北师大版八年级数学上册第二章 实数 2.1 认识无理数 同步练习题( 教师版)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:答案不唯一.
(1)如图所示,正方形 PQMN 的面积为 13.
(2)如图所示,△ABC 即为所求.
(3)如图所示,∠C1 为直角,A1B1 的长的平方为 13.只有一种.
21.数学课上,好学的小明向老师提出一个问题:无限Байду номын сангаас环小数是有理数吗?以 0.3 为例,老师给小明做了以下解答(注:0.3 即 0.333 33…):
解:在 Rt△ACD 中,AC=6,AD=5, 所以 CD2=AC2-AD2=11.
3/6
因为 32<CD2<42, 所以 CD 的长不是整数,也不是分数,故也不是有理数. 18.如图是由 7×7 个边长为 1 的小正方形组成的大正方形,每个小正方形的顶点称为 格点,以这些格点为顶点,分别按下列要求作图.
二、填空题
1/6
7.体积为 16 的正方体的棱长不是有理数(填“是”或“不是”).
8.小华家新买了一张边长为 1.4 m 的正方形桌子,原有的边长是 1 m 的两块正方形台 布都不适用了,但扔掉太可惜.小华想了一个办法,如图,将两块台布拼成一块正方形大台 布,请你帮小华计算一下,这块大台布能(填“能”或“不能”)盖住现在的新桌子.
9.在13,3π.14,-171,2.5,5.010 010 001…(相邻两个 1 之间 0 的个数逐次增加 1), 面积为 10 的正方形边长,体积为 16 的正方体棱长,面积为 16π的圆的半径中,无理数有 4 个.
10.下列各式中的 x 是无理数的有③(填写序号).
①5x2=45;②3x-5=0;③x3=9;④7x-3=5.
解:AB=2,AB 的长是有理数. EF=5,EF 的长是有理数. 根据勾股定理,得 AC2=12+12=2, AD2=AB2+BD2=22+32=13,
4/6
AE2=AB2+BE2=22+12=5, 所以 AC,AD,AE 的长既不是整数,也不是分数.所以它们都不是有理数. 且 1<AC<2,3<AD<4,2<AE<3. 20.如图,正方形网格中的每个小正方形的边长都是 1,每个小格的顶点称为格点,以 这些格点为顶点分别按下列要求作图: (1)作出一个面积为 13 的正方形; (2)画钝角三角形 ABC,使∠A 为钝角,AB 的长为整数,AC 的长是无理数; (3)画直角三角形 A1B1C1,使∠C1 为直角,A1B1 的长的平方为 13,你能画出几种?
(1)使线段 AB 长为有理数; (2)使线段 CD 长不是有理数; (3)使所得正方形的面积为 5. 解:答案不唯一. (1)如图所示. (2)如图所示. (3)如图所示,正方形 EFMN 即为所求. 19.如图是由 16 个边长为 1 的小正方形拼成的,任意连接这些小正方形的若干个顶点 可得到如图中的五条线段,试找出其中两条长度是有理数的线段和三条长度不是有理数的线 段,你能分别估算出不是有理数的三条线段长度在哪两个整数之间吗?
北师大版八年级数学上册第二章 实数 2.1 认识无理数 同步练习题
一、选择题
1.一个长方形的长与宽分别是 4 和 2,则它的对角线的长是(D)
A.整数
B.分数
C.有理数
D.无限不循环小数
2.下列各数中,是有理数的是(A)
A.面积为 4 的正方形的边长
B.体积为 9 的正方体的棱长
C.两直角边长分别为 2,3 的直角三角形的斜边长
(1)阴影正方形的面积是多少? (2)阴影正方形的边长介于哪两个整数之间?
解:(1)阴影正方形的面积是 5. (2)设阴影正方形的边长为 a, 则由(1)知 a2=5. 因为 22<a2<32,所以 2<a<3. 故它的边长介于 2 和 3 之间. 16.小明买了一箱苹果,装苹果的纸箱尺寸为 50×40×30(单位:cm),现在小明要将 这箱苹果分装在两个大小一样的正方体纸箱内,这两个正方体纸箱的棱长至少有多长?(结 果精确到 1 cm) 解:50×40×30÷2=30 000(cm3). 313=29 791,323=32 768. 答:这两个正方体纸箱的棱长至少为 32 cm. 17.如图,在△ABC 中,CD⊥AB,垂足为 D,AC=6,AD=5,问:CD 的长是整数吗?是 分数吗?是有理数吗?
11.面积为 15 和 56 的正方形的边长的整数部分分别为 a,b,则 a+b=10.
12.有五个数:0.123,(-1.5)3,3.141 6,-2π,0.102 002 000 2…(相邻两个 2 之间 0 的个数逐次加 1),若其中无理数的个数为 x,整数的个数为 y,非负数的个数为 z, 则 x+y+z=5.
D.长为 3,宽为 2 的长方形的对角线长
3.如图,每个小正方形的边长为 1,则△ABC 中,边长不是有理数的边数是(C)
A.0
B.1
C.2
D.3
4.下列各数中,不是无理数的是(C)
π A. 2 1)
B.-π
C.0.25 D.0.101 001 000 1…(相邻两个 1 之间 0 的个数逐次加
5.下列说法中正确的是(C)
14.我国国旗旗面为长方形,长与宽之比为 3∶2,国旗通用制作尺寸为长 240 cm、宽 160 cm,国旗对角线的长可能是整数吗?可能是分数吗?可能是有理数吗?
解:设国旗对角线长为 l cm,
则 l2=2402+1602=802×13,
2/6
则 l 不是整数和分数,故不是有理数.
15.如图,在 3×3 的方格中,有一阴影正方形,设每一个小方格的边长为 1.请解答下 面的问题:
(2)请用解方程的方法将 0.21 写成分数.
解:设 0.21 为 x,即 0.21=x,
等式两边同乘 100,得 21.21=100x,
即 21+0.21=100x.
因为 0.21=x,所以 21+x=100x.
7
7
解得 x=33,即 0.21=33.
6/6
三、解答题
13.把下列各数填在相应的大括号内.
π
22
2 ,-|-3|,0, 7 ,-3.1,1.101 001 000 1…(两个 1 之间依次多 1 个 0).
整数:{-|-3|,0,…};
22 分数:{ 7 ,-3.1,…};
无理数:{π2 ,1.101 001 000 1…(两个 1 之间依次多 1 个 0),…}.
A.带根号的数是无理数 B.无理数不能在数轴上表示出来
C.无理数是无限小数 D.无限小数是无理数
6.国际数学协会正式宣布,将每年的 3 月 14 日设为国际数学节,这与圆周率π有关, 下列表述中,不正确的是(A)
A.π=3.14 B.π是无理数 C.半径为 1 cm 的圆的面积等于π cm2 D.圆周率是圆 的周长与直径的比值
设 0.3 为 x,即 0.3=x,
等式两边同乘 10,得 3.3=10x,
即 3+0.3=10x.
因为 0.3=x,所以 3+x=10x.
1
1
解得 x=3,即 0.3=3.
因为分数是有理数,所以 0.3 是有理数.同学们,你们学会了吗?
请根据上述阅读,解决下列问题:
5/6
2 (1)无限循环小数 0.2 写成分数的形式是9;