Improvement of chloride ion penetration resistance in cement mortars modified with rubber from worn

合集下载

混凝土氯离子和硫酸盐侵蚀破坏机理研究进展

混凝土氯离子和硫酸盐侵蚀破坏机理研究进展

引言混凝土结构的耐久性是指其暴露于预期使用环境时,能抵抗风化作用、化学侵蚀、磨损或任何退化过程,以保持其原始形状、质量和可用性的能力。

当材料劣化时,混凝土结构的耐久性开始降低,尽管材料劣化不会立即产生安全问题,但它们会导致结构逐渐损坏,造成安全风险。

由于实际使用环境中存在侵蚀离子,混凝土结构的实际使用寿命通常比设计的使用寿命缩短很多。

而由氯离子引起的钢筋腐蚀和硫酸根离子对混凝土体积稳定性产生的影响,被认为是影响混凝土结构耐久性的两个主要因素。

方万里[1]采用电量综合法研究了混凝土1年内龄期抗氯离子渗透性能,并通过5年龄期自然扩散法和电量综合法试验对比研究了混凝土抗氯离子渗透性能的时变规律,结果表明,采用低水胶比和优质矿物掺混凝土氯离子和硫酸盐侵蚀破坏机理研究进展于连平1 郭保林2 夏 雨1 刘 帅21. 青岛交发高速建设投资有限公司 山东 青岛 2661002. 山东省交通科学研究院 山东 济南 250000摘 要:在侵蚀性环境的长期作用下,会引起钢筋腐蚀和混凝土劣化,使建筑结构的承载力严重下降。

其中,混凝土材料在侵蚀性环境中的耐久性,如抗氯离子渗透性和抗硫酸盐侵蚀性,一直是各国学者的研究重点。

本文综述了在侵蚀环境下混凝土氯离子渗透机理、氯离子侵蚀机制和无损检测方法,归纳总结了硫酸盐侵蚀的破坏机理、主流检测方法及应对措施,阐述了在海洋环境中硫酸盐与氯盐对混凝土的耦合侵蚀机理;最后简要回顾了海洋环境中氯离子及其他侵蚀离子对混凝土结构的影响机理,评述了Cl--SO42-对混凝土结构的耦合侵蚀机理,提出了相关寿命数学预测模型,为综合提升混凝土耐久性提供思路。

关键词:氯离子渗透;硫酸盐侵蚀;破坏机理;检测方法Research Progress on the Failure Modes and Degradation Mechanisms of Chloride and Sulfate Corrosion in ConcreteAbstract: Under the long-term action of corrosive environments, it can cause corrosion of steel bars and deterioration of concrete, resulting in a serious decrease in the bearing capacity of building structures. Among them, the durability of concrete materials in corrosive environments, such as resistance to chloride ion penetration and resistance to sulfate attack, has always been a research focus of scholars from various countries. This paper provides an overview of the chloride ion penetration mechanism, chloride ion erosion mechanism, and non-destructive testing methods in concrete under corrosive environments. It summarizes the damage mechanism, mainstream testing methods, and response measures of sulfate erosion, and elaborates on the coupling erosion mechanism of sulfate and chloride salts on concrete in marine environments; finally, it conducts a brief review on the impact mechanism of chloride ions and other corrosive ions on concrete structures in the marine environment, evaluates the coupled corrosion mechanism of Cl--SO42- on concrete structures, and proposes a related mathematical prediction model for service life,providing ideas for comprehensively improving the durability of concrete.Key words: Chloride ion permeation; sulfate erosion; destruction mechanism; detecting methods收稿日期:2023-9-15第一作者:于连平,1983年生,高级工程师,主要从事道路工程相关研究工作,E-mail:*****************通信作者:郭宝林,1986年生,高级工程师,E-mail:*****************合料等技术措施配制的抗氯盐高性能混凝土,具有优良的抗氯离子渗透性能,采用这种技术可为解决氯盐环境中混凝土结构耐久性问题的主要措施;掺入大量矿物掺合料可有效降低混凝土的绝热温升值,矿物掺合料掺量、种类及比例对混凝土导热、导温系数和比热容影响较小;混凝土抗氯离子渗透性能随着龄期的延长而显著提高,氯离子扩散系数符合指数衰减规律,其龄期系数与混凝土水胶比和矿物掺合料掺量等因素有关。

硅溶胶-甲基三乙氧基硅烷杂化材料对水泥基材料性能影响研究

硅溶胶-甲基三乙氧基硅烷杂化材料对水泥基材料性能影响研究

摘要硅溶胶是以水为分散介质的高分子聚偏硅酸的胶体溶液,其二氧化硅粒子多以球状单个或多个聚结分散。

能牢固附着在基材和壤料颗粒表面,随水分的不断蒸发,二氧化硅粒子间能形成牢固的Si —O键而成为连续涂膜。

但若单独使用硅溶胶,常温固化成膜往往存在裂纹、内部微孔等致命缺陷。

有机硅单体的基本结构单元是由―Si―O―Si―键链节构成的,该官能团能与砂浆等无机基材能很好结合,侧链则通过硅原子与其他各种有机基团相连,赋予材料憎水性。

因此,有机硅产品的结构中含有的有机基团具有很好的憎水性,所以经有机硅防水剂处理后的砂浆块吸水率能大大降低。

但传统的用于混凝土渗透剂的有机硅单体,存在一个严重的问题,即其挥发率可高达97%。

这就说明,如果在刷涂过程中,遇到大风及较强日照,有机硅单体将大量的挥发掉而不是停留在混凝土表面等待吸收和反应。

这不仅造成材料的严重浪费和不必要的经济损失,而且还造成一定的环境污染。

同时由于有效成分的挥发,严重影响涂装时的吸收效果;另外,随着时间的延长,还可能造成混凝土表层防水效果的逐渐降低。

本课题通过将硅溶胶与甲基三乙氧基硅烷结合使之杂化形成具有不同杂化比例的杂化材料。

并研究了用其杂化材料对混凝土表面处理后的耐久性能以及掺入水泥中对水泥性能的影响。

实验中对混凝土选用两不同水灰比(0.4、0.5),经表面处理后,测试其防水性、抗氯离子侵蚀性以及氯离子扩散系数,分析了此表面处理对混凝土的性能影响。

另外,通过掺入水泥砂浆和净浆,测试其不同龄期的强度以及砂浆吸水率得出其对水泥性能的影响。

混凝土试件进行表面处理后,明显降低了混凝土的吸水性能,有效阻止了有害介质的侵入;对于同一水灰比的混凝土经表面处理后,氯离子渗透深度明显降低,相对混凝土的含量也明显下降,并且随着杂化比的增加,氯离子相对混凝土含量越低;另外,掺入水泥中后,延缓了水泥基材料的水化进程,使水泥砂浆的凝结试时间延迟、早起强度也有所降低,砂浆吸水率也下降。

抗氯离子渗透性

抗氯离子渗透性

评价高性能混凝土耐久性综合指标-抗氯离子渗透性及其研究现状摘要:结合国内外高性能混凝土耐久性研究的现状,在近年来基于氯离子渗透的高性能混凝土耐久性预测模型,分析了将抗氯离子渗透性作为评价高性能混凝土耐久性的综合指标的可行性和必要性,对于制定高性能混凝土的耐久性设计规范具有参考意义。

关键词:高性能混凝土;耐久性;氯离子抗渗;综合指标Aggregative indicator evaluating the durabil ity of HPC:Chloride ion resistance and present status BA Heng jing ,ZHA N G Wu man ,DEN G Hong wei(Civil Engineering Institute ,Harbin University of Technology ,Harbin 150006 ,China) Abstract :Based on the prediction models and the domestic and foreign present status of the durability of HPC, the chloride ion resistance was used as an aggregative indicator to evaluate the durability of HPC. The importance and the feasibility were analyzed, which had significant reference for constituting standard of the durability of HPC.Key words :HPC;durability ;chloride ion resistance ;aggregative indicator1 引言近年来,国内外土木工程界对高性能混凝土耐久性问题十分关注,作了大量的试验研究,工程技术人员对混凝土耐久性的认识程度也不断加深。

基于COMSOL模拟开裂混凝土中的氯离子扩散行为

基于COMSOL模拟开裂混凝土中的氯离子扩散行为

基于COMSOL模拟开裂混凝土中的氯离子扩散行为作者:杨盛来源:《科技创新与应用》2020年第06期摘; 要:建立开裂混凝土中的氯离子扩散模型,运用COMSOL软件进行裂缝模拟,同时将模拟结果与开裂混凝土试验值比较,证明了文章开裂混凝土氯离子扩散模型的正确性。

研究发现:当裂缝宽度小于下阈值时,裂缝尺寸对氯离子扩散无影响,当裂缝宽度大于下阈值后,随着裂缝宽度的增加,裂缝处的氯离子侵蚀深度较大,同一深度的氯浓度相对更大。

关键词:裂缝;混凝土;氯离子中图分类号:U441.3 文献标志码:A 文章编号:2095-2945(2020)06-0014-02Abstract: A chloride ion diffusion model in cracked concrete was established, and crack simulation was performed using COMSOL software. At the same time, the simulation results were compared with experimental values of cracked concrete, which proved the correctness of chloride ion diffusion model of cracked concrete in this paper. The study found that when the fracture width is less than the lower threshold, the fracture size has no effect on the chloride ion diffusion. When the fracture width is greater than the lower threshold, the chloride ion erosion depth at the fracture is greateras the fracture width increases, and the chlorine concentration at the same depth is relatively larger.Keywords: crack; concrete; chloride ion引言COMSOL Multiphysics是一款有限元仿真軟件,源于MATLAB中的FEMLAB,2003年更名为COMSOL Multiphysics(以下简称COMSOL)。

高石粉含量尾矿人工砂的研究与应用

高石粉含量尾矿人工砂的研究与应用

实践技术 Beton Chinese Edition ——Ready-mixed Concrete 2010年第9期·52·1 前言全国多数使用单位对人工砂目前还是陌生的,特别从其外观上看,与天然砂有明显的不同。

天然砂外观呈黄色,含泥量高也不易看出,而人工砂多数呈灰白色或黑色,看上去石粉很多。

人工砂在生产过程中,不可避免地要产生一定量的石粉,这是正常的,也是人工砂与天然砂最明显的区别之一。

标准中石粉的定义是:加工前经除土处理,加工后形成粒径小于75μm,其矿物组成和化学成分不同、粒径分布不同,在混凝土中所起的作用亦不同。

天然砂中的泥对混凝土是有害的,必须严格控制其含量。

而人工砂中适量的石粉对混凝土是有益的,有适量石粉的存在,弥补了人工砂配制混凝土和易性差的缺陷,同时,它的掺入对完善混凝土特细骨料的级配(在这一点上,天然砂由于其生产工艺的限制,其特细级配部分是不完善的)提高混凝土密实性都有益处,进而起到提高混凝土综合性能的作用。

在新国标GB/T14684-2001实施以前,不少人工砂生产企业常用水洗的办法控制人工砂中石粉的含量,结果既浪费了资源,又形成了新的污染。

新国标实施后,对人工砂中的石粉有了明确的要求和试验方法,因此,在人工砂的生产过程中宜把除土处理放在原料加工前进行,加工后尽量保留和利用人工砂的石粉,除了分级利用石粉外,还可以用一定的装置将石粉收集起来用在其它方面,提高产品附加值。

2 研究的目的与设计思路尾矿人工砂的有效应用是实现企业资源综合利用的现实手段,与粉煤灰、废石的综合利用具有同等的作用;然而,有效地应用石粉含量偏高的尾矿人工砂(GB/T14684-2001中规定石粉的最大含量为7%,一般不超过5%,而我们所研究应用的人工砂石粉含量在10%以上),需要我们同时解决两个问题:其一,尾矿人工砂作为资源综合利用的一种原材料,其采购价格往往要高于天然中砂,单独使用势必会增加混凝土的单方成本;其二,在我们的研究试验中发现,由于尾矿人工砂中高石粉含量尾矿人工砂的研究与应用王莹(北京城泰混凝土制品有限公司,北京100176)[摘要] 2002年2月1日起实施的国标GB/T14684-2001《建筑用砂》中,首次增加了人工砂种类,确定了人工砂的定义、技术要求和检验方法,规定了凡经除土处理的机制砂、混合砂都统称为人工砂。

【中文翻译】ASTM C1556-03

【中文翻译】ASTM C1556-03

ASTM C1556-03使用容积扩散法测定胶结混合剂表观氯化物扩散系数的试验方法1本标准发布在固定标识号C1556下;紧接着标识号后面的数字表示的最初收录的年份或在修订的情况下,最后一次修订的年份。

括号中的数字表示最新重新批准的年份。

上标(ε)表示自上次修订或重新审批的编辑修改。

1.范围1.1 本测试方法涵盖了实验室测定胶结混合剂表观氯化物扩散系数。

1.2 SI规定的值被视为标准。

1.3 这个标准并不解决所有的主旨安全问题,如果有的话,与其使用相关。

这是此标准的用户的责任,建立适当的安全与健康行为,在使用前确定监管限制的适用性。

2.参考文献2.1 美国材料试验协会标准C 31/C 31M Practice for Making and Curing Concrete Test Specimens in the Field2C 42/C 42M Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete2C 125 Terminology Relating to Concrete and Concrete Aggregates2C 192/C 192M Practice for Making and Curing Concrete in the Laboratory2C 670 Practice for Preparing Precision and Bias Statements for Test Methods for Construction Materials2C 1152/C 1152M Test Method for Acid-Soluble Chloride in Mortar and Concrete2C 1202 Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride-ion Penetration22.1 北欧测试合作组织标准NT BUILD 443, Approved 1995-11, Concrete, Hardened:Accelerated Chloride Penetration (in1这种测试方法是在ASTM委员会C09关于混凝土和混凝土集料课题管辖下的,是小组委员会C09.66关于混凝土抵抗液体渗透课题直接责任的。

混凝土抗渗性能测试方法与标准

混凝土抗渗性能测试方法与标准

混凝土抗渗性能测试方法与标准一、前言混凝土是建筑工程中常用的一种材料,其质量直接影响着建筑物的安全性和使用寿命。

而混凝土的抗渗性能则是评价混凝土质量的重要指标之一。

因此,混凝土抗渗性能的测试方法和标准显得尤为重要。

二、混凝土抗渗性能的定义混凝土抗渗性能是指混凝土抵抗水分渗透的能力。

混凝土中的孔隙和裂缝是影响混凝土抗渗性能的主要因素。

当混凝土中存在较多的孔隙和裂缝时,水分容易渗透进混凝土内部,导致混凝土质量下降。

因此,混凝土抗渗性能的好坏直接关系到建筑物的安全可靠性和使用寿命。

三、混凝土抗渗性能测试方法1. 水压试验法水压试验法是混凝土抗渗性能测试的常用方法之一。

该方法是通过将混凝土样品置于水中,施加一定的压力,观察水压下升高的高度,从而判断混凝土的抗渗性能。

这种方法简单易行,但是不够准确,因为水压试验法不能考虑混凝土中存在的孔隙和裂缝对抗渗性能的影响。

2. 电渗法电渗法是利用电场作用于混凝土中的水分,通过测量电流和电压的变化来判断混凝土的抗渗性能。

该方法能够较准确地反映混凝土中的孔隙和裂缝对抗渗性能的影响,并且适用于评价混凝土的抗渗性能和耐久性。

但是该方法需要专业的设备和技术支持,成本较高。

3. 水静压渗透法水静压渗透法是通过将混凝土样品置于水中,施加一定的压力,观察水渗透混凝土的情况来判断混凝土的抗渗性能。

该方法能够较准确地反映混凝土中存在的孔隙和裂缝对抗渗性能的影响。

但是该方法需要专业的设备和技术支持,成本较高。

4. 气压试验法气压试验法是通过将混凝土样品置于一定压力的气体中,观察气体通过混凝土的情况来判断混凝土的抗渗性能。

该方法能够较准确地反映混凝土中存在的孔隙和裂缝对抗渗性能的影响。

但是该方法需要专业的设备和技术支持,成本较高。

四、混凝土抗渗性能测试标准1. GB/T 50082-2009《混凝土结构工程施工质量验收规范》该标准是国家质量监督检验检疫总局发布的混凝土抗渗性能测试标准,适用于混凝土结构工程中混凝土抗渗性能的测试和评价。

基于MICP技术的高浓度菌液覆膜对混凝

基于MICP技术的高浓度菌液覆膜对混凝

引言水泥基材料在荷载作用或长期暴露在自然环境中,不可避免的会产生各种缺陷或微裂缝[1],利用MICP(微生物诱导碳酸钙沉淀)技术生成的碳酸钙作为混凝土的防护层具有绿色环保、相容性好等其他材料不具备的优势[2]。

早期的研究者[3]多采用将水泥基材料试件长期浸泡于带有微生物的培养液中,通过菌株的新陈代谢持续分解底物,直至表面碳酸钙晶体沉积并附着于试件表面形成覆膜层,达到修复防护的目的。

在后期的工程应用研究中,浸泡法由于工艺问题,无法满足现场设施中表面缺陷和裂缝的修复防护,应用受到限制。

当前多采用喷涂、固载涂刷[4-6]等工艺对带裂缝表面进行覆膜,覆膜多使用单倍菌液[7],随着涂覆次数的增加,沉积的碳酸钙虽然可将小于0.5mm裂缝表面封闭,但却不能有效提高混凝土的耐久性,这是因为微生物表面涂覆主要通过表面张力在试件表面形成微液面,在此环境中低浓度菌株很难达到再次生长繁殖高峰,覆膜厚度不足,因基于MICP技术的高浓度菌液覆膜对混凝土耐久性的影响李宗源1 程海丽1 王利娜2 鲍志强2 贾保治21. 北方工业大学 土木工程学院 北京 1001442. 中国水利水电科学研究院 北京 100038摘 要:针对低浓度菌对混凝土耐久性能提高不明显的现状,本文采用高浓度菌研究了覆膜工艺、菌液浓度和营养液浓度对混凝土防护效果的影响,并与环氧、纳米胶和有机硅对比研究了其对混凝土抗碳化、抗氯离子渗透的影响。

结果表明,高浓度菌涂覆一次即可使试件毛细吸水系数降低率达63.3%;多次涂覆后的混凝土试件碳化深度降低达92%,氯离子扩散系数可降低63%;与环氧、纳米胶和有机硅相比,微生物覆膜与环氧覆膜差别不大,但明显好于纳米胶和有机硅的防护效果。

关键词:MICP技术;高浓度菌;覆膜;混凝土;耐久性Effect of High-concentration Bacterial Film Coating on Concrete Durability Based on MICP TechnologyAbstract: In view of the current situation that the low-concentration bacteria did not significantly improve the durability of concrete, the effects of coating process, bacterial solution concentration and nutrient solution concentration on the protective effect of concrete wasresearched using high-concentration bacteria and compared with epoxy, nano-adhesive and silicone on the effect of concrete carbonation resistance and chloride ion penetration resistance in this paper. The results showed that the capillary water absorption coefficient of the specimen could be reduced by 63.3% after coating with high concentration bacteria once. After multiple coating, the carbonation depth of concrete specimens decreased by 92% and the chloride diffusion coefficient decreased by 63%. Compared with epoxy, nano-adhesive and silicone, microbial coating and epoxy coating have little difference, but significantly better than nano-adhesive and silicone.Key words: MICP technology; high-concentration bacteria; coated; concrete; durability收稿日期:2022-9-16第一作者:李宗源,1995年生,硕士,研究方向为防灾减灾工程与防护工程,E-mail:****************通信作者:程海丽,1965年生,教授,研究方向为新型建筑材料及固废资源化,E-mai:***************此对混凝土结构的长期耐久性的提高不明显。

蒸汽中氯离子测定标准

蒸汽中氯离子测定标准

蒸汽中氯离子测定标准英文回答:The determination of chloride ions in steam is acrucial aspect of water chemistry control in various industries, including power plants, chemical processing facilities, and desalination plants. Chloride ions can contribute to corrosion, scale formation, and other operational problems in these systems. Therefore, monitoring and controlling chloride levels is essential for maintaining efficient and reliable operations.Standard Methods for Chloride Ion Determination in Steam:Several standard methods are commonly used for the determination of chloride ions in steam samples. These methods involve extracting the chloride ions from the steam and then analyzing the extract using various techniques.1. Ion Chromatography (IC): IC is a widely used technique for chloride ion analysis. It involves separating the chloride ions from other ions in the sample using an ion exchange column. The eluent is then passed through a detector, which measures the concentration of chloride ions based on their conductivity or absorbance. IC is asensitive and versatile technique that can be used for a wide range of chloride concentrations.2. Titration: Titration methods involve reacting the chloride ions with a known excess of a silver nitrate solution. The excess silver ions are then titrated with a potassium thiocyanate solution using a silver electrode as an indicator. The endpoint of the titration is reached when all the chloride ions have reacted with the silver ions, and the excess silver ions react with the thiocyanate ions to form a precipitate. Titration methods are relatively simple and inexpensive but may be less accurate and precise than IC.3. Spectrophotometry: Spectrophotometric methods measure the absorbance of light by the chloride ions in thesample. The sample is reacted with a specific reagent that forms a colored complex with the chloride ions. The absorbance of the colored complex is then measured at a specific wavelength using a spectrophotometer. Spectrophotometric methods are relatively simple and inexpensive but may be less sensitive and selective than IC.Selection of the Appropriate Method:The choice of the appropriate method for chloride ion determination in steam depends on several factors,including the required accuracy and precision, the range of chloride concentrations expected, and the availability of instrumentation and expertise. IC is generally consideredthe most accurate and versatile method, while titration and spectrophotometry offer simpler and less expensive alternatives for specific applications.Reporting of Results:The results of chloride ion determination in steam are typically reported in milligrams per liter (mg/L) or partsper million (ppm). It is important to include the sampling method, the analytical method used, and the limit of detection in the report.中文回答:蒸汽中氯离子的测定标准。

混凝土氯化物扩散系数检测标准

混凝土氯化物扩散系数检测标准

混凝土氯化物扩散系数检测标准一、前言混凝土氯化物扩散系数检测是评估混凝土耐久性和预测混凝土使用寿命的重要手段之一。

本文将介绍混凝土氯化物扩散系数检测的标准,包括国家标准、行业标准以及国际标准。

二、国家标准1. GB/T 50082-2009《混凝土氯离子渗透试验方法》GB/T 50082-2009是中国国家标准,也是混凝土氯化物扩散系数检测的基本标准。

该标准规定了混凝土氯离子渗透试验的方法、仪器设备、试验程序、数据处理等内容。

2. JGJ/T 70-2009《建筑混凝土强度检验规程》JGJ/T 70-2009是中国国家标准,主要规定了混凝土强度检验的方法和要求,其中也包括了混凝土氯离子渗透试验的方法和要求。

3. CJJ/T 192-2012《建筑工程混凝土结构工程质量验收规范》CJJ/T 192-2012是中国国家标准,主要规定了建筑工程混凝土结构工程质量验收的规范,其中也包括了混凝土氯离子渗透试验的要求。

三、行业标准1. DBJ08-218-2004《建筑结构工程施工质量验收规范》DBJ08-218-2004是中国建筑工程行业标准,主要规定了建筑结构工程施工质量验收的规范,其中也包括了混凝土氯离子渗透试验的要求。

2. JTG D60-2004《公路桥梁混凝土工程施工质量验收规范》JTG D60-2004是中国公路工程行业标准,主要规定了公路桥梁混凝土工程施工质量验收的规范,其中也包括了混凝土氯离子渗透试验的要求。

四、国际标准1. ASTM C1202-19《Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration》ASTM C1202-19是美国材料和试验协会(ASTM)发布的标准,主要规定了电化学法检测混凝土氯离子渗透性的方法和要求。

2. EN 14629:2010《Products and systems for the protection and repair of concrete structures - Test methods - Determination of chloride diffusion coefficient of hardened concrete》EN 14629:2010是欧洲标准,主要规定了测定混凝土氯离子扩散系数的方法和要求。

混凝土拌合物氯离子

混凝土拌合物氯离子

混凝土拌合物氯离子英文回答:Concrete is a widely used construction material due to its strength, durability, and versatility. However, one of the main concerns with concrete is its susceptibility to chloride ion penetration, which can lead to corrosion of the reinforcement steel and ultimately compromise the structural integrity of the concrete. In order to mitigate this issue, various measures can be taken during the mixing process to reduce the chloride ion content in the concrete mixture.One effective method is to use low-chloride cement. This type of cement contains a lower concentration of chloride ions compared to regular cement. By using low-chloride cement, the overall chloride ion content in the concrete mixture can be significantly reduced, thereby reducing the risk of corrosion.Another approach is to use chloride-free water during the mixing process. Water is a crucial component in concrete mixtures, and it can contribute to the chloride ion content if it contains high levels of chlorides. By using chloride-free water, the chloride ion content in the concrete mixture can be further minimized.Furthermore, the use of chloride-free admixtures can also help in reducing the chloride ion content in concrete. Admixtures are substances added to the concrete mixture to enhance its properties. Some admixtures, such as calcium nitrate or lithium-based compounds, have the ability to reduce the chloride ion content and provide additional protection against corrosion.In addition to these measures, proper curing of the concrete is essential to minimize chloride ion penetration. Curing involves maintaining the moisture content and temperature of the concrete during the early stages of its hardening process. Adequate curing can help in reducing the porosity of the concrete, which in turn reduces the potential for chloride ion ingress.中文回答:混凝土是一种被广泛应用于建筑领域的材料,因其强度、耐久性和多功能性而备受青睐。

高性能混凝土在预制装配式桥梁工程中的应用

高性能混凝土在预制装配式桥梁工程中的应用

引言近年来,国内装配式建筑发展迅猛,装配式混凝土预制构件生产及其现场施工技术日趋成熟。

与传统建造方式相比,其效率得到了有效提升,作业时间缩短,构件生产的过程质量可控,且能降低能源资源的消耗,适应“双碳”政策下“一带一路”倡议建设的新基建发展目标。

针对道路桥梁工程的项目建设,构件的装配式预制化发展已成为热点和趋势[1-3]。

2014年起,乌鲁木齐市大力推广应用高性能混凝土,于2016年列入全国首批高性能混凝土推广应用试点城市。

随着混凝土应用技术的进步,市场化管理的日趋成熟,通过大量的工程项目依托,乌市高性能混凝土的产业应用积累了丰富的实践经验,适逢西北地区首座装配式桥梁工程的开工建设,高性能混凝土的选择与设计应用,顺应着时代发展的技术需求[4]。

1 工程概况东进场高架道路作为乌鲁木齐地窝堡国际机场外围交通快速通道,承担机场枢纽、东北城际、东南市域的收稿日期:2023-4-20第一作者:芦向晶,1991年生,硕士,工程师,主要从事高性能混凝土及新型建筑材料的开发与应用研究工作,E-mail:****************项目信息:新疆维吾尔自治区科技支疆项目(2022E02022);新疆维吾尔自治区“两区”科技发展计划项目(2022LQ03008);新疆高性能混凝土辅助性胶凝材料工程技术研究中心(GC2021006)高性能混凝土在预制装配式桥梁工程中的应用芦向晶1,2 袁 芬1,2 赵 鹏1 邵 琦1 王 涛1 曹鹤磊1 刘隽江11. 新疆研科节能科技有限公司 新疆 乌鲁木齐 8300002. 新疆高性能混凝土辅助性胶凝材料工程技术研究中心 新疆 乌鲁木齐 830000摘 要:针对乌鲁木齐市东进场高架道路项目的高性能混凝土工程应用,开展了技术验证及试验比对,结合现场混凝土浇筑施工及构件外观立面优化,进行了桥梁预制装配式构件的技术性能研究。

试验采用普硅水泥、粉煤灰基固废及功能性矿物外加剂三元胶凝材料复合应用的技术路径,配制出了针对不同结构形式(立柱、预应力混凝土小箱梁及预应力混凝土盖梁)及强度等级(C40~C60)需求的桥梁预制装配式构件混凝土。

不同预湿再生细骨料对UHPC的力学与自收缩性能影响

不同预湿再生细骨料对UHPC的力学与自收缩性能影响

———————————————————————基金项目:武汉工程大学研究生创新基金,氧化镁基膨胀剂-再生砂超高性能混凝土收缩性能的调控机理研究,基金编号(CX2022187)。

作者简介:吴子杨(1997-),男,湖北黄冈人,在读硕士,研究方向为超高性能混凝土;程书凯(通讯作者)(1989-),男,湖北武汉人,博士,武汉工程大学,硕士生导师,讲师,主要研究方向为建筑固废绿色循环再利用。

0引言超高性能混凝土(UHPC )是一种高密实高强度的纤维增强水泥基复合材料[1],其不仅有良好的力学性能和耐久性,还具有较好的韧性,目前已被广泛使用在较多的工程结构应用中[2,3]。

但是,由于UHPC 具有极低的水胶比和较高的胶材用量,这会引起其内部毛细孔中水分不饱和,毛细管内负压增大,从而产生较大的早期自收缩,可能会引起UHPC 出现开裂,导致结构出现安全隐患[4,5]。

国内有研究表明内养护材料可以为混凝土内部提供有效的水分来源,降低其内部自干燥,从而抑制早期自收缩、防止混凝土开裂。

内养护技术是改善超高性能混凝土早期收缩开裂问题的重要手段之一[6]。

内养护技术主要是通过对内养护材料预湿处理使其负载水分来达到对混凝土基体有效内养护的目的。

S.H.Kang 等[7]研究结果表明,预湿SAP 掺入能抑制UHPC 内部自干燥现象和自收缩,但同时也会导致UHPC 基体的孔隙率增大,力学性能下降。

张高展[8]等发现引入预湿LWA 会略微降低UHPC 的力学性能,可以实现UHPC 轻质和低收缩的目的,不同预湿程度还可以改善拌合物的工作性能和体积稳定性能。

再生细骨料(Recycled fine aggregate ,RFA )具有孔隙率高、吸水率大特点[9],是一种多孔轻质材料(LWA ),具备内养护材料特性。

童小根等[10]研究发现,再生砂的掺入不仅可以有效地改善混凝土的收缩性能和抗裂性能,制备出的混凝土满足C60混凝土强度设计要求,同时具备较好的抗氯离子渗透性能和抗硫酸盐侵蚀性能。

混凝土抗渗性能测试方法与标准

混凝土抗渗性能测试方法与标准

混凝土抗渗性能测试方法与标准一、前言混凝土作为建筑物的主要材料之一,其抗渗性能是影响建筑物使用寿命的重要因素之一。

因此,对混凝土抗渗性能进行测试和评价具有重要意义。

本文将介绍混凝土抗渗性能测试的相关方法和标准。

二、混凝土抗渗性能测试方法1.水压试验法水压试验法是混凝土抗渗性能测试的一种常用方法。

该方法通过将混凝土样品放置在水中,测量其渗透压力来评价混凝土的抗渗性能。

水压试验法适用于各种混凝土类型,但需要一定的时间来进行测试。

2.氯离子渗透试验法氯离子渗透试验法是一种比较常用的混凝土抗渗性能测试方法。

该方法通过将混凝土样品浸泡在氯化钙溶液中,测量混凝土中氯离子的渗透深度来评价混凝土的抗渗性能。

该方法适用于各种混凝土类型,但需要特殊的设备来进行测试。

3.电阻率测试法电阻率测试法是一种快速简便的混凝土抗渗性能测试方法。

该方法通过将电极置于混凝土表面,测量混凝土的电阻率来评价混凝土的抗渗性能。

该方法适用于各种混凝土类型,但需要特殊的仪器来进行测试。

4.压力法压力法是一种比较精确的混凝土抗渗性能测试方法。

该方法通过施加一定的压力,测量混凝土中水分的渗透速度来评价混凝土的抗渗性能。

该方法适用于各种混凝土类型,但需要特殊的设备来进行测试。

5.静水压试验法静水压试验法是一种比较常用的混凝土抗渗性能测试方法。

该方法通过将混凝土样品浸泡在水中,测量混凝土中水分的渗透速度来评价混凝土的抗渗性能。

该方法适用于各种混凝土类型,但需要一定的时间来进行测试。

三、混凝土抗渗性能测试标准1. GB/T50082-2009《混凝土结构工程施工质量验收规范》该标准规定了混凝土抗渗性能测试的方法和要求,涉及水压试验法、氯离子渗透试验法等多种测试方法,并对测试结果的评价进行了详细说明。

2. JGJ55-2011《建筑用混凝土工程施工质量验收规范》该标准规定了混凝土抗渗性能测试的方法和要求,包括水压试验法、氯离子渗透试验法等多种测试方法,并对测试结果的评价进行了详细说明。

混凝土耐久性能测试的标准与方法

混凝土耐久性能测试的标准与方法

混凝土耐久性能测试的标准与方法混凝土耐久性能测试的标准与方法1. 引言混凝土作为一种广泛应用于建筑工程和基础设施领域的材料,其耐久性能对于工程结构的长期使用至关重要。

为了确保混凝土的可靠性和持久性,进行耐久性能测试是必不可少的。

本文将介绍混凝土耐久性能测试的标准与方法,以帮助读者更好地了解混凝土的耐久性能。

2. 混凝土耐久性能的重要性混凝土在长期使用过程中,会受到多种因素的影响,如水分、气候、化学物质等。

这些因素可能导致混凝土的劣化和损坏,进而影响结构的安全性和使用寿命。

了解混凝土的耐久性能,并采取相应的措施来确保其长期稳定性是至关重要的。

3. 混凝土耐久性能测试的标准混凝土耐久性能测试通常遵循一定的标准,以确保测试结果的可靠性和可比性。

以下是一些常用的混凝土耐久性能测试标准:3.1 拉伸强度测试拉伸强度测试用于评估混凝土的抗拉能力。

常用的测试方法包括直接拉伸试验和间接拉伸试验。

直接拉伸试验通过施加直接的拉力来测试混凝土的抗拉能力,而间接拉伸试验使用拉伸试件中的压力来产生拉应力。

3.2 压缩强度测试压缩强度测试是评估混凝土的抗压能力的一种常用方法。

测试过程中,将混凝土试样置于压力下,测量其抗压能力。

这通常采用标准的圆柱形试样,并测量其承载能力及变形情况。

3.3 耐久性评估耐久性评估测试用于评估混凝土在不同环境条件下的耐久性能,包括耐冻融、耐化学腐蚀、耐磨损等。

这些测试通过模拟实际使用条件下的环境因素,来评估混凝土的耐久性和性能。

4. 混凝土耐久性能测试方法为了确保测试结果的准确性和可靠性,混凝土耐久性能测试需要遵循一定的方法和步骤。

以下是一些常用的混凝土耐久性能测试方法:4.1 标准化试验方法混凝土耐久性能测试通常依据国际或国家标准进行。

这些标准规定了测试的方法、试样的制备和测试条件等。

ASTM C1202标准规定了混凝土的电化学腐蚀性能测试方法,而ASTM C666标准则规定了混凝土的耐冻融性能测试方法。

美标渗透标准

美标渗透标准

美标渗透标准在美国,混凝土渗透性的测试和评估通常基于不同的标准和规范,其中一个常用的标准是ASTM C1202 -Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration。

这个标准用于评估混凝土的抗氯离子渗透能力。

以下是一些与美标ASTM C1202 相关的信息:ASTM C1202 标准概述:-标准编号:ASTM C1202-标准名称:Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration-标准类型:测试方法测试原理:ASTM C1202 标准测试基于混凝土试样的电阻性能。

试样被浸泡在盐水中,然后在试验期间施加电压,观察电流的变化。

电流的变化可以用来评估混凝土的渗透性,特别是其对氯离子的渗透性。

电阻性能与混凝土中的氯离子渗透有关。

评估结果:ASTM C1202 标准测试的结果以“氯离子电量传递率”(Coulombs)为单位,该值表示试样对氯离子渗透的电量传递能力。

较低的氯离子电量传递率表示较低的渗透性。

需要注意的是,ASTM C1202 标准是用于评估混凝土的氯离子渗透性能。

在实际应用中,根据不同的工程要求,可能还需要考虑其他因素如混凝土的配比、抗渗性添加剂等。

除了ASTM C1202,美国还有其他用于评估混凝土性能和渗透性的标准,具体选择标准要根据工程需要和应用环境来决定。

如果你需要更详细的信息,建议查阅ASTM International 的官方网站或相关资料,以获取最新的标准和测试方法。

混凝土材料耐久性测试标准

混凝土材料耐久性测试标准

混凝土材料耐久性测试标准一、引言混凝土是建筑中最常用的材料之一,它的性能直接影响到建筑物的使用寿命和安全性。

为了保证混凝土的耐久性,需要对其进行耐久性测试。

本文将介绍混凝土材料耐久性测试的标准。

二、耐久性测试的目的混凝土材料在使用过程中受到多种因素的影响,如水分、氧气、氯离子、二氧化碳等,这些因素会导致混凝土的性能发生变化,最终影响混凝土的耐久性。

因此,耐久性测试的目的在于评估混凝土材料在不同环境下的耐久性,以便确定混凝土的使用寿命和质量。

三、耐久性测试的内容1. 抗压强度测试抗压强度是评估混凝土性能的重要指标之一,它可以反映混凝土的质量和强度。

抗压强度测试是通过在规定的时间内施加压力来测试混凝土的强度。

测试结果可以用来评估混凝土的质量和强度,以及它在不同环境下的耐久性。

2. 吸水性测试混凝土的吸水性是它的另一个重要性能指标。

吸水性测试是通过将混凝土浸泡在水中一段时间后,测量混凝土吸收水分的能力来测试混凝土的吸水性。

测试结果可以用来评估混凝土的抗渗性和耐久性。

3. 抗冻性测试混凝土在低温环境下容易发生冻融损伤,因此抗冻性是评估混凝土耐久性的重要指标之一。

抗冻性测试是通过将混凝土暴露在低温环境下一段时间,然后测量混凝土的强度和质量变化来测试混凝土的抗冻性。

测试结果可以用来评估混凝土在低温环境下的耐久性。

4. 抗碱性测试混凝土中含有的氢氧化钙会和水反应产生氢氧化钙,进而引起混凝土的碱性变化。

抗碱性测试是通过将混凝土暴露在高碱环境下一段时间,然后测量混凝土的强度和质量变化来测试混凝土的抗碱性。

测试结果可以用来评估混凝土在高碱环境下的耐久性。

5. 抗氯离子渗透性测试氯离子是混凝土中的一种常见有害物质,它会进入混凝土内部并与混凝土中的钙离子反应,从而引起混凝土的变质和开裂。

抗氯离子渗透性测试是通过将混凝土暴露在含氯环境下一段时间,然后测量混凝土中氯离子的渗透深度来测试混凝土的抗氯离子渗透性。

测试结果可以用来评估混凝土在含氯环境下的耐久性。

抗硫酸盐腐蚀型混凝土

抗硫酸盐腐蚀型混凝土

混凝土抗硫酸盐侵蚀研究作者摘要:本文介绍了混凝土硫酸盐侵蚀破坏的机理和分类以及混凝土硫酸盐侵蚀的影响因素。

主要综合说明了5种判断硫酸盐侵蚀混凝土的检验方法:快速法;膨胀法;干湿循环法I;干湿循环法II;氯离子渗透试验。

提出了4种改善方法:合理选择水泥及掺合料品种;提高混凝土密实性;采用高压蒸汽养护;增设必要的保护层。

Summary:This paper introduces the mechanism and classification of erosion of concrete sulfate and influence factors of concrete sulfate attack.5 methods for the inspection of sulfate attack concrete are described:Express method;Plavini;dry wet cycling method I;Dry wet cycling method II;Chloride ion penetration test.4 improvement methods are proposed:Reasonable selection of varieties of cement and admixture;Improve the density of concrete;High pressure steam curing;Add the necessary protective layer.关键词:硫酸盐侵蚀混凝土改善方法影响因素Key word: Sulfate attack Concrete Improvement method Influential factors一、研究背景自混凝土产生以来,就以其原材料来源广泛、强度高、可塑性好、成本低等优点被普遍应用在房建工程、桥梁工程、还有水利及其它工程中,随着社会的发展和科学技术的进步,环境污染也成为了人类面临的一大重要问题,在空气和水中都产生了大量的腐蚀性的物质,给混凝土结构的使用寿命带来了严峻的考验。

混凝土抗渗标准方法

混凝土抗渗标准方法

混凝土抗渗标准方法一、前言混凝土是一种常用的建筑材料,具有强度高、耐久性好等优点。

然而,混凝土本身具有一定的渗透性,如果混凝土的渗透性过大,会严重影响混凝土的使用寿命。

因此,混凝土抗渗性能的测试及评估是非常重要的。

二、抗渗性能的概念及相关标准1. 抗渗性能的概念抗渗性能是指混凝土在一定的水压力下,不发生渗漏现象的能力。

一般来说,混凝土的抗渗性能越好,其使用寿命也就越长。

2. 抗渗性能的相关标准国内外对混凝土抗渗性能的测试及评估都有相应的标准。

以下是几种常见的标准:(1) GB/T 50082-2009《混凝土结构工程施工质量验收规范》该标准规定了混凝土工程施工质量验收的一般规定、混凝土强度、抗渗、抗冻、抗碱-骨料反应等指标的验收标准及检测方法等。

(2) JGJ/T 23-2001《混凝土结构工程验收规范》该标准规定了混凝土结构工程验收的一般规定、混凝土的抗渗性能验收标准及检测方法等。

(3) ASTM C1202-19《Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration》该标准是美国材料和试验协会制定的混凝土抗氯离子渗透能力测试标准,通过电化学方法测试混凝土的抗渗性能。

3. 抗渗性能的测试方法目前,常用的混凝土抗渗性能测试方法主要有以下几种:(1) 水压试验法水压试验法是一种常见的混凝土抗渗性能测试方法,可以测试混凝土在一定水压下的渗透性能。

测试时,将混凝土试件放入水压试验机中,逐渐增加水压,观察混凝土的渗漏情况。

(2) 水浸法水浸法是一种简单的混凝土抗渗性能测试方法。

测试时,将混凝土试件放入水中,观察一定时间内水中的渗透情况及混凝土试件的变化。

(3) 氯离子渗透试验法氯离子渗透试验法是一种通过测量混凝土中氯离子的渗透情况来评估混凝土抗渗性能的测试方法。

异烟酸_吡唑酮分光光度法测定饮用水中的氯化氰

异烟酸_吡唑酮分光光度法测定饮用水中的氯化氰

文章编号 : 1003-8507(2009)17-3328-02中图分类号 : R123.1文献标识码 : A【实验技术及其应用】异烟酸—吡唑酮分光光度法测定饮用水中的氯化氰边秀兰, 范建辉, 段海霞氯化氰 (CNCl ) 是剧毒类物质[1]。

化学性质活泼, 有强烈 刺 激 性 。

高浓度氯化氰可以引起眩晕 、 恶 心 、 大 量 流 泪 、 咳 嗽、 呼吸困难、 肺水肿, 甚至死亡。

低浓度氯化氰对呼吸道和 眼有强刺激作用, 并有不同程度的呕吐、 腹泻、 尿痛、 咳嗽、 头痛、 体重减轻等症状。

饮用水中的氯化氰作为氯胺化消毒的 副产品已经被美国环保局列为环境监测的黑名单[2]。

我国已于2001 年制定了饮用水中氯化氰的卫生标准 (0.07 mg / L )[3], 但 对氯化氰的检验方法研究较少。

本研究拟采用异烟酸-吡唑酮 分光光度法测定饮用水中氯化氰。

在 pH=7.2 的磷酸盐缓冲溶 液中, 氯化氰与异烟酸—吡唑酮作用, 生成蓝色染料, 于 638 nm 波长处比色定量。

1 材料与方法1.1 仪器与试剂723 型分光光度仪 (上海第三分析仪器厂); CD -1 型大气 采 样 器 ( 北京环保仪器厂 ); pH=7.0 的 磷 酸 盐 缓 冲 液 : 称 取 34.0 g 无水磷酸二氢钾和 35.5 g 无水磷酸氢二钠, 溶于水中加水 至 1 000 m l ; 0.1% 的 氯 胺 T 溶 液 ( 临 用 现 配 ) : 称 取 氯 胺 T1.0 g 溶于 100 ml 水中; 异烟酸-吡唑酮溶液的配制: 称取异 烟酸 1.5 g 溶于 24 ml 0.5 mol / L 的 NaOH 溶液中加水稀释至作者简介 : 边秀兰 (1955-) 女, 高级实验师, 研究方向: 卫生检验 作者单位: 华北煤炭医学院预防医学系, 河北省煤炭职业卫生与安全重点实验室, 唐山, 063000100 ml , 称取 0.25 g 吡唑酮溶于 20 mlN -二甲基甲酰胺中 ; 临用时合并两种溶液, 混匀; 硝酸银标准溶液 (0.019 2 mol / L ): 称取硝酸银 3.216 7 g , 溶于纯水中并且定容在 1 000 ml 的 容量瓶中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Improvement of chloride ion penetration resistance in cement mortars modified with rubber from worn automobile tiresN.Oikonomou *,S.MavridouLaboratory of Building Materials,Department of Civil Engineering,Aristotle University of Thessaloniki,54124Thessaloniki,Greecea r t i c l e i n f o Article history:Received 20March 2007Received in revised form 20November 2008Accepted 6April 2009Available online 17April 2009Keywords:Automobile tires Cement mortars ConcreteChloride ion penetration Recycled rubbera b s t r a c tDisposal of worn tires poses a major problem worldwide.In Greece more than 50,000tons of worn auto-mobile tires are stockpiled annually.This paper presents the results of laboratory research that examines the incorporation of tire rubber granules as a partial replacement for the sand in cement mortars.Physical and mechanical properties of these rubber mixtures are studied while,for the first time,resistance to chloride ion penetration is measured.Results showed a decrease in mechanical properties,whereas an increase in chloride ion penetration resistance has been observed.This implies that cement-based mortar and concrete products,modified with tire rubber granules as a partial replacement for the sand,can be used in applications where mechanical properties are not of prime importance but where high resistance to chloride ion penetration is demanded.Ó2009Elsevier Ltd.All rights reserved.1.IntroductionIn Greece more than 50,000tons of worn mobile tires are gen-erated annually,and this figure is expected to increase in the com-ing years along with an expected increase in traffic.Unfortunately a large part of these tires often gets illegally discarded at dumpsites and since tires are not biodegradable,they will remain in landfill with very little degradation over time,presenting a continuing environmental hazard.Lately law no109/75/2004is issued concerning the means and the terms for the alternative management of worn tires from auto-mobiles in Greece,in compliance with the European Directive 31/1999,which forbids the deposition of worn tires in landfills by mid-2006.According to this law,land filling of whole worn tires is forbidden since 2004and by the end of July 2006,no land filling –even for small particles of tires –is permitted.By the 31st of the same month,the utilization of worn tires must reach 65%of total amount of tires and the recycling of these should be at least 10%[1].Since 2002,in Greece,there is a legislated system called Ecoelastika S.A.[2],which concerns tire management and whose target is the application of laws issued.Rubber tire can be used in a variety of civil and non-civil engi-neering applications such as in road construction,in geotechnical works,as a fuel in cement kilns and incineration for production of electricity or as an aggregate in cement-based products.Todayin Greece the most common uses of worn tires are as a fuel in ce-ment kilns and in the production of electricity,whereas many studies are being carried out to find a way to include worn tires in products based on cement or asphalt.The present study concerns the use of different percentages of rubber from worn automobile tires in cement-based products.Some physical and mechanical properties,as well as absorption of water by immersion under vacuum,of cement mortars with the addition of tire rubber have been studied.The tire rubber has been used in powder form to minimize the loss in mechanical properties due to tire rubber incorporation,which has been studied worldwide [3–19].Meanwhile,for the first time,resistance to chloride ion penetra-tion is measured for all the mixtures and it is found to increase as percentage of tire rubber increases.This increase in resistance has important practical implications,taking into account that penetra-tion of chloride ions into reinforced concrete is the major source of corrosion of embedded reinforcing steel and as a result civil infra-structure based on concrete such as roads;bridges;etc.are threa-tened [20–22].Deterioration of such structures is provoked from this kind of penetration.The depth of the reinforcement from the exposed surface,the frequency and duration of its exposure,and the quality of concrete determine the time which is required for the chlorides to reach the embedded steel in sufficient quantities to initiate corrosion [20].According to the results of this study such rubber mixtures can be used in applications where there is a need for low chloride ion penetration and in structures where corrosion of reinforcement must be avoided.Similar results,as far as durability of concrete0958-9465/$-see front matter Ó2009Elsevier Ltd.All rights reserved.doi:10.1016/j.cemconcomp.2009.04.004*Corresponding author.Tel./fax:+302310995655.E-mail address:ikonomou@civil.auth.gr (N.Oikonomou).Cement &Concrete Composites 31(2009)403–407Contents lists available at ScienceDirectCement &Concrete Compositesjournal homepage:w w w.e l s e v i e r.c o m /l ocate/cemconcompis concerned,have been obtained when fine glass powder has been used as a substitute for cement in concrete [23].2.Experimental workIn the present study cement –IV/B 32.5N,normalized siliceous (standard)sand [24],and granulated tire rubber were used in order to manufacture the series compositions.Granulated tire rubber,which is a fine material with gradation close to that of the sand,has been generated from the mechanical shredding of rubber waste and was supplied by a Greek company [25].Sieve analysis of tire rubber used is presented in Fig.1,whereas sand mixed with tire rubber is illustrated in Fig.2.For the control specimens (TR0),cement,normal sand and water were used.For all mortar mixtures,the flow table extension were kept constant at 11±1cm.Tire rubber was substituted for sand at 2.5wt%,5wt%,7.5wt%,10wt%,12.5wt%and 15wt%.For the percentage with the lowest value of charge passed,which was 12.5%,more mixtures were produced by the use of commercial additives:a super plasticizer (SP),a 60%anionic bitumen emulsion (BE)and a SBR latex (L).These additives were chosen based on a previous experimental study of the authors where it had been con-cluded that these additives improve mechanical and physical prop-erties of rubberized cement mortars [12].Coincidently,according to several studies latex modified concrete proved to be superior in its corrosion resistance compared to the conventional one [10,21,22].For all the compositions,apart from the control one and the ones with tire rubber in percentages more than 10.0%,ce-ment and water contents were kept constant,while the content of tire rubber and sand changed.Table 1summarizes the characteris-tics and proportions of the materials used in the specimen’s preparation.The mortar specimens were moist cured for 28d at 20±2°C and >95%relative humidity after demolding.Specific weight,com-pressive and flexural strength,dynamic modulus of elasticity and absorption of water by immersion under vacuum were studiedon 4Â4Â16mm in size mortar specimens while for the measure-ment of the resistance to chloride ion penetration,cylindrical spec-imens with a diameter of 100mm and 50mm long were examined.All tests were conducted according to standards [24–27].Espe-cially for the measurement of absorption of water by immersion under vacuum,RILEM TC 14CPC 11.3standard has been used.Specimens were put into a tank under vacuum for at least 2h and then water has been transferred from its initial tank into the one in which the specimens were placed and after 24h the mass of the wet specimens has been measured.The difference between the two values (the initial mass before wetting and the wet mass)divided by the initial mass gives a measure of the absorption of water by immersion under vacuum (%).Results of specificweight,Fig.2.Sand and tire rubber mixture.404N.Oikonomou,S.Mavridou /Cement &Concrete Composites 31(2009)403–407mechanical properties and absorption of water by immersion under vacuum of the compositions examined are showed in Table2.3.Electrical indication of resistance to chloride ion penetrationAll specimens were tested for chloride ion penetration resis-tance according to specifications[27]at the age of28d.The PRO-OVE’it Rapid Chloride Permeability Tester of German Instruments has been used for this purpose.The amount of electrical current passed through50mm thick slices of100mm nominal diameter cylinders was measured over a period of6h.A potential difference of60V dc was maintained across the ends of the specimen,one of which was immersed in a sodium chloride(3%NaCl)solution while the other one in a sodium hydroxide(0.3N NaOH)solution.The to-tal charge passed,in coulombs(which is related to the resistance of the specimen to chloride ion penetration)was measured.The re-sults of these tests are listed in Table3whereas the test device is showed in Fig.3.4.Results and discussionFor all the mixtures modified with tire rubber,workability de-creased with increasing tire rubber content as shown in Table1. Granulated rubber has a lower specific weight than the sand and as a result mortars modified with tire rubber showed smaller specific weights than the control mortar.According to the litera-ture[3–19]the use of tire rubber in products based on cement causes a decrease in mechanical properties which can be noticed in the present study,as well.Especially,as shown in Table2,per-centage of tire rubber powder affected compressive strength more thanflexural strength.As seen in Table2,all specimens showed a decrease in dynamic modulus of elasticity,which is due in part to the nature of the rubber,which favors the absorption of ultrasonic waves.ThisTable1Mixture proportions.Materials MixtureTR0TR2.5TR5.0TR7.5TR10.0TR12.5TR15.0Cement IV/B32.5N(g)450.0450.0450.0450.0450.0450.0450.0 Standard Sand(g)1350.01316.31282.51248.81215.01181.31147.5 Tire rubber(g)033.867.5101.3135.0168.8202.5 Tire rubber(wt%of sand)0 2.5 5.07.510.012.515.0 Water(g)225.0225.0225.0225.0225.0235.0245.0 Flow test(cm)12.011.310.810.510.110.010.0TR0-SP1.0TR12.5-SP1.0TR0-L5.0TR12.5-L5.0TR0-BE5.0TR12.5-BE5.0Cement IV/B32.5N(g)450.0450.0450.0450.0450.0450.0 Standard Sand(g)1350.01181.31350.01181.31181.31181.3Tire rubber(g)0168.80168.80168.8Tire rubber(wt%of sand)012.5012.5012.5 Additive SP SP Latex Latex BE BE Additive,(g) 4.5 4.522.522.522.522.5 Additive(wt%of cement) 1.0 1.0 5.0 5.0 5.0 5.0Water(g)200.0200.0216.0216.0216.0216.0Flow test(cm)11.710.011.510.011.510.0Explanation of symbols:TR0,control mortar;TR2.5,2.5%tire rubber;TR0-SP1.0,control mortar+superplastisizer1.0%;TR5.0,5.0%tire rubber;TR12.5-SP1.0,12.5%tire rubber+superplastisizer1.0%;TR7.5,7.5%tire rubber;TR0-L5.0,control mortar+Latex5.0%;TR10.0,10.0%;TR12.5-L5.0,12.5%tire rubber+Latex5.0%;TR12.5,12.5%tire rubber;TR0-BE5.0,control mortar+bitumen emulsion5.0%;TR15.0,15.0%tire rubber;TR12.5-BE5.0,12.5%tire rubber+bitumen emulsion5.0%.Table2Mechanical properties and absorption of water by immersion under vacuum of rubber mixtures.Characteristics MixtureTR0TR2.5TR5.0TR7.5TR10.0TR12.5TR15.0Specific weight,(g/cm3) 2.23 2.11 2.03 1.94 1.84 1.76 1.68 Compressive strength,(MPa)40.7530.9221.3316.1511.129.708.60 Flexural strength,(MPa)9.007.50 5.70 5.25 4.30 3.50 2.90 Absorption of water by immersion under vacuum(%)8.818.257.377.257.03 6.87 6.79TR0-SP1.0TR12.5-SP1.0TR0-L5.0TR12.5-L5.0TR0-BE5.0TR12.5-BE5.0Specific weight(g/cm3) 2.26 1.79 2.18 1.70 2.21 1.75 Dynamic modulus of elasticity(GPa)42.4815.3735.2011.3839.5313.47 Compressive strength(MPa)43.7013.6835.838.9542.8912.79 Flexural strength(MPa)10.26 4.508.36 3.2010.11 4.10 Absorption of water by immersion under vacuum(%)7.91 6.25 6.79 4.92 6.96 5.01Table3Chloride ion penetrability based on charge passed.Composition Charge passed(Coulombs)TR06103TR2.55235TR5.05080TR7.54551TR10.04257TR12.53956TR15.03915TR0-SP1.05910TR12.5-SP1.03640TR0-L5.05334TR12.5-L5.02824TR0-BE5.05208TR12.5-BE5.02692N.Oikonomou,S.Mavridou/Cement&Concrete Composites31(2009)403–407405reduction in elastic modulus indicates higher flexibility,which can be viewed as a positive gain in rubberized concrete mixtures used in stabilized base layers in flexible pavements.Measurement of absorption of water by immersion under vac-uum showed that the addition of rubber particles decreases absorption of water by immersion under vacuum of the matrix.Similar results have been obtained in previous investigations on such rubberized mixtures [12,18].Regarding resistance to chloride ion penetration,it is enhanced by the introduction of granulated tire rubber in cement mortars (Table 3).As the results show,penetration of chloride ions de-creases as rubber content increases.This reduction ranges from 14.22%to 35.85%for compositions TR2.5and TR15.0,respectively.It must be noted that the compositions TR12.5and TR15.0showed almost similar values of charge passed.For this reason,12.5%has been chosen as the optimum percentage of tire rubber for further examination,with the use of additives,which were found to in-crease mechanical strengths of rubberized mortars.For those mix-tures,a superplastisizer,latex and an anionic bitumen emulsion have been added to cement mortars,improving further their chlo-ride ion penetration resistance.Moreover,mixtures with tire rub-ber and additives exhibited improved penetration resistance compared to control mortars with the same additives alone (with no tire rubber).Furthermore,the mixture with 12.5%tire rubber per weight of the sand and with the addition of bitumen emulsion gave the best results,which was a reduction of chloride ion penetration up to 55.89%compared to the control mixture (TR0).The same mixture demonstrated also the best mechanical properties compared to SP and to PL for the same amount of tire rubber.5.ConclusionsIn the present study physical and mechanical properties of ce-ment mortars modified with worn tires from automobiles have been investigated.In parallel for the first time,chloride ion pene-tration in such mixtures was measured.Granulated tire rubber was substituted for sand in different weight percentages;additives such as superplastisizer,a 60%anionic bitumen emulsion and SBR latex were used in some of the mixtures,since they have been found to improve mechanical and physical characteristics of the mortars.Although strength reduction is certainly a negative prop-erty that may hinder the use of tire rubber in cement-based prod-ucts,we observed positive effects on some other properties,such as absorption of water by immersion under vacuum and resistance to chloride ion penetration.Especially,the reduction in chloride ion penetration in cement mortars and in concrete reduces the po-tential for corrosion of embedded reinforcement,which is of great practical importance.Concrete modified with tire rubber concrete can be advanta-geous for special applications where the main request is not for mechanical properties,such as in the production of sound barriers and cement blocks,as lightweight concrete walls,as well as in structures exposed to aggressive environments where high resis-tance to chloride ions penetration is required.Regarding the last of these application areas,additional research is needed to under-stand the performance of granulated rubber concretes under more realistic environmental exposure conditions,such as those involv-ing wet–dry cycling.AcknowledgmentThe authors would like to thank TITAN S.A.[28]for its assis-tance in testing the resistance to chloride ion penetration in some of the mixtures.References[1]Presidential Decree No109.Means and terms for alternative management ofworn mobile tires.Program for their alternative management.5th March 2004.Paper of Government of Hellenic Democracy,1st Part.[2]Ecoelastika.<http://www.ecoelastika.gr>.[3]Ali NA,Amos AD,Roberts e of ground rubber tires in Portland cementconcrete.In:Dhir RK,editor.Proceedings of the international conference on concrete 2000.Scotland (UK):University of Dundee;1993.p.379–90.[4]Albano C,Camacho N,Reyes J,Feliu JL,Hernández M.Influence of scrap rubberaddition to Portland I concrete composites:destructives and non-destructive pos Struct 2005;71:439–46.[5]Eldin NN,Senouci AB.Rubber-tire particles as concrete aggregates.ASCE JMater Civil Eng 1993;5(4):478–96.[6]Fattuhi NI,Clark LA.Cement-based materials containing shredded scrap trucktyre rubber.Construct Build Mater 1996;10(4):229–36.[7]Fedroff D,Ahmad S,Savas BZ.Mechanical properties of concrete with groundwaste tire rubber.Transportation Research Board,Report no.1532.Washington,DC:Transportation Research Board;1996.p.66–72.[8]Hernandez-Olivares F,Barluenga G,Bollati M,Witoszek B.Static and dynamicbehaviour of recycled tyre rubber-filled concrete.Cem Concr Res 2002;32:1587–96.[9]Khatib ZK,Bayomy FM.Rubberized Portland cement concrete.ASCE J MaterCivil Eng 1999;11(3):206–13.[10]Lee HS,Lee H,Moon JS,Jung HW.Development of tire-added latex concrete.ACI Mater J 1998;95(4):356–64.[11]Oikonomou N,Stefanidou M,Mavridou S,Escioglou P.Study of themicrostructure of mortars modified with rubber from worn automobiles tires.In:Proceedings of the 1st conference for the utilization of industrial by products in building construction 2005;2005.p.129–40[in Greek].[12]Oikonomou N,Stefanidou M,Mavridou S.Improvement of the bondingbetween rubber tire particles and cement paste in cement products.In:15th Conference of technical chamber of Greece 2006;Alexandroupoli Greece,25–27October;2006[in Greek].[13]Oikonomou N,Mavridou S.Rubcrete-rubberised concrete cement.In:RobertoA.Lopez,editor.Nova Science Publishers,Inc.p.201–14.[14]Rostami H,Lepore J,Silverstraim T,Zundi e of recycled rubber tires inconcrete.In:Dhir RK,editor.Proceedings of the international conference on concrete 2000.Scotland (UK):University of Dundee;1999.p.391–9.[15]Siddique R,Naik RT.Properties of concrete containing scrap-tire rubber—anoverview.Waste Manage 2004;24:563–9.[16]Topçu IB.The properties of rubberized concrete.Cem Concr Res1995;25(2):304–10.[17]Turatsinze A,Bonnet S,Granju J-L.Mechanical characterization of cement-based mortar incorporating rubber aggregates from recycled worn tyres.Build Environ 2005;40:221–6.[18]Benazzouk A,Douzane O,Langlet T,Mezreb K,Roucoult JM,Queneudec M.Physico-mechanical properties and water absorption of cement composite containing shredded rubber wastes.Cem Concr Compos 2007;29(10):732–40.[19]Raghvan D,Huynh H,Ferraris CF.Workability,mechanical properties andchemical stability of a recycled tire rubber-filled cementitious composite.J Mater Sci 1998;33:1745–52.[20]Yun H,Patton ME,Garrett Jr JH,Fedder GK,Frederick KM,Hsu J-J,et al.Detection of free chloride in concrete by NMR.Cem Concr Res2004;34:379–90.Fig. 3.PROOVE’it Rapid Chloride Permeability Tester for the Measurement of Chloride Ion Penetration.406N.Oikonomou,S.Mavridou /Cement &Concrete Composites 31(2009)403–407[21]Okba SH,El-Dieb AS,Reda MM.Evaluation of the corrosion resistance of latexmodified concrete(LMC).Cem Concr Res1997;27(6):861–8.[22]Ohama Y,Demura K,Miyake M.Resistance of polymer-modified mortars tochloride penetration.In:Proceedings of the fourth international conference on durability of building materials and components,vol.2;1987.p.559–66. [23]Schwarz N,Cam H,Neithalath N.Influence of afine glass powder on thedurability characteristics of concrete and its comparison tofly ash.Cem Concr Compos2008;30(6):486–96.[24]EN196-1.Methods of testing cement Part1.Determination of strength;1994.[25]Karabas K,35007.Livanates Fthiotidos.Greece;e-mail:kkarabas@otenet.gr.[26]RILEM TC14,CPC11.3.Absorption d’eau par immersion sous vide/Absorptionof water by immersion under vacuum.J Mater Struct1984;17(101):391–94.[27]ASTM C1202.Standard test method for electrical indication of concrete’sability to resist chloride ion penetration.United States:American Society for Testing and Materials;1994.[28]TITAN SA.<http://www.titan.gr>.N.Oikonomou,S.Mavridou/Cement&Concrete Composites31(2009)403–407407。

相关文档
最新文档