Wet sliding friction of elastomer compounds on a rough surface under varied lubrication conditions
翻译
硅烷化水性交联聚氨酯分散体系的合成与表征摘要:一系列的水性聚氨酯分散体系制备是先由异佛尔酮二异氰酸酯、聚(氧四亚甲基)二醇和二羟甲基丙酸的逐步加聚反应来制备预聚物,然后再用3-氨基丙基三甲氧基硅烷交联、封端来制备硅烷化聚氨酯分散体系。
在封端反应发生前,为了避免凝胶化体系分散已经进行。
纯的或者是四亚乙基五胺链式增长聚氨酯也已经合成好。
连段长度和异氰酸根与羟基的比值是可以变化的。
这些预聚物分散体系的性质是由傅里叶红外变换、差示扫描量热法、热重量分析、X射线衍射、拉伸强度和表面接触角测量、纳米压痕测量、凝胶含量、水和二甲苯溶胀性以及耐储存性这些来表征的。
与纯聚氨酯分散体比较可以发现,硅烷化聚氨酯分散体在模量和硬度上增强,但在拉伸性能上减弱。
这可能是由于少量的氢键和硅烷化聚氨酯的甲氧基硅烷水解缩合反应而得到的交联硅氧烷网络,并由此形成的薄膜的脆性,并且3-氨基丙基三氧基硅烷的封端和交联被证实对此也有影响。
硅烷化聚氨酯体系的凝胶含量随着异氰酸根和羟基的比值的增长而增加,并且所有的样品在自然状态下都是非定形态的。
硅烷化聚氨酯分散体系的热稳定性比纯的或者是胺扩链的聚氨酯分散体系要高的多。
在水中和溶剂中的溶胀的减弱和水接触角的增长证明了硅烷化聚氨酯的硅氧基团的有效交联。
储存稳定性结果表明所有预分散体系可以保持稳定3个月以上。
关键词:交联;分散体系;硬度;压痕;聚氨酯;热重量分析(TGA)。
简介由于现代社会不断增加的需求,科研工作者把他们的全部注意力投在特种材料的合成上。
传统上聚合物是由于它的机械性能而被使用,现在发展成为满足特殊用途的特殊材料。
聚氨酯已被证明是具有高性能的工程材料,它拥有良好的机械力学性能、很高的化学和溶剂稳定性等等。
正是由于这些方方面面的性能,聚氨酯几乎有应用的无限光谱可用作先进技术的特种聚合物。
聚合材料的一个主要应用就是在涂料领域。
涂料的大量需求,是以美化材料外观和保护材料免遭环境腐蚀为前提的。
纳米管制作皮肤感应器 翻译 中英
最后译文:纳米管弹性制作出皮肤般的感应器美国斯坦福大学的研究者发现了一种富有弹性且透明的导电性能非常好的薄膜,这种薄膜由极易感触的碳纳米管组成,可被作为电极材料用在轻微触压和拉伸方面的传感器上。
“这种装置也许有一天可以被用在被截肢者、受伤的士兵、烧伤方面接触和压迫的敏感性的恢复上,也可以被应用于机器人和触屏电脑方面”,这个小组如是说。
鲍哲南和他的同事们在他们的弹透薄膜的顶部和底部喷上一种碳纳米管的溶液形成平坦的硅板,覆盖之后,研究人员拉伸这个胶片,当胶片被放松后,纳米管很自然地形成波浪般的结构,这种结构作为电极可以精准的检测出作用在这个材料上的力量总数。
事实上,这种装配行为上很像一个电容器,用硅树脂层来存储电荷,像一个电池一样,当压力被作用到这个感应器上的时候,硅树脂层就收紧,并且不会改变它所储存的电荷总量。
这个电荷是被位于顶部和底部的硅树脂上的纳米碳管测量到的。
当这个复合膜被再次拉伸的时候,纳米管会自动理顺被拉伸的方向。
薄膜的导电性不会改变只要材料没有超出最初的拉伸量。
事实上,这种薄膜可以被拉伸到它原始长度的2.5倍,并且无论哪种方向不会使它受到损害的拉伸它都会重新回到原始的尺寸,甚至在多次被拉伸之后。
当被充分的拉伸后,它的导电性喂2200S/cm,能检测50KPA的压力,类似于一个“坚定的手指捏”的力度,研究者说。
“我们所制作的这个纳米管很可能是首次可被拉伸的,透明的,肤质般感应的,有或者没有碳的纳米管”小组成员之一Darren Lipomi.说。
这种薄膜也可在很多领域得到应用,包括移动设备的屏幕可以感应到一定范围的压力而不仅限于触摸;可拉伸和折叠的几乎不会毁坏的触屏感应器;太阳能电池的透明电极;可包裹而不会起皱的车辆或建筑物的曲面;机器人感应装置和人工智能系统。
其他应用程序“其他系统也可以从中受益—例如那种需要生物反馈的—举个例子,智能方向盘可以感应到,如果司机睡着了,”Lipomi补充说。
轮胎的抗湿滑性能 Wet Grip of Tires
Water lubrication between r(HL) 及弹性液动润滑 (EHL)
Hydrodynamic lubrication (HL) and elasto-hydro-dynamic lubrication (EHL) 界面润滑 (BL)
Maximizing boundary lubrication component 增加过渡区和牵引区的摩擦系数
Increasing friction coefficients in transition and traction zones 高摩擦胎面胶的开发及高抗湿滑轮胎的制造 Development of high friction tread compounds and manufacture of ties with high wet skid resistance
Boundary lubrication (BL)
APAC19
报告提纲
Overview
轮胎在湿路面上滚动或滑移时,接地面可分成润滑机理不同的三区: For a wheel rolling or sliding on wet road surface, the contact area can be divided longitudinally into three distinct zones with different lubrication mechanisms: 排水区 – 接地面前区,主要为液动润滑 (HL) 和弹性液动润滑 (ELH)
Squeezing water film zone – the forward region of the contact area, dominated by hydrodynamic lubrication (HL) and elasto-hydro-dynamic lubrication (EHL) 牵引区 (即实际接地区) – 接地面后区, 以界面润滑 (BL)为主 Traction zone or actual contact zone - the rear part of the contact area, dominated by boundary lubrication (BL) 过渡区 – 介于排水区与牵引区之间,主要为弹性液动润滑 (ELH)和界面润滑 (BL) Transition zone – the contact area between squeezing water film and traction, dominated by elasto-hydro-dynamic lubrication (EHL) and boundary lubrication (BL)
轮胎的抗湿滑性能 Wet Grip of Tires
Squeezing water film zone – the forward region of the contact area, dominated by hydrodynamic lubrication (HL) and elasto-hydro-dynamic lubrication (EHL) 牵引区 (即实际接地区) – 接地面后区, 以界面润滑 (BL)为主 Traction zone or actual contact zone - the rear part of the contact area, dominated by boundary lubrication (BL) 过渡区 – 介于排水区与牵引区之间,主要为弹性液动润滑 (ELH)和界面润滑 (BL) Transition zone – the contact area between squeezing water film and traction, dominated by elasto-hydro-dynamic lubrication (EHL) and boundary lubrication (BL)
Boundary lubrication (BL)
APAC19
报告提纲
Overview
材料摩擦系数表(中英文对照)
Static 静摩擦Sliding 滑动摩擦Static 静摩擦Sliding 滑动摩Aluminum 铝合金、铝Mild Steel 低碳钢0,610,47Brake Material 刹车材料Cast Iron 铸铁0,4Brake Material 刹车材料Cast Iron (Wet)铸铁(湿的)0,2Brass 黄铜Cast Iron 铸铁0,3Brick 砖Wood 木0,6Bronze 青铜Cast Iron 铸铁0,22Bronze 青铜Steel 钢0,16Cadmium 镉Cadmium 镉0,50,05Cadmium 镉Mild Steel 低碳钢0,46Cast Iron 铸铁Cast Iron 铸铁1,10,150,07Cast Iron 铸铁Oak 橡木0,490,075Chromium 铬Chromium 铬0,410,34Copper 铜Cast Iron 铸铁1,050,29Copper 铜Copper 铜1,00,08Copper 铜Mild Steel 低碳钢0,530,360,18Copper-Lead Alloy 铜铅合金Steel 钢0,22-Diamond 金刚石Diamond 金刚石0,10,05 - 0,1Diamond 金刚石Metal 金属材料0,1 -0,150,1Glass 玻璃Glass 玻璃0,9 - 1,00,40,1 - 0,60,09-0,12Glass 玻璃Metal 金属材料0,5 - 0,70,2 - 0,3Glass 玻璃Nickel 镍0,780,56Graphite 石墨Graphite 石墨0,10,1Graphite 石墨Steel 钢0,10,1Graphite (In vacuum)石墨(真Graphite (In vacuum)石墨(真0,5 - 0,8Hard Carbon 硬碳Hard Carbon 硬碳0,160,12 - 0,14Hard Carbon 硬碳Steel 钢0,140,11 - 0,14Iron 铁Iron 铁1,00,15 - 0,2Lead 铅Cast Iron 铸铁0,43Leather 皮革Wood 木0,3 - 0,4Leather 皮革Metal(Clean)金属(干)0,60,2Leather 皮革Metal(Wet)金属(湿)0,4Leather 皮革Oak (Parallel grain)橡木(顺纹)0,610,52Magnesium 镁Magnesium 镁0,60,08Nickel 镍Nickel 镍0,7-1,10,530,280,12Nickel 镍Mild Steel 低碳钢0,64;0,178Nylon 尼龙Nylon 尼龙0,15 - 0,25Oak 橡木Oak (parallel grain)橡木(顺纹)0,620,48Oak 橡木Oak (cross grain)橡木(交叉纹)0,540,320,072Platinum 铂Platinum 铂1,20,25Plexiglas 有机玻璃Plexiglas 有机玻璃0,80,8Plexiglas 有机玻璃Steel 钢0,4 - 0,50,4 - 0,5Polystyrene 聚苯乙烯Polystyrene 聚苯乙烯0,50,5Polystyrene 聚苯乙烯Steel 钢0,3-0,350,3-0,35Polythene 聚乙烯Steel 钢0,20,2Rubber 橡胶Asphalt (Dry)沥青(干)0,5-0,8Rubber 橡胶Asphalt (Wet)沥青(湿)0,25-0,0,75Rubber 橡胶Concrete (Dry)混泥土(干)0,6-0,85Rubber 橡胶Concrete (Wet)混泥土(湿)0,45-0,75Saphire 蓝宝石Saphire 蓝宝石0,20,2Silver 银Silver 银1,40,55Sintered Bronze 烧结青铜Steel 钢-0,13Solids 固体Rubber 橡胶1,0 - 4,0--Steel 钢Aluminium bronze 铝青铜0,45Steel 钢Brass 黄铜0,350,19Steel(Mild)钢(低碳)Brass 黄铜0,510,44Steel (Mild)钢(低碳)Cast Iron 铸铁0,230,1830,133Steel 钢Cast Iron 铸铁0,40,21Steel 钢Copper Lead Alloy 铜铅合金0,220,160,145Steel (Hard)钢(高碳)Graphite 石墨0,210,09Steel 钢Graphite 石墨0,10,1Steel (Mild)钢(低碳)Lead 铅0,950,950,50,3Steel (Mild)钢(低碳)Phos. Bros 0,340,173Steel 钢Phos Bros0,35Steel(Hard)钢(高碳)Polythened 聚乙烯0,20,2Steel(Hard)钢(高碳)Polystyrene 聚苯乙烯0,3-0,350,3-0,35Steel (Mild)钢(低碳)Steel (Mild)钢(低碳)0,740,570,09-0,19Steel(Hard)钢(高碳)Steel (Hard)钢(高碳)0,780,420,05 -0,110,029-.12Steel 钢Zinc Plated on steel 镀锌钢铁0,50,45--Teflon 镍Steel 钢0,040,040,04Teflon 镍Teflon 镍0,040,040,04Tin 锡Cast Iron 铸铁0.32Tungsten Carbide 碳化钨Tungsten Carbide 碳化钨0,2-0,250,12Tungsten Carbide 碳化钨Steel 钢0,4 - 0,60,08 - 0,2Tungsten Carbide 碳化钨Copper 铜0,35Tungsten Carbide 碳化钨Iron 铁0,8Wood 木Wood(clean)木(干)0,25 - 0,5Wood 木Wood (Wet)木(湿)0,2Wood 木Metals(Clean)金属(干)0,2-0,6Wood 木Metals (Wet)金属(湿)0,2Wood 木Brick 砖0,6Wood 木Concrete 混泥土0,62Zinc 锌Zinc 锌0,60,04Zinc 锌Cast Iron 铸铁0,850,21StaticSliding Static Sliding MATERIAL 1材料1MATERIAL 2材料2Coefficient Of Friction 摩擦系数μ(f )DRY 干摩擦Greasy 有润滑摩擦Aluminum 铝合金、铝Aluminum 铝合金、铝1,05-1,351,40,3Coefficient Of FrictionDRY LUBRICATEDMATERIAL 2MATERIAL 1PDF created with pdfFactory Pro trial version 。
机械专业毕业论文中英文翻译--在全接触条件下,盘式制动器摩擦激发瞬态热弹性不稳定的研究
Frictionally excited thermoelastic instability in disc brakes—Transientproblem in the full contact regimeAbstractExceeding the critical sliding velocity in disc brakes can cause unwanted forming of hot spots, non-uniform distribution of contact pressure, vibration, and also, in many cases, permanent damage of the disc. Consequently, in the last decade, a great deal of consideration has been given to modeling methods of thermo elastic instability (TEI), which leads to these effects. Models based on the finite element method are also being developed in addition to the analytical approach. The analytical model of TEI development described in the paper by Lee and Barber [Frictionally excited thermo elastic instability in automotive disk brakes. ASME Journal of Tribology 1993;115:607–14] has been expanded in the presented work. Specific attention was given to the modification of their model, to catch the fact that the arc length of pads is less than the circumference of the disc, and to the development of temperature perturbation amplitude in the early stage of breaking, when pads are in the full contact with the disc. A way is proposed how to take into account both of the initial non-flatness of the disc friction surface and change of the perturbation shape inside the disc in the course of braking.Keywords: Thermo elastic instability; TEI; Disc brake; Hot spots1. IntroductionFormation of hot spots as well as non-uniform distribution of the contact pressure is an unwanted effect emerging in disc brakes in the course of braking or during engagement of a transmission clutch. If the sliding velocity is high enough, this effect can become unstable and can result in disc material damage, frictional vibration, wear, etc. Therefore, a lot of experimental effort is being spent to understand better this effect (cf. Refs.) or to model it in the most feasible fashion. Barber described the thermo elastic instability (TEI)as the cause of the phenomenon. Later Dow and Burton and Burton et al.introduced a mathematical model to establish critical sliding velocity for instability, where two thermo elastic half-planes are considered in contact along their common interface. It is in a work by Lee and Barber that the effect of the thickness was considered and that a model applicable for disc brakes was proposed. Lee and Barber’s model is made up with a metallic layer sliding between twohalf-planes of frictional material. Only recently a parametric analysis of TEI in disc brakes was made or TEI in multi-disc clutches and brakes was modeled. The evolution of hot spots amplitudes has been addressed in Refs. Using analytical approach or the effect of intermittent contact was considered. Finally, the finite element method was also applied to render the onset of TEI (see Ref.).The analysis of nonlinear transient behavior in the mode, when separated contact regions occur, is even accomplished in Ref. As in the case of other engineering problems of instability, it turns out that a more accurate prediction by mathematical modeling is often questionable. This is mainly imparted by neglecting various imperfections and random fluctuations or by the impossibility to describe all possible influences appropriately. Therefore, some effort aroused to interpret results of certain experiments in addition to classical TEI (see, e.g.Ref).This paper is related to the work by Lee and Barber [7].Using an analytical approach, it treats the inception of TEI and the development of hot spots during the full contact regime in the disc brakes. The model proposed in Section 2 enables to cover finite thickness of both friction pads and the ribbed portion of the disc. Section 3 is devoted to the problems of modeling of partial disc surface contact with the pads. Section 4 introduces the term of ‘‘thermal capacity of perturbation’’ emphasizing its association with the value of growth rate, or the sliding velocity magnitude. An analysis of the disc friction surfaces non-flatness and its influence on initial amplitude of perturbations is put forward in the Section 5. Finally, the Section 6 offers a model of temperature perturbation development initiated by the mentioned initial discnon-flatness in the course of braking. The model being in use here comes from a differential equation that covers the variation of the‘‘thermal capacity’’ during the full contact regime of the braking.2. Elaboration of Lee and Barber modelThe brake disc is represented by three layers. The middle one of thickness 2a3 stands for the ribbed portion of the disc with full sidewalls of thickness a2 connected to it. The pads are represented by layers of thickness a1, which are immovable and pressed to each other by a uniform pressure p. The brake disc slips in between these pads at a constant velocity V.We will investigate the conditions under which a spatially sinusoidal perturbation in the temperature and stress fields can grow exponentially with respect to the time in a similar manner to that adopted by Lee and Barber. It is evidenced in their work [7] that it is sufficient to handle only the antisymmetric problem. The perturbations that are symmetric with respect to the midplane of the disc can grow at a velocity well above the sliding velocity V thus being made uninteresting.Let us introduce a coordinate system (x1; y1)fixed to one of the pads (see Fig. 1) thepoints of contact surface between the pad and disc having y1 = 0. Furthermore, let acoordinate system (x2; y2)be fixed to the disc with y2=0 for the points of the midplane. We suppose the perturbation to have a relative velocity ci with respect to the layer i, and the coordinate system (x; y)to move together with the perturbated field. Then we can writeV = c1 -c2; c2 = c3; x = x1 -c1t = x2 -c2t,x2 = x3; y = y2 =y3 =y1 + a2 + a3.We will search the perturbation of the uniform temperature field in the formand the perturbation of the contact pressure in the formwhere t is the time, b denotes a growth rate, subscript I refers to a layer in the model, and j =-1½is the imaginary unit. The parameter m=m(n)=2pin/cir =2pi/L, where n is the number of hot spots on the circumference of the disc cir and L is wavelength of perturbations. The symbols T0m and p0m in the above formulae denote the amplitudes of initial non-uniformities (e.g. fluctuations). Both perturbations (2) and (3) will be searched as complex functions their real part describing the actual perturbation of temperature or pressure field.Obviously, if the growth rate b<0, the initial fluctuations are damped. On the other hand, instability develops ifB〉0.2.1. Temperature field perturbationHeat flux in the direction of the x-axis is zero when the ribbed portion of the disc is considered. Next, let us denote ki = Ki/Qicpi coefficient of the layer i temperature diffusion. Parameters Ki, Qi, cpi are, respectively, the thermal conductivity, density and specific heat of the material for i =1,2. They have been re-calculated to the entire volume of the layer (i = 3) when the ribbed portion of the disc is considered. The perturbation of the temperature field is the solution of the equationsWith and it will meet the following conditions:1,The layers 1 and 2 will have the same temperature at the contact surface2,The layers 2 and 3 will reach the same temperature and the same heat flux in the direction y,3,Antisymmetric condition at the midplaneThe perturbations will be zero at the external surface of a friction pad(If, instead, zero heat flux through external surface has been specified, we obtain practically identical numerical solution for current pads).If we write the temperature development in individual layers in a suitable formwe obtainwhereand2.2. Thermo elastic stresses and displacementsFor the sake of simplicity, let us consider the ribbed portion of the disc to be isotropic environment with corrected modulus of elasticity though, actually, the stiffness of this layer in the direction x differs from that in the direction y. Such simplification is, however, admissible as the yielding central layer 3 practically does not take effect on the disc flexural rigidity unlike full sidewalls (layer 2). Given a thermal field perturbation, we can express the stress state and displacements caused by this perturbation for any layer. The thermo elastic problem can be solved by superimposing a particular solution on the general isothermal solution. We look for the particular solution of a layer in form of a strain potential. The general isothermal solution is given by means of the harmonic potentials after Green and Zerna (see Ref.[18]) and contains four coefficients A, B, C, D for every layer. The relateddisplacement and stress field components are written out in the Appendix A.在全接触条件下,盘式制动器摩擦激发瞬态热弹性不稳定的研究摘要超过临界滑动盘式制动器速度可能会导致形成局部过热,不统一的接触压力,振动分布,而且,在多数情况下,会造成盘式制动闸永久性损坏。
Nature2010-Directional water collection on wetted spider silk
表面润湿性
荷叶的表面形貌是柱状的~
荷叶表面自清洁:叶面稍微倾斜,水滴便会自动滚落。即滚动
角(sliding angle)很小
很多材料,并不只是超疏水的时候才具有滚动角小的特点,就
像刚才水滴在平整聚四氟乙烯表面
Fig. Diagram summarizing the connection between roughening and self-cleaning
铺展(spreading)θ≈0°
沾湿
浸湿
铺展
4
1. 固体表面润湿性能
举例例证:
• 聚四氟乙烯:
γ =18mN/m
表面光滑,水
滴迅速滚落
疏水状态
Image in the lab
Images download from websites
5
1. 固体表面润湿性能
表面自由能 vs. 表面粗糙度
gecko state of the PS nanotrube surface.
8
水稻叶负形貌
表面形貌为凹坑结构时, 滴在表面的水滴
会把气体封闭到不连续的空洞当中。当表面
翻转时,由于负压,粘附住表面的水滴。
A
B
C
Fig. A) SEM images of surface with negative biomimetic rice leaf morphology; B)
• 主要内容是公式与示意图
• 为什么wenzel and cassie mode都可以达到
超疏水呢?
• 表面拓扑结构对接触角的影响
26
3. 材料表面润湿性的智能可控
• 接触角达到180o
• 高温高压下的状态
27
表面活性剂与胶束
Entropy 熵
Unfavorable distortion of water structure 水的自由度降低
Go to interface, entropy is regained. Less work surfactant than water Decrease work required to increase interfacial area Decrease in interfacial tension.
Anionic
Cationic
Nonionic
Amphoteric两性的,同时有正负电荷的 or zwitterionic两性[阴阳]离子的
Imagination, skill of synthesis, time, money 上千种商品化的表面活性剂
Hydrophilic groups
Sucrose 蔗糖
Sodium dodecyl sulfonate 十二烷基磺酸钠
Cationic
Nonionic
poly(ethylene glycol), poly(ethylene oxide), poly(oxyethylene) 聚乙二醇,聚环氧乙烷,聚氧乙撑 5, its solubility decrease 10, good surfactant 20, high solubility, but lose most of the good surfactant qualities
思考题
脂肪酸钠作为表面活性剂有什么特点?
Strong acid characteristics severely limit its potential utility
an excellent surfactant
用原子力显微镜研究疏水表面间的吸引力
用原子力显微镜研究疏水表面间的吸引力摘要和结论用原子力显微镜研究了水中,水——乙醇中,不同溶解度气体的饱和水溶液中AFM疏水探针与疏水平面之间的吸引力。
实验测得了具有突变的力曲线,突变强度随着水中乙醇的含量增加而减小,在纯乙醇中突变消失,吸引力为0。
力曲线上的突变强度与气体溶解度有关,然而力的大小与气体溶解度并没有明显的关系,表面的粗糙度以及不均一性对力曲线的形状有重要的影响。
实验结果显示了稳定存在的亚微观气泡对疏水吸引力的影响。
这与近期疏水表面存在纳米气泡的直接或者间接证据以及早期浮选科学家的预见一致。
疏水表面和探针的准备刚开始的实验是在玻璃球和显微镜玻璃载片上进行的。
玻璃颗粒和载片都在气相中用三甲基氯硅烷(trimethylchlorosilane)硅烷化(疏水化),然后用蒸馏水清洗并用氮气干燥。
用无柄滴液器(sessile drop apparatus)测得载片(疏水化之后)的接触角为62°。
没有测量颗粒的接触角,但认为颗粒(疏水化后)的接触角应大于62°(考虑到微观不均匀性以及线张力的影响)。
其它在脱气溶液中的实验所用到的疏水表面为,聚乙烯(polyethylene)颗粒,聚乙烯处理的疏水表面以及硅烷化的疏水表面。
聚乙烯颗粒的制备:加热使悬浮在丙三醇(glycerol)中的聚乙烯粉末,然后降低温度,使分散在丙三醇中的聚乙烯液滴凝固,过滤并干燥。
聚乙烯表面制备:在120℃左右将云母表面的聚乙烯粉末融化,用玻璃载片压住云母片上的聚乙烯液,冷却后,移走云母片,再用氮气冲洗。
二氧化硅表面用octadecyltrichorosilanation在液相中疏水化。
所有的表面都依次用丙三醇,蒸馏水冲洗几遍以除去杂质。
用无柄滴液器测得前进接触角为90°。
不同溶解度气体饱和水溶液的制备:在低压下面将水重复煮沸——冷却几次,然后取100ml左右加入洗气瓶(gas-washing bottle),再把所要溶解的气体以1L/min的速度通过底部的多孔玻璃片冲入脱气水中,持续半个小时,然后立即用它进行实验。
wetting path 学术名词
wetting path 学术名词The term "wetting path" refers to the pattern formed by a liquid droplet as it spreads and wets a solid surface. It describes the trajectory or shape that the liquid takes during this process.1. The wetting path of a droplet on a hydrophobic surface is typically round.一个液滴在疏水表面上的润湿路径通常呈圆形。
2. The wetting path of a droplet on a superhydrophilic surface is usually very flat.一个液滴在超亲水表面上的润湿路径通常非常扁平。
3. The wetting path of a droplet on a rough surface may be irregular and conform to the surface topography.一个液滴在粗糙表面上的润湿路径可能是不规则的,并符合表面的地形。
4. The wetting path of a droplet can be influenced by factors such as surface tension and contact angle.液滴的润湿路径可以受到表面张力和接触角等因素的影响。
5. Researchers use advanced imaging techniques to study the wetting path of droplets on different surfaces.研究人员使用先进的成像技术来研究液滴在不同表面上的润湿路径。
《2024年奇粘性对活性剂覆盖的薄膜Faraday波不稳定性的影响》范文
《奇粘性对活性剂覆盖的薄膜Faraday波不稳定性的影响》篇一一、引言Faraday波是一种在流体界面上由周期性驱动力引起的波动现象,广泛存在于各种物理和化学系统中。
近年来,关于活性剂覆盖的薄膜Faraday波不稳定性的研究受到了广泛关注。
活性剂通过改变界面的物理化学性质,对Faraday波的传播和稳定性产生重要影响。
而在这些影响因素中,粘性特性尤其受到研究者的重视。
特别是,奇粘性作为一种特殊的流体特性,对Faraday波的稳定性可能产生显著的影响。
本文将探讨奇粘性对活性剂覆盖的薄膜Faraday波不稳定性的影响。
二、奇粘性与Faraday波奇粘性是一种特殊的流体特性,表现为流体在剪切力作用下表现出非线性的应力-应变关系。
这种特性在许多自然现象和工业应用中都有所体现。
当这种具有奇粘性的流体覆盖在含有活性剂的薄膜上时,其Faraday波的传播和稳定性将受到显著影响。
三、实验设计与方法为了研究奇粘性对活性剂覆盖的薄膜Faraday波不稳定性的影响,我们设计了一系列实验。
首先,我们制备了含有不同浓度活性剂的薄膜,并在其上施加周期性的驱动力,以产生Faraday波。
然后,我们通过改变流体的粘性特性,观察Faraday波的传播和稳定性变化。
四、实验结果与分析实验结果显示,奇粘性流体的存在显著影响了Faraday波的传播和稳定性。
具体而言,当奇粘性流体的粘性较大时,Faraday 波的传播速度变慢,波动幅度减小,表现出更高的稳定性。
这可能是因为奇粘性流体的非线性应力-应变关系对波动传播起到了阻尼作用。
此外,我们还发现活性剂浓度对Faraday波的稳定性也有影响。
在一定范围内,增加活性剂浓度可以增强薄膜的稳定性,降低Faraday波的不稳定性。
五、结论通过对奇粘性对活性剂覆盖的薄膜Faraday波不稳定性的研究,我们发现奇粘性流体的存在对Faraday波的传播和稳定性产生了显著影响。
具体而言,奇粘性流体的非线性应力-应变关系对波动传播起到了阻尼作用,使得Faraday波的传播速度变慢,波动幅度减小,表现出更高的稳定性。
电工名词术语-电气绝缘材料(新版)要点
绝缘固体、液体和气体电气性能术语
实相对电容率 real relative permittivity 实相对介电常数 real relative constant ε r’ 复相对电容率的实部。(IEC 60050(121),121-12-15) [介质]损耗指数 [dielectric]loss index ε r’’ 复相对电容率虚部的负值。(IEC 60050( 121 ),121-12-16)
绝缘固体、液体和气体电气性能术语
电极 electrode 与电导率较低的介质接触的导电零件,其作用是向介质发射载流 子 、 或 从 介 质 接 受 载 流 子 、 或 在 电 介 质 中 建 立 电 场 。 ( IEC 60050(151)中151-13-01) 测量电极 measuring electrode 置于或插入材料中并与材料接触,以便测量材料介电性能的一种 导体。 [体积]直流电阻 [volume]d.c.resistance 在接触绝缘介质的两电极之间施加的直流电压,对给定电化时间
0 re E D J / j D j E /
式中,γ为介质电导率,ω为角频率,ε0为电常数。
• 注 1 re 一般与频率有关。各向同性介质的 re 是标量,各向异性介质的 re 是张 量。 2 re 与 r 的关系为: re r j / 0 re 。 在导电介质中,包括良导体和不完全电介质,有用的和可测量的量是 3 re 的虚部的负值代表介质损耗和电导率产生的损耗,后者由 / 0 表示。
绝缘固体、液体和气体电气性能术语
耐电弧性 arc resistance 在规定的条件下,绝缘材料耐受电弧沿其表面作用的能力。 电痕化 tracking 因局部放电形成的导电或部分导电的通道,使固体绝缘材料表面 逐步降解的过程。
SYNTHESO GLEP 1特殊稳定润滑油说明书
Product informationSYNTHESO GLEP 1,Prod. 012142,enEdition 20.12.2019 [replaces edition 19.12.2019]Benefits for your application–Special lubricating grease for the assembly and lifetime lubrication of elastomers –Almost neutral towards most sliding material pairings like EPDM/metal or plastic –Reduces friction and wearDescriptionSYNTHESO GLEP 1 is a special lubricant for a wide variety of applications with an almost neutral behaviour towards many elastomers (including EPDM) and plastics (except PC and ABS). SYNTHESO GLEP 1 can be used in a wide servicetemperature range and offers efficient protection against wear,good adhesion and resistance to water.ApplicationSYNTHESO GLEP has been designed for the lubrication of metal – metal; elastomer – metal, plastic – metal, plastic –plastic sliding material combinations. The product is typically used in the automotive industry as assembly grease for plain bearings, e.g. in brake and clutch systems for linear motion in contact with brake fluids DOT 3, 4 and 5.1. Application examples: guide bushes and bolts, EPDM and SBR seals,clutch master and slave cylinders, corrosion protection of brake pad supports in disc brake calipers, brake boosters and noise reduction in elastic axle bearings, seals of steering columns. In such applications, SYNTHESO GLEP 1 facilitates assembly and provides reliable lubrication. Due to its good resistance to EPDM elastomers, SYNTHESO GLEP 1 is mainly used in carbrakes as it offers good advantages versus silicone greases,like better load-carrying capacity, good adhesion and compatibility with electric contacts.Application notesSYNTHESO GLEP 1 can be applied by brush, spatula, grease gun or the usual central lubrication systems. A wear test should be carried out prior to using SYNTHESO GLEP 1 in context with aluminum or aluminum alloys under dynamically high load conditions. Owing to the many different elastomer and plastic compositions we recommend checking their compatibility prior to series application. The possibility of a change in colour is inherent in this product concept. It has, however, no influence on product performance.Material safety data sheetsMaterial safety data sheets can be requested via our website . You may also obtain them through your contact person at Klüber Lubrication.Product information。
液膜的断裂是疏水力或者溶解气体作用引起的吗翻译
液膜的断裂是疏水力或者溶解气体作用引起的吗摘要和结论在疏水表面间的液膜是不稳定的,这被认为是所谓的疏水吸引力引起的。
本论文中的显微干涉实验(microinterferometry experiments)表明水中的溶解气体对液膜断裂有着重要的影响。
特别地,与脱气油接触的超纯去离子水膜稳定性可以长达35min,而与未脱气油接触的水膜寿命仅有几秒钟。
这些水膜的断裂厚度约为150nm。
当水膜脱气逆过程发生后,水膜的寿命仍然只有几秒钟,但断裂厚度却显著增大(大约800nm)。
脱气对squalene—水界面的势能和双电斥力无明显影响。
观察到了空气在油水两相中转移引起的水膜断裂变化的现象。
1.介绍原则上,液膜断裂可以分为两个过程,液膜变薄和液膜破裂。
液膜的变薄是由于重力,毛细力等因素引起的。
当厚度减小到200nm左右时,表面间的分子相互作用力将影响液膜行为。
对于气泡或者油滴间的液膜,双电斥力将阻碍液膜变薄,范德华力将促进液膜变薄。
当厚度继续减小,液膜会变得不稳定,并在某个临界厚度(10—200nm,依赖于表面活性剂的浓度)突然断裂。
人们提出了一些理论来解释液膜破裂现象并预测临界厚度。
由de Vries提出的理论认为,随着液膜厚度的降低,范德华引力急速上升,加快了液膜界面热毛细波的增长,从而导致液膜破裂。
经过疏水处理的表面(主要用疏水化药剂,如甲基化,酯化)间的水膜会变得不稳定并迅速断裂。
这种现象被认为是疏水表面间特有的疏水力造成的。
然而在疏水表面间疏水力的测量表明,由水分子重组而引起的”纯”疏水力属于短程作用力(小于10nm),较长的力与表面疏水性无关或者只是间接有关。
较为普遍的一种机理是纳米气泡桥连。
吸附在疏水表面的亚微观气泡桥连使得相互靠近的表面间的水膜断裂。
疏水表面上的亚微观气泡可以通过疏水表面反复接触与分离而形成,这种过程在AFM力测量中很常见。
事实上,如果疏水表面不事先接触,将不能测到长程吸引力。
超亲油——超疏油资料
什么是水下超疏油表面
水下超疏油表面是指在油/水/固三相体系中, 对油的接触角大于 150°的固体表面,且滚 动角小于10 °
鱼鳞化学组成是亲水性的羟基磷灰石 蛋白 质和一层薄薄的黏液
在空气中,鱼体表是超亲油的, 而在水下 却表现出超疏油的性质, 对油的接触角为 ( 156. 4 ± 3. 0) °
• 具有选择性的油水分离
结语——水下超疏油表面的研究进展令
人兴奋和神往,不过目前理论体系需要进 一步的发展和完善,不过我们相信,这些 研究将会极大地造福人类。
REFERENCES
[1].薛众鑫 ,江 雷.仿生水下超疏油表面[J].高 分 子 学 报,2012,10 [2].卢 晟 ,李 梅.超疏油表面研究进展[J]. 2012,CB9338 [3]. Lianbin Zhang, Zhonghai Zhang and Peng Wang. Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation[J]. NPG Asia Materials (2012) 4
The thermal- responsive adhesion between the surface of PNIPAAm hydrogel and oil droplets: ( a) the oil droplet can easily roll off the surface at 23℃, while firmly adheres on the surface at 40℃,( b
A brife introduction about
2010 - 吴承伟, 张伟, 孔祥清 - 生物与放生材料表面微纳力学行为
第40卷第5期力学进展Vol.40No.5 2010年9月25日ADVANCES IN MECHANICS Sep.25,2010生物与仿生材料表面微纳力学行为*吴承伟†张伟孔祥清大连理工大学运载工程与力学学部工业装备结构分析国家重点实验室,大连116024摘要评述了国内外在生物材料表面微纳力学行为研究方面的若干分支,包括:生物材料的疏水特性、水面昆虫的浮水力学、生物材料表面的减阻特性、生物材料吸附与脱附微纳力学行为、以及表面疏水和吸附仿生材料的制备与应用,并注重分析了在微纳尺度上生物结构、生物材料、生物生存技能与生存需求等方面的多功能自然协同进化和优化.关键词生物材料,表面力学,微纳结构,进化与优化,超疏水表面1引言大自然经过几十亿年的优胜劣汰,生物材料和结构经过不断地进化和优化,实现了结构、材料和功能的协同优化和统一,微观与宏观、局部与整体的协调和统一.随着科学技术的发展,特别是近十几年微纳米观察与测试技术的进步,人们从千奇百怪的生物生存技能和种类繁多的生物材料中发现了大量令人叹为观止的力学现象,并发现很多生物现象或生物材料均在微纳米尺度上具有“奇异”功能,为仿生学和仿生材料学提供了无穷的探索和想象空间.例如,从荷叶表面的自清洁功能得到启示研究出了超疏水材料[1∼3];从鲨鱼皮等生物表面减阻性能的研究中得到启示研制出了表面减阻仿生材料[4];从水黾腿部微纳米多尺度生物材料结构的超疏水特性和水上自由行走的力学原理研究中得到启示,研制了相似功能的仿生材料[5,6];从壁虎脚垫的吸附原理得到启发研究出了高强度吸附材料[7];从牙齿、骨头等材料的微纳结构和力学行为研究中,发现了这些生物材料具有高强度、高韧性的力学原理[8,9].近年来迅速发展起来的纳米生物芯片材料、纳米马达、纳米复合材料、界面生物材料、纳米传感器等许多高科技多数都是得益于对纳米生物材料和纳米生物现象的研究[10].诸如此类,举不胜举.生物世界中的昆虫微系统实际上是一个由大自然创造的具有高度可靠性的微机械系统.相关器官工作的力学原理从宏观、微观直至纳观常常出现多尺度的近乎完美的协调与统一,使得昆虫具有许多令人类望洋兴叹的特殊绝技.在小型昆虫世界,表面力常常是其赖以生存的秘密武器.动物世界特别是水下鱼类所表现出来的泳动技巧和表面减阻特性也是人类长期探索的不解之谜.生物材料的表面性质,例如湿润性、表面微纳结构、表面化学和物理性质等都会强烈影响整个系统的性能[11].研究这些生物材料或结构的表面微纳力学行为及其科学原理,对于仿生设计和制造高级微机械系统具有重要的参考价值[12].本文主要介绍生物世界中经典的表面疏水、水面昆虫浮水原理、表面减阻、表面吸附和脱附等相关的表面微纳力学问题,最后简要介绍了仿生界面材料及其应用.2生物材料的疏水特性及水面昆虫的浮水力学2.1生物材料表面的多级粗糙结构及其超疏水特性雨过天晴的美丽夏天,当你漫步在公园湖畔,就会发现荷叶(lotus)的表面是如此清洁,几乎一收稿日期:2010-02-04,修回日期:2010-06-17∗国家自然科学基金(10972050,90816025)资助项目†E-mail:cwwu@第5期吴承伟等:生物与仿生材料表面微纳力学行为543尘不染;水面上水黾(water strider,一种水面小型昆虫)悠闲自如地划过,身后留下美妙无比的串串涟漪;蚊子在水面随心所欲地起起落落,鲜有意外发生.不知你想过没有,是什么创造了这些美丽的自然现象?其实,这些看似平常的自然现象背后蕴藏着深奥的科学原理.生物材料的疏水表面给人们许多重要启发[13∼19],荷叶表面就是最为典型的一例. Barthlott等[13,14]认为荷叶表面的超疏水(super-hydrophobicity)性质是由表面上微米乳突结构和表面蜡质层共同作用的结果.Feng等[15]发现在荷叶表面微米的乳突结构上还存在着纳米结构,并认为这种微纳多级结构是实现表面超疏水性的根本原因(图1).Patankar等[16]根据荷叶表面结构构建了一种“具有二级复合结构的柱形沟槽”模型,认为这样的多级结构更有利于实现超疏水特性.除了植物以外,许多动物体表面也具有很强的疏水和自清洁功能.水黾是一种可以在水面快速划行、跳跃,但腿却不被水润湿的典型水面昆虫,号称“水上飞”.过去这种特殊功能被认为是由其腿部分泌的蜡质层所致[20∼22].Jiang等[6]发现水黾腿表面是由很多按同一方向排列的微米尺度的刚毛(seta)组成的,刚毛表面呈现螺旋状纳米沟槽(图2),这种微纳多级结构使得水黾腿表面的接触角达到167.6◦±4.4◦,并且测出了单根水黾腿压穿水面的最大力是水黾体重的15倍.水黾在水面上主要有4条长腿承载,这样推算水黾腿在水面的总支撑力约达自身体重的60倍[6,23].Feng等[23,24]通过理论分析进一步证明,正是水黾腿表面的多级微纳米结构实现了其超疏水性能.蝴蝶翅膀表面也具有较强的疏水性和自清洁性,Steve[25]和房岩等[26]发现蝴蝶翅膀超疏水性是由表面微米级鳞片及其表面上亚微米级结构共同作用的结果. Callies等[27]研究了以上这些生物现象并认为表面疏水性与表面微纳形貌之间存在密切关系.目前,具有超疏水性能的仿生自清洁表面受到了越来越多的关注.蚊子也是一种离不开水的两栖小型昆虫,它不但能在陆地生活,而且能够在水面上自由行走、起落、产卵和吸食等,并且还能在空中实现高技能飞行.目前对于蚊子的生活习性、吸血技能以及给人类带来的痛苦和疾病传播,已经进行了大量研究[28∼30],但是关于蚊子腿表面润湿性能与表面微纳结构之间的关系研究的很少.吴承伟等[31,32]发现蚊子全身几乎都为超疏水表面,不同程度地有规律地覆盖着微纳结构的鳞片和刚毛,尤以蚊子腿和翅膀最为突出(图3).但是,蚊子腿表面微纳结构与水黾明显不同,是另外一种天然的超疏水表面,表面具有10µm级(空心鳞片,图3(a))、亚微米级(鳞片表面的纵肋,如图3(c))和纳米级(纵肋之间的横筋,图3(c)和图3(d))的特殊三级格栅结构,这是蚊子腿具有超疏水特性的重要原因.实验表明蚊子腿表面的接触角可以达到153◦.如水黾和蚊子腿这样的结构表面所能实现的超级疏水性能,如果仅仅用疏水材料制作成光滑表面是很难做到的.图1荷叶表面的微纳观多级结构[15]544力学进展2010年第40卷图2水黾腿的超疏水特性及表面多级微纳米结构[6]图3蚊子腿部和翅膀表面的鳞片微观形态除了基体材料的疏水性以外,固体表面的微纳观形貌是影响其表面疏水性的关键因素.在具有低表面能的材料表面,科学设计微纳结构能够增加固体表面的疏水性[33∼35].事实上,蚊子腿表面的这种多级微纳结构在疏水性方面起到了重要作用.Cassi 等[33]认为,当材料具有粗糙表面时,由于空气的存在,液滴与表面接触时不能完全填满粗糙表面上的凹槽;此时,表观上的液–固接触面实际上是由液体、固体和气体共同组成,粗糙表面上水的接触角(以下除了特殊声明以外,接触角均指水与表面的接触角)可用下式计算cos θr =f cos θ+f −1(1)其中,θr 为复合接触表面与水的表观接触角,f 为复合接触表面中固体所占的面积分数(0<f <1),θ为液体在光滑表面上的静态接触角,又称本征接第5期吴承伟等:生物与仿生材料表面微纳力学行为545触角.采用Cassie模型来研究蚊子腿部表面的微纳结构对润湿性能的影响,首先假设腿部鳞片形态完全一致,并且呈规则排列.根据蚊子腿部的实际表面形态,构建一种“具有多级复合结构”的模型(如图4所示):第1级结构为规则排列的鳞片,第2级结构为“生长”在每个鳞片上的亚微米级纵肋(图4(a)和图4(b)),第3级结构为“生长”在纵肋之间的横向“纳米筋”(图4(c)).图4蚊子腿表面多级微纳结构示意图当表面第1级结构即10µm级的鳞片单独作用时,假设鳞片为光滑平面,不考虑表面的微纳结构影响.此时根据Cassie模型得到蚊子腿部表面的理论接触角与其表征接触角之间的关系cosθ1=f1cosθ+f1−1(2)其中,f1=ab/[a(b+c)]=b/(b+c)(a,b,c分别为鳞片的长,宽和间距).表征接触角θ为95˚,代入表1中的实测数据,可得此时蚊子腿部表面的理论接触角θ1为107◦,与实验值153◦相差甚远,显然蚊子腿部表面10µm尺度的鳞片结构单独作用下不足以导致蚊子腿部表面的超疏水性.表1蚊子腿部鳞片表面的典型形态表征参数[32]鳞片长度a/µm宽度b/µm间距c/µm4012.5 3.5纵肋高度h/µm宽度w/µm间距e/µm0.550.4 1.5横筋高度h/nm宽度w/nm间距e/nm150100350当第2级结构即鳞片表面的亚微米级纵肋单独作用时,忽略鳞片间距,引入粗糙度系数r对式(1)进行修正[36∼38]cosθ2=rf2cosθ+f2−1(3)其中,r=(w+2h)/w,f2=w/(w+e)(w为纵肋厚度, e为纵肋间距,h为纵肋深度).材料表征接触角θ为95◦,计算出该情况下蚊子腿部表面的理论接触角θ2为148◦,可见相对于蚊子腿部表面的特征尺寸在10µm级的鳞片结构,亚微米级纵肋结构对于腿部的超疏水性能具有更重要的影响,这一发现与Bhushan等[39]对植物叶的疏水性能方面的研究结果相吻合.尽管如此,当只考虑第2级结构即鳞片表面的亚微米纵肋单独作用时,计算出的蚊子腿表面的理论接触角仍与实验值153◦有偏差.当第1与第2级复合结构共同作用时,结合式(2)和式(3),理论接触角θ3的计算公式为cosθ3=f1cosθ2+f1−1(4)代入实验数据,可以得到鳞片与纵肋联合作用时蚊子腿部表面的理论接触角θ3为151.6◦,与实验值153◦基本吻合.表明蚊子腿部表面的微纳米多级耦合结构增强了表面的疏水性,是导致其表面超疏水和自清洁的关键因素.有趣的是蚊子腿部表面除了这两级结构以外,还存在着第3级结构,即纳米级的横向加筋结构546力学进展2010年第40卷(图4(c)所示),此纳米横筋结构生长在两个微米纵肋之间,实际上与第2级结构几乎处在同一个层次上,但是几何上比较隐蔽.这与其它多级表面结构最微小的一级结构暴露在最外层有很大区别(例如水黾腿表面结构,见图2(b)).在蚊子腿接触水面时,第3级结构由于处在第2级结构的底部,一般情况很少接触到水.但是可以肯定地说,从结构力学的角度来看,第3级结构的重要作用之一是增强了第2级结构的力学稳定性,防止在外力作用下第2级结构的失稳破坏.另一方面,从疏水性的角度来看,第3级结构又是超疏水特性的最后一道防线,并且第3级结构能够阻止表面气泡沿第2级结构之间的自由流动,提高了超疏水性能的可靠性.2.2水面小型昆虫的浮水力学具有多级粗糙结构表面的疏水性显著依赖于表面粗糙度微纳结构特征[36].蚊子腿生物材料主要由蛋白质、脂类和几丁质等构成,这些物质本身具有一定的疏水性,而蚊子腿部表面的微纳米多级结构使其疏水性显著增强,这是引起蚊子在水面上超强负载力的主要原因.实验测量表明[31],库蚊(culex species)的单根蚊子腿在水面的静态平均压穿力为600µN,是蚊子平均体重的23倍,蚊子有6条长腿,那么蚊子腿全部压穿水面的合力是其体重的100多倍,远远超出水黾[6,23].蚊子是目前发现的在水面支撑能力最大的小型昆虫,不仅可以毫不费力地站在水面上,而且能在水面上安全起飞和降落,鲜有“事故”发生.这项研究在Na-ture杂志上被称为“顶级腿”作为研究亮点加以报道[40].关于水黾腿的疏水机理有人认为表面有一层蜡质层,如果把蜡质层清洗掉,水黾腿可能就变为亲水腿.为了检查蚊子腿表面是否有蜡质等疏水膜,将蚊子腿放在丙酮溶剂中浸泡8小时后再晾干,重新做水面压穿试验,没有发现水面支撑力有明显下降(幅度减小不到5%)[32].为什么水黾、蚊子等小型水面昆虫的腿不但超疏水而且细长?例如库蚊两条前腿长度约为(6∼8)mm,两条中腿长度约为(8∼10)mm,两条后腿最长,长度约为(10∼12)mm.但是腿的外径(包括鳞片)只有约(80∼220)µm(从脚垫到大腿越来越粗).这主要是大自然的进化使得水面昆虫具有多功能化的生存功能.蚊子无论在空中飞行还是在水面生活,在强度允许的前提下,要求身体结构(体重)越轻越好,因而蚊子腿是一个空心薄壁圆管,内部充满纤维外部覆盖着大量的空心疏水鳞片,如图3所示.至于蚊子身体上这些空心鳞片对于飞行空气动力学有什么影响目前尚不清楚,本文只讨论蚊子腿表面结构对于蚊子在水面支撑力的影响.图5为疏水物体压向水面时的二维作用力示意图,假设一个无限长的疏水圆柱被压入水中,单位长度上受到压力为F(包括物体重力).严格来讲对于物体在水面的浮水力学问题用“浮力”二字不太合适,容易与经典的阿基米德浮力定律相混淆.因此对于图5(a)所示的情况,即物体没有刺穿水面而是部分的浸入水中,物体受到向下的压力为F,它的反作用力是物体受到水表面张力向上的合力与物体表面受到的静水压力之和.为了叙述方便以下称这个反作用力为水作用力,方向向上,大小等于F.物体被压入水面越深,受到的水作用力越大,当达到一个临界深度时水作用力达到最大,称这个最大临界压力为“水面支撑力”,用F max表示.继续下压时,需要的压力(水作用力)减小,水面很快会被“压穿”,物体完全被水淹没(图5(b)).在水面被完全压穿之前即使物体的密度大于水的密度,物体也不一定完全浸入水中.当外力(包括重力)撤去以后,物体会自动向上浮起,直到达到与重力平衡的位置为止,即在物体没有完全浸入水中之前,物体在水面的起伏是可逆的,此种情况难以用宏观意义上的阿基米德浮力定律来解释.但是对于图5(b)所示的情形,一旦物体完全浸入水中,物体的受力就完全可以用阿基米德浮力定律来解释,只要物体的密度大于水,就会一直沉入水底不再浮起.图5(c)为疏水物体被压入水面过程中的水作用力变化示意图.关于图5(a)所示的情形引发了两个科学问题: (1)什么样的物体接触水面后,即使全部低于水面也不会被水淹没?(2)水面支撑力取决于什么因素?当疏水物体(θ>90◦)受到外力作用被压入液面时会出现图5(a)所示的情形,液体表面张力越大、固体表面接触角越大,这种效应越明显.在日常生活中,肉眼见到的物体一般较大,当物体被压入水中之前,物体上方的水涡与物体尺寸相比太小,因而不容易注意到这种现象.关于第2个问题,疏水物体受到的水作用力等于物体本身排开水的第5期吴承伟等:生物与仿生材料表面微纳力学行为547体积加上物体上方水涡的体积总和的水重量.清华大学冯西桥教授研究小组2007年发表的两篇论文对这个问题进行了精彩的理论分析[23,24],发现疏水物体受到的水作用力随压入水面深度的增加而增加,当α角达到一定值后(见图5(a)),物体受到的水作用力达到最大值F max(水面支撑力),如果再继续下压物体,立即被水淹没(见图5(c)).图5疏水物体压入水面示意图要增加圆柱物体在水面的承载能力,可以从以下几个方面入手:(1)增大物体表面的接触角;(2)增大圆柱横截面积(即增大半径);(3)增加圆柱长度;(4)降低物体密度;(5)增加水表面张力.对于水面小型昆虫而言,第5个因素是完全由大自然决定的,只能适应、不可改变.那么来看看小型昆虫是怎么实现水面承载微型细长腿的多目标协同优化的.图6给出了长圆柱疏水物体单位长度的水面支撑力与固体表面接触角和横截面尺寸的关系.图中γ为水的表面张力,θ为接触角,S=πR2为圆截面面积.图6(a)中3个圆截面的半径分别为0.09mm,0.20mm和0.50mm;由图6(a)可以看出,接触角越大水面支撑力越大.例如,当接触角增大一倍(由90◦到180◦),横截面积S=0.785mm2(半径R=0.5mm)的圆柱水面支撑力增加了约20%;但是,对应图中所示的较大的两个横截面积S=0.785mm2和S=0.126mm2 (R=0.5mm和R=0.2mm),当接触角达到165◦以后,水面支撑力基本不再增加;对应于横截面积S=0.0254mm2(R=0.09mm),当接触角达到150◦以后水面支撑力似乎不再增加.这说明,为了增加水面支撑力,当接触角达到某个临界值以后,再一味追求增加接触角的意义已经不大,特别是当圆柱直径较小时更明显.如上所述,蚊子从小腿到大腿半径约为(20∼110)µm,显然接触角达到150◦时(实测值为153◦)几乎达到最佳状态.水黾腿比蚊子腿略粗一点[23,24],前腿半径约为70µm,据报道最大接触角可达167.6◦±4.4◦[6,23].这样一个最佳的接触角绝不是一种巧合,而是自然的完美进化和优化的结果.图6(b)显示,水面支撑力随着圆柱横截面积的增加而增加,当半径从0.05mm增加到0.5mm,横截面积增加了约100倍.但是对应于图中效果最好的表面(接触角为168◦),水面支撑力仅仅增加了约25%.接触角越小增加横截面积对于水面支撑力的贡献越不明显,并且横截面积的增加必然带来圆柱的重力同比例增加(这对于蚊子等飞行昆虫是极为不利的),显然依靠增加圆柱横截面积并不是一种科学有效的办法,因而大自然选择了增加水黾和蚊子等浮水昆虫腿的长度.从理论上来讲,水面支撑力与长度是成比例增加的(即长度增加100倍水面支撑力也增加100倍),是增加横截面积(或重量)来提高水面支撑力效率的400倍.这可能就是水黾、蚊子等水上小型昆虫选择了细长腿而不是粗短腿或者大脚垫的原因.还应该指出,大自然的多目标协调优化和进化并没有到此为止,如图3(a)所示的蚊子腿主结构是一个薄壁圆管结构,外部覆盖了大量规则排列的空心疏水鳞片,内部充满了纤维多孔结构,这样使得蚊子腿的重量减轻了许多,不但有利于增加水面支撑力,而且有利于减少起飞、降落和飞行时的能量消耗.Feng等[24]还研究了横截面形状对水黾腿水面支撑力的影响,比较了圆形、正六角548力学进展2010年第40卷形、倒三角形和椭圆形横截面的刚性疏水长线的水面支撑力,发现仅仅就水面支撑力而言,倒三角形最好,圆形其次,但仅相差约10%,其他横截面形状较差.大自然选择了圆形截面的水黾腿或者蚊子腿,除了美观以外还有其他综合优异性能的考虑.从力学的角度来讲,薄壁圆管内充满多孔纤维的复合结构使得蚊子腿具有良好的刚度和强度,充分利用了生物材料的各种特性.Shi 等[41]发现,模仿水黾腿的表面超疏水金丝浮在水面上运动时具有良好的减阻效果.至于蚊子腿表面的鳞片是否还有飞行减阻等功能目前还不得而知.图6长圆柱疏水物体单位长度的水面支撑力与固体表面接触角和横截面尺寸的关系[24]上面的分析都是二维问题,即假设水面昆虫具有细长腿(例如库蚊的长腿可以达到10mm,直径从脚垫到大腿由约80µm 增大到220µm),水面支撑力与长度成正比.实验测量已经证明了蚊子腿平行水面强行下压时,水面支撑力与截取蚊子腿长度成正比(图7).当最大截取长度为6mm 时,水面支持力约为440µN,比自然变形的蚊子长腿压入水面同等长度时的水面支撑力略低.这可能是由于图7所示蚊子腿被剪断后平行压入水面时两端刚度较大,不能适应水涡两端的自然变形,容易在两端首先刺破水面所致.观察发现,聪明的蚊子降落和浮在水面上时前脚垫总是上翘,以便在水涡两端尽量实现平滑过渡(实际上起到了增加腿的有效长度的效果).水黾腿的水面支撑力二维模型计算值[23,24]比实验值[6]略小可能也是这个原因.图7蚊子腿被剪断后平行压入水面时的水面支撑力与实验长度的关系[31]关于水黾腿的工作机理,曾经有人猜测刚毛之间的气体使得“浮力”增大.为了考察这种猜测,将蚊子腿垂直水面压入水中,发现“浮力”仅仅为十几个µN,是蚊子腿正常水面支撑力的1/40,并且这个支撑力主要是表面张力的贡献[31].其实简单分析这个问题就会非常清晰[32],假设蚊子腿(不包括鳞片)平均直径为d =140µm,若鳞片平均厚度为t =5µm,则在腿的长度L =8mm 上,鳞片之间的空隙所占体积约为π(d +t/2)tL c a +b ≈0.004mm 3(a ,b ,c 的定义和尺寸见表1),鳞片之间的间隙排开水的重量为0.004mg (约0.04µN),显然鳞片的间隙排开水的重量对于水面支撑力的贡献还不到万分之一.这说明无论水黾腿还是蚊子腿,刚毛或者鳞片之间的气体对于增强水面支撑力没有实质性贡献.水黾和蚊子腿的超级疏水机理被报道以后,某些报刊认为可以制造新型仿生交通工具,这是不现实的.例如,一个70kg 体重的成年人,依靠蚊子腿这样的水面承载力,如果要想静态站立在水面上,需要约104m 与蚊子腿相同的材料.昆虫在水上行走依靠什么机理承载主要由其体重与表面张力的比值决定,美国麻省理工学院Bush 等[5]定义了一个无量纲参数ξ=mg/σL ,其中m 为昆虫质量,g 为重力加速度,σ为水面张力,L 为昆虫细第5期吴承伟等:生物与仿生材料表面微纳力学行为549长腿与水面的接触长度.当ξ<1时,疏水昆虫的体重(一般小于1g)可以由水面张力轻易浮起,例如水黾;当ξ>1时,昆虫或者动物必须依靠脚垫对水面的拍打才能浮出水面并快速泳动,例如蛇怪蜥蜴(basilisk lizard).人类的自由泳和蝶泳也属于这种运动.关于不同质量的水上小型动物或昆虫的水面行走的力学机理,Bush 等[42,43]最近发表了两篇比较全面的综述文章.小型水面昆虫之所以拥有超疏水的细长腿,不仅仅是为了增加水面支撑力,而且是为了自我保护.如果是亲水表面(θ<90◦),一旦不小心刺破了水面,腿马上就会被水“吸住”,即使费尽气力把腿彻底拔出水面也会带起一两滴水滴.实际上对于亲水表面,即使没有刺破水面,与水面接触后在离开水面时也可能带起水滴.以蚊子为例,库蚊的平均体重约2.5mg [31],安蚊(aedes albopictus )空腹时平均体重只有约1.6mg [44],直径为2mm 的一滴水重约4.2mg,如果蚊子腿是亲水性的话,只要有一条腿吸上这样大的一滴水,蚊子身体就会失去平衡,很难起飞.亲水的苍蝇腿就是最好的一个例子[31].如果将一只苍蝇的腿全部压入水中,这只苍蝇就很难直接飞离水面了,而且苍蝇越挣扎、时间越长越糟糕,因为水会沿着亲水的苍蝇腿表面向上爬,很快湿润全腿甚至部分身体.图8是一根苍蝇腿滴上一滴水的例子,水会很快通过刚毛湿润腿表面.图8苍蝇腿表面的粗大亲水刚毛结构,插图为水滴在苍蝇腿表面的湿润情况[31]将一个长圆柱物体缓慢垂直压入水中,如果圆柱侧面垂直水平面,侧面附近的水面曲率半径会出现3种情况:(1)当表面接触角θ<90◦时(亲水),液面凹弯,即物体表面上的水面高于宏观水平面,表面张力对物体的作用合力向下;(2)当θ=90◦时,液面完全为一平面,表面张力对物体的作用合力为零;(3)当θ>90o 时(疏水),液面凸弯,即物体表面附近的水面低于宏观水平面,表面张力对物体的作用合力向上.但是,如果将圆柱体平行压向水面,情况就比较复杂(如图9所示),图9(a)和图9(b)中,圆柱中心高于水表面,水的表面张力总是对亲水圆柱施加一个向下的合力,对疏水圆柱总是施加一个向上的合力(“浮力”);图9(c)的情况比较复杂.图中的数据为圆柱表面湿润角.圆柱侧面的水面曲向与圆柱被压入水面深度有关.图9长圆柱平行压向水面时侧面的水面形状与被压入水面深度示意图对于超亲水表面的物体,如果密度远大于水的密度,放在水面上就会很快沉入水底.对于疏水表面的物体(例如长圆柱),有一个科学问题比较有趣,圆柱物体的密度、半径和表面接触角存在一种什么关系才能使得圆柱物体自由浮在水面上而不沉入水中?前面已经介绍过圆柱受到的向上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Wear262(2007)707–717Wet sliding friction of elastomer compounds on a roughsurface under varied lubrication conditionsXiao-Dong Pan∗Bridgestone Americas Center for Research and Technology,1200Firestone Parkway,Akron,OH44317-0001,United StatesReceived28February2006;received in revised form1August2006;accepted3August2006Available online18September2006Abstract‘Green’tire bearing tread rubber reinforced with precipitated silica can exhibit improved wet traction performance.The underlying mechanism is currently not well understood.To improve our capability of rational material design for enhanced driving safety,wet sliding friction for various rubber compounds is tested on a Portland cement concrete surface under varied lubrication conditions.The wetting liquid is either ethanol or water,and the initial amount of liquid on the concrete surface is adjusted.Sliding friction is detected to alter with lubrication condition.Under ethanol lubrication,the sliding friction is markedly lower than that under water lubrication.Additionally the benefit in wet traction from silica is significantly diminished or eliminated in ethanol.Such observations cannot be rationalized with simple considerations of rubber bulk viscoelasticity, liquid viscosity,cavitation,or capillary effect.We believe that these observations strongly indicate the significance of interfacial interactions in determining the wet sliding friction of elastomer compounds.The potential relevance of capillary porosity in concrete and Marangoni drying effect to wet traction is also introduced.©2006Elsevier B.V.All rights reserved.Keywords:Elastomer;Wet sliding;Friction;Silica;Water;Ethanol1.IntroductionIn order to stop a moving automobile on a highway wetted by rain,a maximal level of sliding friction from tires is obviously desired upon brake application.At low sliding speed before the emergence of elastohydrodynamic lubrication,other than the tread pattern,material properties of tread rubber compounds play a significant role in determining the wet traction performance of a pneumatic tire.Tread rubber compounds are made of crosslinked elastomers reinforced withfinefiller particles.The conventionalfiller has been carbon black derived from fossil fuel.Starting from the early1990s,precipitated silica used along with silane has become popular in preparing the so-called‘green’tire[1].In comparison to carbon black-filled rubber,silica-reinforced rub-ber can lead to simultaneous reduction in fuel consumption and enhancement in wet grip while maintaining wear resis-∗Tel.:+13303797339;fax:+13303797530.E-mail address:panxiaodong@.tance.Such unexpected gain in the combination of performancecharacteristics has spurred renewed interests in fundamentalunderstanding on mechanisms of wet sliding friction.For tribological systems consisting of rubber sliding on arough road surface with water in-between,factors affecting the friction characteristics have been recognized[2–4].During slid-ing,the multi-scale asperities on road surface induce high fre-quency dynamic deformation of rubber.Viscoelastic dissipationof energy inside rubber is considered as the primary contributorto sliding friction[5].Coefficient of frictionμdepends on theso-called reduced variable a T·v.Here the temperature dependent a T is the well-known Williams–Landel–Ferry time–temperatureshifting factor[6]while v is the sliding speed.In comparison,theload exerts much less sensitive impact on friction[4].Quantita-tive analysis of rubber friction certainly requires proper accountof the typically nonlinear viscoelasticity for rubber compounds,the specific roughness characters for the road surface,as wellas effects from friction heating at high v.Though not yet wellexplained,testing of‘veneered’rubber compounds indicates theimportance of the thin surface layer of rubber in determining wetsliding friction[7,8].0043-1648/$–see front matter©2006Elsevier B.V.All rights reserved. doi:10.1016/j.wear.2006.08.003708X.-D.Pan/Wear262(2007)707–717Without interference from surface charge[4],remaining contribution from adhesion(or adhesion hysteresis[9–11])is detectable(embodied as the presence of a hump along a friction master curve).Possible impact from the chemical nature of road surface has rarely been assessed[3].In the presence of sharp surface asperities,tearing of rubber can further enhance friction [12].Even though intuitive concern on possible change in rhe-ological behavior of extremely thin waterfilm was raised[13], viscous dissipation within the remaining waterfilm is generally considered insignificant.Some detailed studies have been performed for the case of smooth rubber on a wet smooth glass surface.Summarizing variation of friction with dynamic lubrication conditions,some Stribeck curves were established[14].Thefine details of extru-sion of liquid between the rubber and the glass surface were examined with the method of optical interferometry[15].Under proper conditions during sliding,waves of rubber detachment (Schallamach waves)were observed[16].Under both non-sliding and sliding conditions,the process of interfacial energy-driven dewetting has also been studied[17–20],including the situation where there exists single defect on the glass surface.A smooth glass surface is certainly much less complicated than a realistic highway surface.Other than the multi-scale asperities on the road surface,a piece of typical Portland cement concrete can have porosity of10–20%[21].Thus the road sur-face can be leaky.Even though possible implications of capillary porosity to liquid extrusion,viscous energy dissipation,and rewetting of surface are completely ignored in recent literature, there is an earlier investigation of dynamic permeability of pave-ments[22].Facing such multitude of factors,the difficulty in predicting the likely level of friction of rubber components in engineering practice has been realized[23].Recently,quantitative modeling of rubber friction on a fractal surface has been presented based on bulk viscoelastic description of material behavior[24,25]. Among the many proposals attempting to rationalize the benefit in wet traction from silica,the existence of a softer skin at the sliding interface for silica-filled rubber appears plausible[26]. The stress-softening effect can be stronger for silica-filled rubber than that for carbon black-filled rubber.However,practitioners also reported discrete singular observation that the benefit in wet traction from silica disappears on a surface lubricated with ethanol[27].Obviously establishing a complete set of phenomenology is essential for achieving a true understanding on friction mecha-nisms,which is the main purpose for this study.Here wet sliding friction for various rubber compounds is tested under different lubrication conditions with a portable British Pendulum Skid Tester(BPST)[28,29].A Portland cement concrete patio block provides the road surface.The concrete surface is wetted with either ethanol or water.Due to the current absence of efficient method for accurate quantification of waterfilm thickness on a rough surface,the lubrication condition is further adjusted by generating visually different amount of liquid on the surface before any sliding test.With the BPST,a rubber slider attached to the end of the swinging arm slides on the road surface for afixed length of path.During sliding,kinetic energy of the swinging arm is con-sumed to overcome the sliding friction.Consequently after the slider comes off contact with the road surface,the initial releas-ing height of the arm cannot be regained.The instrument reading, British Pendulum(Tester)Number or BPN,corresponds to such lost in height and hence indicates the level of sliding friction. Approximately BPN is of order of100×μ,hereμis the coef-ficient of friction[30].Hence it is more sensitive to use BPN to display the variation of friction with lubrication condition.It is difficult to quantify the dynamic contact condition for BPST.However,effects from a variety of factors on wet skid resistance of rubber compounds have been revealed with BPST [30–34].The designed average contact pressure during sliding for BPST is of order of0.21MPa[28],similar to the nominal pressure between a passenger tire and road.However,the local contact pressure between rubber and sharp surface asperities can reach well beyond10MPa[35].The rubber slider moves at about 2.7m/s(or9.7km/h)when itfirst makes contact with the surface. At such sliding speed,the shear rate in a thin waterfilm of1nm thickness on a smooth surface is of order of109s−1.The relax-ation rate of bulk water molecules is of order of1012s−1[36].The lubrication behavior of extremely thin liquidfilms con-fined between molecularly smooth surfaces has been quan-titatively examined with various Surface Force Apparatuses (SFA)[37–39].The contact pressure encountered in SFA can be3–5MPa[36].Current experimental evidences indicate that when confined between hydrophilic surfaces,thefluidity and lubricity of water remains down to one single layer of molecules [40,41].With a different experimental technique,ordering of liquid alkanes confined between an elastomer and a sapphire substrate has recently been reported[42].Examination of sliding friction under ethanol lubrication is also important for other reasons.As displayed in Fig.1,rapid formation of a‘dry’patch can be induced by dropping a small bead of ethanol onto water residing on top of the concrete sur-face.This arises from the significant difference in surface tension between the two liquids.At20◦C,the surface tension is22.3 and72.8mN/m for ethanol and water,respectively[43].Can such Marangoni drying effect[44,45]be applied to improve tire wet traction performance?Such expectation may befurther Fig.1.Marangoni drying on the water-covered concrete surface caused by a drop of ethanol(diameter∼2mm).X.-D.Pan/Wear262(2007)707–717709enhanced by the following observation[3,14].For a smooth rubber sliding(at small v)on a wet smooth glass surface,in the boundary lubrication regime,the friction under alcohol lubri-cation is higher than that under water lubrication.This was attributed to the absorption of alcohol into the rubber.A larger contact area was resulted from the softened swollen rubber.For paraffin alcohols of varied hydrocarbon chain length,friction maximize at octanol.In contrast,on a Perspex(polymethyl-methacrylate)surface,ethanol becomes a better lubricant[46].2.Experimental methods2.1.MaterialsEven though rubber compounds prepared with elastomers exhibiting quite different glass transition temperature T g have been tested,in this report we focus primarily on results obtained for four compounds made of a tin-coupled styrene–butadiene rubber(SBR,random copolymer)with T g at−29.5◦C(Duradene739from Firestone Polymers).Here the midpoint T g is identified via the differential scanning calorime-try(DSC)characterization at the heating rate of10◦C/min.The microstructure of polymer molecules was revealed with nuclear magnetic resonance(NMR)test:21.0%bound styrene(by weight),47.3%1,2-butadiene content,and31.7%1,4-butadiene content.The gel permeation chromatography(GPC)tests indi-cated a weight-average molecular weight of411.9×103g/mol, a polydispersity index of1.59,and a total coupling of60.3% including a thermal coupling of11.8%.The four compounds include a gum compound containing no filler,a carbon black-filled compound,a silica-filled compound prepared in the absence of silane,and a silica-filled compound prepared in the presence of silane Si69.In the following they are denoted as SBR-G,SBR-C,SBR-SiO2,and SBR-SiO2-Si69, respectively.The compounding formula is shown in Table1. Thefilled compounds contain50phr(part per hundred rubber, by weight)offiller.Carbon black of grade N339was used in SBR-C while amorphous precipitated silica(Hi-sil190G from PPG Indus-tries)was used in the silica-filled compounds.The typical pri-mary particle size according to electron microscopy is between 26and30nm for N339,and is averaged at17nm for Hi-Sil 190G.The nitrogen-adsorption surface area(according to the Brunauer–Emmett–Teller equation)for N339and Hi-Sil190G is96and215m2/g,respectively.In preparing SBR-SiO2-Si69,5phr of liquid organosilane bis(3-triethoxysilylpropyl)tetrasulfane(Si69from Degussa)was added during remill.In the absence of silane,to compensate for potential loss of sulfur due to its adsorption onto silica surface, a larger amount of sulfur was incorporated into SBR-SiO2to achieve a sufficient level of crosslinking.This,in addition to the strong inter-particle hydrogen bonding(arising from hydroxyl groups on silica surface),makes SBR-SiO2the hardest com-pound.Considering the essential difference in surface chemistry between carbon black and silica,as well as the role of coupling from the silane Si69,the bonding between matrix polymer and filler particle surface is very different among the threefilled compounds.Some typical characteristics for the four compounds are listed in Table2.The tensile testing was performed with a model4501 Instron Universal Testing Instrument.Viscoelastic behavior for the compounds was examined with two Advanced Rheomet-ric Expansion Systems(from Rheometric Scientific)[34].To examine the extent of absorption of ethanol into the rubber com-pounds,for each compound,four rectangular specimens were immersed into ethanol.Each specimen was about1.9mm thick and weighted about1.0g.The ethanol was replaced after24h of immersion.The wet weight was obtained for two specimens after72h of immersion and for the other two specimens after 144h of immersion.Each specimen was subsequently dried for24h in a vacuum oven heated to about60◦C and its dry weight was acquired.The total swelling is calculated as the dif-ference in wet weight and dry weight normalized by the dry weight.Table1Compounding formulasMixing stage In phr SBR-G SBR-C SBR-SiO2SBR-SiO2-Si69 Master batch SBR100100100100Carbon black05000Silica005050Stearic acid22226PPD a1111Remill Si69b N/A005Final batch Zinc oxide3333DPG c0.50.50.70.7MBTS c1111TBBS c0011Sulfur 1.3 1.3 3.0 1.15Total108.8158.8161.7164.85a The antidegradant6PPD is N-(1,3-dimethylbutyl)-N -phenyl-p-phenylenediamine.b The bifunctional,sulfur-containing organosilane Si69is bis(triethoxysilylpropyl)tetrasulfane.c The vulcanization accelerators DPG,MBTS,and TBBS represent diphenyl guanidine,dibenzothiazyl disulfide,and N-tert-butyl-2-benzothiazyl sulfenamide, respectively.710X.-D.Pan/Wear262(2007)707–717Table2General characteristics for the cured compoundsSBR-G SBR-C SBR-SiO2SBR-SiO2-Si69 Filler volume fraction a(%)0.019.717.917.4Midpoint T g(◦C)−25.8−24.7−21.6−24.7 Temperature at peak tanδb(◦C)−16.0−16.0−14.0−16.0 Tensile test at RT Strain rate during testing at0.282s−1Stress at break(MPa) 1.9322.116.620.1Strain at break(%)381.2437.3325.6424.7Stress at200%strain(MPa) 1.147.729.887.52Modulus at200%strain(MPa)0.350 5.18 5.02 4.33 Dynamic strain sweep test c Tested at1Hz,values below taken at the strain amplitude of11.8%(1)At RT(1.1)G at RT(MPa)0.627/0.643 2.52/2.56 5.38/5.43 2.68/2.79(1.2)tanδat RT0.0720/0.07250.141/0.1440.190/0.1880.153/0.156(2)Temperature d◦C−14.2−13.4−11.1−13.0(2.1)G (MPa) 3.86/4.1012.6/12.920.3/21.112.5/12.9(2.2)tanδ 1.82/1.83 1.32/1.32 1.11/1.11 1.33/1.31(3)Temperature e(◦C)−14.7−14.0−11.7−13.5(3.1)G (MPa) 4.0313.419.712.7(3.2)tanδ 1.88 1.36 1.21 1.40(4)At−14.2◦C f(4.1)G (MPa) 3.57/3.8013.523.413.3(4.2)tanδ 1.81/1.78 1.37 1.30 1.44Total swelling g(wt.%)Sample weight∼1.0g,thickness∼1.9mm(1)After72h in ethanol 2.73 1.83 2.78 2.37(2)After144h in ethanol 3.50 2.28 3.10 3.26a Calculated according to the formula in Table1,taking1.8and2.0g/cm3as the density for carbon black and silica,respectively.b From dynamic temperature step test at1Hz with the strain amplitude at0.20%.c Two samples tested under some conditions to check reproducibility.d Determined via the method of time–temperature shifting,corresponding to BPST testing at20.9◦C[34].e Corresponding to BPST testing at19.2◦C for demonstration of sensitivity.f Tested after completion of all previous dynamic strain sweep tests.g Two rectangular samples tested for each compound.By itself,the rubber grade carbon black is hydrophobic while the precipitated silica is hydrophilic.The matrix elastomer is hydrophobic while the concrete surface is hydrophilic.The silanized silica becomes hydrophobic and thus compatible with the matrix elastomer.Both the rubber compound surface and the road surface are physicochemically heterogeneous.2.2.Testing of wet sliding frictionResults reported here were obtained under ambient condi-tions with the room temperature(RT)in the range between23.0 and24.8◦C.To remove possible residual mold release agent, the sliding edge of the rubber sliders was wiped with acetone at least1h before testing.BPST testing was performed for all the compounds in ethanol(anhydrous from AAPER)first.With-out being moved,the concrete block went through air-drying and extensive washing with water before further BPST testing under water lubrication.De-ionized water was then added for testing of wet sliding friction.Videos and pictures related to BPST testing were recorded with a digital camera(Canon Pow-erShot A620).For each compound,two sliders were tested under ethanol lubrication and two different sliders were tested under water lubrication.The concrete block has the dimensions of approximately 20.2cm×20.3cm×4.4cm.By examining the difference in weight between the wet block soaked with water and the block after thorough air-drying,the volume fraction of capillary porosity is estimated to be12.6%.Prior to this study,the testing surface has been exposed to a substantial amount of testing of wet friction.As displayed in Fig.2,the varied lubrication conditions investigated consist of the visually different initial amount of liquid present on the concrete surface before any sliding test. Corresponding to Fig.2a–c,in the following,these different lubrication conditions are referred to as Condition A,Condition B,and Condition C,respectively.A large portion of the con-crete body is immersed in the liquid.To avoid accumulation of possible wear debris of rubber on the testing surface,the sur-face was refreshed in the presence of sufficient amount of liquid with a brush bearing soft stainless steel hair.The diameter of an individual bristle is about120m.Unless otherwise noted,such surface agitation was consistently applied before every sliding test and the hair did become gradually worn away from brushing.Concerning Condition A,the relatively thick layer of liquid on the surface was formed by adding extra liquid after brushing. Previous BPST testing reported was all performed under thisX.-D.Pan/Wear262(2007)707–717711Fig.2.Different wet state of the concrete surface before friction testing.(a)Con-dition A:covered with a relatively thick layer of water.(b)Condition B:covered with a relatively thin layer of water.(c)Condition C:only the residual amount of water remaining.(d)Almost dried after overnight air-drying as a comparison.condition[32–34]for closer simulation of realistic concern.The obviously thinner layer of liquid on the surface for Condition B was formed by gently brushing off the extra liquid from the surface.After one sliding test under Condition B,a few sliding tests were performed consecutively without any other action to the surface.Such surface state corresponds to Condition C.For comparison purpose,a partially dried surface after air-drying for overnight is shown in Fig.2d.3.Results and discussionUnder an imposed sinusoidal deformation of small amplitude at the frequency of f0,the variation of elastic modulus G and loss tangent tanδwith temperature T was measured(Fig.3a).Loss tangent,characterizing the viscoelastic loss property,exhibits a distinct peak at the center of the transitional zone between the glassy state and the rubbery state.The temperature at the peak of tanδ,T Peak tanδ,varies with f0.Wet sliding friction for compounds very similar to SBR-G and SBR-C were previously tested for0<T<40◦C(Fig.3b)[32].Comparing the variation of BPN with T to the variation of tanδwith T,it appears that during BPST testing between0and40◦C,the dynamic state of the rubber compounds made of this SBR stays close to the center of the transitional zone.When the rubber slider slides across the surface bearing dif-ferent initial amount of water,the extent of water splashing is obviously different(Fig.4).Under Condition A,after the rubber slider leaves the surface,the patch swept out by the rubberslider Fig.3.Similarity in temperature dependency between bulk viscoelastic loss and wet sliding friction.(a)Variation of the elastic modulus G and the loss tangent tanδwith temperature.These are obtained under an imposed sinusoidal strain at the frequency of f0=0.01Hz and with the strain amplitude at0.20%.The temperature at the peak of tanδ,T Peak tanδ,is−23.3and−23.0◦C for SBR-G and SBR-C,respectively.(b)Variation of BPN with temperature reported previously for similar compounds[32].Reinforcing carbon black of different grade(N339vs.N121)was employed for preparing SBR-C in the two plots.712X.-D.Pan/Wear262(2007)707–717Fig.4.The rubber slider(for SBR-C)striking the concrete surface during thependulum skid testing.(a)A schematic plot of the portion of the pendulumswinging arm bearing the rubber slider.(b)Corresponding to Fig.2a.(c)Cor-responding to Fig.2b.(d)Corresponding to Fig.2c.Fig.5.Rewetting of the patch on the concrete surface swept out by the rubberslider(for SBR-C).The starting condition is that shown in Fig.2a.(a)Rightafter the slider comes off contact with the concrete.(b)A short moment later.(c)The shrinking‘dry’patch.(d)Complete disappearance of the‘dry’patch.The time interval from(a)to(c)is about1s.The‘dry’patch almost completelydisappeared in2s from(a).X.-D.Pan/Wear262(2007)707–717713Fig.6.Wet sliding friction detected under varied lubrication conditions.(a)For the gum compound with the surface wetted with either water or ethanol.(b)For all the reinforced compounds with the surface wetted with water.(c)For all the reinforced compounds with the surface wetted with ethanol.becomes quickly rewetted in just a few seconds(Fig.5).After repeated testing under Condition C,the surface remains visu-ally wet.Discussion on thefine difference between wet and dry surface was made long ago[47].It was noted that even a‘dry’surface may still be covered with adsorbed water up to the limit of invisibility at about500˚A.The possibility of boiling away of such thin waterfilm from friction heating at large sliding speed was recognized.In Fig.6,the time sequence of BPN collected for each com-pound under varied lubrication conditions is displayed.Here two samples were tested for each compound with good reproducibil-ity.Thefirst12and thefinal4sliding tests were performed under Condition A.In between there were four sliding tests under Con-dition B and four sliding tests under Condition C.For testing under Condition C,the time interval between two consecutive tests was about8s.Even though it is not dramatic,the impact on sliding friction from the initial amount of liquid on the concrete surface is always detected.It has been pointed out that at low sliding speed(less than about30km/h)the hydrodynamic buildup of liquid between rubber and road surface is negligible[48].However,we hope that the detected variation can offer clues to the understanding of energy dissipation mechanisms during wet sliding.When the lubricating liquid is changed from water to ethanol, however,the sliding friction becomes markedly reduced for all the compounds.Consequently,the attempt to enhance friction under water lubrication via the Marangoni drying effect is unsuc-cessful.The sliding edge for the slider was smeared with a paper towel soaked with ethanol or the more absorbing acetone.No increase in BPN was observed under Condition A.In fact,small negative impact was observed.If considering that ethanol may be absorbed into the com-pound and results in a softened compound,the observed reduced friction is just opposite to such reasoning.In fact,after immer-sion in ethanol for over144h,the absorption of ethanol into the compounds is most for SBR-G at3.5%by weight(Table2).Other compounds prepared with polymers of widely different T g(≤−29◦C,not including butyl rubber)were also tested under ethanol lubrication.Under ambient testing condition,BPN in water increases with increasing T g.Such a trend is retained in ethanol.During BPST testing the system is in a highly non-equilibrium state.The constant agitation to the liquid during testing increases evaporation of liquid and consequently grad-ually lowers the liquid temperature.For one series of testing under water lubrication,RT was between24.1and24.8◦C, the initial water temperature was at22.6◦C.After over2h of testing,temperature for water surrounding the concrete block became20.0◦C.In contrast,for one series of testing under ethanol lubrication,RT was between23.4and23.5◦C,the initial ethanol temperature was at20.4◦C.After about2h of testing,the ethanol temperature became15.0◦C.Temperature on the con-crete surface may be even lower.Under water lubrication,BPN for compounds made of a low-cis polybutadiene(T g=−90.4◦C) increases gradually with decreasing T[33].However,BPN for such compounds still becomes markedly lower when tested in ethanol under ambient condition.Thus the reduced friction from ethanol lubrication is unlikely explained from bulk viscoelastic consideration.The viscosity of water is1002and1793Pa s at20and 0◦C,respectively.The viscosity of ethanol is1201,1317and 1786Pa s at19.2,14.5and0◦C,respectively[49].As dis-played in Fig.3b for the compound SBR-G,when T is decreased from20to about0◦C,the wet sliding friction is only reduced by about5BPN units.Thus the reduction of about10BPN units in sliding friction for SBR-G under ethanol lubrication cannot come from the higher ethanol viscosity under the testing condi-tions employed.For consideration of possible cavitation based on the simplis-tic conventional criterion,the vapor pressure for water is2.34and 6.63kPa at20and38◦C,respectively.The vapor pressure for ethanol is5.81and4.27kPa at20and15◦C,respectively.Under water lubrication,when T is increased from20to about40◦C, BPN for the compound very similar to SBR-C remains essen-tially unchanged(Fig.3b).As reported earlier[33],the benefit in wet traction from silica under water lubrication persists in the same temperature range.Therefore,the vapor pressure at15◦C714X.-D.Pan/Wear262(2007)707–717for ethanol cannot explain the significantly reduced sliding fric-tion under ethanol lubrication.Under the lubrication of the same initial amount of water (Fig.6b),the sliding friction for both silica-filled compounds is markedly higher than that for the carbon black-filled compound. Even comparing across testing under the lubrication of different initial amount of water on the concrete surface,on average,BPN for SBR-C under Condition B is still lower than BPN for SBR-SiO2and SBR-SiO2-Si69under Condition A by1.5and3.8, respectively.In contrast,under the lubrication of the same initial amount of ethanol(Fig.6c),the enhancement in wet sliding friction from silica is much reduced for SBR-SiO2-Si69and eliminated for the harder SBR-SiO2.From tensile testing at RT(Table2),the modulus at200% strain for SBR-C is higher than that for SBR-SiO2-Si69.This is partially due to the fact that the density for silica is slightly higher than that for carbon black,thus at the samefiller loading of50phr(by weight),the actual volume fraction offiller is lower for SBR-SiO2-Si69.A compound was prepared with the same SBR,in the presence of Si69,but with the amount of silica increased to match thefiller volume fraction for SBR-C.The modulus at200%strain for this compound is higher than that for SBR-C.Under water lubrication,BPN for this compound under Condition A is slightly lower than BPN for SBR-SiO2-Si69under Condition A(by1.1),but still markedly higher than BPN for SBR-C under Condition B(by2.7).Comparing SBR-SiO2to SBR-SiO2-Si69,there exists obvi-ous difference in modulus(Table2),some quantitative difference in wet sliding friction is also detected(Fig.6).This indicates that for compoundsfilled with the same kind offiller,change in viscoelastic characters is expected to result in corresponding variation in wet sliding friction.Values of the conventional vis-coelastic predictor for wet traction,tanδ,are listed in Table2 for all the compounds.The dynamic strain sweep tests were performed at1Hz and at low temperature determined with the method of time–temperature shifting,assuming that the domi-nant frequency of material deformation during BPST testing is at104Hz[34].Value of tanδis somewhat arbitrarily taken at the specific strain amplitude of11.8%for all the compounds.From Table2,the predictor from bulk viscoelastic measurement can-not account for the difference in wet sliding friction under water lubrication that arises from the usage of differentfiller particles.After completion of the testing displayed in Fig.6,the wear scar at the sliding edge of the rubber sliders was examined under a stereo optical microscope.Pictures of the wear scar are shown in Fig.7for all the compounds.Clearly,the wear scar on the sliders tested under ethanol lubrication is less severe than that on the corresponding sliders tested under water lubrication.Thus the lower wet sliding friction detected under ethanol lubrication is accompanied with a less severe wear at the sliding edge of the slider.Based on the discussions above,the eliminated benefit in wet traction from silica under ethanol lubrication cannot be explained with simple considerations of liquid viscosity,cav-itation,capillary effect,or rubber bulk viscoelasticity.However, such effect from ethanol lubrication does resemble strongly fea-tures of interfacial interactions in a liquid mediumrevealed Fig.7.Wear scar at the tested edge for the rubber sliders subjected to the testing displayed in Fig.6.Relative to the slider,the road surface moves along the arrow direction.The division on the ruler indicates1mm.。