2019-2020学年江苏省常州市2019级高一下学期期末考试数学试卷及答案

合集下载

江苏省常州市2019-2020学年八年级上期中数学试卷及答案

江苏省常州市2019-2020学年八年级上期中数学试卷及答案

江苏省常州市2019-2020学年八年级(上)期中试卷数学一、选择题(每题3分共30分)1.计算(a3)2的结果是()A.a5B.a6C.a8D.a92.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个3.如图,AB∥DE,CD=BF,若要证明△ABC≌△EDF,还需补充的条件是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充4.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.75.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以6.如图是用直尺和圆规作角平分线的示意图,通过证明△DOP≌△EOP可以说明OC是∠AOB的角平分线,那么△DOP≌△EOP的依据是()A.SSS B.SAS C.ASA D.AAS7.下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a58.若4x2+axy+25y2是一个完全平方式,则a=()A.20 B.﹣20 C.±20 D.±109.若(x﹣3)(x+4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12 B.p=﹣1,q=12 C.p=7,q=12 D.p=7,q=﹣1210.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个C.3个D.4个二、填空题(每题2分共18分)11.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.12.一个多边形的每个内角都等于150°,则这个多边形是边形.13.图示,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是(填上适当的一个条件即可)14.若x+y=10,xy=1,则x2y+xy2= .15.因式分解:a3﹣a= .16.计算:(﹣5a4)•(﹣8ab2)= .17.若x=3﹣,则代数式x2﹣6x+9的值为.18.计算:()2007×(﹣1)2008= .19.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为.三、解答题20.计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)21.分解因式:(1)m2﹣6m+9;(2)3x﹣12x3.22.先化简,再求值:2(x﹣3)(x+2)﹣(3+a)(3﹣a),其中a=﹣2,x=1.23.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.24.如图,AB=DE,AC=DF,BE=CF.求证:AB∥DE.25.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.26.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:1+3+32+33+34+ (320)江苏省常州市学八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分共30分)1.计算(a3)2的结果是()A.a5B.a6C.a8D.a9【考点】幂的乘方与积的乘方.【分析】根据幂的乘方,底数不变,指数相乘即可求.【解答】解:(a3)2=a6,故选B.2.现有3cm,4cm,7cm,9cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个【考点】三角形三边关系.【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【解答】解:四条木棒的所有组合:3,4,7和3,4,9和3,7,9和4,7,9;只有3,7,9和4,7,9能组成三角形.故选:B.3.如图,AB∥DE,CD=BF,若要证明△ABC≌△EDF,还需补充的条件是()A.AC=EF B.AB=ED C.∠B=∠E D.不用补充【考点】全等三角形的判定.【分析】根据平行线的性质得出∠B=∠D,求出BC=DF,根据全等三角形的判定定理逐个判断即可.【解答】解:AB=DE,理由是:∵AB∥DE,∴∠B=∠D,∵BF=DC,∴BC=DF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),即选项B正确,选项A、C、D都不能推出△ABC≌△DEF,即选项A、C、D都错误,故选B.4.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,根据题意,得(n﹣2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.5.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以【考点】三角形的面积;三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:三角形的中线把三角形分成等底等高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选B.6.如图是用直尺和圆规作角平分线的示意图,通过证明△DOP≌△EOP可以说明OC是∠AOB的角平分线,那么△DOP≌△EOP的依据是()A.SSS B.SAS C.ASA D.AAS【考点】全等三角形的判定.【分析】熟练掌握三角形全等的判定条件是解答此题的关键.易知:OD=OE,PD=PE,OP=OP,因此符合SSS的条件,故选择A.【解答】解:由作图知:OD=OE、PD=PE、OP是公共边,即三边分别对应相等(SSS),△DOP≌△EOP,故选A.7.下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2D.a3•a2=a5【考点】幂的乘方与积的乘方;科学记数法—原数;同底数幂的乘法;负整数指数幂.【分析】A:根据负整数指数幂的运算方法判断即可.B:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,据此判断即可.C:根据积的乘方的运算方法判断即可.D:根据同底数幂的乘法法则判断即可.【解答】解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.8.若4x2+axy+25y2是一个完全平方式,则a=()A.20 B.﹣20 C.±20 D.±10【考点】完全平方式.【分析】根据这里首末两项是2x和5y这两个数的平方,那么中间一项为加上或减去2x和5y乘积的2倍,即可得出a的值.【解答】解:∵4x2+axy+25y2是一个完全平方式,∴(2x±5y)2=4x2±20xy+25y2,∴a=±20,故选:C.9.若(x﹣3)(x+4)=x2+px+q,那么p、q的值是()A.p=1,q=﹣12 B.p=﹣1,q=12 C.p=7,q=12 D.p=7,q=﹣12【考点】多项式乘多项式.【分析】此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p、q的值.【解答】解:由于(x﹣3)(x+4)=x2+x﹣12=x2+px+q,则p=1,q=﹣12.故选A.10.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个C.3个D.4个【考点】整式的混合运算.【分析】①原式利用单项式乘以单项式法则计算即可得到结果;②原式利用单项式除以单项式法则计算即可得到结果;③原式利用幂的乘方运算计算即可得到结果;④原式利用同底数幂的除法法则计算即可得到结果.【解答】解:①3x3•(﹣2x2)=﹣6x5,正确;②4a3b÷(﹣2a2b)=﹣2a,正确;③(a3)2=a6,错误;④(﹣a)3÷(﹣a)=(﹣a)2=a2,错误,则正确的个数有2个.故选B.二、填空题(每题2分共18分)11.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【考点】三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.12.一个多边形的每个内角都等于150°,则这个多边形是12 边形.【考点】多边形内角与外角.【分析】根据多边形的内角和定理:180°•(n﹣2)求解即可.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.13.图示,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添加一个条件是BC=BD (填上适当的一个条件即可)【考点】全等三角形的判定.【分析】求出∠ABC=∠ABD,根据全等三角形的判定定理SAS推出即可.【解答】解:BC=BD,理由是:∵∠CBE=∠DBE,∠CBE+∠ABC=180°,∠DBE+∠ABD=180°,∴∠ABC=∠ABD,在△ABC和△ABD中∴△ABC≌△ABD,故答案为:BC=BD.14.若x+y=10,xy=1,则x2y+xy2= 10 .【考点】因式分解的应用.【分析】原式提取公因式,将已知等式代入计算即可求出值.【解答】解:∵x+y=10,xy=1,∴原式=xy(x+y)=10,故答案为:10.15.因式分解:a3﹣a= a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣1)=a(a+1)(a﹣1),故答案为:a(a+1)(a﹣1)16.计算:(﹣5a4)•(﹣8ab2)= 40a5b2.【考点】单项式乘单项式.【分析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:(﹣5a4)•(﹣8ab2)=40a5b2.故答案为:40a5b2.17.若x=3﹣,则代数式x2﹣6x+9的值为 2 .【考点】代数式求值.【分析】根据完全平方公式,代数式求值,可得答案.【解答】解:x2﹣6x+9=(x﹣3)2,当x=3﹣时,原式=(3﹣﹣3)2=2,故答案为:2.18.计算:()2007×(﹣1)2008= .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先把原式化为()2007×(﹣1)2007×(﹣1),再根据有理数的乘方法则计算.【解答】解:()2007×(﹣1)2008=()2007×(﹣1)2007×(﹣1)=(﹣×1)2007×(﹣1)=﹣1×(﹣1)=.故答案为:.19.若代数式2a2+3a+1的值为6,则代数式6a2+9a+5的值为20 .【考点】代数式求值.【分析】由题意列出关系式,求出2a2+3a的值,将所求式子变形后,把2a2+3a 的值代入计算即可求出值.【解答】解:∵2a2+3a+1=6,即2a2+3a=5,∴6a2+9a+5=3(2a2+3a)+5=20.故答案为:20.三、解答题20.计算:(1)(ab2)2•(﹣a3b)3÷(﹣5ab);(2)3a(2a2﹣9a+3)﹣4a(2a﹣1)【考点】整式的混合运算.【分析】(1)原式利用积的乘方与幂的乘方运算法则计算,再利用乘除法则计算即可得到结果;(2)原式先利用单项式乘多项式法则计算,去括号合并即可得到结果.【解答】解:(1)原式=a2b4•(﹣a9b3)÷(﹣5ab)=a10b6;(2)原式=6a3﹣27a2+9a﹣8a+4a=6a3﹣35a2+13a;21.分解因式:(1)m2﹣6m+9;(2)3x﹣12x3.【考点】提公因式法与公式法的综合运用.【分析】(1)原式利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=(m﹣3)2;(2)原式=﹣3x(x2﹣1)=﹣3x(x+1)(x﹣1).22.先化简,再求值:2(x﹣3)(x+2)﹣(3+a)(3﹣a),其中a=﹣2,x=1.【考点】整式的混合运算—化简求值.【分析】先根据多项式乘多项式的法则以及平方差公式计算,再去括号,然后合并,最后把a、x的值代入计算.【解答】解:原式=2(x2﹣x﹣6)﹣(9﹣a2)=2x2﹣2x+a2﹣21,当a=﹣2,x=1时,原式=2×12﹣2×1+(﹣2)2﹣21=﹣17.23.如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.【考点】三角形的角平分线、中线和高;三角形内角和定理.【分析】根据AD是△ABC的角平分线,∠BAC=60°,得出∠BAD=30°,再利用CE是△ABC的高,∠BCE=40°,得出∠B的度数,进而得出∠ADB的度数.【解答】解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠B CE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.24.如图,AB=DE,AC=DF,BE=CF.求证:AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【分析】求出BC=EF,根据SSS证△ABC≌△DEF,推出∠B=∠DEF,根据平行线判定推出即可.【解答】证明:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠B=∠DEF,∴AB∥DE.25.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.【考点】全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD﹣DE.【解答】(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,,∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.26.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014将下式减去上式得2S﹣S=22014﹣1即S=22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:1+3+32+33+34+ (320)【考点】规律型:数字的变化类.【分析】设S=1+3+32+33+…+320,两边乘以3得出3S=3+32+33+34+35+…+320+321,将下式减去上式即可得出答案.【解答】解:设S=1+3+32+33+ (320)两边乘以3得:3S=3+32+33+34+35+…+320+321,将下式减去上式,得3S﹣S=321﹣l∴S=,即1+3+32+33+34+…+320=.。

2019年人大附中高一数学期中考试

2019年人大附中高一数学期中考试



x 1 2


x 2
xR Nhomakorabea求f
x 的值域;
(3)若存在 m R 且 m Z ,使得 f m f m ,则称函数 f x 是 函数,若函数 f x x a 是
x 函数,求 a 的取值范围.
5
D.存在 x0 R ,使得 x02 0
5.己知函数
f
x 的图象是两条线段(如图,不含端点),则
f

f
1 3
=(

A. 1
1
B.
3
3
C. 2
2
D.
3
3
1
6.已知 a, b 是实数,则“ a b 0 且 c d 0 ”是“ a b ”的( ) dc
C. 3,3
D. (0, 5]
五、填空题(本大题共 3 小题,每小题 6 分,共 18 分.请把结果填在答题纸上的相应位置.)
21.已知函数 f x 1 x x 3 ,则函数 f x 的最大值为___ __,函数 f x 的最小值点为________.
22.关于 x 的方程 g x t(t R) 的实根个数记 f t .
A. 0,1
B.1, 0,1
2.下列各组函数是同一函数的是( )
A. y x 与 y 1 x
C.0,1, 2
D.1, 0,1, 2
B. y x 12 与 y x 1
C. y x2 与 y x x
D.
y

x3 x2
x 1

y

x
3.下列函数中,在区间 0, 2 是增函数的是( )

2019-2020学年江苏省常州市金坛区八年级上期中考试数学试卷及答案解析

2019-2020学年江苏省常州市金坛区八年级上期中考试数学试卷及答案解析
(1)在图中画出△ABC关于直线l的轴对称图形△A1B1C1;
(2)将图中点A1沿网格线横向或纵向平移一次到格点O,使得△OB1C1为等腰三角形,试在图中画出格点O的位置.
四、解答题(第21题6分,第22题8分,第23题10分,第24、25题每小题6分,共48分)
21.(6分)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,∠1=∠2.
17.(2分)如图,在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD.若△ABD为直角三角形,则∠ADC的度数是°.
18.(2分)如图,在△ABC中,BC=15cm,BP,CP分别是∠ABC和∠ACB的平分线,PD∥AC交BC于点D,PH⊥AB于H,若PH=3cm,BH=6cm,则△PBD的面积是cm2.
∴根据SAS能推出△ABC≌△BAD,故本选项错误;
B、∵∠CAB=∠DBA,AB=AB,∠1=∠2,
∴根据ASA能推出△ABC≌△BAD,故本选项错误;
2019-2020学年江苏省常州市金坛区八年级上期中考试数学试卷
参考答案与试题解析
一、选择题(每小题2分,共16分)
1.(2分)如图,△ABC≌△DEF,BE=1,EC=4,则BF的长是( )
A.5B.6C.7D.8
【解答】解:∵△ABC≌△DEF,
∴BC=EF,
∴BE=CF,
∴BF=BC+CF=BE+EC+BE=1+4+1=6.

∴△AEC≌△CDA(SSS),
∴△ABD≌△CAE,
∴图中的全等三角形共有3对,
故选:C.
3.(2分)如图,∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是( )

人教版二年级2019-2020学年度第二学期期期末数学试题及答案

人教版二年级2019-2020学年度第二学期期期末数学试题及答案

密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2019-2020学年度第二学期期末检测试卷二年级 数学(满分:100分 时间:60分钟)题号一 二 三 四 五 六 总分 得分一、填一填。

(第1题4分,第2、8题3分,其余每空1分,共30分)1.24个苹果平均分给5个小朋友,每人分( )个,还剩( )个。

=(个)……(个)2.填口诀,写算式。

六八三十五 3.一个数,除以7有余数,余数最大是( )。

4.看图写数、读数。

(算盘最右边的一档作为个位)写作:( ) 写作:( ) 写作:( ) 读作:( ) 读作:( ) 读作:( )5.希望小学一年级有196人,二年级有205人,两个年级大约有( )人。

6.10个一千是( );3个千、5个十合起来是( ),这个数的近似数是( )。

7.写出3个不同的除法算式。

÷=8÷=8÷=88.联系生活实际,在括号里填上合适的质量单位。

一箱牛奶重6( ),一条鱼重2000( ),一包瓜子重450( ),一盒牙膏重240( )。

9.在右面的方格中,每行、每列都有1~4这4个数,并且每个数在每行、每列都只出现一次。

A 应该是( ),B 应该是( )。

10.用、、、四张卡片摆出的四位数中,最小的数是( ),最接近9000的数是( ),最接近7000的数是( )。

二、选择。

(把正确答案的序号填在括号里)(每题2分,共10分)1.27里面最多有( )个5。

①2 ②5密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题③62.一个四位数,中间有一个零或两个零时,( )。

①只读一个零 ②读两个零③一个零也不读 3.531<5129,里应填( )①0 ②1 ③24.丁丁、丽丽和园园三个小朋友分别出生在上海、北京和山东。

丁丁说:我从未到过上海。

丽丽说:在上海出生的不是我,我也不是出生在山东。

园园说:我不告诉你。

园园出生在( )。

2019-2020学年常州高中高一(下)期中数学试卷(含答案解析)

2019-2020学年常州高中高一(下)期中数学试卷(含答案解析)

2019-2020学年常州高中高一(下)期中数学试卷一、单空题(本大题共18小题,共94.0分)1. 在数列{a n }及{b n }中,a n+1=a n +b n +√a n 2+b n 2,b n+1=a n +b n −√a n 2+b n 2,a 1=1,b 1.设c n =1a n+1b n,则数列{c n }的前2018项和为______2. 如图:已知三棱柱ABC −A 1B 1C 1的侧棱与底面边长都相等,过顶点A 1作底面ABC 的垂线,若垂足为BC 的中点,则异面直线AB 与CC 1所成的角的余弦值为______ .3. 若对任意x ∈A ,y ∈B ,(A ⊆R,B ⊆R)有唯一确定的f(x,y)与之对应,则称f(x,y)为关于x 、y的二元函数.现定义满足下列性质的二元函数f(x,y)为关于实数x 、y 的广义“距离”; (1)非负性:f(x,y)≥0,当且仅当x =y 时取等号; (2)对称性:f(x,y)=f(y,x);(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z 均成立. 今给出三个二元函数,请选出所有能够成为关于x 、y 的广义“距离”的序号: ①f(x,y)=|x −y|;②f(x,y)=(x −y)2;③f(x,y)=√x −y . 能够成为关于的x 、y 的广义“距离”的函数的序号是______ .4. 在公差不为0的等差数列{a n }中,a 1,a 3,a 4成等比数列,则该等比数列的公比______.5. 钝角△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,c =1,B =π3,则a 的取值范围是______.6. 数列{a n }满足a 1>32,a n+1=a n 2−a n +1,且∑1a i2017i=1=2,则4a 2018−a 1的最大值为______.7. 已知S n 为数列{a n }的前n 项和,a12+a 23+a 34+⋯+a n−1n=a n −2(n ≥2)且a 1=2,则{a n }的通项公式为______.8.在△ABC中,a=8,c=6,且S△ABC=12√3,则B=______ .9.已知数列{a n},{1a n }的前n项和分别为S n,T n,a1=32,a2=74,S n+1−S n−1=a n2+1(n≥2),记[x]表示不超过x的最大整数,如[0.8]=0,[2.1]=2,则[T2018]=______.10.在中,内角的对边分别为,若,,则。

江苏省常州市2019-2020学年高二下学期期末考试数学试题 Word版含解析

江苏省常州市2019-2020学年高二下学期期末考试数学试题 Word版含解析

江苏省常州教育学会学业水平测试2019—2020学年度第二学期(期末)高二数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.从5名男生和4名女生中,选出男女各1名学生主持某次活动,不同的选法种数为 A .9 B .10 C .20 D .40 2.若326n n A C =,则n 的值为A .4B .5C .6D .73.同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数为奇数”为事件A ,“两颗骰子的点数之积为奇数”为事件B ,则P(B ∣A)= A .12 B .13 C .14 D .164.某年级有6个班级,3位数学教师,每位教师任教2个班级,则不同分法的种数有 A .15 B .45 C .90 D .5405.函数22()e xx xf x +=的大致图象是6.对某同学7次考试的数学成绩x 和物理成绩y 进行分析,下面是该生7次考试的成绩.发现他的物理成绩y 与数学成绩x 是线性相关的,利用最小二乘法得到线性回归方程为y =0.5x a +,若该生的数学成绩达到130分,估计他的物理成绩大约是A .114.5B .115C .115.5D .116 7.已知函数3()31f x ax x =++的极大值与极小值的差为4,则实数a 的值为 A .﹣1 B .14-C .14D .18.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的 数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉 三角形”.若将这些数字依次排列构成数列1,1,1,1,2,1, 1,3,3,1,1,4,6,4,1,…,则此数列的第2020项为 A .363C B .463CC .364C D .464C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.下列求导数运算不正确的是A .(sin )cos x x '=-B .2ln 2(log )x x'=C .2ln 1ln ()x x x x+'= D .2121(e )2e x x ++'= 10.已知在某市的一次学情检测中,学生的数学成绩X 服从正态分布N(105,100),其中90分为及格线,120 分为优秀线,下列说法正确的是附:随机变量ξ服从正态分布N(μ,2σ),则P(μσξμσ-<<+)=0.6826, P(22μσξμσ-<<+)=0.9544,P(33μσξμσ-<<+)=0.9974. A .该市学生数学成绩的期望为105 B .该市学生数学成绩的标准差为100 C .该市学生数学成绩及格率超过0.99D .该市学生数学成绩不及格的人数和优秀的人数大致相等 11.已知复数8i2iz +=-,其中i 是虚数单位,则以下说法正确的是 A .复数z 的实部为3 B .复数z 的虚部为2iC .复数z 的模为13D .复数z 的共轭复数32i z =-+12.由0,1,2,3,4,5,6,7,8,9这10个数字组成无重复数字的五位数,其中偶数的个数是 A .41139488A A A A +⋅⋅ B .41439498()A A A A +- C .54143109498()A A A A A -+- D .54143109598()A A A A A --- 三、填空题:本题共4小题,每小题5分,共20分. 13.已知2()nx x+的展开式中第5项与第7项的二项式系数相等,则展开式中常数项为 .第8题14.有一个活动小组有6名男生和4名女生,从中任选3名学生,至多选中2名男生的概率为 . 15.已知函数()e ln xf x a x =+,若曲线()y f x =在1x =处的切线方程为y x b =+,则a +b = .16若a =2b =3c ,则E(X)为 ;若b =12,V(X)的最大值为 . (本小题第一空2分,第二空3分)四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)已知22(815)(56)i z m m m m =-++-+,其中i 是虚数单位,m 为实数.(1)当z 为纯虚数时,求m 的值;(2)当复数z ·i 在复平面内对应的点位于第二象限时,求m 的取值范围. 18.(本题满分12分)江苏省从2021年开始,高考取消文理分科,实行“3+1+2”的模式,其中的“1”表示每位学生必须从物理、历史中选择一个科目且只能选择一个科目,某校为了解高一年级学生对“1”的选课情况,随机抽取了100名学生进行问卷调查,如下表是根据调查结果得到的2×2列联表.((2)请你依据该列联表判断是否有99.5%的把握认为选择科目与性别有关?说明你的理由.附:对于2×2列联表有22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.已知函数21()(1)ln 2f x x m x m x =-++,m ∈R . (1)若m =﹣1,求函数()f x 在区间[1e,e]上的最小值; (2)若m >0,求函数()f x 的单调增区间. 20.(本题满分12分)已知2012(1)nn n x a a x a x a x +=++++,n N *∈.(1)当7n =时,求1357a a a a +++的值; (2)求01235(21)n a a a n a +++++.21.(本题满分12分)常州别称龙城,是一座有着3200多年历史的文化古城.常州既有春秋淹城、天宁寺等名胜古迹,又有中华恐龙园、嬉戏谷等游乐景点,每年都有大量游客来常州参观旅游.为合理配置旅游资源,管理部门对首次来中华恐龙园游览的游客进行了问卷调查,据统计,其中23的人计划只游览中华恐龙园,另外13的人计划既游览中华恐龙园又参观天宁寺.每位游客若只游览中华恐龙园,得1分;若既游览中华恐龙园又参观天宁寺,得2分.假设每位首次来中华恐龙园游览的游客均按照计划进行,且是否参观天宁寺相互独立,视频率为概率.(1)有2名首次来中华恐龙园游览的游客是拼车到常州的,求“这2名游客都是既游览中华恐龙园又参观天宁寺”的概率;(2)从首次来中华恐龙园游览的游客中随机抽取3人,记这3人的合计得分为X ,求X 的概率分布和数学期望. 22.(本题满分12分)已知函数()()e xf x x a b =++,a ,b ∈R .(1)若a =1,求关于x 的不等式()(0)f x f >的解集;(2)若1e a b +=,讨论函数()f x 的零点个数.江苏省常州教育学会学业水平测试2019—2020学年度第二学期(期末)高二数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.从5名男生和4名女生中,选出男女各1名学生主持某次活动,不同的选法种数为 A .9 B .10 C .20 D .40 答案:C考点:分步计数原理解析:5×4=20,故选C . 2.若326n n A C =,则n 的值为A .4B .5C .6D .7 答案:B考点:排列公式与组合公式解析:由326n n A C =得(1)(1)(2)62n n n n n ---=⨯,解得n =5,故选B . 3.同时抛掷一颗红骰子和一颗蓝骰子,观察向上的点数,记“红骰子向上的点数为奇数”为事件A ,“两颗骰子的点数之积为奇数”为事件B ,则P(B ∣A)= A .12 B .13 C .14 D .16答案:A考点:条件概率解析:1()2P A =,91()364P B ==,1()14()1()22P B P B A P A ===,故选A .4.某年级有6个班级,3位数学教师,每位教师任教2个班级,则不同分法的种数有 A .15 B .45 C .90 D .540 答案:C 考点:组合解析:222642156190C C C =⨯⨯=,故选C .5.函数22()e xx xf x +=的大致图象是答案:A考点:利用导数研究函数的性质解析:∵22()e x x x f x +=,∴22()exx f x -'=,列表如下:故选A .6.对某同学7次考试的数学成绩x 和物理成绩y 进行分析,下面是该生7次考试的成绩.发现他的物理成绩y 与数学成绩x 是线性相关的,利用最小二乘法得到线性回归方程为y =0.5x a +,若该生的数学成绩达到130分,估计他的物理成绩大约是A .114.5B .115C .115.5D .116 答案:B考点:线性回归方程解析:100x =,100y =,所以0.51000.510050a y x =-=-⨯=,0.513050115y =⨯+=,故选B .7.已知函数3()31f x ax x =++的极大值与极小值的差为4,则实数a 的值为 A .﹣1 B .14- C .14D .1 答案:A考点:利用导数研究函数的极值解析:∵3()31f x ax x =++,∴2()33f x ax '=+,令()0f x '=,解得1x a=±-, ∴11()()f f a a ---- 111111()()3()()()3()4a a aa a a a a=⨯--+--⨯------= 解得a =﹣1,故选A .8.我国南宋数学家杨辉所著的《详解九章算术》一书中,用如图的 数表列出了一些正整数在三角形中的一种几何排列,俗称“杨辉 三角形”.若将这些数字依次排列构成数列1,1,1,1,2,1, 1,3,3,1,1,4,6,4,1,…,则此数列的第2020项为 A .363C B .463CC .364C D .464C 答案:A考点:二项式定理解析:第2020项是第64行的第4个数字,即为363C ,故选A .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.下列求导数运算不正确的是A .(sin )cos x x '=-B .2ln 2(log )x x'=C .2ln 1ln ()x x x x+'= D .2121(e )2e x x ++'= 答案:ABC考点:导数的运算解析:选项A ,(sin )cos x x '=,故A 错误;选项B ,21(log )ln 2x x '=,故B 错误; 选项C ,2ln 1ln ()x xx x -'=,故C 错误; 选项D 错误,故本题选ABC .10.已知在某市的一次学情检测中,学生的数学成绩X 服从正态分布N(105,100),其中90第8题分为及格线,120 分为优秀线,下列说法正确的是附:随机变量ξ服从正态分布N(μ,2σ),则P(μσξμσ-<<+)=0.6826,P(22μσξμσ-<<+)=0.9544,P(33μσξμσ-<<+)=0.9974.A .该市学生数学成绩的期望为105B .该市学生数学成绩的标准差为100C .该市学生数学成绩及格率超过0.99D .该市学生数学成绩不及格的人数和优秀的人数大致相等 答案:AD考点:正态分布解析:期望为105,选项A 正确;方差为100,标准差为10,选项B 错误;该市85分以上占97.72%,故C 错误;根据对称性可判断选项D 正确,故选AD . 11.已知复数8i2iz +=-,其中i 是虚数单位,则以下说法正确的是 A .复数z 的实部为3 B .复数z 的虚部为2iC .复数zD .复数z 的共轭复数32i z =-+ 答案:AC 考点:复数解析:8i32i 2iz +==+-,故实部为3,虚部为2,z ==32i z =-,故AC 正确.12.由0,1,2,3,4,5,6,7,8,9这10个数字组成无重复数字的五位数,其中偶数的个数是 A .41139488A A A A +⋅⋅ B .41439498()A A A A +- C .54143109498()A A A A A -+- D .54143109598()A A A A A --- 答案:ABD 考点:排列解析:如果个位是0,有49A 个,如果个位不是0,有113488A A A ⋅⋅个,故A 正确;由于13438898A A A A ⋅=-,故B 正确;由于5441099A A A -≠,故C 错误;由于541433411310959889488()41A A A A A A A A A A ---==+⋅⋅,故D 正确.故选ABD . 三、填空题:本题共4小题,每小题5分,共20分. 13.已知2(nx+的展开式中第5项与第7项的二项式系数相等,则展开式中常数项为 .答案:45考点:二项式定理解析:4610nnC C n =⇒=,52021021()r r rr rr nn T C x C x --+==,520082r r -=⇒=,82101045C x C ==.14.有一个活动小组有6名男生和4名女生,从中任选3名学生,至多选中2名男生的概率为 . 答案:56考点:概率解析:3064310516C C P C =-=. 15.已知函数()e ln xf x a x =+,若曲线()y f x =在1x =处的切线方程为y x b =+,则a +b = .答案:0考点:利用导数研究函数的切线解析:∵()e ln xf x a x =+,∴()e xaf x x'=+,(1)e 1f a '=+=, ∴e 1b =+,∴a +b =0.16若a =2b =3c ,则E(X)为 ;若b =12,V(X)的最大值为 . (本小题第一空2分,第二空3分) 答案:411-,12考点:随机变量的均值与方差解析:由a =2b =3c ,1a b c ++=,解得611a =,311b =,211c =, ∴6324()10111111111E X =-⨯+⨯+⨯=-, b =12时,12a c +=,()101E X abc a c =-⨯+⨯+⨯=-+,2222()(1)01E X a b c a c =-⨯+⨯+⨯=+, 222()()()()V X E X E X a c a c =-=+--+,把12a c =-代入得, 211()(2)22V X c =--,14c =时,V(X)有最大值,为12. 四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)已知22(815)(56)i z m m m m =-++-+,其中i 是虚数单位,m 为实数. (1)当z 为纯虚数时,求m 的值;(2)当复数z ·i 在复平面内对应的点位于第二象限时,求m 的取值范围.解:(1)因为z 为纯虚数,所以2281503523560m m m m m m m m ⎧-+===⎧⎪⇒⎨⎨≠≠-+≠⎪⎩⎩或且综上可得,当z 为纯虚数时m =5;(2)因为22i (815)i (56)z m m m m ⋅=-+--+在复平面内对应的点位于第二象限,2281505332(56)0m m m m m m m m ⎧-+>><⎧⎪⇒⎨⎨><--+<⎪⎩⎩或或,即m <2或者m >5, 所以m 的取值范围为(-∞,2)(5,+∞).18.(本题满分12分)江苏省从2021年开始,高考取消文理分科,实行“3+1+2”的模式,其中的“1”表示每位学生必须从物理、历史中选择一个科目且只能选择一个科目,某校为了解高一年级学生对“1”的选课情况,随机抽取了100名学生进行问卷调查,如下表是根据调查结果得到的2×2列联表.((2)请你依据该列联表判断是否有99.5%的把握认为选择科目与性别有关?说明你的理由.有22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.解:(1)随机抽取的100名学生中女生为40人,则男生有100﹣40=60人,所以m =60,b =10,c =20; (2)根据题目所给数据得到如下2×2的列联表:则K 2的观测值:22100(50201020)12.770306040K ⨯⨯-⨯=≈⨯⨯⨯, 因为12.7>7.879,所以有99.5%的把握认为选择科目与性别有关.19.(本题满分12分)已知函数21()(1)ln 2f x x m x m x =-++,m ∈R . (1)若m =﹣1,求函数()f x 在区间[1e ,e]上的最小值; (2)若m >0,求函数()f x 的单调增区间.解:(1)m =﹣1时,21()ln 2f x x x =-,(1)(1)()x x f x x +-'=,x ∈[1e,e], 令()0f x '=得1x =-(舍去)或者1x =,列表如下:所以,当x =1时,函数()f x 的最小值为1(1)2f =, (2)(1)()()x x m f x x--'=,x >0 ①当m =1时,对任意x >0,都有()0f x '≥恒成立(当且仅当x =1时,()0f x '=) 则函数()f x 在区间(0,+∞)上单调递增;②当m >1时,令()0f x '>,得x <1或x >m ;则函数()f x 在区间(0,1),(m ,+∞)上单调递增;③当0<m <1时,令()0f x '>,得x <m 或x >1;则函数()f x 在区间(0,m ),(1,+∞)上单调递增;综上可得,当m =1时,函数()f x 的单调增区间为(0,+∞);当m >1时,函数()f x 的单调增区间为(0,1),(m ,+∞);当0<m <1时,函数()f x 的单调增区间为(0,m ),(1,+∞).20.(本题满分12分)已知2012(1)n n n x a a x a x a x +=++++,n N *∈.(1)当7n =时,求1357a a a a +++的值;(2)求01235(21)n a a a n a +++++. 解:(1)当n =7时,7270127(1)x a a x a x a x +=++++, 令x =1,有7012345672a a a a a a a a =+++++++,①令x =﹣1,有012345670a a a a a a a a =-+-+-+-,②①﹣②得7135722()a a a a =+++,所以61357264a a a a +++==,(2)由题意,i i n a C =,可得i n i a a -=,i =0,1,2,3,…,n ,记01235(21)(21)i n S a a a i a n a =++++++++,则210(21)[2()1]53n n i S n a n i a a a a -=+++-+++++012(21)(21)(23)[2()1]i n n a n a n a n i a a =++-+-++-+++ 所以0122(22)()n S n a a a a =+++++, 令x =1得,0122n n a a a a ++++=, 所以01235(21)(21)(1)2n i n a a a i a n a S n ++++++++==+. 21.(本题满分12分)常州别称龙城,是一座有着3200多年历史的文化古城.常州既有春秋淹城、天宁寺等名胜古迹,又有中华恐龙园、嬉戏谷等游乐景点,每年都有大量游客来常州参观旅游.为合理配置旅游资源,管理部门对首次来中华恐龙园游览的游客进行了问卷调查,据统计,其中23的人计划只游览中华恐龙园,另外13的人计划既游览中华恐龙园又参观天宁寺.每位游客若只游览中华恐龙园,得1分;若既游览中华恐龙园又参观天宁寺,得2分.假设每位首次来中华恐龙园游览的游客均按照计划进行,且是否参观天宁寺相互独立,视频率为概率.(1)有2名首次来中华恐龙园游览的游客是拼车到常州的,求“这2名游客都是既游览中华恐龙园又参观天宁寺”的概率;(2)从首次来中华恐龙园游览的游客中随机抽取3人,记这3人的合计得分为X ,求X 的概率分布和数学期望.解:(1)由题意,每位游客只游览中华恐龙园的概率为23,既游览中华恐龙园又参观天宁寺的概率为13记两位游客中一位游客“既游览中华恐龙园又参观天宁寺”为事件A ,则P(A)=13, 另一位游客“既游览中华恐龙园又参观天宁寺”为事件B ,则P(B)=13, 所以“这2名游客都是既游览中华恐龙园又参观天宁寺”为事件AB ,因为游客是否参观天宁寺相互独立,所以P(AB)=P(A)P(B)=111=339⨯, 答:“这2名游客都是既游览中华恐龙园又参观天宁寺”的概率为19, (2)随机变量X 的可能取值为3,4,5,6,3303218(3)()()3327P X C ===,2213214(4)()()339P X C ===, 1123212(5)()()339P X C ===,0033211(6)()()3327P X C ===, ∴X 的概率分布为:所以E(X)=84213456279927⨯+⨯+⨯+⨯=4 答:X 的数学期望为4.22.(本题满分12分)已知函数()()e x f x x a b =++,a ,b ∈R .(1)若a =1,求关于x 的不等式()(0)f x f >的解集;(2)若1e a b +=,讨论函数()f x 的零点个数.解:(1)a =1时,()(1)e x f x x b =++,()(2)e x f x x '=+,当x >﹣2时,()0f x '>,所以()f x 在区间(﹣2,+∞)上单调递增,由()(0)f x f >得x >0;当x ≤﹣2时,(1)e 0x x +<,此时()()e 1(0)x f x x a b b b f =++<<+=,综上可得,不等式()(0)f x f >的解集为(0,+∞);(2)1e a b +=时,1()()e e x a f x x a +=++,()(1)e xf x x a '=++,令()0f x '=得x =﹣a ﹣1,列表如下:所以,当x =﹣a ﹣1时,函数()f x 的极小值为11(1)e e a a f a --+--=-+; ①当11(1)e e 0a a f a --+--=-+>即1a >-时,对任意x ∈R ,都有()(1)0f x f a ≥-->恒成立,从而函数()f x 无零点,②当11(1)e e 0a a f a --+--=-+=即1a =-时,对任意x ∈R ,都有()(1)0f x f a ≥--≥恒成立(当且仅当x =0时,()0f x =),从而函数()f x 的零点个数为1,③当11(1)e e 0a a f a --+--=-+<即1a <-时,在区间[﹣a ﹣1,﹣a ]上,函数()f x 图象是连续不断的一条曲线,其中(1)0f a --< 1()e 0a f a +-=>,函数()f x 在区间[﹣a ﹣1,+∞ )上单调递增,所以函数()f x 在区间(﹣a ﹣1,+∞)上的零点个数为1;在区间[4a ,﹣a ﹣1]上,函数()f x 图象是连续不断的一条曲线,其中(1)0f a --< 3(4)e (5e e)a a f a a =+,即3()t h t te =,1t <-,3()(31)0t h t e t '=+<,所以3()t h t te =在区间(-∞,﹣1]上单调递减,由a <﹣1得3()(1)e h a h ->-=-,即33e e a a ->-,所以33(4)e (5e e)e (5e e)0a a a f a a -=+>-+>,又因为函数()f x 在区间(-∞,﹣a ﹣1]上单调递减,所以函数()f x 在区间(-∞,﹣a ﹣1)上的零点个数为1;从而函数()f x 的零点个数为2.综上可得,当1a >-时,函数()f x 无零点,当1a =-时,函数()f x 的零点个数为1,当1a <-时,函数()f x 的零点个数为2.。

2019年常州市高一数学下期末试题(及答案)

2019年常州市高一数学下期末试题(及答案)

2019年常州市高一数学下期末试题(及答案)一、选择题1.已知{}n a 是公差为d 的等差数列,前n 项和是n S ,若9810S S S <<,则( )A .0d >,170S >B .0d <,170S <C .0d >,180S <D .0d >,180S >2.ABC 中,已知sin cos cos a b cA B C==,则ABC 为( ) A .等边三角形B .等腰直角三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形3.若,则( )A .B .C .D .4.已知定义在R 上的偶函数f (x )满足f (x -4)=f (x ),且在区间[0,2]上f (x )=x ,若关于x 的方程f (x )=log a |x |有六个不同的根,则a 的范围为( ) A .6,10B .6,22C .(2,22D .(2,4)5.设样本数据1210,,,x x x 的均值和方差分别为1和4,若(i i y x a a =+为非零常数,1,2,,10)i =,则1210,,,y y y 的均值和方差分别为( )A .1,4a +B .1,4a a ++C .1,4D .1,4a +6.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 1767.若,αβ均为锐角,25sin α=()3sin 5αβ+=,则cos β=A 25B 25C 25或25 D .258.已知函数()y f x =为R 上的偶函数,当0x ≥时,函数()()210216()122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,若关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,则实数a 的取值范围是( ) A .51,24⎛⎫-- ⎪⎝⎭ B .11,24⎛⎫-- ⎪⎝⎭ C .1111,,2448⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭D .11,28⎛⎫-- ⎪⎝⎭ 9.在ABC 中,已知,2,60a x b B ===,如果ABC 有两组解,则x 的取值范围是( )A .4323⎛⎫⎪ ⎪⎝⎭,B .4323⎡⎤⎢⎥⎣⎦,C .4323⎡⎫⎪⎢⎪⎣⎭, D .432,3⎛⎤⎥ ⎝⎦10.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35C .25D .1511.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)212.如图,已知三棱柱111ABC A B C -的各条棱长都相等,且1CC ⊥底面ABC ,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角为( )A .2π B . C . D .3π 二、填空题13.奇函数()f x 对任意实数x 都有(2)()f x f x +=-成立,且01x 时,()21x f x =-,则()2log 11f =______.14.若三点1(2,3),(3,2),(,)2A B C m --共线,则m 的值为 . 15.若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________. 16.若直线1x y -=与直线(3)80m x my ++-=平行,则m =______________.17.已知数列{}n a 满足1121,2n n a a a n +==+,则na n的最小值为_______. 18.已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 19.函数2cos 1y x =+的定义域是 _________.20.如图,某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积为________.三、解答题21.某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数.(Ⅰ)若n =19,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件? 22.已知圆O :x 2+y 2=2,直线.l :y=kx-2. (1)若直线l 与圆O 相切,求k 的值;(2)若直线l 与圆O 交于不同的两点A ,B ,当∠AOB 为锐角时,求k 的取值范围;(3)若1k 2=,P 是直线l 上的动点,过P 作圆O 的两条切线PC ,PD ,切点为C ,D ,探究:直线CD 是否过定点.23.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若7c =,332ABC S ∆=,求ABC ∆的周长. 24.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益()f x 与投资额x 成正比,且投资1万元时的收益为18万元,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,且投资1万元时的收益为0.5万元, (1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元? 25.投资商到一开发区投资72万元建起一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设表示前n 年的纯利润总和(前年总收入-前年的总支出 -投资额72万元)(Ⅰ)该厂从第几年开始盈利?(Ⅱ)该厂第几年平均纯利润达到最大?并求出年平均纯利润的最大值.26.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】利用等差数列的通项公式求和公式可判断出数列{}n a 的单调性,并结合等差数列的求和公式可得出结论. 【详解】9810S S S <<,90a ∴<,9100a a +>,100a ∴>,0d >. 179017S a =<∴,()1891090S a a =+>.故选:D. 【点睛】本题考查利用等差数列的前n 项和判断数列的单调性以及不等式,考查推理能力与计算能力,属于中等题.2.B解析:B 【解析】 【分析】 【详解】因为sin cos cos a b c A B C==,所以sin sin sin sin cos cos 4A B C B C A B C π==∴== , 即ABC 为等腰直角三角形.故选:B .3.D解析:D 【解析】试题分析:,且,故选D.【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.4.A解析:A 【解析】由()4f x f x -=()得:4T =,当010]x ∈(,时,函数的图象如图:()()()26102f f f ===,再由关于x 的方程()log a f x x =有六个不同的根,则关于x 的方程()log a f x x =有三个不同的根,可得log 62 log 102a a<⎧⎨>⎩,解得610a ∈(,),故选A.点睛:本题主要考查了函数的周期性,奇偶性,函数的零点等基本性质,函数的图象特征,体现了数形结合的数学思想,属于中档题;首先求出()f x 的周期是4,画出函数的图象,将方程根的个数转化为函数图象交点的个数,得到关于a 的不等式,解得即可.5.A解析:A 【解析】试题分析:因为样本数据1210,,,x x x 的平均数是1,所以1210,,...y y y 的平均数是121012101210 (1101010)y y y x a x a x a x x x a a ++++++++++++==+=+;根据i i y x a =+(a 为非零常数,1,2,,10i =),以及数据1210,,,x x x 的方差为4可知数据1210,,,y y y 的方差为2144⨯=,综上故选A.考点:样本数据的方差和平均数.6.C解析:C 【解析】 【分析】 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 7.B解析:B 【解析】 【分析】利用角的等量代换,β=α+β-α,只要求出α的余弦,α+β的余弦,利用复合角余弦公式展开求之. 【详解】∵α为锐角,sin α= s ,∴α>45°且5cos α= ,∵()3sin 5αβ+=,且13252< ,2παβπ∴+<<,∴45cosαβ+=-() , 则cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα4355=-+= 故选B. 【点睛】本题考查两角和与差的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.8.B解析:B 【解析】 【分析】作出函数()y f x =的图像,设()f x t =,从而可化条件为方程20t at b ++=有两个根,利用数形结合可得114t =,2104t <<,根据韦达定理即可求出实数a 的取值范围. 【详解】由题意,作出函数()y f x =的图像如下,由图像可得,10()(2)4f x f ≤≤=关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根, 设()f x t =,20t at b ∴++=有两个根,不妨设为12,t t ;且114t =,2104t << 又12a t t -=+11,24a ⎛⎫∴∈-- ⎪⎝⎭故选:B 【点睛】本题主要考查函数与方程、由方程根的个数求参数的取值范围,考查学生运用数形结合思想解决问题的能力,属于中档题.9.A解析:A 【解析】 【分析】已知,,a b B ,若ABC 有两组解,则sin a B b a <<,可解得x 的取值范围. 【详解】由已知可得sin a B b a <<,则sin602x x ︒<<,解得4323x <<.故选A. 【点睛】本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断.若ABC 中,已知,,a b B 且B 为锐角,若0sin b a B <<,则无解;若sin b a B =或b a ≥,则有一解;若sin a B b a <<,则有两解. 10.C 解析:C 【解析】选取两支彩笔的方法有25C 种,含有红色彩笔的选法为14C 种,由古典概型公式,满足题意的概率值为142542105C p C ===. 本题选择C 选项. 考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.11.B解析:B 【解析】 函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)=e ﹣2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.12.A解析:A 【解析】 【分析】由题意设棱长为a ,补正三棱柱ABC-A 2B 2C 2,构造直角三角形A 2BM ,解直角三角形求出BM ,利用勾股定理求出A 2M ,从而求解. 【详解】设棱长为a ,补正三棱柱ABC-A 2B 2C 2(如图).平移AB 1至A 2B ,连接A 2M ,∠MBA 2即为AB 1与BM 所成的角,在△A 2BM 中,2A B BM ===,,2A M ==,222222,2A B BM A M MBA π∴+=∴∠=, . 故选A . 【点睛】本题主要考查了异面直线及其所成的角和勾股定理的应用,计算比较复杂,要仔细的做.二、填空题13.【解析】【分析】易得函数周期为4则结合函数为奇函数可得再由时即可求解【详解】则又则故答案为:【点睛】本题考查函数奇偶性与周期性的综合应用具体函数值的求法属于中档题 解析:511-【解析】 【分析】易得函数周期为4,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭,结合函数为奇函数可得222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再由01x 时,()21xf x =-即可求解 【详解】()()(2)()4(2)4f x f x f x f x f x T +=-⇒+=-+=⇒=,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭, 又222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,[]216log 0,111∈, 则216log 112165log 211111f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭故答案为:511- 【点睛】本题考查函数奇偶性与周期性的综合应用,具体函数值的求法,属于中档题14.【解析】试题分析:依题意有即解得考点:三点共线 解析:12【解析】试题分析:依题意有AB AC k k =,即531522m --=+,解得12m =. 考点:三点共线.15.9【解析】【分析】由一元二次方程根与系数的关系得到a+b=pab=q 再由ab ﹣2这三个数可适当排序后成等差数列也可适当排序后成等比数列列关于ab 的方程组求得ab 后得答案【详解】由题意可得:a+b=p解析:9【解析】 【分析】由一元二次方程根与系数的关系得到a+b=p ,ab=q ,再由a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列列关于a ,b 的方程组,求得a ,b 后得答案.【详解】 由题意可得:a+b=p ,ab=q ,∵p>0,q >0,可得a >0,b >0,又a ,b ,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②. 解①得:;解②得:.∴p=a+b=5,q=1×4=4,则p+q=9.故答案为9.点评:本题考查了一元二次方程根与系数的关系,考查了等差数列和等比数列的性质,是基础题.【思路点睛】解本题首先要能根据韦达定理判断出a ,b 均为正值,当他们与-2成等差数列时,共有6种可能,当-2为等差中项时,因为,所以不可取,则-2只能作为首项或者末项,这两种数列的公差互为相反数;又a,b 与-2可排序成等比数列,由等比中项公式可知-2必为等比中项,两数列搞清楚以后,便可列方程组求解p ,q .16.【解析】【分析】由题意得到关于m 的方程解方程即可求得最终结果【详解】由题意结合直线平行的充分必要条件可得:解得:此时两直线方程分别为:两直线不重合据此可知:【点睛】本题主要考查直线平行的充分必要条件解析:32- 【解析】【分析】由题意得到关于m 的方程,解方程即可求得最终结果.【详解】由题意结合直线平行的充分必要条件可得:()()1130m m ⨯--⨯+=, 解得:32m =-,此时两直线方程分别为:1x y -=,338022x y --=, 两直线不重合,据此可知:32m =-. 【点睛】本题主要考查直线平行的充分必要条件,意在考查学生的转化能力和计算求解能力.17.【解析】【分析】根据递推公式和累加法可求得数列的通项公式代入中由数列中的性质结合数列的单调性即可求得最小值【详解】因为所以从而…累加可得而所以则因为在递减在递增当时当时所以时取得最小值最小值为故答案 解析:415. 【解析】【分析】 根据递推公式和累加法可求得数列{}n a 的通项公式.代入n a n中,由数列中*n N ∈的性质,结合数列的单调性即可求得最小值.【详解】因为12n n a a n +=+,所以12n n a a n +-=,从而12(1)(2)n n a a n n --=-≥…, 3222a a -=⨯2121a a -=⨯,累加可得12[12(1)]n a a n -=⨯++⋅⋅⋅+-,2(1)22n n n n -=⨯=- 而121,a =所以221n a n n =-+, 则221211n a n n n n n n-+==+-, 因为21()1f n n n =+-在(0,4]递减,在[5,)+∞递增 当4n =时,338.254n a n ==,当5n =时,418.25n a n ==, 所以5n =时n a n 取得最小值,最小值为415. 故答案为:415【点睛】本题考查了利用递推公式及累加法求数列通项公式的方法,数列单调性及自变量取值的特征,属于中档题. 18.如果l ⊥αm ∥α则l ⊥m 或如果l ⊥αl ⊥m 则m ∥α【解析】【分析】将所给论断分别作为条件结论加以分析【详解】将所给论断分别作为条件结论得到如下三个命题:(1)如果l ⊥αm ∥α则l ⊥m 正确;(2)如果解析:如果l ⊥α,m ∥α,则l ⊥m 或如果l ⊥α,l ⊥m ,则m ∥α.【解析】【分析】将所给论断,分别作为条件、结论加以分析.【详解】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m . 正确;(2)如果l ⊥α,l ⊥m ,则m ∥α.正确;(3)如果l ⊥m ,m ∥α,则l ⊥α.不正确,有可能l 与α斜交、l ∥α.【点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.19.【解析】【分析】由函数的解析式得到关于x 的不等式求解不等式即可确定函数的定义域【详解】函数有意义则:即求解三角不等式可得:则函数的定义域为【点睛】求函数的定义域其实质就是以函数解析式有意义为准则列出 解析:()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【解析】【分析】由函数的解析式得到关于x 的不等式,求解不等式即可确定函数的定义域.【详解】函数有意义,则:2cos 10x +≥,即1cos 2x ≥-, 求解三角不等式可得:()222233k x k k Z ππππ-≤≤+∈, 则函数的定义域为()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.20.【解析】【分析】由三视图知几何体是半个圆锥圆锥的底面半径是1母线长是2得到圆锥的高利用圆锥体积公式得到结果【详解】由三视图知该几何体是半个圆锥圆锥的底面半径是1母线长是2∴圆锥的高是∴几何体的体积是 解析:36π 【解析】 【分析】 由三视图知几何体是半个圆锥,圆锥的底面半径是1,母线长是2,得到圆锥的高,利用圆锥体积公式得到结果.【详解】由三视图知该几何体是半个圆锥,圆锥的底面半径是1,母线长是2, ∴圆锥的高是413-=, ∴几何体的体积是211313326ππ⨯⨯⨯⨯=, 故答案为36π 【点睛】本题考查由三视图还原几何图形,考查圆锥的体积公式,属于基础题. 三、解答题21.(1)()3800,19,y 5005700,19,x x N x x ≤⎧=∈⎨->⎩;(2)19;(3) 购买1台机器的同时应购买19个易损零件.【解析】试题分析:(Ⅰ)分x ≤19及x >19,分别求解析式;(Ⅱ)通过频率大小进行比较;(Ⅲ)分别求出n=19,n=20时所需费用的平均数来确定.试题解析:(Ⅰ)当时,3800y =;当时,3800500(19)5005700y x x =+-=-,所以与的函数解析式为3800,19,{()5005700,19,x y x N x x ≤=∈->. (Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1(380070430020480010)4000100⨯⨯+⨯+⨯=. 若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1(400090450010)4050100⨯⨯+⨯=. 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.【考点】函数解析式、概率与统计【名师点睛】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解的关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.22.(1)k=±1;(2)(1-)∪(13)直线CD 过定点(112-,). 【解析】【分析】(1)由直线l 与圆O 相切,得圆心O (0,0)到直线l 的距离等于半径,由此能求出k .(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),将直线l :y=kx-2代入x 2+y 2=2,得(1+k 2)x 2-4kx+2=0,由此利用根的判断式、向量的数量积公式能求出k 的取值范围.(3)由题意知O ,P ,C ,D 四点共圆且在以OP 为直径的圆上,设P (t ,122t -),其方程为221202x tx y t y ⎛⎫-+--=⎪⎝⎭,C ,D 在圆O :x 2+y 2=2上,求出直线CD :(x+y 2)t-2y-2=0,联立方程组能求出直线CD 过定点(1,12-). 【详解】解:(1)∵圆O :x 2+y 2=2,直线l :y=kx-2.直线l 与圆O 相切,∴圆心O (0,0)到直线l 的距离等于半径,即=,解得k=±1. (2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),将直线l :y=kx-2代入x 2+y 2=2,整理,得(1+k 2)x 2-4kx+2=0, ∴1224k x x 1k +=+,1222x x 1k =+, △=(-4k )2-8(1+k 2)>0,即k 2>1,当∠AOB 为锐角时,OA OB ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1-2)(kx 2-2)=()()212121k x x 2k x x 4+-++ =2262k 1k -+>0, 解得k 2<3,又k 2>1,∴k 1-<或1<k.故k 的取值范围为(1-)∪(1(3)由题意知O ,P ,C ,D 四点共圆且在以OP 为直径的圆上,设P (t ,1t 22-),其方程为x (x-t )+y (y 1t 22-+)=0, ∴221x tx y t 2y 02⎛⎫-+--= ⎪⎝⎭, 又C ,D 在圆O :x 2+y 2=2上,两圆作差得l CD :tx+1t 2y 202⎛⎫--= ⎪⎝⎭,即(x+y 2)t-2y-2=0, 由y 0{?2220x y +=+=,得1{?21x y ==-,∴直线CD 过定点(112-,). 【点睛】本题考查实数的取值范围的求法,考查直线是否过定点的判断与求法,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.23.(1)3C π=(2)5【解析】【分析】【详解】试题分析:(1)根据正弦定理把2cos (cos cos )C a B b A c +=化成2cos (sin cos sin cos )sin C A B B A C +=,利用和角公式可得1cos ,2C =从而求得角C ;(2)根据三角形的面积和角C 的值求得6ab =,由余弦定理求得边a 得到ABC ∆的周长. 试题解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C +=12cos sin()sin cos 23C A B C C C π∴+=⇒=⇒= (2)11sin 622ABC S ab C ab ab ∆=⇒=⇒= 又2222cos a b ab C c +-=2213a b ∴+=,2()255a b a b ∴+=⇒+=ABC ∆∴的周长为5考点:正余弦定理解三角形.24.(1)()1,()0)8f x x g x x ==≥;(2)投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元.【解析】【分析】 (1)投资债券等稳健型产品的收益()f x 与投资额x 成正比,投资股票等风险型产品的收益()g x 与投资额x 的算术平方根成正比,用待定系数法求这两种产品的收益和投资的函数关系;(2)由(1)的结论,设投资股票等风险型产品为x 万元,则投资债券等稳健型产品为20x -万元,这时可构造出一个关于收益y 的函数,然后利用求函数最大值的方法进行求解.【详解】(1)依题意设()1,()f x k x g x k ==,1211(1),(1)82f kg k ====, ()1,()0)8f x x g x x ==≥; (2)设投资股票等风险型产品为x 万元,则投资债券等稳健型产品为20x -万元,1(20)()(20)8y f x g x x =-+=-212)3,0208x =-+≤≤,2,4x ==万元时,收益最大max 3y =万元,20万元资金,投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元.【点睛】本题考查函数应用题,考查正比例函数、二次函数的最值、待定系数法等基础知识与基本方法,属于中档题.25.(I )从第三年开始盈利;(II )第6年,投资商年平均纯利润达到最大,年平均纯利润最大值16万元【解析】【分析】【详解】(Ⅰ)依题意前年总收入- 前年的总支出- 投资额72万元,可得由得,解得 由于,所以从第3年开始盈利.(Ⅱ)年平均利润当且仅当,即时等号成立 即第6年, 投资商平均年平均纯利润最大,最大值为16万元26.(1)0.9(2)0.085,0.125a b ==【解析】试题分析:(Ⅰ)先频数分布表求出课外阅读时间不少于12小时的人数,再由对立事件的频率公式求出一名学生该周课外阅读时间少于12小时的频率;(Ⅱ)结合频数分布表、直方图确定课外阅读时间落在[4,6)、[8,10)的人数为17,求出对应的频率,分别由频率/组距求出a 、b 的值试题解析:(1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有 6+2+2=10名,所以样本中的学生课外阅读时间少于12小时的频率是1010.9100-=. 从该校随机选取一名学生,估计这名学生该周课外阅读时间少于12小时的概率为0.9 (2)课外阅读时间落在组[4,6)的有17人,频率为0.17, 所以0.170.0852a ===频率组距, 课外阅读时间落在组[8,10)的有25人,频率为0.25, 所以0.250.1252b ===频率组距 考点:频率分布直方图。

江苏省常州市高级中学2019_2020学年高一数学上学期期末考试试题含解析

江苏省常州市高级中学2019_2020学年高一数学上学期期末考试试题含解析
故选: 。
【点睛】本题考查了解分式不等式,意在考查学生的计算能力.
5.若函数 则 ( )
A。 B. 2C。 D。 —2
【答案】C
【解析】
【分析】
直接代入数据计算得到答案.
【详解】 , .
故选: 。
【点睛】本题考查了分段函数值的计算,意在考查学生的计算能力。
6。要得到函数 的图象,只需将函数 的图象( )
A. 向左平移 个单位长度B。 向右平移 个单位长度
C。 向左平移 个单位长度D。 向右平移 个单位长度
【答案】C
【解析】
【分析】
将所给函数化为 ,根据三角函数相位变换原则可得结果.
【详解】
只需将 的图象向左平移 个单位长度即可得到 的图象
故选:
【点睛】本题考查三角函数的相位变换,关键是明确相位变换是针对 的变化量的变换,遵循“左加右减"原则。
【答案】BC
【解析】
【分析】
画出函数图像,根据函数图像得到函数周期,单调性,对称,得到答案.
【详解】 ,画出函数图像,如图所示:
故函数的最小正周期为 ,关于 对称,区间 上单调递减。
且函数 的图象与函数 的图象不关于直线 对称。
故选: .
【点睛】本题考查了函数的周期,单调性,对称,意在考查学生的对于函数知识的综合应用。
故选: .
【点睛】本题考查了交集运算,意在考查学生的计算能力.
2。若 , ,则 的坐标为( )
A。 B。 C. D。
【答案】B
【解析】
【分析】
利用向量的坐标运算直接得到答案.
【详解】 .
故选: .
【点睛】本题考查了向量的坐标运算,意在考查学生的计算能力。

2019-2020学年江苏省人教版一年级(下)期末数学试卷(附详细解题答案思路))

2019-2020学年江苏省人教版一年级(下)期末数学试卷(附详细解题答案思路))

2019-2020学年江苏省南通市海安县一年级(下)期末数学试卷试题数:24,总分:1001.(问答题,20分)直接写得数.57+6= 25-9= 4+38= 7+16-8= 84+5=76-60= 8+26= 18-8+50= 8+59= 40+38=5+49= ___ +6=68 31-8= 71-6= 93-8=49-___ =42 5+47= 82-7= 60-9= 28-9=___ +42.(问答题,18分)用竖式计算.85-29= 5+68= 46+47=56+39= 72-38= 60-16=3.(问答题,3分)看图写数.4.(填空题,2分)十位上是4,个位上是9的数是___ ,去掉2个十后是___ .5.(填空题,3分)在65、56、45、6和60这些数中,十位上是6的数有___ 个,个位上是6的数有___ 个,最大的数是___ .6.(填空题,2分)60比___ 大1,比___ 小1.7.(填空题,3分)找规律填一填.(1)___ ,38,40,42,___ .(2)90,85,80,75,___ ,___ .(3)△〇,△△〇,△___ ,___ .8.(问答题,6分)在〇里填上>,<或=.4+7〇7+4 68+3〇6+38 69分〇9角6分72-8〇27+8 90-25〇90-52 77-8〇七十多9.(问答题,3分)按百数表的顺序,在□里填数.10.(填空题,1分)兔妈妈拔了18个萝卜,两只兔宝宝各吃了4个,还剩___ 个萝卜.11.(填空题,2分)光明电影院里,左边的座位都是单号,右边的座位都是双号.亮亮的座位可能是___ 排___ 座,也可能是___ 排___ 座.12.(问答题,1分)小明家里有一个人,他今年是三十多岁,这个人可能是谁?13.(问答题,1分)☆表示的数字都相同,得数最大的算式是哪一个?14.(问答题,1分)正方形对折一次后,不可能折出下面哪个图形?(对的打“√”)15.(问答题,1分)妈妈买了一束花插在2个花瓶里,正好使每个花瓶里的花同样多.这束花可能是___ 朵.(对的画“√”)16.(问答题,1分)在1-100中,十位与个位上的数字相同的两位数有几个?17.(问答题,1分)亮亮买一个62元的书包,付的全是20元的人民币,他最少要付几张20元?18.(问答题,3分)用5个珠子在计数器上表示不同的两位数,先画一画,再写一写.想一想:用5个珠子能拨出的最大两位数是___ ,最小两位数是___ .19.(问答题,3分)先在方格纸上画一个长方形和一个正方形,再把长方形分成两个三角形.20.(问答题,4分)看图写算式.(1)(2)21.(问答题,3分)妈妈买了多少个苹果?22.(问答题,6分)公共汽车里原有45人,第一次下车18人,第二次下车人数和第一次同样多.(1)一共下车多少人?(2)车上还剩多少人?23.(问答题,6分)一班有22个皮球,二班有9个皮球.(1)二班再买几个皮球就和一班同样多?(2)把两个班的球全部放进下边的纸箱,能装下吗?24.(问答题,6分)(1)明明买了一把,付了___ 张5元和2张1元.(2)东东买了一个付了50元,应找回多少元?(3)商店促销,满50元送一个水杯.华华获得了一个水杯,他买的是上面哪两个玩具?请你圈出来.2019-2020学年江苏省一年级(下)期末数学试卷参考答案与试题解析试题数:24,总分:1001.【解答】:解:57+6=63 25-9=16 4+38=42 7+16-8=15 84+5=8976-60=16 8+26=34 18-8+50=60 8+59=67 40+38=785+49=54 62+6=68 31-8=23 71-6=65 93-8=8549-7=42 5+47=52 82-7=75 60-9=51 28-9=15+42.【点评】:笔算整数加减法的方法:(1)相同数位对齐;(2)从个位加起或减起;(3)哪一位相加满十向上一位进一;(4)哪一位不够减从上一位借一当十,加上原来的数再减.3.【点评】:做这题的关键点是学生会数数及正确的计算整数加法.4.故答案为:49;29.5. 【正确答案】:[1]2; [2]2; [3]656.【正确答案】:[1]59; [2]617. 【正确答案】:[1]36; [2]44; [3]70; [4]65; [5]△△〇; [6]△△△△〇8.【点评】:解决本题注意观察数据的特点,根据数据的不同选择合适的方法进行比较.9.【点评】:本题考查整数的认识,解决本题的关键是能够按照百数表中的规律正确的数.10. 【正确答案】:[1]1011.【正确答案】:[1]13; [2]22; [3]13; [4]24;12.【点评】:解决本题要注意结合实际情况,感知三十多岁属于谁的年龄.13.【点评】:解决本题运用赋值法,求出各个算式的结果,从而解决问题.14.【解析】:一个正方形沿对边中点连线对折一次后,可得到2个长为原正方形边长,宽为原正方形边长一半的长方形;把一个正形沿对角线对折一次,可得到2个两直角边为原正方形边长的等腰直角三角形;把一个正方形不论怎么对折一次,都不可能得到正方形.15.【正确答案】:1216.【点评】:此题主要考查自然数的认识.17.【解析】:因为付的全是20元的人民币,20元+20元+20元=60元,因为要付62元,再付一张20元的,所以最少要付4张20元的.18.【正确答案】:50; 1419.【点评】:此题考查的目的是理解掌握长方形、正方形的特征及应用.20.【点评】:考查了运用加减法的意义来解决实际问题的能力.21.【点评】:本题考查了加法的意义的实际应用,关键是明确数量之间的关系.22.【解析】:(1)第一次下车18人,第二次下车人数和第一次同样多,也是18人,把这两次下车的人数相加,就是一共下车的人数;【点评】:考查了整数加减法意义的灵活运用.23.【点评】:本题主要考查图文应用题,关键是根据所给图示,找到解决问题的条件,解决问题.24.故答案为:2.【点评】:本题主要考查图文应用题,关键根据图示找到解决问题的条件,解决问题.。

江苏省常州市2019-2020学年第一学期期中调研九年级数学试卷 含答案

江苏省常州市2019-2020学年第一学期期中调研九年级数学试卷  含答案

2019~2020学年度第一学期期中质量调研九年级数学试题一、选择题(每小题2分,共16分) 1.下列四个图案中,不是轴对称图案的是 -------------------------------------------------------- 【 】A . B. C. D.2.若1x ,2x 是一元二次方程260x x --=的两个根,则12x x 的值是 ------------------- 【 】A . 1B . 6C .-1D .-63.下列命题中,真命题的个数是 -------------------------------------------------------------------- 【 】①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形.③任意一个三角形一定有一个外接圆,并且只有一个外接圆.④三角形的内心到三角形的三个顶点距离相等.A .4个B .3个C .2个D .1个4.如果一元二次方程2(1)0x m x m +++=的两个根是互为相反数,那么有 ---------- 【 】 A .m =-1 B .m =0 C .m =1 D .以上结论都不对5.设P 为⊙O 外一点,若点P 到⊙O 的最短距离为3,最长距离为7,则⊙O 的半径为-【 】A .3B .2C .4或10D .2或56.已知半径为3的⊙O 上一点P 和⊙O 外一点Q ,如果OQ =5,PQ =4,则PQ 与⊙O 的位置关系是 ------------------------------------------------------------------------------------ 【 】A .相交B .相切C .相离D .位置不定7.如图,在一幅长60 cm 、宽40 cm 的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是31002cm ,设金色纸边的宽为2x cm ,则满足的方程是 ----------------------------- 【 】A .(60)(40)3100x x ++=B .(602)(40)3100x x ++=C .(602)(402)3100x x ++=D .(60)(402)3100x x ++=8.如图,正方形ABCD 的边长为2,点E 是BC 上一点,以AB 为直径在正方形内作半圆O ,将△DCE 沿DE 翻折,点C 刚好落在半圆O 的点F 处,则CE 的长为 ----------------------------------- 【 】A .23B .35C .34D .47第7题图BD第8题图2019.11二、填空题(每小题2分,共20分)9.方程0)2()1(=+-x x 的解是 . 10.关于x 的方程221(1)50aa a x x --++-=是一元二次方程,则a =_________.11.如果在-1是方程210x mx +-=的一个根,那么m 的值为________.12.某种商品原价是250元,经两次降价后的价格是160元,则平均每次降价的百分率为 . 13.如下图,△ABC 的外心坐标是 .14.如下图,AD 为△ABC 的外接圆⊙O 的直径,若∠BAD =50°,则∠ACB = °.15.如上图,四边形ABCD 内接于⊙O ,E 为BC 延长线上一点,若∠A =n °,则∠DCE = °. 16.如上图,△ABC 内接于半径为5 cm 的⊙O ,且∠BAC =30°,则BC 的长为 cm . 17.将半径为3,圆心角120° 的扇形围成一个圆锥的侧面,则这个圆锥的高为 . 18.在△ABC 中,若O 为BC 边的中点,则必有:AB 2+AC 2=2AO 2+2BO 2成立.依据以上结论,解决如下问题:如图,在矩形DEFG 中,已知DE =4,EF =3,点P 在以DE 为直径的半圆上运动,则22PF PG +的最小值为 .三、解下列方程(每小题4分,共16分) 19.⑴ 2410x -=⑵ 244x x +=⑶ 22310x x +-= ⑷ 22(1)(23)0x x +--=四、解答题(共48分)20.(6分)已知一元二次方程22(23)(3)0x m x m +-+-=有两个不相等的实数根,求m 的取值范围.第15题图第13题图 第14题图第16题图 EDGFP第18题图21.(6分)如图,A 、B 、C 、D 为⊙O 上四点,若AC ⊥OD 于E ,且2AB AD .请说明AB =2AE .22.(6分)如图,已知AB 是⊙O 的直径,C 、D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连接BC .⑴ 试说明AE =ED .⑵ 若AB =10,∠CBD =36°,求AC 的长.23.(7分)如图,已知AB 是⊙P 的直径,点C 在⊙P 上,D 为⊙P 外一点,且∠ADC =90°,直线CD 为⊙P的切线.⑴ 试说明:2∠B +∠DAB =180° ⑵ 若∠B =30°,AD =2,求⊙P 的半径.BD24.(7分)已知:在△ABC 中,AB =AC .点A 在以BC 为直径的⊙O 外.⑴ 请在图①中仅用无刻度的直尺画.......出点O 的位置(保留画图痕迹); ⑵ 如图②,若△ABC 的外接圆的圆心为M ,OM =4,BC =6,求△ABC 的面积.25.(7分)某通讯器材公司销售一种市场需求较大的新型通讯产品,已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)为120万元,在销售过程中发现,年销售量y (万件)与销售单价x (元)之间存在着如图所示的一次函数关系.⑴ 直接写出y 关于x 的函数关系式为 .⑵ 市场管理部门规定,该产品销售单价不得超过100元,该公司销售该种产品当年获利55万元,求当年的销售单价.A BC图①图②26.(9分)如图,射线QN与等边△ABC的两边AB、BC分别交于点M、N,且AC∥QN,AM=MB=2 cm,QM=4 cm.动点P从点Q出发,沿射线QN以每秒1 cm的速度向右移动.记点P运动的时间为t秒,求t取哪些值时,以点P为半径的⊙P与△ABC的边相切(切点在边上).九年级数学参考答案及评分意见一、选择题(每小题2分,共16分)二、填空题(每小题2分,共20分)9.121,2x x ==- 10.3 11.012.20% 13.(5,2)14.4015.n16.517. 18.10三、解下列方程(共16分) 19.⑴ 214x =------------------------------------------------------------------------------------------------- 2分∴1211,22x x ==- ---------------------------------------------------------------------------------- 4分⑵ 2(2)0x -= ------------------------------------------------------------------------------------------- 2分∴122x x == ---------------------------------------------------------------------------------------- 4分⑶ 2417b ac -= ---------------------------------------------------------------------------------------- 1分x == ---------------------------------------------------------------------- 2分∴1233,44x x -+--== --------------------------------------------------------------- 4分 ⑷ (123)(123)0x x x x ++-+-+= -------------------------------------------------------------- 1分 (32)(4)0x x --+= -------------------------------------------------------------------------------- 2分∴122,43x x == ------------------------------------------------------------------------------------- 4分四、解答题(共48分)20.解:22(23)4(3)0m m ---> ----------------------------------------------------------------------- 3分∴74m <----------------------------------------------------------------------------------------------- 6分 21.解:∵ AC ⊥OD ,∴ 2AC AD =,AC =2AE , ----------------------------------------- 2分 ∵ 2AB AD =,∴ AC AB =, ------------------------------------ 3分 ∴ AC =AB , -------------------------------------------------------------- 5分 ∴ AB =2AE . ------------------------------------------------------------ 6分22.解:⑴ ∵AB 是⊙O 的直径,∴∠ADB =90°, --------------------------------------------------------------------------- 1分 ∵OC ∥BD ,∴∠AEO =∠ADB =90°,即OC ⊥AD , ------------------------------------------------------------------------------- 2分 ∴AE =ED ; --------------------------------------------------------------------------------- 3分 ⑵ ∵OC ⊥AD ,∴AC CD =,∴∠ABC =∠CBD =36°,∴∠AOC =2∠ABC =2×36°=72°, ------------------------------------------------- 5分 ∴7252180AC ππ⨯==.----------------------------------------------------------------- 6分23.解:⑴ 连接CP∵PC =PB ,∴∠B =∠PCB ,∴∠APC =∠PCB +∠B =2∠B --------------------------------------------------------- 2分 ∵CD 是⊙OP 的切线,∴∠DCP =90° ------------ 3分 ∵∠ADC =90°,∴∠DAB +∠APC =180°∴2∠B +∠DAB =180° ----------- 4分 ⑵ 连接AC∵∠B =30°,∴∠APC =60°, ------------ 5分 ∵PC =P A ,∴△ACP 是等边三角形,∴AC =P A ,∠ACP =60° -------------- 6分 ∴∠ACD =30°,∴AC =2AD =4,∴P A =4 ----------------------------------------- 7分 答:⊙P 的半径为424.⑴ 画图 ------------------------------------------------------------ 3分⑵ 连接BM ∵AB =AC ,OB =OC ,∴∠BOM =90° ----------- 4分 ∵BC =6,∴OB =3,∴AM =BM =5 ---------------- 5分 ∴AO =9,∴1272ABCSBC AO == --------------- 7分答:△ABC 的面积为2725.解:⑴ 1820y x =-+ --------------------------------------------------------------------------------- 3分 ⑵ 1(40)(8)1205520x x --+-= ------------------------------------------------------------ 4分(40)(160)3500x x --+= [][]60(100)60(100)3500x x +---= 2(100)100x -= ∴190x =,2110x = ------------------------------------------ 6分∵100x ≤,∴90x =答:当年销售单价为90元 --------------------------------------------------------------- 7分26.解:∵△ABC 是等边三角形,QN ∥AC ∴△BMN 是等边三角形 ------------------------ 2分图①图②分为三种情况:①如图1,当⊙P 切AB 于M ′时,连接PM ′, 则∠PM ′M =90° ∵PM =4t -,∴M ′M =142t -, ∴PM ′4-= ∴t =2或6; ---------------------------------------------------------------------------------------------- 4分 ②如图2,当⊙P 于AC 切于A 点时,连接P A , 则∠CAP =∠APM =90°,∠PMA =∠BMN =60°,AP, ∴PM =1cm ,∴QP =3cm ,即t =3, 当⊙P 于AC 切于C 点时,连接PC ,则∠CP ′N =∠ACP ′=90°,∠P ′NC =∠BNM =60°,CP ′, ∴P ′N =1cm ,∴QP =7cm ,即当3≤t ≤7时,⊙P 和AC 边相切; --------------------------------------------------------------- 6分 ③如图3,当⊙P 切BC 于N ′时,连接PN ′ 则∠PN ′N =90°∵PN =6t -,∴N ′N =162t -,∴PN ′6-=∴t =4或8; ---------------------------------------------------------------------------------------------- 8分 综上所述:t =2或3≤t ≤7或t =8. ----------------------------------------------------------------- 9分图2图3图1。

2019-2020学年江苏省常州市金坛区苏教版五年级下册期末教学质量检测数学试卷(含答案解析)

2019-2020学年江苏省常州市金坛区苏教版五年级下册期末教学质量检测数学试卷(含答案解析)

2019-2020学年江苏省常州市金坛区苏教版五年级下册期末教学质量检测数学试卷学校:___________姓名:___________班级:___________考号:___________一、口算和估算1.直接写出得数。

13+=48 931010-= 1235+= 111644+-= 12+=3 3146-= 219+= 12133--= 二、脱式计算2.计算下面各题,能简算的要简算。

355+486- 1151669⎛⎫-+ ⎪⎝⎭ 5198713713-+- 三、解方程或比例3.解方程。

3.6 1.29.6x x += 640.15x ÷= 4 2.5518x ⨯+=四、填空题4.在括号里填合适的数。

()()()9561040÷==÷=。

5.在( )里填上合适的最简分数。

42分=( )小时 50毫升=( )升 37<( )47< 6.下面六个分数中,最接近0的是( ),最接近1的是( )。

23 14 18 35 910 1615 7.三个质数的积是42,这三个质数是( )。

8.下图涂色部分的面积是()()平方米,涂色部分占总面积的()()。

9.下图中涂色圆个数占圆总个数的()()。

再涂2个圆,那么涂色圆个数是空白圆个数的()()。

10.在上面□里填上合适的小数:在下面□里填上合适的分数。

11.在下面计数器上至少再添上( )颗珠子就能拨出3的倍数。

12.在下面计数器上用3颗算珠表示三位数,其中5的倍数共有( )个。

13.下图中长方形的宽是6厘米。

两个圆心之间的距离是( )厘米,涂色部分的面积是( )平方厘米。

(可以用含有π的式子表示计算结果)14.亮亮设计一个计算程序:“输入个数→乘3→加上a→输出结果。

”当亮亮输入8,输出结果是30。

豆豆也输入了一个数,输出结果是81,那么豆豆输入的数是( )。

五、选择题15.如果n是奇数,()也一定是奇数。

A.n+2B.n+3C.2n16.在59、37、1224、911、13、45这些分数中,比12大的有()个。

常州市名校重点中学2019-2020学年高一下学期期末2份数学统考试题

常州市名校重点中学2019-2020学年高一下学期期末2份数学统考试题

一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若ABC 的面积为2224b c a +-,则角A =( ) A .π2B .π3 C .π4 D .π6 2.已知全集{}{}{}0,1,2,3,4,0,1,2,2,3U M N ===则U C M N ⋂= ( )A .{}2B .{}3C .{}2,3,4D .{}0,1,2,3,43.已知数列{}n a 是等比数列,若2678492ma a a a a ⋅=-⋅,且公比3(5,2)q ∈,则实数m 的取值范围是()A .(2,6)B .(2,5)C .(3,6)D .(3,5) 4.已知01x <<,当411x x +-取得最小值时x =( ) A .22- B .21- C .45 D .235.一个三棱锥的三视图如图所示,则该棱锥的全面积为( )A .1232+B .1262+C .932+D .962+6.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,则对正整数m ,下列四个结论中:(1) 232m m m m m S S S S S --、、成等差数列,也可能成等比数列;(2) 232m m m m m S S S S S --、、成等差数列,但不可能成等比数列;(3) 23m m m S S S 、、可能成等比数列,但不可能成等差数列;(4) 23m m m S S S 、、不可能成等比数列,也不叫能成等差数列.正确的是( )A .(1)(3)B .(1)(4)C .(2)(3)D .(2)(4)7.一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm2)为( )A .48B .64C .120D .808.已知12F F ,是椭圆与双曲线的公共焦点,P是它们的一个公共点,且12PF PF >,线段1PF 的垂直平分线过2F ,若椭圆的离心率为1e ,双曲线的离心率为2e ,则21e 2e 2+的最小值为() A .6 B .3 C .6 D .39.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,给出以下四个结论:①D 1C ∥平面A 1ABB 1 ②A 1D 1与平面BCD 1相交③AD ⊥平面D 1DB ④平面BCD 1⊥平面A 1ABB 1正确的结论个数是( )A .1B .2C .3D .410.设(2,1)a =,(3,2)b =,(5,4)c =,若c a b λμ=+则λ,μ的值是()A .3λ=-,2μ=B .2λ=-,3μ=C .2λ=,3μ=D .3λ=,2μ=11.已知1(,1)2x ∈,ln a x =,2ln b x =,3ln c x =,那么( )A .a b c <<B .c a b <<C .b a c <<D .b c a << 12.已知{}n a 是等差数列,其中11a =-,511a =,则公差d = ( )A .1B .3-C .2-D .3二、填空题:本题共4小题13.若数列满足,,,则该数列的通项公式______. 14.函数()2sin cos 3cos f x x x x =的单调递减区间为______.15.已知三棱锥D ABC -的外接球的球心O 恰好是线段AB 的中点,且AC BC BD AD ====22CD =,则三棱锥D ABC -的体积为__________.16.已知(0,)απ∈,且1sin 43πα⎛⎫+= ⎪⎝⎭,则cos sin αα-=_____. 三、解答题:解答应写出文字说明、证明过程或演算步骤。

2019-2020学年江苏省常州市教育学会高一(下)期末数学试卷(含答案解析)

2019-2020学年江苏省常州市教育学会高一(下)期末数学试卷(含答案解析)

2019-2020学年江苏省常州市教育学会高一(下)期末数学试卷一、单选题(本大题共12小题,共60.0分)1.从数字0,1,2,3,4组成的五位自然数a1a2a3a4a5中任取一个数,则该数满足a1>a2>a3,a3<a4<a5的“凹数”(如31024.54134等)的概率是()A. 231250B. 23625C. 232500D. 95002.一个总体分为A,B,C三层,用分层抽样方法从总体中抽取容量为50的样本,已知B层中每个个体被抽到的概率都为112,则总体容量为()A. 150B. 200C. 500D. 6003.若回归直线方程的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是().A. =1.23x+4B. =1.23x+5C. =1.23x+0.08D. =0.08x+1.234.直线2x−y−3=0的倾斜角为θ,则tanθ=()A. 12B. −12C. 2D. −25.在△ABC中,a、b、c分别是内角A,B,C所对的边,C=,若且D、E、F三点共线(该直线不过点O),则△ABC周长的最小值是()A. B. C. D.6.如图是一个几何体的三视图(尺寸的长度单位为),则它的体积是().A.B.C.D.7.一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1,V2,V3,V4,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有()A. V1<V2<V4<V3B. V1<V3<V2<V4C. V2<V1<V3<V4D. V2<V3<V1<V48.直线2x+3y+1=0与直线4x+my+7=0平行,则它们之间的距离为()A. 4B. 213√13 C. 526√13 D. 720√109.命题p:∀a≥0,关于x的方程x2+ax+1=0有实数解,则¬p为()A. ∃a<0,关于x的方程x2+ax+1=0有实数解B. ∃a<0,关于x的方程x2+ax+1=0没有实数解C. ∃a≥0,关于x的方程x2+ax+1=0没有实数解D. ∃a≥0,关于x的方程x2+ax+1=0有实数解10.如图,正方体ABCD−A1B1C1D1的棱长为1,E,F是线段B1D上的两个动点,且EF=√22,则下列结论错误的是()A. AC⊥BFB. 直线AE、BF所成的角为定值C. EF//平面ABCD. 三棱锥A−BEF的体积为定值11.在△ABC中,a,b,c分别为角A,B,C的对边,若B=60°,a+1,b,c依次成递增的等差数列,当△ABC的周长为20时,其面积等于()A. 10√3B. 20√3C. 30√3D. 40√312.点P(a,b)关于l:x+y+1=0对称的点仍在l上,则a+b=()A. −1B. 1C. 2D. 0二、单空题(本大题共4小题,共20.0分)13.已知一组数据4.6,4.9,5.1,5.3,5.6,则该组数据的方差是______.14.如图所示,已知DE//BC,BF∶EF=3∶2,则AC∶AE=________,AD∶DB=________.15.下列四个命题中,真命题的序号有______ (写出所有真命题的序号).①将函数y=|x+1|的图象按向量y=(−1,0)平移,得到的图象对应的函数表达式为y=|x|.②圆x2+y2+4x−2y+1=0与直线y=12x相交,所得弦长为2.③若sin(α+β)=12,sin(α−β)=13,则tanαcotβ=5.④如图,已知正方体ABCD−A1B1C1D1,P为底面ABCD内一动点,P到平面AA1D1D的距离与到直线CC1的距离相等,则P点的轨迹是抛物线的一部分.16.已知圆C:x2+y2−2x+4y=0,直线L:x+y+a=0(a>0),圆心到直线L的距离等于√2,则a的值为______ .三、解答题(本大题共6小题,共70.0分)17.如图,已知A、B、C是一条直路上的三点,AB与BC各等于1千米,从三点分别遥望塔M,在A处看见塔在北偏东45方向,在B处看见塔在正东方向,在C处看见塔在南偏东60°方向,求塔到直路ABC的最短距离.18.为了检验“喜欢玩手机游戏与认为作业多”是否有关系,某班主任对班级的30名学生进行了调查,得到一个2×2列联表:认为作业多认为作业不多合计喜欢玩手机游戏182不喜欢玩手机游戏6合计30提供临界值表如下:P(K≥k0)0.0100.0050.001k0 6.6357.87910.828(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程);(Ⅱ)能否在犯错误的概率不超过0.005的前提下认为“喜欢玩手机游戏”与“认为作业多”有关系?(Ⅲ)若从不喜欢玩手机游戏的人中随机抽取3人,则至少2人认为作业不多的概率是多少?19. 如图所示,在三棱锥PABC中,已知PC⊥平面ABC,点C在平面PBA内的射影D在直线PB上.(1)求证:AB⊥平面PBC;(2)设AB=BC,直线PA与平面ABC所成的角为45°,求异面直线AP与BC所成的角;(3)在(2)的条件下,求二面角C−PA−B的余弦值.20. 某企业经过短短几年的发展,员工近百人.不知何因,人员虽然多了,但员工的实际工作效率还不如从前.2019年6月初,企业领导按员工年龄从企业抽选20位员工交流,并将被抽取的员工按年龄(单位:岁)分为四组:第一组[20,30),第二组[30,40),第三组[40,50),第四组[50,60],且得到如下频率分布直方图:(1)求实数a的值;(2)若用简单随机抽样方法从第二组、第三组中再随机抽取2人作进一步交流,求“被抽取得2人均来自第二组”的概率.21. 求曲线C 1:{x =2t 2+1y =2t t 2+1被直线l :y =x −12所截得的线段长.22. 已知动圆与直线相切且与圆:外切。

常州市名校2019-2020学年高一下期末统考数学试题含解析

常州市名校2019-2020学年高一下期末统考数学试题含解析

常州市名校2019-2020学年高一下期末统考数学试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若使得()f x 在区间,3πϕ⎡⎤-⎢⎥⎣⎦上为增函数的整数ω有且仅有一个,则实数ϕ的取值范围是( ) A .,63ππ⎛⎤⎥⎝⎦ B .,63ππ⎡⎤⎢⎥⎣⎦C .0,3π⎛⎤ ⎥⎝⎦D .0,3π⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】根据()f x 在区间,3πϕ⎡⎤-⎢⎥⎣⎦上为增函数的整数ω有且仅有一个,结合正弦函数的单调性,即可求得答案. 【详解】()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,使得()f x 在区间,3πϕ⎡⎤-⎢⎥⎣⎦上为增函数可得0262263,,22362k k k Z k Z k k πππωωππππωϕπωϕπ⎧<≤--+≤-⎧⎪⎪⎪∈∴∈⎨⎨≤+⎪⎪+≤+⎩⎪⎩,, 当03πϕ-<≤时,满足整数ω至少有12,,舍去当0ϕ>时,0,(0,2]k ω=∈,30πωϕ<≤要使整数ω有且仅有一个, 须123πϕ≤<,解得:63ππϕ<≤ ∴实数ϕ的取值范围是,63ππ⎛⎤ ⎥⎝⎦.故选:A . 【点睛】本题主要考查了根据三角函数在某区间上单调求参数值,解题关键是掌握正弦型三角函数单调区间的解法和结合三角函数图象求参数范围,考查了分析能力和计算能力,属于难题.A .22a b >B .22a b >C .||||a b >D .11a b< 【答案】B 【解析】【分析】通过反例可排除,,A C D ;根据2xy =的单调性可知B 正确. 【详解】当1a =-,2b =-时,22a b <,a b <,则,A C 错误; 当1a =,1b =-时,11a b>,则D 错误; 由2xy =单调递增可知,当a b >时,22a b >,则B 正确 本题正确选项:B 【点睛】本题考查不等关系的判断,解决此类问题常采用排除法,属于基础题. 3.在等差数列{}n a 中,已知3a=2,58a a +=16,则10a 为( )A .8B .128C .28D .14【答案】D 【解析】 【分析】将已知条件转化为1,a d 的形式列方程组,解方程组求得1,a d ,进而求得10a 的值. 【详解】依题意112221116a d a d +=⎧⎨+=⎩,解得1107127a d ⎧=-⎪⎪⎨⎪=⎪⎩,故101914a a d =+=.故选:D. 【点睛】本小题主要考查等差数列通项的基本量计算,属于基础题. 4.如右图所示,直线123,,l l l 的斜率分别为123,,k k k 则C .132k k k <<D .321k k k <<【答案】C 【解析】试题分析:由图可知10k <,230k k >>,所以231k k k >>,故选C . 考点:直线的斜率.5.若实数,x y 满足不等式组031y x y x y ≥⎧⎪+≤⎨⎪-≥-⎩,则2z x y =-的最小值是( )A .1-B .0C .1D .2【答案】A 【解析】 【分析】画出不等式组031y x y x y ≥⎧⎪+≤⎨⎪-≥-⎩的可行域,再根据线性规划的方法,结合2y x z =-的图像与z 的关系判定最小值即可. 【详解】画出可行域,又2z x y =-求最小值时, 故2y x z =-的图形与可行域有交点,且2y x z =-往上方平移到最高点处.易得此时在()0,1处取得最值2011z =⨯-=-.故选:A 【点睛】本题主要考查了线性规划与绝对值函数的综合运用,需要根据题意画图,根据函数的图形性质分析.属于中档题. 6.的内角,,的对边分别为,,.已知,,,则( )A .B .C .D .【分析】 利用正弦定理求出的值,由得出,可得出角的值,再利用三角形的内角和定理求出角的大小. 【详解】 由正弦定理得,则,,则,所以,,由三角形的内角和定理得,故选:C. 【点睛】本题考查利用正弦定理解三角形,也考查了三角形内角和定理的应用,在解题时要注意正弦值所对的角有可能有两角,可以利用大边对大角定理或两角之和小于进行验证,另外就是要熟悉正弦定理解三角形所适用的基本情形,考查计算能力,属于中等题.7.甲、乙两名运动员分别进行了5次射击训练,成绩如下: 甲:7,7,8,8,1; 乙:8,9,9,9,1.若甲、乙两名运动员的平均成绩分别用12x x ,表示,方差分别用2212s s ,表示,则 A .221212x x s s >>, B .221212x x s s ><, C .221212x x s s <<, D .221212x x s s <>,【答案】D 【解析】 【分析】分别计算平均值和方差,比较得到答案. 【详解】 由题意可得127788108999108955x x ++++++++====,,()()()()()222222178788888108655s -+-+-+-+-==,()()()()()222222289999999109255s -+-+-+-+-==. 故221212x x s s <>,.本题考查了数据的平均值和方差的计算,意在考查学生的计算能力. 8.函数22sin 2cos sin 3y x x x =+--的最大值是()A .34B .34-C .3D .3-【答案】B 【解析】 【分析】令sin ,[1,1]t x t =∈-,再计算二次函数定区间上的最大值。

江苏省常州市2019-2020学年新高考高一数学下学期期末质量跟踪监视试题

江苏省常州市2019-2020学年新高考高一数学下学期期末质量跟踪监视试题

一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知1,6,()2a b a b a ==⋅-=,则向量a 与向量b 的夹角是( ) A .6π B .4π C .3π D .2π 2.已知sin 0θ<,tan 0θ>,那么θ是( ) A .第一象限B .第二象限C .第三象限D .第四象限3.在锐角ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若2sin a b A =,则B 等于( ) A .75︒B .60︒C .45︒D .304.已知(,4),(3,2)a x b ==,a ∥b 则x =( ) A .6B .38-C .-6D .385.不等式2230x x +->的解集为( ) A .()3,1- B .(,3)(1,)-∞-⋃+∞ C .()1,3-D .(,1)(3,)-∞-+∞6.若直线1l :280ax y +-=与直线2l :(1)40x a y +++=平行 ,则a 的值为( ) A .1 B .1或2C .-2D .1或-27.实数满足121x y y x -+⎧⎨≥-⎩,则3x y +的取值范围为( )A .[]19, B .[]39,C .312⎡⎤⎢⎥⎣⎦,D .392⎡⎤⎢⎥⎣⎦,8.已知在三角形ABC 中,2AB BC AC ===,、、A B C 点都在同一个球面上,此球面球心O 到平面ABC ,点E 是线段OB 的中点,则点O 到平面AEC 的距离是( )A B C .12D .19.在ABC ∆,内角,,A B C 所对的边分别为,,a b c ,且1,2,2a b c ===,则cos B =( ) A .16B .13C .14D .110.设α为锐角,()()sin ,1,1,2a b α==,若a 与b 共线,则角α=( ) A .15°B .30°C .45°D .60°11.将3sin 4y x =的图象向左平移12π个单位长度,再向下平移3个单位长度得到()y f x =的图象,若()f m a =,则π3f m ⎛⎫-= ⎪⎝⎭( )A .a -B .3a --C .3a -+D .6a --12.若等差数列{}n a 和{}n b 的公差均为()0d d ≠,则下列数列中不为等差数列的是( ) A .{}n a λ(λ为常数) B .{}n n a b + C .{}22n n a b -D .{}n n a b ⋅二、填空题:本题共4小题13.已知等差数列{}n a 的前n 项和为n S ,若553S π=,则24cos()a a +=_______ 14.圆22640x y x y +-+=和圆22450x y x +--=交于A ,B 两点,则弦AB 的垂直平分线的方程是________.15.(如下图)在正方形ABCD 中,E 为BC 边中点,若AE AB AD λμ=+,则λμ+=__________.16.已知圆C:()2269x y -+=,点M 的坐标为(2,4),过点N(4,0)作直线l 交圆C 于A ,B 两点,则MA MB +的最小值为________三、解答题:解答应写出文字说明、证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19. (12分)
在△ABC中,内角A,B,C所对的边分别为a,b,c.已知
(1)求角A的大小;
(2)若b+c-6,△ABC的面积为5,求a.
20. (12分)
新冠肺炎疫情期间,为确保“停课不停学",各校精心组织了线上教学活动开学后,某校采用分层抽样的方法从三个年级的学生中抽取一个容量为150的样本进行关于线上教学实施情况的问卷调查.已知该校高一年级共有学生660人,抽取的样本中高二年级有50人,高三年级有45人.下表是根据抽样调查情况得到的高二学生日睡眠时间(单位:h)的频率分布表
A. 2
B.4
C. 6
D. 8
二、填空题:本题共4小题,每小题5分,共20分
13.直线 :2x+y+1=0与直线 :4x+ 2y-3=0之间的距离为________
14.如图,把一个表面涂有蓝漆的正方体木块锯成64个完全相同的的小正方体,若从中任取一块,则这一块至多有一直涂有蓝漆的概率为________
四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤。
17. (10分)
在平面直角坐标系xOy中,已知△ABC的顶点A(1,5),B(-3,7),C(-8,2).
(1)求AC边上的高所在直线方程:
(2)求△ABC的面积.
18. (12分)
已知
(1)求cosα-sinα;
(2)求
(3)设M,N是圆C上任意两个不同的点,若以MN为直径的圆与直线l都没有公共点,求k的取值范围.
2019-2020学年江苏省常州市2019级高一下学期期末考试
9.已知直线 :3x-y-1-0, :x+2y-5-0, :x-ay-3-0不能围成三角形,则实数a的取值可能为
A. 1
В.
C.-2
D. -1
10.对于△ABC,下列说法中正确的是
A.若sinA<sinB,则A<B
B.若sinA=cosB,则△ABC是直角三角形
C.若acosA=bcosB,则△ABC是等腰三角形
15.如图,正四面体ABCD中,异面直线AB与CD所成的角为________,直线AB与底面BCD所成角的余弦值为________(本题第一空2分,第二空3分)
16.如图,在平面四边形ABCD中,△ABC是以A为直角的等腰直角三角形,BD=2,CD=1,则四边形ABCD面积的最大值为________
2.直线 的倾Байду номын сангаас角为
3.若 ,则
4. 的值为
5.某5个数据的均值为10,方差为2,若去掉其中一个数据10后,剩下4个数据的均值为 ,,方差为 ,则
6.如图所示是一个正方体的展开图,则在原来的正方体中,AB与
CD的位置关系是
A. 平行B.相交C.异面D. 垂直
7.我国古代数学名著《九章算术》中将亚四棱锥称为方锥.已知半
(1)求证:MN∥平面PAD;
(2)求证:MN⊥平面PCD;
(3)求二面角B—PC—D的大小
22. (12分)
在平面直角坐标系xOy,中,已知点A(0,-2),B(4,0),圆C经过点(0,-1),(0,1)及 .斜率为k的直线l经过点B.
(1)求圆C的标准方程;
(2)当k=2时,过直线l上的一点P向圆C引一条切线,切点为Q,且满足 ,求点P的坐标
2019-2020学年江苏省常州市2019级高一下学期期末考试
数学试卷
★祝考试顺利★
(含答案)
注意事项:
1.请将本试卷答案填写在答题卡相应位置上
2.考试时间120分钟,试卷总分150分.
一、单项选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.抛掷一枚硬币,连续出现9次正面向上,则第10次出现正面向上的概率为
(1)求该校学生总数
(2)求频率分布表中实数x,y,z的值;
(3)已知日睡眠时间在区间[6,6.5)的5名高二学生中,有2名女生,3名男生,若从中任选2人进行面谈,则选中的2人恰好为一男一女的概率.
21. (12分)
如图,在四棱锥P—ABCD中,底面ABCD为正方形,PA⊥底面ABCD,PA=AD.M,N分别是AB,PC的中点
D.若tanA+tanB+tanC>0,则△ABC是锐角三角形
11.已知α,β是两个不同的平面,m,n是两条不同的直线,下列说法中正确的是
A.若m⊥α,m⊥n,n∥β,则α⊥β
B.若m⊥α,m∥n,nβ,则α⊥β
C.若α∥β,m⊥α,n⊥β,则m∥n
D.若α∥β,mα,nβ,则m∥n
12.在平面直角坐标系xOy中,已知点A(-4,0),点B是圆C: 上任一点.点P为AB的中点.若点M满足 ,则线段PM的长度可能为
球内有一个方锥,方锥的底面内接于半球的底面,方锥的顶点
在半球的球面上,若方锥的体积为18,则半球的表面积为
(第6题图)
8.直线y=x+b与曲线 有且仅有 一个公共点,则实数b
的取值集合为
二、多项选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的待5分,部分选对的得3分,有选错的得0分。
相关文档
最新文档