.6. 如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P在AB上以1cm/s的速度向B点移动,点Q在BC上以2cm/s的速度向C 点移动.当点Q移动到点C后停止,点P也随之停止移动.下列时刻中,能使△PBQ的面积为15cm2的是( )A.2s B.3s C.4s D.5s【答案】B【分析】设当运动时间为t秒时,△PBQ的面积为15cm2,利用三角形面积的计算公式,可得出关于t的一元二次方程,解之即可得出t值,再结合当点Q移动到点C后停止点P 也随之停止移动,即可确定t值.解:设当运动时间为t秒时,△PBQ的面积为15cm2,依题意得:×(8﹣t)×2t=15,整理得:t2﹣8t+15=0,解得:t1=3,t2=5.又∵2t≤6,∴t≤3,∴t=3.故选:B.7.(2020•南阳南召期中)用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是( )A.y2﹣2y+1=0B.y2+2y+1=0C.y2+y+2=0D.y2+y﹣2=0【答案】A【分析】方程的两个分式具备倒数关系,设=y,则原方程化为y+=2,再转化为整式方程y2-2y+1=0即可求解.【解析】把=y代入原方程得:y+=2,转化为整式方程为y2﹣2y+1=0.故选:A.8.(2020·湖北荆州·中考真题)定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实数)是关于x的方程,则它的根的情况是()A.有一个实根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【答案】B【分析】将按照题中的新运算方法展开,可得,所以可得,化简得:,,可得,即可得出答案.【解析】解:根据新运算法则可得:,则即为,整理得:,则,可得:,;,方程有两个不相等的实数根;故答案选:B.9.(2020·洛阳孟津期末)关于x的一元二次方程有两个实数根,,则k的值()A.0或2B.-2或2C.-2D.2【答案】D【分析】将化简可得,,利用韦达定理,,解得,k=±2,由题意可知△>0,可得k=2符合题意.解:由韦达定理,得:=k-1,,由,得:,即,所以,,化简,得:,解得:k=±2,因为关于x的一元二次方程有两个实数根,所以,△==〉0,k=-2不符合,所以,k=2故选D. 10.(2021·驻马店新蔡期末)将关于的一元二次方程变形为,就可以将表示为关于的一次多项式,从而达到“降次”的目的,又如…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:,且,则的值为()A.B.C.D.【答案】C【分析】先求得,代入即可得出答案.【解析】∵,∴,,∴=====,∵,且,∴,∴原式=,故选:C.二、填空题:本大题共5小题,每小题3分,合计15分.11. 一元二次方程的根是_____.【答案】【分析】利用因式分解法把方程化为x-3=0或x-2=0,然后解两个一次方程即可.【解析】解:或,所以.故答案为.12.(2021·南阳邓州期中)已知关于x的一元二次方程有两个相等的实数根,则的值等于_______.【答案】2.【分析】根据“关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根”,结合根的判别式公式,得到关于a和c的等式,整理后即可得到的答案.【解析】解:根据题意得:△=4﹣4a(2﹣c)=0,整理得:4ac﹣8a=﹣4,4a(c﹣2)=﹣4,∵方程ax2+2x+2﹣c=0是一元二次方程,∴a≠0,等式两边同时除以4a得:,则,故答案为2.13. 1275年,我国南宋数学家杨辉在《田亩比类乘除算法》中提出这样一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步.意思是:矩形面积864平方步,宽比长少12步,问宽和长各几步.若设长为x步,则可列方程为_____.【答案】x(x﹣12)=864.【分析】由长和宽之间的关系可得出宽为(x-12)步,根据矩形的面积为864平方步,即可得出关于x的一元二次方程,此题得解.解:∵长为x步,宽比长少12步,∴宽为(x﹣12)步.依题意,得:x(x﹣12)=864.14.(2020·2020·周口商水期末)如图是一张长,宽的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是的有盖的长方体铁盒.则剪去的正方形的边长为______.【答案】【分析】根据题意设出未知数,列出三组等式解出即可.【解析】设底面长为a,宽为b,正方形边长为x,由题意得:,解得a=10-2x,b=6-x,代入ab=24中得:(10-2x)(6-x)=24,整理得:2x2-11x+18=0.解得x=2或x=9(舍去).故答案为2.15. (2021·洛阳偃师期中)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,其中一个根为另一个根的,则称这样的方程为“半根方程”.例如方程x2﹣6x+8=0的根为的x1=2,x2=4,则x1=x2,则称方程x2﹣6x+8=0为“半根方程”.若方程ax2+bx+c=0是“半根方程”,且点P(a,b)是函数y=x图象上的一动点,则的值为 .三、解答题:本大题共8小题,合计75分.第16题8分,第17、18、19、20题每题9分,第21、22题每题10分,第23题11分16. (2020·南阳镇平期中)(1)用配方法解方程;(2)用公式法解方程:.解:(1)移项得:x2-2x=2,配方得:x2-2x+1=2+1,(x-1)2=3,开方得:,,,所以原方程的解为:,;(2)∵a=1,b=2,c=-5,,∴,∴.17. (2020秋•北京期末)已知关于x的方程mx2+nx﹣2=0(m≠0).(1)求证:当n=m﹣2时,方程总有两个实数根;(2)若方程两个相等的实数根都是整数,写出一组满足条件的m,n的值,并求此时方程的根.【分析】(1)根据根的判别式符号进行判断;(2)根据判别式以及一元二次方程的解法即可求出答案.(1)证明:△=(m﹣2)2﹣4m×(﹣2)=m2+4m+4=(m+2)2≥0,∴方程总有两个实数根;(2)由题意可知,m≠0△=n2﹣4m×(﹣2)=n2+8m=0,即:n2=﹣8m.以下答案不唯一,如:当n=4,m=﹣2时,方程为x2﹣2x+1=0.解得x1=x2=1.18. (2020秋•洛阳偃师期中)如图,某居民小区改造,计划在居民小区的一块长50米,宽20米的矩形空地内修建两块相同的矩形绿地,使得两块矩形绿地之间及周边留有宽度相等的人行通道,且两块矩形绿地的面积之和为原矩形空地面积的,求人行通道的宽度是多少米?【分析】设人行通道的宽度是x米,则两块绿地可合成长为(50﹣3x)米、宽为(20﹣2x)米的矩形,根据两块矩形绿地的面积之和为原矩形空地面积的,即可得出关于x的一元二次方程,解方程即可.【解答】解:设人行通道的宽度是x米,则两块绿地可合成长为(50﹣3x)米、宽为(20﹣2x)米的矩形,根据题意得:(50﹣3x)(20﹣2x)=×50×20,整理得:x1=25(舍去),x2=,∴x=.答:人行通道的宽度是米.19. (2020•南阳镇平模拟)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x与通电话次数y之间的关系用如图模型表示:(1)填写上图中第四个图中y的值为_______,第五个图中y的值为_______.(2)通过探索发现,通电话次数y与该班级人数x之间的关系式为_____,当时,对应的______.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生?【答案】(1)10,15;(2),1128;(3)20【分析】(1)观察图形,可以找出第四和第五个图中的y值;(2)根据y值随x值的变化,可找出,再代入可求出当时对应的y值;(3)根据(2)的结论结合九年级1班全体女生相互之间共通话190次,即可得出关于x的一元二次方程,解之取其正值即可得出结论.解:(1)观察图形,可知:第四个图中y的值为10,第五个图中y的值为15.故答案为:10;15.(2)∵,∴,当时,.故答案为:;1128.(3)依题意,得:,化简,得:,解得:(不合题意,舍去).答:该班共有20名女生.20. (2020秋•南阳市三中校级月考)阅读下面材料:若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=﹣,x1x2=.∵,∴=a[x2﹣(x1+x2)x+x1x2]=a(x﹣x1)(x﹣x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x﹣x1)(x﹣x2).(1)请用上面的方法将多项式4x2+8x﹣1分解因式.(2)判断二次三项式2x2﹣4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.(3)如果关于x的二次三项式mx2﹣2(m+1)x+(m+1)(1﹣m)能用上面的方法分解因式,试求出m的取值范围.【分析】(1)令多项式等于0,得到一个一元二次方程,利用公式法求出方程的两解,代入ax2+bx+c=a(x﹣x1)(x﹣x2)中即可把多项式分解因式;(2)令二次三项式等于0,找出其中的a,b及c,计算出b2﹣4ac,发现其值小于0,所以此方程无解,故此二次三项式不能利用上面的方法分解因式;(3)因为此二次三项式在实数范围内能利用上面的方法分解因式,所以令此二次三项式等于0,得到的方程有解,即b2﹣4ac大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的取值范围.解:(1)令4x2+8x﹣1=0,∵a=4,b=8,c=﹣1,b2﹣4ac=64+16=80>0,∴x1=,x2=,则4x2+8x﹣1=4(x﹣)(x﹣);(2)二次三项式2x2﹣4x+7在实数范围内不能利用上面的方法分解因式,理由如下:令2x2﹣4x+7=0,∵b2﹣4ac=(﹣4)2﹣56=﹣40<0,∴此方程无解,则此二次三项式不能用上面的方法分解因式;(3)令mx2﹣2(m+1)x+(m+1)(1﹣m)=0,由此二次三项式能用上面的方法分解因式,即有解,∴b2﹣4ac=4(m+1)2﹣4m(m+1)(1﹣m)≥0,化简得:(m+1)[4(m+1)+4m(m﹣1)]≥0,即4(m+1)(m2+1)≥0,∵m2+1≥1>0,∴m+1≥0,解得m≥﹣1,又m≠0,1﹣m≠0则m≥﹣1且m≠0且m≠1时,此二次三项式能用上面的方法分解因式.21. (2020·南阳镇平期中)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”,例如,一元二次方程x2+x =0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”;(1)通过计算,判断下列方程是否是“邻根方程”.①x2﹣x﹣12=0;②x2﹣9x+20=0;(2)已知关于x的方程x2+(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值.解:(1)①分解因式得:(x﹣4)(x+3)=0,解得:x=4或x=﹣3,∵4≠﹣3+1,∴x2﹣x﹣12=0不是“邻根方程”;②分解因式得:(x﹣4)(x﹣5)=0,解得:x=4或x=5,∵5=4+1,∴x2﹣9x+20=0是“邻根方程”;(2)分解因式得:(x+m)(x﹣1)=0,解得:x=﹣m或x=1,∵方程程x2+(m﹣1)x﹣m=0(m是常数)是“邻根方程,∴﹣m=1+1或﹣m=1﹣1,∴m=0或﹣2.22. (2020•鹤壁市期末)发现思考:已知等腰三角形ABC的两边分别是方程x2﹣7x+10=0的两个根,求等腰三角形ABC三条边的长各是多少?下边是涵涵同学的作业,老师说他的做法有错误,请你找出错误之处并说明错误原因.涵涵的作业解:x2﹣7x+10=0a=1 b=﹣7 c=10∵b2﹣4ac=9>0∴x==∴x1=5,x2=2所以,当腰为5,底为2时,等腰三角形的三条边为5,5,2.当腰为2,底为5时,等腰三角形的三条边为2,2,5.探究应用:请解答以下问题:已知等腰三角形ABC的两边是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m=2时,求△ABC的周长;(2)当△ABC为等边三角形时,求m的值.解:错误之处:当2为腰,5为底时,等腰三角形的三条边为2、2、5.错误原因:此时不能构成三角形.(1)当m=2时,方程为x2﹣2x+=0,∴x1=,x2=.当为腰时,+<,∴、、不能构成三角形;当为腰时,等腰三角形的三边为、、,此时周长为++=.答:当m=2时,△ABC的周长为.(2)若△ABC为等边三角形,则方程有两个相等的实数根,∴△=(﹣m)2﹣4(﹣)=m2﹣2m+1=0,∴m1=m2=1.答:当△ABC为等边三角形时,m的值为1.23.(2020·内蒙古赤峰·中考真题)阅读理解:材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实教x,y,z构成“和谐三数组”.材料二:若关于x的一元二次方程ax2+bx +c= 0(a≠0)的两根分别为,,则有,.问题解决:(1)请你写出三个能构成“和谐三数组”的实数;(2)若,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;(3)若A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.【答案】(1),2,3(答案不唯一);(2)见解析;(3)m=﹣4或﹣2或2.【分析】(1)根据“和谐三数组”的定义可以先写出后2个数,取倒数求和后即可写出第一个数,进而可得答案;(2)根据一元二次方程根与系数的关系求出,然后再求出,只要满足=即可;(3)先求出三点的纵坐标y1,y2,y3,然后由“和谐三数组”可得y1,y2,y3之间的关系,进而可得关于m的方程,解方程即得结果.解:(1)∵,∴,2,3是“和谐三数组”;故答案为:,2,3(答案不唯一);(2)证明:∵,是关于x的方程ax2+bx +c= 0 (a,b,c均不为0)的两根,∴,,∴,∵是关于x的方程bx+c=0(b,c均不为0)的解,∴,∴,∴=,∴x1,x2,x3可以构成“和谐三数组”;(3)∵A(m,y1) ,B(m + 1,y2) ,C(m+3,y3)三个点均在反比例函数的图象上,∴,,,∵三点的纵坐标y1,y2,y3恰好构成“和谐三数组”,∴或或,即或或,解得:m=﹣4或﹣2或2.若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为( )A.2017B.2020C.2019D.2018B已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是直角三角形时,求k的值.(1)证明:∵△=[﹣(2k+1)]2﹣4×(k2+k)=1>0,∴方程有两个不相等的实数根.(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)[x﹣(k+1)]=0,解得:x1=k,x2=k+1.当BC为直角边时,k2+52=(k+1)2,解得:k=12;当BC为斜边时,k2+(k+1)2=52,解得:k1=3,k2=﹣4(不合题意,舍去).答:k的值为12或3.。
初中数学 第22章一元二次方程复习题及答案
第22章 一元二次方程复习题●双基演练一、选择题1.下面关于x 的方程中①ax 2+bx+c=0;②3(x -9)2-(x+1)2=1;③x+3=; ④(a 2+a+1)x 2-a=0-1.一元二次方程的个数是( )A .1B .2C .3D .42.要使方程(a -3)x 2+(b+1)x+c=0是关于x 的一元二次方程,则( )A .a≠0B .a≠3C .a≠1且b≠-1D .a≠3且b≠-1且c≠03.若(x+y )(1-x -y )+6=0,则x+y 的值是( )A .2B .3C .-2或3D .2或-34.若关于x 的一元二次方程3x 2+k=0有实数根,则( )A .k>0B .k<0C .k≥0D .k≤05.下面对于二次三项式-x 2+4x -5的值的判断正确的是( )A .恒大于0B .恒小于0C .不小于0D .可能为06.下面是某同学在中考期中测试中解答的几道填空题:(1)若x 2=a 2,则x= a ;(2)方程2x (x -1)=x -1的根是 x=0 ;(3)若直角三角形的两边长为3和4,则第三边的长为 5 . 其中答案完全正确的题目个数为( )A .0B .1C .2D .37.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元, 而按原定价的九折出售,将赚20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元8.利华机械厂四月份生产零件50万个,若五、六月份平均每月的增长率是20%, 则第二季度共生产零件( )A .100万个B .160万个C .180万个D .182万个二、填空题1x9.若ax 2+bx+c=0是关于x 的一元二次方程,则不等式3a+6>0的解集是________.10.已知关于x 的方程x 2+3x+k 2=0的一个根是-1,则k=_______.11.若x=2,则x 2-4x+8=________.12.若(m+1)+2mx -1=0是关于x 的一元二次方程,则m 的值是________.13.若a+b+c=0,且a≠0,则一元二次方程ax 2+bx+c=0必有一个定根,它是_______.14.若矩形的长是6cm ,宽为3cm ,一个正方形的面积等于该矩形的面积,则正方形的边长是_______.15.若两个连续偶数的积是224,则这两个数的和是__________.三、计算题(每题9分,共18分)16.按要求解方程:(1)4x 2-3x -1=0(用配方法); (2)5x 2-6=0(精确到0.1)17.用适当的方法解方程:(1)(2x -1)2-7=3(x+1); (2)(2x+1)(x -4)=5;(3)(x 2-3)2-3(3-x 2)+2=0.能力提升18.若方程x 2-2)=0的两根是a 和b (a>b ),方程x -4=0的正根是c ,试判断以a 、b 、c 为边的三角形是否存在.若存在,求出它的面积;若不存在,说明理由.(2)1m m x +-19.已知关于x的方程(a+c)x2+2bx-(c-a)=0的两根之和为-1,两根之差为1, 其中a,b,c是△ABC的三边长.(1)求方程的根;(2)试判断△ABC的形状.20.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?21.李先生乘出租车去某公司办事,下午时,打出的电子收费单为“里程11 公里,应收29.10元”.出租车司机说:“请付29.10元.”该城市的出租车收费标准按下表计算,请求出起步价N(N<12)是多少元.聚焦中考22.方程的根是( )A B C D23.某种商品零售价经过两次降价后的价格为降价前的,则平均每次降价( ) A . B . C . D .24.关于x 的一元二次方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定25.已知a 、b 、c 分别是三角形的三边,则方程(a + b )x 2 + 2cx + (a + b )=0的根的情况是( )A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 26.关于的一元二次方程的一个根为1,则方程的另一根为 .27.小华在解一元二次方程x 2-4x=0时.只得出一个根是x=4,则被他漏掉的一个根是x=_____.28.在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长。
2024年中考九年级数学复习练习题:一元二次方程含参考答案
2024年中考九年级数学复习练习题:一元二次方程一、选择题1.一元二次方程3x 2=12的二次项,一次项和常数项分别为()A.3x 2,无一次项,−12B.3x 2,无一次项,12C.3x 2,0,−12D.3x 2,0,122.用配方法解方程x 2+4x −1=0,下列配方结果正确的是().A.(x +2)2=5B.(x +2)2=1C.(x −2)2=1D.(x −2)2=53.关于x 的一元二次方程x 2−8x +m =0有两个不相等的实数根,则m 的值可能是()A.15B.16C.17D.184.已知直角三角形的两条直角边长恰好是方程x 2−5x +6=0的两个根,则此直角三角形斜边长是()A.13B.5C.5D.135.已知菱形ABCD 的对角线AC,BD 的长度是方程x 2﹣13x+36=0的两个实数根,则此菱形的面积为()A.18B.24C.30D.366.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是()A.(3+x)(4-0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3-0.5x)=15D.(x+1)(4-0.5x)=157.若α、β是方程x 2+2x −2005=0的两个实数根,则α2+3α+β的值为()A.2005B.2003C.-2005D.40108.为增强同学们的体质,丰富校园文化体育生活,某校八年级举行了篮球比赛,比赛以循环赛的形式进行,即每个班级之间都要比赛一场,共比赛了45场.该校八年级共有()个班.A.9B.10C.5D.8二、填空题9.一元二次方程x 2=x 的根是.10.若关于x 的一元二次方程x 2+2x +m −1=0有实数根,则m 的取值范围是.11.一个三角形的两边长分别为2和3,第三边的长是方程x 2-10x+21=0的根,则该三角形的第三边的长为.12.已知x 1、x 2是方程x 2﹣2x﹣1=0的两根,则x 12+x 22=.13.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请个队参赛.14.解方程:(1)x 2﹣6x=0;(2)2x 2+5x﹣1=0;(3)2x(x﹣3)=x﹣3.15.已知关于x 的一元二次方程(x −1)(x −2k)+k(k −1)=0.(1)求证:该一元二次方程总有两个不相等的实数根;(2)若该方程的两个根x 1,x 2是一个矩形的一边长和对角线的长,且矩形的另一边长为3,试求k 的值.16.已知关于x 的一元二次方程x 2+(2m﹣1)x+m 2﹣2=0有实数根.(1)求实数m 的取值范围;(2)当m=1时,方程的根为x 1,x 2,求代数式(x 12+2x 1)(x 22+4x 2+2)的值.17.某农场今年第一季度的产值为50万元,第二季度由于改进了生产方法,产值提高了20%;但在今年第三、第四季度时该农场因管理不善.导致其第四季度的产值与第二季度的产值相比下降了11.4万元.(1)求该农场在第二季度的产值;(2)求该农场在第三、第四季度产值的平均下降的百分率.18.某经销商经销的学生用品,他以每件280元的价格购进某种型号的学习机,以每件360元的售价销售时,每月可售出60个,为了扩大销售,该经销商采取降价的方式促销,在销售中发现,如果每个学习机降价10元,那么每月就可以多售出50个.(1)降价前销售这种学习机每月的利润是多少元?(2)经销商销售这种学习机每月的利润要达到7200元,且尽可能让利于顾客,求每个学习机应降价多少元?(3)在(2)销售过程中,销量好,经销商又开始涨价,涨价后每月销售这种学习机的利润能达到10580元吗?若能,请求出涨多少元;若不能,请说明理由.1.C 2.A 3.A 4.D 5.A 6.A 7.B 8.B9.x 1=1,x 2=010.m ≤211.312.613.814.解:(1)x 2﹣6x=0,x(x﹣6)=0,∴x=0或x﹣6=0,解得:x 1=0,x 2=6;(2)2x 2+5x﹣1=0,∵a=2,b=5,c=﹣1,∴Δ=52﹣4×2×(﹣1)=33>0,∴x =∴x 1=2=(3)2x(x﹣3)=x﹣3,2x(x﹣3)﹣(x﹣3)=0,(x﹣3)(2x﹣1)=0,∴x﹣3=0或2x﹣1=0,∴x 1=3,x 2=12.15.(1)证明:(x −1)(x −2k)+k(k −1)=0,整理得:x 2−(2k +1)x +k 2+k =0∵a =1,b =−(2k +1),c =k 2+k ,∴Δ=b 2−4ac =(2k +1)2−4×1×(k 2+k)=1>0,∴该一元二次方程总有两个不相等的实数根;(2)解:x (2k +1)x +k 2+k =0,x ==2k+1±12,∴x 1=k ,x 2=k +1,①当x =k 为对角线时,k 2=(k +1)2+32,解得:k =−5(不符合题意,舍去),②当x =k +1为对角线时,(k +1)2=k 2+32,解得:k =4;综合可得,k 的值为4.16.解:(1)∵关于x 的一元二次方程x 2+(2m﹣1)x+m 2﹣2=0有实数根,∴Δ≥0,即(2m﹣1)2﹣4(m 2﹣2)≥0,整理得:﹣4m+9≥0,解得:m ≤94.故实数m 的取值范围是m ≤94;(2)当m=1时,方程为x 2+x﹣1=0,∵该方程的两个实数根分别为x 1,x 2,∴x 1+x 2=﹣1,x 1x 2=﹣1,x 12+x 1=1,x 22+x 2=1,∴(x 12+2x 1)(x 22+4x 2+2)=(x 1+1)(3x 2+3)=3[x 1x 2+(x 1+x 2)+1]=3×(﹣1﹣1+1)=3×(﹣1)=﹣3.17.(1)解:第二季度的产值为:50(120%)60⨯+=(万元);(2)解:设该农场在第三、第四季度产值的平均下降的百分率为x ,根据题意得:该农场第四季度的产值为6011.448.6-=(万元),列方程,得:260(1)48.6x -=,即2(1)0.81x -=,解得:120.1 1.9x x ==,(不符题意,舍去).答:该农场在第三、第四季度产值的平均下降百分率为10%.18.(1)解:由题意得:60×(360−280)=4800(元),∴降价前商场每月销售学习机的利润是4800元;(2)解:设每个学习机应降价x 元,由题意得:(360−x −280)(50⋅x10+60)=7200,解得:x =8或x =60,由题意尽可能让利于顾客,x =8舍去,即x =60,∴每个学习机应降价60元;(3)解:设应涨y 元每月销售这种学习机的利润能达到10580元,根据题意得:(360−60+y −280)[5(60−y)+60]=10580,方程整理得:y 2−52y +676=0,解得:y 1=y 2=26,∴应涨26元每月销售这种学习机的利润能达到10580元.。
人教版九年级数学第22章《二次函数》单元测试题(含答案)
人教版九年级数学第22章《二次函数》单元复习题(含答案)一、单选题1.已知二次函数()21y x h =--+(h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-3,则h 的值为( ) A .3或4B .0或4C .0或7D .7或32.已知2=3y x 的图象是抛物线,若将抛物线分别向上、向右平移2个单位,那么平移后抛物线的解析式是( ) A .23(2)2y x =-+ B .23(2)2y x =+- C .23(2)2y x =--D .23(2)2y x =++3.设正ABC 的边长为1,t 为任意的实数,则AB t AC +的最小值为( )A .12B C .12-D . 4.某公司销售一种藜麦,成本价为30元/千克,若以35元/千克的价格销售,每天可售出450千克.当售价每涨0.5元/千克时,日销售量就会减少15千克.设当日销售单价为x (元/千克)(30x ≥,且x 是按0.5的倍数上涨),当日销售量为y (千克).有下列说法: ①当36x =时,420y =②y 与x 之间的函数关系式为301500y x =-+③若使日销售利润为2880元,且销售量较大,则日销售单价应定为42元/千克 ④若使日销售利润最大,销售价格应定为40元/千克 其中正确的是( ) A .①②B .①②④C .①②③D .②④5.已知二次函数y =x 2+bx +c 的最小值是﹣6,它的图象经过点(4,c ),则c 的值是( ) A .﹣4B .﹣2C .2D .66.已知抛物线23y ax bx =++在坐标系中的位置如图所示,它与x ,y 轴的交点分别为A ,B ,P 是其对称轴1x =上的动点,根据图中提供的信息,以下结论中不正确的是( )A .20a b +=B .302a >>-C .PAB △周长的最小值是532+D .3x =是230ax bx ++=的一个根7.如图,在ABC 中,AC BC =,90ACB ∠=︒,2AB =.动点P 沿AB 从点A 向点B 移动(点P 不与点A ,点B 重合),过点P 作AB 的垂线,交折线A C B --于点Q .记AP x =,APQ 的面积为y ,则y 关于x 的函数图象大致是( )A .B .C .D .8.如图,抛物线243y x x =-+与x 轴交于A ,B 两点,将抛物线向上平移m 个单位长度后,点A ,B 在新抛物线上的对应点分别为点C ,D ,若图中阴影部分的面积为8,则平移后新抛物线的解析式为( )A .243y x x =-+B .245y x x =-+C .247y x x =-+D .2411y x x =-+9.如图是抛物线形拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降2.5m ,那么水面宽度为( )m .A .3B .6C .8D .910.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (﹣1,0),顶点坐标为(1,m ),与y 轴的交点在(0,﹣4),(0,﹣3)之间(包含端点),下列结论:①abc >0;②4ac -b 2>0;③a 1139b ++c <0;④1≤a 43≤;⑤关于x 的方程ax 2+bx +c +2﹣m=0没有实数根.其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题 11.将二次函数2yx 的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数2y x b =+的图象有公共点,则实数b 的取值范围是_____________.12.如图,P 是抛物线y =x 2﹣2x ﹣3在第四象限的一点,过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,则四边形OAPB 周长的最大值为______.13.若点M (-1,y 1),N (1,y 2 ),P (72,y 3)都在抛物线y =-mx 2+4mx+m 2+1(m >0)上,则y 1、y 2、y 3大小关系为______________(用“<”连接).14.如图,一段抛物线:()()303y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ;将1C 绕点1A 旋转180°得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180°得3C ,交x 轴于点3A ; ……如此进行下去,直至得13C . 若()1,P m 在1C 上,则m =______.若()37,P n 在第13段抛物线13C 上,则n =______.15.二次函数22y x x m =++图像上的最低点的横坐标为_________________.16.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A 、B ,顶点为C ,对称轴为直线x =1,给出下列结论:①abc <0;②若点C 的坐标为(1,4),则△ABC 的面积可以等于4;③M (x 1,y 1),N (x 2,y 2)是抛物线上两点(x 1<x 2),若x 1+x 2>2,则y 1<y 2;④若抛物线经过点(3,﹣1),则方程ax 2+bx +c +1=0的两根为﹣1,3,其中正确结论的序号为_____.17.如果将抛物线y =x 2向右平移2个单位,向上平移3个单位长度,那么所得新的抛物线的表达式是_____.18.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②m +n =3;③抛物线与x 轴的另一个交点是(﹣1,0);④方程ax 2+bx +c =3有两个相等的实数根;⑤当1≤x ≤4时,有y 2<y 1,其中正确的是_____19.如图,单孔拱桥的形状近似抛物线形,建立如图所示的平面直角坐标系,在正常水位时,水面宽度OA 为12m ,拱桥的最高点B 到水面OA 的距离为6m .则抛物线的解析式为________.20.已知抛物线22y x x c =-+与直线y m =相交于,A B 两点,若点A 的横坐标1A x =-,则点B 的横坐标B x 的值为_______.三、解答题21.已知二次函数22y x x c =++.(1)当3c =-时,求出该二次函数的图象与x 轴的交点坐标;(2)若21x -<<时,该二次函数的图象与x 轴有且只有一个交点,求c 的取值范围.22.如图,在平面直角坐标系中,点F 的坐标是(4,2),点P 为一个动点,过点P 作x 轴的垂线PH ,垂足为H ,点P 在运动过程中始终满足PF PH =.设平面直角坐标系内点M 、N的坐标分别为1(x ,1)y 、2(x ,2)y ,则2222121()()MN x x y y =-+-,(1)若点P 运动到点(0,5)C 时,求CF 的值;(2)设动点P 的坐标为(,)x y ,求y 关于x 的函数表达式; (3)填写下表,并在给定坐标系中画出该函数的图象.x⋯ 0 2 4 6 8 ⋯ y⋯________________________⋯23.对某条路线的长度进行n 次测量,得到n 个结果12,,,n x x x .如果用x 作为这条路线长度的近似值,当x 取什么值时,()()()22212n x x x x x x -+-++-最小?x 所取的这个值是哪个常用的统计量?24.创建文明城市,让老百姓住得更舒心,某社区决定把一块长50m ,宽30m 的矩形空地建成居民健身广场,设计方案如图,阴影部分为四个全等的矩形绿化区,剩余区域为活动区,且四周的出口宽度相同(其宽度不小于14m ),设绿化区较长边为x m ,活动区的面积为y m 2.(1)请用含x 的代数式表示矩形绿化区另一边长,并求出y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)预计活动区造价为50元/m 2,绿化区造价为40元/m 2,若社区的此项建造投资费用不得超过72000元,求绿化区较长边x 的取值范围.25.如图,抛物线2y x bx c =++与x 轴交于()1,0,A B -两点,与y 轴交于点(0,3)C -.()1求抛物线的函数解析式;()2抛物线的对称轴与x 轴交于点M .点D 与点C 关于点M 对称,试问在该抛物线上是否存在点P .使ABP △与全ABD △全等﹖若存在,请求出所有满足条件的P 点的坐标;若不存在,请说明理由.参考答案1.C 【详解】 解:∵10-<,则当x <h 时,y 随x 的增大而增大,当x >h 时,y 随x 的增大而减小, ∴①若h <2≤x ≤5,x =2时,y 取得最大值-3, 可得:2(2)13h --+=-, 解得:h =0或4(舍);②若2≤x ≤5<h ,当x =5时,y 取得最大值-3, 可得:2(5)13h --+=-, 解得:h =7或3(舍);③当2≤h ≤5时,最大值为1,不符合题意, 综上,h 的值为7或0, 2.A 【详解】解:2=3y x 向上、向右平移2个单位,那么平移后抛物线的解析式是23(2)2y x =-+, 3.B 【详解】解:∵正△ABC 的边长为1,t 为任意的实数, ∴22222AB t AC AB t AB AC t AC +=+⋅+ =1+t 2+2t ×1×1×cos 60°=t 2+t +1,当t =−12时,t 2+t +1取到最小值34,∴AB t AC +的最小值为4.B 【详解】当36x =时,450152420y =-⨯=,故①正确;由题意得:()45035152301500y x x =--⨯⨯=-+,故②正确; 日销售利润为()()()3030150030w y x x x =-=-+-, 由题意得:()()301500302880x x -+-=,整理得:28015960x x -+=, 解得:142x =,238x =,∵销售单价为38元/千克时的销售量比销售单价为42元/千克时大, ∴42x =不合题意,即若使日销售利润为2880元,且销售量较大,则日销售单价应定为38元/千克,故③错误; 由上问可知:()()()3030150030w y x x x =-=-+-,即()()222302400450003080150030403000w x x x x x =-+-=--+=--+,∵300-<,∴当40x =时,=3000w 最大值,即若使日销售利润最大,销售价格应定为40元/千克,故④正确; 故正确的是①②④; 5.B 【详解】解:∵二次函数y =x 2+bx +c 的图象经过点(4,c ), ∴c =16+4b +c , ∴b =-4.∴224(2)4y x x c x c -+=--+=, ∵最小值是﹣6 ∴-4+c =-6 ∴c =-2 6.C 【详解】解:A 、根据图象知,对称轴是直线x =-2ba=1,则b =-2a ,即2a +b =0,故A 正确; B 、根据图象知,点A 的坐标为(-1,0),对称轴是x =1,则根据抛物线关于对称轴对称的性质知,抛物线与x 轴的另一个交点的坐标是(3,0), ∴x =3时,y =9a +3b +3=0, ∴9a -6a +3=0, ∴3a +3=0,∵抛物线开口向下,则a <0,∴0>a >-32,故B 正确;C 、点A 关于x =1对称的点是A ´(3,0),即抛物线与x 轴的另一个交点,连接BA ´与直线x =1的交点即为点P , 则△PAB 的周长的最小值是(BA ´+AB )的长度, ∵A (-1,0),B (0,3),A ´(3,0), ∴AB =10,BA ´=32,即△PAB 周长的最小值为10+32,故C 错误;D 、根据图象知,点A 的坐标为(-1,0),对称轴是x =1,则根据抛物线关于对称轴对称的性质知,抛物线与x 轴的另一个交点的坐标为(3,0),所以3x =是230ax bx ++=的一个根,故D 正确. 7.B 【详解】解:取AB 的中点D ,连接CD ,当P 在AD 之间运动时,AC =BC ,则∠A =45°, ∴AP =QP =x , ∴y =12PQ ·AP =12x 2是开口向上的抛物线,排除A ,C ,选项,当P 在DB 间运动时,此时,AP =x ,BP =PQ =2-x ,∴y =()211222x x x x -=-+ 是开口向下的抛物线,∴综上:B 选项符合,8.C【详解】解:当0y =时,有2430x x -+=,解得:11x =,23x =,∴2AB =.∵8S AC AB =⋅=阴影,∴4AC =,∴平移后新抛物线的解析式为2243447y x x x x =-++=-+.9.B【详解】解:建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为(0,2),设顶点式y =ax 2+2,把A 点坐标(﹣2,0)代入得a =﹣0.5,∴抛物线解析式为y =﹣0.5x 2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y =﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y =﹣2.5与抛物线相交的两点之间的距离,可以通过把y =﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x 2+2,解得:x =±3,∴水面宽度为3﹣(﹣3)=6(m ).10.C【详解】解:①∵抛物线y =ax 2+bx +c (a ≠0)的图象开口向上,∴a >0∵抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的右侧, ∴b x 02a=-> ∴0b <又∵抛物线y =ax 2+bx +c (a ≠0)的图象交y 轴的负半轴,∴0c <∴0abc >,故①正确,符合题意;②∵抛物线y =ax 2+bx +c (a ≠0)的图象与x 轴有两个交点,∴240b ac ->,即240ac b -<,故②错误,不符合题意;③∵抛物线的顶点坐标为(1,m ),与x 轴的一个交点为A (-1,0)∴对称轴为x =1∴抛物线与x 轴的另一个交点为(3,0)∴当x =3时,y =930a b c ++=,∴a 1139b ++c =0,故③错误,不符合题意; ④当x =-1时,y =a -b +c =0,则c =-a +b ,由-4≤c ≤-3,得-4≤-a +b ≤-3,图象的对称轴为x =1,故b =-2a ,得-4≤-3a ≤-3,故1≤a ≤43正确,符合题意; ⑤y =ax 2+bx +c 的顶点为(1,m ),即当x =1时y 有最小值m .而y =m -2和y =ax 2+bx +c 无交点,即方程ax 2+bx +c =m -2无解,∴关于x 的方程ax 2+bx +c +2-m =0没有实数根,故⑤正确,符合题意.11.8b ≥-【详解】解:由题意得:平移后得到的二次函数的解析式为:y =(x -3)2-1,则()2312y x y x b ⎧--⎪⎨+⎪⎩==, ∴(x -3)2-1=2x +b ,整理得,x 2-8x +8-b =0,∴△=(-8)2-4×1×(8-b )≥0,解得,b ≥-8,12.212. 【详解】解:∵y =x 2﹣2x ﹣3,∴当y =0时,x 2﹣2x ﹣3=0即(x +1)(x -3)=0,解得 x =-1或x =3故设P (x ,y ),设P (x ,x 2﹣2x-3)(0<x <3),∵过点P 分别向x 轴和y 轴作垂线,垂足分别为A 、B ,∴四边形OAPB 为矩形,∴四边形OAPB 周长C =2PA +2OA=﹣2(x 2﹣2x ﹣3)+2x=﹣2x 2+6x +6=﹣2(x 2﹣3x )+6,=﹣2232()x -+212. ∴当x =32时,四边形OAPB 周长有最大值,最大值为212. 故答案为:212. 13.y 1<y 3<y 2【详解】解:∵y =-mx 2+4mx+m 2+1(m >0)∴-m<0,∴该函数图像开口方向向下,对称轴为x=()422m m =-- ∵|-1-2|=3,|1-2|=1,|72-2|=32, ∴3>32>1 ∴y 1<y 3<y 2.故答案为y 1<y 3<y 2.14.2 2【详解】解:∵点P (1,m )在C 1上,∴m =﹣1×(1﹣3)=2,令y =0,则﹣x (x ﹣3)=0,解得x 1=0,x 2=3,∴A 1(3,0),由图可知,抛物线C 13在x 轴上方,相当于抛物线C 1向右平移6×6=36个单位得到,∴抛物线C 13的解析式为y =﹣(x ﹣36)(x ﹣36﹣3)=﹣(x ﹣36)(x ﹣39),∵P (37,m )在第13段抛物线C 13上,∴m =﹣(37﹣36)(37﹣39)=2.故答案为:2,2.15.1-【详解】解:二次函数22y x x m =++可化为()211y x m =++-,因为二次项系数为1,大于零,所以函数图像开口向上,所以最低点为顶点,横坐标为1-,故答案为1-.16.①④【详解】解:①抛物线的对称轴在y 轴右侧,则ab <0,而c >0,故abc <0,故①正确; ②△ABC 的面积=12AB •y C =12⨯AB ×4=4,解得:AB =2,∵函数的对称轴为直线x =1,∴点A (0,0),点B (2,0),即c =0与图象不符,故②错误;③函数的对称轴为x =1,若x 1+x 2>2,则12(x 1+x 2)>1,则点N 离函数对称轴远,故y 1>y 2,故③错误;④抛物线经过点(3,﹣1),则y ′=ax 2+bx +c +1过点(3,0),根据函数的对称轴该抛物线也过点(﹣1,0),故方程ax 2+bx +c +1=0的两根为﹣1,3,故④正确;故答案为:①④.17.247y x x =-+.【详解】解:抛物线的平移变换规律为“上加下减,左加右减”,将抛物线2y x 向右平移2个单位,再向上平移3个单位, 得到222(2)344347y x x x x x =-+=-++=-+,故答案为:247y x x =-+.18.①②④【详解】解:由抛物线对称轴为直线x=-2b a=1,从而b=-2a ,则2a+b=0故①正确; 直线y 2=mx+n 过点A ,把A(1,3)代入得m+n=3,故②正确;由抛物线对称性,与x 轴的一个交点B(4,0),则另一个交点坐标为(-2,0),故③错误; 方程ax 2+bx+c=3从函数角度可以看做是y=ax 2+bx+c 与直线y=3求交点,从图象可以知道,抛物线顶点为(1,3),则抛物线与直线有且只有一个交点故方程ax 2+bx+c=3有两个相等的实数根,因而④正确;由图象可知,当1≤x≤4时,有y 2≤y 1 故当x=1或4时y 2=y 1 故⑤错误.故答案为:①②④.19.21(6)66y x =--+ 【详解】根据题意可知:顶点B 的坐标为(6,6),∴设抛物线解析式为y=a (x-6)2+6,将点O (0,0)代入,36a+6=0,解得a=16-, ∴抛物线的解析式为21(6)66y x =--+, 故答案为:21(6)66y x =--+. 20.3【详解】解:把x A =-1代入y=x 2-2x+c 得,y=1+2+c=3+c ,∴A (-1,3+c ),∵抛物线y=x 2-2x+c 与直线y=m 相交于A ,B 两点,∴B 的纵坐标为3+c ,把y=3+c 代入y=x 2-2x+c 得,3+c=x 2-2x+c ,解得x=-1或x=3,∴点B 的横坐标x B 的值为3,故答案为3.21.(1)(3,0)-,(1,0);(2)c 的值为1c =或30c -<【详解】解:(1)由题意,得223y x x =+-,当0y =时,2230x x +-=.解得13x =-,21x =.∴该二次函数的图象与x 轴的交点坐标为(3,0)-,(1,0).(2)抛物线22y x x c =++的对称轴为1x =-.若抛物线与x 轴只有一个交点,则交点为(1,0)-.有012c =-+,解得1c =;若抛物线与x 轴有两个交点,当2x =-,0y ≤时,440c -+≤,解得0c ≤;当1x =,0y >时,120c ++>,解得3c >-;综上所述,c 的值为1c =或30c -<.22.(1)CF=5;(2)21254y x x =-+;(3)5,2,1,2,5;画图见解析. 【详解】解:(1)当P 运动点(0,5)C 时,CF=CO=5或由222(52)4CF =-+得,22(52)45CF =-+= (2)由题意:222(4)(2)y x y =-+-整理得,21254y x x =-+ ∴函数解析式为21254y x x =-+ (3)当0x =时,5y =;当2x =时,2y =;当4x =时,1y =; 当6x =时,2y =;当8x =时,5y =,故表中填的数为5,2,1,2,5.函数图象如下图所示:23.x 所取的值为统计中的平均数.【详解】令y =(x -x 1)2+(x -x 2)2+…+(x -x n )2,则y =nx 2-2(x 1+x 2+x 3+…+x n )x +(21x +22x +…+2n x ), ∵n >0,∴y 有最小值,此时x =1222()n x x x n =12n x x x n ,∴当x 取x 1,x 2,x 3,…,x n 的平均数时,(x -x 1)2+(x -x 2)2+…+(x -x n )2有最小值.即:x 所取的值为统计中的平均数.24.(1)y =﹣4x 2+40x +1500;(2)绿化区较长边x 的取值范围为15≤x ≤18. 【详解】(1)根据题意得:绿化区的另一边长为[30﹣(50﹣2x )]÷2=x ﹣10,∴y =50×30﹣4x (x ﹣10)=﹣4x 2+40x +1500;(2)设投资费用为w 元,由题意得,w =50(﹣4x 2+40x +1500)+40×4x (x ﹣10)=﹣40x 2+400x +75000=﹣40(x ﹣5)2+76000,当w =72000时,解得x 1=﹣5(舍去),x 2=15,∵a =﹣40<0,∴当x ≥15时,w ≤72000,又∵4个出口宽度相同,其宽度不小于14m ,∴x ≤18,∴15≤x ≤18.答:绿化区较长边x 的取值范围为15≤x ≤18.25.(1)223y x x =--;(2)存在,点P 的坐标为(0,3)-或(2,3)- 【详解】解:(1)将点C 坐标代入函数解析式得3c =-,将点A 的坐标代入23y x bx =+-,得20(1)3b =--- ,解得:2b =-, 故抛物线的解析式为223y x x =--;(2)∵点D 与点(0,3)C -关于点()1,0M 对称,∴()2,3D ,则在x 轴上方的P 不存在,点P 只可能在x 轴的下方,如图,当点P 在对称轴右侧时,要使ABP 与ABD △全等则点P 于点D 关于x 轴的对称点, 即点,(2,3)P -当点2x = 时,222233y =-⨯-=- , ∴点(2,3)P -在抛物线上,当点P 在对称轴左侧时,点()'C P 也满足'ABP 与ABD △全等, 即点'(0,3)P -,综上所述,点P 的坐标为(0,3)-或(2,3)-.。
九年级数学一元二次方程测试题(含答案)
九年级上册第二十二章《一元二次方程》整章测试题一、 选择题(每题3分)1. (2009山西省太原市)用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -= C .()229x +=D .()229x -=2 (2009成都)若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( ) A .1k>- B 。
1k >-且0k ≠ C.。
1k < D 。
1k <且0k ≠3.(2009年潍坊)关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( ) A .6B .7C .8D .94. (2009青海)方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( ) A .12B .12或15C .15D .不能确定5(2009年烟台市)设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2006B .2007C .2008D .20096. (2009江西)为了让江西的山更绿、水更清,2008年省委、省政府提出了确保到2010年实现全省森林覆盖率达到63%的目标,已知2008年我省森林覆盖率为60.05%,设从2008年起我省森林覆盖率的年平均增长率为x ,则可列方程( ) A .()60.051263%x +=B .()60.051263x +=C .()260.05163%x +=D .()260.05163x +=7. (2009襄樊市)如图5,在ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD 的周长为( )A .422+B .1262+C .222+D .221262++或8.(2009青海)在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图5所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ) A .213014000x x +-= B .2653500x x +-= C .213014000x x --=D .2653500x x --=二、 填空题:(每题3分)9. (2009重庆綦江)一元二次方程x 2=16的解是 .10. (2009威海)若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根ADCE B图5 图5是 .11. (2009年包头)关于x 的一元二次方程2210xmx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是 .12. (2009年甘肃白银)(6分)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,则方程(4⊕3)⊕24x =的解为 .13 . (2009年包头)将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值 是 cm 2.14. (2009年兰州)阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a.根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为 . 15. (2009年甘肃白银)(6分)在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,则方程(4⊕3)⊕24x =的解为 .16. (2009年广东省)小明用下面的方法求出方程230x -=的解,请你仿照他的方法求出下面另外方程的解,并把你的解答过程填写在下面的表格中.方程换元法得新方程解新方程检验求原方程的解令x t =,则230t -=所以94x =三、 解答题:(52分) 17.解方程:2310x x --=. 18. (2009年鄂州)22、关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根. (1)求k 的取值范围。
人教版九年级上第22章 求一元二次函数解析式专项练习
第22章求一元二次函数解析式专项练习题类型一利用“三点式”求二次函数解析式1、已知一个二次函数的图象经过A(0,−1)、B(1,5)、C(−1,−3)三点。
(1)求这个二次函数的解析式;(2)用配方法把这个函数的解析式化为y=a(x+m)2+k的形式。
2、如图,在平面直角坐标系中,点A,B,C的坐标分别为(0,2),(3,2),(2,3).(1)请在图中画出△ABC向下平移3个单位的像△A′B′C′;(2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式。
3、推理运算:二次函数的图象经过点A(0,−3),B(2,−3),C(−1,0).(1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少平移___个单位,使得该图象的顶点在原点。
类型二利用“顶点式”求二次函数的解析式4、对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是( )A. y=−2x2+8x+3B. y=−2x2−8x+3C. y=−2x2+8x−5D. y=−2x2−8x+25、已知二次函数的图象的顶点为(1,4),且图象过点(−1,−4),则该二次函数的解析式为__ 。
6、已知二次函数的顶点坐标为(2,−2),且其图象经过点(3,1),求此二次函数的解析式,并求出该函数图象与y轴的交点坐标。
类型三利用“交点式”求二次函数的解析式7、如图,抛物线y=ax2+bx+c经过A(1,0),B(4,0),C(0,3)三点,求抛物线的解析式.8、已知关于x的二次函数的图象与轴交于两点(−1,0 ),(3,0)两点,且图象过点(0,3).(1)求这个二次函数的解析式;(2)写出它的开口方向、对称轴。
9、已知二次函数y=ax 2+bx+c 过点A(1,0),B(−3,0),C(0,−3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P 使△ABP 的面积为6,求点P 的坐标.(写出详细的解题过程)类型四 利用“平移规律”求二次函数的解析式10、一抛物线和抛物线y=-2x 2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为( )A .y=-2(x-1)2+3B .y=-2(x+1)2+3C 、y=-(2x+1)2+3D .y=-(2x-1)2+311、将抛物线y=3(x −4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是_ __.12、形状与抛物线y=2x 2-3x+1的图象形状相同,但开口方向不同,顶点坐标是(0,-5)的抛物线的关系式为___ ___.13、求对称轴是x=-2,且开口方向、形状都与22x y 相同,还过原点的抛物线的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程复习
A组
1.已知三个连续奇数的平方和是371,求这三个奇数.
2.要在某正方形广场靠墙的一边开辟一条宽4米的绿化带,使余下部分面积为100
平方米.求原正方形广场的边长.(精确到0.1米)
3.村里要修一条灌溉渠,其横截面是面积为1.6平方米的等腰梯形,它的上底比渠
深多2米,下底比渠深多0.4米.求灌溉渠横截面的上下底长和灌溉渠的深度.
4.某工厂准备在两年内使产值翻一番,求平均每年增长的百分率.(精确到0.1%)
5.求出习题22.1中第3(2)题所列方程的解的近似值.(精确到0.1米)
B组
6.解下列方程
(1)(y+3)(1-3y)=1+2y2;
(2)(x-7)(x+3)+(x-1)(x+5)=38;
(3)(3x+5)2-5(3x+5)+4=0;(4)x2+ax-2a2=0.(a为已知常数)
7.(1)已知关于x的方程2x2-mx-m2=0有一个根是1,求m的值;
(2)已知关于x的方程(2x-m)(mx+1)=(3x+1)(mx-1)有一个根是0,求另一个根和m的值.
8.学校原有一块面积为1500平方米的长方形操场,现围绕操场开辟了一圈绿化带,
结果使操场的面积增加了150平方米.求现在操场的长和宽.
C组
9.先用配方法说明:不论x取何值,代数x2-5x+7的值总大于0.再求出当x取何
值时,代数式x2-5x+7的值最小?最小值是多少?
10.说明不论m取何值,关于x的方程(x-1)(x-2)=m2总有两个不相等的实根.。