考研数学线性代数满分笔记手写总结

合集下载

线性代数-考研笔记

线性代数-考研笔记

第一章行列式性质1 行列式与它的转置行列式相等。

性质2互换行列式的两行(列),行列式变号。

推论如果行列式的两行(列)完全相同,则此行列式等于零。

性质3行列式的某一行(列)中所以的元素都乘以同一个数,等于用数乘以此行列式。

第行(或者列)乘以,记作(或)。

推论行列式的某一行(列)的所有元素的公因子可以提到行列式记号的外面。

第行(或者列)提出公因子,记作(或)。

性质4行列式中如果两行(列)元素成比例,此行列式等于零。

性质5若行列式的某一列(行)的元素都是两数之和,例如第列的元素都是两数之和,则等于下列两个行列式之和:=性质 6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

定义在阶行列式,把元所在的第行和第列划去后,留下来的阶行列式叫做元的余子式,记作;记,叫做元的代数余子式。

引理一个阶行列式,如果其中第行所有元素除元外都为零,那么这行列式等于与它的代数余子式的乘积,即定理3 (行列式按行按列展开法则) 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和,即或推论行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零。

范德蒙德行列式克拉默法则①如果线性方程组①的系数行列式不等于零,即,那么,方程组①有唯一解其中是把系数行列式矩阵中第列的元素用方程组右端的常数项代替后所得到的阶行列式,即定理4 如果非齐次线性方程组的系数行列式,则非齐次线性方程组一定有解,且解是唯一的。

定理如果非齐次线性方程组无解或有两个不同的解,则它的系数行列式必为零。

定理5 如果齐次线性方程组的系数行列式定理如果,则它的系数行列式必为零第二章矩阵级其运算定义1 由个数排成的行列的数表,称为行列矩阵;以数为元的矩阵可简记作或矩阵也记作。

行数和列数都等于的矩阵称为阶矩阵或阶方阵。

阶矩阵也记作。

特殊定义:两个矩阵的行数相等,列数也相等时,就称它们是同型矩阵同型矩阵和的每一个元素都相等,就称两个矩阵相等,;元素都是零的矩阵称为零矩阵,记作;注意不同型的零矩阵是不同的。

考研数学手写知识点总结

考研数学手写知识点总结

考研数学手写知识点总结一、数列和数项1. 定义数列是按一定顺序排列的一串数,每个数称为数列的项,用an表示,n称为项标。

2. 数列的表示一般用通项公式或者递推公式表示数列,通常表示成{an}或者{an}∞n=1。

3. 常见数列常见的数列有等差数列、等比数列、递推数列等,它们分别有自己的通项公式和性质。

4. 数列的求和常用的求和方法有等差数列的求和公式、等比数列的求和公式、Telescoping sum等。

二、集合与函数1. 集合的定义集合是由一个或多个共同特征的元素构成的整体,用大括号{}表示,元素之间用逗号隔开。

2. 集合的运算集合的运算包括并集、交集、差集、补集等,它们有自己的运算法则和性质。

3. 函数的定义函数是集合之间的一个对应关系,通常用f(x)表示,其中x是自变量,f(x)是因变量。

4. 函数的性质函数有奇偶性、周期性、单调性等性质,这些性质对函数的图像有一定的影响。

5. 函数的运算函数的运算包括加减乘除、复合函数、反函数等,它们有自己的运算法则和性质。

三、极限1. 极限的定义当自变量趋于某个值时,函数的值不断地接近于一个确定的数,这个确定的数称为极限。

2. 极限的计算常用的求极限的方法有代入法、夹逼法、单调有界法、洛必达法则等。

3. 极限的性质极限有唯一性、保号性、保序性、保界性等性质,这些性质有一定的应用价值。

4. 无穷小量与无穷大量当自变量趋于某个值时,函数的取值趋于零或者趋于无穷大,这种情况称为无穷小量与无穷大量。

四、导数与微分1. 导数的定义函数在某一点的导数是函数在这一点的切线斜率,常用f'(x)或者dy/dx表示。

2. 导数的计算常用的求导法则有常数法则、幂函数法则、指数函数法则、对数函数法则等。

3. 导数的性质导数有和性、差性、积性、商性、复合函数导数等性质。

4. 微分微分是导数的一个应用,微分形式为dy=f'(x)dx,微分近似计算的应用十分广泛。

五、积分1. 不定积分不定积分是导数的逆运算,常用∫f(x)dx表示,它相当于求函数在某一区间上的面积。

考研数学线性代数手写笔记

考研数学线性代数手写笔记
$ f É 3 z 3 ( NMÅ wz3a) d1 )
隽卷轴对 埔
d

蝉 竹触 © 闭 C 八


商愆酏 翅 癫 <娣榭蹊 八啪 一 夜娴© 蜘 t!枘碑堤 微
(· &i i t ój j j Éj & > 1 > t & , l s t ! d M
1
LJ; 1
1 1
AJ 1
A


A"
1
Aj
1
[
铀赫佴醐
,
F
k
wi f i q
&=

创 制
Jill
@f q w Ê
觳入 罗耗僻 A W禾我让仟
苄 \
,
人0 4 入住°
A\
"
与 与
兼 多当A 吕 o 对不能弘 A · 荻8 - o 4 瓷A 和 却粼川 s o
> x -
a
2国
/ ¢i t h 1/ 14 ®Ptìi gM
a
\
77
3 虽t
八j乙肘 A
萨 八 八 良+ 9
男沫豹力毛亭泌 朗 荫 心
z3
黄 已知八 良 t 与沟司逐短 瞬 W掌硝
只 阳目 园国
k M' A0
j 0 0
1
11


:犍 ® f c 胪 时穿易患花 ( t i. j
r
M
0i L

名 国
.
目届

卅车间
74 囤川 麟 9· Pl 花中
断腐元 囤
糙角囝闲 祥 不同 1爿啄盈凶钰 间闲
) ( 日 六 ' " 一

宋浩线性代数笔记

宋浩线性代数笔记

•⚗线性代数•.⚗ P1 二阶三阶行列式..⚗ 02:48 二阶行列式划线计算.⚗ 15:00 三阶行列式划线计算.⚗ 22:29 N阶行列式预备知识.⚗ 24:21 名场面:宋浩点名田莎莎等.⚗ P2 n阶行列式..⚗ 00:55 N阶行列式计算.⚗ 20:50 下三角行列式.⚗ 23:14 上三角行列式.⚗ 24:40 对角线行列式.⚗ 25:30 副对角线行列式.⚗ 31:00 三角行列式总结.⚗ 31:09 行列式三种定义.⚗ P3 行列式的性质..⚗ 00:25 性质一转置.⚗ 11:48 性质二两行互换.⚗ 20:38 性质三两行相同.⚗ 23:10 性质四行公因子k.⚗ 28:05 性质五两行成比例.⚗ 34:20 性质六和分解.⚗ 43:36 性质七行叠加.⚗ 51:12 行列式值计算通用法.⚗ P4 行列式按行展开..⚗ 04:36 余子式.⚗ 07:42 代数余子式.⚗ 09:38 降阶:行列式按某一行/列展开.⚗ 16:50 异乘变零定理.⚗ 27:17 拉普拉斯定理.⚗ 30:17 拉普拉斯展开定理.⚗ 38:30 同阶行列式相乘.⚗ P5 行列式的计算(一)..⚗ 14:33 纯数字行列式计算.⚗ 21:50 已知行列式求余子式之和.⚗ 30:06 对角线为x,其余为a的行列式计算技巧.⚗ P6 行列式的计算(二)..⚗ 00:00 行列式计算基础思路.⚗ 01:05 三叉形行列式.⚗ 17:42 范德蒙德行列式.⚗ 40:42 反对称行列式.⚗ 43:12 对称行列式.⚗ P7 克莱姆法则..⚗ 00:05 解方程组.⚗ 09:11 解齐次线性方程组.⚗ P8 矩阵概念..⚗ 22:20 矩阵和行列式比较.⚗ P9 矩阵运算(一)..⚗ 00:00 名场面:宋浩免费赠送自制知识卡片.⚗ 02:50 矩阵加减法.⚗ 07:53 矩阵数乘运算.⚗ 13:58 矩阵乘法.⚗ P10 矩阵运算(二)..⚗ 00:00 矩阵幂运算.⚗ 23:49 矩阵转置.⚗ P11 特殊矩阵.⚗ P12 逆矩阵(一)..⚗ 03:04 方阵的行列式.⚗ 12:54 方阵的行列式的性质.⚗ 24:28 伴随矩阵.⚗ P13 逆矩阵(二)..⚗ 10:58 方阵可逆条件.⚗ 21:16 求逆矩阵方法.⚗ 47:33 解矩阵方程常见错误总结.⚗ 54:42 逆矩阵性质.⚗ 66:58 伴随矩阵`A^*`小专题.⚗ P14 分块矩阵..⚗ 00:00 分块要求.⚗ 04:34 标准形.⚗ 09:34 分块矩阵加法.⚗ 10:39 分块矩阵数乘.⚗ 11:12 分块矩阵乘法.⚗ 20:25 分块矩阵转置.⚗ 23:23 拉普拉斯展开定理在分块矩阵中的应用例题.⚗ 39:08 分块矩阵的逆.⚗ P15 初等变换(一)..⚗ 00:00 三种初等变换.⚗ 11:18 初等变换和行列式变换的对比.⚗ 24:50 矩阵化标准型.⚗ 29:45 矩阵等价.⚗ P16 初等变换(二)..⚗ 00:00 初等方阵.⚗ 09:15 初等方阵的行列式和逆矩阵.⚗ 14:56 初等方阵与矩阵做乘法.⚗ 44:13 初等方阵用处.⚗ P17 初等变换(三)..⚗ 00:00 初等变换法求逆矩阵.⚗ 13:51 解题过程总结.⚗ P18 矩阵的秩(一)..⚗ 00:00 k阶子式.⚗ 02:10 矩阵的秩.⚗ P19 矩阵的秩(二)..⚗ 00:00 矩阵的秩.⚗ 07:35 求矩阵的秩.⚗ 14:23 阶梯形矩阵.⚗ 32:09 行简化阶梯形矩阵.⚗ 41:15 求秩方法.⚗ 53:11 秩的性质.⚗ 58:49 广告:宋浩打油诗.⚗ P20 向量的定义..⚗ 10:11 向量定义.⚗ P21 向量间的线性关系(一)..⚗ 00:00 线性关系.⚗ 19:41 向量组的等价.⚗ P22 向量间的线性关系(二)..⚗ 00:00 线性相关与无关.⚗ 16:37 扩大后向量组与原向量组.⚗ 25:40 接长后向量组与原向量组.⚗ 37:20 行列式判断相关.⚗ P23 线性相关线性无关..⚗ 00:00 定理一.⚗ 04:32 定理二.⚗ 13:57 定理三:替换.⚗ 13:57 定理四.⚗ 21:22 推论.⚗ P24 向量组的秩(一)..⚗ 00:00 极大线性无关组.⚗ 08:04 极大线性无关组性质.⚗ 12:45 向量组的秩.⚗ P25 向量组的秩(二)..⚗ 00:00 行秩与列秩.⚗ 07:06 定理.⚗ 11:12 极大线性无关组的求法.⚗ P26 线性方程组..⚗ 00:00 二元一次方程与初等变换.⚗ P27 线性方程组有解判定..⚗ 00:00 有解判定.⚗ P28 齐次方程组的解..⚗ 00:00 齐次方程组.⚗ P29 方程组解的结构(一)..⚗ 00:00 齐次方程组解的结构.⚗ 06:54 基础解系.⚗ 08:56 齐次方程基础解系求法.⚗ 45:26 定理.⚗ P30 方程组解的结构(二)..⚗ 00:00 导出组.⚗ 04:27 非齐次方程组解的结构.⚗ P32 矩阵的特征值与特征向量(一)..⚗ 00:00 矩阵的特征值与特征向量.⚗ 08:35 求特征值.⚗ P33 矩阵的特征值与特征向量(二)..⚗ 00:00 求特征值(计算含参行列式)思路.⚗ 19:40 完整例题求特征值和特征向量.⚗ 43:12 N阶三角形矩阵的特征值.⚗ P34 特征值与特征向量的性质..⚗ 00:00 基本性质.⚗ 47:49 其他性质.⚗ P35 相似矩阵和矩阵可对角化的条件..⚗ 00:00 相似矩阵.⚗ 07:58 相似矩阵的性质.⚗ 22:06 与对角形矩阵相似(对角化)的条件.⚗ 61:47 利用相似矩阵简单求矩阵的高次幂.⚗ P36 实对称矩阵的对角化(一)..⚗ 00:00 实对称矩阵的对角化.⚗ 02:00 内积.⚗ 21:09 向量的长度/范数/模.⚗ P37 实对称矩阵的对角化(二)..⚗ 00:00 模的性质.⚗ 04:16 柯西-施瓦茨不等式.⚗ 08:13 三角不等式.⚗ 09:55 正交/垂直.⚗ 25:10 施密特正交化.⚗ P38 实对称矩阵的对角化(三)..⚗ 00:00 正交矩阵.⚗ 21:38 实对称矩阵的对角化.⚗ 28:48 正交相似.⚗ 31:24 定理.⚗ 32:34 汇总.⚗ P39 二次型定义..⚗ 00:00 判断二次型.⚗ 03:08 n元二次型.⚗ 04:09 二次型的矩阵表达.⚗ 21:30 标准型.⚗ 24:40 线性替换.⚗ 35:38 合同.⚗ 49:00 矩阵间关系总结.⚗ P40 二次型化标准型(配方法)..⚗ 00:00 二次型化标准型的三种方法.⚗ 02:33 配方法.⚗ P41 二次型化标准型(初等变换法和正交替换法)..⚗ 00:00 初等变换法.⚗ 22:00 规范形.⚗ 31:06 正交替换.⚗ End 感谢宋老师~.⚗ Appendix 浩浩卡片☄P1 二阶三阶行列式⌚02:48 二阶行列式划线计算•行列式一定是方的⌚15:00 三阶行列式划线计算•主对角线:╲•副对角线:╲⌚22:29 N阶行列式预备知识•排列:1,2,……,n组成的一个有序数组叫n级排列,中间不能缺数•如3级排列:123,132,213,231,312,321•逆序:大数排在小数前面•逆序数:逆序的总数•奇/偶排列:逆序数为奇/偶•标准排列:123……N•对换:交换排列中的两个数•做一次对换,排列奇偶性改变⌚24:21 名场面:宋浩点名田莎莎等☄P2 n阶行列式⌚00:55 N阶行列式计算•按行展开:•行标取标准排列•列标取排列的所有可能,从不同行不同列取出n个元素相乘•共有N!项•每一项的符号由列标排列的奇偶性决定,偶正奇负⌚20:50 下三角行列式•右上方三角形区域元素全部为0•下三角行列式= 主对角线元素相乘⌚23:14 上三角行列式•左下方三角形区域元素全部为0•上三角行列式= 主对角线元素相乘⌚24:40 对角线行列式•只有主对角线上有数⌚25:30 副对角线行列式•副对角线行列式=(-1)^(n(n-1)/2) * 副对角线元素相乘⌚31:00 三角行列式总结⌚31:09 行列式三种定义• 1.按行展开,符号由列标排列决定• 2.按列展开,符号由行标排列决定• 3.胡乱展开,符号由行标排列逆序数和列标排列逆序数之和决定(-1)^(N(i1,i2,……,iN)+N(j1,j2,……,jN)), i:行标,j:列标☄P3 行列式的性质•行列式对行成立的性质对列也成立⌚00:25 性质一转置•转置:把行按列写•行列式转置后值不变•行列式转置的转置等于本身•行列式两行互换,值变号⌚20:38 性质三两行相同•行列式两行相同,等于0⌚23:10 性质四行公因子k•行列式某行都乘以k,等于用k乘以这个行列式。

《线性代数》学习笔记十二

《线性代数》学习笔记十二

主 题: 《线性代数》学习笔记 内 容:《线性代数》学习笔记十二 ——二次型1、二次型的矩阵表示 定义1 n 个变量12,,n x x x 的二次齐次多项式212111121211(,,)22n n n f x x x a x a x x a x x =+++2222223232222n n na x a x x a x x ax ++++++称为n 元二次型,简称二次型(quadratic form).当ij a 为复数时,称f 为复二次型;当ij a 为实数时,称f 为实二次型.我们仅讨论实二次型. 取ij ji a a =,于是上式可写为二次型f 的和式表示.212111121211221122222221122(,,)n n n n nn n n n nf x x x a x a x x a x x a x x a x a x x a x x a x x ax =+++++++++++11n nij i ji j a x x ===∑∑二次型f 的矩阵表示1112111222221212(,,,)n n n n n nn n a a a x a a a x f x x x a a a x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭A '=x x 这里,显然有A A '=,即A 为实对称矩阵. 例如:二次型用矩阵可表示为()22223120213,,1223012f x y z xy yz x x y z y z =-+-+⎛⎫- ⎪⎛⎫ ⎪ ⎪=-- ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭二次型f 还可表示成向量内积形式()[][]f A A A '==x x x =x,x x,x .二次型与对称矩阵之间存在一一对应关系.由此可见,如果,A B 都是n 阶对称矩阵,且f A B ''=x x =x x ,则A B =.因此,若f A '=x x ,其中A A '=,则称A 为二次型f 的矩阵;称f 为对称矩阵A 的二次型;称()R A 为f 的秩. 例1 写出二次型221231233(,,)(22)f x x x x x x x =++-的矩阵A ,并求f 的秩. 2、二次型的标准形对于二次型11n nij i ji j f a x x ===∑∑,我们讨论的主要问题是:寻找可逆的线性变换C x =y ,使二次型只含平方项,使得2221122n nf y y y λλλ=+++,称为二次型f 的标准形.即2221122112212()(,,).n nn n n f A C AC y y y y y y y y y '''=+++⎛⎫⎛⎫ ⎪⎪'==Λ ⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭x x =y y =y y λλλλλλ其中Λ=diag 12(,,,)n λλλ.因此,我们的问题就转化为:对给定对称矩阵A ,求可逆矩阵C ,使得C AC '为对角阵.一般地,有以下定义:定义2 设,A B 为n 阶矩阵,若有可逆矩阵C ,使B C AC '=,则称A 与B 合同. 因为若C 可逆,则C '也可逆,所以,由定义,若A 与B 合同,则A 与B 等价.从而,我们有(1)矩阵的合同关系具有反身性:A E AE '=;对称性:由B C AC '=即得11()A C BC --'=;和传递性:由111A C AC '=和2212A C AC '=即得21212()()A C C A C C '=; (2)若A 与B 合同,则()()R A R B =.(3)若A 是对称矩阵,且若A 与B 合同,则B 也是对称矩阵. 3。

考研线代知识点总结

考研线代知识点总结

考研线代知识点总结摘要:一、考研线性代数知识点概述二、矩阵与线性方程组三、向量空间与线性变换四、特征值与特征向量五、二次型与矩阵的对称性六、复习与拓展建议正文:一、考研线性代数知识点概述考研线性代数作为数学一门重要学科,主要包括矩阵、线性方程组、向量空间、线性变换、特征值与特征向量、二次型与矩阵的对称性等内容。

这些知识点在考研数学中占有很大比重,因此,对于线性代数的掌握程度直接影响到考研成绩。

本文将对这些知识点进行总结,以帮助考生更好地复习和掌握线性代数。

二、矩阵与线性方程组1.矩阵的运算:加法、减法、数乘、矩阵乘法、逆矩阵、行列式等。

2.线性方程组的解法:高斯消元法、克莱姆法则、齐次线性方程组、非齐次线性方程组等。

3.矩阵的秩、行阶梯形式、简化阶梯形式等。

三、向量空间与线性变换1.向量空间的概念、基、维数、向量模等。

2.线性变换的概念、性质、矩阵表示、不变量等。

四、特征值与特征向量1.特征值、特征向量的概念及求解方法。

2.矩阵的对角化、相似矩阵等。

五、二次型与矩阵的对称性1.二次型的概念、标准型、正定二次型、负定二次型、半正定二次型、半负定二次型等。

2.矩阵的对称性:对称矩阵、反对称矩阵、正交矩阵、对称分量等。

六、复习与拓展建议1.熟练掌握考研线性代数大纲要求的知识点,做到深入理解、熟练应用。

2.针对自己的薄弱环节进行有针对性的练习,提高解题能力。

3.学习线性代数相关的拓展知识,如奇异值分解、广义逆矩阵、线性空间论等。

4.注重理论联系实际,熟练运用线性代数知识解决实际问题。

总之,考研线性代数知识点繁多,要想在考试中取得好成绩,就需要扎实掌握这些知识点,并不断提高自己的解题能力。

考研线性代数终极总结

考研线性代数终极总结

考研线性代数终极总结线性代数是研究向量空间及其线性变换的数学分支。

它是数学基础科学和高级工程科学的重要学科,在理论和应用上都有着广泛的应用。

准备考研的同学们需要牢固掌握线性代数的基本概念和重要定理,下面是线性代数的终极总结。

一、向量空间1.向量空间的基本定义和性质2.子空间及其判定3.维数、基、坐标和表示定理4.线性方程组的解空间二、线性变换1.线性变换的定义和性质2.矩阵的线性变换3.线性变换的矩阵表示和基变换4.线性变换的像空间与核空间5.线性变换的特征值和特征向量6.对角化和相似变换三、线性方程组1.线性方程组的表示和解的存在唯一性2.线性方程组解的结构和基础解系3.矩阵的秩与线性方程组解的个数4.线性方程组的常见解法四、矩阵1.矩阵的运算和性质2.矩阵的特征值和特征向量3.矩阵的标准形式4.矩阵的相似性质和相抵性质五、二次型1.二次型的定义和性质2.二次型的标准形式3.正定、负定和不定二次型4.合同变换与矩阵的合同性质六、特征值问题1.特征值问题的引入和相关概念2.特征值问题的求解方法3.特征值问题的应用七、奇异值分解1.奇异值分解的定义和性质2.奇异值分解的计算和应用八、线性变换的标准形式1.线性变换的标准形式的引入和相关性质2.线性变换的标准形式的计算和应用九、行列式1.行列式的定义和性质2.行列式的性质及计算方法3.克莱姆法则及其推广以上是线性代数的终极总结,考研学习线性代数需要掌握这些重要概念和定理,通过大量的练习和习题,加深对知识点的理解和记忆。

在考试中,要善于分析题目,熟练运用线性代数的知识,灵活解决问题。

希望同学们能够在考研线性代数的复习中取得好的成绩!。

考研线性代数公式速记大全

考研线性代数公式速记大全

概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确(),nT A r A n A A Ax x Ax A Ax A A A E οοοββ==⇔∀≠≠≠⇔∀∈=≅可逆 的列(行)向量线性无关 的特征值全不为0 只有零解 ,0总有唯一解 是正定矩阵 R 12,s iA p p p p nB AB E AB E⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪=⋅⋅⋅⎪==⎪⎩ 是初等阵存在阶矩阵使得 或 ○注:全体n 维实向量构成的集合nR 叫做n 维向量空间. ()A r A n A A A Ax A ολ<=⇔==不可逆 0的列(行)向量线性相关 0是的特征值 有非零解,其基础解系即为关于0的⎧⎪⎪⎪⎨⎪⎪⎪⎩特征向量○注 ()()a b r aE bA n aE bA aE bA x οολ+<⎧⎪+=⇔+=⎨⎪⎩有非零解=-⎫⎪≅⎪−−−→⎬⎪⎪⎭具有向量组等价矩阵等价()反身性、对称性、传递性矩阵相似()矩阵合同() √ 关于12,,,n e e e ⋅⋅⋅:①称为n的标准基,n中的自然基,单位坐标向量87p 教材; ②12,,,n e e e ⋅⋅⋅线性无关; ③12,,,1n e e e ⋅⋅⋅=; ④tr =E n ;⑤任意一个n 维向量都可以用12,,,n e e e ⋅⋅⋅线性表示.1212121112121222()1212()n n nn n j j j n j j nj j j j n n nna a a a a a D a a a a a a τ==-∑1√ 行列式的计算:①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.②若A B 与都是方阵(不必同阶),则==()mn A OA A O A BO B O B BOAAA BB OB O*==**=-1(拉普拉斯展开式)③上三角、下三角、主对角行列式等于主对角线上元素的乘积.④关于副对角线:(1)211212112111()n n nnn n n n n n n a Oa a a a a a a Oa O---*==-1 (即:所有取自不同行不同列的n 个元素的乘积的代数和)⑤范德蒙德行列式:()1222212111112ni j nj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪⎪= ⎪ ⎪⎝⎭称为m n ⨯矩阵.记作:()ij m n A a ⨯=或m nA ⨯()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. √ 逆矩阵的求法:① 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号②1()()A E E A -−−−−→ 初等行变换③1231111213a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3211111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭√ 方阵的幂的性质:mnm nA A A+= ()()m n mn A A =√ 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b b b c c c b b b ααα⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪ ⎪⎝⎭ ⇔i i A c β= ,(,,)i s = 1,2⇔i β为i Ax c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅= ⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,TA 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ⇔11112212121122222211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ √ 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量; 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量. √ 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘.√ 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B BA---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 1111A O A OC B B CA B ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫=⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B B B A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭√ 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II) A B E X −−−−→ 初等行变换(I)的解法:构造()()T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关114p 教材. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 向量组12,,,n ααα⋅⋅⋅线性相关⇔向量组中至少有一个向量可由其余n -1个向量线性表示.向量组12,,,n ααα⋅⋅⋅线性无关⇔向量组中每一个向量i α都不能由其余n -1个向量线性表示.⑧ m 维列向量组12,,,n ααα⋅⋅⋅线性相关()r A n ⇔<;m 维列向量组12,,,n ααα⋅⋅⋅线性无关()r A n ⇔=.⑨ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一. ⑩ 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0⑪ 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系;矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. √ 矩阵的初等变换和初等矩阵的关系:对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ; 对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .如果矩阵A 存在不为零的r 阶子式,且任意r +1阶子式均为零,则称矩阵A 的秩为r .记作()r A r =向量组12,,,n ααα 的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r αααA 经过有限次初等变换化为B . 记作:A B =12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅⑫ 矩阵A 与B 等价⇔PAQ B =,,P Q 可逆⇔()(),,,r A r B A B A B =≠>为同型矩阵作为向量组等价,即:秩相等的向量组不一定等价.矩阵A 与B 作为向量组等价⇔1212(,,,)(,,,)n n r r αααβββ⋅⋅⋅=⋅⋅⋅=1212(,,,,,,)n n r αααβββ⋅⋅⋅⋅⋅⋅⇒ 矩阵A 与B 等价.⑬ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示⇔AX B =有解⇔12(,,,)=n r ααα⋅⋅⋅1212(,,,,,,)n s r αααβββ⋅⋅⋅⋅⋅⋅⇒12(,,,)s r βββ⋅⋅⋅≤12(,,,)n r ααα⋅⋅⋅.⑭ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .⑮ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价;p 教材94,例10⑯ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑰ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑱ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑲ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关;若()r A n =,A 的列向量线性无关,即:12,,,n ααα⋅⋅⋅线性无关. √ 矩阵的秩的性质:①()A O r A ≠⇔若≥1 ()0A O r A =⇔=若 0≤()m n r A ⨯≤min(,)m n②()()()T T r A r A r A A == p 教材101,例15③()()r kA r A k =≠ 若0④()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤()r AB ≤{}min (),()r A r B⑥()()()()A r AB r B B r AB r A ⇒=⇒=若可逆若可逆 即:可逆矩阵不影响矩阵的秩.⑦若()()()m n Ax r AB r B r A n AB O B OA AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩在矩阵乘法中有右消去律.⑧()rrE O E O r A r A A O O O O ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型. ⑨()r A B ±≤()()r A r B + {}max (),()r A r B ≤(,)r A B ≤()()r A r B + p 教材70 ⑩()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭ ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭121212,,,0,,,()(),,,A n n A n Ax A n Ax Ax r A r A Ax A n βαααβαααβββααα⇔=−−−−−→=<⇔⇒⇔=⇔=⇔=⇔=−−−−−→≠⇒=⇔⇒ 当为方阵时当为方阵时有无穷多解0表示法不唯一线性相关有非零解可由线性表示有解有唯一组解0克莱姆法则表示法唯一 线127()(),,,()()()1()n Ax r A r A Ax r A r A r A r A οββαααβββ⎧⎪⎪⎪⎪⎨⎪⎪⎪⇔=⎪⎩⎧⇔≠⎪⇔=⇔<⎨⎪⇔+=⎩教材72讲义8性无关只有零解不可由线性表示无解 ○注:AxAx ββ⇒=<≠⇒=<≠有无穷多解其导出组有非零解有唯一解其导出组只有零解Ax β=1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭11212(,,,)n n x x x αααβ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k kk k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪++=⇔++=⎪⎪++=⇔++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解√ 设A 为m n ⨯矩阵,若()r A m =⇒()()r A r A β= ⇒Ax β=一定有解,当m n <时,一定不是唯一解⇒<方程个数未知数的个数向量维数向量个数,则该向量组线性相关.m 是()()r A r A β 和的上限.√ 判断12,,,s ηηη 是Ax ο=的基础解系的条件: ① 12,,,s ηηη 线性无关; ② 12,,,s ηηη 都是Ax ο=的解;③ ()s n r A =-=每个解向量中自由未知量的个数.本帖为考研加油站 和考研论坛 网友songhonger 原创,原创帖子地址 /viewthread.php?tid=2097349&page=1&extra=page%3D1√ 一个齐次线性方程组的基础解系不唯一.√ 若η*是Ax β=的一个解,1,,,s ξξξ 是Ax ο=的一个解⇒1,,,,s ξξξη* 线性无关 √ Ax ο=与Bx ο=同解(,A B 列向量个数相同),则:① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 两个齐次线性线性方程组Ax ο=与Bx ο=同解⇔()()A r r A r B B ⎛⎫==⎪⎝⎭. √ 两个非齐次线性方程组Ax β=与Bx γ=都有解,并且同解⇔()()A r r A r B B βγ⎛⎫==⎪⎝⎭. √ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P );101p 教材 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ). √ 关于公共解的三中处理办法:① 把(I)与(II)联立起来求解;② 通过(I)与(II)各自的通解,找出公共解;当(I)与(II)都是齐次线性方程组时,设123,,ηηη是(I)的基础解系, 45,ηη是(II)的基础解系,则 (I)与(II)有公共解⇔基础解系个数少的通解可由另一个方程组的基础解系线性表示.即:1231231425(,,)(,,)r r c c ηηηηηηηη=+当(I)与(II)都是非齐次线性方程组时,设11122c c ξηη++是(I)的通解,233c ξη+是(II)的通解,两方程组有公共解⇔2331c ξηξ+-可由12,ηη线性表示. 即:12122331(,)(,)r r c ηηηηξηξ=+-③ 设(I)的通解已知,把该通解代入(II)中,找出(I)的通解中的任意常数所应满足(II)的关系式而求出公共解。

线性代数笔记

线性代数笔记

线性代数笔记(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--线性代数笔记第一章行列式 .................................................................................................. 错误!未定义书签。

第二章矩阵 ...................................................................................................... 错误!未定义书签。

第三章向量空间............................................................................................. 错误!未定义书签。

第四章线性方程组.......................................................................................... 错误!未定义书签。

第五章特征值与特征向量...................................... 错误!未定义书签。

第一章行列式行列式的性质给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。

性质1 转置的行列式与原行列式相等。

即(这个性质表明:行列式对行成立的性质,对列也成立,反之亦然)性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。

推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。

推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。

可以证明:任意一个奇数阶反对称行列式必为零。

性质3行列式的两行(列)互换,行列式的值改变符号。

考研线代笔记(精华版)

考研线代笔记(精华版)
3.证明A可逆的充要条件(7个)——详⻅见P36
4.求A逆方方法(4种)——公式法(伴随),行行行初等变换,定义法,分块矩阵
5.矩阵的公式P37(7个)
Note:与转置公式区分(4个)P36
五 初等矩阵
1.定义:单位矩阵经过一一次初等变换得来
Note:3种形式:数乘,倍加,互换
2.初等矩阵的性质:(5个)
1.初等矩阵转置后仍为初等矩阵
2.初等矩阵均为可逆矩阵,且其逆阵仍为同类型初等矩阵
Note:1.互换(不不变)2.倍加(相反数)3.倍乘(倒数)
3.左行行行右列列,注意:初等矩阵的n次方方
4.可逆矩阵A可表示为若干干初等矩阵的乘积(证明——基础笔记)
5.初等行行行变换的原理理(证明——基础笔记)
3.等价,B等价的充要条件:存在可逆矩阵P与Q,使PAQ=B
3.充要条件(秩相等(同型))
六 正交矩阵
1.定义
2.等价条件——转置等于逆
Note:A的行行行列列式为1或-1
3.几几何意义——单位化 与 垂直(内积为0)
七 秩
1.定义——非非零子子式的最高高阶数
3.AB=AC且A不不等于0推不不出B=C
4.对⻆角阵的乘法
! 有交换律律" 求逆(倒数)# n次方方(元素n次方方)
4.求A的n次方方
! 秩为1" 三阶只有三个不不为0为背景型(三阶,四阶的情况)# 相似
5.分块矩阵
1.根据题目目,有不不同的分块方方法
2.运算法则
! 加法" 乘法# 转置(注意副对⻆角线)$ 逆(两种形式)% AB=C两种分块(右行行行),两种表达 方方式& AB=0两种信息' n次方方
一一 概念

线性代数笔记

线性代数笔记

线性代数笔记Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】线性代数笔记第一章行列式1.3.1行列式的性质给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。

性质1 转置的行列式与原行列式相等。

即(这个性质表明:行列式对行成立的性质,对列也成立,反之亦然)性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。

推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。

推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。

可以证明:任意一个奇数阶反对称行列式必为零。

性质3行列式的两行(列)互换,行列式的值改变符号。

以二阶为例推论3 若行列式某两行(列),完全相同,则行列式的值为零。

性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。

性质5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和,注意性质中是指某一行(列)而不是每一行。

性质6 把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。

范德蒙德行列式例10 范德蒙行列式…….=(x2-x1)(x3-x1)(x3-x2)克莱姆法则定理1.4.1 对于n阶行列式定理如果n个未知数,n个方程的线性方程组的系数行列式D≠0,则方程组有惟一的解:定理如果n个未知数n个方程的齐次方程组的系数行列式D≠0,则该方程组只有零解,没有非零解。

推论如果齐次方程组有非零解,则必有系数行列式D=0。

第二章矩阵一、矩阵的运算1、矩阵的加法设A=(a ij)m×n ,B=(b ij)m×n,则A+B=(a ij+b ij)m×n矩阵的加法适合下列运算规则:(1)交换律:A+B=B+A(2)结合律:(A+B)+C=A+(B+C)(3)A+0=0+A=A此处0表示与A同型的零矩阵,即A=(a ij)m×n,0=0m×n(4)矩阵A=(a ij)m×n,规定-A=(-a ij)m×n,(称之为A的负矩阵),则有A+(-A)=(-A)+A=02、矩阵的数乘设A=(a ij)m×n,K为数,则KA=(Ka ij)m×n矩阵的数乘适合下列运算规则:(1)K(A+B)=KA+KB(2)(K+L)A=KA+LA(3)(KL)A=K(LA)(4)1*A=A(5)0*A=0(左端的零是指数0,而右端的“0”表示一个与A行数列数相同的零矩阵。

线性代数必须熟记的结论总结

线性代数必须熟记的结论总结

线性代数必须熟记的结论总结1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n行列式;2. 代数余子式的性质: ①、ijA 和ija 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i ji jijij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n DD-=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n DD-=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D=;将D 主副角线翻转后,所得行列式为4D ,则4DD=;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( =◥◣):主对角元素的乘积;④、◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:AO A C A BC B OB==、(1)m nCA O A A BBO BC ==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnkn kk k E AS λλλ-=-=+-∑,其中kS 为k 阶主子式; 7. 证明0A =的方法:①、A A=-;②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A是n 阶可逆矩阵: ⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵)⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解;⇔nb R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是nR 的一组基; ⇔A是nR 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E== 无条件恒成立;3.1**111**()()()()()()TTTT A A A A A A ----===***111()()()TTTAB B A AB B A AB B A---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则:Ⅰ、12sA A A A = ;Ⅱ、111121s A A A A ----⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;②、111AO A O O B O B ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块)④、11111A C A A C BO B OB-----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O CB BC AB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫=⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1XA-=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1AB-,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,iλ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k-⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质: ①、0()min(,)m nr A m n ⨯≤≤;②、()()Tr Ar A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-; 6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律; ②、型如101001a c b ⎛⎫ ⎪ ⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:111111()nnnn m n mmn n n nmm n mn n n n n nm a b C a C a b C abC a bC b Ca b-----=+=++++++=∑ ;注:Ⅰ、()na b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- mnnn n n n n m n CC C mm n mⅢ、组合的性质:11112---+-===+==∑nm n m m m m r nr r nnn nnnn n r CC CCCCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵: ①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAA X X A A A A X X λλλ- == ⇒ =;③、*1AA A-=、1*n AA-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话) ②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则: ①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换); ②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程: ①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b+++=⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n nm m m n m m a a a x b a a a x bA x b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇔= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x aa a x β⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭);④、1122n n a xa x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性 1.m个n 维列向量所组成的向量组A:12,,,mααα 构成n m ⨯矩阵12(,,,)m A = ααα;m个n 维行向量所组成的向量组B :12,,,T T Tmβββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出Ax b⇔=是否有解;(线性方程组)③、向量组的相互线性表示A X B⇔=是否有解;(矩阵方程)3. 矩阵m nA ⨯与l nB ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()Tr A A r A =;(101P 例15)5. n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关⇔,,αβγ共面;6. 线性相关与无关的两套定理: 若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,sααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B : 若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3)向量组A 能由向量组B 线性表示A X B⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,lP P P ,使12lA P P P = ;①、矩阵行等价:~rA B PA B⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B⇔=(右乘,Q 可逆);③、矩阵等价:~A B P A Q B⇔=(P 、Q 可逆);9. 对于矩阵m nA ⨯与l nB ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m ss n m nAB C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,TA 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解; 12. 设向量组12:,,,n rrBb b b ⨯ 可由向量组12:,,,n ssAa a a ⨯ 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K= (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m nA ⨯,存在n mQ ⨯,mAQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P )②、对矩阵m nA ⨯,存在n mP ⨯,nPA E = ()r A n ⇔=、P 的行向量线性无关;14.12,,,sααα 线性相关⇔存在一组不全为0的数12,,,sk kk ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x x x ααα⎛⎫⎪⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r sααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b=的一个解,12,,,n rξξξ- 为Ax =的一个基础解系,则*12,,,,n rηξξξ- 线性无关;(111P 题33结论)5、相似矩阵和二次型 1. 正交矩阵TA A E⇔=或1TAA-=(定义),性质:①、A的列向量都是单位向量,且两两正交,即1(,1,2,)Ti j i j a a i j n i j=⎧==⎨≠⎩ ;②、若A 为正交矩阵,则1TAA-=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)ra a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关; 对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=P A Q B,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型; ②、A 与B 合同 ⇔=TC A C B,其中可逆;⇔Tx A x与TxB x有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P A P B;- 11 - 5. 相似一定合同、合同未必相似; 若C 为正交矩阵,则T CA CB =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型T x A x 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C A C E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。

(完整版)线性代数知识点全归纳

(完整版)线性代数知识点全归纳

1线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2. 代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;22、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关; ⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===***111()()()T T T AB B A AB B A AB B A ---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则: Ⅰ、12s A A A A =;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭; ②、111A O A O O B OB ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)33、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ;2. 行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X ,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =; ③、若AB ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)4⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式; 二项展开式:01111110()nn n n m n m mn n n n m m n mn n n n n n m a b C a C a b C a b C a b C b C a b-----=+=++++++=∑;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-m n n n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nmn m mm m r nr r nnn n nnn n r C C CC CCrC nC ;③、利用特征值和相似对角化:7. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程;10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;511. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m ααα构成n m ⨯矩阵12(,,,)m A =ααα;m 个n 维行向量所组成的向量组B :12,,,T TTm βββ构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程)3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()T r A A r A =;(101P 例15)5.n 维向量线性相关的几何意义:①、α线性相关⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s ααα线性相关,则121,,,,s s αααα+必线性相关;若12,,,s ααα线性无关,则121,,,s ααα-必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :6若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤;向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P ,使12l A P P P =;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆);9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩;10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】 ①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯可由向量组12:,,,n s s A a a a ⨯线性表示为:1212(,,,)(,,,)r s b b b a a a K =(B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关;14. 12,,,s ααα线性相关⇔存在一组不全为0的数12,,,s k k k ,使得11220s s k k k ααα+++=成立;(定义)⇔1212(,,,)0s s x xx ααα⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<,系数矩阵的秩小于未知数的个数;715. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b =的一个解,12,,,n r ξξξ-为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化;2. 施密特正交化:12(,,,)r a a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ;5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7.n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)8第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。

考研数学历年真题线性代数的考点总结

考研数学历年真题线性代数的考点总结

考研数学历年真题线性代数的考点总结线代部分对很多备考的学子来说,最深刻感觉就是,抽象、概念多、定理多、性质多、关系多。

为大家精心准备了考研数学历年真题线性代数的要点,欢迎大家前来阅读。

?线性代数章节总结第一章行列式本章的考试重点是行列式的计算,考查形式有两种:一是数值型行列式的计算,二是抽象型行列式的计算.另外数值型行列式的计算不会单独的考大题,考选择填空题较多,有时出现在大题当中的一问或者是在大题的处理问题需要计算行列式,题目难度不是很大。

主要方法是利用行列式的性质或者展开定理即可。

而抽象型行列式的计算主要:利用行列式的性质、利用矩阵乘法、利用特征值、直接利用公式、利用单位阵进展变形、利用相似关系。

06、08、10、12年、13年的填空题均是抽象型的行列式计算问题,14年选择考了一个数值型的矩阵行列式,15、16年的数一、三的填空题考查的是一个n行列式的计算,今年数一、数二、数三这块都没有涉及。

第二章矩阵本章的概念和运算较多,而且结论比较多,但是主要以填空题、选择题为主,另外也会结合其他章节的知识点考大题。

本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。

其中06、09、11、12年均考查的是初等变换与矩阵乘法之间的相互转化,10年考查的是矩阵的秩,08年考的那么是抽象矩阵求逆的问题,这几年考查的形式为小题,而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题那么用到了矩阵的秩的相关性质。

14的第一道大题的第二问延续了13年第一道大题的思路,考查的仍然是矩阵乘法与线性方程组结合的知识,但是除了这些还涉及到了矩阵的分块。

16年只有数二了矩阵等价的判断确定参数。

第三章向量本章是线代里面的重点也是难点,抽象、概念与性质结论比较多。

重要的概念有向量的线性表出、向量组等价、线性相关与线性无关、极大线性无关组等。

复习的时候要注意构造和从不同角度理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档