新课标-最新沪科版九年级数学上学期期末模拟综合测试及答案解析-精编试题

合集下载

2019—2020年新沪科版九年级数学上学期期末模拟质量检测及答案解析(试题).doc

2019—2020年新沪科版九年级数学上学期期末模拟质量检测及答案解析(试题).doc

沪科版九年级上学期期末模拟测试数学试题一、选择题(共10小题,每小题4分,满分40分)1.sin60°=()A.B. C. D.2.抛物线y=3x2,y=﹣3x2,y=x2+3共有的性质是()A.开口向上B.对称轴是y轴C.都有最高点D.y随x值的增大而增大3.在比例尺是1:8000的淮北市城区地图上,淮海路的长度约为25cm,它的实际长度约为()A.2000m B.2000cm C.3200m D.3200cm4.下列四张扑克牌图案,属于中心对称的是()A.B.C.D.5.如图,△ABC∽△DEF,相似比为1:2.若BC=1,则EF的长是()A. 1 B. 2 C. 3 D. 46.某反比例函数的图象经过点(﹣1,6),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)7.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等D.以上说法都不对8.若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系数中的大致图象是()A.B. C.D.9.如果三角形满足一个角是另一个角的4倍,那么我们称这个三角形为“实验三角形”,下列各组数据中,能作为一个“实验三角形”三边长的一组是()A.1,1,B.1,1,C.1,2,D.1,2,310.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F,设BE=x,△ECF的面积为y,下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.抛物线y=x2﹣2x+3的顶点坐标是.12.如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,若AD=1,BC=3,则S△AOD:S△BOC的值为.13.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为米(用含α的代数式表示).14.如图,一次函数y=x+3的图象与x轴,y轴交于A、B两点,与反比例函数y=的图象相交于C,B两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE,有下列四个结论①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD,其中正确结论的序号是.三、解答题(共9小题,满分90分)15.+2cos60°+()﹣1﹣20150.16.已知抛物线y=x2+bx+c经过点(1,﹣4)和(﹣1,2).求抛物线解析式.17.用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x.(1)上图中的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请写出S与x之间的关系式;答:S=.多边形的序号①②③④…多边形的面积S 2 2.5 3 4 …各边上格点的个数和x 4 5 6 8 …(2)请你再画出一些格点多边形,使这些多边形内部都有而且只有2格点.此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式是:S=;(3)请你继续探索,当格点多边形内部有且只有n个格点时,猜想S与x有怎样的关系?答:S=.18.如图,在⊙O中,CD是直径,AB是弦,且CD⊥AB,已知AB=8,CM=2,求直径CD的长.19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.20.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(参考数据:sin18°=0.31,cos18°=0.95,tan18°=0.325)(结果精确到0.1m)21.某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为,其中自变量x的取值范围是;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.22.设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b],对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.(1)反比例函数y=是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k>0)是闭区间[m,n]上的“闭函数”,求此函数的解析式.23.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF 的延长线交射线CD于点G.若=3,求的值.(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是,CG和EH的数量关系是,的值是.(2)类比延伸如图2,在原题的条件下,若=m(m>0),则的值是(用含有m的代数式表示),试写出解答过程.(3)拓展迁移如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若=a,=b,(a>0,b>0),则的值是(用含a、b的代数式表示).答案及解析一、选择题(共10小题,每小题4分,满分40分)1.sin60°=()A.B. C. D.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值可得答案.解答:解:sin60°=.故选C.点评:本题考查特殊角的三角函数值,要求学生牢记并熟练运用.2.抛物线y=3x2,y=﹣3x2,y=x2+3共有的性质是()A.开口向上 B.对称轴是y轴C.都有最高点D. y随x值的增大而增大考点:二次函数的性质.分析:根据二次函数的性质分别分析解题即可.解答:解:(1)y=3x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣3x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=x2+3开口向上,对称轴为y轴,有最低点,顶点为(0,3).故选:B.点评:此题主要考查了二次函数顶点式y=a(x﹣h)2+k的性质,正确把握相关性质是解题关键.3.在比例尺是1:8000的淮北市城区地图上,淮海路的长度约为25cm,它的实际长度约为()A.2000m B.2000cm C. 3200m D.3200cm考点:比例线段.分析:首先设它的实际长度是xcm,然后根据比例尺的定义,即可得方程:1:8000=25:x,解此方程即可求得答案,注意统一单位.解答:解:设它的实际长度为xcm,根据题意得:1:8000=25:x,解得:x=200000,∵200000cm=2000m,∴它的实际长度为2000m.故选A.点评:此题考查了比例线段.此题难度不大,解题的关键是理解题意,根据比例尺的定义列方程,注意统一单位.4.下列四张扑克牌图案,属于中心对称的是()A.B. C.D.考点:中心对称图形.分析:根据中心对称图形的概念和各扑克牌的花色排列特点的求解.解答:解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选B.点评:掌握好中心对称图形的概念是解题的关键.【链接】如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.5.如图,△ABC∽△DEF,相似比为1:2.若BC=1,则EF的长是()A. 1 B. 2 C. 3 D. 4考点:相似三角形的性质.分析:根据相似三角形对应边的比等于相似比即可求解.解答:解:∵△ABC∽△DEF,相似比为1:2,∴=,∴EF=2BC=2.故选:B.点评:本题考查了相似三角形的性质:相似三角形对应边的比等于相似比.6.某反比例函数的图象经过点(﹣1,6),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)考点:反比例函数图象上点的坐标特征.分析:将(﹣1,6)代入y=即可求出k的值,再根据k=xy解答即可.解答:解:反比例函数的图象经过点(﹣1,6),则k=﹣1×6=﹣6,各选项中只有A中的纵横坐标的积为﹣6.故选A.点评:本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.7.如果两个圆心角相等,那么()A.这两个圆心角所对的弦相等B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等D.以上说法都不对考点:圆心角、弧、弦的关系.分析:根据圆心角定理进行判断即可.解答:解:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距相等.故选D.点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.8.若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系数中的大致图象是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:压轴题.分析:根据ab>0,可得a、b同号,结合一次函数及反比例函数的特点进行判断即可.解答:解:A、根据一次函数可判断a>0,b>0,根据反比例函数可判断ab>0,故符合题意,本选项正确;B、根据一次函数可判断a<0,b<0,根据反比例函数可判断ab<0,故不符合题意,本选项错误;C、根据一次函数可判断a<0,b>0,根据反比例函数可判断ab>0,故不符合题意,本选项错误;D、根据一次函数可判断a>0,b>0,根据反比例函数可判断ab<0,故不符合题意,本选项错误;故选A.点评:本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.9.如果三角形满足一个角是另一个角的4倍,那么我们称这个三角形为“实验三角形”,下列各组数据中,能作为一个“实验三角形”三边长的一组是()A.1,1,B.1,1,C. 1,2,D.1,2,3考点:解直角三角形.专题:新定义.分析:根据勾股定理的逆定理对A、C进行判断;利用等腰三角形的性质和锐角三角函数对B进行判断;根据三角形三边的关系对D进行判断.解答:解:A、若三边为1,1,,由于12+12=()2,则此三边构成一个等腰直角三角形,所以这个三角形不是“实验三角形”,所以A选项错误;B、由1,1,能构成,此三边构成一个等腰三角形,通过作底边上的高可得到底角为30°,顶角为120°,所以这个三角形是“实验三角形”,所以B选项正确;C、若三边为1,2,,由于12+()2=22,则此三边构成直角三角形,最小角为30°,所以这个三角形不是“实验三角形”,所以C选项错误;D、由1,2,3不能构成三角形,所以D选项错误.故选B.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.10.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F,设BE=x,△ECF的面积为y,下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:过E作EH⊥BC于H,求出EH=CH,求出△BAP∽△HPE,得出=,求出EH=x,代入y=×CP×EH求出解析式,根据解析式确定图象即可.解答:解:过E作EH⊥BC于H,∵四边形ABCD是正方形,∴∠DCH=90°,∵CE平分∠DCH,∴∠ECH=∠DCH=45°,∵∠H=90°,∴∠ECH=∠CEH=45°,∴EH=CH,∵四边形ABCD是正方形,AP⊥EP,∴∠B=∠H=∠APE=90°,∴∠BAP+∠APB=90°,∠APB+∠EPH=90°,∴∠BAP=∠EPH,∵∠B=∠H=90°,∴△BAP∽△HPE,∴=,∴=,∴EH=x,∴y=×CP×EH=(4﹣x)•xy=2x﹣x2,故选B.点评:本题考查了动点问题的函数图象,正方形性质,角平分线定义,相似三角形的性质和判定的应用,关键是能用x的代数式把CP和EH的值表示出来.二、填空题(共4小题,每小题5分,满分20分)11.抛物线y=x2﹣2x+3的顶点坐标是(1,2).考点:二次函数的性质.专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).故答案为:(1,2).点评:此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.12.如图,在梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,若AD=1,BC=3,则S△AOD:S△BOC的值为1:9.考点:相似三角形的判定与性质;梯形.分析:如图,证明△AOD∽△COB,列出比例式,求出即可解决问题.解答:解:如图,∵AD∥BC,∴△AOD∽△COB,∴,而AD=1,BC=3,∴S△AOD:S△BOC的值为1:9,故答案为1:9.点评:该题主要考查了相似三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握相似三角形的判定及其性质.13.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为7tanα米(用含α的代数式表示).考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:根据题意可知BC⊥AC,在Rt△ABC中,AC=7米,∠BAC=α,利用三角函数即可求出BC的高度.解答:解:∵BC⊥AC,AC=7米,∠BAC=α,∴=tanα,∴BC=AC•tanα=7tanα(米).故答案为:7tanα.点评:本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数求解.14.如图,一次函数y=x+3的图象与x轴,y轴交于A、B两点,与反比例函数y=的图象相交于C,B两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE,有下列四个结论①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD,其中正确结论的序号是①②③④.考点:反比例函数综合题.分析:①根据函数解析式,可得图象上的点的坐标,根据三角形的面积公式,可得答案;②根据等第三角形的高相等,可得EF∥CD,根据相似三角形的判定,可得答案;③根据联立函数解析式,可得方程,根据解方程,可得C、D点的坐标,可得CE与DF的关系,根据自变量与函数值的关系,可得A、B点的坐标,可得∠ABO=∠BAO=45°,根据平行线的性质,可得∠DCE=∠FDA=45°,根据SAS,可得答案;④根据平行四边的判定与性质,可得BD=EF,AC=BD,可得答案.解答:解:①设D(x,),则F(x,0),由图象可知x>0,∴△DEF的面积是:×||×|x|=2,设C(a,),则E(0,),由图象可知:<0,a>0,△CEF的面积是:×|a|×||=2,∴△CEF的面积=△DEF的面积,故①正确;②△CEF和△DEF以EF为底,则两三角形EF边上的高相等,故EF∥CD,∴FE∥AB,∴△AOB∽△FOE,故②正确;③∵C、D是一次函数y=x+3的图象与反比例函数y=的图象的交点,∴x+3=,解得:x=﹣4或x=1,经检验:x=﹣4或1都是原分式方程的解,∴D(1,4),C(﹣4,﹣1),∴DF=4,CE=4,∵一次函数y=x+3的图象与x轴,y轴交于A,B两点,∴A(﹣3,0),B(0,3),∴∠ABO=∠BAO=45°,∵DF∥BO,AO∥CE,∴∠BCE=∠BAO=45°,∠FDA=∠OBA=45°,∴∠DCE=∠FDA=45°,在△DCE和△CDF中,∴△DCE≌△CDF(SAS),故③正确;④∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,故④正确;正确的有4个.故选:C.点评:本题考查了反比例函数综合题,①利用了自变量与函数值的关系,三角形的面积公式,②利用了等底等高的三角形的面积相等,相似三角形的判定,③利用了函数与方程的关系,平行线的判定,全等三角形的判定,④利用了平行四边形的判定与性质.三、解答题(共9小题,满分90分)15.+2cos60°+()﹣1﹣20150.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:原式第一项利用平方根代入化简,第二项利用特殊角的三角函数值计算,第三项利用负指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.解答:解:原式=3+2×+2﹣1=3+1+2﹣1=5.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.已知抛物线y=x2+bx+c经过点(1,﹣4)和(﹣1,2).求抛物线解析式.考点:待定系数法求二次函数解析式.专题:计算题.分析:把点(1,﹣4)和(﹣1,2)分别代入二次函数y=x2+bx+c得到关于b与c的方程组,1+b+c=﹣4,1﹣b+c=2,然后解方程组求出b、c即可.解答:解:把点(1,﹣4)和(﹣1,2)分别代入y=x2+bx+c得,1+b+c=﹣4,1﹣b+c=2,解方程组得,b=﹣3,c=﹣2,∴抛物线解析式为y=x2﹣3x﹣2.点评:本题考查了利用待定系数法求二次函数的解析式:设二次函数的解析式为y=ax2+bx+c(a≠0),然后把图象上三个点的坐标分别代入得到关于a、b、c的方程组,解方程组求出a、b、c的值,从而确定二次函数的解析式.17.用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点,叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x.(1)上图中的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请写出S与x之间的关系式;答:S=x.多边形的序号①②③④…多边形的面积S 2 2.5 3 4 …各边上格点的个数和x 4 5 6 8 …(2)请你再画出一些格点多边形,使这些多边形内部都有而且只有2格点.此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式是:S=x+1;(3)请你继续探索,当格点多边形内部有且只有n个格点时,猜想S与x有怎样的关系?答:S=+(n﹣1).考点:一次函数综合题.专题:压轴题;规律型.分析:(1)由(1)可以直接得到S=x;(2)由图可知多边形内部都有而且只有2格点时,①的各边上格点的个数为10,面积为6,②的各边上格点的个数为4,面积为3,③的各边上格点的个数为6,面积为4,S=x+1;(3)由图可知多边形内部都有而且只有n格点时,面积为:S=+(n﹣1).解答:解:(1)S=x;(2)S=x+1;(3)S=+n﹣1.点评:此题需要根据图中表格和自己所算得的数据,总结出规律.寻找规律是一件比较困难的活动,需要仔细观察和大量的验算.18.如图,在⊙O中,CD是直径,AB是弦,且CD⊥AB,已知AB=8,CM=2,求直径CD的长.考点:垂径定理;勾股定理.分析:连接OA,先根据垂径定理求出AM的长,设⊙O的半径为r,则OM=r﹣CD=r ﹣2,根据勾股定理求出r的值,进而可得出结论.解答:解:连接OA,∵CD是直径,AB是弦,且CD⊥AB,AB=8,∴AM=AB=4.设⊙O的半径为r,则OM=r﹣CD=r﹣2,∵OM2+AM2=OA2,∴(r﹣2)2+42=r2,解得r=5,∴CD=2r=10.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).(1)请按下列要求画图:①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.考点:作图-旋转变换;作图-平移变换.分析:(1)①根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;②根据网格结构找出A、B、C关于原点O的中心对称点A2、B2、C2的位置,然后顺次连接即可;(2)连接B1B2,C1C2,交点就是对称中心M.解答:解:(1)①△A1B1C1如图所示;②△A2B2C2如图所示;(2)连接B1B2,C1C2,得到对称中心M的坐标为(2,1).点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.20.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(参考数据:sin18°=0.31,cos18°=0.95,tan18°=0.325)(结果精确到0.1m)考点:解直角三角形的应用.分析:先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.解答:解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=,∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m).在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=,∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m).∵2.6m<2.7m,且CE⊥AE,∴小亮说的对.答:小亮说的对,CE为2.6m.点评:此题考查了三角函数的基本概念,主要是正弦、正切概念及运算,关键把实际问题转化为数学问题加以计算.21.某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为y=60x2,其中自变量x的取值范围是0≤x≤;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.考点:二次函数的应用;一次函数的应用.分析:(1)设函数的解析式为y=ax2,然后把点(1,60)代入解析式求得a的值,即可得出抛物线的表达式,根据图象可得自变量x的取值范围;(2)设需要开放x个普通售票窗口,根据售出车票不少于1450,列出不等式解不等式,求最小整数解即可;(3)先求出普通窗口的函数解析式,然后求出10点时售出的票数,和无人售票窗口当x=时,y的值,然后把运用待定系数法求解析式即可.解答:解:(1)设函数的解析式为y=ax2,把点(1,60)代入解析式得:a=60,则函数解析式为:y=60x2(0≤x≤);(2)设需要开放x个普通售票窗口,由题意得,80x+60×5≥1450,解得:x≥14,∵x为整数且x取最小值,∴x=15,即至少需要开放15个普通售票窗口;(3)设普通售票的函数解析式为y=kx,把点(1,80)代入得:k=80,则y=80x,∵10点是x=2,∴当x=2时,y=160,即上午10点普通窗口售票为160张,由(1)得,当x=时,y=135,∴图②中的一次函数过点(,135),(2,160),设一次函数的解析式为:y=mx+n,把点的坐标代入得:,解得:,则一次函数的解析式为y=50x+60.点评:本题考查了二次函数及一次函数的应用,解答本题的关键是根据题意找出等量关系求出函数解析式,培养学生的读图能力以及把生活中的实际问题转化为数学问题来解决.22.设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b],对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.(1)反比例函数y=是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k>0)是闭区间[m,n]上的“闭函数”,求此函数的解析式.考点:反比例函数的性质;一次函数的性质.专题:新定义.分析:(1)根据反比例函数y=的单调区间进行判断;(2)根据新定义运算法则列出关于系数k、b的方程组,通过解该方程组即可求得系数k、b的值.解答:解:(1)反比例函数y=是闭区间[1,2015]上的“闭函数”.理由如下:反比例函数y=在第一象限,y随x的增大而减小,当x=1时,y=2015;当x=2015时,y=1,所以,当1≤x≤2015时,有1≤y≤2015,符合闭函数的定义,故反比例函数y=是闭区间[1,2015]上的“闭函数”;(2)∵k>0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而增大,∴,解得.∴此函数的解析式是y=x.点评:本题考查的是反比例函数的性质,解题的关键是弄清楚“闭函数”的定义.解题时,也要注意“分类讨论”数学思想的应用.23.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF 的延长线交射线CD于点G.若=3,求的值.(1)尝试探究在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是AB=3EH,CG 和EH的数量关系是CG=2EH,的值是.(2)类比延伸如图2,在原题的条件下,若=m(m>0),则的值是(用含有m的代数式表示),试写出解答过程.(3)拓展迁移如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若=a,=b,(a>0,b>0),则的值是ab(用含a、b的代数式表示).考点:相似形综合题;平行四边形的性质;梯形;相似三角形的判定与性质.专题:代数几何综合题;压轴题.分析:(1)本问体现“特殊”的情形,=3是一个确定的数值.如答图1,过E点作平行线,构造相似三角形,利用相似三角形和中位线的性质,分别将各相关线段均统一用EH来表示,最后求得比值;(2)本问体现“一般”的情形,=m不再是一个确定的数值,但(1)问中的解题方法依然适用,如答图2所示.(3)本问体现“类比”与“转化”的情形,将(1)(2)问中的解题方法推广转化到梯形中,如答图3所示.解答:解:(1)依题意,过点E作EH∥AB交BG于点H,如右图1所示.则有△ABF∽△EHF,∴,∴AB=3EH.∵▱ABCD,EH∥AB,∴EH∥CD,又∵E为BC中点,∴EH为△BCG的中位线,∴CG=2EH.===.故答案为:AB=3EH;CG=2EH;.(2)如右图2所示,作EH∥AB交BG于点H,则△EFH∽△AFB.∴==m,∴AB=mEH.。

2020-2021学年最新沪科版九年级数学上学期期末考试模拟试题1及答案解析-精编试题

2020-2021学年最新沪科版九年级数学上学期期末考试模拟试题1及答案解析-精编试题

沪科版九年级上学期 数学期末模拟试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1、Rt △ABC 中,∠C=90º,若AC=m ,∠A=θ,则AB 的长为( ▲ ). (A )sin m θ; (B )cos m θ; (C )sin m θ; (D )cos mθ. 2、在直角坐标平面内,把抛物线2)1(-=x y 向右平移4个单位,那么所得抛物线的解析式是( ▲ )(A )2)5(-=x y ;(B )2)3(+=x y ;(C )4)1(2+-=x y ;(D )4)1(2--=x y .3、如图,在梯形ABCD 中,E 、F 分别为腰AD 、BC 的中点,若a EF a AB 3,5==,则向量CD 可表示为( ▲ )(A )a ; (B )a -; (C )a 2; (D )a 2-(4、下列条件能判断△ABC 与△DEF 相似的是( ▲ )AFDBE(第5题)(A )∠A=55º,∠C=35º,∠D =55º,∠E=75º;(B )∠A=∠D ,AB=12cm ,AC=15cm ,DE=4cm ,DF=6cm ; (C )AB=2cm ,BC=3cm ,AC=4cm ,DE=6cm ,EF=10cm ,DF=5cm ; (D )∠C=∠F=90º,AB=2DE ,BC=2EF .5、如图,在△ABC 中,DE ∥BC ,DF ∥AC ,那么下列比例式正确的是( ▲ ) (A )BC DE EC AE =;(B )FB CF EC AE =;(C )BC DE AC DF =;(D )BCFCAC EC =.6、在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且cos α=35,AB=4,则AD 长为( ▲ )(A) 3 (B) 4 (C)163 (D) 203二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】7、已知a 、b 、c 、d 是比例线段,a=6 cm ,b=4cm ,c=9cm ,那么d= ▲ cm. 8、在一比例尺是15000000:1的卫星地图上,测得上海和南京的距离大约是2厘米.那么上海和南京的实际距离大约是 ▲ 千米.9、把长度为4cm 的线段进行黄金分割,则较短线段的长是 ▲ cm . 10、某人在斜坡上走了13米,上升了5米,那么这个斜坡的坡比i= ▲ .11、若sin αα=若 ▲ .DCB GAE12、如图,在△ABC 中,AD 是中线,G 是重心,AB =a ,GD =b ,那么向量BC = ▲ .(结果用a 、b 表示)B(11题图) (12题图) (14题图) (15题图) 13、如图,AD ∥EF ∥BC ,AD=13厘米、BC=18厘米,AE :EB=2:3,则EF= ▲ 14、如图所示,长为4米的梯子搭在墙上与地面成45°角,作业时调整为60°角,则梯子的顶端沿墙面升高了 ▲ 米.15、如图,在ABC ∆中,AB=AC ,BD 、CE 分别为两腰上的中线,且BD ⊥CE ,则cot ABC ∠= ▲ .16、二次函数2y ax bx c =++的变量x 与变量y 部分对应值如下表:▲ .17、如果二次函数的图像经过点(-1,1),且在对称轴1x =的右侧部分是下降的,那么这个二次函数的解析式可以是 ▲ (只要写出一个符合要求的解析式). 18、如图,在正方形ABCD 中,已知6=AB ,点E 在边CD 上,且2:1:=CE DE ,点F 射线BC 上,如果△ADE 与点C 、E 、F 所组成的三角形相似,那么BF = ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:︒-︒-︒︒+︒30cot 60cos 60sin 60tan 45cot20、(本题满分10分)(1)如图,已知平面内两个不平行的向量b a,,求作向量OP,使OP =b a +2(不要求写作法,但要保留作图痕迹,并写结论);(4分)(2)如图,AD 是ABC ∆中BC 边上的中线,点G 是ABC ∆的重心,BA a=,BC b =,试用向量b a,表示向量AG .(6分)21、(本题满分10分)如图,A ,B ,C 三点在同一平面内,从山脚缆车站A 测得山顶C 的仰角为45°,测得另一缆车站B 的仰角为30°,AB 间缆绳长500米(自然弯曲忽略不计).1.73≈,精确到1米) (1)求缆车站B 与缆车站A 间的垂直距离;(2)乘缆车达缆车站B ,从缆车站B 测得山顶C 的仰角为60°,求山顶C 与缆车站A 间的垂直距离.22、(本题满分10分)如图,在梯形ABCD 中,AD ∥BC ,∠BCD =90°,5==BC AB ,,2=AD ⑴ 求CD 的长;⑵ 若∠ABC 的平分线交CD 于点E ,连结AE ,求∠AEB 的正切值。

沪科版九年级上册数学期末考试试卷及答案详解

沪科版九年级上册数学期末考试试卷及答案详解

沪科版九年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.对于抛物线2-1y x =+,下列判断正确的是()A .顶点坐标为(-1,1)B .开口向下C .与x 轴无交点D .有最小值12.如图,一艘海轮位于灯塔P 的北偏东55°方向,距离灯塔2海里的点A 处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB 长是()A .2cos55o 海里B .2sin 55︒海里C .2sin55∘海里D .2cos55︒海里3.如图,二次函数2-3y ax bx =+图象的对称轴为直线x=1,与x 轴交于A 、B 两点,且点B 坐标为(3,0),则方程2-3ax bx =的根是()A .123x x ==B .1213x x ==,C .121-3x x ==,D .12-13x x ==,4.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm ,水的最大深度是2cm ,则杯底有水面AB 的宽度是()cm.A .6B .C .D .5.如图,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 与CE 相交于O ,则图中线段的比不能表示sinA 的式子为()A .BD ABB .CD OCC .AE ADD .BE OB6.如图,在 ABCD 中,AB=3,AD=5,AE 平分∠BAD ,交BC 于F ,交DC 延长线于E ,则AEEF的值为()A .53B .52C .32D .27.已知二次函数y =ax 2+bx+c 中,自变量x 与函数y 之间的部分对应值如表:x …0123…y…﹣1232…在该函数的图象上有A (x 1,y 1)和B (x 2,y 2)两点,且﹣1<x 1<0,3<x 2<4,y 1与y 2的大小关系正确的是()A .y 1≥y 2B .y 1>y 2C .y 1≤y 2D .y 1<y 28.在平面直角坐标系中,A (-30),,B (30),,C (34),,点P 为任意一点,已知PA ⊥PB ,则线段PC 的最大值为()A .3B .5C .8D .109.在△ABC 中,∠C=90°,若∠A=30°,则sinA+cosB 的值等于()A .1B .132C .132D .1410.如图,在Rt ACB 中,900.5C sinB ∠=︒=,,若6AC =,则BC 的长为()A .8B .12C .D .二、填空题11.锐角α满足cosα=0.5,则α=__________;12.双曲线(0)k y k x=≠经过点(m ,2)、(5,n ),则m n =__________;13.在Rt ABC ∆中,∠C=90°,tan A =3,tanB=________14.已知:在Rt △ABC 中,∠C=90°,∠A=30°,则tanA=__.15.如图,在△ABC 中,AB=AC ,AH ⊥BC ,垂足为点H ,如果AH=BC ,那么tan ∠BAH 的值是_____.三、解答题16.已知抛物线2-2y ax x c =+与x 轴的一个交点为30A (,),与y 轴的交点为0-3B(,).(1)求抛物线的解析式;(2)求顶点C 的坐标.17.如图,在方格网中已知格点△ABC 和点O .(1)以点O 为位似中心,在△ABC 同侧画出放大的位似△A 1B 1C 1,△ABC 与△A 1B 1C 1的相似比为1∶2;(2)以O 为旋转中心,将△ABC 逆时针旋转90°得到△A 2B 2C 2.18.已知关于x 的二次函数2-(-2)y x k x k =++.(1)试判断该函数的图象与x 轴的交点的个数;(2)当3k =时,求该函数图象与x 轴的两个交点之间的距离.19.从一幢建筑大楼的两个观察点A ,B 观察地面的花坛(点C ),测得俯角分别为15°和60°,如图,直线AB 与地面垂直,AB =50米,试求出点B 到点C 的距离.(结果保留根号)20.如图,在△ABC 中,D 为BC 上一点,已知AD 平分∠BAC ,AD=DC .(1)求证:△ABC ∽△DBA ;(2)S △ABD =6,S △ADC =10,求CDAC.21.如图,在平面直角坐标系xOy 中,函数-5y x =+的图象与函数(0)ky k x=<的图象相交于点A ,并与x 轴交于点C ,S △AOC =15.点D 是线段AC 上一点,CD :AC=2:3.(1)求k 的值;(2)求点D 的坐标;(3)根据图象,直接写出当0x <时不等式5kx x+>的x 的解集.22.如图,已知AB 为⊙O 的直径,CD 切⊙O 于C 点,弦CF ⊥AB 于E 点,连结AC.(1)求证:∠ACD=∠ACF ;(2)当AD ⊥CD ,BE=2cm ,CF=8cm ,求AD 的长.23.小明同学利用寒假30天时间贩卖草莓,了解到某品种草莓成本为10元/千克,在第x 天的销售量与销售单价如下(每天内单价和销售量保持一致):销售量m (千克)40-m x=销售单价n (元/千克)当115x ≤≤时,1202n x =+当1630x ≤≤时,30010n x=+设第x 天的利润w 元.(1)请计算第几天该品种草莓的销售单价为25元/千克?(2)这30天中,该同学第几天获得的利润最大?最大利润是多少?注:利润=(售价-成本)×销售量24.如图,设D 为锐角△ABC 内一点,∠ADB=∠ACB+90°,过点B 作BE ⊥BD ,BE=BD ,连接EC .(1)求∠CAD+∠CBD 的度数;(2)若••AC BD AD BC ,①求证:△ACD ∽△BCE ;②求••AB CDAC BD的值.参考答案1.B 【详解】根据二次函数图像的特点进行解答即可.解:A.顶点坐标为(0,1),故不正确;B.∵-1<0,∴开口向下,故正确;C.∵∆=4>0,∴与x 轴有两个交点,故不正确;D.有最大值1,故不正确;故答案为B.【点睛】本题考查了二次函数图像的特点,即对于二次函数y=ax 2+bx+c (a≠0),a 的正负决定了开口方向;b 2-4ac 决定了是否与x 轴有交点;函数的顶点决定了函数的最值.2.A 【分析】由题意得∠NPA=55°,AP=2海里,∠ABP=90°,再由AB//NP ,根据平行线的性质得出∠A=∠NPA=55°.然后解Rt △ABP ,得出AB=APcos ∠A=2cos55°海里.【详解】解:如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.∵AB ∥NP ,∴∠A=∠NPA=55°.在Rt △ABP 中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=APcos ∠A=2cos55°海里.故选A .【点睛】本题考查了解直角三角形的应用一方向角问题,掌握平行线的性质、三角函数的定义、方向角的定义是解答本题的关键.3.D 【分析】由二次函数2-3y ax bx =+图像的对称轴为直线x=1且函数图像与x 轴的一个交点为B(3,0),可求另一交点坐标为(-1,0),则可求方程23ax bx =-的解.【详解】解:二次函数2-3y ax bx =+图象的对称轴为直线x=1,与轴交于A 、B 两点,且点B 坐标为(3,0),则点A 的坐标为(-1,0),∴方程23ax bx =-的根是x 1=-1,x 2=3.故答案为D.【点睛】本题考查了二次函数图像与一元二次方程的联系,即理解二次函数图像与x 轴的交点的横坐标为对应一元二次方程的解.4.C 【分析】作OD ⊥AB 于C ,交小圆于D ,可得CD=2,AC=BC ,由AO 、BO 为半径,则OA=OD=4;然后运用勾股定理即可求得AC 的长,即可求得AB 的长.【详解】解:作OD ⊥AB 于C ,交小圆于D ,则CD=2,AC=BC ,∵OA=OD=4,CD=2,∴OC=2,∴=∴AB=2AC=故答案为C.【点睛】本题考查的是垂径定理的应用及勾股定理,作出辅助线、构造出直角三角形是解答本题的关键.5.C 【分析】先根据正弦的概念进行判断,然后根据余角的定义找与∠A 相等的角再结合正弦定义解答即可.【详解】解:∵BD ⊥AC 于D ,CE ⊥AB 于E ,∴sinA=BD ECAB AC=,故A正确;∵∠A+∠ACE=90°,∠ACE+∠COD=90°,∴∠A=∠COD,∴sinA=sin∠COD=CDOC,故B正确;∵∠BOE=∠COD,∴∠A=∠BOE,∴sinA=sin∠BOE=BEBO.故D正确故答案为C.【点睛】本题考查了正弦的定义以及根据直角三角形的性质寻找相等的角,其中根据直角三角形的性质寻找与∠A相等的角是解答本题的关键.6.B【分析】由平行四边形的性质可得AB//DE,AD//BC,进而得到∠BAE=∠E,再结合∠EAD=∠BAE 得到∠E=∠EAD,即AD=DE=5;再由线段的和差可得CE=2;然后根据BC//AD得到△AED∽△FEC,最后运用相似三角形的性质解答即可.【详解】解:∵四边形ABCD是平行四边形,∴AB//DE,AD//BC,∴∠BAE=∠E,∵AE平分∠BAD,∴∠EAD=∠BAE,∴∠E=∠EAD,∴AD=DE=5,∴CE=DE-CD=5-3=2,∵BC//AD,∴△AED∽△FEC∴25 EF EC AE DE==∴52AEEF .故答案为B.【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及相似三角形的判定和性质,其中掌握相似三角形的判定和性质是解答本题的关键.7.D【解析】试题分析:抛物线的对称轴为直线x=2,∵﹣1<x1<0,3<x2<4,∴点A(x1,y1)到直线x=2的距离比点B(x2,y2)到直线x=2的距离要大,而抛物线的开口向下,∴y1<y2.故选D.考点:二次函数图象上点的坐标特征.8.C【分析】连接OC、OP、PC由PA⊥PB可得点P在以O为圆心,AB长为直径的圆上;再根据三角形的三边关系可得CP≤OP+OC,则当当点P,O,C在同一直线上,CP的最大值为OP+OC 的长,然后进行计算即可.【详解】解:如图所示,连接OC、OP、PC∵PA⊥PB,∴点P在以O为圆心,AB长为直径的圆上,∵△COP∴CP≤OP+OC,∴当点P,O,C在同一直线上,且点P在CO延长线上时,CP的最大值为OP+OC的长,又∵A(-3,0),B(3,0),C(3,4),∴AB=6,OC=5,OP=12AB=3,∴线段PC的最大值为OP+OC=3+5=8,故答案为C.【点睛】本题考查了90°所对的弦为圆的直径、三角形的三边关系以及最短路径问题,其中确定最短路径是解答本题的关键.9.A【分析】根据特殊角三角函数值,可得答案.【详解】在△ABC中,∠C=90°,若∠A=30°,得∠B=90°﹣30°=60°.sinA+cosB=sin30°+cos60°=12+12=1,故选:A.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.10.C【分析】利用正弦的定义得出AB的长,再用勾股定理求出BC.【详解】解:∵sinB=ACAB=0.5,∴AB=2AC,∵AC=6,∴AB=12,∴=故选C.本题考查了正弦的定义,以及勾股定理,解题的关键是先求出AB 的长.11.60【分析】根据特殊角的三角函数值即可完成解答.【详解】解:∵cosA=0.5=12,∠A 为锐角,∴∠A=60°,故答案为60;【点睛】本题考查了特殊角的三角函数值,牢记特殊角的三角函数值是解答本题的关键.12.52【分析】将(m ,2)、(5,n )代入k y x =得到一个方程组,然后解方程组即可.【详解】解:∵曲线(0)k y k x=≠经过点(m,2)、(5,n),∴25k m n m ⎧=⎪⎪⎨⎪=⎪⎩解得m=2k ,n=5k ,∴5225k m k n ==;故答案为52;【点睛】本题考查了反比例函数图像上的点的性质,即理解函数图像上的点满足函数解析式是解答本题的关键.13.13根据解直角三角形,由tan 3a A b==,即可得到tanB.【详解】解:在Rt ABC ∆中,∠C=90°,∴tan 3a A b ==,∴1tan 3b B a ==.故答案为13.【点睛】本题考查了解直角三角形,解题的关键是掌握正切值等于对边比邻边.14【分析】直接利用特殊角的三角函数值计算得出答案.【详解】解:∵在Rt △ABC 中,∠C=90°,∠A=30°,∴.【点评】此题主要考查了特殊角的三角函数值,正确记忆特殊角的三角函数值是解题关键.15.12【分析】设AH=BC=2x ,根据等腰三角形三线合一的性质可得BH=CH=12BC=x ,然后得出tan ∠BAH 的值.【详解】解:设AH=BC=2x ,∵AB=AC ,AH ⊥BC ,∴BH=CH=12BC=x ,∴tan ∠BAH=BH x 1AH 2x 2==,故答案为:12【点睛】本题考查了解直角三角形、等腰三角形的性质、锐角三角函数,根据等腰三角形三线合一的性质可得BH=CH=12BC=x 是解题的关键.16.(1)223y x x =--;(2)(1,-4)【分析】(1)根据与坐标轴的两个交点,使用待定系数法进行解答即可;(2)将(1)求得的解析式,化成顶点式即可完成解答。

2019-2020年新沪科版九年级数学上学期期末模拟试题及答案解析

2019-2020年新沪科版九年级数学上学期期末模拟试题及答案解析

沪科版九年级上学期期末模拟测试数学试题一、填空题(每空3分,共30分.)1.(3分)(2007•福州)当x _________ 时,二次根式在实数范围内有意义.2.(3分)(2012•江津区模拟)方程4x2=3(4x﹣3)的根的情况是_________ .3.(3分)化简:= _________ .4.(3分)计算结果为_________ .5.(3分)某商品的进价是500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打_________ 折出售此商品.6.(3分)(2013•常州)已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a=_________ .7.(3分)(2012•江津区模拟)如图,AB是⊙O的直径,D是AC的中点,OD∥BC,若BC=8,则OD= _________ .8.(3分)(2008•茂名)如图,点A、B、C在⊙O上,AO∥BC,∠AOB=50°,则∠OAC 的度数是_________ 度.9.(6分)如图,△ABC是等边三角形,点P是△ABC内一点.△APC沿逆时针方向旋转后与△AP′B重合,则旋转中心是_________ ,最小旋转角等于_________ 度.10.(3分)如图,Rt△ABC的边AB在直线L上,AC=1,AB=2,∠ACB=90°,将Rt△ABC 绕点B在平面内按顺时针方向旋转,使BC边落在直线L上,得到△A1BC1;再将△A1BC1绕点C1在平面内按顺时针方向旋转,使边A1C1落在直线L上,得到△A2B1C1,则点A所经过的两条弧AA1,A1A2的长度之和为_________ .二、选择题(每题3分,共24分)B D.11.(3分)下列计算中,正确的是()12.(3分)(2008•湛江)下面的图形中,是中心对称图形的是()B.13.(3分)△ABC中,点D在边AB上,点E在AC上,AB=6,AD=2,AC=9,若△ABC与△ADE相似,则AE的值等于().,3 ,3的值为()14.(3分)m是方程x2+x﹣1=0的根,则式子m3+2m2+200815.(3分)⊙O的半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()17.(3分)(2008•梅州)如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB ()18.(3分)(2007•南平)如图,把边长为3的正三角形绕着它的中心旋转180°后,重叠部分的面积为()B.19.(3分)(2012•广州模拟)如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()三、解答题(共10小题,计96分)20.(5分)﹣+﹣20080﹣21.(6分)(2008•岳阳)先化简,再求值,其中a=1+,b=1﹣.22.(8分)(2000•内蒙古)某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后加强改进管理,经减员增效,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)23.(10分)有时可以看到这样的转盘游戏:如图,你只要出1元钱就可以随意地转动转盘,转盘停止时指针落在哪个区域,你就按照这个区域所示的数字相应地顺时针跳过几格,然后按照下图所示的说明确定你的奖金是多少.例如,当指针指向“2”区域的时候,你就向前跳过两个格到“5”,按奖金说明,“5”所示的奖金为0.2元,你就可得0.2元.请问这个游戏公平吗?能否用你所学的知识揭示其中的秘密?24.(10分)(2006•青岛)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.25.(10分)(2005•中原区)顾客李某于今年“五•一”期间到电器商场购买空调,与营业员有如下的一段对话:顾客李某:A品牌的空调去年“国庆”期间价格还挺高,这次便宜多了,一次降价幅度就达到19%,是不是质量有问题营业员:不是一次降价,这是第二次降价,今年春节期间已经降了一次价,两次降价的幅度相同.我们所销售的空调质量都是很好的,尤其是A品牌系列空调的质量是一流的.顾客李某:我们单位的同事也想买A品牌的空调,有优惠政策吗?营业员:有,请看《购买A品牌系列空调的优惠办法》.根据以上对话和A品牌系列空调销售的优惠办法,请你回答下列问题:(1)求A品牌系列空调平均每次降价的百分率?(2)请你为顾客李某决策,选择哪种优惠更合算,并说明为什么?26.(10分)(2011•宁夏)已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC 于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=2,求BC的值.27.(10分)梯形ABCD中,AB∥DC,AD=BC,以AD为直径的⊙O交AB于E,⊙O 的切线EF交BC于F,求证:(1)EF⊥BC;(2)BF•BC=BE•AE.28.(12分)(2008•大兴安岭)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A 顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A 旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.29.(12分)在直角坐标系XOY中,二次函数图象的顶点坐标为,且与x 轴的两个交点间的距离为6.(1)求二次函数解析式;(2)在x轴上方的抛物线上,是否存在点Q,使得以点Q、A、B为顶点的三角形与△ABC 相似?如果存在,请求出Q点的坐标,如果不存在,请说明理由.参考答案与试题解析一、填空题(每空3分,共30分.)1.(3分)(2007•福州)当x ≥3时,二次根式在实数范围内有意义.为二次根式,所以被开方数大于或等于概念:式子2.(3分)(2012•江津区模拟)方程4x2=3(4x﹣3)的根的情况是两个相等的实数根.3.(3分)化简:= 1 .==4.(3分)计算结果为.===故答案为:5.(3分)某商品的进价是500元,标价为750元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打7 折出售此商品.﹣500≥500×5%,6.(3分)(2013•常州)已知x=﹣1是关于x的方程2x2+ax﹣a2=0的一个根,则a= ﹣2或1 .7.(3分)(2012•江津区模拟)如图,AB是⊙O的直径,D是AC的中点,OD∥BC,若BC=8,则OD= 4 .8.(3分)(2008•茂名)如图,点A、B、C在⊙O上,AO∥BC,∠AOB=50°,则∠OAC 的度数是25 度.∠AOB=25°,9.(6分)如图,△ABC是等边三角形,点P是△ABC内一点.△APC沿逆时针方向旋转后与△AP′B重合,则旋转中心是 A ,最小旋转角等于300 度.10.(3分)如图,Rt△ABC的边AB在直线L上,AC=1,AB=2,∠ACB=90°,将Rt△ABC 绕点B在平面内按顺时针方向旋转,使BC边落在直线L上,得到△A1BC1;再将△A1BC1绕点C1在平面内按顺时针方向旋转,使边A1C1落在直线L上,得到△A2B1C1,则点A所经过的两条弧AA1,A1A2的长度之和为.=π.二、选择题(每题3分,共24分)11.(3分)下列计算中,正确的是()B.D.=12.(3分)(2008•湛江)下面的图形中,是中心对称图形的是()B.13.(3分)△ABC中,点D在边AB上,点E在AC上,AB=6,AD=2,AC=9,若△ABC 与△ADE相似,则AE的值等于().,3 ,3若△ABC∽△AED,则AE=或14.(3分)m是方程x2+x﹣1=0的根,则式子m3+2m2+2008的值为()15.(3分)⊙O的半径为5,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()17.(3分)(2008•梅州)如图所示,圆O的弦AB垂直平分半径OC,则四边形OACB ()18.(3分)(2007•南平)如图,把边长为3的正三角形绕着它的中心旋转180°后,重叠部分的面积为()B..的面积是,一个小等边三角形的面积是,所以重叠部分的面积是19.(3分)(2012•广州模拟)如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()BM=BC=AD=5DF==,=BC•FD=10×=72三、解答题(共10小题,计96分)20.(5分)﹣+﹣20080﹣=2﹣+3﹣2+.21.(6分)(2008•岳阳)先化简,再求值,其中a=1+,b=1﹣.==,时,原式.22.(8分)(2000•内蒙古)某商厦今年一月份销售额为60万元,二月份由于种种原因,经营不善,销售额下降10%,以后加强改进管理,经减员增效,大大激发了全体员工的积极性,月销售额大幅度上升,到四月份销售额猛增到96万元,求三、四月份平均每月增长的百分率是多少?(精确到0.1%)23.(10分)有时可以看到这样的转盘游戏:如图,你只要出1元钱就可以随意地转动转盘,转盘停止时指针落在哪个区域,你就按照这个区域所示的数字相应地顺时针跳过几格,然后按照下图所示的说明确定你的奖金是多少.例如,当指针指向“2”区域的时候,你就向前跳过两个格到“5”,按奖金说明,“5”所示的奖金为0.2元,你就可得0.2元.请问这个游戏公平吗?能否用你所学的知识揭示其中的秘密?,而最终得到“2”“4”“6”奖的概率全部为24.(10分)(2006•青岛)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.BD=AB=×16=8cm,然后根据勾股定理列出关于圆形截面半径的方程∴BD=AB=×16=8cm25.(10分)(2005•中原区)顾客李某于今年“五•一”期间到电器商场购买空调,与营业员有如下的一段对话:顾客李某:A品牌的空调去年“国庆”期间价格还挺高,这次便宜多了,一次降价幅度就达到19%,是不是质量有问题营业员:不是一次降价,这是第二次降价,今年春节期间已经降了一次价,两次降价的幅度相同.我们所销售的空调质量都是很好的,尤其是A品牌系列空调的质量是一流的.顾客李某:我们单位的同事也想买A品牌的空调,有优惠政策吗?营业员:有,请看《购买A品牌系列空调的优惠办法》.根据以上对话和A品牌系列空调销售的优惠办法,请你回答下列问题:(1)求A品牌系列空调平均每次降价的百分率?(2)请你为顾客李某决策,选择哪种优惠更合算,并说明为什么?26.(10分)(2011•宁夏)已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC 于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=2,求BC的值.27.(10分)梯形ABCD中,AB∥DC,AD=BC,以AD为直径的⊙O交AB于E,⊙O 的切线EF交BC于F,求证:(1)EF⊥BC;(2)BF•BC=BE•AE.28.(12分)(2008•大兴安岭)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A 顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A 旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.中,29.(12分)在直角坐标系XOY中,二次函数图象的顶点坐标为,且与x 轴的两个交点间的距离为6.(1)求二次函数解析式;(2)在x轴上方的抛物线上,是否存在点Q,使得以点Q、A、B为顶点的三角形与△ABC 相似?如果存在,请求出Q点的坐标,如果不存在,请说明理由.)a=y=x x+CD==3y=﹣×10+=3;还存在一点故存在点或。

最新版2019-2020年沪教版初中九年级数学上学期期末模拟测试及答案解析-精编试题

最新版2019-2020年沪教版初中九年级数学上学期期末模拟测试及答案解析-精编试题

第一学期期末模拟质量调研初 三 数 学 试 卷(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.如果5x=6y ,那么下列结论正确的是 (A ):6:5x y =; (B ):5:6x y =;(C )5,6x y ==;(D )6,5x y ==.2.下列条件中,一定能判断两个等腰三角形相似的是(A )都含有一个40°的内角; (B )都含有一个50°的内角; (C )都含有一个60°的内角; (D )都含有一个70°的内角.3.如果△ABC ∽△DEF ,A 、B 分别对应D 、E ,且AB ∶DE=1∶2,那么下列等式一定成立的是(A )BC ∶DE=1∶2; (B ) △ABC 的面积∶△DEF 的面积=1∶2; (C )∠A 的度数∶∠D 的度数=1∶2;(D )△ABC 的周长∶△DEF 的周长=1∶2.4.如果2a b =(,a b 均为非零向量),那么下列结论错误的是(A )//a b ; (B )20a b -=; (C )12b a =; (D )2a b =. 5.如果二次函数2y ax bx c =++(0a ≠)的图像如图所示,那么下列不等式成立的是 (A )0a >; (B )0b <;(C )0ac <;(D )0bc <.6.如图,在△ABC 中,点D 、E 、F 分别在边AB 、AC 、BC 上,且∠AED=∠B ,再将下列四个选项中的一个作为条件,不一定能使得△ADE ∽△BDF 的是(A )EA EDBD BF=; (B )EA EDBF BD=;(C )AD AEBD BF=;(D )BD BA BF BC=.二、填空题:(本大题共12题,每题4分,满分48分) 7.抛物线23y x =-的顶点坐标是 ▲ .8.化简:112()3()22a b a b --+= ▲ . 9.点A (-1,m )和点B (-2,n )都在抛物线2(3)2y x =-+上,则m 与n 的大小关系(第6题图)为m ▲ n (填“<”或“>”).10.请写出一个开口向下,且与y 轴的交点坐标为(0,4)的抛物线的表达式 ▲ . 11.如图,DE//FG//BC ,AD ∶DF ∶FB=2∶3∶4,如果EG=4,那么AC= ▲ . 12.如图,在□ABCD 中,AC 、BD 相交于点O ,点E 是OA 的中点,联结BE 并延长交AD 于点F ,如果△AEF 的面积是4,那么△BCE 的面积是 ▲ .13.Rt △ABC 中,∠C=90°,如果AC=9,cosA=13,那么AB= ▲ . 14.如果某人滑雪时沿着一斜坡下滑了130米的同时,在铅垂方向上下降了50米,那么该斜坡的坡度是1∶ ▲ .15.如图,Rt △ABC 中,∠C=90°,M 是AB 中点,MH ⊥BC ,垂足为点H ,CM 与AH交于点O ,如果AB=12,那么CO= ▲ .16.已知抛物线22y ax ax c =++,那么点P (-3,4)关于该抛物线的对称轴对称的点的坐标是 ▲ .17.在平面直角坐标系中,将点(-b ,-a )称为点(a ,b )的“关联点”(例如点(-2,-1)是点(1,2)的“关联点”).如果一个点和它的“关联点”在同一象限内,那么这一点在第 ▲ 象限.18.如图,在△ABC 中,AB=AC ,将△ABC 绕点A 旋转,当点B 与点C 重合时,点C落在点D 处,如果sinB=23,BC=6,那么BC 的中点M 和CD 的中点N 的距离是 ▲ .C(第18题图)(第11题图)(第12题图)(第15题图)B三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:cos 45tan 45sin 60cot 60cot 452sin 30︒⋅︒-︒⋅︒︒+︒20.(本题满分10分,第(1)、(2)小题各5分)已知:如图,Rt △ABC 中,∠ACB=90°,sinB=35,点D 、E 分别在边AB 、BC 上,且AD ∶DB=2∶3,DE ⊥BC. (1)求∠DCE 的正切值;(2)如果设AB a =,CD b =,试用a 、b 表示AC .21.(本题满分10分)甲、乙两人分别站在相距6(第20题图)米的A 、B 两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C 处发出一球,乙在离地面1.5米的D 处成功击球,球飞行过程中的最高点H 与甲的水平距离AE 为4米,现以A 为原点,直线AB 为x 轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.22.(本题满分10分)如图是某路灯在铅垂面内的示意图,灯柱BC 的高为10米,灯柱BC 与灯杆AB 的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE 的长为13.3米,从D 、E 两处测得路灯A 的仰角分别为α和45°,且tanα=6. 求灯杆AB 的长度.23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:梯形ABCD 中,AD//BC ,AD=AB ,对角线AC 、BD 交于点E ,点F 在边BC 上,且∠BEF=∠BAC. (1)求证:△AED ∽△CFE ; (2)当EF//DC 时,求证:AE=DE.(第22题图)(第23题图)24.(本题满分12分,第(1)小题3分,第(2)小题5分,第(3)小题4分)在平面直角坐标系xOy 中,抛物线2221y x mx m m =-+--+交 y 轴于点为A ,顶点为D ,对称轴与x 轴交于点H.(1)求顶点D 的坐标(用含m 的代数式表示); (2)当抛物线过点(1,-2),且不经过第一象限时,平移此抛物线到抛物线22y x x =-+的位置,求平移的方向和距离;(3)当抛物线顶点D 在第二象限时,如果∠ADH=∠AHO ,求m 的值.25.(本题满分14分,第(1)、(2)小题各6分,第(3)小题2分)已知:矩形ABCD 中,AB=4,BC=3,点M 、N 分别在边AB 、CD 上,直线MN 交矩形对角线AC 于点E ,将△AME 沿直线MN 翻折,点A 落在点P 处,且点P 在射线CB 上.(1)如图1,当EP⊥BC 时,求CN 的长; (2)如图2,当EP⊥AC 时,求AM 的长;(3)请写出线段CP 的长的取值范围,及当CP 的长最大时MN 的长.ADNEA D N MEAD答案一、 选择题:(本大题共6题,每题4分,满分24分) 1、A ; 2、C ; 3、D ; 4、B ; 5、C ; 6、C 二、 填空题:(本大题共12题,每题4分,满分48分)7、(0,-3); 8、142a b -r r ; 9、<;10、24y x =-+等; 11、12; 12、36; 13、27; 14、2.4; 15、4; 16、(1,4); 17、二、四; 18、4 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)解:原式=12231122-+⨯--------------------------------------------------(6分)=1222----------------------------------------------------------------(2分)=14. --------------------------------------------------------------(2分) 20.(本题满分10分,第(1)、(2)小题各5分)解:(1)∵∠ACB=90°,sinB=35,∴35AC AB =. -------------------------(1分)∴设AC=3a ,AB=5a. 则BC=4a. ∵AD:DB=2:3,∴AD =2a ,DB=3a. ∵∠ACB=90°即AC ⊥BC ,又DE ⊥BC , ∴AC//DE. ∴DE BD AC AB =, CE ADCB AB=. ∴335DE a a a =, 245CE a a a =. ∴95DE a =,85CE a =.----------(2分) ∵DE ⊥BC ,∴9tan 8DE DCE CE ∠==.-----------------------------(2分) (2)∵AD:DB=2:3,∴AD:AB=2:5. ------------------------------------------------(1分) ∵AB a =,CD b =,∴25AD a =. DC b =-.--------------------(2分) ∵AC AD DC =+,∴25AC a b =-.-----------------------------------(2分)21.(本题满分10分)解:由题意得:C (0,1),D (6,1.5),抛物线的对称轴为直线x=4.----(3分) 设抛物线的表达式为()210y ax bx a =++≠-------------------------------------(1分)则据题意得:421.53661ba ab ⎧-=⎪⎨⎪=++⎩. ----------------------------------------------(2分)解得:12413a b ⎧=-⎪⎪⎨⎪=⎪⎩. -------------------------------------------------------------------(2分)∴羽毛球飞行的路线所在的抛物线的表达式为2111243y x x =-++. ------(1分) ∵()2154243y x =--+,∴飞行的最高高度为53米. ------------------------(1分) 22.(本题满分10分)解:由题意得∠AD E=α,∠E=45°.----------------------------------------------(2分) 过点A 作AF⊥CE,交CE 于点F ,过点B 作BG⊥AF,交AF 于点G ,则FG=BC=10. 设AF=x .∵∠E=45°,∴EF=AF=x.在Rt△ADF 中,∵tan∠ADF=AFDF ,-----------------(1分) ∴DF=tan tan 6AF x xADF α==∠. --------------------------(1分)∵DE=13.3,∴6xx +=13.3. ---------------------------(1分) ∴x =11.4. ---------------------------------------------(1分)∴AG=AF﹣GF=11.4﹣10=1.4. ------------------------------------------------------------(1分) ∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG =120°﹣90°=30°.-------------------(1分)∴AB=2AG=2.8 ----------------------------------------------------------------------- (1分) 答:灯杆AB 的长度为2.8米.------------------------------------------------------------(1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵∠BEC=∠BAC+∠ABD , ∠BEC=∠BEF+∠FEC ,A BCD FG又∵∠BEF=∠BAC ,∴∠ABD=∠FEC.------------------------------------ (1分) ∵AD=AB ,∴∠ABD=∠ADB.------------------------------------------------- (1分) ∴∠FEC=∠ADB. -------------------------------------------------------- (1分) ∵AD//BC ,∴∠DAE=∠ECF.--------------------------------------------------- (1分) ∴△AED ∽△CFE. --------------------------------------------------------- (1分)(2)∵EF//DC ,∴∠FEC=∠ECD. --------------------------------------------------- (1分) ∵∠ABD=∠FEC ,∴∠ABD=∠ECD.--------------------------------------------- (1分) ∵∠AEB=∠DEC. ∴△AEB ∽△DEC. ----------------------------------------------- (1分)∴AE BEDE CE=.------------------------------------------------------------------------------(1分) ∵AD//BC ,∴AE DECE BE=.----------------------------------------------------------------(1分) ∴AE AE BE DE DE CE CE BE⋅=⋅.即22AE DE =.-------------------------------------------(1分) ∴ AE=DE. ----------------------------------------------------------------------------- (1分) 24.(本题满分12分,第(1)小题3分,第(2)小题5分,第(3)小题4分) 解:(1)∵22221()1y x mx m m x m m =-+--+=---+.------------------------(1分) ∴顶点D (m, 1-m ).------------------------------------------------------------------(2分) (2)∵抛物线2221y x mx m m =-+--+过点(1,-2),∴22121m m m -=-+--+.即220m m --=. ---------------------------(1分)∴2m =或1m =-(舍去). ------------------------------------------------------(2分) ∴抛物线的顶点是(2,-1). ∵抛物线22y x x =-+的顶点是(1,1),∴向左平移了1个单位,向上平移了2个单位. -------------------------(2分)(3)∵顶点D 在第二象限,∴0m <.情况1,点A 在y 轴的正半轴上,如图(1).作AG ⊥DH 于点G ,∵A (0,21m m --+),D (m,-m+1),∴H (,0m ),G (2,1m m m --+) ∵∠ADH=∠AHO ,∴tan ∠ADH= tan ∠AHO , ∴AG AO DG HO=. ∴2211(1)m m m m m m m ---+=----+-. 整理得:20m m +=. ∴1m =-或0m =(舍). --------------(2分)情况2,点A 在y 轴的负半轴上,如图(2).作AG ⊥DH 于点G∵A (0,21m m --+),D (m,-m+1),∴H (,0m ),G (2,1m m m --+) ∵∠ADH=∠AHO ,∴tan ∠ADH= tan ∠AHO ,∴AG AO DG HO=. ∴2211(1)m m m m m m m -+-=----+-. 整理得:220m m +-=. ∴2m =-或1m =(舍). ---------(2分)∴1m =-或2m =-.25.(本题满分14分,第(1)、(2)小题各6分,第(3)小题2分)解:(1)∵△AME 沿直线MN 翻折,点A 落在点P 处,∴△AME≌△PME. ∴∠A EM =∠P EM ,AE=PE.∵ABCD 是矩形,∴AB⊥BC.∵EP⊥BC,∴AB // EP.xx∴∠A ME =∠P EM . ∴∠A EM =∠A ME . ∴A M=AE. ---------------------(2分) ∵ABCD 是矩形,∴AB // DC . ∴AM AE CN CE =. ∴CN=CE. ------------------(1分) 设CN= CE=x.∵ABCD 是矩形,AB=4,BC=3,∴AC=5. ∴PE= AE=5- x.∵EP⊥BC,∴4sin 5EP ACB CE =∠=. ∴545x x -=. ---------------------(1分) ∴259x =,即259CN =. ------------------------------------------------------(2分) (2)∵△AME 沿直线MN 翻折,点A 落在点P 处,∴△AME≌△PME. ∴AE=PE ,AM=PM.∵EP⊥AC,∴4tan 3EP ACB CE =∠=. ∴43AE CE =. ∵AC=5,∴207AE =,157CE =.∴207PE =. ---------------------(2分)∵EP⊥AC,∴257PC ===. ∴254377PB PC BC =-=-=. --------------------------------------(2分) 在Rt △PMB 中,∵222PM PB MB =+,AM=PM. ∴2224()(4)7AM AM =+-. ∴10049AM =. --------------------------------------(2分) (3)05CP ≤≤,当CP 最大时.--------------------------------------------------(2分)。

沪科版九年级数学上册试题 期末综合测试卷(含解析)

沪科版九年级数学上册试题 期末综合测试卷(含解析)

期末综合测试卷一.选择题(共10小题,满分30分,每小题3分)1.在Rt △ABC 中,∠C =90°,若cosA =513,则tanA 的值为()A .512B .125C .23D .12132.将抛物线C 1:y =(x -3)2+2向左平移3个单位长度,得到抛物线C 2,抛物线C 2与抛物线C 3关于x 轴对称,则抛物线C 3的解析式为( ).A .y =x 2-2B .y =-x 2+2C .y =x 2+2D .y =-x 2-23.如图,三条直线a ∥b ∥c ,若AB =CD ,AD DF=23,则BG GE=( )A .14B .13C .23D .324.若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点,若在二次函数y =x 2+2mx −m (m 为常数)的图象上存在两个二倍点M (x 1,y 1),N (x 2,y 2),且x 1<1<x 2,则m 的取值范围是( )A .m<2B .m<1C .m<0D .m>05.如图,矩形ABCD 中,AB =6,对折矩形ABCD 使得BC 与AD 重合,得到折痕EF ,把纸片展平,再一次折叠纸片,使点A 的对应点G 落在EF 上,折痕是BM ,连接MF ,若MF ⊥BM ,则点BC 的长是( )A .53B .33C .8D .436.如图,直线y =−x 与反比例函数y =−6x 的图象相交于A 、B 两点,过A 、B 两点分别作y 轴的垂线,垂足分别为点C 、D ,连接AD,BC ,则四边形ACBD 的面积为( )A .4B .8C .12D .247.已知抛物线y =x 2+(m +1)x −14m 2−1(m 为整数)与x 轴交于点A ,与y 轴交于点B ,且OA=OB ,则m 等于( )A .2+5B .2−5C .2D .−28.在平行四边形ABCD 中,点F 是BC 的中点,AF 与BD 交于点E ,则△ABE 与四边形EFCD 的面积之比是( )A .13B .23C .25D .359.若点A (−1,y 1)、B (5,y 2)、C (m,y 3)在抛物线y =a x 2−2ax +c 上,且y 2<y 3<y 1,则 m 的取值范围是( )A .−1<m <1B .m <−3或m >1C .3<m <5或−3<m <−1D .−5<m <−3或−1<m <110.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,翻折∠B ,使点B 落在直角边AC 上某一点D 处,折痕为EF ,点E 、F 分别在边BC 、AB 上,若△CDE 与△ABC 相似,则CE 的长为()A .169B .43C .32或169D .34或169二.填空题(共6小题,满分18分,每小题3分)11.设k =a +b −c 2c=a −b +c 2b=−a +b +c2a,则k 的值为 .12.如图,已知Rt △ABC 中,∠B =30°,∠A =∠BED =90°,BE =AC ,若AB +DE =480,则DE = .13.已知二次函数y =−x 2−2x +4,当a ≤x ≤a +1时,函数值y 的最小值为1,则a 的值为 .14.已知点P (a,1−a )在反比例函数y =kx (k ≠0)的图象上,将点P 先向右平移9个单位,再向下平移6个单位后得到的点仍在该函数图象上,则k 的值是15.如图,E 是正方形ABCD 的对角线BD 的延长线上一点,且DE =2,连接AE ,将AE 绕点A 顺时针旋转90°得到AF ,连接EF 交DC 于点H .已知EH=3,则EFAB 的值是 .16.如图,一次函数y =x 与反比例函数y =1x (x >0)的图象交于点A ,过点A 作AB ⊥OA ,交x轴于点B ;作B A 1∥OA ,交反比例函数图象于点A 1;过点A 1作A 1B 1⊥A 1B 交x 轴于点B 1;再作B 1A 2∥B A 1,交反比例函数图象于点A 2,依次进行下去……,则点A 2023的横坐标为 .三.解答题(共7小题,满分52分),求AD 17.(6分)如图,在四边形ABCD中,∠B=∠D=90°,AB=6,BC=4,tanA=43的长.18.(6分)如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ACD∽△ABC;(2)若AC=3,BC=4,求BD的长.19.(8分)为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A 的距离AC=26m,在距山脚点A水平距离16m的E处,测得古树顶端D的仰角∠AED=48°,(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),求古树CD的高度.(参考数据:sin48°≈0.73,cos48°≈0.67,tan48°≈ 1.1)20.(8分)某公司经销的一种产品每件成本为40元,要求在90天内完成销售任务.已知该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<5050≤x≤90销售价格x+5090任务完成后,统计发现销售员小王90天内日销售量p(件)与时间(第x天)满足一次函数关系p=−2x+200,设小王第x天销售利润为W元.(1)直接写出W与x之间的函数关系式,并注明自变量x的取值范围;(2)求小王第几天的销售利润最大?最大利润是多少?(3)任务完成后,统计发现平均每个销售员每天销售利润为4800公司制定如下奖励制度:如果一个销售员某天的销售利润超过该平均值,则该销售员当天可获得200元奖金,请计算小王一共可获得多少元奖金?21.(8分)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.22.(8分)如图,已知正比例函数图象经过点A(2,2),B(m,3)(1)求正比例函数的解析式及m的值;(2)分别过点A与点B作y轴的平行线,与反比例函数在第一象限的分支分别交于点C、D(点C、D均在点A、B下方),若BD=4AC,求反比例函数的解析式;(3)在第(2)小题的前提下,连接AD,试判断△ABD的形状,并说明理由.23.(8分)如图,在平面直角坐标系中,抛物线y=a x2+bx+c(a≠0)经过A(−1,0),B(3,0),C(0,3).(1)请写出抛物线的解析式为__________.(2)若N是抛物线对称轴上一动点,请写出使△NCA周长最小的N点的坐标为__________.(3)点N在抛物线的对称轴上,点M在x轴上,请写出,使得以M,N,C,B为顶点的四边形是平行四边形的点M的坐标为__________.(4)若点P为第一象限内抛物线上的一动点,点P的横坐标为t,请求出使点P到直线CB距离最大的t的值.答案解析一.选择题1.B【分析】根据cosA=513,设AC=5x,AB=13x,,根据正切的定义,即可得答案.【详解】解:由题意,得cosA=513,故设AC=5x,AB=13x,则BC=A B2−B C2=12x,∴tanA=BCAC=12x5x=125.故选:B.2.D【分析】根据抛物线C1的解析式得到顶点坐标,利用二次函数平移的规律:左加右减,上加下减,并根据平移前后二次项的系数不变可得抛物线C2的顶点坐标,再根据关于x轴对称的两条抛物线的顶点横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的解析式.【详解】解:∵抛物线C1:y=(x-3)2+2,其顶点坐标为(3,2)∵向左平移3个单位长度,得到抛物线C2∴抛物线C2的顶点坐标为(0,2)∵抛物线C2与抛物线C3关于 x轴对称∴抛物线C3的横坐标不变,纵坐标互为相反数,二次项系数互为相反数∴抛物线C3的顶点坐标为(0,-2),二次项系数为-1∴抛物线C3的解析式为y=-x2-2故选:D.3.A【分析】根据a∥b可得AGGD =ABCD=1,从而得到AG=GD=12AD,再由ADDF=23,可得DF=32AD,最后再由a∥b∥c可得BGGE =AGGF=12ADGD+DF=12AD12AD+32AD=14,进行计算即可得到答案.【详解】解:∵a∥b,AB=CD,∴AGGD =ABCD=1,∴AG=GD,∴AG=GD=12AD,∵ADDF =23,∴DF=32AD,∵a∥b∥c,∴BGGE =AGGF=12ADGD+DF=12AD12AD+32AD=14,故选:A.4.B【分析】根据题意得出纵坐标是横坐标的2倍总在直线y=2x上,x1、x2是方程x2+2mx−m=2x的两个解,根据根与系数的关系得出x1+x2=2−2m,x1⋅x2=−m,根据根的判别式得出Δ=(2m−2)2+4m>0,根据4(m−12)2+3>0,得出m取任意实数时,Δ>0总成立,根据x1<1<x2,得出x1−1<0,x2−1>0,即(x1−1)(x2−1)<0,得出−m−(2−2m)+1<0,求出m的值即可.【详解】解:∵纵坐标是横坐标的2倍总在直线y=2x上,∴点M(x1,y1),N(x2,y2)一定在直线y=2x上,又∵点M(x1,y1),N(x2,y2)在二次函数y=x2+2mx−m (m为常数)的图象上,∴x1、x2是方程x2+2mx−m=2x的两个解,即x2+(2m−2)x−m=0,∴x1+x2=2−2m,x1⋅x2=−m,Δ=(2m−2)2+4m>0,∵(2m−2)2+4m=4m2−4m+4=4(m2−m)+4=4(m−12)2+3,又∵(m−12)2≥0,∴4(m−12)2+3>0,∴m取任意实数时,Δ>0总成立,∵x1<1<x2,∴x1−1<0,x2−1>0,∴(x1−1)(x2−1)<0,即x1x2−(x1+x2)+1<0,∴−m−(2−2m)+1<0,解得:m<1,故B正确.故选:B.5.A【分析】由矩形性质和折叠性质可得BG=AB=6,AE=BE=DF=12AB=3,∠GEB=90°,∠ABM=∠GBM,可得∠EGB=30°,从而可得∠GBE=60°,可得∠ABM=30°,从而可得AM的长,∠DMF=30°,DF=3即可求解DM,进而求出AD的长.【详解】解:∵四边形ABCD是矩形,∴∠A=90°,由折叠性质可得:BG=AB=6,AE=BE=DF=12AB=3,∠GEB=90°,∠ABM=∠GBM,在Rt△GEB中,BE=12AB=12BG,∴∠EGB=30°,∴∠GBE=60°,∴∠ABM=12∠GBE=30°,∴∠AMB=90°−30°=60°,∴AM=tan30°⋅AB=33×6=23,∵MF⊥BM,∴∠BMF=90°,∴∠DMF=180°−60°−90°=30°,∴∠DFM=60°,在Rt△MDF中,MD=tan60°⋅DF=3×3=33,∴AD=AM+MD=23+33=53,∴BC=AD=53,故选:A.6.C【分析】首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12∣k∣,得出S△AOC=S△ODB=12∣k∣=3,再根据反比例函数的对称性可知OC=OD,AC=BD,即可求出四边形ACBD的面积.【详解】解:∵过A,B两点分别作y轴的垂线,垂足分别为点C,D,∴S△AOC =S△ODB=12∣k∣=3,又∵OC=OD,AC=BD,∴S△AOC =S△ODA=S△ODB=S△OBC=3,∴四边形ACBD的面积为:S△AOC +S△ODA+S△ODB+S△OBC=4×3=12.故选:C.7.D【分析】当x=0时,可求得B为(0,−14m2−1),由OA=OB可得A为(−14m2−1,0)或(1 4m2+1,0),将A的坐标代入y=x2+(m+1)x−14m2−1,进行计算即可得到答案.【详解】解:当x=0时,y=−14m2−1,∴抛物线与y轴的交点B为(0,−14m2−1),∵OA=OB,∴抛物线与x轴的交点A为(−14m2−1,0)或(14m2+1,0),∴(−14m2−1)2+(m+1)(−14m2−1)−14m2−1=0或(14m2+1)2+(m+1)(14m2+1)−14m2−1=0,∴(−14m2−1)(−14m2−1+m+1+1)=0或(14m2+1)(14m2+1+m+1−1)=0,∴−14m2−1=0或−14m2−1+m+1+1=0或14m2+1=0或14m2+1+m+1−1=0,解得:m=22+2或m=−22+2或m=−2,∵m为整数,∴m=−2,故选:D.8.C【分析】由四边形ABCD是平行四边形,易证得△ADE∽△FBE,又由点F是BC的中点,根据相似三角形的对应边成比例,可得AEEF =ADBF=2,然后设S△BEF=a,根据等高三角形的面积比等于对应底的比,即可求得△ABE的面积,根据相似三角形的面积比等于相似比的平方,即可求得△AED的面积,继而求得四边形EFCD的面积,则可求得答案.【详解】解:设S△BEF=a,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△ADE∽△FBE,∵点F是BC的中点,∴BF=12BC=12AD,∴AEEF =ADBF=2,∴S△ABE =2a,S△ADES△FBE=(AD BF)2=4即S△ADE=4a,∴S△BCD =S△ABD=2a+4a=6a,∴S四边形CDEF =S△BCD−S△BEF=6a−a=5a,∴△ABE与四边形EFCD的面积之比为:2a:5a=2:5.故选:C.9.C【分析】根据二次函数的解析式可得出二次函数的对称轴为直线x =−−2a2a =1,根据抛物线对称性可知:点A (−1,y 1)与点A '(3,y 1)关于对称轴为x =1对称,点B (5,y 2)与点B '(−3,y 2)关于对称轴为x =1对称,由y 2<y 1,−3<−1,3<5,可得当x <1时,函数值y 随着x 的增大而增大;当x >1时,函数值y 随着x 的增大而减小,即抛物线y =a x 2−2ax +c 的图象开口向下,画出图形,数形结合即可作答.【详解】解:抛物线y =a x 2−2ax +c 的对称轴为直线x =−−2a2a =1,∵A (−1,y 1)、B (5,y 2)、C (m,y 3)在抛物线y =a x 2−2ax +c 上,∴根据抛物线对称性可知:点A (−1,y 1)与点A '(3,y 1)关于对称轴直线x =1对称,点B (5,y 2)与点B '(−3,y 2)关于对称轴直线x =1对称,∵y 2<y 1,−3<−1,3<5,∴当x <1时,函数值y 随着x 的增大而增大;当x >1时,函数值y 随着x 的增大而减小;∴抛物线y =a x 2−2ax +c 的图象开口向下,作图如下:由图可知:要满足y 2<y 3<y 1,则m 的取值范围为:3<m <5或−3<m <−1,故选:C .10.C【分析】根据题意,可知分两种情况,然后根据题目中的条件,利用三角形相似,可以求得CE 的长,从而可以解答本题.【详解】解:由题意可得,当△CDE∽△CBA时,则CECA =DEBA,∵∠C=90°,AC=3,BC=4,翻折∠B,使点B落在直角边AC上某一点D处,∴AB=5,BE=DE,BE=4−CE,∴CE3=4−CE5,解得CE=32;当△CDE∽△CAB时,则CECB =DEAB,∵∠C=90°,AC=3,BC=4,翻折∠B,使点B落在直角边AC上某一点D处,∴AB=5,BE=DE,BE=4−CE,∴CE4=4−CE5,解得CE=169;由上可得,CE的长为32或169,故选:C.二.填空题11.12或−1【分析】依据等比性质可得,k=a+b+c2(a+b+c),分两种情况讨论,即可得到k的值.【详解】解:当a+b+c≠0时,∵k=a+b−c2c =a−b+c2b=−a+b+c2a,∴由等比性质可得,k=a+b+c2(a+b+c),即k=12;当a+b+c=0时,b+c=−a,∴k=−a+b+c2a =−2a2a=−1;综上所述,k的值为12或−1.故答案为:12或−112.120【分析】根据30°角正切值可求得BE=3DE,AB=3AC,结合AB+DE=480,即可列方程,求解即可得出答案.【详解】解:∵tan30°=33,∠B=30°,则在Rt△BDE中,tanB=DEBE =33,即BE=3DE,∴BE=AC=3DE,则在Rt△ABC中,tanB=ACAB =33,即AB=3AC=3×3DE=3DE,故AB+DE=3DE+DE=4DE=480,∴DE=120.故答案为:120.13.0或-3【分析】利用二次函数图像上点的特征找出y=1时自变量x的值,结合a≤x≤a+1时,函数值y的最小值为1,可得到关于a的一元一次方程,解即可.【详解】解:令y=1,则−x2−2x+4=1,解得:x1=−3,x2=1.∵a≤x≤a+1时,函数值y的最小值为1∴a=−3或a+1=1,∴a=−3或a=0.故答案为:−3或0.14.−12【分析】根据点的坐标平移规律“左减右加,上加下减”求得点P平移后的点的坐标,根据两点均在反比例函数的图象上,将两点坐标代入反比例函数解析式中求解即可.【详解】解:∵点P(a,1−a),∴将点P先向右平移9个单位,再向下平移6个单位后得到的点的坐标为(a+9,−a−5),依题意,得k=a(1−a)=(a+9)(−a−5),解得a=−3,∴k=−3×(1+3)=−12,故答案为:−12.15.322【分析】证明△EAD≌△FAB(SAS),得出∠AED=∠AFB,∠ADE=∠ABF,证明△EDH∽△ABF,得出EDAB =EHAF,根据EF=2AF,ED=2,EH=3,得出2AB=322EF,求出结果即可.【详解】解:∵将AE绕点A顺时针旋转90°得到AF,∴AE=AF,∠EAF=90°,∴∠AEF=45°,∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°,∴∠EAD=∠FAB,∴△EAD≌△FAB(SAS),∴∠AED=∠AFB,∠ADE=∠ABF,∵∠ADB=∠BDC=45°,∴∠ADE=∠EDH=135°,∴∠ABF=135°,∴∠ABF=∠EDH,∵∠AED+∠EDH=45°,∠BAF+∠AFB=45°,∴∠BAF=∠DEH,∴△EDH∽△ABF,∴EDAB =EHAF,∵EF =2AF ,ED =2,EH=3,∴2AB =322EF,∴EF AB=322.故答案为:322.16.2024+2023【分析】根据直OA 的关系式为y =x ,以及OA⊥AB ,可得到ΔAOB 是等腰直角三角形,进而得到△A 1B B 1、△A 2B 1B 2、△A 3B 2B 3……都是等腰直角三角形,设OC =a =AC ,则点A(a,a),点A 在反比例函数y =1x 的图象上,可求出a =1,进而得到点A 的横坐标为1,同理B C 1=b =A 1C 1,则点A 1(2+b,b),求出点A 1的横坐标为2+1,同理得出点A 2的横坐标为3+2;点A 3的横坐标为4+3;点A 4的横坐标为5+4;点A 5的横坐标为6+5;根据规律可得答案.【详解】解:如图,过点A 、A 1、A 2、A 3…分别作AC ⊥x 轴,A 1C 1⊥x 轴,A 2C 2⊥x 轴,A 3C 3⊥x 轴…,垂足分别为C 、C 1、C 2、C 3…∵直线OA 的关系式为y =x ,OA ⊥AB ,∴△AOB 是等腰直角三角形,∴OC =AC ,同理可得△A 1B B 1、△A 2B 1B 2、△A 3B 2B 3……都是等腰直角三角形,设OC =a =AC ,则点A(a,a),点A 在反比例函数y =1x 的图象上,∴a ×a =1,解得a=1(负值舍去),∴点A的横坐标为1,设B C1=b=A1C1,则点A1(2+b,b),点A1在反比例函数y=1x的图象上,∴(2+b)×b=1,解得b=2−1,∴点A1的横坐标为2+2−1=2+1;设B1C2=c=A2C2,则点A2(22+c,c),点A2在反比例函数y=1x的图象上,∴(22+c)×c=1,解得b=3−2,∴点A2的横坐标为2+22−2+3−2=3+2;同理可得点A3的横坐标为4+3;点A4的横坐标为5+4;点A5的横坐标为6+5;…∴点A2023的横坐标为2024+2023;故答案为:2024+2023.三.解答题17.解:如图,延长AD与BC交于点E.在Rt△ABE中,tanA=BEAB =43,AB=6,∴BE=8,∴AE=A B2+B E2=10,EC=BE−BC=8−4=4.∵∠B=∠CDE=90°,∠E=∠E,∴∠DCE=∠A,∴在Rt△CDE中,tan∠DCE=tanA=DECD =43,∴设DE=4x,则CD=3x,在Rt△CDE中,由勾股定理得E C2=D E2+C D2,∴42=(4x)2+(3x)2,解得:x=45(负值舍去),∴DE=165∴AD=AE−DE=345,即AD的长为345.18.(1)证明:∵CD是边AB上的高,∴∠ADC=90°,∵∠ACB=90°,∴∠ADC=∠ACB∵∠A=∠A,∴△ACD∽△ABC;(2)解:∵∠ACB=90°,CD是边AB上的高,AC=3,BC=4,∴AB=A C2+B C2=32+42=5,∠CDB=90°,∵S△ABC =12×AB⋅CD=12×AC⋅BC,∴AB⋅CD=AC⋅BC,∴CD=AC⋅BCAB =3×45=125,∵∠CDB=90°,∴BD=B C2−C D2=42−(125)2=165,∴BD的长为165.19.解:如图,延长DC交EA的延长线于点F,则CF⊥EF,∵山坡AC上坡度i=1:2.4,∴CF:AF=1:2.4,∴CF:AF=5:12,∴设CF=5k,则AF=12k,在Rt△ACF中,AC=C F2+A F2=(5k)2+(12k)2=13k,∴13k=26,解得:k=2,∴CF=5×2=10,AF=12×2=24,∴EF=AE+AF=16+24=40,在Rt△DFE中,tan∠AED=DF,EF∴DF=40tan48°≈40× 1.1=44(m),∴CD=DF−CF=44−10=34(m);答:古树CD的高度约为34m.20.(1)解:依题意:W={p⋅(x+50−40) (1≤x<50)(90−40)p (50≤x≤90)整理得W={−2x2+180x+2000(1≤x<50)−100x+10000(50≤x≤90);(2)①当1≤x<50时,W=−2x2+180x+2000=−2(x−45)2+6050,∵−2<0,∴开口向下,∴当x=45时,W有最大值为6050;②当50≤x≤90时,W=−100x+10000,∵−100<0,∴W随x的增大而减小,∴当x=50时,W有最大值为5000,∵6050>5000,∴当x=45时,W的值最大,最大值为6050,即小王第45天的销售利润最大,最大利润为6050元;(3)①当1≤x<50时,令W=4800,得W=−2(x−45)2+6050=4800,解得x1=20,x2=70,∴当W>4800时,20<x<70,∵1≤x<50,∴20<x<50;②当50≤x≤90时,令W>4800,W=−100x+10000>4800,解得x<52,∵50≤x≤90,∴50≤x<52,综上所述:当20<x<52时,W>4800,即共有52−20+1−2=31天的销售利润超过4800元,∴可获得奖金200×31=6200元,即小王一共可获得6200元奖金.21.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠BFE,∠A=∠FBE,在△ADE和△BFE中,{∠ADE=∠BFE∠A ED=∠B EFAE=BE,∴△ADE≌△BFE;(2)如图2,作BN∥HC交EF于N,∵△ADE≌△BFE,∴BF=AD=BC,∴BN=12HC,由(1)的方法可知,△AEK≌△BEN,∴AK=BN,∴HC=2AK;(3)如图3,作GM∥DF交HC于M,∵点G是边BC中点,∴CG=14CF,∵GM∥DF,∴△CMG∽△CHF,∴MGHF =CGCF=14,∵AD∥FC,∴△AHD∽△GHF,∴DHFH =AHHG=ADFG=23,∴GMDH =38,∵AK∥HC,GM∥DF,∴△AHK∽△HGM,∴HKGM =AHHG= 23,∴HKHD =14,即HD=4HK,∴n=4.22.(1)解:设正比例函数的解析式为y=kx,∵正比例函数图象经过点A(2,2),∴2=2k∴k=1∴正比例函数的解析式为y=x把B(m,3)代入解析式得m=3.(2)∵AC∥BD∥y轴,∴C点的横坐标为2,D点的横坐标为3,设反比例函数的解析式为y=m1x ,分别代入得yC=m12,yD=m13,∴AC=2−m12,BD=3−m13,∵BD=4AC,∴3−m13=4(2−m12),解得m1=3,∴反比例函数的解析式为y=3x;(3)△ABD是等腰直角三角形.理由如下:由(2)得:D(3,1),A(2,2),B(3,3),∴A B2=(3−2)2+(3−2)2=2,A D2=(2−3)2+(2−1)2=2,B D2=4,∴B D2=A B2+A D2,且AB=AD,∴△ABD是等腰直角三角形.23.(1)解:设该抛物线的解析式为y =a x 2+bx +c ,将点A(−1,0),B(3,0),C(0,3)代入,可得{0=a −b +c 0=9a +3b +c 3=c ,解得{a =−1b =2c =3,∴该抛物线的解析式为y =−x 2+2x +3.故答案为:y =−x 2+2x +3;(2)由(1)可知,抛物线的解析式为y =−x 2+2x +3,∴其对称轴为x =−22×(−1)=1,如下图,∵点A(−1,0),B(3,0)关于直线x =1对称,∴NA =NB ,∴△ACN 的周长=AC +NA +CN =AC +NB +CN ≥AC +BC ,∴当点C 、N 、B 共线时,△ACP 的周长最小,设直线BC 的解析式为y =kx +b ',将点B(3,0),C(0,3)代入,可得{0=3k +b '3=b ' ,解得{k =−1b '=3,∴线BC 的解析式为y =−x +3,令x =1,则有y =−1+3=2,∴点N(1,2).故答案为:(1,2);(3)设点M(m,0),若以M ,N ,C ,B 为顶点的四边形是平行四边形,①当CM为对角线时,如下图,此时CN ∥BM ,∴点N 的纵坐标y N =3,即点N(1,3),∴CN =1−0=1,则BM=CN =1,即m −3=1,解得m =4,∴M(4,0);②当CN 为对角线时,如下图,此时x N −x M =x B −x C ,即1−m =3−0,解得m =−2,∴M(−2,0);③当CB 为对角线时,如下图,此时可有x B +x C 2=x M +x N 2,即3+02=m +12,解得m =2,∴M(2,0).综上所述,点M 的坐标为(4,0)或(−2,0)或(2,0).故答案为:(4,0)或(−2,0)或(2,0);(4)如下图,连接BC ,过点P 作PD ⊥x 轴交BC 于点D ,设点P 到BC 的距离为ℎ,则S △PBC =12PD ⋅OB =12BC ⋅ℎ,∴当S △PBC 面积最大时,ℎ的值最大,由(1)可知,直线BC 的函数解析式为y =−x +3,设点P 坐标为(t,−t 2+2t +3),点D 坐标为(t,−t +3),∴PD =−t 2+3t ,∴S △PBC =12(−t 2+3t)×3=−32t 2+92t =−32(t −32)2+278,∴当t =32时,S △PBC 最大,即当t =32时,点P 到直线CB 距离最大.。

2020-2021学年最新沪科版九年级数学上学期期末综合模拟测试及答案解析-精编试题

2020-2021学年最新沪科版九年级数学上学期期末综合模拟测试及答案解析-精编试题

沪科版九年级上学期期末数学练习卷(考试时间:100分钟,满分:150分)考生注意:1、本试卷含三个大题,共25题;2、答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.如果点G是△ABC的重心,联结AG并延长,交对边BC于点D,那么AG︰AD 是………………………………………………………………………………………(▲)(A)2︰3 ;(B)1︰2;(C)1︰3 ;(D)3︰4.2.已知点D、E分别在△ABC的边AB、AC上,下列给出的条件中,不能判定DE∥BC 的是……………………………………………………………………………………(▲)(A)BD︰AB =CE︰AC;(B)DE︰BC =AB︰AD;(C)AB︰AC =AD︰AE;(D)AD︰DB =AE︰EC.3.下列有关向量的等式中,不一定成立的是…………………………………(▲)(A)AB=-BA;(B)︱AB︱=︱BA︱;(C ) AB +BC =AC ; (D )︱AB +BC ︱=︱AB ︱+︱BC |. 4.在直角△ABC 中,∠C =90°,∠A 、∠B 与∠C 的对边分别是a 、b 和c ,那么下列关系中,正确的是 ……………………………………………………………………( ▲ )(A )cosA =c a ; (B )tanA =a b ; (C )sinA =c a ; (D )cotA =ba . 5.在下列y 关于x 的函数中,一定是二次函数的是…………………………( ▲ )(A )2x y =; (B )21xy =; (C )2kx y =; (D )x k y 2=. 6.如图1,小明晚上由路灯A 下的点B 处走到点C 处时,测得自身影子CD 的长为1米.他继续往前走3米到达点E 处(即CE =3米),测得自己影子EF 的长为2米.已知小明的身高是1.5米,那么路灯A 的高度AB 是………………(A )4.5米; (B )6米; (C )7.2米; (D )8米.二、填空题(本大题共12题,每题4分,满分48分) 7.已知y x =25,则yy x -的值是 ▲ . 8.如果点P 是线段AB 的黄金分割点,且AP >PB ,那么APBP的比值是 ▲ . 9.如图2,在平行四边形ABCD 中,点E 在BC 边上,且CE ︰BC =2︰3,AC 与DE 相交于点F ,若 S △AFD =9,则S △EFC = ▲ .A BCEDF图110.如果α是锐角,且tan α =cot20°,那么 α= ▲ 度.11.计算:2sin60°+tan45°= ▲ . 12.如果一段斜坡的坡角是30°,那么这段斜坡的 坡度是 ▲ .(请写成1︰m 的形式).13.如果抛物线2)1(x m y -=的开口向上,那么m 的取值范围是 ▲ .14.将抛物线5)3(2+--=x y 向下平移6个单位,所得到的抛物线的顶点坐标为 ▲ .15.已知抛物线经过A (0,-3)、B (2,-3)、C (4,5),判断点D (-2,5)是否在该抛物线上.你的 结论是: ▲ (填“是”或“否”).16.如图3,正方形DEFG 内接于Rt △ABC ,∠C =90°,AE =4,BF =9 ,则tanA = ▲ .17.如图4,梯形ABCD 中,AD//BC ,AB=DC ,点P 是AD 边上一点,联结PB 、PC ,且PD AP AB ⋅=2,则图中有 ▲ 对相似三角形.18.如图5,在Rt △ABC 中,∠C =90°,点D 在边 AB 上,线段DC 绕点D 逆时针旋转,端点C 恰巧落在边 AC 上的点E 处.如果m DB AD =,n ECAE=.那么m 与n 满足的关系式是:m = ▲ (用含n 的代数式表示m ).三、解答题(本大题共7题,满分78分)ABD E C图5CABDEFG图3图419.(本题满分10分) 解方程:4322--x x -x-21=2. 20.(本题满分10分, 第(1)小题6分,第(2)小题4分)已知二次函数c bx x y ++-=22的图像经过点A (0,4)和B (1,-2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y =a (x +m )2+k 的形式;(2)写出该抛物线顶点C 的坐标,并求出△CAO 的面积.21.(本题满分10分)如图6,已知点E 在平行四边形ABCD 的边AD上,AE =3ED ,延长CE 到点F ,使得EF =CE ,设BA=a ,BC =b ,试用a 、b分别表示向量CE 和AF .22.(本题满分10分)如图7,某人在C 处看到远处有一凉亭B ,在凉亭A BFE DC图6ABB 正东方向有一棵大树A ,这时此人在C 处测得B 在北偏 西45°方向上,测得A 在北偏东35°方向上.又测得A 、C 之间的距离为100米,求A 、B 之间的距离.(精确到1米). (参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)23.(本题满分12分, 第(1)小题4分,第(2)小题4分,第(3)小题4分) 如图8,已知等腰梯形ABCD 中,AD ∥BC ,AD =1,BC =3, AB =CD =2,点E 在BC 边上,AE 与BD 交于点F ,∠BAE =∠DBC ,(1)求证:△ABE ∽△BCD ; (2)求tan ∠DBC 的值; (3)求线段BF 的长.24.(本题满分12分, 第(1)小题6分,第(2)小题6分) 如图9,在平面直角坐标系内,已知直线4+=x y 与x 轴、y 轴分别相交于点A 和点C ,抛物线12-++=k kx x y 图像过点A 和点C ,抛物线与x 轴的另一交点是B ,图8(1)求出此抛物线的解析式、对称轴以及B 点坐标; (2)若在y 轴负半轴上存在点D ,能使得以A 、C 、 D 为顶点的三角形与△ABC 相似,请求出点D 的坐标.25.(本题满分14分 ,第(1)小题5分,第(2)小题5分,第(3)小题4分) 如图10,已知在等腰 Rt △ABC 中,∠C =90°,斜边AB =2,若将△ABC 翻折,折痕EF 分别交边AC 、边BC 于点E 和点F (点E 不与A 点重合,点F 不与B 点重合),且点C 落在AB 边上,记作点D .过点D 作DK ⊥AB ,交射线AC 于点K ,设AD =x ,y =cot ∠CFE ,(1)求证:△DEK ∽△DFB ;(2)求y 关于x 的函数解析式并写出定义域;(3)联结CD ,当EFCD=23时,求x 的值.ABC备用图A BC备用图ABCE KF图10答案及评分参考(考试时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)二、填空题(本大题共12题,每题4分,满分48分)7、23. 8、215-. 9、4. 10、70. 11、3+1. 12、1︰3.13、m >1. 14、(3,-1). 15、是. 16、23. 17、3. 18、2n +1.三、解答题(本大题共12题,满分78分)19.(本题满分10分) 解方程:4322--x x -x-21=2. 解:4322--x x +21-x =2……………………………………(2分) )4(22322-=++-x x x ………………………………………………………(3分) 062=-+x x ………………………………………………………………(2分)解得:x 1=2,x 2=-3…………………………………………(2分) 经检验x =2是增根,舍去∴x =-3是原方程的根.………………………………………(1分)20.(本题满分10分, 第(1)小题6分,第(2)小题4分)解:(1)∵二次函数y =-2x 2+bx +c 的图像经过点A (0,4)和B (1,-2)∴根据题意,得⎩⎨⎧-=++-=224c b c 可以解得⎩⎨⎧=-=44c b ……………………(2分)∴这个抛物线的解析式是y =-2x 2-4x +4;……………………………………(1分) y =-2x 2-4x +4=4)2(22++-x x ………………………(1分)=42)1(22+++-x=6)1(22++-x ……………………(2分)(2)顶点C 的坐标(-1,6)………………(2分) S △CAO =2142121=⨯⨯=⋅⋅C x AO ………………(2分)21.(本题满分10分)解:∵平行四边形ABCD∴AB ∥CD,AD ∥BC ,AB=CD,AD=BC ……………(2分)∵BA =a ,BC =b ,∴CD =a,AD =b ,………………(2分)又∵AE=3ED ∴b ED 41=,b43=………………………(1分)CE = CD + DE = b a41-…………………………(2分)又∵EF=CE ∴EF = CE = b a41-…………………(1分)ABFEDC图6∴AF = AE +EF = b a b a b214143+=-+…………………………(2分)22.(本题满分10分)解:作CD ⊥AB 于点D .根据题意,…………………(1分) 在Rt △ADC 中,sin ∠ACD =ACAD,……(1分) ∠ACD =35°,AC =100米,∴AD =AC ·sin35°≈100×0.574=57.4(米)……(2分) cos ∠ACD =ACCD, …………(1分) CD =AC ·cos35°≈100×0.819=81.9(米),……………(2分) 在Rt △BDC 中,∠BCD =45°,∴∠B =45° ∴BD =CD =81.9(米), …………(1分)∴AB =AD +BD =57.4+81.9=139.3(米)≈139(米).……………(2分) 答:AB 之间的距离是139米23.(本题满分12分, 第(1)小题4分,第(2)小题4分,第(3)小题4分)解:(1)∵等腰梯形ABCD 中,AD ∥BC ,∴∠ABE =∠C ……………(2分) 又∵∠BAE =∠DBC ∴△ABE ∽△BCD ……………(2分)(2)分别过点A 、D 向BC 边作垂线段,垂足分别为点G 、H ……(1分)∵AD ∥BC ∴AG=DH, 矩形AGHD 中AG=DH, 又∵AB=CD ∴△ABG ≌△DCH ∴BG=HC45° 35° ABC 图7D图8A B CDF∵AD =1,BC =3 ,GH =1∴HC=(3-1)÷2=1, BH=2 ……………(1分)∴在Rt △HDC 中, HD=2212-=3……………(1分)∴在Rt △BHD 中, tan ∠DBC=BHDH = 23……………(1分)(3)∵△ABE ∽△BCD ∴BCABCD BE =……………(1分) 又∵BC =3,AB =CD =2,∴BE=34……………(1分) ∵AD ∥BC , AD =1,BF DF BE AD ==43……………(1分) 又∵BD=22)3(2+=7, ∴BF =774 ……………(1分)24.(本题满分12分第(1)小题6分,第(2)小题6分)(1)∵直线4+=x y 与x 轴、y 轴分别相交于点A 和点C∴得:A(-4,0), C(0,4) …………………(2分)∵抛物线12-++=k kx x y 图像过点A 和点C ,代入点A 或点C 坐标得:k=5…………………(1分) ∴452++=x x y …………………(1分)对称轴:直线25-=x …………………(1分)令y=0,得0452=++x x解方程得1,421-=-=x x ∴B(-1,0) …………………(1分) (2)AC =42,AB =3.根据题意, AO=CO=4,∴∠CAB =∠ACD= 45°……………(1分)(图一)当△CAD ∽△ABC 时,CD ︰AC =CA ︰AB , 即CD ︰42=42︰3,∴CD =332 ∴点1D (0,-320);……………(2分)当△CDA ∽△ABC 时,CD ︰AB =CA ︰AC ,即CD =AB =3 , ∴点2D (0,1);……………(2分) ∵点D 在y 轴负半轴上∴2D (0,1)舍去……………(1分) ∴综上所述:D 点坐标是(0,-320)25.(本题满分14分 ,第(1)小题5分,第(2)小题5分,第(3)小题4分)解:(1)在等腰 Rt △ABC 中,∠C =90°,∴∠A =∠B=45° 又∵DK ⊥AB,∴∠EKD =45°∴∠EKD =∠B …………(2分) ∵将△ABC 翻折后点C 落在AB 边上的点D 处∴∠EDF=∠C =90° ………………………………(1分) ∵∠KDA= ∠KDB=90°∴∠EDK=90°-∠KDF, ∠FDB=90°-∠KDF∴∠EDK=∠FDB …………………………………………(1分) ∴△DEK ∽△DFB …………………………………………(1分)(说明:点K 在线段AC 延长线上时等同于在线段上的相似的情况,故不必分类证明) (2)∵△DEK ∽△DFB ,∴DE DF =DKDB…………(1分) ∵∠DFE =∠CFE ,∴y =cot ∠CFE =cot ∠DFE =DE DF =DKDB…………(1分)ABCEKF图10∵AD =x ,AB =2,∴DK =AD =x ,DB =2-x ,∴DK DB =x x -2,∴y =xx-2……(1分) 定义域:2-2<x <2……………………………(2分)(3)方法一:设CD 与EF 交于点H ,CD 被折痕EF 垂直平分,CD=2 CH∵EF CD =23,∴EF CH=43,设CH=k 3,EF=4k∵CD ⊥EF,∠C =90°∴∠EHC =∠CHF=90°, ∠ECH=∠CFH=90°-∠HCF ∴△ECH ∽△CFH, 得:∴CH EH =FHCH , 即FH EH CH ⋅=2设EH=a ,则得:),4(32a k a k -= ,03422=+-k ka a 解得:k a k a 3,21==……(2分)当EH=k 时,∠ECH=∠CFE=30°,∴y =xx-2=cot30°=3,∴x =3-1; 当EH=3k 时,∠ECH=∠CFE=60°,∴y =xx-2=cot60°=33,∴x =3-3;经检验:x =3-1,x =3-3分别是原各方程的根,且符合题意; 综上所述,x =3-1或x =3-3.……………………………(2分)方法二:设CD 与EF 交于点H ,取EF 的中点O ,联结OC ,∴CH ⊥EF ,CH =21CD ,CO =21EF . ∵EF CD =23,∴COCH =23.……………………………(2分)HABCDE K FO(备一)HABCE F当0<AD <1时(如图备一),在Rt △COH 中,∠COH =60°,∴∠CFE =30°,∴y =xx-2=cot30°=3,∴x =3-1;………(1分) 当1<AD <2时(如图备二),在Rt △COH 中,∠COH =60°,∴∠CFE =60°,∴y =xx-2=cot60°=33,∴x =3-3.经检验:x =3-1,x =3-3分别是原各方程的根,且符合题意; 综上所述,x =3-1或x =3-3.……………………(1分)ABCDF K E H O(备二)。

最新沪科版数学九年级上册期末模拟测试卷及答案解析(精品试卷)

最新沪科版数学九年级上册期末模拟测试卷及答案解析(精品试卷)

沪科版九年级上学期期末模拟测试数学试题一、选择题(本大题共10小题,每小题4分,满分40分)1.-2、0、2、-3这四个数中最小数的是-------------------------------------【 】 A .2 B .0 C .-2 D .-32.如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学计数法表示为-----------------------------------------【 】 A .8101.30⨯ B .81001.3⨯ C .91001.3⨯ D . 1010301.0⨯3.一元二次方程16)6(2=+x 可转化为两个一元一次方程,其中一个一元一次方程是46=+x ,则另一个一元一次方程是--------------------------------------【 】A .46-=-xB .46=-xC .46=+xD .46-=+x4.设a =1,a 在两个相邻整数之间,则这两个整数是---------------------【 】 A .1和2 B .2和3 C .3和4 D .4和55.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个------------------------------------------------------------------【 】 A .2个 B .3个 C .4个 D .5个第5题图 第7题图 第8题图6.某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是------------------------【 】 A .99.60,99.60 B .99.60,99.70 C .99.60,98.80 D .99.70,99.607. 如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是--------------------------------------------------【 】 A .0ac < B .1a b -= C .1a b +=- D .2b a >8.如图,过□ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的□AEMG 的面积1S 与□HCFM 的面积2S 的大小关系是-------------------【 】 A.21s s > B.21s s < C.21s s = D.212s s =9.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的--------------------------------------------------------------【 】 A .6 B .8 C .10 D .1210.如图,在矩形ABCD 中,AB =3,BC =4,点P 在BC 边上运动,连结DP ,过点A 作AE ⊥DP ,垂足为E ,设DP =x , AE =y ,则能反映y 与x 之间函数关系的大致图象是-------【 】第10题图A. B. C. D.二、填空题(本大题共4小题,每小题5分,满分20分) 11.的平方根是 。

最新沪科版数学九年级上学期期末模拟检测卷及答案解析(精品试卷)

最新沪科版数学九年级上学期期末模拟检测卷及答案解析(精品试卷)

第一学期期终教学质量监控测试初三数学 试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1.已知α为锐角,如果2sin 2α=,那么α等于 A .30︒; B .45︒; C .60︒; D .不确定.【考点】特殊角的三角函数值 【试题解析】 为锐角,,则=45°,故选B【答案】B2.把二次函数241y x x =-+化成2()y a x m k =++的形式是A .2(2)1y x =-+;B .2(2)1y x =--;C .2(2)3y x =-+; D.2(2)3y x =--.【考点】二次函数的概念及表示方法 【试题解析】 原式=,故选D【答案】D3.若将抛物线平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是 A .向左平移3个单位; B .向右平移3个单位; C .向上平移3个单位; D .向下平移3个单位.【考点】二次函数图像的平移 【试题解析】对称轴为x=0,顶点坐标(0,0);平移后对称轴x=-3,顶点(-3,0);可知为向左平移3个单位,故选A【答案】A4.若坡面与水平面的夹角为α,则坡度i 与坡角α之间的关系是A .cos i α=;B .sin i α=;C .cot i α=;D .tan i α=.【考点】锐角三角函数 【试题解析】坡度定义为坡角的正切值,则,故选D【答案】D5.如图,□ABCD 对角线AC 与BD 相交于点O ,如果AB m =,AD n =,那么下列选项中,与向量1()2m n +相等的向量是A.OA;B.OB;C.OC;D.OD.【考点】对角线【试题解析】在□ABCD中,=,故选C【答案】C6.如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),若△CDE与△ABC相似,则点E的坐标不可能是A.(4,2);B.(6,0);C.(6,4);D.(6,5).【考点】相似三角形判定及性质【试题解析】图中△ABC为直角三角形,且BC=3,AC=6;A选项△ECD为直角三角形,CD=2,CE=1,,故△CDE与△ABC相似;B选项Rt△CDE中,CD=2,DE=1,,故△CDE与△ABC相似;C 选项Rt△CDE中,CD=2,DE=3,,故△CDE与△ABC不相似;D选项Rt△CDE中,CD=2,DE=4,,故△CDE与△ABC相似;故选C【答案】C二、填空题(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.若:5:2x y =,则():x y y +的值是 ▲ .【考点】比例线段的相关概念及性质 【试题解析】=【答案】8. 计算:13(2)2a ab --= ▲ .【考点】函数 【试题解析】=【答案】9.二次函数22y x x =-的图像的对称轴是直线 ▲ .【考点】二次函数图像与a,b,c 的关系 【试题解析】的对称轴为.【答案】1x =10. 如果抛物线231y x x m =-+-+经过原点,那么m = ▲ .【考点】二次函数表达式的确定 【试题解析】将原点(0,0)代入抛物线解析式,得-1+m=0,解得m=1. 【答案】111.已知点11(,)A x y 、22(,)B x y 为二次函数图像上的两点,若,则▲ .(填“>”、“<”或“=”)【考点】二次函数的图像及其性质 【试题解析】开口向上,对称轴为x=1,则当x <1时,y 随x 的增大而减小;因为,所以y1>y2 【答案】12.用“描点法”画二次函数2y ax bx c =++的图像时,列出了下面的表格:x … ﹣2 ﹣1 0 1 … y…﹣11﹣21﹣2…x 时,y= ▲.根据表格上的信息回答问题:当2【考点】二次函数的图像及其性质【试题解析】观察表格中数据可以看出,当x=-1与x=1时y值相等,可得该二次函数的对称轴为,所以x=2时y值与x=-2时y值相等,查表为-11【答案】-1113.如果两个相似三角形的周长的比为,那么周长较小的三角形与周长较大的三角形对应角平分线的比为▲.【考点】相似三角形判定及性质比例线段的相关概念及性质【试题解析】令两相似三角形分别为△ABC与△A’B’C’,其中△ABC周长较小,相似比为k,则由题意可得:,即两三角形的相似比为1:4;又相似三角形对应的角平分线比等于相似比,故角平分线之比为1:4【答案】1:414.如图,在□ABCD中,E是边BC上的点,分别联结AE、BD相交于点O,若AD=5,,则= ▲.【考点】相似三角形判定及性质比例线段的相关概念及性质【试题解析】如图,过C点作CF//AE交AD与点F,则可知在□ABCD中BO=DG,又已知,则;又AE//CF,故;又BC=AD=5,所以【答案】215.如图,正方形DEFG的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上.若△ABC 的边BC长为40厘米,高AH为30厘米,则正方形DEFG的边长为▲厘米.【考点】三角形的面积梯形的有关概念和性质【试题解析】令正方形边长为a,则由图可知:S△ABC=S梯形DGCB+S△ADG,代入数值得方程为,解得a=,即正方形DEFG的边长为厘米.【答案】16.如图,在△ABC中,∠ACB=90°,若点G是△ABC的重心,2cos3BCG∠=,BC=4,则CG=▲.【考点】相似三角形判定及性质三角形的内心、外心和重心【试题解析】如图,延长CG交AB于D,连接AG延长交BF于E,过D点作DF//AE;在Rt△ABC中,D为斜边中点,则AD=CD=DB,.所以∠BCG=∠B,即cos∠B=,AB=BC×=6,故CD=3;又在△ABE中,DF//AE,D为AB中点,则可得F为BE中点,即EF=BE=CE;又在△CDF中,GE//DF,EF= CE,所以DG=CG=CD=1,CG=2【答案】217.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,4tan3A=,则CD= ▲.【考点】直角三角形与勾股定理解直角三角形【试题解析】如图,延长AD、BC交于点E;AB=3,,得BE=4,又BC=2,所以EC=2;由题意可得tan ∠ECD=tan∠A=,令CD=a,则DE=a;在△CDE中,根据勾股定理得,解得a=,所以CD=【答案】18.如图,在矩形ABCD中,AB=6,AD=10,点E是边BC的中点,联结AE,若将△ABE沿AE翻折,点B落在点F处,联结FC,则cos ECF∠= ▲.【考点】解直角三角形图形的翻折【试题解析】由题知△ABE≌△AFE,∠AEB=∠AEF,所以∠AEB+∠AEF+∠FEC=2∠AEB+∠FEC=180°;又E为BC中FEC=180°;点,EC=BE=EF,得∠ECF=∠EFC,所以在△EFC中,∠ECF+∠EFC+∠FEC=2∠ECF+∠所以∠ECF=∠BEA,cos∠ECF=cos∠BEA=【答案】三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:【考点】特殊角的三角函数值【试题解析】原式= =1【答案】120.(本题满分10分,第(1)小题满分6分,第(2)小题满分4分)已知一个二次函数的图像经过A(0,-3)、B(2,-3)、C(-1,0)三点.(1)求这个二次函数的解析式;(2)将这个二次函数图像平移,使顶点移到点P(0,-3)的位置,求所得新抛物线的表达式.【考点】二次函数图像的平移二次函数表达式的确定【试题解析】GC AED B第21题图F H 解:(1)设所求二次函数的解析式为:,由题意得:解得:∴这个二次函数的解析式为(2)∵新抛物线是由二次函数的图像平移所得∴a=1又∵顶点坐标是(0,-3) ∴【答案】(1)(2)21.(本题满分10分)如图,DC //EF //GH //AB ,AB=12,CD=6,DE ∶EG ∶GA=3∶4∶5. 求EF 和GH 的长.【考点】比例线段的相关概念及性质【试题解析】过点D 作CB 的平行线,分别交EF 、GH 、AB 于点I 、J 、K ∵DC ∥AB ∴KB=DC=6 ∴AK=6∵EF∥AB∴∵DE∶EG∶GA=3∶4∶5∴∴∴同理:∴∴GH【答案】EF;22.(本题满分10分)如图,已知楼AB高36米,从楼顶A处测得旗杆顶C的俯角为60°,又从该楼离地面6米的一窗口E处测得旗杆顶C的仰角为45°,求该旗杆CD的高.(结果保留根号)【考点】解直角三角形的实际应用【试题解析】过点C作CG⊥AE,垂足为点G由题意得∠CEF=45°=∠CEG,∠ACG=60°设CG=x,在Rt△ACG中,在Rt△ECG中,∵AG+EG=AE∴解得:又可求得:CF=EG=∴答:该旗杆CD的高为()米.【答案】23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,点E是四边形ABCD的对角线BD上的一点,∠BAE=∠CBD=∠DAC.⋅=⋅;(1)求证:DE AB BC AE(2)求证:∠AED +∠ADC=180°.【考点】二次函数与一次函数综合二次函数与几何综合二次函数表达式的确定【试题解析】(1)∵当时,,∴C(0,3)在Rt△COB中,∵∴∴∴点B(6,0)把A(2,0)、B(6,0)分别代入,得:得解得:∴该抛物线表达式为(2)∵∴顶点D(4,-1)∴(3)点E的坐标是(10,8)或(16,35)【答案】(1)(2)8(3)(10,8)或(16,35)24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)在平面直角坐标系xOy中,抛物线与轴分别交于点A(2,0)、点B(点B在点A的右侧),与轴交于点C,1 tan2CBA∠=.(1)求该抛物线的表达式;(2)设该抛物线的顶点为D,求四边形ACBD的面积;(3)设抛物线上的点E在第一象限,△BCE是以BC为一条直角边的直角三角形,请直接写出点E的坐标.【考点】相似三角形判定及性质比例线段的相关概念及性质【试题解析】(1)在□ABCD中,AD=BC,AD∥BC∴∵x=1,即∴∴AD=AB,AG=BE∵E为BC的中点∴∴即(2)∵∴不妨设AB=1,则AD=x,∵AD∥BC ∴∴,∵GH∥AE ∴∠DGH=∠DAE ∵AD∥BC ∴∠DAE=∠AEB ∴∠DGH=∠AEB在□ABCD中,∠D=∠ABE∴△GDH ∽△EBA∴∴∴(3)①当点H在边DC上时,∵DH=3HC ∴∴∵△GDH ∽△EBA ∴∴解得②当H在DC的延长线上时,∵DH=3HC ∴∴∵△GDH ∽△EBA ∴∴ 解得综上所述,可知的值为或【答案】(1)(2)(3)或25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,在□ABCD 中,E 为边BC 的中点,F 为线段AE 上一点,联结BF 并延长交边AD 于点G ,过点G 作AE 的平行线,交射线DC 于点H.设ADEF x AB AF ==.(1)当1x =时,求:AG AB 的值;(2)设GDH EBAS y S ∆∆=,求关于x 的函数关系式,并写出x 的取值范围; (3)当3D H H C =时,求x 的值.【考点】相似三角形判定及性质【试题解析】(1)∵∠BAE=∠DAC ∴∠BAE+∠EAC =∠DAC+∠EAC 即∠BAC=∠EAD∵∠ABC=∠ABE +∠CBD ∠AED=∠ABE +∠BAE∵∠CBD=∠BAE∴∠ABC=∠AED∴△ABC∽△AED∴∴(2)∵△ABC∽△AED∴即∵∠BAE=∠DAC∴△ABE∽△ACD∴∠AEB=∠ADC∵∠AED +∠AEB =180°∴∠AED+∠ADC=180°【答案】见解析。

最新2019-2020年度沪科版九年级数学上学期期末模拟练习卷及答案解析-精编试题

最新2019-2020年度沪科版九年级数学上学期期末模拟练习卷及答案解析-精编试题

沪科版九年级上学期 期末数学练习卷(考试时间:100分钟,满分:150分)一、 选择题(本大题共6题,每题4分,满分24分)1.如果点G 是△ABC 的重心,联结AG 并延长,交对边BC 于点D ,那么AG ︰AD 是………………………………………………………………………………………( ▲ ) (A )2︰3 ;(B )1︰2; (C )1︰3 ; (D )3︰4.2.已知点D 、E 分别在△ABC 的边AB 、AC 上,下列给出的条件中,不能判定DE∥BC 的是……………………………………………………………………………………( ▲ )(A )BD ︰AB = CE ︰AC ; (B )DE ︰BC = AB ︰AD ; (C )AB ︰AC = AD ︰AE ; (D )AD ︰DB = AE ︰EC .3.下列有关向量的等式中,不一定成立的是…………………………………( ▲ ) (A )AB =-BA ; (B )︱AB ︱=︱BA ︱;(C ) AB +BC =AC ; (D )︱AB +BC ︱=︱AB ︱+︱BC |. 4.在直角△ABC 中,∠C=90°,∠A、∠B 与∠C 的对边分别是a 、b 和c ,那么下列关系中,正确的是 ……………………………………………………………………( ▲ )(A )cosA =c a ; (B )tanA =a b ; (C )sinA =c a ; (D )cotA =ba. 5.在下列y 关于x 的函数中,一定是二次函数的是…………………………( ▲ )(A )2x y =; (B )21xy =; (C )2kx y =; (D )x k y 2=.6.如图1,小明晚上由路灯A 下的点B 处走到点C 处时,测得自身影子CD 的长为1米.他继续往前走3米到达点E 处(即CE =3米),测得自己影子EF 的长为2米.已知小明的身高是1.5米,那么路灯A 的高度AB 是…………………………………( ▲ )(A )4.5米; (B )6米; (C )7.2米; (D )8米.二、填空题(本大题共12题,每题4分,满分48分) 7.已知y x =25,则yy x -的值是 ▲ . 8.如果点P 是线段AB 的黄金分割点,且AP >PB ,那么APBP的比值是 ▲ . 9.如图2,在平行四边形ABCD 中,点E 在BC 边上,且CE ︰BC =2︰3,AC 与DE 相交于点F ,若S △AFD =9,则S △EFC = ▲ .10.如果α是锐角,且tanα =cot20°,那么 α= ▲ 度.11.计算:2si n60°+tan45°= ▲ . 12.如果一段斜坡的坡角是30°,那么这段斜坡的 坡度是 ▲ .(请写成1︰m 的形式).13.如果抛物线2)1(x m y -=的开口向上,那么m 的取值范围是 ▲ .14.将抛物线5)3(2+--=x y 向下平移6个单图2ABCEDF图1A BC DE F位,所得到的抛物线的顶点坐标为 ▲ .15.已知抛物线经过A (0,-3)、B (2,-3)、C (4,5),判断点D (-2,5)是否在该抛物线上.你的 结论是: ▲ (填“是”或“否”).16.如图3,正方形DEFG 内接于Rt△ABC,∠C =90°,AE =4,BF =9 ,则tanA = ▲ .17.如图4,梯形ABCD 中,AD//BC ,AB=DC , 点P 是AD 边上一点,联结PB 、PC ,且PD AP AB ⋅=2,则图中有 ▲ 对相似三角形.18.如图5,在Rt△ABC 中,∠C=90°,点D 在边 AB 上,线段DC 绕点D 逆时针旋转,端点C 恰巧落在边 AC 上的点E 处.如果m DB AD =,n ECAE=.那么m 与n 满足的关系式是:m = ▲ (用含n 的代数式表示m ).三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 解方程:4322--x x -x-21=2. 20.(本题满分10分, 第(1)小题6分,第(2)小题4分)已知二次函数c bx x y ++-=22的图像经过点A (0,4)和B (1,-2).(1)求此函数的解析式;并运用配方法,将此抛物线解析式化为y =a (x +m )2+k 的形式;(2)写出该抛物线顶点C 的坐标,并求出△CAO 的面积.ABD E C图5C ABDEFG图3图4A BCDP21.(本题满分10分)如图6,已知点E在平行四边形ABCD的边AD上,AE=3ED,延长CE到点F,使得EF=CE,设BA=a ,BC=b ,试用a 、b 分别表示向量CE和AF.22.(本题满分10分)如图7,某人在C处看到远处有一凉亭B,在凉亭B正东方向有一棵大树A,这时此人在C处测得B在北偏西45°方向上,测得A在北偏东35°方向上.又测得A、C之间的距离为100米,求A、B之间的距离.(精确到1米).(参考数据:sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)ABFEDC图645°35°ABC图723.(本题满分12分, 第(1)小题4分,第(2)小题4分,第(3)小题4分)如图8,已知等腰梯形ABCD 中,AD∥BC,AD =1,BC =3, AB =CD =2,点E 在BC 边上,AE 与BD 交于点F ,∠BAE=∠DBC, (1)求证:△ABE ∽△BCD ; (2)求tan ∠DBC 的值; (3)求线段BF 的长.24.(本题满分12分, 第(1)小题6分,第(2)小题6分) 如图9,在平面直角坐标系内,已知直线4+=x y 与x 轴、y 轴分别相交于点A 和点C ,抛物线12-++=k kx x y 图像过点A 和点C ,抛物线与x 轴的另一交点是B ,(1)求出此抛物线的解析式、对称轴以及B 点坐标; (2)若在y 轴负半轴上存在点D ,能使得以A 、C 、 D 为顶点的三角形与△ABC 相似,请求出点D 的坐标.图8EA BCD F 图9AyCB O x25.(本题满分14分 ,第(1)小题5分,第(2)小题5分,第(3)小题4分) 如图10,已知在等腰 Rt△ABC 中,∠C=90°,斜边AB =2,若将△ABC 翻折,折痕EF 分别交边AC 、边BC 于点E 和点F (点E 不与A 点重合,点F 不与B 点重合),且点C 落在AB 边上,记作点D .过点D 作DK⊥AB,交射线AC 于点K ,设AD =x ,y =cot∠CFE, (1)求证:△DEK∽△DFB;(2)求y 关于x 的函数解析式并写出定义域;(3)联结CD ,当EFCD=23时,求x 的值.ABC备用图ABC备用图ABCD EK F图10答案及评分参考 (考试时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分) 题号 123456答案 A B D C A B二、填空题(本大题共12题,每题4分,满分48分)7、23. 8、215-. 9、4. 10、70. 11、3+1. 12、1︰3.13、m >1. 14、(3,-1). 15、是. 16、23. 17、3. 18、2n +1.三、解答题(本大题共12题,满分78分)19.(本题满分10分) 解方程:4322--x x -x-21=2. 解:4322--x x +21-x =2……………………………………(2分) )4(22322-=++-x x x ………………………………………………………(3分) 062=-+x x ………………………………………………………………(2分)解得:x 1=2,x 2=-3…………………………………………(2分) 经检验x =2是增根,舍去∴x =-3是原方程的根.………………………………………(1分)20.(本题满分10分, 第(1)小题6分,第(2)小题4分)解:(1)∵二次函数y =-2x 2+bx +c 的图像经过点A (0,4)和B (1,-2) ∴根据题意,得⎩⎨⎧-=++-=224c b c 可以解得⎩⎨⎧=-=44c b ……………………(2分)∴这个抛物线的解析式是y =-2x 2-4x +4;……………………………………(1分) y =-2x 2-4x +4=4)2(22++-x x ………………………(1分)=42)1(22+++-x=6)1(22++-x ……………………(2分)(2)顶点C 的坐标(-1,6)………………(2分) S △CAO =2142121=⨯⨯=⋅⋅C x AO ………………(2分)21.(本题满分10分)解:∵平行四边形ABCD∴AB ∥CD,AD ∥BC ,AB=CD,AD=BC ……………(2分)∵BA =a ,BC =b ,∴CD =a,AD =b ,………………(2分)又∵AE=3ED ∴b ED 41=,b AE43=………………………(1分)CE = CD + DE = b a41-…………………………(2分)又∵EF=CE ∴EF = CE = b a41-…………………(1分)∴AF = AE +EF = b a b a b214143+=-+…………………………(2分)ABFEDC图622.(本题满分10分)解:作CD ⊥AB 于点D .根据题意,…………………(1分) 在Rt△A DC 中,sin ∠A CD =ACAD,……(1分) ∠A CD =35°,AC =100米,∴AD =AC ·sin35°≈100×0.574=57.4(米)……(2分) cos ∠A CD =ACCD, …………(1分) CD =AC ·cos35°≈100×0.819=81.9(米),……………(2分) 在Rt△BDC 中,∠BCD =45°,∴∠B =45° ∴BD =CD =81.9(米), …………(1分)∴AB =AD +BD =57.4+81.9=139.3(米)≈139(米).……………(2分) 答:AB 之间的距离是139米23.(本题满分12分, 第(1)小题4分,第(2)小题4分,第(3)小题4分)解:(1)∵等腰梯形ABCD 中,AD∥BC,∴∠ABE =∠C ……………(2分) 又∵∠BAE=∠DBC ∴△ABE ∽△BCD ……………(2分)(2)分别过点A 、D 向BC 边作垂线段,垂足分别为点G 、H ……(1分) ∵AD∥BC ∴AG=DH, 矩形AGHD 中AG=DH, 又∵AB=CD ∴△ABG ≌△DCH ∴BG=HC∵AD =1,BC =3 ,GH =1∴HC=(3-1)÷2=1, BH=2 ……………(1分)∴在Rt△HDC 中, HD=2212 =3……………(1分)45° 35° AB C 图7DH图8E A B C DFG∴在Rt△BHD 中, tan ∠DBC =BHDH = 23……………(1分)(3)∵△ABE ∽△BCD ∴BCABCD BE =……………(1分) 又∵BC =3,AB =CD =2,∴BE=34……………(1分)∵AD∥BC , AD =1,BF DF BE AD ==43……………(1分) 又∵BD=22)3(2+=7, ∴BF =774 ……………(1分)24.(本题满分12分第(1)小题6分,第(2)小题6分) (1)∵直线4+=x y 与x 轴、y 轴分别相交于点A 和点C ∴得:A(-4,0), C(0,4) …………………(2分)∵抛物线12-++=k kx x y 图像过点A 和点C ,代入点A 或点C 坐标得:k=5…………………(1分) ∴452++=x x y …………………(1分)对称轴:直线25-=x …………………(1分)令y=0,得0452=++x x解方程得1,421-=-=x x ∴B(-1,0) …………………(1分) (2)AC =42,AB =3.根据题意, AO=CO=4,∴∠CAB =∠ACD= 45°……………(1分) 当△CAD∽△ABC 时,CD ︰AC =CA ︰AB , 即CD ︰42=42︰3,∴CD=332 ∴点1D (0,-320);……………(2分)当△CDA∽△ABC 时,CD ︰AB =CA ︰AC ,(图一)D 1AB Cyx OD 2即CD =AB =3 , ∴点2D (0,1);……………(2分) ∵点D 在y 轴负半轴上∴2D (0,1)舍去……………(1分) ∴综上所述:D 点坐标是(0,-320)25.(本题满分14分 ,第(1)小题5分,第(2)小题5分,第(3)小题4分) 解:(1)在等腰 Rt△ABC 中,∠C=90°,∴∠A =∠B=45° 又∵DK⊥AB ,∴∠EKD =45°∴∠EKD =∠B …………(2分) ∵将△ABC 翻折后点C 落在AB 边上的点D 处∴∠EDF=∠C=90° ………………………………(1分) ∵∠KDA= ∠KDB=90°∴∠EDK=90°-∠KDF, ∠FDB=90°-∠KDF∴∠EDK=∠FDB …………………………………………(1分) ∴△DEK∽△DFB…………………………………………(1分)(说明:点K 在线段AC 延长线上时等同于在线段上的相似的情况,故不必分类证明)(2)∵△DEK∽△DFB,∴DE DF =DKDB…………(1分) ∵∠DFE=∠CFE,∴y =cot∠CFE=cot∠DFE =DE DF =DK DB…………(1分)∵AD =x ,AB =2,∴DK =AD =x ,DB =2-x ,∴DK DB =x x -2,∴y =xx-2……(1分)定义域:2-2<x <2……………………………(2分)(3)方法一:设CD 与EF 交于点H ,CD 被折痕EF 垂直平分,CD=2 CH∵EF CD =23,∴EFCH=43,设CH=k 3,EF=4kH ABCDE FABC D E KF图10∵CD ⊥EF,∠C=90°∴∠EHC =∠C HF=90°, ∠ECH=∠CF H=90°-∠HCF ∴△E CH ∽△CFH, 得:∴CH EH =FHCH , 即FH EH CH ⋅=2设EH=a ,则得:),4(32a k a k -= ,03422=+-k ka a 解得:k a k a 3,21==……(2分)当EH=k 时,∠ECH=∠C FE=30°, ∴y=xx-2=cot30°=3,∴x =3-1; 当EH=3k 时,∠ECH=∠C FE=60°,∴y=xx-2=cot60°=33,∴x=3-3;经检验:x =3-1,x =3-3分别是原各方程的根,且符合题意; 综上所述,x =3-1或x =3-3.……………………………(2分)方法二:设CD 与EF 交于点H ,取EF 的中点O ,联结OC , ∴CH⊥EF,CH =21CD ,CO =21EF . ∵EF CD =23,∴COCH=23.……………………………(2分)当0<AD <1时(如图备一),在Rt△COH 中,∠COH=60°, ∴∠CFE=30°,∴y=xx-2=cot30°=3,∴x =3-1;………(1分) 当1<AD <2时(如图备二),在Rt△COH 中,∠COH=60°,∴∠CFE=60°,∴y=xx-2=cot60°=33,∴x=3-3.经检验:x =3-1,x =3-3分别是原各方程的根,且符合题意; 综上所述,x =3-1或x =3-3.……………………(1分)HABCDE K FO(备一)ABC DFKE HO(备二)。

最新沪科版九级数学上册期末模拟检测卷及答案解析.doc

最新沪科版九级数学上册期末模拟检测卷及答案解析.doc

沪科版九年级上学期期末模拟测试数学试题(考试时间:100分钟,满分:150分)考生注意:1、本试卷含三个大题,共25题;2、答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、 选择题(本大题共6题,每题4分,满分24分)【下列各题的四个结论中,有且只有一个结论是正确的。

请把正确结论的代号按要求填涂在答题纸左侧上方的选择题答题区,每题选对得4分;不选、错选或者多选得零分。

】 1. 已知Rt △ABC 中,∠A=90º,则cb是∠B 的( ▲ ). A .正切; B .余切; C .正弦 ; D .余弦;2.关于相似三角形,下列命题中不.正确的是( ▲ ). (A) 两个等腰直角三角形相似; (B) 含有30°角的两个直角三角形相似; (C)相似三角形的面积比等于相似比; (D) 相似三角形的周长比等于相似比.3.下列关于向量的说法中,不正确...的是( ▲ ). (A )33a a =r r; (B )()333a b a b +=+r r r r ;(C )若a kb =r r (k 为实数),则a r ∥b r; (D=,则3a b =r r 或3a b =-r r .4. 在△ABC 中,若错误!未找到引用源。

,则∠C 的度数是 ………… ( ▲ )A .30°B .45°C .60°D .90°5. 关于二次函数122+-=x y 的图像,下列说法中,正确的是( ▲ ). (A )对称轴为直线1=x ; (B )顶点坐标为(2-,1);(C )可以由二次函数22x y -=的图像向左平移1个单位得到; (D )在y 轴的左侧,图像上升,在y 轴的右侧,图像下降.6.如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为( ▲ )二.填空题:(本大题共12题,每题4分,满分48分)7.已知43::=y x ,那么=+y y x :)(▲ .8.如图1,已知123////l l l ,如果:2:3AB BC =,4DE =,则EF 的长是____▲_____ 9.若向量与单位向量的方向相反,且,则= ▲ .(用表示)AB CE 32lD 1l FABCD FE G S 3 S 2S 1 10、已知△ABC 中,AB=AC=m ,∠ABC=72°,BB 1平分∠ABC 交AC 于B 1,过B 1做B 1B 2∥BC 交AB 于B 2,作B 2B 3平分∠AB 2B 1交AC 于B 3,过B 3作B 3B 4∥BC 交AB 于B 4,则线段B3B 4的长度为 _________ (用含有m 的代数式表示).11.在高为100米的楼顶测得地面上某十字路口的俯角为α,那么楼底到这十字路口的水平距离是▲ 米;(用含角α的三角比的代数式表示)12. 已知抛物线1)1(2+-=x a y 的顶点是它的最高点,则a 的 取值范围是 ▲13. 已知,二次函数f(x) = ax 2 + bx + c 的部分对应值如下表,则f(-2) = ▲ .14.如图,D 、E 、F 、G 是△ABC 边上的点,且DE ‖FG ‖BC ,DE ,FG 将△ABC 分成三个部分,它们的面积比为S 1∶S 2∶S 3=1∶2∶3,那么DE ∶FG ∶BC = ▲ .第14题图第15题图 第16题图 第18题图15.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,BC=2AC ,则cot ∠BCD=▲16.如图,某商场开业,要为一段楼梯铺上红地毯,已知楼梯高AB=6m ,坡面AC 的坡度i=1:,则至少需要红地毯 ▲ m .17、我们定义:等腰三角形中底边与腰的比叫做底角的邻对(can ,如图(1)在△ABC 中,AB=AC ,底角B 的邻对记作canB ,这时canB BC AB ==底边腰,容易知道一个角的大小与这个角的邻对值也是一一对应的。

最新2019-2020年度沪科版九年级数学上学期期末模拟试题及答案解析-精编试题

最新2019-2020年度沪科版九年级数学上学期期末模拟试题及答案解析-精编试题

沪科版九年级上学期期末数学练习卷考生注意:1.本试卷含三个大题,共25题;2.除第一、二大题外,其余各题无特别说明,都必须写出证明或计算的主要步骤.—、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确项的代号写在括号内】 1. 把△ABC 的各边长都增加两倍,则锐角A 的正弦值 ……………………………… ( )(A )增加2倍(B )增加4倍(C )不变(D )不能确定2. 下列式子中,正确的是……………………………………………………………… ( )(A )3(2)36a b a b +=+(B )()a b a b --=--(C )00a +=(D )00a ⋅= 3.在△ABC 中,直线DE 分别与边AB 、AC 相交于点D 、E ,在下列条件中,不能推出△ABC 与△ADE 相似的是 ……………………………………………………( )(A )EC AE BD AD = (B )AC AD AB AE = (C )BCDEAB AD =(D )ACB ADE ∠=∠ 4.如图,在4×4的正方形网格中,则tanα的值是 …………………………………( )(A )1 (B )52(C )12(D )25.某村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离为………………………………………………………………………( ) (A )αcos 5(B )αcos 5 (C )αsin 5(D )αsin 56.如图,在Rt △ABC 中,∠C=90°,BC=6,AC=8,将△ABC 折叠,使点A 与点B 重合,折痕为DE ,则S △BCE :S △BDE 等于…………………………………………………( ) (A )2:5 (B )14:25 (C )16:25 (D )4:21二、填空题:(本大题共12题,每题4分,满分48分)7.若==+yxy y x 则,38. 8.若单位向量e 与a 方向相反,且5a =,则a =e .9.在△ABC 中,∠C =900,AC=3,AB=5,则cosB =__________.10.已知α为锐角,且21tan =α,则sin α=_________. 11.已知抛物线322--=x x y ,它的图像在对称轴(填“左侧”或“右侧”)的部分是下降的;12.如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =,那么BFFD=. 13.如图,如果123////l l l ,AC=12,DE=3,EF=5,那么BC=__________.14.如图,在△ABC 中,点D 、E 分别为边AC 、AB 上的点,且∠ADE=∠B,AE =3,第第4题图BE=4,则AD⋅AC=_______.15.如图,四边形PMNQ是正方形,△ABC的高AD=6cm,BC=12cm,则正方形PMNQ的边长是cm.第12题图第14题图第15题图:1,如果斜坡长为100米,那么此斜坡的高为_____米. 16.已知斜坡的坡度为330,已知测17.在离某建筑物底部30米处的地方,用测角仪测得该建筑物顶部的仰角为︒角仪的高为1.5米,那么该建筑物的高为__________米(计算结果可以保留根号). 18.在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(l x)(x 为自然数).(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC 的相似线(其中l1⊥BC,l2∥AC),此外,还有条;=时,P(l x)截得的三角形面积为△ABC面(2)如图②,∠C=90°,∠B=30°,当BPBA积的14第20题图三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)(1)计算:︒-︒-+︒+︒30cot )45tan 2()45cos 60(sin 2.(2)22221332011x x x x +---=-+;20.(本题满分10分)如图,在∆ABC 中,点G 是∆ABC 的重心,过点G 作EF ∥BC ,交AB 于点E ,交AC 于点F ,b CA a AB ==,,用向量a 和b 表示EF .21.(本题满分10分,第(1)小题满分5分,第(2)小题满分5分)如图,在Rt △ABC 中,∠ACB =90º,2sin 3A =,点D 、E 分别在AB 、AC 上,DE ⊥AC ,垂足为点E ,DE =2,DB =9,求(1)BC 的长;(2)cos BCD ∠.第21题图第22题图22.(本题满分10分)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台 高为l.6米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC(杆子的底端分别为D 、C),且∠DAB=66. 5°.求点D 与点C 的高度差DH 以及所用不锈钢材料的总长度l (即AD+AB+BC ,结果精确到0.1米).(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,在Rt △ABC 中,∠ABC =90°,BA=BC .点D 是AB 的中点,联结CD ,过点B 作BG 丄CD ,分别交CD 、CA 于点E 、F ,与过点A 且垂直于AB 的直线相交于点G . (1)求ACAF的值; (2)求ABC AFG S S ∆∆的值.24.如图,已知抛物线y=x 2﹣(b+1)x+(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 的左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为 ,点C 的坐标为 (用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO,△QOA 和△QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.25.(本题满分14分)如图,已知90ABM ∠=,AB =AC ,过点A 作AG ⊥BC ,垂足为G ,延长AG 交BM 于D ;过点A 作AN ∥BM ,过点C 作EF ∥AD ,与射线A F BDEMCG AN 、BM 分别相交于点F 、E .(1)求证:△BCE ∽△AGC .(2)点P 是射线AD 上的一个动点,设AP =x ,四边形ACEP 的面积是y ,若AF =5,AD =325. ①求y 关于x 的函数关系式,并写出定义域.②当点P 在射线AD 上运动时,是否存在这样的点P ,使△CPE 的周长为最小?若存在,求出此时y 的值;若不存在,请说明理由.第一学期初三参考答案一、选择题1、C2、A3、C4、D5、B6、B二、填空题7、35 8、5-9、54 10、5511、下降 12、32 13、215 14、2115、416、5017、5.131018、(1)1;(2)12或34或34解:(1)存在另外 1 条相似线.如图1所示,过点P 作l 3∥BC 交AC 于Q ,则△APQ ∽△ABC ; 故答案为:1;(2)设P (l x )截得的三角形面积为S ,S=14S △ABC ,则相似比为1:2. 如图2所示,共有4条相似线:①第1条l 1,此时P 为斜边AB 中点,l 1∥AC ,∴BP BA =12; ②第2条l 2,此时P 为斜边AB 中点,l 2∥AC ,∴BP BA =12;③第3条l 3,此时BP 与BC 为对应边,且BP BC =12,∴BP BA =cos30BP BC =34; ④第4条l 4,此时AP 与AC 为对应边,且AP AC =12,∴1sin 304AP AP AB AC ==, ∴BP BA =34. 故答案为:12或34或34.三、解答题19.解:原式=3)12()2223(2--++…………………………………………………(8分)3123-++= ………………………………………………………(1分)12+=. ……………………………………………………………………(1分)20、解:∵点G 是△ABC 重心∴AG=2DG …………………………………………………………………………(2分) ∴23AG AD = ∵EF ∥BC∴32==AD AG BC EF ………………………………………………………………………(2分)即BC EF 32=………………………………………………………………………(1分) 又∵b CA a AB ==,∴b a AC BA BC --=+=………………………………………………………(3分)∴b a BC EF 323232--==………………………………………………………(2分) 21、解:(1)在Rt △DEA 中,∵DE =2,sinA 32=∴3232sin =⨯==A DE AD ……………………………………………………………(2分)∴12=+=AD BD AB ………………………………………………………………(1分)在Rt △ABC 中, AB =12,sinA 32=∴83212sin =⨯=⋅=A AB BC ………………………………………………………(2分)(2)∵ 在Rt △ABC 中,128AB BC ==,∴54=AC ……………………………………………………………………………(1分)在Rt △DEA 中,32==AD DE , ∴5=AE ………………………………………………………………………………(1分)∴53554=-=CE , 7=CD …………………………………………………(1分)∵在Rt △DEC 中,2cos 7DE CDE CD ∠==……………………………………………(1分)∵DE ∥BC ∴CDE BCD ∠=∠ ∴2cos cos 7BCD CDE ∠=∠=………………………………………………………(1分)22、解: DH=1.6×34=l.2(米).……………………………………………………………(3分)过B 作BM ⊥AH 于M ,则四边形BCHM 是矩形.…………………………………(1分)MH=BC=1 ∴AM=AH -MH=1+1.2一l=l.2.…………………………………………(1分)在RtAMB 中,∵∠A=66.5°∴AB=1.2 3.0cos66.50.40AM ≈=︒(米).…………………………………………………(3分)∴S=AD+AB+BC ≈1+3.0+1=5.0(米). ………………………………………………(1分)答:点D 与点C 的高度差DH 为l.2米;所用不锈钢材料的总长度约为5.0米……(1分)23、(1)证明:∵ ∠ABC =90°,AG 丄AB ∴AG ∥BC ∴BC AG FC AF =……………………………………………………………………(1分)∵BG 丄CD ∴∠BCE+∠CBE=90°∵∠ABG+∠CBE=90°∴∠ABG=∠BCE∵BA=BC ,∠BAG=∠CBD=90°∴GAB ∆≌DBC ∆ ∴AG=BD ……………………………………………(2分)∵点D 是AB 的中点∴21=BC BD ∴21==BC AG FC AF ……………(1分) ∴31=AC AF ……………………………………………………………(2分) (2) ∵AG ∥BC ∴△AFG ∽△CFB ∴41)(2==∆∆BC AG S S CFB AFG ∴CFB AFG S S ∆∆=41……………………………………………………………………(2分)∵CBF ABC S CF S AC∆∆= ∵31=AC AF ∴32=AC CF ∴CFB ABC S S ∆∆=23………………………………(2分) ∴612341==∆∆∆∆CFB CFB ABC AFGS S S S ……………………………………………………………(2分)解答:解:(1)令y=0,即y=x2﹣(b+1)x+=0,解得:x=1或b,∵b是实数且b>2,点A位于点B的左侧,∴点B的坐标为(b,0),令x=0,解得:y=,∴点C的坐标为(0,),故答案为:(b,0),(0,);(2)存在,假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.设点P的坐标为(x,y),连接OP.则S四边形POCB=S△PCO+S△POB=••x+•b•y=2b,∴x+4y=16.过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,∴∠PEO=∠EOD=∠ODP=90°.∴四边形PEOD是矩形.∴∠EPO=90°.∴∠EPC=∠DPB.∴△PEC≌△PDB,∴PE=PD,即x=y.由解得由△PEC≌△PDB得EC=DB,即﹣=b﹣,解得b=>2符合题意.∴P的坐标为(,);(3)假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似.∵∠QAB=∠AOQ+∠AQO,∴∠QAB>∠AOQ,∠QAB>∠AQO.∴要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴.∵b>2,∴AB>OA,∴∠Q0A>∠ABQ.∴只能∠AOQ=∠AQB.此时∠OQB=90°,由QA⊥x轴知QA∥y轴.∴∠COQ=∠OQA.∴要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°.(I)当∠OCQ=90°时,△CQO≌△QOA.∴AQ=CO=.由AQ2=OA•AB得:()2=b﹣1.解得:b=8±4.∵b>2,∴b=8+4.∴点Q 的坐标是(1,2+). (II )当∠OQC=90°时,△QCO∽△QOA, ∴=,即OQ 2=OC•AQ.又OQ2=OA•OB, ∴OC•AQ=OA•OB.即•AQ=1×b.解得:AQ=4,此时b=17>2符合题意,∴点Q 的坐标是(1,4).∴综上可知,存在点Q (1,2+)或Q (1,4),使得△QCO,△QOA 和△QAB 中的任意两个三角形均相似.25.(1)证明:∵AB =AC ,AG ⊥BC∴BG GC =,BAG CAG ∠=∠∵90ABM ∠=∴90BAD BDA ∠+∠=∵90GBD BDA ∠+∠=∴BAD DBG ∠=∠∵BAG CAG ∠=∠∴CAG DBG ∠=∠∵EF ∥AD∴90AGC BCE ∠=∠=∴△BCE ∽△AGC(2)①∵AN ∥BM ,EF ∥AD∴四边形AFED 是平行四边形∴5AF DE ==∵EF ∥AD ,BG GC =∴5BD DE ==,12DG CE = 在Rt △ABD 中,5BD =,AD =325 ∴53cos 2553BD BDA DA ∠=== 在Rt △BDG 中,3cos 535DG BD BDG =∠=⨯= ∴6CE =,4BG GC == ∴1(6)41222ACEP x x =+⨯=+四边形S即122(0)y x x =+> ②∵AG ⊥BC ,BG GC =∴BP CP =∴当P 运动到点D 时,B E BP PE +、P 、三点共线时,最小, 此时△CPE 的周长CP PE CE =++最小 ∴253x AD ==∴50861221233y x =+=+=。

沪科版九年级数学上册期末综合检测试卷(有答案)(精)

沪科版九年级数学上册期末综合检测试卷(有答案)(精)

沪科版九年级数学上册期末综合检测试卷一、单选题(共10题;共30分)1.下列函数是二次函数的是( )A. y=2x+1B. y=-2x+1C. y=x2+2D. y=x-22.在Rt△ABC中,∠A=90°,AC=a,∠ACB=θ,那么下面各式正确的是()A. ;B. ;C. ;D. .3.已知二次函数(,当x=3时,y的值为()A.4B.-4C.3D.-34.在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线的解析式是()A. y=(x+2)2+2B. y=(x-2)2-2C. y=(x-2)2+2D. y=(x+2)2-25.如图,在△ABC中,EF//BC,,EF=3,则BC的长为A. 6B. 9C. 12D. 276.在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是边AC上的中线,AD与BE相交于点G,那么AG 的长为( )A. 1B. 2C. 3D. 无法确定.7.若点M、N是一次函数y1=﹣x+5与反比例函数y2=(k≠0,x>0)图象的两个交点,其中点M的横坐标为1,下列结论:①一次函数y1=﹣x+5的图象不经过第三象限;②点N的纵坐标为1;③若将一次函数y1=﹣x+5的图象向下平移1个单位,则与反比例函数y2=(k≠0,x>0)图象有且只有一个交点;④当1<x<4时,y1<y2.其中结论正确的个数是()A. 4个B. 3个C. 2个D. 1个8.抛物线y=5x2向右平移2个单位,再向上平移3个单位,得到的新抛物线的顶点坐标是()A. (2,3)B. (﹣2,3)C. (2,﹣3)D. (﹣2,﹣3)9.如图,半圆O的直径AB=4,与半圆O内切的动圆O1与AB切于点M,设⊙O1的半径为y,AM=x,则y关于x的函数关系式是()A. B. C. D.10.下表中所列x,y的数值是某二次函数y=ax2+bx+c图象上的点所对应的坐标,其中x1<x2<x3<x4<x5<x6<x7,根据表中所提供的信息,以下判断正确的是().①a>0;②9<m<16;③k≤9;④b2≤4a(c﹣k).A. ①②B. ③④C. ①②④D. ①③④二、填空题(共10题;共30分)11.抛物线的对称轴为________.12.已知二次函数,当x________时,随的增大而减小.13.抛物线与y轴的交点坐标是________.14.设函数与的图象交点坐标为(a,b),则的值为________.15.如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=16°31′,则飞机A与指挥台B的距离等于________(结果保留整数)(参考数据sin16°31′=0.28,cos16°31′=0.95,tan16°31′=0.30)16.如图,EF为△ABC的中位线,△ABC的周长为12cm,则△AEF的周长为________cm.17.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b________c(用“>”或“<”号填空)18.已知△ABC与△DEF相似且周长比为2:5,则△ABC与△DEF的相似比为________19.已知抛物线的顶点坐标为(1,﹣1),且经过原点(0,0),则该抛物线的解析式为________.20.如图,已知双曲线(x>0)经过矩形OABC的边AB、BC上的点F、E,其中CE= CB,AF= AB,且四边形OEBF的面积为2,则k的值为________.三、解答题(共8题;共60分)21.如图,在△ABC中,DE ∥BC,DF∥AB,求证:△ADE∽△DCF.22.如图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC改建为坡度1:0.5的迎水坡AB,已知AB=4米,则河床面的宽减少了多少米.(即求AC的长)23.已知反比例函数y=(k为常数,k≠1).(Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;(Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;(Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1>y2时,试比较x1与x2的大小.24.太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC 如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)(参考数据:sin18°≈0.31,cos18°≈0.95.tan18°≈0.32,sin36°≈0.59.cos36°≈0.81,tan36°≈0.73)25.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2= (m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n)(1)求反比例函数与一次函数的解析式;(2)连接OA、OB,求△AOB的面积;(3)直接写出当y1<y2时,自变量x的取值范围.26.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)【参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70】27.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,E为BC上一点,连接AE,作EF⊥AE交AB于F.(1)求证:△AGC∽△EFB.(2)除(1)中相似三角形,图中还有其它相似三角形吗?如果有,请把它们都写出来.28.如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km。

2019—2020年新沪科版九年级数学上册(第一学期)期末模拟测试卷及答案解析(试题).doc

2019—2020年新沪科版九年级数学上册(第一学期)期末模拟测试卷及答案解析(试题).doc

沪科版九年级上学期期末模拟测试数学试题(考试时间:100分钟,满分:150分)班级 姓名 得分一、选择题:(本大题共6题,每题4分,满分24分)1.在Rt ΔABC 中,∠C=90º,下列等式中不成立的是…………………( ) (A) B b a cot =; (B)A c a sin =; (C)Abc cos =; (D) c B a =cos . 2.把抛物线2)2(31--=x y 平移后得到231x y -=,平移的方法可以是…………( )(A) 沿x 轴向左平移2个单位; (B) 沿x 轴向右平移2个单位; (C) 沿y 轴向上平移2个单位; (D) 沿y 轴向下平移2个单位.3.如图1,在△ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC,且AD:DB=3:2,则D E CB A D E S S 四边形:∆为………………( )(A )3:2; (B )3:5; (C )9:25; (D )4.在下列条件中不能判定ΔABC ∽ΔDEF 的是………( ) (A) ∠D=40º,∠E=80º,∠A=60º,∠B=80º; (B) ∠A=∠D ,AB:AC=DF:EF ; (C)∠B=∠E=90º,BC:EF=AC:DF ;(D)AB=1,BC=2,CA=1.5,DE=6,EF=4,FD=8. 5. 如图2,在△ABC 中,D 是边BC 的中点,a BA =,b BC =, 那么DA 等于………………( )图2D图1B(A )b a -21; (B )a b 21-;(C )-21; (D )b a 21-. 6.已知抛物线()232y ax x a =++-,a 是常数且0a <,下列选项中可能是它大致图像(A ) (B )(C ) (D )二、填空题:(本大题共12题,每题4分,满分48分) 7.已知31=y x ,那么yx x += 8.计算: ()()23m n m n ++-= .9.如果两个相似三角形的周长的比等于1∶4,那么它们的面积的比等于 . 10.已知抛物线c bx ax y ++=2有最高点,那么该抛物线的开口方向是 . 11.在△ABC 中,∠C =90°,sinA =45,则tanB = . 12.在△ABC 中,点D 、E 分别在边AB 和BC 上,AD=2,DB=3,BC=10,要使DE ∥AC ,那么BE 必须等于 .13.已知点C 为线段AB 的黄金分割点,AC>BC ,且AC=1厘米,则AB= 厘米. 14.如图3,在Rt △ABC 中,∠ACB =90°,D 是Rt △ABC 的重心,已知CD =2,AC =3,则∠B= 度.15.如果二次函数的图像经过点(1,2),且在对称轴2=x 的右侧部分是上升的,那么这个二次函数的解析式可以是 (只要写出一个符合要求的解析式).图4FED CBA DB图516.1米长的标杆直立在水平地面上,它在阳光照射下影长0.8米,此时电视塔影长为100米,则电视塔的高度为 _________________.17.如图4,正方形ABCD 中,E 是CD 中点,BC FC 41=,则tan ∠EAF= __。

最新沪科版数学九级上学期期末模拟试卷及答案解析.doc

最新沪科版数学九级上学期期末模拟试卷及答案解析.doc

九年级数学(沪科版)上册期末模拟测试卷时间:120分钟 满分:150分姓名 得分一、选择题(本大题共10小题,每小题4分,共40分) 1.抛物线2)2(-=x y 的顶点坐标是( )A .(2,0)B .(-2,0)C .(0,2)D .(0,-2) 2.若(2,5)、(4,5)是抛物线c bx ax y ++=2上的两个点,则它的对称轴是( ) A.5=x B.1=x C.2=x D.3=x 3.抛物线y =x 2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为( )A. y =x 2+4x +5B. y =x 2+4x +3C. y =x 2-4x +3D.y =x 2-4x +54.已知△ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且c =3b ,则cosA等于( )A .31B .32C .332D .3105.在Rt △ABC 中,∠C =90°,若sinA =23,则tanB =( )A .53B .3C .5D .26.如图,锐角△ABC 的高CD 和BE 相交于点O ,图中与△ODB 相似的三角形有( ) A .4个 B .3个 C . 2个 D .1个 7. 如图,F 是平行四边形ABCD 对角线BD 上的点,BF ∶FD =1∶3,则BE ∶EC =( )A .1∶2B .1∶3C .2∶3D .1∶48.如图:点P 是△ABC 边AB 上一点(AB >AC ),下列条件不一定能使△ACP ∽△ABC 的是( )A .∠ACP =∠B B .∠APC =∠ACB C .AC AP AB AC =D .ABACBC PC =( 第6题图 ) ( 第7题图 ) ( 第8题图 )9.如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于O 点,若AOD S ∆∶OCD S ∆=1∶2,则AOD S ∆∶BOC S ∆=( )A .61 B .31 C .41D .6610.已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<; ②1a b c -+>; ③0abc >; ④420a b c -+<; ⑤1c a ->。

最新沪科版九级数学上册期末模拟检测题及答案解析.doc

最新沪科版九级数学上册期末模拟检测题及答案解析.doc

九年级(上)期末数学综合检测题一、选择题(40分)姓名:1、抛物线y=-3(x-1)2+2的顶点坐标是( )A 、(1,2)B 、(1,-2)C 、(-1,2)D 、(-1,-2) 2、在一幅长60cm ,宽40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是ycm 2,设金色纸边的宽度为xcm 2,那么y 关于x 的函数是( )A 、y=(60+2x)(40+2x)B 、y=(60+x)(40+x)C 、y=(60+2x)(40+x)D 、y=(60+x)(40+2x)3.某闭合电路中,电源的电压为定值,电流()()I R ΩA 与电流成反比例.图2表示的是该电路中电流I R 与电阻之间关系的图象,则用电阻R I 表示电流的函数解析式为( )A、2I R =B、3I R =C、6I R=D、6I R=-4、已知△ABC 与△A 1B 1C 1位似,△ABC与△A 2B 2C 2位似,则( ))A 、△A 1B 1C 1与△A 2B 2C 2全等 B 、△A 1B 1C 1与△A 2B 2C 2位似C 、△A 1B 1C 1与△A 2B 2C 2相似但不一定位似D 、△A 1B 1C 1与△A 2B 2C 2不相似5、△ABC 中,已知∠A=30°,AB=2,AC=4,则△ABC 的面积是( ) A 、34 B 、4 C 、32 D 、2 6.下列说法正确的是( )A 、对应边都成比例的多边形相似B 、对应角都相等的多边形相似C 、边数相同的正多边形相似D 、矩形都相似 7.如图,在ABCD 中,:3:2AB AD =,60ADB ∠=,那么cos A 的值等于( )8.如图4所示,二次函数2(0)y ax bx c a =++≠的图象经过点(12)-,,且与x 轴交点的横坐标分别为x x ,,其中121x -<<-,201x <<,下列结论: ①420a b c -+<; ②20a b -<;C图4③1a <-; ④284b a ac +>.其中正确的有( )A 、1个B 、2个C 、3个D 、4个9. 如图所示的二次函数y=ax 2+bx +c (a ≠0)的图象中,胡娇同学观察得出了下面四条信息:(1)(a ≠0)b 2-4ac >0;(2)c >1;(3)2a -b <0;(4)a +b +c <0.你认为其中错误的信息有………………………………………………………………【 】 A. 4个 B.3个 C. 2个 D.1个 10. 在桐城市第七届中学生田径运动会上,小翰在如图1所示的场地上匀速跑步,他从点A 出发,沿箭头所示的方向经过B 跑到点C ,共用时30秒.他的教练选择了一个固定的位置观察小翰的跑步过程.设小翰跑步的时间为t (单位:秒),他与教练距离为y (单位:米),表示y 与t 的函数关系的图象大致如图2,则这个固定位置可能是图1的………【 】 A .点MB .点NC .点PD .Q二、填空题(20分)11.直角坐标系中,已知点A(-1,2)、点B(5,4),x轴上一点P(0,x)x .满足PA+PB最短,则12.二次函数y=ax2+bx+c的图象上部分点的对应值如下表:则使y<0的x的取值范围是.13.如图,△ABC中,∠C=90°,AC+BC=7(AC>BC),AB=5,则tanB= .14.如图,一条河的两岸有一段平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆,小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为 米. 三、解答题15.(8分)如图,已知格点△ABC (顶点都在网格线交点处的三角形叫做格点三角形),请在图中画出△ABC 相似的格点△A 1B 1C 1,并使△A 1B 1C 1与△ABC 的相似等于3.16.(8分)给定抛物线:12212++=x x y . (1)试写出抛物线的开口方向、对称轴、顶点坐标; (2)画出抛物线的图象.17.(8分)身高1.6米的安心同学在某一时刻测得自己的影长为1.4米,此刻她想测量学校旗杆的高度.但当她马上测量旗杆的影长时,发现因旗杆靠近一幢建筑物,影子一部分落在地面上,一部分落在墙上(如图).她先测得留在墙上的影子CD=1.2米,又测地面部分的影长BC=3.5米,你能根据上述数据帮安心同学测出旗杆的高度吗?18.(8分)小明的笔记本上有一道二次函数的问题:“抛物线y=x2+bx+c的图象过点A(c, 0)且不过原点, ……, 求证:这个抛物线的对称轴为直线x=3”;题中省略号部分是一段被墨水污没了的内容, 无法辨认其中的文字.(1)根据现有信息, 你能否求出此二次函数的解析式?若能, 请求出;若不能, 请说明理由.(2)请你把这道题补充完整(本题可能有多个答案, 请至少写出2种可能).19.(10分)为保证交通安全,汽车驾驶员必须知道汽车刹车后的停止距离(开始刹车到车辆停止车辆行驶的距离)与汽车行驶速度(开始刹车时的速度)的关系,以便及时刹车.下表是某款车在平坦道路上路况良好时刹车后的停止距离与汽车行驶速度的对应值表:(1)设汽车刹车后的停止距离y (米)是关于汽车行驶速度x (千米/时)的函数,给出以下三个函数:①y ax b =+;②()0ky k x=≠;③2y ax bx =+,请选择恰当的函数来描述停止距离y (米)与汽车行驶速度x (千米/时)的关系,说明选择理由,并求出符合要求的函数的解析式;(2)根据你所选择的函数解析式,若汽车刹车后的停止距离为70米,求汽车行驶速度.20.(10分)如图,已知直线12y x =与双曲线(0)ky k x=>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线(0)ky k x=>上一点C 的纵坐标为8,求AOC △的面积;(3)过原点O 的另一条直线l 交双曲线(0)ky k x=>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,点P 的坐标.21.(12分)拉杆旅行箱为人们的出行带来了极大的方便,右图是一种拉杆旅行箱的侧面示意图,箱体ABCD 可视为矩形,其中AB 为50㎝,BC 为30㎝,点A 到地面的距离AE 为4㎝,旅行箱与水平面AF 成600角,求箱体的最高点C 到地面的距离。

2020-2021学年最新沪科版九年级数学上学期期末模拟达标检测题及答案解析-精编试题

2020-2021学年最新沪科版九年级数学上学期期末模拟达标检测题及答案解析-精编试题

沪科版九年级上学期 期末达标检测卷(150分,90分钟)一、选择题(每题4分,共40分)1.下列函数中,不是反比例函数的是( ) A .x =5y B .y =-k x (k ≠0) C .y =x -17 D .y =-1|x|2.反比例函数y =k -3x 图象的两个分支上,y 都随x 的增大而减小,则k 的取值范围是( )A .k <3B .k >0C .k >3D .k <03.已知x ∶y =5∶2,则下列各式中不正确的是( ) A.x +y y =72 B.x -y y =32 C.x x +y =57 D.x y -x =534.在Rt △ABC 中,∠C =90°,AB =10,AC =8,则sin A 的值是( ) A.45 B.35 C.34 D.435.如图,已知抛物线y =x 2+bx +c 的对称轴为直线x =2,点A 、B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为( )A .(2,3)B .(4,3)C .(3,3)D .(3,2)(第5题)(第6题)6.某气球内充满了一定质量的气体,当温度不变时,气体内气体的气压p(kPa)是气体体积V(m 3)的反比例函数,图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸,安全起见,气球的体积应( )A .不小于54 m 3B .小于54 m 3C .不小于45 m 3D .小于45m 37.如图,港口A 在观测站O 的正东方向,OA =4 km.某船从港口A 出发,沿北偏东15°方向航行一段距离后到达B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船航行的距离(即AB 的长)为( )A .4 kmB .2 3 kmC .2 2 kmD .(3+1) km(第7题)(第8题)(第10题)8.如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点B ′重合,若AB =2,BC =3,则△FCB ′与△B ′DG 的面积之比为( )A .9∶4B .3∶2C .4∶3D .16∶99.(2015·广东)如图,已知正△ABC 的边长为2.E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )(第9题)10.(中考·荆州)如图,已知边长为2的正三角形ABC 中,P 0是BC 边的中点,一束光线自P 0发出射到AC 上的点P 1后,依次反射到AB ,BC 上的点P 2和P 3(入射角等于反射角),且1<BP 3<32,则P 1C 长的取值范围是( )A .1<P 1C <76 B.56<P 1C <1 C.34<P 1C <45 D.76<P 1C <2二、填空题(每题5分,共20分)11.如图,上午10时小东测得某树的影长为2 m ,到了下午5时又测得该树的影长为8 m ,若两次日照的光线互相垂直,则树的高度约为________m.12.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x 上,点C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为________.(第11题)(第12题)(第13题)(第14题)13.如图,已知抛物线y =ax 2+bx +c 与x 轴交于点A(-1,0)和点B ,化简(a +c )2+(c -b )2的结果为:①c ;②b ;③a -b ;④a -b +2c.其中正确的有________(填写所有正确的序号)14.如图,在平面直角坐标系中,一次函数y =ax +b(a ≠0)的图象与反比例函数y =kx (k ≠0)的图象交于二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m),B(n ,-2),tan ∠BOC =25,则此一次函数的表达式为________________.三、解答题(15~19题每题10分,20题12分,21,22题每题14分,共90分) 15.计算:(1)2sin 30°+cos 60°-tan 60°·tan 30°+cos 245°.(2)|3-5|+2·cos 30°+⎝ ⎛⎭⎪⎫13-1+(9-3)0+ 416.如图所示,已知AE 为∠BAC 的平分线,ED ∥CA.若BE =6,EC =7,AC =12,求AD 的长.(第16题)17.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(4,8)、B(4,2)、C(8,6). (1)在第一象限内,画出以原点O 为位似中心,与△ABC 的相似比为12的△A 1B 1C 1,并写出A 1、C 1点的坐标;(2)如果△ABC 内部一点P 的坐标为(x ,y),写出点P 在△A 1B 1C 1内的对应点P 1的坐标.(第17题)18.如图,直线y =k 1x +b 与双曲线y =k 2x 相交于A(1,2)、B(m ,-1)两点.(1)求m 的值;(2)若A 1(x 1,y 1)、A 2(x 2,y 2)、A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系;(3)观察图象,请直接写出不等式k 1x +b >k 2x的解集.(第18题)19.(2014·北京)如图,在平面直角坐标系xOy 中,抛物线y =2x 2+mx +n 经过点A(0,-2),B(3,4).(1)求抛物线对应的表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G(包含A ,B 两点).若直线CD 与图象G 有公共点,结合函数图象,求点D 纵坐标t 的取值范围.(第19题)20.如图,某种新型导弹从地面发射点L处发射,在初始竖直加速飞行阶段,导弹上升的高度y(km)与飞行时间x(s)之间的表达式为y=118x2+16x (0≤x≤10).发射3 s后,导弹到达A点,此时位于与L同一水平面的R处雷达站测得A,R的距离是2 km,再过3 s后,导弹到达B点.(1)求发射点L与雷达站R之间的距离;(2)当导弹到达B点时,求雷达站测得的仰角(即∠BRL)的正切值.(第20题)21.(2015·资阳)北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A,B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin 25°≈0.4,cos 25°≈0.9,tan 25°≈0.5,3≈1.7)(第21题)22.如图,P、Q分别是正方形ABCD的边AB、BC上的点,且BP=BQ,过点B作PC 的垂线,垂足为点H,连接HD、HQ.(1)图中有________对相似三角形;(2)若正方形ABCD的边长为1,P为AB的三等分点,求△BHQ的面积;(3)求证:DH⊥HQ.(第22题)答案一、1.C2.C 点拨:因为反比例函数y =k -3x 图象的两个分支上,y 都随x 的增大而减小,所以k -3>0,解得k >3,所以选C.3.D 点拨:设x =5k ,y =2k ,则x +y y =5k +2k 2k =72,x -y y =5k -2k 2k =32,x x +y =5k5k +2k =57,x y -x =5k 2k -5k =-53,故选D. 4.B 点拨:在Rt △ABC 中,∠C =90°,AB =10,AC =8,由勾股定理得BC =6,则sin A =BC AB =610=35,故选B.5.B 点拨:由题意可知抛物线y =x 2+bx +c 的对称轴为直线x =2,点A 的坐标为(0,3),且AB 与x 轴平行,所以点B 的坐标为(4,3),故选B.6.C 点拨:设p =k V ,因为点(1.6,60)在双曲线上,故60=k1.6,所以k =96,所以当p =120 kPa 时,V =45 m 3,结合图象可知,为保证安全,应使气球的体积不小于45m 3.(第7题)7.C 点拨:如图所示,过点A 作AD ⊥OB ,垂足为点D.在Rt △AOD 中,由题意可知,∠AOD =30°,∠OAD =60°,所以AD =sin 30°×OA =12 ×4=2(km).因为∠DAB =90°+15°-60°=45°,所以△DAB 是等腰直角三角形,所以AB =2AD =2 2 km.8.D 点拨:设CF =x ,则BF =3-x ,由折叠得B ′F =BF =3-x.在Rt △FCB ′中,由勾股定理得CF 2+CB ′2=FB ′2,即x 2+12=(3-x)2,解得x =43.由已知可证Rt △FCB ′∽Rt △B ′DG ,所以S △FCB ′与S △B ′DG 之比为⎝ ⎛⎭⎪⎫43∶12=169.(第9题)9.D 点拨:在△ABC 中,∵AE =BF =CG =x ,∴BE =CF =AG =2-x. 又∵∠A =∠B =∠C , ∴△AEG ≌△BFE ≌△CGF. 如图,过点G 作GH ⊥AE , 在Rt △AGH 中,sin A =GHAG,∴GH =AG ·sin A =(2-x)·sin 60°=(2-x)×32=3-32x , ∴S △AEG =12·AE ·GH =12x ·⎝ ⎛⎭⎪⎫3-32x =-34x 2+32x.∵正△ABC 的边长为2, ∴S △ABC =12×2×2×sin 60°= 3.∴y =S △EFG =S △ABC -3S △AEG =3-3⎝ ⎛⎭⎪⎫-34x 2+32x =334x 2-332x +3, ∴y =334(x -1)2+34.又∵y 与x 是二次函数关系,∴y 关于x 的函数图象是以⎝ ⎛⎭⎪⎫1,34为顶点,且开口向上的抛物线,∴D 选项正确.10.A 点拨:易证得△AP 1P 2∽△CP 1P 0∽△BP 3P 2.∴BP 3BP 2=CP 1CP 0=AP 1AP 2.∴BP 3+AP 1BP 2+AP 2=CP 1CP 0,即BP 3+AC -CP 1AB =CP 1CP 0.∴BP 3+2-CP 12=CP 1,整理后得BP 3=3CP 1-2. ∵1<BP 3<32,∴1<3CP 1-2<32,解得1<CP 1<76.二、11.4(第12题)12.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD 、BEOC 均为矩形,由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1,由点B 在双曲线y =3x 上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.13.①④ 点拨:因为抛物线y =ax 2+bx +c 与x 轴交于点A(-1,0),所以a -b +c =0,即a +c =b.因为抛物线的开口向下,所以a <0.因为对称轴在y 轴的右侧,所以-b2a >0,所以b >0.因为抛物线与y 轴相交于y 轴的正半轴,所以c >0,又a +c =b >0,所以c >b.所以原式=b +(c -b)=c ,故①正确;原式=a +c +c -b =a -b +2c ,故④正确.14.y =-x +3三、15.解:(1)原式=2×12+12-3×33+⎝ ⎛⎭⎪⎫222=1+12-1+12=1. (2)原式=5-3+2×32+3+1+2=11. 16.解:∵AE 为∠BAC 的平分线,∴∠DAE =∠EAC. ∵ED ∥CA ,∴∠DEA =∠EAC ,∴∠DAE =∠DEA ,∴ED =AD. ∵ED ∥CA ,∴△BED ∽△BCA ,∴BE BC =ED AC 即66+7=ED12,∴ED =7213,∴AD =7213.17.解:(1)△A 1B 1C 1如图所示.(第17题)A 1点的坐标为(2,4),C 1点的坐标为(4,3).(2)P 1的坐标为⎝ ⎛⎭⎪⎫12x ,12y .18.解:(1)∵点A(1,2)与点B(m ,-1)在双曲线y =k 2x 上,∴-1×m =1×2,∴m =-2. (2)y 2<y 1<y 3. (3)x >1或-2<x <0.(第19题)19.分析:(1)把点A(0,-2),B(3,4)代入y =2x 2+mx +n 中,列出关于m ,n 的方程组,求出m ,n 的值,确定拋物线的表达式,然后求出它的对称轴.(2)观察图象G ,发现直线CD 经过图象的最低点即拋物线的顶点时t 的值最小,直线CD 经过图象G 的最高点B 时t 的值最大,分别求出这两种情况下t 的值,确定t 的取值范围.解:(1)∵y =2x 2+mx +n 经过点A(0,-2),B(3,4),代入得⎩⎨⎧n =-2,18+3m +n =4,∴⎩⎨⎧m =-4,n =-2.∴拋物线对应的表达式为y =2x 2-4x -2. 又∵y =2x 2-4x -2=2(x 2-2x -1)=2(x -1)2-4, ∴其对称轴为直线x =1.(2)由题意可知C(-3,-4).二次函数y =2x 2-4x -2的最小值为-4. 如图,由图象可以看出D 点纵坐标最小值即为-4, 最大值即直线BC 与对称轴交点的纵坐标. 设直线BC 对应的表达式为y =kx +b ,根据题意得⎩⎨⎧3k +b =4,-3k +b =-4,解得⎩⎨⎧b =0,k =43,所以直线BC 的表达式为y =43x.当x =1时,y =43.所以满足条件的点D 的纵坐标t 的取值范围是-4≤t ≤43.点拨:(1)将函数图象上点的坐标代入函数表达式,是求函数表达式中待定系数的常用方法.(2)求最值问题一般需借助二次函数的最大(小)值的求法进行求解.20.解:(1)当x =3时,AL =118×9+16×3=1(km),在直角三角形ALR 中,LR =AR 2-AL2=22-12=3(km).即发射点L 与雷达站R 之间的距离是 3 km.(2)当x =3+3=6时,BL =118×36+16×6=3(km),在直角三角形BLR 中,tan ∠BRL =BLLR =33= 3.点拨:本题属于数学建模问题,(1)在表达式中,把x =3代入,即可求得AL 的长,在直角三角形ALR 中,利用勾股定理即可求得LR 的长;(2)在表达式中,把x =6代入,即可求得BL 的长,在直角三角形BLR 中,根据正切函数的定义即可求解.(第21题)21.解:如图所示,过点C 作CD ⊥AB 交AB 延长线于点D ,设CD =x 米, 在Rt △ADC 中,∠DAC =25°,所以tan 25°=CDAD,所以AD =CD tan 25°≈CD0.5=2x.在Rt △BDC 中,∠DBC =60°,由tan 60°=CD BD =CD AD -AB ≈x2x -4,解得x ≈3.所以该生命迹象所在位置C 的深度约为3米. 22.(1)解:4(2)解:过点H 作HE ⊥BC 于点E ,∵正方形ABCD 的边长为1,P 为AB 的三等分点, ∴BP =BQ =13.在Rt △PBC 中,由勾股定理得PC =103. ∵BP ·BC =BH ·PC ,∴BH =BP ·BC PC =1010. 在Rt △BHC 中,由勾股定理得CH =31010.∵BH ·CH =HE ·BC ,∴HE =BH ·CH BC =310. ∴△BHQ 的面积为12EH ·BQ =12×310×13=120.(3)证明:∵∠PBC =∠CHB =90°,∠BCH =∠PCB , ∴Rt △PBC ∽Rt △BHC ,∴BH PB =HCBC.又∵BP =BQ ,BC =DC ,∴BH BQ =HC CD ,∴BH CH =BQCD.∵∠BHC =∠BCD =90°,∠BCH =∠BCH ,∴∠HBQ =∠HCD.在△HBQ 与△HCD 中,∵BH CH =BQCD ,∠HBQ =∠HCD ,∴△HBQ ∽△HCD ,∴∠BHQ =∠DHC. ∴∠BHQ +∠QHC =∠DHC +∠QHC. 又∵∠BHQ +∠QHC =90°,∴∠QHC +∠DHC =∠QHD =90°,即DH ⊥HQ.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沪科版九年级上学期期末测试题(本检测题满分:120分,时间:90分钟)一、选择题(每小题3分,共30分)1. 抛物线向右平移3个单位得到的抛物线对应的函数关系式为( ) A. B. C. D.2.如图,P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过P 作直线截△ABC ,使截得的三角形与△ABC 相似,满足这样条件的直线共有( ) A.1条 B.2条 C.3条 D.4条3.把二次函数213212---=x x y 的图象向上平移3个单位,再向右平移4个单位,则两次平移后的图象的函数关系式是( )A.7)1-(212+-=x yB.7)7(212++-=x y C.4)3(212++-=x yD.1)1-(212+-=x y 4.如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是( ) A.B. C. D.5.如图,△ABC 中,D 、E 分别为AC 、BC 边上的点, AB ∥DE ,CF 为AB 边上的中线,若AD =5,CD =3, DE =4,则BF 的长为( ) A.332B.316 C.310D.38 6. 二次函数无论k 取何值,其图象的顶点都在( ) A.直线上 B.直线上 C.x 轴上 D.y 轴上7.如图,在Rt △ABC 中,90C ∠=︒,AC=1 cm ,BC=2 cm ,点P 从点A 出发,以1 cm/s 的速度沿折线AC →CB →BA 运动,最终回到A 点.设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图象大致是( )8.如图,在Rt △ABC 中,∠C=90︒,, 点D 在AC 上,,则ADDC的值为()A.3B.22C.31-D.不能确定 9.如图,在矩形ABCD 中,DE ⊥AC 于点E ,设∠,且53,AB =4,则AD 的长为() A. 3B.316C.320D.51610.已知反比例函数k y x=的图象如图所示,则二次函数2224y kx x k =-+的图象大致为( )二、填空题(每小题3分,共24分)11.如图,在矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D '落在∠ABC 的平分线上时,DE 的长为.第10题图第8题图12.在Rt ABC △中,90A =∠,有一个锐角为60,6BC=,若点P 在直线AC 上(不与点A ,C 重合),且30ABP =∠,则CP 的长为_______.13.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,CD ⊥AB 于点D ,则△BCD 与△ABC 的周长之比为___________.14.在方格纸中,每个小方格的顶点为格点,以格点连线为边的三角形叫做格点三角形.在如图所示的5×5的方格(每个小方格的边长为1)纸中,作格点△ABC 与△OAB 相似(相似比不能为1),则点C 的坐标为. 15.将二次函数化为的形式,则.16.如图所示,某河堤的横断面是梯形,∥,迎水坡长13米,且迎水坡的坡度为125,则河堤的高为米.17.如图,在△ABC 中,若∠A =30°,∠B =45°,AC =22,则BC =.18.如图所示,已知二次函数的图象经过(-1,0)和(0,-1)两点,则化简代数式=.三、解答题(共66分)19.(9分)计算: (1);(2)在Rt △ABC 中,∠,解这个三角形.20.(9分)如图,在Rt △ABC 中,∠90°,. 求证:△AEF ∽△CEA .21.(9分)如图,一艘海轮位于灯塔P 的北偏东65°方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处,这时,海轮所在的B 处距离灯塔P 有多远?(结果用非特殊角的三角函数及根式表示即可) 22.(9分)如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为60°,路基高度为5.8米,求路基下底宽(精确到0.1米).23.(10分)某产品每件成本10元,试销阶段产品的销售单价x (元/件)与产品的日销售量y (件)之间的关系如下表:第22题图x (元/件) 152030…y (件) 25 20 10 …若日销售量y 是销售单价x 的一次函数.(1)求日销售量y (件)与销售单价x (元/件)之间的函数关系式.(2)要使每日销售利润最大,产品的销售单价应定为多少元?此时,每日销售的利润是 多少?24.(10分)如图,在平面直角坐标系中,点A ,B 分别在x 轴、y 轴的正半轴上,OA=4,AB=5,点D 在反比例函数ky x =(k>0)的图象上,DA OA ⊥,点P 在y 轴负半轴上,OP=7. (1)求点B 的坐标和线段PB 的长;(2)当90PDB =∠时,求反比例函数的解析式. 25.(10分)已知:关于的方程(1)当取何值时,二次函数的对称轴是直线; (2)求证:取任何实数时,方程总有实数根.参考答案1.B 解析:()224412 1.2222m m m m m m m ⎛⎫-+÷+=⋅= ⎪---+⎝⎭2.A 解析:因为两码头相距千米,一船顺水航行需小时,逆水航行需小时,所以这艘船顺水航行的速度为时千米as ,逆水航行的速度为时千米b s.所以水流的速度为()().222121时千米逆水航行的速度顺水航行的速度⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=-b s a s b s a s 3.C 解析:方程两边同乘,得x x 233=-,解得 3=x .经检验:3=x 是原方程的解.所以原方程的解是3=x . 4.B 解析:由题意,得,解得.5.B 解析:因为122348431832===,,,14231,333== 所以只有与不是同类二次根式,所以不能与合并. 6.C 解析:由题意知,所以7.C 解析:∵ ,∴ ,,∴ .故选C . 8.C 解析:A.因为=5,所以本说法正确;B.因为±=±1,所以1是1的一个平方根,本说法正确;C.因为±=±=±4,所以本说法错误;D.因为,,所以本说法正确. 故选C .9.2--m 解析:.22)2)(2(2422422--=-+-=--=-+-m m m m m m m m m 10.3 解析:因为111x =-,所以,所以211x x +-- 11.2 解析:由一个正数的两个平方根互为相反数,知,所以 12.3,13解析:221232333,51216913.-=-=+== 13.解:++=.因为所以原式=-14.解:因为x 1y1所以 所以()23232431.2()22244x y xy x xy y xy xy xy x xy y x y xy xy xy xy -++--+-====-------15.解:设的速度为千米/时,则的速度为千米/时.根据题意,得方程.6020335050=-x x 解这个方程,得. 经检验是原方程的根. 所以.答:两人的速度分别为千米/时千米/时.16.解:()()()()12)(211112222+++++++=+++++=y x xy y x y x y x x y 原式().12)(222++++++-+=y x xy y x xy y x把124-=-=+xy y x ,代入,得.15341412282416-=+--+-+=原式17.解:.2)2()1(1244111222-=--⋅--=-+-÷⎪⎭⎫ ⎝⎛--a a a a a a a a a a a a 当1-=a 时,.31211=---=原式18.解:(1)2211= 1.22x x x x x x x x x x x x⎛⎫⎪⎝⎭-----÷∙=--- 19.解:(3)(3)(6)a a a a +---当1122a =+1222=+时,原式6 20.解:因为,所以,从而.所以)2004)(2004(1...)2)(2(1)1)(1(11++++++++++b a b a b a ab 200620051...431321211⨯++⨯+⨯+⨯=2006120051...41313121211-++-+-+-= .20062005200611=-= 21.解:不正确.理由:因为只有正数有平方根,负数是没有平方根的,所以520520--=--这一步是错误的. 注意bab a =的前提条件是. 正确的化简过程是:.24545545520520520==⨯=⨯===-- 22. 解:∵ 4<5<9,∴ 2<<3,∴ 7<5+<8,∴ =-2. 又∵ -2>->-3,∴ 5-2>5->5-3,∴ 2<5-<3,∴ , ∴23. 解:因为是的算术平方根,所以 又是的立方根,所以解得 所以,,所以.所以的平方根为 24.解:由题意可知,由于, 所以.25.解:(1)671+1(76)(76)(76)⨯-=+-=76-.(2)11(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)11111122334989999100+++⋅⋅⋅+++++++。

相关文档
最新文档