不等式性质及二次不等式解法
基本不等式的所有公式及常用解法
基本不等式的所有公式及常用解法1.加减法不等式公式:若a>b,则a+/-c>b+/-c,其中c为任意实数。
2.乘法不等式公式:若a>b且c>0,则a*c>b*c;若a>b且c<0,则a*c<b*c。
3.幂次不等式公式:对任意非零实数a和b若a>b且n>0且n为正整数,则a^n>b^n;若a>b且0<n<1,则a^n<b^n。
4.倒数不等式公式:若a>b>0,则1/a<1/b。
5.奇偶性不等式公式:若a>0且n为正整数,则a^n>0。
若a<0且n为奇数整数,则a^n<0。
常用的解基本不等式的方法有:1.用数轴法解:将不等式绘制在数轴上,根据不等式的性质找出符合条件的x的取值范围。
2.用代数方法解:针对不等式上的加减法、乘法、幂次或倒数等,利用基本不等式公式进行运算,化简不等式,最终得到x的取值范围。
3.用平方差、立方差或更高次差法解:对于特定形式的不等式,如二次函数不等式(即含有二次项的不等式),可使用平方差公式将其转化为不等式的标准形式;同样,对于三次函数不等式(即含有三次项的不等式),可使用立方差公式将其转化为不等式的标准形式。
通常,对高次不等式的解法需要更高级的数学知识,此处不再详细介绍。
4.用函数图像解:对于一些特定函数,如一次函数、二次函数等,可通过绘制函数图像来判断不等式的解集。
5.用不等式链解:若能将一个不等式化为多个简单的不等式,即不等式的解集满足一系列条件,可通过每个条件对应的不等式求解解集。
以上是基本不等式的一些公式和常用解法。
对于不同的不等式,我们需要根据具体情况选择合适的解法。
希望以上内容对您有所帮助。
二次函数不等式解法
二次函数不等式解法二次函数不等式是高中数学中比较重要的一部分,也是考试中常见的题型。
本文将介绍二次函数不等式的解法,希望对广大学生有所帮助。
一、基本概念二次函数是指形如y=ax+bx+c的函数,其中a、b、c为常数,且a≠0。
二次函数的图像是一个开口向上或向下的抛物线。
二次函数不等式是指形如ax+bx+c>0或ax+bx+c<0的不等式,其中a、b、c为实数,且a≠0。
这种不等式的解集是实数集中满足不等式的数的集合。
二、解法二次函数不等式的解法分为以下几种情况:1、a>0的情况当a>0时,二次函数的图像是开口向上的抛物线。
此时,二次函数不等式ax+bx+c>0的解集为:x∈(∞,x1)∪(x2,+∞)其中x1和x2是二次函数的两个零点,可以用求根公式求得:x1=[b+√(b4ac)]/2ax2=[b√(b4ac)]/2a当二次函数的判别式b-4ac<0时,不存在实数解,此时解集为空集。
当二次函数的判别式b-4ac=0时,存在一个实数解,此时解集为{x1}。
当二次函数的判别式b-4ac>0时,存在两个实数解,此时解集为(-∞,x1)∪(x2,+∞)。
2、a<0的情况当a<0时,二次函数的图像是开口向下的抛物线。
此时,二次函数不等式ax+bx+c>0的解集为:x∈(x1,x2)其中x1和x2是二次函数的两个零点。
当二次函数的判别式b-4ac<0时,不存在实数解,此时解集为空集。
当二次函数的判别式b-4ac=0时,存在一个实数解,此时解集为{x1}。
当二次函数的判别式b-4ac>0时,存在两个实数解,此时解集为(x1,x2)。
3、a=0的情况当a=0时,二次函数变为一次函数,此时二次函数不等式化为bx+c>0或bx+c<0的形式。
当b>0时,二次函数不等式bx+c>0的解集为x>-c/b。
当b<0时,二次函数不等式bx+c>0的解集为x<-c/b。
不等式
x 2 y 8 4 x 16 4 y 12 x 0, y 0
在线性约束条件下求线性目标函数的最大值或最小 值的问题,统称为线性规划问题.
{x | x x1或x x 2 }
不等式ax2+bx+c0(a>0)的解集为
{x | x x1或x x 2}
不等式ax2+bx+c<0(a>0)的解集为
{x | x1 x x 2}
不等式ax2+bx+c0(a>0)的解集为
{x | x1 x x 2}
不等式ax2+bx+c>0(a>0)与不等式ax2+bx+c<0(a>0)
O
y
4
2x+y-4=0
2
x
二元一次不等式组表示的平面区域
二元一次不等式组表示的平面区域是各个不等 式表示的平面区域的交集,即各个不等式表示的平 面区域的公共部分. y 例2 画出不等式组 x-y+5=0 x+y=0 5
x y 5 0 x y 0 x 3
O
3
x
表示的平面区域. x=3
ax2+bx+c>0
其中a,b,c是常数. 一元二次不等式的解集如何求呢?
一元二次不等式的解法
一般地, 如果对于一元二次方程
ax2+bx+c=0(a>0)
有两个不等的根 x1 =
不等式的性质与解法
不等式的性质与解法不等式是数学中一种重要的表示不等关系的数学语句,它与等式相对应。
研究不等式的性质和解法对于理解数学知识、解决实际问题具有重要意义。
本文将探讨不等式的性质以及一些常见的解法,并为读者提供一些实用的技巧。
一、不等式的基本性质不等式的基本性质包括传递性、对称性和加法、减法、乘法性质。
1. 传递性:如果 a > b 且 b > c,则有 a > c。
这种性质使得不等式在运算过程中具有连续性,方便我们研究和解决问题。
2. 对称性:如果 a > b,则有 b < a。
不等式在进行对称变换时可以改变不等式符号的方向,但不等式仍然成立。
3. 加法、减法性质:如果 a > b,则有 a + c > b + c,a - c > b - c。
不等式在加法和减法运算中,可以将数加减到两边,不等关系仍然成立。
4. 乘法性质:如果 a > b 且 c > 0,则有 ac > bc,如果 c < 0,则有 ac < bc。
不等式在乘法运算中可以将等式两边乘以正数,或者乘以负数并改变不等关系的方向。
二、解一元一次不等式一元一次不等式是最简单的不等式形式,解这类不等式的方法和解方程类似。
以下是解一元一次不等式的步骤:1. 将不等式中的所有项移到一边,使不等式变为“不等于0”的形式。
2. 如果不等式两边乘以负数,则需要改变不等式的方向。
3. 对于一元一次不等式,在不等式两边同时加上同一个数或者乘以同一个正数时,不等式的不等关系不变。
4. 求解出不等式的解集。
例如,解不等式2x - 5 > 7,按照上述步骤进行解答:1. 将不等式变为“不等于0”的形式:2x - 5 - 7 > 0。
2. 对不等式两边同时加上同一个数:2x - 12 > 0。
3. 不等式两边同时除以正数2:x - 6 > 0。
4. 求解出不等式的解集:x > 6。
第3节 不等式的性质、一元二次不等式
第3节 不等式的性质、一元二次不等式1.梳理不等式的性质,理解不等式的性质,掌握不等式的性质.2.会结合一元二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系.3.经历从实际背景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义,能借助一元二次函数的图象求解一元二次不等式,并能用集合表示一元二次不等式的解集.4.借助一元二次函数的图象,了解一元二次不等式相应的函数、方程的联系.1.两个实数大小比较的基本事实{a -b >0⇔a b (a ,b ∈R ),a -b =0⇔a b (a ,b ∈R ),a -b <0⇔a b (a ,b ∈R ). 2.不等式的基本性质3.一元二次不等式与相应的二次函数及一元二次方程的关系如表所示1.涉及实数的倒数有关的结论 (1)a>b,ab>0⇒1a <1b .(2)a<0<b ⇒1a <1b.(3)a>b>0,0<c<d ⇒a c >bd.(4)0<a<x<b或a<x<b<0⇒1b <1x<1a.2.两个重要不等式(1)若a>b>0,m>0,则ba <b+ma+m.(2)已知a,b均为正数,s,t均为正整数,则a s+t+b s+t≥a s b t+a t b s.1.不等式-x2-5x+6≥0的解集为( )A.{x|-6≤x≤1}B.{x|2≤x≤3}C.{x|x≥3或x≤2}D.{x|x≥1或x≤-6}2.下列四个命题中为真命题的是( )A.若a>b,则ac2>bc2B.若a>b,c>d,则a-c>b-dC.若a>|b|,则a2>b2D.若a>b,则1a <1 b3.一元二次不等式ax2+bx+1>0的解集为{x|-1<x<13},则ab的值为( )A.-5B.5C.-6D.64.已知f(x)=x2+4x+1+a,∀x∈R,f(f(x))≥0恒成立,则实数a的取值范围为( )A.[√5-12,+∞} B.[2,+∞) C.[-1,+∞) D.[3,+∞)5.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3000+20x-0.1x2(0<x<240,x∈N),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是台.不等式的性质及其应用1.已知a>0>b,则下列不等式一定成立的是( )A.a2>b2B.ab>b2C.ln|ab|>0 D.2a-b>12.已知实数x,y,z满足x2=4x+z-y-4且x+y2+2=0,则下列关系成立的是( )A.y>x≥zB.z≥x>yC.y>z≥xD.z≥y>x3.已知-1<x<4,2<y<3,则x-2y的取值范围是,3x+4y的取值范围是.4.已知-1≤x+y ≤1,1≤x-y ≤3,则3x-2y 的取值范围是 .1.根据不等式的性质判断不等式是否成立的方法主要是利用不等式的性质或特殊值法,而对于待比较的不等式的两端可以化为相同的函数的形式,可以利用构造函数,利用函数的单调性进行判断.2.当两个数(或式子)正负未知且为多项式时,用作差法,作差时要注意变形技巧.3.已知x,y 的范围,求由ax,by(ab ≠0)通过加、减、乘、除构成的运算式子的范围时,可利用不等式的性质直接求解.4.已知由ax,by(ab ≠0)通过加、减、乘、除构成的运算式子的范围,求解形如cx ±dy(cd ≠0)的范围问题时,要利用待定系数法,将cx ±dy 用已知条件的关系式整体代换.此种类型中不要直接求出x,y 的范围后求cx ±dy 的范围,由于a>b,c>d ⇒a+c>b+d 不是可逆的,因此容易出现错解.一元二次不等式的解法及其应用角度一 不含参数的一元二次不等式不等式-3<4x-4x 2≤0的解集为( ) A.{x|-12<x<32} B.{x|-12<x ≤0或1≤x ≤32}C.{x|1≤x<32} D.{x|-12<x ≤0或1≤x<32}a ≤f(x)≤b 等价于{f (x )≥a ,f (x )≤b .角度二 一元二次不等式与一元二次方程的关系(多选题)已知关于x 的不等式ax 2+bx+c>0的解集为(-1,3),则下列说法正确的是 A.a>0 B.bx-c>0的解集是{x|x>32}C.cx 2+ax-b>0的解集是{x|x<-23或x>1} D.a+b<c1.一元二次方程的根就是相应一元二次函数的零点,也是相应一元二次不等式解集的端点值.2.给出一元二次不等式的解集,相当于知道了相应二次函数图象的开口方向及与x 轴的交点,可以利用代入根或根与系数的关系求待定 系数.角度三 含参数的一元二次不等式解关于x 的不等式:ax 2+(2-4a)x-8>0.1.一般地,在解含参数的一元二次型不等式时,若所给不等式能够直接通过因式分解求出方程的根,则需要从如下两个方面进行考虑: (1)关于不等式类型的讨论:二次项系数a>0,a<0,a=0. (2)关于不等式对应的方程根的大小的讨论:x 1>x 2,x 1=x 2,x 1<x2.2.若含参数的不等式对应的二次方程的判别式含参数,主要对关于不等式对应的方程是否有根进行讨论. [针对训练](1)不等式组{x 2-1<0,x 2-3x ≥0的解集是( )A.{x|-1<x<1}B.{x|1<x ≤3}C.{x|-1<x ≤0}D.{x|x ≥3或x<1} (2)设函数f(x)={x 2-4x +6,x ≥0,x +6,x <0,则不等式f(x)>f(1)的解集是( )A.(-3,1)∪(3,+∞)B.(-3,1)∪(2,+∞)C.(-1,1)∪(3,+∞)D.(-∞,-3)∪(1,3) (3)(多选题)对于给定实数a,关于x 的一元二次不等式a(x-a)(x+1)>0的解集可能为 A.R B.(-1,a ) C.(a,-1) D.(-∞,-1)∪(a,+∞)一元二次不等式恒成立问题角度一 一元二次不等式在R 上的恒成立问题若不等式2kx 2+kx-38<0对一切实数x 都成立,则k 的取值范围为( )A.(-3,0)B.[-3,0)C.[-3,0]D.(-3,0]一元二次不等式恒成立的条件(1)ax2+bx+c>0(a≠0)恒成立的充要条件是{a>0,b2-4ac<0.(2)ax2+bx+c<0(a≠0)恒成立的充要条件是{a<0,b2-4ac<0.角度二一元二次不等式在给定区间上的恒成立问题的求解方法若对任意的x∈[-1,2],都有x2-2x+a≤0(a为常数),则a的取值范围是( ) A.(-∞,-3] B.(-∞,0] C.[1,+∞) D.(-∞,1]一元二次不等式在给定区间上的恒成立问题的求解方法(1)最值转化法:若f(x)>0在集合A中恒成立,则函数y=f(x)在集合A中的最小值大于0.(2)分离参数转化为函数的值域问题,即已知函数f(x)的值域为[m,n],则f(x)≥a恒成立⇒f(x)min≥a,即m≥a;f(x)≤a恒成立⇒f(x)max≤a,即n≤a.角度三一元二次不等式的有解问题若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是A.(-∞,-2) B.(-∞,-2] C.(-6,+∞) D.(-∞,-6)一元二次不等式在给定区间上的有解问题,常用分离参数的方法,通过分离参数后利用:a>f(x)在区间[m,n]上有解,则a>f(x)min,a<f(x)在区间[m,n]上有解,a<f(x)max.(对于a≥f(x),a≤f(x)可类似处理)[针对训练](1)若存在实数x∈[2,4],使x2-2x+5-m<0成立,则m的取值范围为( )A.(13,+∞)B.(5,+∞)C.(4,+∞)D.(-∞,13)(2)若关于x的一元二次不等式ax2+2ax+1>0的解集为R,则实数a的取值范围是.(3)若对于任意的x∈[0,2],不等式x2-2ax-1≤0恒成立,则实数a的取值范围是.。
第1章 1.1 不等式的基本性质和一元二次不等式的解法
第1章 1.1 不等式的基本性质和一元二次不等式的解法【解析】 a >b 并不能保证a ,b 均为正数,从而不能保证A ,B 成立.又a >b ⇒a -b >0,但不能保证a -b >1,从而不能保证C 成立.显然D 成立.事实上,指数函数y =⎝ ⎛⎭⎪⎫12x是减函数,所以a >b ⇔⎝ ⎛⎭⎪⎫12a<⎝ ⎛⎭⎪⎫12b成立.【答案】 D教材整理2 一元一次不等式的解法 关于x 的不等式ax >b ,(1)当a >0时,该不等式的解集为⎝ ⎛⎭⎪⎫b a ,+∞;(2)当a <0时,该不等式的解集为⎝ ⎛⎭⎪⎫-∞,b a ; (3)当a =0时,若b <0,则该不等式的解集为R ;若b ≥0,则该不等式的解集为∅.不等式组⎩⎨⎧x +9<5x +1,x >m +1的解集是{x |x >2},则m 的取值范围是( )【导学号:38000000】A.m ≤2B.m ≥2C.m ≤1D.m ≥1【解析】 原不等式组可化为⎩⎨⎧x >2,x >m +1.∵解集为{x |x >2},∴m +1≤2,∴m ≤1. 【答案】 C教材整理3 一元二次不等式的解法 形如ax 2+bx +c >0(a >0)的解法: Δ=b 2-4ac Δ>0Δ=0Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0(a >0)的根有两个不等的实根x 1,x 2且x 1<x 2有两个相等的实根x 1,x 2且x 1=x 2无实根ax2+bx+c >0(a >0) 的解集{x|x<x1或x>x2}⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x≠-b2a Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅不等式-x2+5x-6>0的解集是()A.{x|2<x<3}B.{x|x<2或x>3}C.{x|-1<x<6}D.{x|x<-1或x>6}【解析】原不等式可化为x2-5x+6<0,即(x-2)(x-3)<0,所以原不等式的解集为{x|2<x<3}.【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]比较大小(1)已知x>3,比较x3+3与3x2+x的大小;(2)若m>0,试比较m m与2m的大小.【精彩点拨】(1)只需考查两者的差同0的大小关系;(2)注意到2m>0,可求商比较大小,但要注意到用函数的性质.【自主解答】(1)x3+3-3x2-x=x2(x-3)-(x-3)=(x-3)(x+1)(x-1).∵x>3,∴(x-3)(x+1)(x-1)>0,∴x3+3>3x2+x.(2)m m2m =⎝ ⎛⎭⎪⎫m 2m, 当m =2时,⎝ ⎛⎭⎪⎫m 2m=1,此时m m =2m ;当0<m <2时,0<m 2<1,⎝ ⎛⎭⎪⎫m 2m<1,∴m m <2m ;当m >2时,m 2>1,⎝ ⎛⎭⎪⎫m 2m>1,∴m m >2m .1.利用作差法比较大小,实际上是把比较两数大小的问题转化为差的符号问题.作差时,只需看差的符号,至于差的值究竟是多少,这里无关紧要.2.在变形中,一般是变形得越彻底越有利于下一步的判断.作差法变形的常用技巧有:因式分解、配方、通分、分母有理化等.3.利用求商比较法比较两个式子的大小时,第(2)步的变形要向着有利于判断商与1的大小关系的方向变形,这是最重要的一步.[再练一题]1.已知A =1x +1y ,B =4x +y,其中x ,y 为正数,试比较A 与B 的大小.【导学号:38000001】【解】 A -B =1x +1y -4x +y=x +y xy -4x +y =(x +y )2-4xy xy (x +y )=(x -y )2xy (x +y ).∵x ,y 均为正数,∴x >0,y >0,xy >0,x +y >0,(x -y )2≥0, ∴A -B ≥0,即A ≥B .利用不等式的性质求范围设f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4,在求f (-2)的取值范围时有如下解法:由⎩⎨⎧1≤f (-1)≤2,2≤f (1)≤4,得⎩⎪⎨⎪⎧32≤a ≤3,0≤b ≤32.∴3≤f (-2)=4a -2b ≤12.上述解法是否正确?为什么?【精彩点拨】 本题错在多次运用同向不等式相加(单向性)这一性质上,导致f (-2)的范围扩大.因此需要将f (-2)用a -b 与a +b 整体表示.【自主解答】 给出的解法不正确. 设f (-2)=mf (-1)+nf (1), 则4a -2b =m (a -b )+n (a +b ), 即4a -2b =(m +n )a -(m -n )b . 于是⎩⎨⎧m +n =4,m -n =2,解得⎩⎨⎧m =3,n =1.∴f (-2)=3f (-1)+f (1). 又1≤f (-1)≤2,2≤f (1)≤4, ∴5≤3f (-1)+f (1)≤10. 因此,f (-2)的取值范围是[5,10].1.求代数式的取值范围是不等式性质应用的一个重要方面,严格依据不等式的性质和运算法则进行运算,是解答此类问题的基础.2.先建立待求范围的整体与已知范围的整体的等量关系,最后通过“不等关系的运算,求得待求的范围”,是避免犯错误的一条途径.[再练一题]2.已知-6<a <8,2<b <3,分别求a -b ,ab 的取值范围. 【解】 ∵-6<a <8,2<b <3. ∴-3<-b <-2,∴-9<a -b <6, 则a -b 的取值范围是(-9,6). 又13<1b <12,(1)当0≤a <8时,0≤ab <4; (2)当-6<a <0时,-3<ab <0. 由(1)(2)得-3<ab <4. 因此ab 的取值范围是(-3,4).一元二次不等式的解法解下列关于x 的一元二次不等式.(1)3x 2+5x -2>0;(2)9x 2-6x +1>0; (3)x 2-4x +5>0.【精彩点拨】 先由不等式确定对应的一元二次方程ax 2+bx +c =0的根,再根据二次函数y =ax 2+bx +c 的图象确定不等式的解集.【自主解答】 (1)方程3x 2+5x -2=0的两根为x 1=-2,x 2=13,函数y =3x 2+5x -2的图象开口向上,与x 轴交于两个点 (-2,0),⎝ ⎛⎭⎪⎫13,0,观察图象可得不等式3x 2+5x -2>0的解集为x ⎪⎪⎪x >13或x <-2.(2)方程9x 2-6x +1=0有两个相等的实数根x 1=x 2=13,二次函数y =9x 2-6x +1的图象开口向上,与x 轴仅有一个交点⎝ ⎛⎭⎪⎫13,0,观察图象可以得到不等式9x 2-6x +1>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠13. (3)方程x 2-4x +5=0可化为(x -2)2+1=0,故方程x 2-4x +5=0没有实数根,函数y =x 2-4x +5的图象开口向上并且与x 轴没有交点,由图象可得,不等式x 2-4x +5>0的解集为R.当a >0时,解形如ax 2+bx +c >0(≥0)或ax 2+bx +c <0(≤0)的一元二次不等式,一般可以分为三步:(1)确定对应的一元二次方程ax 2+bx +c =0的解; (2)画出对应函数y =ax 2+bx +c 的图象;(3) 由图象得出不等式的解集. [再练一题]3.不等式x 2+x -2≤0的解集为________.【解析】 方程x 2+x -2=0的两根为x 1=-2,x 2=1, 函数y =x 2+x -2的图象开口向上, ∴不等式x 2+x -2≤0的解集为[-2,1]. 【答案】 [-2,1]含参数的一元二次不等式的解法解关于x 的不等式:ax 2-(a +1)x +1<0.【精彩点拨】 由于a ∈R ,故分a =0,a >0,a <0讨论. 【自主解答】 若a =0,原不等式可化为-x +1<0,即x >1. 若a <0,原不等式可化为⎝ ⎛⎭⎪⎫x -1a (x -1)>0,即x <1a 或x >1.若a >0,原不等式可化为⎝ ⎛⎭⎪⎫x -1a (x -1)<0.(*)其解的情况应由1a 与1的大小关系决定,故 (1)当a =1时,由(*)式可得x ∈∅; (2)当a >1时,由(*)式可得1a <x <1; (3)当0<a <1时,由(*)式可得1<x <1a . 综上所述:当a <0时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <1a 或x >1; 当a =0时,解集为{x |x >1}; 当0<a <1时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1<x <1a ; 当a =1时,解集为∅; 当a >1时,解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ 1a <x <1. 解含参数的一元二次不等式时要注意对参数分类讨论.讨论一般分为三个层次,第一层次是二次项系数为零和不为零;第二层次是有没有实数根的讨论,即判别式Δ>0,Δ=0,Δ<0;第三层次是根的大小的讨论.[再练一题]4.解关于x 的不等式x 2-(a +a 2)x +a 3>0(a ∈R). 【解】 原不等式可化为(x -a )(x -a 2)>0, ∴当a <0时,a <a 2,解集为{x |x <a 或x >a 2}; 当a =0时,a 2=a ,解集为{x |x ≠0}; 当0<a <1时,a 2<a ,解集为{x |x <a 2或x >a }; 当a =1时,a 2=a ,解集为{x |x ≠1}; 当a >1时,a <a 2,解集为{x |x <a 或x >a 2}. 综上所述:当a <0或a >1时,解集为{x |x <a 或x >a 2}; 当0<a <1时,解集为{x |x <a 2或x >a }; 当a =0时,解集为{x |x ≠0}; 当a =1时,解集为{x |x ≠1}.一元二次不等式的应用设a ∈R ,关于x 的一元二次方程7x 2-(a +13)x +a 2-a -2=0有两个实数根x 1,x 2且0<x 1<1<x 2<2,求a 的取值范围.【精彩点拨】 若把方程左边看成二次函数f (x ),则它的图象是开口向上的抛物线,与x 轴相交的条件是f (0)>0,f (1)<0,f (2)>0,所以只需解关于a 的不等式组,即可求出a 的取值范围.【自主解答】 设f (x )=7x 2-(a +13)x +a 2-a -2. ∵x 1,x 2是方程f (x )=0的两个实根,且0<x 1<1,1<x 2<2,∴有⎩⎨⎧f (0)>0,f (1)<0,f (2)>0,即⎩⎨⎧a 2-a -2>0,7-(a +13)+a 2-a -2<0,28-2(a +13)+a 2-a -2>0,∴有⎩⎨⎧ a 2-a -2>0,a 2-2a -8<0,a 2-3a >0,∴有⎩⎨⎧ a <-1或a >2,-2<a <4,a <0或a >3.∴有-2<a <-1或3<a <4.∴a 的取值范围是{a |-2<a <-1或3<a <4}.解关于二次方程根的分布问题,应考虑“三个二次”的关系,分清对应的二次函数的开口方向及根所在区域的范围,画出对应的二次函数的图象,根据图象列出有关的不等式或不等式组进行求解.[再练一题]5.一个服装厂生产风衣,日销售量x (件)与售价p (元/件)之间的关系为p =160-2x ,生产x 件的成本R =500+30x 元.(1)该厂日产量多大时,日利润不少于1 300元?(2)当日产量为多少时,可获得最大利润,最大利润是多少?【解】 (1)由题意知,日利润y =px -R ,即y =(160-2x )x -(500+30x )=-2x 2+130x -500,由日利润不少于1 300元.得-2x 2+130x -500≥1 300,即x 2-65x +900≤0,解得20≤x ≤45.故当该厂日产量在20~45件时,日利润不少于1 300元.(2)由(1)得,y =-2x 2+130x -500=-2⎝ ⎛⎭⎪⎫x -6522+3 2252, 由题意知,x 为正整数.故当x =32或33时,y 最大为1 612.所以当日产量为32或33件时,可获得最大利润,最大利润为1 612元.可化为一元二次不等式的分式不等式的解法解不等式:x +1x -2≤2. 【精彩点拨】 把不等式转化为f (x )g (x )≥0求解. 【自主解答】 ∵x +1x -2≤2,∴x +1x -2-2≤0,即-x +5x -2≤0, ∴x -5x -2≥0,∴⎩⎨⎧ (x -5)(x -2)≥0,x -2≠0,∴x <2或x ≥5. 即原不等式的解集为{x |x <2或x ≥5}.解分式不等式总的原则是利用不等式的同解原理将其转化为整式不等式(组)求解.即f (x )g (x )≥0⇒⎩⎨⎧ f (x )·g (x )≥0,g (x )≠0⇒f (x )·g (x )>0或f (x )=0. f (x )g (x )>0⇒⎩⎨⎧ f (x )>0,g (x )>0或⎩⎨⎧f (x )<0,g (x )<0⇒f (x )·g (x )>0. [再练一题]6.不等式x -2x 2-1<0的解集为( ) A.{x |1<x <2}B.{x |x <2且x ≠1}C.{x |-1<x <2且x ≠1}D.{x |x <-1或1<x <2}【解析】 因为不等式x -2x 2-1<0, 等价于(x +1)(x -1)(x -2)<0,所以该不等式的解集是{x |x <-1或1<x <2}.【答案】 D[探究共研型]不等式的性质及恒成立问题探究1 甲同学认为a >b ⇔1a <1b ,乙同学认为a >b >0⇔1a <1b ,丙同学认为a >b ,ab >0⇔1a <1b ,请你思考一下,他们谁说的正确?【提示】 它们的说法都不正确.设f (x )=1x ,则f (a )=1a ,f (b )=1b ,可以利用函数f (x )=1x 的图象比较f (a )与f (b )的大小.探究2 不等式两边同时乘以(或除以)一个数时,要注意什么?【提示】 要先判断这个数是否为零,决定是否可以乘以(或除以)这个数,再判断是正还是负,决定不等号的方向是否改变.探究3 ax 2+bx +c >0对一切x ∈R 都成立的充要条件是什么?【提示】 ⎩⎨⎧ a =b =0,c >0,或⎩⎨⎧a >0,Δ<0. 若不等式x 2+ax +1≥0对一切x ∈R 都成立,求实数a 的取值范围.【精彩点拨】 设f (x )=x 2+ax +1,只要f (x )的图象全部位于x 轴上方,只要顶点在x 轴上或x 轴上方即可.【自主解答】 ∵Δ=a 2-4≤0,∴-2≤a ≤2, ∴实数a 的取值范围是[-2,2].[再练一题]7.把上述例题中“x ∈R ”改为x ∈⎝ ⎛⎦⎥⎤0,12,求a 的取值范围. 【解】 法一:x 2+ax +1≥0,x ∈⎝ ⎛⎦⎥⎤0,12可化为 -a ≤x 2+1x =x +1x ,设f (x )=x +1x ,x ∈⎝ ⎛⎦⎥⎤0,12, ∴-a ≤f (x )min .∵f (x )在⎝ ⎛⎦⎥⎤0,12上是减函数, ∴f (x )min =f ⎝ ⎛⎭⎪⎫12=52,∴-a ≤52,a ≥-52, ∴a 的取值范围是⎝ ⎛⎭⎪⎫-52,+∞.法二:设f (x )=x 2+ax +1,则对称轴为x =-a 2. 当-a 2≥12,即a ≤-1时,f (x )在⎝ ⎛⎦⎥⎤0,12上是减函数, 应有f ⎝ ⎛⎭⎪⎫12≥0⇒-52≤a ≤-1; 当-a 2≤0,即a ≥0时,f (x )在⎝ ⎛⎦⎥⎤0,12上是增函数, 应有f (0)=1>0恒成立,故a ≥0;当0<-a 2<12,即-1<a <0时, 应有f ⎝ ⎛⎭⎪⎫-a 2=a 24-a 22+1=1-a 24≥0恒成立,故-1<a <0. 综上,有a ≥-52. ∴a 的取值范围是⎣⎢⎡⎭⎪⎫-52,+∞. [构建·体系]不等式的性质与解法—⎪⎪⎪⎪⎪ —不等式的性质—⎪⎪⎪ —两个实数的大小—不等式的基本性质—不等式的解法—⎪⎪⎪ —一元一次不等式的解法—一元二次不等式的解法1.若x ≠2且y ≠-1,M =x 2+y 2-4x +2y ,N =-5,则M 与N 的大小关系是( )A.M >NB.M <NC.M =ND.不能确定【解析】 M -N =x 2+y 2-4x +2y -(-5)=(x -2)2+(y +1)2.∵x ≠2且y ≠-1,∴x -2≠0且y +1≠0,∴(x -2)2+(y +1)2>0,故M >N .【答案】 A2.已知函数f (x )=x +x 3,x 1,x 2,x 3∈R ,x 1+x 2<0,x 2+x 3<0,x 3+x 1<0,那么f (x 1)+f (x 2)+f (x 3)的值( )A.一定大于0B.一定小于0C.等于0D.正负都有可能【解析】 x 1+x 2<0⇒x 1<-x 2.又∵f (x )=x +x 3为奇函数,且在R 上递增,∴f (x 1)<f (-x 2)=-f (x 2),即f (x 1)+f (x 2)<0.同理:f (x 2)+f (x 3)<0,f (x 1)+f (x 3)<0.以上三式相加,整理得f (x 1)+f (x 2)+f (x 3)<0.【答案】 B3.已知-π2≤α<β≤π2,则α-β2的范围是________. 【导学号:38000002】【解析】 ∵-π2≤α<β≤π2, ∴-π4≤α2<π4,-π4<β2≤π4, ∴-π4≤-β2<π4, ∴-π2≤α-β2<π2. 又∵α<β,∴α-β2<0,∴-π2≤α-β2<0. 【答案】 ⎣⎢⎡⎭⎪⎫-π2,0 4.关于x 的不等式0≤x 2-x -2≤4的解集为________.【解析】 先解x 2-x -2≥0.∵方程x 2-x -2=0的根为x 1=-1,x 2=2,∴x 2-x -2≥0的解集为{x |x ≤-1或x ≥2}.再解x 2-x -2≤4.∵方程x 2-x -2=4的两根为x 1=-2,x 2=3,∴x 2-x -2≤4的解集为{x |-2≤x ≤3}.∴原不等式的解集为{x |x ≤-1,或x ≥2}∩{x |-2≤x ≤3}={x |-2≤x ≤-1或2≤x ≤3}.【答案】 {x |-2≤x ≤-1或2≤x ≤3}5.已知函数f (x )=⎩⎨⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),求实数a 的取值范围. 【解】 y =x 2+4x =(x +2)2-4在[0,+∞)上单调递增;y =-x 2+4x =-(x -2)2+4在(-∞,0)上单调递增.又x 2+4x -(4x -x 2)=2x 2≥0,∴f (x )在(-∞,+∞)上单调递增, ∴f (2-a 2)>f (a )⇒2-a 2>a ⇒a 2+a -2<0⇒-2<a <1.我还有这些不足:(1)(2) 我的课下提升方案:(1)(2)。
二次不等式的解法
二次不等式的解法二次不等式是数学中经常遇到的问题,解决这类问题需要运用一些特定的解法和技巧。
本文将介绍几种常见的二次不等式的解法。
一、一元对于形如ax²+bx+c>0或ax²+bx+c<0的一元二次不等式,可以利用函数图像法或配方法来求解。
1. 函数图像法:将二次不等式转化为函数的不等式。
首先,将二次不等式中的二次项系数a视为函数的开口方向和图像开口方向的相关系数。
若a>0,则函数的图像开口向上;若a<0,则函数的图像开口向下。
其次,可以利用函数的图像来判断二次不等式的解集。
2. 配方法:将二次不等式进行配方,即将ax²+bx+c转化为a(x+m)²+n或a(x-m)²-n的形式。
然后,根据配方法的原理,我们可以根据a的正负和常数项n的正负来确定二次不等式的解集。
二、二元对于形如ax²+by²+2hxy+2gx+2fy+c≥0或ax²+by²+2hxy+2gx+2fy+c≤0的二元二次不等式,我们可以运用二次函数图像法或化简法来求解。
1. 二次函数图像法:将二元二次不等式转化为二元二次函数的图像来进行求解。
对于给定的二次不等式,可以求出关于x和y的二次函数的图像,然后利用图像的特征判断二次不等式的解集。
2. 化简法:对于给定的二次不等式,可以通过一系列的化简操作将其转化为简化形式,从而求解。
这些化简操作包括配方法、均值不等式、柯西-施瓦茨不等式等。
三、综合运用不等式解法在实际问题中,常常会遇到复杂的不等式问题,此时可以综合运用多种不等式解法。
1. 约束条件法:对于有约束条件的二次不等式问题,可以将约束条件和二次不等式联立求解。
通过求解方程组来确定不等式的解集。
2. 辅助变量法:对于一些复杂的二次不等式问题,可以引入辅助变量,通过辅助变量的引入和化简,将问题转化为简化的形式来求解。
3. 数学归纳法:对于一些数列或数学模型中的不等式问题,可以利用数学归纳法来进行求解。
不等式的基本性质和解法
不等式的基本性质和解法不等式在数学中具有重要的地位,它描述了数值之间的大小关系。
不等式的研究可以帮助我们解决许多实际问题,如经济学、物理学、工程学等领域中的优化问题。
本文将介绍不等式的基本性质和解法,帮助读者更好地理解和运用不等式。
一、不等式的基本性质1. 不等式的传递性:如果a > b,b > c,则a > c。
这是不等式的传递性质,我们可以通过这个性质建立一系列的大小关系。
2. 不等式的加法性:如果a > b,则a + c > b + c。
两边同时加上相同的数,不等式的大小关系不变。
3. 不等式的乘法性:如果a > b,c > 0,则ac > bc。
两边同时乘以正数,不等式的大小关系不变。
但如果c < 0,则ac < bc。
两边同时乘以负数,不等式的大小关系会颠倒。
4. 不等式的倒置性:如果a > b,则-b > -a。
不等式两边同时取相反数,不等式的大小关系颠倒。
以上是不等式的基本性质,我们在解决不等式问题时需要运用这些性质来推导和转化不等式的形式。
二、不等式的解法1. 一元一次不等式的解法:对于形如ax + b > 0的一元一次不等式,我们可以按照以下步骤进行求解:a) 将不等式转化为等式,得到ax + b = 0;b) 求解得到x = -b/a;c) 根据x的位置和a的正负确定不等式的解集。
2. 一元二次不等式的解法:对于形如ax^2 + bx + c > 0的一元二次不等式,我们可以按照以下步骤进行求解:a) 求解关于x的二次方程ax^2 + bx + c = 0,得到两个解x1和x2;b) 根据a的正负以及x1和x2的位置确定不等式的解集。
3. 绝对值不等式的解法:对于形如|ax + b| > c的绝对值不等式,我们可以按照以下步骤进行求解:a) 将不等式分为两种情况,即ax + b > c和ax + b < -c;b) 求解这两个一元一次不等式,得到两组解集;c) 将两组解集合并,即得到绝对值不等式的解集。
不等式的解法及二次函数二次不等式二次方程
不等式的解法及二次函数二次不等式二次方程一.不等式的解 知识小结1、 一元二次不等式:只含有一个未知数。
并且未知数的最高次数是二次的不等式叫一元二次不等式。
要求学生举5个例子。
2、 闭区间:集合}{b x a x ≤≤叫做闭区间,记为[a,b ]。
注意:隐含条件a <b 。
3、 开区间:集合}{b x a x <<叫做开区间,记为(a,b )。
注意:隐含条件a <b 。
4、 半开半闭区间:集合}{b x a x <≤或}{b x a x ≤<叫做半开半闭区间,记为[a,b ]或(a,b )。
注意:隐含条件a <b 。
5、 区间的端点:在上述所有区间中,a,b 叫做端点。
6、 实数集R 及b x b x a x a x ≤<>≥,,,用区间表示:),(),,[),,(+∞+∞+∞-∞a a ,),(],,(b b -∞-∞,∞+读作正无穷大,∞-读作负无穷大。
它们是一个理想的数,不是一个具体的数,∞+比你想的大还要大,∞-比你想的小还要小。
7、)0(02>>++a c bx ax 、或)0(02><++a c bx ax 的解法:例1 例1(一元二次不等式与一元二次方程的关系)求不等式2x 2-3x-2>0的解集。
解: 因为不等式2x 2-3x-2>0相应的一元二次方程的根的判别式Δ>O ,方程2x 2-3x-2=0的两个根是2,2121=-=x x 所以不等式的解集为),2()21,(+∞--∞ 。
小结:解不等式步骤:10检验二次项系数是否为正;20判断一元二次方程的判别式是否>0,<0,=0;30解出一元二次方程的根;40写出一元二次不等式的解集(用集合或区间表示)。
8、)0(02<>++a c bx ax 、或)0(02<<++a c bx ax 的解法:前面,我们只考虑一元二次不等式的二次项系数a>0的情况,当a<O 时,可在不等式的两边同乘以一l ,使二次项系数为正,就可同样求解. 例2 求不等式-3x 2+x+1>0的解集. 解 将原不等式化为3x 2-x-1<0, 因为方程3x 2-x-1=0的两根是6131,613121+=-=x x , 所以原不等式的解集为⎪⎪⎭⎫ ⎝⎛+-6131,6131例3 写出一个一元二次不等式,使它的解集(-1,3)。
高中数学知识点不等式的性质及解法
高中数学知识点不等式的性质及解法高中数学中,不等式的性质及解法是一个重要的知识点。
它涉及到不等式的基本性质、不等式的加减乘除、不等式的等价变形以及一元一次不等式、一元二次不等式等不等式类型的解法。
下面将详细介绍不等式的性质及解法。
一、不等式的性质1.两边加减同一个数不等号方向不变。
2.两边乘除同一个正数不等号方向不变,同一个负数不等号方向改变。
3.如果两个不等式成立,则它们的和、差、乘积、商仍然成立。
4.如果两个不等式的符号方向相反,求和时不等式方向不确定,求差时等式方向不确定,求积时反而求商时等式方向相反。
5.无论何时,两边加上相等的数,不等式的大小不变。
二、一元一次不等式对于一元一次不等式,常规的解法是将其转化为等价的不等式进行求解。
具体步骤如下:1. 化简:将不等式中的所有项移到一边,化简为标准形式ax+b<0或ax+b>0。
2.等价变形:根据不等式的性质,进行乘除法或加减法,将不等式变形为更简单的形式。
3.解不等式:根据等价变形后的不等式,确定x的取值范围。
三、一元二次不等式对于一元二次不等式,可以利用抛物线的性质进行求解。
具体分为以下几种情况:1.一元二次不等式的根在抛物线的两侧,此时,可以通过求解抛物线与x轴的交点来确定不等式的解集。
2.一元二次不等式的根在抛物线上,此时,可以通过根的位置确定抛物线在不等式中的符号。
3.一元二次不等式的根在抛物线的一侧,此时,可以根据抛物线的开口方向来确定不等式的解集。
四、综合应用在实际问题中,不等式的应用非常广泛,比如在经济学、物理学、生物学等领域中的一些实际问题往往可以转化为不等式进行求解。
这时候,除了要掌握不等式的基本性质和解法外,还需要注意问题的本质,合理进行变量的定义和范围的确定。
综上所述,不等式的性质及解法在高中数学中占据很重要的地位。
掌握不等式的基本性质,熟悉不等式的加减乘除运算,能够灵活运用不等式的等价变形以及一元一次不等式、一元二次不等式的解法,对于提高解题能力和培养数学思维都非常有帮助。
初中数学不等式的性质与解法知识点总结
初中数学不等式的性质与解法知识点总结在初中数学中,不等式是一个重要的概念,它涉及到比较大小的关系。
本文将对初中数学不等式的性质和解法进行总结和归纳,帮助读者更好地理解和掌握这一知识点。
一、不等式的基本性质不等式的基本性质是我们研究不等式的基础,以下为不等式的基本性质总结:1. 加减性质:若a>b,则a+c>b+c,a-c>b-c。
即不等式两边同时加(减)一个数,不等号方向不变。
2. 正数性质:若a>b且c>0,则ac>bc。
即不等式两边同时乘以一个正数,不等号方向不变。
3. 负数性质:若a>b且c<0,则ac<bc。
即不等式两边同时乘以一个负数,不等号方向改变。
4. 乘法性质:若a>b且c>d,则ac>bd。
即不等式两边同时乘以不等的两个数,不等号方向可能改变。
以上是不等式的一些基本性质,掌握这些性质对于后续解不等式问题非常重要。
二、一次不等式的解法一次不等式是指不等式中只含有一次幂的变量,下面将介绍一次不等式的解法。
1. 消去绝对值:若|x-a|<b,则-a<x<a。
若|x-a|>b,则x<-a或x>a。
2. 倍增倍减法:若ax+b>c,则x>(c-b)/a。
若ax+b<c,则x<(c-b)/a。
3. 区间法:对于一次不等式ax+b≥0或ax+b≤0,首先找到使ax+b=0的x值,分割数轴,解出x属于哪个区间。
对于不等号方向相反的情况,解法类似。
以上是一次不等式的解法,掌握这些方法可以帮助我们快速解决一次不等式的问题。
三、二次不等式的解法二次不等式是指不等式中含有二次项的变量,下面将介绍二次不等式的解法。
1. 因式分解法:将二次不等式转化为因式相乘的形式,然后求出各个因子的符号条件,最后得出解的范围。
2. 图像法:将二次不等式转化为对应的二次函数的图像,通过观察图像得出解的范围。
不等式的解题方法与技巧
不等式的解题方法与技巧引言不等式是数学中一种重要的关系式,描述了数值之间的大小关系。
在解题过程中,掌握不等式的解题方法和技巧是十分关键的。
本文将介绍一些常见的不等式解题方法和技巧,帮助读者更好地理解和应用不等式。
基本的不等式性质在解不等式之前,我们先来了解一些基本的不等式性质。
1.加减性质:如果对不等式两边同时加或减一个相同的数,则不等号方向不变。
例如,对于不等式a>b,若两边同时加上一个正数,不等号方向不变:a+c>b+c。
若两边同时减去一个正数,不等号方向也不变:a−c>b−c。
2.乘除性质:如果对不等式两边同时乘或除一个相同的正数,则不等号方向不变;若乘或除一个相同的负数,则不等号方向会改变。
例如,对于不等式a>b,若两边同时乘上一个正数,不等号方向不变:ac>bc。
若两边同时除以一个正数,不等号方向也不变:a/c>b/c。
若两边同时乘以一个负数,则不等号方向会改变:ac<bc。
若两边同时除以一个负数,不等号方向也会改变:a/c<b/c。
3.平方性质:对于非负实数a和b,若a>b2,则 $a > \\sqrt{a}$。
例如,对于不等式a>b2,两边同时开方,不等号方向不变:$\\sqrt{a} > b$。
4.绝对值性质:对于实数a和b,若|a|>|b|,则有两种情况:一种是a>b,另一种是a<−b。
例如,对于不等式|a|>|b|,两边可能有两种不等号关系:a>b或a<−b。
一元一次不等式的解法一元一次不等式是指只含有一个未知数x和一次项的不等式,例如ax+b>0。
下面介绍一些常见的解一元一次不等式的方法。
1.画数轴法:将未知数的取值范围绘制在数轴上,根据不等式的符号关系,在数轴上标记出满足不等式的区间,从而确定解的范围。
例如,对于不等式2x−5>0,首先将其转化为等式2x−5=0,求得 $x = \\frac{5}{2}$,然后在数轴上以 $\\frac{5}{2}$ 为标志,标记出正解的范围,即可以得到满足不等式的区间。
各类不等式的解法
各类不等式的解法一、不等式的基本性质不等式的基本性质有:(1)对称性或反身性:a>b ⇔b<a ;(2)传递性:若a>b ,b>c ,则a>c ;(3)可加性:a>b ⇒a+c>b+c ,此法则又称为移项法则;(4)可乘性:a>b ,当c>0时,ac>bc ;当c<0时,ac<bc 。
不等式运算性质:(1)同向相加:若a>b ,c>d ,则a+c>b+d ;(2)正数同向相乘:若a>b>0,c>d>0,则ac>bd 。
特例:(3)乘方法则:若a>b>0,n ∈N +,则n n b a >;(4)开方法则:若a>b>0,n ∈N +,则n 1n 1b a >;(5)倒数法则:若ab>0,a>b ,则b1a 1<。
例1: 1)、5768--与的大小关系为 .2)、设1->n ,且,1≠n 则13+n 与n n +2的大小关系是 .3)已知,αβ满足11123αβαβ-+⎧⎨+⎩≤≤≤≤, 试求3αβ+的取值范围. 例2.比较()21+a 与12+-a a 的大小。
例3.解关于x 的不等式m x x m +>+)2(。
二、一元二次不等式的解法一元二次不等式)0(02>>++a c bx ax 或 )0.(02><++a c bx ax 的求解原理:利用二次函数的图象通过二次函数与二次不等式的联系从而推证出任何一元二次不等式的解集。
1.解下列不等式:(1)02322≥--x x (2)01692>++x x (3)542<-x x (4)0122≤++x x2.解不等式组 (1)22371002520x x x x ⎧--≤⎨-+>⎩ (2)2223054x x x x ⎧-->⎨->⎩3.若不等式02>++c bx ax 的解集为(-2,3),求不等式02<-+b ax cx 的解集.4.当k 为何值时,不等式08322<-+kx kx 对于一切实数x 都成立? 三、分式不等式与高次不等式的解法1.分式不等式解法2.高次不等式解法:数轴标根法(奇穿偶切)典型例题例1解下列不等式(1)x -3x +7 <0 (2)3+2x <0 (3)4x -3 >2-x 3-x-3 (4) 3x >1 例2 解下列不等式:(1)(x+1)(x-1)(x-2)>0 (2)(-x-1)(x-1)(x-2)<0(3) x(x-1)2(x+1)3(x+2)≤0 (4)(x-3)(x+2)(x-1)2(x-4)>0(5)015223>--x x x (6)0)2()5)(4(32<-++x x x . (7)22123+-≤-x x(8)12731422<+-+-x x x x 四、无理不等式的解法解无理不等式的基本方法就是将其转化为有理不等式组,在转化过程中一定要注意等价变换 题型Ⅰ:⎪⎩⎪⎨⎧>⇒⎭⎬⎫≥≥⇔>)()(0)()0)(()()(x g x f x g x f x g x f 定义域型 例1 解不等式⑴0231≤---x x ⑵125->-x x 题型Ⅱ:⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或型 例2 解不等式x x x 211322+>+- 题型Ⅲ:⎪⎩⎪⎨⎧>>≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f 型 例3解不等式x x x 211322+<+- 例4解不等式1112-+>+x x 例5解不等式36922>-+-x x x五、绝对值不等式的解法含有绝对值的不等式的解法关键就在于去掉绝对值,而去掉绝对值,则需要对绝对值中的零点进行讨论,一般来说一个零点分两个范围,两个零点分三个零点,依次类推.(1)含有一个绝对值: 不等式)0(><a a x 的解集是{}a x a x <<-; 不等式)0(>>a a x 的解集是{}a x a x x -<>或,不等式)0(><+c c b ax 的解集为 {})0(|><+<-c c b ax c x ; 不等式)0(>>+c c b ax 的解集为 {})0(,|>>+-<+c c b ax c b ax x 或(2)含有多个绝对值:零点分段法例1 解不等式(1)5500≤-x . (2)752>+x (3)32≥-x(4)1≤ | 2x-1 | < 5. (5) |4x-3|>2x+1例2解不等式:(1)|x -3|-|x +1|<1. (2)|x |-|2x +1||>1.例3 已知函数f (x )=|x -2|-|x -5|.(I )证明:-3≤f (x )≤3;(II )求不等式f (x )≥x 2-8x +15的解集.六、指数不等式与对数不等式利用指数函数及对数函数的单调性转化为代数不等式例1.解不等式66522252.0-+---≥x x x x例2.解不等式154log <x . 例3.解不等式:)10(log 31log ≠<-<-a x x a a例4.1>a 时解关于x 的不等式0]1)2(2[log 12>++-+x x x x aa a 七、基本不等式(也叫均值不等式)1.基本不等式2.(1)a 2+b 2≥2ab (a ,b ∈R) (2)ab ≤(a +b 2)2(a ,b ∈R)(3)a 2+b 22≥(a +b 2)2(a ,b ∈R) (4)b a +a b≥2(a ,b 同号且不为零) 上述四个不等式等号成立的条件都是a =b.3.算术平均数与几何平均数设a>0,b>0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值设x ,y 都是正数.(1)如果积xy 是定值P ,那么当x =y 时和x +y 有最小值2P.(2)如果和x +y 是定值S ,那么当x =y 时积xy 有最大值14S 2. 练习1.已知两个正数a ,b 的等差中项为4,则a ,b 的等比中项的最大值为( )A .2B .4C .8D .162.若a ,b ∈R ,且ab>0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b≥2ab +1b ≥2ab +a b≥2 3.若x +2y =4,则2x +4y 的最小值是( )A .4B .8C .22D .4 24.当x>1时,求函数f(x)=x +1x -1的最小值________. 5.已知x ,y>0,且满足x 3+y 4=1,则xy 的最大值为________. 6.某公司一年购买某种货物 400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________.7. 已知a 、b 、c 为正实数,且a +b +c =1,求证:(1a -1)(1b -1)(1c-1)≥8. 八、不等式的证明(一)比较法:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论2.比较法之二(作商法)步骤:作商——变形——判断与1的关系——结论例1 求证:x 2 + 3 > 3x例2 a ,b ? R +,且a b ≥,求证:a b b a b a b a ab b a ≥≥+2)((二)综合法 1.综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法.2.用综合法证明不等式的逻辑关系是:12n A B B B B ⇒⇒⇒⇒⇒L3.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。
不等式及其性质与解法
(1)一元一次不等式:只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式。
(2)一元一次不等式的解法:求接方法与解一元一次方程类似,根据不等式性质将不等式变形,从而等到解集.(3)一般步骤:一、去分母;二、去括号;三、移项;四、合并,化成b ax >或b ax <的形式(其中0≠a );五、两边都除以未知数的系数,得到不等式的解集。
热身练习1、判断下列各题是否正确?正确的打“√”,错误的打“×”。
(1) 不等式两边同时乘以一个整数,不等号方向不变.( × ) (2) 如果a >b ,那么3-2a >3-2b.( × ) (3) 如果a <b ,那么a 2<b 2.( × ) (4) 如果a 为有理数,则a >-a.( × ) (5) 如果a >b ,那么ac 2>bc 2.( × ) (6) 如果-x >8,那么x >-8.( × ) (7) 若a <b ,则a +c <b +c.( √ )2、若x >y,则ax >ay ,那么a 一定为( A )。
[来源A 、a >0B 、a<0C 、a≥0D 、a ≤03、有理数b 满足︱b ︱<3,并且有理数a 使得a <b 恒成立,则a 得取值范围是( C )。
A 、小于或等于3的有理数 B 、小于3的有理数 C 、小于或等于-3的有理数 D 、小于-3的有理数4、若b a <,则下列各式中一定成立的是( B ) A 、0>-b a B 、0<-b a C 、0>ab D 、0<ab5、如果t>0,那么a+t 与a 的大小关系是 ( A ).A 、a+t>aB 、a+t<aC 、a+t ≥aD 、不能确定 6、同时满足不等式2124xx -<-和3316-≥-x x 的整数x 是 ( B ). A 、1,2,3 B 、0,1,2,3 C 、1,2,3,4 D 、0,1,2,3,47、若三个连续正奇数的和不大于27,则这样的奇数组有( B )A .3组B .4组C .5组D .6组 8、若a <0,则-2b a +__<__-2b[来源:学.科.网] 11.设a <b ,用“>”或“<”填空:[来源:Z*xx*ka -1__<__b -1, a +3__<__b +3, -2a__>__-2b ,3a __<__3b12.实数a ,b 在数轴上的位置如图所示,用“>”或“<”填空:a -b__<__0, a +b__<__0,ab __>__0,a 2__>__b 2,a 1__>__b1,︱a ︱__>__︱b ︱ 13.若a <b <0,则21(b -a )_>___0 14、不等式2(x + 1) - 12732-≤-x x 的解集为_____1314≥x ________。
高中数学不等式的性质及一元二次不等式知识要点及例题讲解
不等式的性质及一元二次不等式考纲解读 1.利用不等式的性质判断不等式成立或比较大小;2.根据二次函数求解给定的一元二次不等式;3.利用三个“二次”间的关系求参数或不等式恒成立问题.[基础梳理]1.不等式的基本性质 (1)对称性:a >b ⇔b <a . (2)传递性:a >b ,b >c ⇒a >c . (3)可加性:a >b ⇒a +c >b +c .(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (5)加法法则:a >b ,c >d ⇒a +c >b +d . (6)乘法法则:a >b >0,c >d >0⇒ac >bd . (7)乘方法则:a >b >0⇒a n >b n (n ∈N ,n ≥1). (8)开方法则:a >b >0nb (n ∈N ,n ≥2). 2.不等式的倒数性质 (1)a >b ,ab >0⇒1a <1b .(2)a <0<b ⇒1a <1b .(3)a >b >0,0<c <d ⇒a c >bd .3.两个实数比较大小的依据 (1)a -b >0⇔a >b . (2)a -b =0⇔a =b . (3)a -b <0⇔a <b .4.一元二次不等式与相应的二次函数及一元二次方程的关系有两个相等实根[三基自测]1.下列四个结论,正确的是( )①a >b ,c <d ⇒a -c >b -d ;②a >b >0,c <d <0⇒ac >bd ;③a >b >0⇒3a >3b ;④a >b >0⇒1a 2>1b 2.A .①②B .②③C .①④D .①③ 答案:D2.不等式x (9-x )<0的解集为( ) A .(0,9) B .(9,+∞)C .(-∞,0)D .(-∞,0)∪(9,+∞)答案:D3.(必修5·习题3.2B 组改编)若函数y =mx 2-(1-m )x +m 的定义域为R ,则m 的取值范围是________.答案:[13,+∞)4.(2017·高考全国卷Ⅲ改编)设f (x )=⎩⎪⎨⎪⎧x +1 x ≤0x 2 x >0,则f (x )≥1的解集为__________.答案:{0}∪[1,+∞)考点一 一元二次不等式的解法|方法突破[例1] (1)不等式-x 2-3x +4>0的解集为________.(用区间表示) (2)解不等式x 2-4ax -5a 2>0(a ≠0). [解析] (1)-x 2-3x +4>0⇒(x +4)(x -1)<0. 如图,作函数y =(x +4)(x -1)的图象, ∴当-4<x <1时,y <0. (2)由x 2-4ax -5a 2>0, 知(x -5a )(x +a )>0.由于a ≠0,故分a >0与a <0讨论. 当a <0时,x <5a 或x >-a ; 当a >0时,x <-a 或x >5a .综上,a <0时,解集为{x |x <5a 或x >-a }; a >0时,解集为{x |x >5a 或x <-a }. [答案] (1)(-4,1) [方法提升][母题变式]1.将例(1)的不等式改为“-x 2-3x +4≤0”,其解集为________. 解析:由-x 2-3x +4≤0得x 2+3x -4≥0, 即(x +4)(x -1)≥0,∴x ≥1或x ≤-4. 答案:(-∞,-4]∪[1,+∞)2.将例(1)的不等式变为“x 2-3x +4>0”,其解集为________. 解析:令y =x 2-3x +4,∵Δ=(-3)2-4×4<0,y >0恒成立.∴x ∈R . 答案:R3.将例(2)变为“x 2-4ax -5a 2>0”,如何求解. 解析:由例(2)知,(1)若a =0,不等式为x 2>0解集为{x |x ≠0}, (2)当a >0,5a >-a ,解集为{x |x >5a 或x <-a }, (3)当a <0,5a <-a ,解集为{x |x <5a 或x >-a }.考点二 不等式恒成立问题|方法突破[例2] (1)(2018·武汉调研)若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k的取值范围为( )A .(-3,0)B .[-3,0]C .[-3,0)D .(-3,0](2)(2018·郑州调研)若不等式x 2+ax +1≥0对一切x ∈⎝⎛⎦⎤0,12都成立,则a 的最小值是________.(3)对于任意a ∈[-1,1],f (x )=x 2+(a -4)x +4-2a 的值恒大于0,那么x 的取值范围是________.[解析] (1)由题意可得⎩⎪⎨⎪⎧k <0,Δ=k 2-8k ×⎝⎛⎭⎫-38<0,解得-3<k <0,故选A. (2)法一:由于x >0,则由已知可得a ≥-x -1x在x ∈⎝⎛⎦⎤0,12上恒成立,而当x ∈⎝⎛⎦⎤0,12时,⎝⎛⎭⎫-x -1x max =-52,∴a ≥-52,故a 的最小值为-52. 法二:设f (x )=x 2+ax +1,则其对称轴为x =-a 2.①若-a 2≥12,即a ≤-1时,f (x )在⎝⎛⎦⎤0,12上单调递减,此时应有f ⎝⎛⎭⎫12≥0,从而-52≤a ≤-1.②若-a2<0,即a >0时,f (x )在⎝⎛⎦⎤0,12上单调递增,此时应有f (0)=1>0恒成立,故a >0. ③若0≤-a 2<12,即-1<a ≤0时,则应有f ⎝⎛⎭⎫-a 2=a 24-a 22+1=1-a 24≥0恒成立,故-1<a ≤0.综上,a 的最小值为-52.(3)令g (a )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4,由题意知g (-1)>0且g (1)>0,解得x <1或x >3.[答案] (1)A (2)-52 (3)(-∞,1)∪(3,+∞)[方法提升]一元二次不等式恒成立问题的破解方法[母题变式]在本例(1)中,改为“对于x ∈[1,2]上,2kx 2+kx -38<0恒成立”,求k 的取值范围.解析:k (2x 2+x )<38,当x ∈[1,2]时,3≤2x 2+x ≤10,∵k <38(2x 2+x )恒成立,380≤38(2x 2+x )≤18,∴k <380.考点三 比较大小问题|模型突破角度1 作差(商)法比较代数式的大小 [例3] 已知a >0,b >0,且a ≠b ,则( ) A .ab +1>a +b B .a 3+b 3>a 2b +ab 2 C .2a 3b >3a 2bD .a a b b <a b b a[解析] 选项A(作差法),ab +1-(a +b )=ab -a +(1-b )=a (b -1)+(1-b )=(a -1)(b -1),显然当a ,b 中有一个等于1时,(a -1)(b -1)=0,即ab +1=a +b ;故选项A 不正确. 选项B(作差法),a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2)=a 2(a -b )+b 2(b -a )=(a 2-b 2)(a -b )=(a -b )2(a +b ).因为a >0,b >0,a ≠b ,所以a +b >0,(a -b )2>0,故(a -b )2(a +b )>0,即a 3+b 3>a 2b +ab 2,故选项B 正确.[答案] B [模型解法]角度2 巧用不等式性质比较大小[例4] 若a >b ,则下列各式正确的是( ) A .a ·lg x >b ·lg x B .ax 2>bx 2 C .a 2>b 2D .a ·2x >b ·2x[解析] 已知a >b ,选项A ,由已知不等式两边同乘lg x 得到,由不等式的性质可知,当lg x >0时,a ·lg x >b ·lg x ;当lg x =0时,a ·lg x =b ·lg x ;当lg x <0时,a ·lg x <b ·lg x .故该选项不正确.选项B ,由已知不等式两边同乘x 2得到,由不等式的性质可知,当x 2>0时,ax 2>bx 2;当x 2=0时,ax 2=bx 2.故该选项不正确.选项C ,由已知不等式两边平方得到,由不等式的性质可知,当a >b >0时,a 2>b 2;当a >0>b 且|a |<|b |时,a 2<b 2.故该选项不正确.选项D ,由已知不等式两边同乘2x 得到,且2x >0,所以a ·2x >b ·2x .故该选项正确. [答案] D [模型解法]角度3 构造函数法比较代数式的大小[例5] 已知a =13ln 94,b =45ln 54,c =14ln 4,则( )A .a <b <cB .b <a <cC .c <a <bD .b <c <a[解析] a =13ln 94=13ln ⎝⎛⎭⎫322=23ln 32=ln 3232,b =45ln 54=ln 5454,c =14ln 4=14×2ln 2=ln 22.故构造函数f (x )=ln x x ,则a =f ⎝⎛⎭⎫32,b =f ⎝⎛⎭⎫54,c =f (2). 因为f ′(x )=1x ×x -1×ln x x 2=1-ln xx 2,由f ′(x )=0,解得x =e.故当x ∈(0,e)时,f ′(x )>0,函数f (x )在(0,e)上单调递增;当x ∈(e ,+∞)时,f ′(x )<0,函数f (x )在(e ,+∞)上单调递减.因为54<32<2<e ,所以f ⎝⎛⎭⎫54<f ⎝⎛⎭⎫32<f (2),即b <a <c .故选B. [模型解法][高考类题]1.(2017·高考天津卷)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:依题意a =g (-log 25.1)=(-log 25.1)·f (-log 25.1)=log 25.1f (log 25.1)=g (log 25.1). 因为f (x )在R 上是增函数,可设0<x 1<x 2, 则f (x 1)<f (x 2).从而x 1f (x 1)<x 2f (x 2),即g (x 1)<g (x 2). 所以g (x )在(0,+∞)上亦为增函数. 又log 25.1>0,20.8>0,3>0, 且log 25.1<log 28=3,20.8<21<3, 而20.8<21=log 24<log 25.1,所以3>log 25.1>20.8>0,所以c >a >b .故选C. 答案:C2.(2017·高考山东卷)若a >b >0,且ab =1,则下列不等式成立的是( ) A .a +1b <b2a <log 2(a +b )B.b 2a <log 2(a +b )<a +1b C .a +1b <log 2(a +b )<b 2aD .log 2(a +b )<a +1b <b2a解析:法一:∵a >b >0,ab =1,∴log 2(a +b )>log 2(2ab )=1.∵b 2a =1a 2a =a -1·2-a ,令f (a )=a -1·2-a ,又∵b =1a ,a >b >0,∴a >1a,解得a >1.∴f ′(a )=-a -2·2-a -a -1·2-a ·ln 2=-a -2·2-a (1+a ln 2)<0, ∴f (a )在(1,+∞)上单调递减. ∴f (a )<f (1),即b 2a <12.∵a +1b =a +a =2a >a +b >log 2(a +b ),∴b 2a <log 2(a +b )<a +1b.故选B. 法二:∵a >b >0,ab =1,∴取a =2,b =12,此时a +1b =4,b 2a =18,log 2(a +b )=log 25-1≈1.3,∴b 2a <log 2(a +b )<a +1b .故选B. 答案:B1.[考点一](2014·高考大纲全国卷)不等式组⎩⎪⎨⎪⎧x (x +2)>0,|x |<1的解集为( )A .{x |-2<x <-1}B .{x |-1<x <0}C .{x |0<x <1}D .{x |x >1}解析:由x (x +2)>0得x >0或x <-2;由|x |<1得-1<x <1,所以不等式组的解集为{x |0<x <1},故选C.答案:C2.[考点三](2016·高考北京卷)已知x ,y ∈R ,且x >y >0,则( ) A.1x -1y>0 B .sin x -sin y >0 C.⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0D .ln x +ln y >0解析:函数y =⎝⎛⎭⎫12x在(0,+∞)上为减函数,∴当x >y >0时,⎝⎛⎭⎫12x <⎝⎛⎭⎫12y ,即⎝⎛⎭⎫12x -⎝⎛⎭⎫12y <0,故C 正确;函数y =1x 在(0,+∞)上为减函数,∴由x >y >0⇒1x <1y ⇒1x -1y<0,故A 错误;函数y =sin x 在(0,+∞)上不单调,当x >y >0时,不能比较sin x 与sin y 的大小,故B 错误;当x >0且y >0时,ln x +ln y >0⇔ln xy >0⇔xy >1,而x >y >0⇒/ xy >1,故D 错误.答案:C3.[考点二](2014·高考山东卷)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A.1x 2+1>1y 2+1 B .ln(x 2+1)>ln(y 2+1) C .sin x >sin y D .x 3>y 3解析:∵a x <a y,0<a <1, ∴x >y ,∴x 3>y 3. 答案:D4.[考点二、三](2014·高考四川卷)若a >b >0,c <d <0,则一定有( ) A.a c >b d B.a c <b d C.a d >b cD.a d <b c解析:依题意取a =2,b =1,c =-2,d =-1, 代入验证得A 、B 、C 均错,只有D 正确. 答案:D。
不等式的性质与一元二次不等式
【例2】 解关于x的不等式ax2-2≥2x-ax(a∈R). 解 原不等式可化为ax2+(a-2)x-2≥0. ①当a=0时,原不等式化为x+1≤0,解得x≤-1. ②当 a>0 时,原不等式化为x-2a(x+1)≥0, 解得 x≥a2或 x≤-1. ③当 a<0 时,原不等式化为x-2a(x+1)≤0. 当2a>-1,即 a<-2 时,解得-1≤x≤2a;
INNOVATIVE DESIGN
第七章
第1节 不等式的性质与一元二次不等式
1 了解现实世界和日常生活中存在着大量的不等关系,了解不等式 (组)的实际背景
2 考
会从实际问题的情境中抽象出一元二次不等式模型
纲
3 要
通过函数图象了解一元二次不等式与相应的二次函数、一元二次 方程的联系
4 求
会解一元二次不等式,对给定的一元二次不等式,会设计求解的
索引
感悟升华
对含参的不等式,应对参数进行分类讨论 (1)二次项中若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转 化为一次不等式或二次项系数为正的形式. (2)当不等式对应方程的根的个数不确定时,讨论判别式Δ与0的关系. (3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关 系,从而确定解集形式.
时的油耗不超过 9 L,则速度 x 的取值范围为( B )
A.[60,120] B.[60,100]
C.[45,100]
D.[45,120]
索引
解析
由
题
意
得
1 5
120-k+4152000
=
11.5
,
解
得
k = 100 , 故 每 小 时 的 油 耗 为
15x+4 5x00-20 L,
不等式公式大全
不等式公式大全不等式是数学中常见的一种关系式,它在数学中有着广泛的应用。
不等式的解法和性质有很多,下面我们来详细介绍不等式的各种公式及其应用。
一、基本不等式公式。
1. 一元一次不等式,ax + b > 0 (a ≠ 0),ax + b < 0 (a ≠ 0)。
2. 一元二次不等式,ax^2 + bx + c > 0 (a ≠ 0),ax^2 + bx + c < 0 (a ≠ 0)。
3. 绝对值不等式,|ax + b| > c,|ax + b| < c。
二、不等式的性质。
1. 不等式两边同时加(减)一个相同的数,不等式仍成立。
2. 不等式两边同时乘以(除以)一个正数,不等式方向不变;两边同时乘以(除以)一个负数,不等式方向改变。
3. 不等式两边同时取绝对值,不等式方向不变。
三、不等式的解法。
1. 图像法,将不等式对应的函数图像画出,通过图像来确定不等式的解集。
2. 区间法,将不等式化简成区间表示,通过区间的交集和并集来确定不等式的解集。
3. 讨论法,对不等式中的各项进行讨论,找出不等式的解集。
四、常见不等式。
1. 平均不等式,对任意n个正数a1、a2、…、an,有(a1+a2+…+an)/n ≥√(a1a2…an),等号成立当且仅当a1=a2=…=an。
2. 柯西-施瓦茨不等式,对任意n维实内积空间中的向量a和b,有|a·b| ≤ ||a|| ||b||,等号成立当且仅当a与b成比例。
3. 阿贝尔不等式,对任意n个实数a1、a2、…、an和任意n个非负实数b1、b2、…、bn,有|a1b1 + a2b2 + … + anbn| ≤ (|a1|+|a2|+…+|an|)(b1+b2+…+bn)。
五、不等式的应用。
1. 在数学证明中,不等式常常用来推导出其他结论。
2. 在优化问题中,不等式常常用来确定最优解的范围。
3. 在概率统计中,不等式常常用来确定随机变量的性质。
不等式的性质与解法
不等式的性质与解法不等式是数学中常见的一种关系表达式,它描述了两个数或两个代数式之间的大小关系。
在解不等式时,我们需要了解不等式的性质和解法。
本文将首先介绍不等式的基本性质,然后探讨常见的解不等式的方法。
一、不等式的基本性质对于一般的不等式,包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等关系符号,具有以下基本性质:1.传递性:若a > b,b > c,则a > c。
若a < b,b < c,则a < c。
2.对称性:若a > b,则b < a。
若a < b,则b > a。
3.加减性:若a > b,则a+c > b+c;若a < b,则a+c < b+c(c为常数)。
4.倍乘性:若a > b,且c > 0,则ac > bc;若a < b,且c > 0,则ac < bc;若a < b,且c < 0,则ac > bc;若a > b,且c < 0,则ac < bc。
5.同乘性:若a > b,且c > 0,则ac > bc;若a < b,且c > 0,则ac < bc。
二、一元一次不等式的解法一元一次不等式是指只含有一个未知数的一次项的不等式,它可以通过以下步骤解决:1.将所有的项移至等号一侧,将常数项移至另一侧,得到形如ax +b > 0或ax + b < 0的不等式。
2.当a ≠ 0时,将不等式两边同时除以a,注意因为除以负数会改变不等号的方向,所以需要根据a的正负情况进行分类讨论。
3.将一元一次不等式转换为一个关于未知数的区间,通过判断区间是否满足不等式来确定解的范围。
三、一元二次不等式的解法一元二次不等式是指只含有一个未知数的二次项的不等式,它可以通过以下步骤解决:1.将不等式移项,将不等式转化为标准形式,即形如ax²+ bx + c > 0或ax²+ bx + c < 0的一元二次不等式。
2.如果a>0,通过求解二次函数的零点,即ax²+ bx + c = 0,得到x的取值范围,再根据区间判断不等式的解。
求解初中数学常见的不等式
求解初中数学常见的不等式初中数学中,不等式是一个常见的考察和应用的知识点。
不等式是用来表示两个数量大小关系的一种数学工具,常出现在各种数学题型中,例如算术平均值与几何平均值的关系、等分原理、加减、积等不等式等。
在解题时,我们需要掌握各类不等式的性质和解法,下面将详细介绍几类常见的不等式及其解法。
一、一次不等式一次不等式的形式为ax + b > 0或ax + b < 0。
通过将不等式移项可以得到ax > -b或ax < -b,进而得到x的取值范围。
例如:解不等式2x + 3 > 5解法如下:2x + 3 > 52x > 5 - 32x > 2x > 1所以,不等式2x + 3 > 5的解为x > 1。
二、二次不等式二次不等式的形式为ax² + bx + c > 0或ax² + bx + c < 0。
通过求解二次函数的根,可以将不等式转化为一次不等式的形式。
如果二次函数的两个根分别为α和β,则有:当a > 0时,ax² + bx + c > 0的解集为x < α或x > β;当a < 0时,ax² + bx + c > 0的解集为α < x < β。
例如:解不等式x² - 3x + 2 < 0解法如下:x² - 3x + 2 < 0(x - 1)(x - 2) < 0化简后,得到不等式的零点为x = 1和x = 2。
因为a = 1 > 0,所以解集为1 < x < 2。
所以,不等式x² - 3x + 2 < 0的解为1 < x < 2。
三、三角不等式三角不等式是由三角形的三条边两两不等关系得出的不等式,即对于任意三角形,其任意两边之和都大于第三边,即a + b > c、b + c > a和c + a > b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式性质及二次不等式解法(高二)
一、不等式性质: 1. 比较两个实数的大小
两个实数的大小是用实数的运算性质来定义的,有a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b .另外,若b >0,则有a b >1⇔a >b ;a b =1⇔a =b ;a
b <1⇔a <b .
2.不等式的性质 (1)对称性:a >b ⇔b <a ;
(2)传递性:a >b ,b >c ⇔a >c ; (3)可加性:a >b ⇔a +c >b +c ,a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥2); (6)可开方:a >b >0⇒n a >n
b (n ∈N ,n ≥2). (7)可倒数:a >b ,ab >0⇒1a <1
b ;
同步练习:
1、已知a b >,c d >,且c 、d 不为0,那么下列不等式成立的是( )
A .ad bc >
B .ac bc >
C .a c b d ->-
D .a c b d +>+ 2、下列命题中正确的是( )
A .若a b >,则22
ac bc > B .若a b >,c d >,则a c b d ->-
C .若0ab >,a b >,则
11a b < D .若a b >,c d <,则a b c d
> 3、下列命题中正确命题的个数是( )
①若x y z >>,则xy yz >;②a b >,c d >,0abcd ≠,则a b
c d
>; ③若
110a b <<,则2ab b <;④若a b >,则11b b a a ->-. A .1 B .2 C .3 D .4 4、如果0a <,0b >,则下列不等式中正确的是( )
A .11a b
< B < C .22
a b < D .a b >
5、下列各式中,对任何实数x 都成立的一个式子是( )
A .()
2lg 1lg 2x x +≥ B .2
12x x +> C .
2111x ≤+ D .1
2x x
+≥ 6、若a 、b 是任意实数,且a b >,则( ) A .2
2
a b >
B .1b a <
C .()lg 0a b ->
D .1122a
b
⎛⎫⎛⎫
< ⎪ ⎪⎝⎭⎝⎭
7、如果a R ∈,且2
0a a +<,那么a ,2
a ,a -,2
a -的大小关系是( ) A .2
2
a a a a >>->- B .22
a a a a ->>-> C .2
2
a a a a ->>>-
D .2
2
a a a a >->>-
二:二次不等式:
1.一元二次不等式的解法(不要忘了二次项系数是否为零的情况;)
(1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax 2+bx +c >0(a >0)或ax 2+bx +c <0(a >0).
(2)先因式分解,若不能判断Δ与0的关系。
求出相应的一元二次方程的根. (3)利用二次函数的图象与x 轴的交点确定一元二次不等式的解集. 2.一元二次不等式与相应的二次函数及一元二次方程的关系
一个技巧其对应的方程ax 2+bx +c =0有两个不等实根x 1,x 2,(x 1<x 2)(此时Δ=b 2-4ac >0),则可根据“大于取两边,小于夹中间”求解集
1.不等式x 2-3x +2<0的解集为( ). A .(-∞,-2)∪(-1,+∞) B .(-2,-1) C .(-∞,1)∪(2,+∞)
D .(1,2)
2.不等式2x 2-x -1>0的解集是( ).
A.⎝ ⎛⎭⎪⎫-12,1 B .(1,+∞) C .(-∞,1)∪(2,+∞) D.⎝ ⎛
⎭⎪⎫-∞,-12∪(1,+∞)
3.若不等式ax 2+bx -2<0的解集为⎩
⎨⎧⎭
⎬⎫
x |-2<x <14,则ab =
A .-28
B .-26
C .28
D .26
4.不等式ax 2+2ax +1≥0对一切x ∈R 恒成立,则实数a 的取值范围为________.
5.不等式21
≥-x x 的解集 不等式
01
312>+-x x 的解集
6.已知函数b ax x x f +=
2
)((a ,b 为常数)且方程f(x)-x+12=0有两个实根为x 1=3,
x 2=4.(1)求函数f(x)的解析式;(2)解关于x 的不等式;x x x f --<
21
2)(
7.解关于x 的不等式
)2()4(3
2
x x x ---<0
8.已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围
作业:
1.给出下列命题:①a>b⇒ac2>bc2;②a>|b|⇒a2>b2;③a>b⇒a3>b3;④|a|>b⇒a2>b2.其中正确的命题是().
A.①②B.②③
C.③④D.①④
3、已知a>b,c>d,且c,d不为0,那么下列不等式成立的是().A.ad>bc B.ac>bd
C.a-c>b-d D.a+c>b+d
5.
1
2-1
与3+1的大小关系为________.
6、已知a,b∈R且a>b,则下列不等式中一定成立的是().
A.a
b>1 B.a
2>b C.lg(a-b)>0 D.
⎝
⎛
⎭
⎪
⎫1
2
a<
⎝
⎛
⎭
⎪
⎫1
2
b
7.已知不等式ax2+4x+a>1-2x2对一切实数x恒成立,求实数a的取值范围.。