河海大学线性代数2013考前练习题
线性代数练习题(有答案)
《线性代数》 练习题一、选择题1、 设A ,B 是n 阶方阵,则必有 ……………………………………………( A )A 、|AB |=|BA | B 、2222)(B AB A B A ++=+C 、22))((B A B A B A -=-+D 、BA AB = 2、设A 是奇数阶反对称矩阵,则必有( B ) (A)、1=A (B)、0=A (C)、0≠A (D)、A 的值不确定3、向量组)0,1,1(,)9,0,3(-,)3,2,1(,)6,1,1(--的秩为____2 ________4、向量组)1,3,1,2(-,)4,5,2,4(-,)1,4,1,2(--的秩为______2__ ___.5、设A 是n m ⨯阶矩阵,r A r =)(,则齐次线性方程组O AX =的基础解系中包含解向量的个数为( C )(A)、r (B)、n (C)、r n - (D)、r m - 二、计算与证明题6、设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A , ⎪⎪⎪⎭⎫⎝⎛---=221021132B 求(1)32AB A -,(2).T B A6、解(1). A AB 23-2202313212120020122--⎛⎫⎛⎫ ⎪⎪=-- ⎪⎪ ⎪⎪---⎝⎭⎝⎭2202212020-⎛⎫⎪--- ⎪ ⎪-⎝⎭2223186240-⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭2202212020-⎛⎫ ⎪--- ⎪ ⎪-⎝⎭210612622680-⎛⎫ ⎪=- ⎪ ⎪--⎝⎭(2). 220231231212120120020122122T A B ---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=--= ⎪⎪ ⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭222186240-⎛⎫⎪=-- ⎪ ⎪--⎝⎭7、设A ,B 是n 阶方阵满足AB B A =+,证明:E A -可逆. 7、解、1()A E B E --=-8、设方阵A 满足0332=--E A A ,证明:A 可逆,并求1-A .8、解、由2330A A E --=有A (3A E -)=3E ,于是,A [21(3A E -)]=E ,所以A 可逆,且11(3)3A A E -=-.9、计算行列式:1014300211321221---=D9、69D =-.10、计算行列式D =4232002005250230---- 10、解:D =423200200525230----0205252304--=55208---=80-=11、计算n 阶行列式abbb b a bb b a D =11、1[(1)]()n D a n b a b -=+--。
线性代数大学试题及答案
线性代数大学试题及答案一、选择题(每题2分,共20分)1. 向量空间的基是该空间的一组向量,它们满足以下哪些条件?A. 线性无关B. 向量空间中的任何向量都可以由基向量线性组合得到C. 向量空间中的任何向量都可以由基向量线性表示D. 所有选项答案:D2. 矩阵A的秩是指:A. A的行向量组的秩B. A的列向量组的秩C. A的转置矩阵的秩D. 所有选项答案:D3. 下列哪个矩阵是可逆的?A. 零矩阵B. 任何2x2的对角矩阵,对角线上的元素不全为零C. 任何3x3的单位矩阵D. 任何4x4的对称矩阵答案:B4. 线性变换可以用矩阵表示,当且仅当:A. 该变换是线性的B. 该变换是可逆的C. 变换的基向量线性无关D. 变换的输出空间是有限维的答案:C5. 特征值和特征向量是线性变换的基本概念,其中特征向量是指:A. 变换后长度不变的向量B. 变换后方向不变的向量C. 变换后保持不变的向量D. 变换后与原向量成比例的向量答案:D6. 矩阵的迹是:A. 矩阵主对角线上元素的和B. 矩阵的行列式的值C. 矩阵的秩D. 矩阵的逆的转置答案:A7. 以下哪个矩阵是正交矩阵?A. 单位矩阵B. 任何对称矩阵C. 任何对角矩阵D. 任何行列式为1的方阵答案:A8. 矩阵的行列式可以用于判断矩阵的:A. 可逆性B. 秩C. 特征值D. 迹答案:A9. 线性方程组有唯一解的条件是:A. 系数矩阵是可逆的B. 系数矩阵的秩等于增广矩阵的秩C. 方程的个数等于未知数的个数D. 所有选项答案:B10. 以下哪个矩阵是对称矩阵?A. 单位矩阵B. 对角矩阵C. 任何方阵的转置D. 任何方阵与其转置的乘积答案:D二、填空题(每题2分,共10分)1. 矩阵的______是矩阵中所有行(或列)向量生成的子空间的维数。
答案:秩2. 如果矩阵A和B可交换,即AB=BA,则称矩阵A和B是______的。
答案:可交换3. 一个向量空间的维数是指该空间的______的个数。
线性代数考试题及答案
线性代数考试题及答案**线性代数考试题及答案**一、单项选择题(每题3分,共30分)1. 矩阵A的行列式为0,则矩阵A()A. 可逆B. 不可逆C. 可交换D. 不可交换答案:B2. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D3. 向量组α1,α2,…,αs线性无关,则()A. s ≤ nB. s > nC. s ≥ nD. s < n答案:A4. 矩阵A的特征值是()A. 矩阵A的行最简形式B. 矩阵A的列最简形式C. 矩阵A的对角线元素D. 满足|A-λE|=0的λ值答案:D5. 矩阵A和B相等的充要条件是()A. A和B的对应元素相等B. A和B的行向量组相同C. A和B的列向量组相同D. A和B的秩相等答案:A6. 若矩阵A可逆,则下列说法正确的是()A. |A|≠0B. A的秩为nC. A的行列式为1D. A的转置矩阵可逆答案:AA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:C8. 向量组α1,α2,…,αn线性相关,则()A. 存在不全为0的k个向量,使得k个向量线性组合等于0B. 存在不全为0的n个向量,使得n个向量线性组合等于0C. 存在不全为0的n+1个向量,使得n+1个向量线性组合等于0D. 存在不全为0的m个向量,使得m个向量线性组合等于0,其中1≤m≤n答案:DA. r(A+B) = r(A) + r(B)B. r(AB) ≤ min{r(A), r(B)}C. r(A) = r(A^T)D. r(A) = r(A^-1)答案:B10. 若矩阵A和B均为n阶方阵,且AB=0,则()A. A=0或B=0B. A和B至少有一个为0C. A和B都为0D. A和B可能都不为0答案:D二、填空题(每题4分,共20分)1. 若矩阵A的行列式|A|=2,则矩阵A的伴随矩阵的行列式|adj(A)|= _ 。
线性代数试题及答案
线性代数试题及答案一、选择题(每题2分,共20分)1. 以下哪个矩阵是可逆的?A. [1 0; 0 0]B. [1 2; 3 4]C. [1 0; 0 1]D. [0 1; 1 0]2. 矩阵的秩是指什么?A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行或列的最大数目D. 矩阵的对角线元素的个数3. 线性方程组有唯一解的条件是什么?A. 方程个数等于未知数个数B. 方程组是齐次的C. 方程组的系数矩阵是可逆的D. 方程组的系数矩阵的秩等于增广矩阵的秩4. 向量空间的基具有什么性质?A. 基向量的数量必须为1B. 基向量必须是正交的C. 基向量必须是线性无关的D. 基向量必须是单位向量5. 特征值和特征向量的定义是什么?A. 对于矩阵A,如果存在非零向量v,使得Av=λv,则λ是A的特征值,v是A的特征向量B. 对于矩阵A,如果存在非零向量v,使得A^Tv=λv,则λ是A 的特征值,v是A的特征向量C. 对于矩阵A,如果存在非零向量v,使得A^-1v=λv,则λ是A 的特征值,v是A的特征向量D. 对于矩阵A,如果存在非零向量v,使得Av=v,则λ是A的特征值,v是A的特征向量6. 线性变换的矩阵表示是什么?A. 线性变换的逆矩阵B. 线性变换的转置矩阵C. 线性变换的雅可比矩阵D. 线性变换的对角矩阵7. 以下哪个不是线性代数中的基本概念?A. 向量B. 矩阵C. 行列式D. 微积分8. 什么是线性方程组的齐次解?A. 方程组的所有解B. 方程组的特解C. 方程组的零解D. 方程组的非平凡解9. 矩阵的迹是什么?A. 矩阵的对角线元素的和B. 矩阵的行列式C. 矩阵的秩D. 矩阵的逆10. 什么是正交矩阵?A. 矩阵的转置等于其逆矩阵B. 矩阵的所有行向量都是单位向量C. 矩阵的所有列向量都是单位向量D. 矩阵的所有行向量都是正交的答案:1-5 C C C C A;6-10 D D C A A二、简答题(每题10分,共20分)11. 请简述线性代数中的向量空间(Vector Space)的定义。
线性代数试题(完整试题与详细答案)
线性代数试题(完整试题与详细答案)一、单项选择题(本大题共10小题,每小题2分,共20分)1.行列式111101111011110------第二行第一列元素的代数余子式21A =( )A .-2B .-1C .1D .22.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .23.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B4.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a5.向量组)2(,,,21≥s s ααα 的秩不为零的充分必要条件是( ) A .s ααα,,,21 中没有线性相关的部分组 B .s ααα,,,21 中至少有一个非零向量 C .s ααα,,,21 全是非零向量D .s ααα,,,21 全是零向量6.设A 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 有非零解的充分必要条件是( )A .n r =)(AB .m r =)(AC .n r <)(AD .m r <)(A 7.已知3阶矩阵A 的特征值为-1,0,1,则下列矩阵中可逆的是( ) A .A B .AE - C .A E -- D .A E -2 8.下列矩阵中不是..初等矩阵的为( )A .⎪⎪⎪⎭⎫ ⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫⎝⎛100020001D .⎪⎪⎪⎭⎫⎝⎛1010110019.4元二次型4332412143212222),,,(x x x x x x x x x x x x f +++=的秩为( ) A .1B .2C .3D .410.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=001010100A ,则二次型Ax x T 的规范形为( )A .232221z z z ++ B .232221z z z ---C .232221z z z --D .232221z z z -+二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
线性代数复习题部分参考答案
线性代数复习题部分参考答案线性代数试题(一) 一、填空题1.行列式4100031000210001的值 242.设a b 为实数,则当a= 0 且b= 0 时,10100--a b b a =03.10111111)(-=x x f 中,x 的一次项系数是 -1 4.已知矩阵A 3×2 B 2×3 C 3×3,则B A ⋅为 3 × 3 矩阵 5.A 为n 阶方阵,且d A =,则A K ⋅=d K n ⋅ 二、选择题(4分/题) 1.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3.用一初等矩阵左乘一矩阵B ,等于对B 施行相应的 ① 变换 ①行变换 ②列变换 ③既不是行变换也不是列变换4.⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④25.向量组r ααα⋅⋅⋅21线性无关的充要条件是 ②①向量组中不含0向量 ②向量组的秩等于它所含向量的个数 ③向量组中任意r -1个向量无关 ④向量组中存在一个向量,它不能由其余向量表出 6.向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t7.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②设解 ③只有0解 ④有非0解8.当K= ④ 时,(2. 1. 0. 3)与(1. -1. 1. K )的内积为2 ①-1 ②1 ③23 ④329.已知A 2=A ,则A 的特征值是 ③①λ=0 ②λ=1 ③λ=0或=λ1 ④λ=0和λ=110.1111111111111111b a a +-+的值为 ④ ①1 ②0 ③a ④-a 2b线性代数试题(二) 一、填空题(4分/题)1.行列式21064153247308021的值为 0 2.二次型yz xy z y x yz x f 222)(2221-+-+=对应的实对称矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---110121011 3.10110111)(--=x x f 中x 的一次项系数是 -14.已知A 为3×3矩阵,且A =3,则A 2= 24二、选择题(4分/题) 1.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②行列式D 中对角线上元素全为0 ③行列式D 中有两行含有相同的公因子 ④D 中有一行与另一行元素对应成比例 2.设23⨯A 32⨯B 33⨯C ,则下列 ② 运算有意义 ①AC ②BC ③A+B ④AB -BC3. 向量组t βββ⋅⋅⋅21可由s ααα⋅⋅⋅21线性表出,且t βββ⋅⋅⋅21线性无关,则s 与t 的关系为 ④①s=t ②s>t ③s<t ④s≥t4.齐次线性方程组Ax=0是Ax=B 的导出组则 ③①Ax=0只有零解,Ax=B 有唯一解 ②Ax=0有非零解,Ax=B 有无穷多解 ③U 是Ax=0的通解,X0是Ax=B 的一个解,则X0+U 是Ax=B 的通解 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα线性代数试题(三) 一、填空题(4分/题)1.向量)1.0.0.1(=α )0.1.1.0(-=β,则2βα+= (2. 1. -1. 2)2.设aER bER ,则当a= 0 ,b= 0 时10100b a a b -=03.10111111)(-=x x f 中,x 的一次项系数是 1 4.已知A 为3×3矩阵,且1=A ,则A 2= 85.已知A3×3 B3×2 C2×4,则矩阵A.B.C 为 3 × 4 矩阵6.用一初等矩阵右乘矩阵C ,等价于对C 施行 初等列变换7.向量组γααα⋅⋅⋅21.可由向量组s βββ⋅⋅⋅21线性表示且γααα⋅⋅⋅21.线性无关则 s ≤γ 8.如果线性方程组Ax=B 有解则必有)(A γ=)~(A γ9.行列式1111141111311112的值为 6 10.当K= 2 时(1. 0. 0. 1)与(a. 1. 5. 3)的内积为5 二、选择题(4分/题)1.已知矩阵满足A 2=3A ,则A 的特征值是 ③ ①λ=1 ②λ=0 ③λ=3或λ=0 ④λ=3和λ=02.如果一个线性方程组有解,则只有唯一解的充要条件是它的导出组 ③ ①有解 ②没解 ③只有零解 ④有非0解3.矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡1101001100001100001000101的秩为 ①①5 ②4 ③3 ④2 4.下列各式中 ④ 的值为0①行列式D 中有两列对应元素之和为0 ②D 中对角线上元素全为0 ③D 中有两行含有相同的公因子 ④D 中有一行元素与另一行元素对应成比例 5.向量组)1.1.1(1=α )5.2.0(2=α )6.3.1(3=α是 ①①线性相关 ②线性无关 ③0321=++ααα ④02321=++ααα三、复习题及参考答案填空题1.若三阶行列式1231122331232226a a a b a b a b a c c c ---=,则 123123123a a ab b bc c c = 12 2.若方程组123123123000tx x x x tx x x x tx ++=⎧⎪++=⎨⎪++=⎩有非零解,则t=⎽⎽⎽⎽1⎽⎽⎽。
线性代数模试题试题库(带答案)
第一套线性代数模拟试题解答一、填空题(每小题4分,共24分)1、若12335544ija aa a a 是五阶行列式中带正号的一项,则,12i j ==。
令1,2i j ==,(12354)(13524)134τπ+=+=,取正号。
2、若将n 阶行列式D 的每一个元素添上负号得到新行列式D ,则D =(1)n D- 。
即行列式D 的每一行都有一个(-1)的公因子,所以D =(1)n D-。
3、设1101A ⎛⎫=⎪⎝⎭, 则100A =110001⎛⎫ ⎪⎝⎭。
23111112121113,,010*********AA ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭可得4、设A 为5 阶方阵,5A =,则5A =15n +。
由矩阵的行列式运算法则可知:1555nn A A +==。
5、A 为n 阶方阵,TAAE =且=+<E A A 则,0 0 。
由已知条件:211,1T T T AA E AA A A A E A A =⇒====⇒=±⇒=-,而 :0TT A E A AA A E A A A E A E A E +=+=+=+=-+⇒+=。
6、设三阶方阵2000023A x y ⎛⎫⎪= ⎪ ⎪⎝⎭可逆,则,x y应满足条件32x y ≠。
可逆,则行列式不等于零:20002(32)032023A xy x y x y ==⨯-≠⇒≠。
二、单项选择题(每小题4分,共24分) 7、设0333231232221131211≠=M a a a a a a a a a ,则行列式=---------232221333231131211222222222a a a a a a a a aA 。
A .M 8B .M 2C .M 2-D .M 8-由于 ()()111213111213111213331323331323321222321222321222331323322222228(1)8222a a a a a a a a a a a a a a a a a a M aa a a a a a a a ------=-=--=---8、设n 阶行列式n D ,则0n D =的必要条件是 D 。
线性代数测试题参考答案
3.解因为增广矩阵
所以一般解为 (其中 , 是自由未知量)
4.解因为系数矩阵
A=
所以当= 5时,方程组有非零解.且一般解为
(其中 是自由未知量)
5.解:当 =3时, ,方程组有解.
当 =3时,
一般解为 ,其中 , 为自由未知量.
线性代数测试题参考答.B 3.D 4.A 5.A 6.C
二、填空题
1. 2. 3.0 4. 5. 6.无解7.-1
三、计算题
1.解: =
2013年线性代数考研资料真题及答案解析
把这个实对称矩阵称为二次型的矩阵.并把它的秩称为二次型的秩, 如果二次型 f(x1,x2,…,xn)的矩阵为 A, X=(x1,x2,…,xn)T, 则 f(x1,x2,…,xn)= X TAX. 标准二次型的矩阵为对角矩阵. 规范二次型的矩阵为规范对角矩阵.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
② 求作正交矩阵 Q 和对角矩阵 ,使得 Q T AQ . 解:(1)A 的特征值为 0、0、3,属于 0 的特征向量: c1 1 c2 2 , c1 , c 2 不全为 0, 属于 3 的特征向量: c 3,c 0 。 (2) Q T AQ 即 Q 1 AQ ,对 2 作施密特正交化, 2, 1 , 1 先不动,修改
2007 年题
T 3 阶实对称矩阵 A 的特征值为 1,2,-2, 1 =(1,-1,1) 是 A 的属于 1 的特征向
量.记 B=A5-4A3+E. (1)验证 1 也是 B 的特征向量. (2)求 B 的特征值和特征向量. (3) 求 B.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
, ) 0 ,则说 和 正交. 如果 (
如果向量组 … n 中的每个都是单位向量,并且两两正交,则称它们为 2, 1, 单位正交向量组.
2. 正交矩阵 定义 n 阶矩阵 Q 称为正交矩阵,如果它是实矩阵,并且 QQT=E(即 Q-1=QT). 命题 Q 是正交矩阵Q 的列向量组是单位正交向量组. Q 的行向量组是单位正交向量组.
官方网址 北大、人大、中财、北外教授创办 集训营、一对一保分、视频、小班、少干、强军
标准二次型 规范二次型
线性代数考试题及答案
线性代数考试题及答案一、选择题(每题2分,共20分)1. 向量空间中,向量组的线性相关性指的是:A. 向量组中的向量可以相互表示B. 向量组中存在非零向量可以表示为其他向量的线性组合C. 向量组中的向量线性无关D. 向量组中的向量可以线性独立答案:B2. 矩阵A的秩是指:A. A的行向量组的极大线性无关组所含向量个数B. A的列向量组的极大线性无关组所含向量个数C. A的行数D. A的列数答案:B3. 对于矩阵A,若存在矩阵B,使得AB=BA=I,则B是A的:A. 逆矩阵B. 伴随矩阵C. 转置矩阵D. 正交矩阵答案:A4. 线性变换的特征值是指:A. 变换后向量的长度B. 变换后向量的方向C. 变换后向量与原向量的比值D. 变换后向量与原向量的夹角答案:C5. 一个矩阵的特征多项式是:A. 矩阵的行列式B. 矩阵的逆矩阵C. 矩阵的伴随矩阵D. 矩阵的迹答案:A6. 线性方程组有唯一解的条件是:A. 系数矩阵的秩等于增广矩阵的秩B. 系数矩阵的秩小于增广矩阵的秩C. 系数矩阵的秩大于增广矩阵的秩D. 系数矩阵的行列式不为零答案:D7. 矩阵的迹是:A. 矩阵的对角线元素之和B. 矩阵的行列式C. 矩阵的逆矩阵D. 矩阵的伴随矩阵答案:A8. 矩阵的伴随矩阵是:A. 矩阵的转置矩阵B. 矩阵的逆矩阵C. 矩阵的对角线元素的乘积D. 矩阵的行列式答案:B9. 向量空间的基是指:A. 向量空间中的一组向量B. 向量空间中线性无关的一组向量C. 向量空间中线性相关的一组向量D. 向量空间中任意一组向量答案:B10. 矩阵的转置是:A. 矩阵的行列互换B. 矩阵的行列互换C. 矩阵的行向量变成列向量D. 矩阵的列向量变成行向量答案:A二、填空题(每空2分,共20分)1. 一个向量空间的维数是指该空间的_________。
答案:基的向量个数2. 矩阵A的行列式表示为_________。
答案:det(A)3. 线性变换的矩阵表示是_________。
线性代数练习题及答案1
线性代数综合练习题(一)一、选择题1. 设A 、B 为n 阶矩阵,则下面必成立的是( )。
(A )B A B A +=+ (B )111)(---+=+B A B A (C )BA AB = (D )BA AB = 2. 设A 为n 阶矩阵,且0=kA ,则=--1)(A E ( )。
(A )A E + (B )12-++++k A A A E(C )12-----k AA A E (D )A E -3. 设向量组m ααα,,,21 的秩为3,则( )。
(A )任意三个向量线性无关 (B )m ααα,,,21 中无零向量 (C )任意四个向量线性相关 (D )任意两个向量线性无关 4. 线性方程组11⨯⨯⨯=m n n m b x A ,)0(≠b 有解的充要条件是( )。
(A ))|()(b A R A R = (B )m A R =)( (C )n A R =)( (D ))|()(b A R A R ≠5. n 阶矩阵A 与对角矩阵相似的充要条件是( )。
(A )A 的n 个特征值互不相同 (B )A 可逆(C )A 无零特征值 (D )A 有n 个线性无关的特征向量二、填空题1. 各列元素之和为0的n 阶行列式的值等于 。
2. 设三阶矩阵⎪⎪⎪⎭⎫ ⎝⎛=432A ,则=-1A 。
3. 设矩阵⎪⎭⎫⎝⎛=31211A ,⎪⎪⎪⎭⎫ ⎝⎛=321B ,则=AB ,=BA ,=k BA )( (k 为正整数)。
4. 设2)(43=⨯A R ,⎪⎪⎪⎭⎫ ⎝⎛=300220111P ,则=)(PA R 。
5. 设向量组321,,ααα线性无关,则向量组211ααβ+=,322ααβ+=,133ααβ+=线性 。
6. 设三阶可逆矩阵A 的特征值分别为2、3、5,则=A ,A 的伴随矩阵*A 的特征值为 。
7. 设实二次型3231212322213212222),,(x x x x x x kx x x x x x f +++++=为正定二次型,则参数k 的取值范围是 。
线性代数复习题
线性代数复习题(选择填空题)-D O C(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--线性代数复习题一、选择题练1、如果排列12345a a a a a 的逆序数为a ,则排列54321a a a a a 的逆序数为BA 、a -B 、10a -C 、10a -D 、2a -或2a +练2、如果排列12...n a a a 的逆序数为k ,则排列11...n n a a a -的逆序数为CA 、1k -B 、n k -C 、(1)2n n k --D 、2n k - 练3、若12335445i j a a a a a 是五阶行列式中带正号的一项,则j i ,的值为AA 、1=i 2=jB 、2=i 1=jC 、2=i 3=jD 、3=i 2=j4、下列各项中,为某五阶行列式中带有正号的项是___A_______A 、1544223153a a a a aB 、2132411554a a a a aC 、3125431452a a a a aD 、1344324155a a a a a练5、行列式103100204199200395301300600等于___A______A 、2000B 、2000-C 、1000D 、1000-练6、行列式0001002003004000等于AA 、24B 、24-C 、0D 、12练7、根据行列式定义计算212111()321111xx x f x x x -=中4x 的系数是BA 、1B 、2、C 、2-D 、1-练8、利用克莱姆法则判断齐次线性方程组解的个数时,当系数行列式0D =时,说明方程解的个数是CA 、1B 、0C 、无穷多个D 、无法判断练9、如果能够利用克莱姆法则求解线性方程组时,若方程的个数是m 个,未知数的个数是n 个,则CA 、n m <B 、n m >C 、m n =D 、无法比较和m n10、已知齐次线性方程组1231231230020ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩有非零解,则,a b 满足DA 、1a b +=B 、1a b -=C 、01a b ==或D 、10a b ==或练11、若齐次线性方程组000x y z x y z x y z λλλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=BA 、1或1-B 、1或2-C 、1-或2-D 、1-或212、若304050x ky z y z kx y z ++=⎧⎪+=⎨⎪--=⎩有非零解,则k =___B_____A 、0k =或2k =B 、1k =或3k =C 、2k =或2k =-D 、2k =-13、设A 是三阶方阵,且4A =,则212A ⎛⎫= ⎪⎝⎭B A 、4B 、14C 、1D 、2 练14、设X 是n 维列向量,则X λ=DA 、X λB 、X λC 、n X λD 、n X λ练15、设A 为三阶方阵,2λ=-,3A =,则A λ=___B_______A 、24B 、24-C 、6D 、6-练16、设C B A ,,都是n 阶方阵,且E CA BC AB ===,则222A B C ++=AA 、E 3B 、E 2C 、ED 、O17、设,A B 都是(2n n ≥)阶方阵,则必有__B_____A 、AB A B +=+B 、AB BA =C 、AB BA =D 、A B B A -=-练18、设B A 、都是n 阶方阵,λ为常数,则下列正确的是___D_______A 、()///AB A B =B 、()111AB A B ---=C 、/A A λλ=D 、B A AB =练19、若n 阶方阵A 、B 都可逆,AXB C =,则X =CA 、11ABC --B 、11CB A --C 、11A CB --D 、11B CA --练20、设A 是()2≥n n 阶方阵,A *是A 的伴随矩阵,则A A *=_____D_____A 、2AB 、 n AC 、2 n AD 、21 n A -练21、设A 是()2n n >阶方阵,A *是A 的伴随矩阵,则正确的是CA 、AA A *=B 、/1A A A*=C 、0A ≠,则0A *≠D 、若()1R A =,则()1R A *= 练22、设A 是n ()2n ≥阶方阵,B 是A 经过若干次初等变换后得到的矩阵,则DA 、AB =B 、A B ≠C 、若0A >则0B >D 、若0A =,则一定有0B = 练23、以下的运算中,能同时利用初等行变换和初等列变换求解的是AA 、计算行列式的值B 、求逆矩阵C 、解线性方程组D 、以上都不是练24、设A 是n 阶方阵,B 是m 阶方阵,⎪⎪⎭⎫ ⎝⎛=00B A C ,则C 等于__D_____ A 、B A B 、B A -C 、()B A n m 1-+D 、()B A mn 1-练25、设矩阵A 是m n ⨯矩阵,矩阵C 是n 阶可逆矩阵,秩()R A r =,矩阵B AC =,且()1R B r =,则____C______A 、1r r <B 、1r r >C 、1r r =D 、无法判断练26、下列矩阵中,不是初等矩阵的是BA 、⎪⎪⎪⎭⎫ ⎝⎛001010100B 、⎪⎪⎪⎭⎫ ⎝⎛010000001C 、⎪⎪⎪⎭⎫ ⎝⎛100020001D 、⎪⎪⎪⎭⎫ ⎝⎛-100210001练27、向量组12,,...,n ααα线性相关的充要条件为___C_____A 、12,,...,n ααα中有一个零向量B 、12,,...,n ααα中任意两个向量成比例C 、12,,...,n ααα中至少有一个向量是其余向量的线性组合D 、12,,...,n ααα中任意一个向量都是其余向量的线性组合练28、n 维向量组12,,...,s ααα()n s ≤≤3线性无关的充要条件为_____C________A 、12,,...,s ααα中任何两个向量都线性无关B 、存在不全为0的数12,,...,s k k k ,使得1122...0s s k k k ααα+++≠C 、12,,...,s ααα中任何一个向量都不能由其余向量的线性表示D 、12,,...,s ααα中存在一个向量不能由其余向量的线性表示29、设向量组123,,ααα线性无关,则下列向量组线性相关的是AA 、12αα-,23αα-,31αα-B 、12αα+,23αα+,31αα+C 、1α,12αα+,123ααα++D 、122αα+,232αα+,312αα+练30、设向量组123,,ααα线性无关,则下列向量组线性相关的是AA 、12αα-,23αα-,31αα-B 、12αα+,23αα+,31αα+C 、122αα-,232αα-,312αα-D 、122αα+,232αα+,312αα+练31、设向量组123,,ααα线性无关,则下列向量组线性相关的是AA 、12αα-,23αα-,31αα-B 、12αα+,23αα+,31αα+C 、1α,12αα+,123ααα++D 、12αα+,232αα+,313αα+练32、已知12,ββ是方程组Ax b =的两个不同的解,12,αα是方程组0Ax =的基础解系,12,k k 是任意常数,则Ax b =的通解为____B________A 、()12112122k k -++ββαα+αB 、()12112122k k ++-+ββααα C 、()12112122k k -+++ββαββD 、()12112122k k ++++ββαββ 33、若A 是正交阵,则下列各式中D 是错误的 A 、E A A ='B 、E A A ='C 、1-='A A D 、A A ='练34、下列矩阵中哪个是正交矩阵DA 、⎪⎪⎪⎪⎭⎫ ⎝⎛-212221B 、⎪⎪⎭⎫ ⎝⎛-0111C 、⎪⎪⎪⎪⎭⎫ ⎝⎛53545453D 、⎪⎪⎪⎪⎭⎫ ⎝⎛-53545453 35、已知三阶矩阵A 有特征值1,1,2-,则下列矩阵中可逆的是DA、E A -B 、E A +C 、2E A -D 、2E A +练36、设⎪⎪⎪⎭⎫ ⎝⎛-=10021421x A ,且A 的特征值为1,2,3,则=x __B_______A 、5B 、4C 、3D 、1-练37、n 阶方阵A 可逆的充要条件是BA 、A 的特征值全为0B 、A 的特征值全不为0C 、A 至少有一个特征值不为0D 、A 的特征值全为0或1练38、设2λ=是可逆矩阵A 的特征值,则矩阵123A -⎛⎫ ⎪⎝⎭有一个特征值等于______C______A 、43B 、12C 、34D 、14练39、n 阶方阵A 有n 个不同的特征值是与对角矩阵相似的BA 、充分必要条件B 、充分非必要条件C 、必要非充分条件D 、既非充分又非必要条件练40、n 阶方阵A 与对角矩阵相似,则DA 、方阵A 有n 个不都相等的特征值B 、()r A n =C 、方阵A 一定是对称阵D 、方阵A 有n 个线性无关的特征向量41、、设三阶实对称矩阵A 的特征值为122λλ==,38λ=,对应于122λλ==的特征向量是1110x -⎛⎫⎪= ⎪ ⎪⎝⎭,2101x -⎛⎫ ⎪= ⎪ ⎪⎝⎭,则对应于38λ=的特征向量是C A 、12,x x 中的一个B 、()/123C 、()/111D 、相交但不垂直练42、设A 为三阶矩阵,1231,1,2λλλ==-=为A 的3个特征值,对应的特征向量依次为123,,ααα,令321(,2,3)P ααα=,则1P AP -=DA 、100010002⎛⎫ ⎪- ⎪ ⎪⎝⎭B 、200020003⎛⎫ ⎪- ⎪ ⎪⎝⎭C 、100020006⎛⎫ ⎪- ⎪ ⎪⎝⎭D 、200010001⎛⎫ ⎪- ⎪ ⎪⎝⎭ 练43、实二次型()2322212132132,,x tx x x x x x x f +++=,当=t B ,其秩为2 A 、0B 、1C 、2D 、3二、填空题练1、排列2,6,3,5,1,9,8,4,7的逆序数是13练2、当i =8,j =3时,1274569i j 是偶排列练3、带负号且包含因子23a 和31a 的项为14233142a a a a -练4、带正号且包含因子23a 和31a 的项为14233241a a a a5、在五阶行列式中,项1231544325a a a a a 的符号应取正号练6、在六阶行列式中,项132432455661a a a a a a 的符号应取负号练7、在函数xx x x x x f 21112)(---=中,3x 的系数为28、311()13x f x x x x x -=--中,3x 的系数为3-练9、211203101311112x x ----的展开式中2x 的系数为7 练10、设111213212223313233a a a A a a a a a a =,且3A =,则1112132122233132332222222222a a a A a a a a a a ==24 练11、设五阶行列式3A =,先交换第1,5两行,再转置,最后用2乘以所有元素,其结果为96-练12、设行列式010200003D =,ij A 是D 中元素ij a 的代数余子式,则313233A A A ++=13、计算()40132573⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭=()5- 14、222()2A B A AB B +=++的充要条件为AB BA =练15、22()()A B A B A B -=+-的充分必要条件是AB BA =16、设3318A ⨯=,则()22A =1 17、设442A ⨯=,552B ⨯=-,则A B -=6418、设A 是3阶矩阵,2A =,1A -为A 的逆矩阵,则12A -的值为______4________练19、设A 是3阶矩阵,12A =,则1(3)A A -*-=1108- 练20、已知为A 四阶方阵,A *为A 的伴随矩阵,且3A =,则1143A A *--=_27__ 练21、设A 是3阶矩阵,且9A *=,则1A -=13± 练22、设A 是三阶方阵,且13A -=,则2A =83练23、设,A B 都是n 阶方阵,且2A =,3B =-,则12A B*-=2123n -- 24、设111111111111k k A k k ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,且秩()3r A =,则k =3- 练25、A 为n 阶反对称矩阵,则/A A +=0练26、设矩阵A 满足240A A E +-=,其中E 为三阶单位矩阵,则1()A E --=1(2)2A E + 练27、设矩阵A 满足220A A E --=,其中E 为三阶单位矩阵,则1A -=1()2A E - 28、设是3阶矩阵,且AB E =,200010003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则B =10020101003B ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭29、设33100111100011111011001222001⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪---= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭1145520228⎛⎫ ⎪ ⎪ ⎪⎝⎭30、已知向量()()()1231,1,0,0,1,1,3,4,0ααα===,则12αα-=_()1,0,1-_______31、已知向量()()()1231,1,0,0,1,1,3,4,0ααα===,则12332ααα+-=__()0,1,2__32、已知1233()2()5()αααααα-++=+,其中()12,5,1,3,α=()210,1,5,10,α=()34,1,1,1,α=-则α=_()6,12,18,24__________练33、已知)9,7,5,3(=α,()1,5,2,0β=-,x 满足βα=+x 32,则=x ()17,5,12,183- 34、设向量()(2,0,1,3),(1,7,4,2),0,1,0,1=-=-=αβγ,则23+-=αβγ(5,4,2,1)35、设向量()(2,0,1,3),(1,7,4,2),0,1,0,1=-=-=αβγ,若有x ,满足3520x -++=αβγ,则x =57,1,,822⎛⎫-- ⎪⎝⎭练36、当=k 8-时)5,,1(k =β能由1(1,3,2)α=-,2(2,1,1)α=-线性表示37、设有向量组()13,2,5α=,()22,4,7α=,()35,6,αλ=,()1,3,5β=。
线性代数考试题库及答案(一)
线性代数考试题库及答案(一)1.下面是线性代数考试题库及答案的第一部分专项同步练第一章行列式的格式正确版本:一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
3.n阶行列式的展开式中含a11a12的项共有(D) (n-1)。
项。
4.1/1 = (D) 2.5.1/(-1) = (B) -1.6.在函数f(x) = (2x-1)/(2-x^3)中x^3项的系数是(A) 0.7.若D = |a11 a12 a13| |a21 a22 a23| |1 a32 a33|,则D1 =2a11a33 - 4a13a31 - 2a12a32.8.若 |a11 a12| |a21 a22| = a,则 |a12 a11| |ka22 ka21| = (-k^2)a。
9.已知4阶行列式中第1行元依次是-4.0.1.3,第3行元的余子式依次为-2.5.1.x,则x = 3.10.若D = |4 3 1 5| |-1 3 4 1| |2 -1 6 3| |-2 1 3 4|,则D中第一行元的代数余子式的和为(B) -2.11.若D = |-1 5| |3 -2|,则D = (A) -1.12.k等于下列选项中哪个值时,齐次线性方程组x1 + kx2 + x3 = 0,kx1 + x2 + x3 = 0,x2 + x3 = 0有非零解。
(B) -2.二、填空题1.2n阶排列24…(2n)13…(2n-1)的逆序数是n(2n-1)。
2.在六阶行列式中项a32a41a25a13a56a64的符号为-。
改写后的文章:线性代数考试题库及答案第一部分专项同步练第一章行列式一、单项选择题1.下列排列是5阶偶排列的是(A) (B) (C) (D) .2.如果n阶排列j1j2…jn的逆序数是k,则排列jn…j2j1的逆序数是(B) n-k。
大学线性代数练习试题及标准答案
大学线性代数练习试题及答案————————————————————————————————作者:————————————————————————————————日期:23第一部分选择题(共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。
错选或未选均无分。
1.设行列式a a a a 11122122=m ,aa a a 13112321=n ,则行列式aa a a a a 111213212223++等于( )A. m+nB. -(m+n)C. n -mD. m -n2.设矩阵A =100020003⎛⎝ ⎫⎭⎪⎪⎪,则A -1等于( )A. 13000120001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B. 10001200013⎛⎝ ⎫⎭⎪⎪⎪⎪⎪⎪ C. 130********⎛⎝⎫⎭⎪⎪⎪⎪⎪D. 12000130001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪ 3.设矩阵A =312101214---⎛⎝ ⎫⎭⎪⎪⎪,A *是A 的伴随矩阵,则A *中位于(1,2)的元素是( )A. –6B. 6C. 2D. –2 4.设A 是方阵,如有矩阵关系式AB =AC ,则必有( ) A. A =0 B. B ≠C 时A =0 C. A ≠0时B =C D. |A |≠0时B =C 5.已知3×4矩阵A 的行向量组线性无关,则秩(A T )等于( ) A. 1 B. 2 C. 3 D. 46.设两个向量组α1,α2,…,αs 和β1,β2,…,βs 均线性相关,则( )A.有不全为0的数λ1,λ2,…,λs 使λ1α1+λ2α2+…+λs αs =0和λ1β1+λ2β2+…λs βs =0B.有不全为0的数λ1,λ2,…,λs 使λ1(α1+β1)+λ2(α2+β2)+…+λs (αs +βs )=0C.有不全为0的数λ1,λ2,…,λs 使λ1(α1-β1)+λ2(α2-β2)+…+λs (αs -βs )=0D.有不全为0的数λ1,λ2,…,λs 和不全为0的数μ1,μ2,…,μs 使λ1α1+λ2α2+…+λs αs =0和μ1β1+μ2β2+…+μs βs =0 7.设矩阵A 的秩为r ,则A 中( ) A.所有r -1阶子式都不为0 B.所有r -1阶子式全为0 C.至少有一个r 阶子式不等于0 D.所有r 阶子式都不为08.设Ax=b 是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( ) A.η1+η2是Ax=0的一个解B.12η1+12η2是Ax=b 的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b 的一个解9.设n 阶方阵A 不可逆,则必有( )4A.秩(A )<nB.秩(A )=n -1C.A=0D.方程组Ax=0只有零解 10.设A 是一个n(≥3)阶方阵,下列陈述中正确的是( )A.如存在数λ和向量α使A α=λα,则α是A 的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE -A )α=0,则λ是A 的特征值C.A 的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A 的3个互不相同的特征值,α1,α2,α3依次是A 的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A 的特征方程的3重根,A 的属于λ0的线性无关的特征向量的个数为k ,则必有( ) A. k ≤3 B. k<3 C. k=3 D. k>3 12.设A 是正交矩阵,则下列结论错误的是( ) A.|A|2必为1 B.|A |必为1 C.A -1=A T D.A 的行(列)向量组是正交单位向量组 13.设A 是实对称矩阵,C 是实可逆矩阵,B =C T AC .则( ) A.A 与B 相似 B. A 与B 不等价C. A 与B 有相同的特征值D. A 与B 合同14.下列矩阵中是正定矩阵的为( ) A.2334⎛⎝⎫⎭⎪ B.3426⎛⎝⎫⎭⎪ C.100023035--⎛⎝ ⎫⎭⎪⎪⎪D.111120102⎛⎝ ⎫⎭⎪⎪⎪ 第二部分非选择题(共72分)二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
大学线性代数考试题(四套)
第一章行列式(一)一、填空1. 二阶行列式2a ab bb=22a b ab -.2. 四阶行列式1000120012301234= 24 .3. 设311231012D -=--,则元素332a =的代数余子式33A = -11 . 二、选择1. 四阶行列式112233440000000a b a b b a b a 的值等于 ( D ). (A )12341234a a a a b b b b - (B ) 12341234a a a a b b b b +(C )12123434()()a a b b a a b b -- (D )23231414()()a a b b a a b b --2. 若行列式125132025x-=,则x =( D ). (A )-3 (B )-2 (C )2 (D )3 3. 若k =( A ), 则21200111kk=-.(A )-2 (B )2 (C )0 (D )-3三、计算1. 000x yxz y z-=--(对角线法则) 2. 12311234412345000000000000000b b b a b b b b b a a a a a = (按第一列展开) 3.(1)(2)20000100002000000(1)!02000010000000n n n n n n--=---(二)一、填空1. 若||n ij D a a ==,则||n ij D a =-=(1)na -.2. 若1231231238a a a b b b c c c =,则123123123222222222a a a b b b c c c ------=--- -64 . 3. 设a bc d c b d a D dbc a a b dc=,则14243444A A A A +++= 0 .二、选择1. 设111212122212n n n n nna a a a a a D a a a =,则(1)1(1)(1)(1)(1)111(1)11nnn n n n n n n n nn a a a a a a D a a a ------==( A ).(A ) D (B ) D - (C ) (1)nD - (D ) 2D 2. 行列式0D =的必要条件是( B ). (A )D 中有两行(列)元素对应成比例(B )D 中至少有一行元素可用行列式的性质化为零 (C )D 中有一行元素全为零(D )D 中任意一行元素都可用行列式的性质化为零3. 在函数211()12xf x xx x x-=--中,3x 的系数是( A ). (A )-2 (B )1 (C )-1 (D )2三、计算1.41241202010520117=2.2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++3. n x a a axa D a ax=1()[(1)].n x a x n a -=-+-(三)一、填空1. 齐次线性方程组123123123000x x x x x x x x x λλλ++=⎧⎪++=⎨⎪++=⎩有非零解的充分必要条件是λ= 1或-2 .2. 若线性方程组x y ax y bλλ-=⎧⎨-+=⎩有唯一解,则λ必须满足1≠±.3. 齐次线性方程组1231231232202405820x x x x x x x x x +-=⎧⎪-+=⎨⎪+-=⎩的解的情况是 仅有零解 .(填仅有零解或有非零解)二、选择1. 若齐次线性方程组有非零解,则它的系数行列式D ( A ).(A )必为零 (B )必不为零(C )必为1 (D )可为任意数2. 设非齐次线性方程组123123123238223105ax x x ax x x x x bx ++=⎧⎪++=⎨⎪++=⎩有唯一解,则,a b 必须满足( D ).(A ) 0a ≠且0b ≠ (B )32a ≠且0b ≠ (C )32a ≠且32b ≠ (D )0a ≠且32b ≠3. 当k ≠( C )时,齐次线性方程组1312312302020kx x x kx x kx x x +=⎧⎪++=⎨⎪-+=⎩只有零解.(A )0 (B )-1 (C )2 (D )-2三、计算1. 若齐次线性方程组121232302200ax x x ax x x ax +=⎧⎪++=⎨⎪+=⎩有非零解,求a 的值.解:方程组有非零解,则系数行列式21022(4)001a a a a a=-=,则 0a =或2±.2.1111(1)()(1)()1111n n n n n n n a a a n a a a n D a a a n ---+----=--,提示:利用范德蒙德行列式的结果.解 :将行列式上下左右翻转,即为范德蒙德行列式.11111()(1)n nnna n a n a D a n a n a +--+=--+11().j i n i j ≤<≤+=-∏3. 问λ,μ取何值时,齐次线性方程组1231 2.31230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?解: 方程组的系数行列式必须为01111121D λμμ=32r r -=====1111(1)0λμμλμ=--故只有当0μ=或1λ=时,方程组才可能有非零解.第二章 矩阵(一)一.填空1. 设123a a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,()123b b b =B ,则=AB 1112212223313233a b a b a ba b a b a b a b a b a b ⎛⎫⎪⎪ ⎪⎝⎭;=BA 112233()a b a b a b ++;T ()=AB 112131122232132333a b a b a b a b a b a b a b a b a b ⎛⎫⎪⎪ ⎪⎝⎭;T T =A B 112233()a b a b a b ++;T T =B A 112131122232132333a b a b a b a b a b a b a b a b a b ⎛⎫⎪ ⎪ ⎪⎝⎭. 2. 设101020101⎛⎫⎪= ⎪ ⎪⎝⎭A ,而2n ≥为正整数,则12n n --A A =O .3. 设T11(1,,),(1,1,1,)23==αβ,则()n =βα1111231111()162311123n -⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭. 二.选择1. 设,A B 都是n 阶方阵且=AB O ,则( B )(A ) =B O (B )||0=A 或||0=B (C ) =BA O (D )222()-=+A B A B2. 以下结论正确的是( C )(A )若方阵A 的行列式等于0,则=A O (B )若2=A O ,则=A O(C )若A 为对称矩阵,则2A 也为对称矩阵(D )对任意的同阶方阵,A B ,有22()()+-=-A B A B A B 3. 由,m n s t ⨯⨯A B 做乘积TTA B ,则必须满足( B )(A )m n = (B )m t = (C) n s = (D )n t =三.计算与证明1. 设111111111⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,123124051⎛⎫ ⎪=-- ⎪ ⎪⎝⎭B ,求32-AB A 及TA B .解: 32-AB A 1111233111124111051⎛⎫⎛⎫ ⎪⎪=--- ⎪⎪ ⎪⎪-⎝⎭⎝⎭1112111111⎛⎫ ⎪-- ⎪ ⎪-⎝⎭21322217204292-⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭T A B 111123111124111051⎛⎫⎛⎫ ⎪⎪=--- ⎪⎪ ⎪⎪-⎝⎭⎝⎭058056290⎛⎫⎪=- ⎪ ⎪⎝⎭.2. 13121400121134131402⎛⎫⎪-⎛⎫ ⎪ ⎪ ⎪--⎝⎭ ⎪-⎝⎭6782056-⎛⎫= ⎪--⎝⎭3. ()111213112312222321323333a a a x x x x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭()1111212313121222323131********x a x a x a x a x a x a x a x a x a x x x ⎛⎫⎪=++++++ ⎪⎪⎝⎭222111222333121213132323222a x a x a x a x x a x x a x x =+++++.4. 设,A B 为n 阶方阵,且A 为对称阵,证明TB AB 也是对称阵.证明:已知:T=A A ,则 TTTTTTTT()()===B AB B B A B A B B AB从而 TB AB 也是对称阵.(二)一.填空1. 设A 为三阶可逆矩阵,且1123012001-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,则*=A123012001---⎛⎫⎪- ⎪ ⎪⎝⎭2. 设100220345⎛⎫⎪= ⎪ ⎪⎝⎭A ,则1()*-=A 10A ;1()-*=A 10A3.设A 为3阶矩阵,且A =12,则1*(2)5--=A A -16 . 4. 设α为3维列向量,T 111111111-⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭αα,则T=αα 3 .二.选择1. 设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,则必有( A ) (A ) 1n -*=A A(B ) *=A A (C )n*=A A (D )1*-=A A2. 设n 阶方阵,,A B C 满足关系式=ABC E ,其中E 为n 阶单位矩阵,则必有( D ). (A ) =ACB E (B )=CBA E (C )=BAC E (D )=BCA E3. 已知A 为n 阶方阵,且满足关系式2340++=A A E ,则()1-+=A E ( C )(A )1-+A E (B )12+E A (C ) 12--E A (D )4+A E 4. 设,A B 都是n 阶方阵,则下列命题中正确的是 ( D )(A )若≠A O 且≠B O ,则≠AB O (B )若,A B 都是对称阵,则AB 是对称阵 (C)若AB 不可逆,则,A B 都不可逆 (D )若AB 可逆,则,A B 都可逆三.计算与证明1. 求520021*******011⎛⎫ ⎪⎪⎪- ⎪⎝⎭的逆阵.解:115221A ⎛⎫=⎪⎝⎭,1111225A --⎛⎫= ⎪-⎝⎭,221211A -⎛⎫= ⎪⎝⎭,122121113A -⎛⎫= ⎪-⎝⎭, 112002500120033110033A --⎛⎫⎪- ⎪ ⎪= ⎪⎪⎪-⎪⎝⎭.2. 解矩阵方程25461321-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭X解:125461321--⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭X 35461221--⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭22308-⎛⎫= ⎪⎝⎭.3. 设1-=P AP Λ, 其中1411--⎛⎫= ⎪⎝⎭P , 1002-⎛⎫= ⎪⎝⎭Λ, 求11A .解:1-=P AP Λ故1-=A P P Λ所以11111-=A P P Λ3=P 1411*⎛⎫=⎪-⎝⎭P 1141113-⎛⎫= ⎪-⎝⎭P 而 11111110100202--⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭Λ 故11111414103311021133⎛⎫ ⎪--⎛⎫⎛⎫= ⎪ ⎪⎪- ⎪⎝⎭⎝⎭-- ⎪⎝⎭A 27312732683684⎛⎫= ⎪--⎝⎭. (三)一.填空1. 已知2223311x x-⎛⎫⎪= ⎪ ⎪-⎝⎭A 不可逆,则x = -6或-3 . 2. 设++=A AB B O ,且200000004-⎛⎫⎪= ⎪ ⎪⎝⎭A ,则=B 2000004005⎛⎫⎪- ⎪ ⎪ ⎪- ⎪⎝⎭ .3.设300140003⎛⎫⎪= ⎪ ⎪⎝⎭A ,则1(2)--=A E 10011022001⎛⎫⎪ ⎪- ⎪ ⎪⎝⎭.二.选择1. 设,A B 都是n 阶可逆矩阵,则必有( C )(A ) +A B 是n 阶可逆矩阵 (B ) |+|=||+||A B A B (C ) 只用初等变换可把A 变为B (D ) =AB BA2. 设n 阶矩阵,,,A B C D 满足=ABCD E ,则( A )(A ) 1()=-CB CDADAB (B ) 1()=-CB DA (C ) 1()=-CB AD (D ) 1()=-CB DABCDA3. 设=AX B ,则( B )(A ) 当A 可逆时, 1=-X BA (B ) 当A 可逆时, 1=-X A B (C ) 当≠B O 时,||0≠A (D ) 当≠X O 时,A 可逆三.计算与证明1. 用初等变换求矩阵1011201031203104-⎛⎫⎪⎪⎪⎪-⎝⎭的逆矩阵.解:4211410711822262411--⎛⎫ ⎪--- ⎪ ⎪- ⎪--⎝⎭2. 设,+=AX B X 其中01011111,2010153-⎛⎫⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭A B ,求X .解: 1()-=-X E A B 而 12103321()13311033-⎛⎫ ⎪⎪ ⎪-=- ⎪⎪ ⎪-⎪⎝⎭E A 所以 =X 210332113311033⎛⎫⎪⎪ ⎪- ⎪⎪ ⎪-⎪⎝⎭112053-⎛⎫ ⎪ ⎪ ⎪-⎝⎭312011-⎛⎫ ⎪= ⎪ ⎪-⎝⎭. 3. 设三阶矩阵,A B 满足关系式13-=+A BA A BA ,且100310041007⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭A ,求B . 解:13--=A BA BA A ,1()3--=A E BA A ,1300040007-⎛⎫⎪= ⎪ ⎪⎝⎭A ,11323()112--⎛⎫⎪ ⎪=-= ⎪ ⎪ ⎪⎝⎭B A E .(四)一.填空1. 设矩阵m n ⨯A 的秩为r ,P 为m 阶可逆矩阵,则()R =PA r .2. 设四阶方阵A 的秩()2R =A ,则其伴随矩阵*A 的秩为()R *A = 0 .3.设111111111111k k k k ⎛⎫⎪⎪= ⎪ ⎪⎝⎭A ,()3R =A ,则k = -3 . 二.选择1. 从矩阵A 中划去一行得到矩阵B ,则,A B 的秩的关系为( A ) (A) ()()()1R R R ≥≥-A B A (B) ()()()1R R R ≥>-A B A (C) ()()()1R R R >>-A B A (D) ()()()1R R R >≥-A B A2. 在秩是r 的矩阵中( C ) (A) 没有等于0的1r -阶子式 (B) 没有等于0的r 阶子式(C) 等于0的1r -阶子式和等于0的r 阶子式都可能有 (D) 所有1r -阶子式等于03. 设,A B 都是n 阶方阵,且=AB O ,则必有( A ) (A) 若()R n =A ,则 =B O (B) 若≠A O ,则 =B O (C) =A O 或者 =B O (D) ||A +||0=B4. 设A 是43⨯矩阵,且A 的秩()2R =A ,而102020103⎛⎫ ⎪= ⎪ ⎪-⎝⎭B ,则()R =AB (C )(A )0 (B )1 (C )2 (D )3三.计算1.求矩阵310211211344⎛⎫⎪=-- ⎪ ⎪-⎝⎭A 的秩.解:()2R =A2.设12312323k k k -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A ,求k 为何值时可使()R A 等于:(1) 1 ;(2) 2 ;(3) 3 .解:123~02(1)3(1)003(1)(2)k k k k k -⎛⎫ ⎪-- ⎪ ⎪-+⎝⎭A(1)当1k =时,()1R =A ; (2)当2k =-时,()2R =A ; (3)当1k ≠且2k ≠-时,()3R =A .3.设矩阵00121132212645013405-⎛⎫⎪--⎪= ⎪-⎪---⎝⎭A ,求()R A ,并求一个最高阶非零子式.解:()3R =A ,一个最高阶非零子式为012122245--.第三章 线性方程组(一)一、选择1.当( D )时,齐次线性方程组0m n ⨯=A x 一定有非零解。
线性代数考试题库及答案(一)
线性代数考试题库及答案(⼀)线性代数考试题库及答案第⼀部分专项同步练习第⼀章⾏列式⼀、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2! (D)k n n --2)1(3. n 阶⾏列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数10323211112)(x x x xx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若213332313133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9.已知4阶⾏列式中第1⾏元依次是3,1,0,4-, 第3⾏元的余⼦式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第⼀⾏元的代数余⼦式的和为( ).(A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四⾏元的余⼦式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性⽅程组=++=++=++000321321321x x kx x kx x kx x x 有⾮零解.⼆、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶⾏列式中项261365415432a a a a a a 所带的符号是.3.四阶⾏列式中包含4322a a 且带正号的项是.4.若⼀个n 阶⾏列式中⾄少有12+-n n 个元素等于0, 则这个⾏列式的值等于.5. ⾏列式=100111010100111.6.⾏列式=-0100002000010 n n .7.⾏列式=--001)1(2211)1(111 n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211 ,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶⾏列式的值为5,将其第⼀⾏与第5⾏交换并转置,再⽤2乘所有元素,则所得的新⾏列式的值为.10.⾏列式=--+---+---1111=+++λλλ111111111.12.已知三阶⾏列式中第⼆列元素依次为1,2,3, 其对应的余⼦式依次为3,2,1,则该⾏列式的值为.13.设⾏列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四⾏元的代数余⼦式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余⼦式的和为.15.设⾏列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余⼦式,则=+4241A A ,=+4443A A .16.已知⾏列式nn D00103100211253117.齐次线性⽅程组=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是. 18.若齐次线性⽅程组=+--=+=++0230520232132321kx x x x x x x x 有⾮零解,则k =.三、计算题1.cb a d b a dc ad c b dcbad c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解⽅程0011011101110=x x xx ; 4.1321321221221221----n n n n a a a a x a a a a x a a a a x a a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 2100012000002100012100012a a a a aD ---------=1101100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=. 4.∏∑≤<≤=----=ni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明01 11333=c b a c ba 的充要条件是0=++cb a .参考答案⼀.单项选择题A D A C C D ABCD B B ⼆.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;⼀、单项选择题1. A 、B 为n 阶⽅阵,则下列各式中成⽴的是( )。
2013级线性代数期末考试题(A卷)答案
2013—2014学年第一学期线性代数课程期末考试试卷参考答案(A 卷)一、(每小题2分,共8小题)1 错;2 对;3 对;4 C ;5 B ;6 B ;7 A ;8 B二、行列式计算 (本题共14分,第1小题6分,第2小题8分)1、计算四阶行列式1110110110110111D =.解:根据行列式的性质,原行列式等于:1(234)21311/3414*3/211103333110111012101110110111011111111111110100103*3*21011010001111003*(1)*1*(1)*(1)*(1)32r r r r r r r r r r r D +++---==-==--=----=-分分分2、计算n 阶行列式11111222(2)1233123n n>.解:根据行列式的性质,原行列式等于:12111110111001100011n n r r r r ---==原式6分2分三、矩阵X ,A ,B 满足3AX X B =+,其中 (本题共8分)301050303A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111222369B -⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,求矩阵X 。
解:由 3AX X B =+ 可得:(3)A E X B -= 2分又因为 0010203003A E ⎛⎫⎪⎪ ⎪⎝⎭-= 且它是可逆矩阵 1分所以 1(3)X A E B -=- 1分通过计算可得:1001/301/20100(3)A E -⎛⎫⎪= ⎪ ⎪⎝⎭- 2分所以 123111111X ⎛⎫⎪-- ⎪ ⎪-⎝⎭= 2分四、当a 取何值时,线性方程组:1232312343133(1)0x x x ax x x x a x ---+==+++=⎧⎪⎨⎪⎩无解,有惟一解,有无穷多解?并在方程组有无穷多解时求其通解。
(本题14分) 解:方程组的增广矩阵为:⎪⎪⎪⎭⎫ ⎝⎛+---01313301141a a 。
13级信管线性代数练习题及答案
) 。
(D) AB − BC )
0 3x1 + 5x2 +3x3 = 6、如果方程组 2x1 + 4x2 + x3 = 0 有非 0 解,则( 0 − x2 + kx3 =
(A) k = 0
(B) k = 1
(C) k = −1
(D) k = 1.5
7、设 A 、 B 为 n 阶方阵, A* 是 A 的伴随矩阵,E 是 n 阶单位阵,则下面等式中不一定成 立的是(多选) (A) | A + B |= | A | + | B | (C) AB = BA 8、下列矩阵中,可逆的是
2013线代习题
一、1.已知四阶行列式D 的第三行元素分别为1,0,-2,1,第四行元素对应的代数余子式依次是5,10,a,3,则a=___4___。
2. A 为三阶矩阵,| A | =2则A 的伴随矩阵*A 的行列式 |*A | =( A ) A. 4 B. 16 C. 2 D. 63.三阶行列式=(4abcdef )。
4.设D 为n 阶行列式,则D 为零的充分必要条件是( C ) A.D 中有两行(列)的对应元素成比例 B.D 中有一行(列)的所有元素均为零 C.D 中有一行(列)的所有元素均可以化为零 D.D 中有一行(列)的所有元素的代数余子式均为零.5.设A 、B 都是n 阶矩阵,则2222)(B AB A B A ++=+成立的充分必要条件是(C )。
A 、A=E B 、B=0 C 、AB=BA D 、A=B 6.若n 阶方阵A 可逆,则A*可逆,且A*的逆矩阵为( C )。
A 、AB 、|A|A C、 D、7.设矩阵⎪⎪⎭⎫ ⎝⎛=c b d a A ,则1-A = 1()d b c a ad bc -⎛⎫ ⎪--⎝⎭ 8.设2阶矩阵A =⎪⎪⎭⎫ ⎝⎛d cb a,则*A =(A )A .⎪⎪⎭⎫ ⎝⎛--a c b dB .⎪⎪⎭⎫⎝⎛--a b c dC .⎪⎪⎭⎫ ⎝⎛--a cb dD .⎪⎪⎭⎫⎝⎛--a b c d 9.若A 为34⨯矩阵,且A 有一个三阶子式不等于零,则R(A)= 310.如果[]nm ija A ⨯=,则线性Ax=0仅有零解的充分必要条件是( C ).A. A 的行向量组线性无关.B. A 的行向量组线性相关.C. A 的列向量组线性无关.D. A 的列向量组线性相关. 11.设A 为n 阶方阵,方程组0=Ax 有非零解,则( A ) A .0=Ax 有无穷多个非零解 B .0=Ax 仅有一个非零解 C .0=Ax 仅有二个非零解 D .0=Ax 仅有n 个非零解12. 设A 为n 阶方阵,且|A|=0,则(C )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河海大学专升本函授2013级水工专业
《线性代数》试卷 姓名学号专业成绩
一、 填空题(本题满分14分,每空2分)
1. 若12121,1110111A B ⎛⎫⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭
,AB =则 。
2. 设三阶矩阵123,4A A -⎛⎫ ⎪== ⎪ ⎪⎝⎭
则 。
3. 设()()()1231,1,1,,1,3,2,1,2,,αααλ===线性相关,λ= 。
4. 设三阶矩阵A 的特征值分别为1,2,3,则A E += 。
5. 设1112
132122232122
2311121331
3233312132223323a a a a a a a a a M a a a a a a a a a a a a ==---,则 。
6. 设A 为三阶方阵,且122
A A =-=,则 。
7. 设二次型3231212322213214225),,(x x x x x tx x x x x x x f +-+++=为正定二次型,则
t 应满足 ;
二、选择题(本题满分12分,每小题3分)
1.已知四阶行列式4D 的第一行的元素依次为1,2,-1,-1,它们的余子式为2,-2,1,0,则4D 的值为
( )。
()A -3 ; ()B -5 ; (C) 3 ; (D) 5 。
2 .己知A,B 是同阶方阵,下列等式中正确的是 ( )。
(A )AB A B = ; (B )()T
T T AB A B = ; (C )()111AB A B ---=; (D) ()k
k k AB A B = 。
3.如果线性方程组Ax b =中方程的个数少于未知量的个数,则( )。
(A) Ax b =必有非零解; (B) 0Ax =必有无穷多解 ;
(C) 0Ax =一定无解 ; (D) Ax b =一定无解 。
4. 设12,αα是非齐次线性方程组Ax b =的解,β是对应齐次方程组0Ax =的解,则Ax b =必有一个解 ( ) 。
()A 12αα+ ; ()B 12αα- ;
()C 12βαα++ ; ()D 21122
βα++ 。
三、计算题(本题满分21分,每小题7分)
1.1324
2131
3214
2101
2.0
1000
2000
01000
n n -
3. 设A B n ,为阶方阵,若AB A B =+,证明A I -可逆且AB BA =。
四、(本题满分12分)
设向量组1013α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2111α⎛⎫ ⎪= ⎪ ⎪⎝⎭,3101α⎛⎫ ⎪= ⎪ ⎪⎝⎭,011β⎛⎫ ⎪= ⎪ ⎪⎝⎭
, 1.证明1,2,3,ααα线性无关;
2.将β表示为1,2,3,ααα的线性组合。
五、(本题满分12分)
1. 设101020101A ⎛⎫ ⎪= ⎪ ⎪⎝⎭
,矩阵X 满足方程2AX E A X +=+求X 。
2. AB A B =+,证明A I -可逆且AB BA =。
六、(本题满分12分)
设线性方程组
12345123452
345123457323222623543312
x x x x x x x x x x x x x x x x x x x ++++=⎧⎪+++-=-⎪⎨+++=⎪⎪+++-=⎩ 1. 试证线性方程组有无穷多解;
2. 试用基础觧系求该线性方程组的通解。
七、(本题满分12分)
求矩阵211010021--⎛⎫ ⎪- ⎪ ⎪⎝⎭
的特征值与特征向量。
八、(本题满分12分) 设0η是非齐次线性方程组Ax b =的一个特解,12ξξ,是其导出组0Ax =的一个基础解系。
试证明
(1) 101202ηηξηηξ=+=+,是Ax b =的解;
(2) 0η,1η,2η线性无关。
九、(本题满分6)
若A 是n 阶方阵,且10T AA E A A E ==+=,,证明。
其中E 为单位矩阵。