学×思面授班初三数学 暑假 提高班讲义 第5讲.相似三角形的简单模型.提高班.教师版

合集下载

模型05 相似三角形中的常见五种基本模型(解析版)-中考数学解题大招复习讲义

模型05 相似三角形中的常见五种基本模型(解析版)-中考数学解题大招复习讲义

模型探究相似三角形考查范围广,综合性强,其模型种类多,其中有关一线三垂直模型在前面的专题已经很详细的讲解,这里就不在重复.模型一、A字型相似模型A字型(平行)反A字型(不平行)模型二、8字型与反8字型相似模型模型三、AX型相似模型(A字型及X字型两者相结合)模型四、共边角相似模型(子母型)模型五、手拉手相似模型例题精讲考点一、A字相似模型【例1】.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选:C.变式训练【变式1-1】.如图,在△ABC中,DE∥BC,AH⊥BC于点H,与DE交于点G.若,则=.解:∵,∴,∵DE∥BC,∴△ADE∽△ABC,∴,故答案为.【变式1-2】.如图,在△ABC中,M是AC的中点,E是AB上一点,AE=AB,连接EM并延长,交BC的延长线于D,则=__________.解:如图,过C点作CP∥AB,交DE于P,∵PC∥AE,∴△AEM∽△CPM,∴=,∵M是AC的中点,∴AM=CM,∴PC=AE,∵AE=AB,∴CP=AB,∴CP=BE,∵CP∥BE,∴△DCP∽△DBE,∴==,∴BD=3CD,∴BC=2CD,即=2.【变式1-3】.如图,在△ABC中,点D在边AB上,AD=9,BD=7.AC=12.△ABC的角平分线AE交CD于点F.(1)求证:△ACD∽△ABC;(2)若AF=8,求AE的长度.解:(1)∵AD=9,BD=7,AC=12,∴AB=AD+BD=16,∵==,==,∴=,∵∠BAC=∠CAD,∴△ACD∽△ABC;(2)由(1)可知,△ACD∽△ABC,∴∠ABE=∠ACF,∵AE平分∠BAC,∴∠BAE=∠CAF,∴△ABE∽△ACF,∴=,即=,∴AE==.考点二、8字与反8字相似模型【例2】.如图,AG∥BD,AF:FB=1:2,BC:CD=2:1,求的值解:∵AG∥BD,∴△AFG∽△BFD,∴=,∵,∴CD=BD,∴,∵AG∥BD,∴△AEG∽△CED,∴.变式训练【变式2-1】.如图,AB∥CD,AE∥FD,AE、FD分别交BC于点G、H,则下列结论中错误的是()A.B.C.D.解:A、∵AB∥CD,∴=,故本选项不符合题目要求;B、∵AE∥DF,∴△CEG∞△CDH,∴=,∴=,∵AB∥CD,∴=,∴=,∴=,∴=,故本选项不符合题目要求;∵AB∥CD,AE∥DF,∴四边形AEDF是平行四边形,∴AF=DE,∵AE∥DF,∴,∴=,故本选项不符合题目要求;D、∵AE∥DF,∴△BFH∞△BAG,∴,故本选项符合题目要求;故选:D.【变式2-2】.如图,在平行四边形ABCD中,E为边AD的中点,连接AC,BE交于点F.若△AEF的面积为2,则△ABC的面积为()A.8B.10C.12D.14解:如图,∵四边形ABCD是平行四边形,∵EA∥BC,∴△AEF∽△CBF,∵AE=DE=AD,CB=AD,∴====,∴AF=AC,EF=BF,=S△ABC,∴S△ABF=S△ABF=×S△ABC=S△ABC,∴S△AEF=2,∵S△AEF=6S△AEF=6×2=12,故选:C.∴S△ABC【变式2-3】.如图,锐角三角形ABC中,∠A=60°,BE⊥AC于E,CD⊥AB于D,则DE:BC=1:2.解:如图,∵在△ADC中,∠A=60°,CD⊥AB于点D,∴∠ACD=30°,∴=.又∵在△ABE中,∠A=60°,BE⊥AC于E,∴∠ABE=30°,∴=,∴=.又∵∠A=∠A,∴△ADE∽△ACB,∴DE:BC=AD:AC=1:2.故答案是:1:2.考点三、AX型相似模型(A字型及X字型两者相结合)【例3】.如图,在△ABC中,点D和E分别是边AB和AC的中点,连接DE,DC与BE交于点O,若△DOE的面积为1,则△ABC的面积为()A.6B.9C.12D.13.5解:∵点D和E分别是边AB和AC的中点,∴O点为△ABC的重心,∴OB=2OE,=2S△DOE=2×1=2,∴S△BOD=3,∴S△BDE∵AD=BD,=2S△BDE=6,∴S△ABE∵AE=CE,=2S△ABE=2×6=12.故选C.∴S△ABC变式训练【变式3-1】.如图,DE是△ABC的中位线,F为DE中点,连接AF并延长交BC于点G,=1,则S△ABC=24.若S△EFG解:方法一:∵DE是△ABC的中位线,∴D、E分别为AB、BC的中点,如图过D作DM∥BC交AG于点M,∵DM∥BC,∴∠DMF=∠EGF,∵点F为DE的中点,∴DF=EF,在△DMF和△EGF中,,∴△DMF≌△EGF(AAS),=S△EGF=1,GF=FM,DM=GE,∴S△DMF∵点D为AB的中点,且DM∥BC,∴AM=MG,∴FM=AM,=2S△DMF=2,∴S△ADM∵DM为△ABG的中位线,∴=,=4S△ADM=4×2=8,∴S△ABG=S△ABG﹣S△ADM=8﹣2=6,∴S梯形DMGB=S梯形DMGB=6,∴S△BDE∵DE是△ABC的中位线,=4S△BDE=4×6=24,∴S△ABC方法二:连接AE,∵DE是△ABC的中位线,∴DE∥AC,DE=AC,∵F是DE的中点,∴=,∴==,=1,∵S△EFG=16,∴S△ACG∵EF∥AC,∴==,∴==,=S△ACG=4,∴S△AEG=S△ACG﹣S△AEG=12,∴S△ACE=2S△ACE=24,故答案为:24.∴S△ABC【变式3-2】.如图:AD∥EG∥BC,EG交DB于点F,已知AD=6,BC=8,AE=6,EF =2.(1)求EB的长;(2)求FG的长.解:(1)∵EG∥AD,∴△BAD∽△BEF,∴=,即=,∴EB=3.(2)∵EG∥∥BC,∴△AEG∽△ABC,∴=,即=,∴EG=,∴FG=EG﹣EF=.【变式3-3】.如图,已知AB∥CD,AC与BD相交于点E,点F在线段BC上,,.(1)求证:AB∥EF;:S△EBC:S△ECD.(2)求S△ABE(1)证明:∵AB∥CD,∴==,∵,∴=,∴EF∥CD,∴AB∥EF.(2)解:设△ABE的面积为m.∵AB∥CD,∴△ABE∽△CDE,∴=()2=,=4m,∴S△CDE∵==,=2m,∴S△BEC:S△EBC:S△ECD=m:2m:4m=1:2:4.∴S△ABE模型四、子母型相似模型【例4】.如图,点C,D在线段AB上,△PCD是等边三角形,且∠APB=120°,求证:(1)△ACP∽△PDB,(2)CD2=AC•BD.证明:(1)∵△PCD是等边三角形,∴∠PCD=∠PDC=∠CPD=60°,∴∠ACP=∠PDB=120°,∵∠APB=120°,∴∠APC+∠BPD=60°,∵∠CAP+∠APC=60°∴∠BPD=∠CAP,∴△ACP∽△PDB;(2)由(1)得△ACP∽△PDB,∴,∵△PCD是等边三角形,∴PC=PD=CD,∴,∴CD2=AC•BD.变式训练【变式4-1】.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.D.解:在△ABP和△ACB中,∠BAP=∠CAB,∴当∠ABP=∠C时,满足两组角对应相等,可判断△ABP∽△ACB,故A正确;当∠APB=∠ABC时,满足两组角对应相等,可判断△ABP∽△ACB,故B正确;当时,满足两边对应成比例且夹角相等,可判断△ABP∽△ACB,故C正确;当时,其夹角不相等,则不能判断△ABP∽△ACB,故D不正确;故选:D.【变式4-2】.如图,在△ABC中,点D在AC边上,连接BD,若∠ABC+∠BDC=180°,AD=2,CD=4,则AB的长为()A.3B.4C.D.2解:∵∠ABC+∠BDC=180°,∠ADB+∠BDC=180°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABC∽△ADB,∴,∵AD=2,CD=4,∴,∴AB2=12,∴AB=2或﹣2(不合题意,舍去),故选:D.【变式4-3】.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则PA+PB的最小值为2.解:设⊙O半径为r,OP=r=BC=2,OB=r=2,取OB的中点I,连接PI,∴OI=IB=,∵,,∴,∠O是公共角,∴△BOP∽△POI,∴,∴PI=PB,∴AP+PB=AP+PI,∴当A、P、I在一条直线上时,AP+PB最小,作IE⊥AB于E,∵∠ABO=45°,∴IE=BE=BI=1,∴AE=AB﹣BE=3,∴AI==,∴AP+PB最小值=AI=,∵PA+PB=(PA+PB),∴PA+PB的最小值是AI==2.故答案是2.模型五、手拉手相似模型【例5】.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为.解:连接OA、OD,∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB=:1,∵∠DOE+∠EOA=∠BOA+∠EOA即∠DOA=∠EOB,∴△DOA∽△EOB,∴OD:OE=OA:OB=AD:BE=:1=,故答案为:.变式训练【变式5-1】.如图,在△ABC与△ADE中,∠BAC=∠DAE,∠ABC=∠ADE.求证:(1)△BAC∽△DAE;(2)△BAD∽△CAE.证明:(1)∵∠BAC=∠DAE,∠ABC=∠ADE.∴△BAC∽△DAE;(2)∵△BAC∽△DAE,∴,∴,∵∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD∽△CAE.【变式5-2】.如图,点D是△ABC内一点,且∠BDC=90°,AB=2,AC=,∠BAD=∠CBD=30°,AD=.解:如图,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠MDA,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴=,∵AC=,∴BM=3,在Rt△ABM中,AM===,∴AD=AM=.【变式5-3】.如图,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),则BD的长为.(用含k的式子表示)解:如图中,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=kAB,∴DG=kBC=4k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG==.∴BD=CG=,故答案为:.实战演练1.如图,已知DE∥BC,EF∥AB,则下列比例式中错误的是()A.=B.C.D.解:A、∵EF∥AB,∴=,∵DE∥BC,∴=,∴=,故A正确,B、易知△ADE∽△EFC,∴=,∴=,故B正确.C、∵△CEF∽△CAB,∴=,∴=,故C正确.D、∵DE∥BC,∴=,显然DE≠CF,故D错误.故选:D.2.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()A.2:3B.2:5C.4:9D.:解:∵AD∥BC,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA∽△ACD===,∵=()2=∴△ABC与△DCA的面积比为4:9.故选:C.3.如图,菱形ABCD中,E点在BC上,F点在CD上,G点、H点在AD上,且AE∥HC ∥GF.若AH=8,HG=5,GD=4,则下列选项中的线段,何者长度最长?()A.CF B.FD C.BE D.EC解:∵AH=8,HG=5,GD=4,∴AD=8+5+4=17,∵四边形ABCD为菱形,∴BC=CD=AD=17,∵AE∥HC,AD∥BC,∴四边形AECH为平行四边形,∴CE=AH=8,∴BE=BC﹣CE=17﹣8=9,∵HC∥GF,∴=,即=,解得:DF=,∴FC=17﹣=,∵>9>8>,∴CF长度最长,故选:A.4.如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF上,BP 交CE于点D,∠CBP的平分线交CE于点Q,当CQ=CE时,EP+BP的值为()A.6B.9C.12D.18解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴=2,∴EM=2BC=2×6=12,即EP+BP=12.故选:C.5.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′等于()A.B.2C.D.解:过D作DE⊥BC于E,则BE=AD=2,DE=2,设B′C=BC=x,则DC=x,∴DC2=DE2+EC2,即2x2=28+(x﹣2)2,解得:x=4(负值舍去),∴BC=4,AC=,∵将△ABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴∴△A′CA∽△B′CB,∴,即∴AA′=,故选:A.6.如图,已知,△ABC中边AB上一点P,且∠ACP=∠B,AC=4,AP=2,则BP=6.解:∵∠A=∠A,∠ACP=∠B,∴△ACP∽△ABC,∴AC2=AP•AB,即AB=AC2÷AP=16÷2=8,∴BP=AB﹣AP=6.7.如图,在▱ABCD中,AC、BD相交于点O,点E是OA的中点,联结BE并延长交AD 于点F,如果△AEF的面积是4,那么△BCE的面积是36.解:∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴==,=4,=()2=,∵S△AEF=36,故答案为36.∴S△BCE8.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8.解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.9.如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则sin∠ABE=.解:∵将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,∴BD=AB,BC=BE,∠ABD=∠CBE,∠DEB=∠ACB,∴∠D=∠BAC=∠BAD=(180°﹣∠ABD),∴∠BEC=(180°﹣∠CBE),∴∠D=∠BEC,∵∠ABC=∠DBE=90°,∴∠DEB+∠BEC=90°,∴∠AEC=90°,∵∠AGB=∠EGC,∴∠ACE=∠ABE,∵在Rt△ABC中,AB=3,BC=4,∴AC=DE=5,过B作BH⊥DE于H,则DH=AH,BD2=DH•DE,∴DH==,∴AD=,∴AE=DE﹣AD=,∴sin∠ABE=sin∠ACE===,故答案为:.10.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交边BC于点D,过点D作CA的平行线,交边AB于点E.(1)求线段DE的长;(2)取线段AD的中点M,联结BM,交线段DE于点F,延长线段BM交边AC于点G,求的值.解:(1)∵AD平分∠BAC,∠BAC=60°,∴∠DAC=30°,在Rt△ACD中,∠ACD=90°,∠DAC=30°,AC=6,∴CD=2,在Rt△ACB中,∠ACB=90°,∠BAC=60°,AC=6,∴BC=6,∴BD=BC﹣CD=4,∵DE∥CA,∴,∴DE=4;(2)如图,∵点M是线段AD的中点,∴DM=AM,∵DE∥CA,∴,∴DF=AG,∵DE∥CA,∴,∴,∵BD=4,BC=6,DF=AG,∴.11.如图,在菱形ABCD中,∠ADE、∠CDF分别交BC、AB于点E、F,DF交对角线AC 于点M,且∠ADE=∠CDF.(1)求证:CE=AF;(2)连接ME,若=,AF=2,求ME的长.解:(1)∵四边形ABCD是菱形,∴AD=CD,∠DAF=∠DCE,又∵∠ADE=∠CDF,∴∠ADE﹣∠EDF=∠CDF﹣∠EDF,∴∠ADF=∠CDE,在△ADF和△CDE中,,∴△ADF≌△CDE,∴CE=AF.(2)∵四边形ABCD是菱形,∴AB=BC,由(1)得:CE=AF=2,∴BE=BF,设BE=BF=x,∵=,AF=2,∴,解得x=,∴BE=BF=,∵=,且CE=AF,∴==,∵∠CMD=∠AMF,∠DCM=∠AMF,∴△AMF∽△CMD,∴,∴=,且∠ACB=∠ACB∴△ABC∽△MEC∴∠CAB=∠CME=∠ACB∴ME=CE=212.[问题背景](1)如图①,已知△ABC∽△ADE,求证:△ABD∽△ACE.[尝试应用](2)如图②,在△ABC和△ADE中,∠BAC=∠DAE=90°∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,①填空:=1;②求的值.(1)证明:如图①,∵△ABC∽△ADE,∴∠BAC=∠DAE,=,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,=,∴∠BAD=∠CAE,∴△ABD∽△ACE.(2)解:①如图②,∵∠DAE=90°,∠ADE=30°,∴DE=2AE,∴AD===AE,∵=,∴AD=BD,∴AE=BD,∴=1,故答案为:1.②如图②,连接CE,∵∠BAC=∠DAE=90°,∠ABC=∠ADE,∴△BAC∽△CAE,∴=,∴=,∵∠BAD=∠CAE=90°﹣∠CAD,∴△BAD∽△CAE,∴∠ABC=∠ACE,∴∠ADE=∠ACE,∵∠AFD=∠EFC,∴△AFD∽△EFC,∴=,由①得AD=AE,AD=BD,∴==,∴BD=CE,∴AD=×CE=3CE,∴=3,∴=3,∴的值是3.13.如图,在正方形ABCD中,AB=4,E、F分别是BC、CD上的点,且∠EAF=45°,AE、AF分别交BD于点M、N,连接EN、EF.(1)求证:△ABN∽△MBE;(2)求证:BM2+ND2=MN2;(3)①求△CEF的周长;②若点G、F分别是EF、CD的中点,连接NG,则NG的长为.(1)证明:如图1,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=90°,∴∠ABD=∠ADB=45°,∴∠ABN=∠MBE=45°,∠BME=∠ABD+∠BAM=45°+∠BAM,∵∠EAF=45°,∴∠BAN=∠EAF+∠BAM=45°+∠BAM,∴∠BAN=∠BME,∴△ABN∽△MBE.(2)证明:如图1,将△ADN绕点A顺时针旋转90°得到△ABH,连接MH,∴∠BAH=∠DAN,AH=AN,HB=ND,∵∠MAN=∠EAF=45°,∴∠MAH=∠BAH+∠BAM=∠DAN+∠BAM=45°,∴∠MAH=∠MAN,∵AM=AM,∴△MAH≌△MAN(SAS),∴MH=MN,∵∠ABH=∠ADN=45°,∴∠MBH=∠ABD+∠ABH=90°,∴BM2+HB2=MH2,∴BM2+ND2=MN2.(3)解:①如图2,将△ADF绕点A顺时针旋转90°得到△ABK,∴AK=AF,∠BAK=∠DAF,BK=DF,∠ABK=∠ADF=90°,∴∠ABK+∠ABE=180°,∴点K、点B、点E在同一条直线上,∵∠EAK=∠BAE+∠BAK=∠BAE+∠DAF=45°,∴∠EAK=∠EAFM,∵AE=AE,∴△EAK≌△EAF(SAS),∴EK=EF,∴BE+DF=BE+BK=EK=EF,∵CB=CD=AB=4,∴CE+EF+CF=CE+BE+DF+CF=CB+CD=4+4=8,∴△CEF的周长是8.②如图2,∵F是CD的中点,∴CF=DF=CD=2,∵∠C=90°,∴CF2+EF2=CE2,∵EF=BE+DF=BE+2,CE=CB﹣BE=4﹣BE,∴22+(4﹣BE)2=(BE+2)2,解得BE=,∴EF=+2=,∵∠MBE=∠MAN=45°,∠BME=∠AMN,∴△BME∽△AMN,∴=,∴=,∴∠AMB=∠NME,∴△AMB∽△NME,∴∠NEM=∠ABM=45°,∴∠ENF=∠MAN+∠NEM=90°,∵G是EF的中点,∴NG=EF=×=,故答案为:.14.问题背景如图(1),已知△ABC∽△ADE,求证:△ABD∽△ACE;尝试应用如图(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,AC与DE相交于点F,点D在BC边上,=,求的值;拓展创新如图(3),D是△ABC内一点,∠BAD=∠CBD=30°,∠BDC=90°,AB =4,AC=2,直接写出AD的长.问题背景证明:∵△ABC∽△ADE,∴,∠BAC=∠DAE,∴∠BAD=∠CAE,,∴△ABD∽△ACE;尝试应用解:如图1,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=30°,∴△ABC∽△ADE,由(1)知△ABD∽△ACE,∴,∠ACE=∠ABD=∠ADE,在Rt△ADE中,∠ADE=30°,∴,∴=3.∵∠ADF=∠ECF,∠AFD=∠EFC,∴△ADF∽△ECF,∴=3.拓展创新解:如图2,过点A作AB的垂线,过点D作AD的垂线,两垂线交于点M,连接BM,∵∠BAD=30°,∴∠DAM=60°,∴∠AMD=30°,∴∠AMD=∠DBC,又∵∠ADM=∠BDC=90°,∴△BDC∽△MDA,∴,又∠BDC=∠MDA,∴∠BDC+∠CDM=∠ADM+∠CDM,即∠BDM=∠CDA,∴△BDM∽△CDA,∴,∵AC=2,∴BM=2=6,∴在Rt△ABM中,AM===2,∴AD=.15.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的数量关系BG=DE及所在直线的位置关系BG⊥DE;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4﹣6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),则线段BG、线段DE的数量关系=及所在直线的位置关系BG ⊥DE;(3)在第(2)题图5中,连接DG、BE,且a=4,b=3,k=,直接写出BE2+DG2的值为.解:(1)①猜想:BG ⊥DE ,BG =DE ;故答案为:BG =DE ,BG ⊥DE ;②结论成立.理由:如图2中,∵四边形ABCD 和四边形CEFG 是正方形,∴BC =DC ,CG =CE ,∠BCD =∠ECG =90°,∴∠BCG =∠DCE ,∴△BCG ≌△DCE (SAS ),∴BG =DE ,∠CBG =∠CDE ,又∵∠CBG +∠BHC =90°,∴∠CDE +∠DHG =90°,∴BG ⊥DE .(2)∵AB =a ,BC =b ,CE =ka ,CG =kb ,∴==,又∵∠BCG =∠DCE ,∴△BCG ∽△DCE ,∴∠CBG =∠CDE ,==,又∵∠CBG +∠BHC =90°,∴∠CDE +∠DHG =90°,∴BG⊥DE.故答案为:=,BG⊥DE.(3)连接BE、DG.根据题意,得AB=4,BC=3,CE=2,CG=1.5,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+16+2.25+4=.。

沪教版 九年级数学 暑假同步讲义 第5讲 相似三角形的判定(二)提高讲义 (解析版)

沪教版 九年级数学 暑假同步讲义  第5讲 相似三角形的判定(二)提高讲义 (解析版)

ABCA 1B 1C 1相似三角形的判定是九年级数学上学期第一章第三节的内容,本讲主要讲解相似三角形判定定理3和直角三角形相似的判定定理,并进行了相似三角形判定的相关综合练习.重点是灵活运用相似三角形的各个判定定理,难点是相似三角形与分类讨论及函数思想的互相结合.1、相似三角形判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.可简述为:三边对应成比例,两个三角形相似.如图,在ABC ∆与111A B C ∆中,如果111111AB BC CAA B B C C A ==,那么ABC ∆∽111A B C ∆.相似三角形的判定(二)内容分析知识结构模块一:相似三角形判定定理3知识精讲步同级年九2 / 22ABCDEABC D【例1】 ABC ∆的边长分别为a 、b 、c ,111A B C ∆的边长分别为a 、b 、c ,则ABC ∆与111A B C ∆(选填“一定”、“不一定”或“一定不”)相似.【难度】★★ 【答案】不一定.【解析】若a b c ==时,相似;若a 、b 、c 中有两个不等,那么它们就不相似. 【总结】本题考查相似三角形的判定定理3,同时穿插了分类讨论的思想.【例2】 如图,点D 为ABC ∆内一点,点E 为ABC ∆外一点,且满足AB BC ACAD DE AE ==.求证:ABD ∆∽ACE ∆.【答案】略.【解析】AB BC ACAD DE AE == ∴ABC ADE ∆∆∽. ∴BAC DAE ∠=∠, 即BAD DAC CAE DAC ∠+∠=∠+∠.∴BAD CAE ∠=∠.AB ACAD AE= ∴ABD ∆∽ACE ∆. 【总结】本题考查相似三角形的判定定理3和相似三角形的性质知识.【例3】 如图,在ABC ∆中,90ABC ∠=︒,30ACB ∠=︒,2AC =,23CD =,4AD =.求证:ABC ∆∽ACD ∆.【答案】略. 【解析】90ABC ∠=︒,30ACB ∠=︒,2AC =.∴112AB AC ==,∴在Rt ABC ∆中,3BC =.23CD =,4AD =, ∴12AB AC BC AC AD CD ===,∴ABC ∆∽ACD ∆. 【总结】本题考查相似三角形的判定定理3和直角三角形的勾股定理知识.例题解析ABCDEF【例4】 已知:如图,在t R ABC ∆中,90ACB ∠=︒,2AC =,4BC =,点D 在BC 边上,且CAD B ∠=∠. (1)求AD 的长;(2)取AD 、AB 的中点E 、F ,联结CE 、CF 、EF .求证:CEF ∆∽ADB ∆. 【答案】略. 【解析】(1)90ACB ∠=︒,CAD B ∠=∠,CAD CBA ∴∆∆∽ ∴CD AC AD AC CB AB==. ∴2AC CD CB =• ∴1CD =.∴在Rt ADC ∆中,AD(2)点E F 、分别是AD 、AB 的中点,∴12EF BD =. 在Rt ADC ∆、Rt ABC ∆中,12CE AD =,12CF AB =. ∴12CE CF EF AD AB BD ===,∴CEF ∆∽ADB ∆.【总结】本题考查相似三角形的判定定理3、直角三角形的性质和三角形中位线等知识.步同级年九4 / 22【例5】 如图,在梯形ABCD 中,AB // CD ,90A ∠=︒,2AB =,3BC =,1CD =,点E是AD 的中点.(1)求证:CDE ∆∽EAB ∆;(2)CDE ∆与CEB ∆有可能相似吗?若相似,请证明;若不相似,请说明理由. 【答案】略.【解析】(1)证明:过点C 作CF AB ⊥,垂足为F ,如图. 9090A CFB ∠=∠=,,//AD CF ∴.又//AB CD ,∴四边形AFCD 是平行四边形.又90A ∠=,∴平行四边形AFCD 是矩形. 1AF CD AD CF ∴===,,1BF ∴=.在Rt FBC ∆中,2222CF BC BF =-=,22AD ∴=. 点E 是AD 的中点 2ED EA ∴==.∴22DE CD AB AE ==又90D A ∠=∠=,∴CDE ∆∽EAB ∆.(本题还可用其它方法证明)(2)CDE ∆与CEB ∆相似.在Rt DCE ∆中,223CE DC DE =+=, 在Rt CBF ∆中,226BE AE AB =+=,3CE BE CBCD DE CE===, ∴CDE ∆∽CEB ∆. 【总结】本题考查了梯形及相似三角形的判定,着重考查学生对相似三角形的判定方法的理解及运用能力.本题实际上是“一线三直角”模型.模块二:直角三角形相似的判定定理ABCD EFABCDFG1、直角三角形相似的判定定理如果一个直角三角形的斜边及一条直角边与另一个直角三角形的斜边及一条直角边对应成比例,那么这两个直角三角形相似.可简述为:斜边和直角边对应成比例,两个直角三角形相似.如图,在Rt ABC ∆和111Rt A B C ∆中,如果190C C ∠=∠=︒,1111AB BCA B B C =,那么ABC ∆∽111A B C ∆.【例6】 如图,在ABC ∆中,CD AB ⊥于D ,DF AC ⊥于F ,DG BC ⊥于G .求证:CF CA CG CB =.【答案】略. 【解析】证明:CD AB ⊥,DF AC ⊥,∴90ADC CFD ∠=∠=.又DCF DCA ∠=∠, ∴DCF ACD ∆∆∽. ∴DC CF AC DC=,即2DC CA CF =•.同理可得:2DC CG CB =•, ∴CF CA CG CB =. 【总结】本题考查了直角三角形相似的判定方法,同时考查了相似三角形的性质等知识.【例7】 已知直角三角形斜边上的高为12,并且斜边上的高把斜边分成3:4两段,则 斜边上的中线长是.【答案】73.知识精讲例题解析ABC A 1B 1C 1A BCDEFA BCDEFM【解析】解:如右图,在Rt ABC ∆中,90ACB ∠=, CD AB ⊥于点D ,AE EB =.设3AD x =,4BD x =,12CD =.易证Rt ADC Rt CDB ∆∆∽,得DC BDAD DC=,得2DC AD DB =•,所以21234x x =•解得x =7AB x ==,而12CE AB =,所以CE = 【总结】本题考查了直角三角形相似的判定方法,同时考查了直角三角形斜边上的中线等相关知识.【例8】 如图,直角梯形ABCD 中,90BCD ∠=︒,AD // BC ,BC CD =,E 为梯形内 一点,且90BEC ∠=︒.将BEC ∆绕点C 旋转90°使BC 与DC 重合,得到DCF ∆,连接 EF 交CD 于点M .已知5BC =,3CF =,求:DM MC 的值.【答案】43.【解析】解:由旋转的性质得:BEC DFC ∆≅∆, 且90BCD ECF ∠=∠=.903BEC ECF EC FC ∴∠=∠===,,5BC CD ==.∴180ECF DFC ∠+∠=, ∴//EC DF .∴DM DFMC EC =.在Rt DCF ∆中,4DF =.∴43DM MC =. 【总结】本题考查了旋转的性质,三角形一边的平行线等相关知识.【例9】 如图,在ABC ∆中,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F ,求证:CEF ∆∽CBA ∆.【答案】略. 【解析】证明:CD AB ⊥,DE AC ⊥,∴90ADC CED ∠=∠=.又DCE DCA ∠=∠, ∴DCE ACD ∆∆∽. ∴DC CF AC DC=,即2DC CA CE =•.同理,可得:2DC CF CB =•.A BCD EF∴CA CE CF CB •=•, 即CF CEAC CB=.又FCE BCA ∠=∠, ∴CEF CBA ∆∆∽.【总结】本题考查了三角形相似的判定方法、相似三角形的性质等知识.【例10】 在Rt ABC ∆中,90ACB ∠=︒,CD AB ⊥于点D ,E 是AC 边上的一个动点(不与A 、C 重合),CF BE ⊥于点F ,连接DF . (1)求证:2CB BF BE =; (2)求证:BF AE FD BA =.【答案】略. 【解析】证明:(1)90ACB ∠=,CF BE ⊥,∴90ACB CFB ∠=∠=.又CBF CBE ∠=∠,∴CBF EBC ∆∆∽. ∴CB BEBF CB=,∴2CB BF BE =•.(2)90ACB ∠=,CD BA ⊥,∴90ACB CDB ∠=∠=.又CBD CBA ∠=∠,∴CBD ABC ∆∆∽. ∴CB ABBD CB=,即2CB BD BA =•. ∴BF BE BD BA •=•, ∴FB BD BA BE=又ABE FBD ∠=∠,∴FBD ABE ∆∆∽. ∴FB FDBA AE=.∴BF AE FD BA •=•.【总结】本题考查了三角形相似的判定方法、相似三角形的性质等知识.步同级年九8 / 22【例11】 求证:如果一个三角形的两边和第三边的中线与另一个三角形的对应线段成比例,那么这两个三角形相似.【答案】略.【解析】已知:如图,AD 、11A D 分别是ABC ∆、111A B C ∆边BC 、11B C 上的中线,且111111AC AB ADAC A B A D ==.求证:ABC ∆∽111A B C ∆. 证明:分别延长AD 、11A D 到点1E E 、. 使得1111DE ADD E A D ==,. ∴111122AE AD A E A D ==,.AD 、11A D 分别是ABC ∆、111A BC ∆边BC 、11B C 上的中线,∴1111BD DC B D D C ==,.111111ADB ADC A D B A D C ∠=∠∠=∠, , ∴ADB EDC ∆≅∆,111111A D BE D C ∆≅∆ ∴1111BAD E B A D E ∠=∠∠=∠,.111111AC AB AD AC A B A D ==,∴111111AC AB AEAC A B A E ==. ∴111AEC A E C ∆∆∽,∴1111E E CAD C A D ∠=∠∠=∠,∴111BAD B A D ∠=∠ ,∴111BAC B AC ∠=∠.又1111AB ACA B AC =, ∴111ABC A B C ∆∆∽. 【总结】本题考查了三角形相似的判定方法,并且考查学生通过倍长中线来转化边角的方法.ABCD EF【例12】 如图,在Rt BDC ∆中,点E 在CD 上,DF BC ⊥于F ,DG BE ⊥于G .求证:FG BC CE BG =.【答案】略.【解析】证明:联结GF .90BDC ∠=,DF BC ⊥, ∴90BDC DFB ∠=∠=.又CBD FBD ∠=∠, ∴DBF CBD ∆∆∽. ∴DB BF BC DB=, ∴2DB BF BC =•.90EDB ∠=,GD BE ⊥, ∴90DGB EDB ∠=∠=.又EBD GBD ∠=∠, ∴GBD DBE ∆∆∽. ∴DB EBBG DB=, ∴2DB BG BE =•. ∴BF BC BG BE •=•, 即FB BGBE BC=.又GBF EBC ∠=∠, ∴GBF CBE ∆∆∽.∴GB FG BC CE=, ∴FG BC CE BG •=•. 【总结】本题考查了三角形相似的判定方法、相似三角形的性质等知识,综合性较强,需要通过多次相似证的结论成立.【例13】 如图,90CAB ∠=︒,AD CB ⊥,ACE ∆、ABF ∆是正三角形.求证:DE DF ⊥.【答案】略. 【解析】证明:ACE ∆、ABF ∆是正三角形,∴AC CE AB AF ==,,6060FAB ACE ∠=∠=,.AD BC ⊥, ∴90BDA ADC ∠=∠=. ∴90CAD ACD ∠+∠=.90BAC ∠=, ∴90BAD DAC ∠+∠=. BAD DCA ∴∠=∠.∴DBA DAC ∆∆∽. ∴CD AC AD AB =. ∴CD ECAD AF=.FAB BAD DCA ACE ∠+∠=∠+∠, ∴FAD DCE ∠=∠.∴FAD ECD ∆∆∽. ∴ADF EDC ∠=∠.90ADE EDC ∠+∠=, ∴90ADF EDA ∠+∠=. ∴DE DF ⊥.BCD EFG步同级年九10 / 22AB CD EFGH1 23【总结】本题考查了三角形相似的判定方法、等边三角形的性质等知识.1、相似三角形判定定理1:两角对应相等,两个三角形相似.2、相似三角形判定定理2:两边对应成比例且夹角相等,两个三角形相似.3、相似三角形判定定理3:三边对应成比例,两个三角形相似.4、直角三角形相似的判定定理:斜边和直角边对应成比例,两个直角三角形相似.【例14】 在ABC ∆中,12AB =,15AC =,D 为AB 上一点,3ABBD=,在AC 上取一点E ,得到ADE ∆,若ADE ∆与ABC ∆相似,则AE =.【答案】10或325.【解析】若ADE ∆与ABC ∆相似,则分两种情况:ABC ADE ∆∆∽或ABC AED ∆∆∽,得AD AE AB AC =或AD AEAC AB =,即可得解. 【总结】灵活运用相似三角形的性质定理是解本题的重点,注意分类讨论.【例15】 如图,四边形ABDC 、CDFE 、EFGH 是三个正方形,则123∠+∠+∠的值为多少?【答案】90.【解析】解:设正方形ABDC 、CDFE 、 EFHG 的边长为1.则2AD =,5AF =,1DF =,2HD =,10AH =. ∴2AD DH AHDF AD AF===, ∴ADH FDA ∆∆∽. ∴3DAF ∠=∠. 四边形ABDC 是正方形, ∴AB BD =. ∴145∠=.又21DAF ∠+∠=∠, ∴231∠+∠=∠. ∴12390∠+∠+∠=.【总结】灵活运用相似三角形的判定定理来转化角度是解本题的关键.模块三:相似三角形的判定综合知识精讲例题解析ABCDEAB CDEN M【例16】 如图,正方形ABCD 的边长为2,AE EB =,1MN =,线段MN 的两端在CB 、CD 上滑动,当CM 为何值时,AED ∆与以M 、N 、C 为顶点的三角形相似.【答案】当CM 525时,ADE ∆与以 M 、N 、C 为顶点的三角形相似. 【解析】解:四边形ABDC 是正方形, ∴2AB AD ==. 又AE EB =, ∴1AE =.在Rt CMN ∆中,222MN CM CN =+. ① 当5CM = 时,25CN ,∴5AE AD CM CN = ∴ADE CNM ∆∆∽;② 当25CM =时,5CN =,∴5AE AD CN CM = ∴ADE CMN ∆∆∽. 【总结】本题考查了相似三角形的判定及正方形的性质相关知识点.【例17】如图,AB AC =,2AC AD AE =,求证:BC 平分DBE ∠.【答案】略. 【解析】证明:AB AC =,2AC AD AE =•,∴2AB ADAE =•, 即AB AEAD AB=.又A A ∠=∠, ∴ABD AEB ∆∆∽.∴ABD E ∠=∠. 又AB AC =, ∴ABD DBC ACB ∠+∠=∠.又CBE E ACB ∠+∠=∠, ∴CBD CBE ∠=∠.即BC 平分DBE ∠.【总结】本题考查了相似三角形的判定及三角形外角的性质.【例18】如图,在ABC ∆中,M 在AB 上,且8MB =,12AB =,16AC =,在AC 上步同级年九12 / 22AD求作一点N ,使AMN ∆与原三角形相似,并求AN 的长.【答案】3AN =或163.【解析】解:如右图,要使AMN ∆与原三角形相似,有两种情况:128AB BM ==,,∴4AM =.① 当//MN BC 时,AMN ABC ∆∆∽. ∴AM AN AB AC =,即41216AN =,∴163AN =. ② 当MN 与BC 不平行时,ANM ABC ∆∆∽. ∴AM AN AC AB =,即41612AN=,∴3AN =.∴3AN =或163. 【总结】灵活运用相似三角形的性质定理是解本题的重点.【例19】如图,EM AM ⊥,CE DE =.求证:2ED DM AD CD =.【答案】略.【解析】证明:过点E 作EH CD ⊥于点H ,得90EHD ∠=.EC ED =,EHCD ⊥,∴12DH CD =.EM AM ⊥,∴90M ∠=. ∴EHD M ∠=∠. 又EDH MDA ∠=∠, ∴EHD AMD ∆∆∽. ∴DM AD DH ED=, 即DM ED DA HD •=•.∴12DM ED DA CD •=•,即2ED DM DA CD •=•.【总结】本题考查了相似三角形的判定及等腰三角形的性质等相关知识.【例20】如图,在ABC ∆和DEF ∆中,90A D ∠=∠=︒,3AB DE ==,24AC DF ==.(1)判断这两个三角形是否相似,并说明为什么;(2)能否分别过点A 、D 在这两个三角形中各作一条辅助线,使ABC ∆分割成的两个AB CDEF 三角形与DEF ∆分割成的两个三角形分别对应相似?证明你的结论.【答案】(1)不相似,一组角相等,但夹它的两边不对应成比例,故不相似;(2)能,理由略.【解析】(2)题分割如下:作BAM E ∠=∠交BC 于点M ,作EDN B ∠=∠交EF 于点N ,可证明BAM DEN ∆∆∽,再证明另一对也相似即可.【总结】本题考查了相似三角形的判定知识.【例21】 如图,在ABC ∆中,3AB AC ==,2BC =,点D 、E 、F 分别在AC 、AB 、BC边上,BEF ∆沿着直线EF 翻折后与DEF ∆重合,设CD x =,BF y =.试问DFC ∆是否有可能与ABC ∆相似,如有可能,求出CD 的长;如不可能,说明理由.【答案】DFC ∆有可能与ABC ∆相似,此时65CD =或23.【解析】解:翻折后,BF DF =.当DFC ABC ∆∆∽时,DFC C B ∠=∠=∠. BF DF CD x ∴===,2CF x =-. CD CF CA CB ∴=,即232x x -=. 65x ∴=; 当DFC ACB ∆∆∽时,FDC C B ∠=∠=∠,1BF DF CF ∴===.CD CF CB CA ∴=,即213x =. 23x ∴=. ∴65CD =或23.【总结】本题考查了相似三角形的判定、翻折变换(折叠问题)等的相关知识. 【例22】 如图,ABC ∆是等边三角形,D 是AC 上的一点,BD 的垂直平分线交AB 于E ,交BC 于F .(1)当点D 在边AC 上移动时,DEF ∆中哪一个角的大小始终保持不变?并求出它的度数;(2)当点D 在边AC 上移动时,ADE ∆与哪一个三角形始终相似?并写出证明过程.又AB CDEF 问:当点D移动到什么位置时,这两个三角形的相似比为1?(3)若等边三角形ABC的边长为6,2AD=,试求:BE BF的值.【答案】(1)EDF∠始终不变,且等于60;(2)ADE CFD∆∆∽.证明略;当点D移动到AC中点处时,这两个三角形的相似比为1;(3)45BEBF=.【解析】(1)翻折前后对应角相等;(2)相似比为1,说明ADE CFD∆≅∆,得DE DF=.又DB EF⊥,所以DB垂直平分EF,得BD平分ABC∠,则ABC∆是等边三角形,进而得出结论;(3)45AEDCFDCBE DEBF DF C∆∆===.【总结】本题考查了相似三角形的判定、翻折变换(折叠问题)、相似三角形的性质等的相关知识.ABC DEF ABCDE【习题1】 在ABC ∆中,点G 为重心,若BC 边上的高为6,求点G 到BC 的距离. 【答案】2.【解析】解:如图,联结AG 并延长交BC 于点D ,分别作GE BC ⊥、 AF BC ⊥于点E 、F .由题知,6AF =.点G 为重心, ∴13DG DA =. 又//GE AF , ∴GE DGAF DA=. ∴2GE =. 【总结】本题考查了重心的知识,构造相似形来解答问题.【习题2】 如图,在ABC ∆中,90ACB ∠=︒,CD AB ⊥于D ,E 为AC 上一点,CF BE ⊥ 于F ,联结DF .求证:BD DFBE AE=. 【答案】略. 【解析】证明:90ACB ∠=,CF BE ⊥, ∴90ACB CFB ∠=∠=.又CBF CBE ∠=∠, ∴CBF EBC ∆∆∽. ∴CB BE BF CB=,即2CB BF BE =•. 同理,得:2CB BD BA =•. ∴BF BE BD BA •=•, ∴FB BDBA BE=. 又ABE FBD ∠=∠, ∴FBD ABE ∆∆∽. ∴BD FDBE AE=. 【总结】本题考查了三角形相似的判定方法、相似三角形的性质等知识.【习题3】 已知梯形ABCD 中,AB // CD ,90B ∠=︒,3AB =,6CD =,12BC =,点E在BC 边上自B 点向C 点移动,求使得ABE ∆与ECD ∆相似的BE 的值.【答案】4或632±.【解析】解:由题知:90B C ∠=∠=. ABE ∆与ECD ∆相似,分两种情况:设BE x =.(1)ABE DCE ∆∆∽,得:AB BEDC CE=, 即3612x x=-,解得4x =;(2)ABE ECD ∆∆∽,得:AB BEEC DC=, 随堂检测ABC DEOAB CPQ 即3126xx=-,得212180x x-+=,解得6x=±综上:BE=4或6±【总结】本题考查了相似三角形的性质,着重考查学生分类讨论思想的应用.【习题4】如图,梯形ABCD中,AD//BC,AC与BD相交于点O,过点B作BE//CD交CA的延长线于点E,求证:2OC OA OE=.【答案】略.【解析】//AD CB,∴CO BOOA OD=.//BE CD,∴CO DOOE OB=.∴CO OAOE OC=,∴2OC OA OE=•.【总结】本题考查三角形一边的平行线定理的应用.【习题5】如图,在ABC∆中,90C∠=︒,8BC cm=,6AC cm=,点P从B出发,沿BC方向以2cm/s的速度移动到C点,点Q从C出发,沿CA方向以1cm/s的速度移动到A点.若点P、Q分别同时从B、C出发,经过多少时间CPQ∆与CBA∆相似?【答案】125t=或3211时,CPQ∆与CBA∆相似.【解析】设经过t秒CPQ∆与CBA∆相似,则2BP t=,CQ t=,∴82CP t=-.要使CPQ∆与CBA∆相似,有两种情况:①当CPQ CBA∆∆∽,∴CP CQCB CA=,即8286t t-=,∴125t=;ABCDEO②当CPQ CAB ∆∆∽,∴CP CQCA CB=, 即8268t t -=。

九年级数学教案第22章《相似三角形》知识点整理_0290文档

九年级数学教案第22章《相似三角形》知识点整理_0290文档
本文内容如下:【下载该文档后使用Word打开】
本章有以下几个主要内容:一、比例线段1、线段比,2、成比例线段,3、比例中项----黄金分割,4、比例的性质:基本性质;合比性质;等比性质(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。简称比例线段。(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么这种分割叫做黄金分割。这个点叫做黄金分割点。顶角是36度的等腰三角形叫做黄金三角形宽和长的比等于黄金数的矩形叫做黄金矩形。(5)比例的性质基本性质:内项积等于外项积。(比例=====等积)。主要作用:计算。合比性质,主要作用:比例的互相转化。等比性质,在使用时注意成立的条件。二、相似三角形的判定平行线等分线段------平行线分线段成比例--------平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例------(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似------相似三角形的判定:类比于全等三角形的判定。三、相似三角形的性质1、定义:相似三角形对应角相等对应边成比例。2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比3、相似三角形周长的比等于相似比4、相似三角形面积的比等于相似比的平方四、图形的位似变换1、几何变换:平移,旋转,轴对称,相似变换----2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。----3、位似变换:两个图形不但相似,而且对应点连线过同一点的相似变换叫做位似变换。这两个图形叫做位似图形。4、位似变换可把图形放大或者缩小。5、外位似(同向位似图形)位似中心在对应点连线外的位似叫外位似。这两个图形叫同向位似图形。内位似(反向位似图形)位似中心在对应点连线上的位似叫内位似。这两个图形叫反向位似图形。6、以原点为位似中心,相似比为k,原图形上点的坐标(x,y)则同向位似变换后对称点的坐标为(kx,ky)

初中数学相似三角形模型总结

初中数学相似三角形模型总结

初中数学相似三角形模型总结数学这门学科,说简单也简单,说难也难。

有时候,一些看似抽象的概念一旦掌握了,就会觉得它们其实挺有趣的。

今天,我们要聊的就是相似三角形这个话题。

别着急,听我慢慢说,相信我,搞懂它们其实比你想象的要容易得多。

1. 相似三角形的基本概念1.1 什么是相似三角形?大家都知道,三角形有各种各样的样子,有的胖,有的瘦,有的高,有的矮。

但不管它们的外形如何,只要它们的角度相同,比例也保持一致,那它们就是相似三角形。

换句话说,就是这些三角形看起来像是放大或缩小版的关系。

1.2 为什么要学习相似三角形?可能有同学会问,这些三角形和我们的生活有什么关系?其实,了解相似三角形能帮助我们解决很多实际问题,比如测量远处物体的高度或距离,甚至能帮助我们设计一些简单的模型。

相似三角形的知识不仅能帮我们在考试中得高分,还能在生活中找到实际的应用。

2. 相似三角形的判定条件2.1 角角相似(AA)这是最基本的相似三角形判定方法。

只要两个三角形的两个角相等,那这两个三角形就是相似的。

这就像两个镜子前的自己,只要你转身的角度一样,镜子中的影像也会一样。

用公式来讲,角角相似就是:如果 (angle A = angle A') 和 (angle B = angle B'),那么△ABC ~ △A'B'C'。

2.2 边角边相似(SAS)另一种情况是,一个三角形的两边分别和另一个三角形的两边成比例,同时夹角也相等。

那么这两个三角形也是相似的。

简单来说,就像你用尺子量了一下两个三角形的边,再确认它们之间的夹角也是一致的,那么这两个三角形就是相似的。

2.3 边边边相似(SSS)如果两个三角形的三边分别成比例,那这两个三角形也是相似的。

想象一下,你有两个相同的形状的三角形,但是一个比另一个大,那它们之间的边的长度比例也应该是一样的。

这种情况下,三角形之间的相似性就完全取决于边的比例关系了。

初中数学相似三角形知识点

初中数学相似三角形知识点

初中数学相似三角形知识点
学习可以这样来看,它是一个潜移默化、厚积薄发的过程。

小编编辑了初中数学相似三角形知识点,希望对您有所帮助!更多相关信息请关注相应栏目!
1.相似三角形定义:
对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号"∽"表示,读作"相似于"。

3.相似三角形的相似比:
相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

从表中可以看出只要将全等三角形判定定理中的"对应边相等"的条件改为"对应边
成比例"就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的*质定理:
(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8.相似三角形的传递*
如果△abc∽△a1b1c1,△a1b1c1∽△a2b2c2,那么△abc∽a2b2c2。

(新)初中数学《相似三角形》最全讲义(完整版)汇编

(新)初中数学《相似三角形》最全讲义(完整版)汇编
★★★三角形一边的平行线的判定定理
三角形一边平行线判定定理 如果一条直线截三角形的两边所得的对应线段成比例, 那么这条直线平行于三角形的第三边.
三角形一边的平行线判定定理推论 如果一条直线截三角形两边的延长线(这两边的 延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.
4
AB AC 即 AC2=AB×BC,那么称线段 AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割
点,AC 与 AB 的比叫做黄金比。其中 AC 5 1 AB ≈0.618 AB 。 2
2)黄金分割的几何作图:已知:线段 AB.求作:点 C 使 C 是线段 AB 的黄金分割点.
2
(新)初中数学《相似三角形》最全讲义(完整版)汇编
CD²=AD·BD, AC²=AD·AB, BC²=BD·BA (在直角三角形的计算和证明中有广泛的应用).
补充二:三角形相似的判定定理推论 推论一:顶角或底角相等的两个等腰三角形相似。 推论二:腰和底对应成比例的两个等腰三角形相似。 推论三:有一个锐角相等的两个直角三角形相似。 推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。 推 论 五 :如 果 一 个 三 角 形 的 两 边 和 其 中 一 边 上 的 中 线 与 另 一 个 三 角 形 的 对 应 部 分 成 比 例,那么这两个三角形相似。
(新)初中数学《相似三角形》最全讲义(完整版)汇编
相似三角形基本知识
知识点一:放缩与相似形 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。
注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。
⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得 到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.

相似三角形的性质及应用--巩固练习(提高--带答案)

相似三角形的性质及应用--巩固练习(提高--带答案)

相似三角形的性质及应用--知识讲解(提高)【学习目标】1、探索相似三角形的性质,能运用性质进行有关计算;2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题).【要点梳理】要点一、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等.2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.3. 相似三角形周长的比等于相似比∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则21122=1122ABCA B CBC AD k B C k A DSkS B C A D B C A D'''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点诠释:相似三角形的性质是通过比例线段的性质推证出来的.要点二、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点诠释:测量旗杆的高度的几种方法:平面镜测量法影子测量法手臂测量法标杆测量法 2测量距离2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。

1.如甲图所示,通常可先测量图中的线段DC、BD、CE的距离(长度),根据相似三角形的性质,求出AB的长. 2.如乙图所示,可先测AC、DC及DE的长,再根据相似三角形的性质计算AB的长.要点诠释:1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离;2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比; 3.视点:观察事物的着眼点(一般指观察者眼睛的位置);4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角.【典型例题】类型一、相似三角形的性质1.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE :S △BDE 等于( ) A. 2:5 B .14:25 C .16:25 D. 4:21【思路点拨】相似三角形的面积比等于相似比的平方,但是一定要注意两个三角形是否相似.【答案】B.【解析】由已知可得AB=10,AD=BD=5,设AE=BE=x, 则CE=8-x, 在Rt △BCE 中,x 2-(8-x)2=62,x=, 由△ADE ∽△ACB 得, S △BCE :S △BDE =(64-25-25):25=14:25,所以选B.【总结升华】关键是要确定哪两个是相似三角形.举一反三【变式】在锐角△ABC 中,AD,CE 分别为BC,AB 边上的高,△ABC 和△BDE 的面积分别等于18和2,DE=2,求AC 边上的高.【答案】过点B 做BF ⊥AC,垂足为点F , ∵AD,CE 分别为BC,AB 边上的高,∴∠ADB=∠CEB=90°,又∵∠B=∠B ,∴Rt △ADB ∽Rt △CEB,∴,BD AB BD BE BE CB AB CB==即,且∠B=∠B , ∴△EBD ∽△CBA,∴221189BEDBCA DE AC S S ⎛⎫=== ⎪⎝⎭△△,∴13DE AC =,又∵DE=2, ∴AC=6,∴11862ABC AC BF S =⋅=∴△,BF=. 2.已知:如图,在△ABC 与△CAD 中,DA ∥BC ,CD 与AB 相交于E 点,且AE ︰EB=1︰2,EF ∥BC 交AC 于F 点,△ADE 的面积为1,求△BCE 和△AEF 的面积.【答案与解析】∵DA ∥BC , ∴△ADE ∽△BCE . ∴S △ADE :S △BCE =AE 2:BE 2. ∵AE ︰BE=1:2, ∴S △ADE :S △BCE =1:4. ∵S △ADE =1, ∴S △BCE =4. ∵S △ABC :S △BCE =AB:BE=3:2, ∴S △ABC =6.∵EF ∥BC , ∴△AEF ∽△ABC . ∵AE:AB=1:3, ∴S △AEF :S △ABC =AE 2:AB 2=1:9. ∴S △AEF ==. 【总结升华】注意,同底(或等底)三角形的面积比等于该底上的高的比;同高(或等高)三角形的面积比等于对应底边的比.当两个三角形相似时,它们的面积比等于对应线段比的平方,即相似比的平方.举一反三:【变式】如图,已知中,,,,,点在上, (与点不重合),点在上.(1)当的面积与四边形的面积相等时,求的长.(2)当的周长与四边形的周长相等时,求的长.【答案】 (1)∵, ∽. (2)∵的周长与四边形的周长相等.=6,∽ . 类型二、相似三角形的应用3. 在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上。

初三数学暑期辅导5 相似三角形

初三数学暑期辅导5 相似三角形

初三数学暑期辅导5 相似三角形初三数学暑期辅导5相似三角形初中暑期数学辅导(五)一、知识概要1、比例的性质:交流电?,然后ad=BC;bdaca?卑诗省?DAC(2)开闭比定理:如果?,然后BDB?公元卡西亚?CE(3)等距定理:如果????,然后(b?d?f???0)。

bdfb?d?f??b2、相似三角形的判定:(1)有两个角对应于相等的三角形;(2)两边对应成比例且夹角相等的三角形相似.(3)三组边对应成比例的三角形相似。

3、一些基本图形:(1)比例的基本性质:如果二、问题解决1.将三个全等的正方形组合成一个矩形,并求出∠ DAE+∠ DAF+∠ 达格hgfea2.如图所示,在梯形ABCD中,ad‖BC、AC和BD在点O处相交,be‖CD的延长线在点E处与Ca相交。

验证:oc2=OA?oe。

bcd3.如图所示,在等边三角形ABC中,P是BC上方的点,D是AC上方的点,以及∠ APD=600,BP=1,CD=2/3,计算△ 基础知识ad23b1pc一4、如果一个矩形有一边在三角形的边上,另外两个顶点分别在三角形的其他两边上,则称该矩形为三角形的内接矩形,如图所示.请思考:如何做出三角形的内接正方形?阿德亚abbd5、证明角平分线定理:ad是∠bac的内角平分线,则.?acdcabgfcbc12bdc6、如图,梯形abcd中,ab∥cd,对角线相交于点o,过o作ab的平行线交两腰于m、n,112验证:??abcdmnamobndc三、课后练习1.如果一个正方形oefg和一个正方形ABCD是同态的,点F的坐标是(1,1),点C的坐标是(4,2),那么两个正方形的同态中心的坐标是2、点m是△abc内一点,过点m分别作直线平行于△abc的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△abc的面积是.二3、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为s1,s2,则s1+s2的值为()a、 16b.17c.18d.194、如图,d是△abc的边bc上一点,已知ab=4,ad=2.∠dac=∠b,若△abd的面积为a,则△acd的面积为()a、 ab.c。

初三相似三角形讲义

初三相似三角形讲义

相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。

如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。

相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。

注意:(1)相似比是有顺序的。

(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。

(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。

(2)两个等边三角形一定相似,两个等腰三角形不一定相似。

(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。

知识点3、平行线分线段成比例定理1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。

把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

2. 比例性质: ①基本性质:a b c d ad bc =⇔= ②合比性质:±±a b c d a b b c dd=⇒=③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()0 3. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知l1∥l2∥l3,A D l1B E l2C F l3可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.知识点4:相似三角形的性质①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似ABC⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

初三相似三角形的基本模型

初三相似三角形的基本模型

初三相似三角形的基本模型相似三角形在数学中,相似三角形是指具有相同形状但大小不同的三角形。

在相似三角形的证明中,常见的基本模型是AA、辅助线构造成比例线段和面积法。

AA模型AA模型指的是两个三角形的两个角分别相等,那么这两个三角形就是相似的。

例如,如果三角形DEF的两个角分别等于三角形ABC的两个角,那么我们就可以得出这两个三角形相似的结论。

辅助线构造成比例线段在相似三角形的证明中,常见的辅助线的作法是做平行线构造成比例线段或相似三角形,同时再结合等量代换得到要证明的结论。

常见的等量代换包括等线代换、等比代换、等积代换等。

例如,对于图中的问题,我们可以通过做平行线CE∥AD 来得到证明。

这种方法利用了“A”型图的基本模型。

面积法面积法主要是将面积的比,和线段的比进行相互转化来解决问题。

常用的面积法基本模型包括“山字”型。

“田字”型和“燕尾”型等。

在题型方面,与三角形有关的相似问题是常见的。

例如,对于图中的问题,我们需要证明角ADE等于角B,可以通过使用AA模型来得出结论。

在三角形ABC中,已知AB=3,AC=4,BC=5,以BC为边在A点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.解:首先,我们需要构造双垂直辅助线,如图所示:由于△ABD为等腰直角三角形,所以AD=BD=AB=3,又由于BC=5,所以BD=5-3=2,根据勾股定理可得CD=√(BC²-BD²)=√(5²-2²)=√21.因此,线段CD的长为√21.例2:在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.证明:方法一:连接PC,过点P作PD⊥AC于D,则PD//BC。

根据折叠可知XXX⊥CP。

由∠2+∠PCN=90°,∠PCN+∠XXX°可得∠2=∠CNM。

初三秋季班 第5讲 相似三角形--提高班

初三秋季班 第5讲 相似三角形--提高班

第5讲相似三角形知识点1相似三角形的判定相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于”.相似三角形的判定:(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成三角形与原三角形相似.(2)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似. (4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似.直角三角形相似判定定理斜边与一条直角边对应成比例的两直角三角形相似.【典例】1.如图,已知:∠ACB=∠ADC=90°,AD=2,CD=2,当AB的长为时,△ACB与△ADC 相似.【答案】4【解析】解:∵∠ACB=∠ADC=90°,AD=2,CD=2,∴△ADC是等腰直角三角形,AC==2,∵△ACB与△ADC相似,∴△ACB是等腰直角三角形,BC=AC=2,∴AB==4,即当AB的长为4时,△ACB与△ADC相似;故答案为:4.2.如图,点P是⊙O的直径AB延长线上一点,且AB=4,点M为上一个动点(不与A,B重合),射线PM与⊙O交于点N(不与M重合).(1)当M在什么位置时,△MAB的面积最大,并求出这个最大值;(2)求证:△PAN∽△PMB.【解析】解:(1)当点M在的中点处时,△MAB面积最大,此时OM⊥AB,∵OM=AB=×4=2,∴S△ABM=AB•OM=×4×2=4;(2)∵∠PMB=∠PAN,∠P=∠P,∴△PAN∽△PMB.3.如图,已知O 是△ABC 内一点,D、E、F 分别是 OA、OB、OC 的中点.求证:△ABC∽△DEF.【解析】证明:∵D、E、F 分别是 OA、OB、OC 的中点,∴DE= AB,EF= BC,DF= AC,即= = ,∴△ABC∽△DEF4.如图,正方形ABCD的边长为4,E是BC边的中点,点P在射线AD上,过P作PF⊥AE于F.(1)求证:△PFA∽△ABE;(2)当点P在射线AD上运动时,设PA=x,是否存在实数x,使以P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,说明理由.【解析】(1)证明:∵AD∥BC,∴∠PAF=∠AEB.∵∠PFA=∠ABE=90°,∴△PFA∽△ABE.(2)若△EFP∽△ABE,则∠PEF=∠EAB.∴PE∥AB.∴四边形ABEP为矩形.∴PA=EB=2,即x=2.若△PFE∽△ABE,则∠PEF=∠AEB.∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴点F为AE的中点.∵AE=,∴EF=AE=.∵,即,∴PE=5,即x=5.∴满足条件的x的值为2或5.【方法总结】(1)在有一组对应角相等的情况下,可以从两个方面选择突破口:①寻找另一组对应角相等:②寻找两个三角形中这个已知角的两边的比相等.(2)直角三角形被斜边上的高分成的两个直角三角形都与原三角形相似(此知识常用,但是有时需要证明)(3)若两个直角三角形满足一个锐角相等,或两组直角边成比例,或斜边和一条直角边成比例,则这两个直角三角形相似.【随堂练习】1.(2018•襄州区模拟)如图,矩形ABCD中,AD=2,AB=5,P为CD边上的动点,当△ADP与△BCP相似时,DP=_______.【解答】解:①当△APD∽△PBC时,=,即=,解得:PD=1,或PD=4;②当△PAD∽△PBC时,=,即=,解得:DP=2.5.综上所述,DP的长度是1或4或2.5.故答案是:1或4或2.5.2.(2018•扬中市二模)如图,▱ABCD的对角线交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:△BDE是直角三角形;(2)如果OE⊥CD,试判断△BDE与△DCE是否相似,并说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OB=OD,∵OE=OB,∴OE=OD,∴∠OBE=∠OEB,∠ODE=∠OED,∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠BED=∠OEB+∠OED=90°,∴DE⊥BE,即△BDE是直角三角形;(2)解:△BDE与△DCE相似.∵OE⊥CD,∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE,∵∠OBE=∠OEB,∴∠DBE=∠CDE,∵∠BED=∠DEC=90°,∴△BDE∽△DCE.知识点2 相似三角形的性质相似三角形的性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.(3)相似三角形周长的比等于相似比.(4)相似三角形面积的比等于相似比的平方.【典例】1.如图所示,已知△AOB∽△DOC,OA=2,AD=9,OB=5,DC=12,∠A=58°,求AB、OC 的长和∠D的度数.【解析】解:∵OA=2,AD=9,∴OD=9﹣2=7,∵AB∥CD,∵△AOB∽△DOC,∴==,∵OA=2,OB=5,DC=12,∴==,解得OC=,AB=,∵△AOB∽△DOC,∴∠D=∠A=58°.2.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求△DMN的面积.【答案】【解析】解(1)∵平行四边形ABCD,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴=,∵M为AD中点,∴MD=AD=BC,即=,∴=,即BN=2DN,设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,∴x+1=2(x﹣1),解得:x=3,∴BD=2x=6;(2)∵△MND∽△CNB,且相似比为1:2,∴MN:CN=1:2,∵△DCN的面积为2,∴△MND面积为1(高相同的两个三角形面积比等于底边长度比)【方法总结】1对应性:即两个三角形相似时,一定要把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.2顺序性:相似三角形的相似比是有顺序的.3两个三角形形状一样,但大小不一定一样.4全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.5相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等【随堂练习】1.(2018•安徽)矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为____.【解答】解:∵四边形ABCD为矩形,∴∠BAD=90°,∴BD==10,当PD=DA=8时,BP=BD﹣PD=2,∵△PBE∽△DBC,∴=,即=,解得,PE=,当P′D=P′A时,点P′为BD的中点,∴P′E′=CD=3,故答案为:或3.2.(2018•六安模拟)如图,点P是矩形ABCD内一点,连接PA、PB、PC、PD,已知AB=3,BC=4,设△PAB、△PBC、△PCD、△PDA的面积分别为S1,S2,S3,S4,以下判断:①PA+PB+PC+PD的最小值为10;②若△PAB≌△PCD,则△PAD≌△PBC;③若S1=S2,则S3=S4,④若△PAB∽△PDA,则PA=2其中正确的是______(把所有正确的结论的序号都填在横线上)【解答】解:①当点P是矩形ABCD两对角线的交点时,PA+PB+PC+PD的值最小,根据勾股定理得,AC=BD=5,所以PA+PB+PC+PD的最小值为10,故①正确;②若△PAB≌△PCD,则PA=PC,PB=PD,所以P在线段AC、BD的垂直平分线上,即P是矩形ABCD两对角线的交点,所以△PAD≌△PBC,故②正确;③若S1=S2,易证S1+S3=S2+S4,则S3=S4,故③正确;④若△PAB~△PDA,则∠PAB=∠PDA,∠PAB+∠PAD=∠PDA+∠PAD=90°,∠APD=180°﹣(∠PDA+∠PAD)=90°,同理可得∠APB=90°,那么∠BPD=180°,B、P、D三点共线,P是直角△BAD斜边上的高,根据面积公式可得PA=2,故④错误.故答案为①②③.3.(2017秋•临清市期末)如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿边AB向点B以2cm/s的速度移动,点Q从点B开始沿边BC向点C 以4cm/s的速度移动,如果点P、Q分别从点A、B同时出发,经几秒钟△PBQ 与△ABC相似?试说明理由.【解答】解:设经x秒钟△PBQ与△ABC相似,则AP=2xcm,BQ=4xcm,∵AB=8cm,BC=16cm,∴BP=AB﹣AP=(8﹣2x)cm,∵∠B是公共角,∵①当,即时,△PBQ∽△ABC,解得:x=2;②当,即时,△QBP∽△ABC,解得:x=0.8,∴经2或0.8秒钟△PBQ与△ABC相似.知识点3相似三角形的综合应用【典例】1.如图,河对岸有一路灯杆AB,在灯光下,小亮在点D处测得自己的影长DF=3m,沿BD 方向从D后退4米到G处,测得自己的影长GH=5,如果小亮的身高为1.7m,求路灯杆AB 的高度.【解析】解得BD=6,解:∵CD⊥BF,AB⊥BF,∴CD∥AB,∴△CDF∽△ABF,∴=,同理可得=,∴=,∴=,∴=,解得AB=5.1.答:路灯杆AB高5.1m.2.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=4米,BP=6米,PD=24米,求该古城墙CD的高度.【解析】解:由题意知∠APB=∠CPD,∠ABP=∠CDP,∴△ABP∽△CDP,∴=,得=,解得:CD=16,∴该古城墙CD的高度为16米.3.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.(1)如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有一灯泡,在灯泡的照射下,正方形框架的横向影子A′B,D′C的长度和为6cm.那么灯泡离地面的高度为.(2)不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此时横向影子A′B,D′C的长度和为多少?(3)有n个边长为a的正方形按图3摆放,测得横向影子A′B,D′C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)【解析】解:(1)设灯泡离地面的高度为xcm,∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得,∴=,解得x=180.(2)设横向影子A′B,D′C的长度和为ycm,同理可得∴=,解得y=12cm;(3)记灯泡为点P,如图:∵AD∥A′D′,∴∠PAD=∠PA′D′,∠PDA=∠PD′A′.∴△PAD∽△PA′D′.根据相似三角形对应高的比等于相似比的性质,可得(直接得出三角形相似或比例线段均对)设灯泡离地面距离为x,由题意,得PM=x,PN=x﹣a,AD=na,A′D′=na+b,∴=1﹣=1﹣x=【方法总结】相似三角形的应用,类型较多,主要集中在测高和测距;此类题目解题时,要把实际问题转化成几何图形,构造相似,利用相似三角形对应边成比例,对应角相等的性质去求解;解题时对应边一定要找对,否则就会事倍功半【随堂练习】1.(2018•大连)如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.【解答】解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC,∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,AF=CF=AC,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD,∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,∴,∴,∴CD=4,在Rt△BCD中,BD==4同理:△CFD∽△BCD,∴,∴,∴CF=,∴AC=2AF=.2.(2018•滨州)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:(1)直线DC是⊙O的切线;(2)AC2=2AD•AO.【解答】解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴AB=2AO,∠ACB=90°,∵AD⊥DC,∴∠ADC=∠ACB=90°,又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴=,即AC2=AB•AD,∵AB=2AO,∴AC2=2AD•AO.综合运用:相似三角形1.如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.【解析】证明:(1)∵∠ACB=90°,CD⊥AB,∴∠BCD=∠A,∠ADC=90°.∵E是AC的中点,∴DE=AE=CE,∴∠ADE=∠A,∴∠BCD=∠ADE.又∠ADE=∠FDB,∴∠FCD=∠FDB.∵∠CFD=∠DFB,∴△CFD∽△DFB,∴DF2=BF•CF.(2)∵AE•AC=AG•AD,∴=.∵∠A=∠A,∴△AEG∽△ADC,∴EG∥BC,∴△EGD∽△FBD,∴=.由(1)知:△CFD∽△DFB,∴=,∴=,∴EG•CF=ED•DF.2.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E,H分别在AB,AC上,已知BC=40cm,AD=30cm,求这个正方形的边长.【解析】解:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.如图,设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为xcm,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为cm.3.在矩形ABCD中,点E是AD的中点,BE垂直AC交AC于点F,求证:△DEF∽△EBD.【解析】证明:∵AC⊥BE,∴∠AFB=∠AFE=90°,∵四边形ABCD是矩形,∴∠BAE=90°,又∵∠AEF=∠BEA,∴△AEF∽△BEA,∴=,∵点E是AD的中点,∴AE=ED,∴=,又∵∠FED=∠DEB,∴△DEF∽△BED.4.如图,一块材料的形状是锐角三角形ABC,边BC长120mm,高AD为80mm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(Ⅰ)图中与△ABC相似的三角形是,说明理由;(Ⅱ)这个正方形零件的边长为多少?【解析】解:(Ⅰ)∵正方形EGHF,∴EF∥BC,∴△AEF∽△ABC,故答案为:△AEF;(Ⅱ)设EG=EF=x∵△AEF∽△ABC∴=,∴=,∴x=48,∴正方形零件的边长为48mm.5.如图,四边形ABCD、CDEF、EFGH都是正方形.(1)△ACF与△ACG相似吗?说说你的理由.(2)求∠1+∠2的度数.【解析】解:(1)相似.理由:设正方形的边长为a,AC==a,∵==,==,∴=,∵∠ACF=∠ACF,∴△ACF∽△GCA;(2)∵△ACF∽△GCA,∴∠1=∠CAF,∵∠CAF+∠2=45°,∴∠1+∠2=45°.6.【阅读理解】小白同学遇到这样一个问题:△ABC中,D是BC的中点,E是AB上一点,延长DE、AC交于点F,DE=EF,AB=5,求AE的长.小白的想法是:过点E作EH∥BC交AC于H,再通过相似三角形的性质得到AE、BE的比,从而得出AE的长,请你按照小白的思路完成解答.【解决问题】请借助小白的解题经验,完成下面问题:△ABC中,AD平分∠BAC交BC于D,E为AB边上一点,AE=AD,H、Q为BC上两点,CQ=DH,DQ=mDH,G为AC上一点,连接EQ交HG、AD于F、P,∠EFG+∠EAD=180°,猜想并验证EP与GH的数量关系.【解析】解:如图1,过点E作EH∥BC交AC于H,∴∠FEH=∠FDC,∠FHE=∠C,∴△FEH∽△FDC,∴,∵DE=EF,∴,∵BD=DC,∴,同理得:△AEH∽△ABC,∴,∵AB=5,∴AE=;【解决问题】猜想:=,理由是:如图2,过D作DM∥GH,交AC于M,∴∠CMD=∠CGH,∠CDM=∠CHG,∴△CDM∽△CHG,∴,设DH=CQ=x,则DQ=mx,∴==,∵AD平分∠BAC,∴∠EAP=∠DAM,∵∠EFG+∠EAD=180°,∴∠AEP+∠ANF=180°,∵GH∥DM,∴∠ADM+∠DNG=∠ADM+∠ANF=180°,∴∠ADM=∠AFP,∵AE=AD,∴△AEP≌△ADM,∴EP=DM,∴=.。

初三下册数学直升班培优讲义学生版第5讲相似三角形(三)

初三下册数学直升班培优讲义学生版第5讲相似三角形(三)

1如图为斜“ A ”字型基本图形. A当 AED 则有生 AB 探 AE ACB 时,△ ABCAED AD DE AC BC .AD AB .\ECB如图所示, 当E 点与C 点重合时,为其常见的一个变形./\当 ACDB 时,△ ABCACD/则有竺AD CD \ AB AC BCA探 AC AD AB .BCA A如图所示, 当E 点在AC 的延长线上时,为另/\一个常见的变形. /\当 AEDB 时,△ ABCAED则有些AD DE\AB AC BCrvX —S■\介探 AE AC AD AB .2第5讲 相似三角形(三)模块一斜“ A ”和斜“ 8”模型 当 A D 时, △ AOB s^ DOC则有AOBO ABDO CO CD .如图为斜“ 8”字型基本图形. 探 AO OC BO OD .在 Rt △ ABC 中, BAC , AD BC 于 D .射影定理:(1) AD BD CD ;(2) AB BD BC ; (3) AC CD CB .BA LxD C注意:(1)射影定理可以直接用,是用 △ ABD CAD CBA 来证明的.(2)射影图形中,另外有下面的关系.① 角的相等关系: B CAD , C BAD .② 冋一二角形中二边的平方关系:AB AD BD 、ACAD CD 、BC AB AC .模块一斜“ A ”和斜“ 8”模型图1-1 图1-2 图1-3(1)如图 1-1, C E AC , BC , AE ,贝U AD(2)女口图1-2,点D 、E 分另U 在AB 、AC 上,且 ABC AED ,若DE 则AB 的长为 ___________ . ,AE , BC例3D ,E 分别在 BC , AC 上,且BD CE , AD 与BE AD DF :② AF AD AE AC :③ BF BE BD BC .(1)如图,△ ABC 是等边三角形,点 相交于点F .求证:①BD (2)如图,四边形ABCD 是菱形,AFAD 交BD 于E ,交BC 于F.求证:AD -DE DB .例3如图,在△ ABC中,AD的垂直平分线交AD于E,交BC的延长线于F , FD 求证:AD平分BAC .(1)如图3-1,四边形ABCD中,AC与BD交于点0,若1 2,求证:3(2)如图3-2,在△ ABC 中,AD BC于D,在AB上找到一点E使得EDB4 .BAC ,连接CE,求证:FB FC , CE AB.B图3-1 图3-2例5在等边△ ABC中,点D为AC上一点,连结BD,直线I与AB, BD, BC分别相交于点E、P、F,且BPF .(1)如图5-1,写出图中所有与△ BPF相似的三角形,并选择其中一对给予证明(2)若直线I向右平移到图5-2、图5-3的位置时(其它条件不变) 然成立?若成立,请写出来(不证明) ,若不成立,请说明理由(3)探究:如图5-1,当BD满足什么条件时(其它条件不变)结果,并说明理由.(说明:结论中不得含有未标识的字母),(1 )中的结论是否仍PF -PE ?请写出探究I图图11CB B例6模块二射影定理例7图7-1 图7-2例8已知,平面直角坐标系中,直线 y x 与x 轴交于点A ,与y 轴交于点B ,若坐标轴上存在一点C ,使得△ ABC 是直角三角形,则 C 点坐标为 _______________________(1)如图6-1,已知AD 是Rt △ ABC 斜边上的高,则下列各式中不正确的是( ).2 2A . BA BD CB B . AD BD CD 2C . AC CD CBD . BA CD AC BD(2)如图6-2, AD 是Rt △ ABC 斜边上的高,已知 AD 6 , BD4 , CD ______ AB______ , AC _________(1)如图 7-1,在△ ABC 中,CD AB 于 D , DEAC 于 E , DF BC 于F .求证:△ CEF CBA .(2)如图7-2,在Rt △ ABC 中,AD 是斜边BC 上的高,DE AC 于 E , DF AB 于 F , 求图6-1 A图6-2证:竺皀豆A模块一斜“A”和斜“8”模型且AE,贝U AB的长为复习巩固(1)如图1-1, △ ABC 中,DE II BC , ACD B,则图中共有 ______ 对相似三角形.(2)如图1-2, M是Rt△ ABC的斜边BC上异于B、C的一定点, 过M点作直线截△ ABC , 使截得的三角形与△ ABC相似,这样的直线有( )A . 1条B . 2条C . 3条(1)如图2-1,在△ ABC中,D是BC边上一点,且满足AD AB , ADE C,若ADES ACDE(2)如图2-2, CD是Rt△ ABC斜边上的高, 证:FD FB FC . E为AC的中点,ED交CB的延长线于F .求演练1图1-1 图1-2 图2-1 图2-2竝■演练3_ _________________ 2BP 交AC 于E ,交CF 于F .求证:BP PE PF .如图,在 △ ABC 中,AD BC 于D , CEAB 于E , △ ABC 的面积是 A BDE 面积的4倍,AC 6,求DE 的长.已知如图,在 △ ABC 中,AB AC , AD 是垂线,P 为AD 上一点,过 C 做CF//AB ,延长演练5如图,在四边形ABCD 中,BAD BCD .过C 点做对角线BD 的垂线,分别交BD ,AD 于点 E 、F ,连接 AC ,求证:△ DCF DAC .如图,已知 AD 、CF 是厶ABC 的两条高, 求证:EF EH EG .演练6D模块射影定理EF AC 与E ,交CB 延长线于G ,交AD 于H ,。

相似三角形复习讲义

相似三角形复习讲义

教育学科教师辅导讲义年级:初三课时数:辅导科目:数学学科教师:1、理解并掌握相似的定义及其性质;2、进一步加强相似判定方法的运用;3、综合运用三角形知识点分析求解问题。

教学内容一、上次作业检查与讲解;二、学习要求及方法的培养:三、知识点分析、讲解与训练:典例精讲S△ABF=4:25,则DE:EC=()S1+S2 的值为()(3)(2014 年湖北咸宁)如图,在△ ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ ADE=∠B= α,DE交AC于点E,cosα= .下列结论:①△ ADE∽△ ACD;②当BD=6时,△ ABD与△ DCE全等;③△ DCE为直角三角形时,BD为8 或;④0<CE≤6.4 。

其中正确的结论是。

(把你认为正确结论的序号都填上)课题相似三角形授课日期及时段学员编号:学员姓名:教学目的1)2013?内江)如图,在? ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F,S△ DEF 2)(2013 菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则例三、 (2014?山东潍坊)如图 1,在正方形 ABCD 中, E 、 F 分别为 BC 、CD 的中点,连接 AE 、BF ,交点为 G .(1) 求证: AE ⊥ BF ;(2)将△ BCF 沿BF 对折,得到△ BPF (如图 2),延长 FP 交BA 的延长线于点 Q ,求 sin ∠BQP 的值; (3) 将△ ABE 绕点 A 逆时针方向旋转,使边 AB 正好落在 AE 上,得到△ AHM (如图 3),若 AM 和 BF 相交于点 N , 当正方形 ABCD 的面积为 4 时,求四边形 GHMN 的面积.例四、 (2014 ?年山东东营 ) 【探究发现】如图 1,△ ABC 是等边三角形,∠ AEF=60°, EF 交等边三角形外角平分 线 CF 所在的直线于点 F ,当点 E 是 BC 的中点时,有 AE=EF 成立;【数学思考】某数学兴趣小组在探究 AE 、 EF 的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下 结论:当点 E 是直线 BC 上( B ,C 除外)任意一点时(其它条件不变),结论 AE=EF 仍然成立.假如你是该兴趣小组中的一员,请你从“点 E 是线段 BC 上的任意一点”;“点 E 是线段 BC 延长线上的任 意一点”;“点 E 时线段 BC 反向延长线上的任意一点”三种情况中,任选一种情况,在图 2 中画出图形,并证明 AE=EF .【拓展应用】当点 E 在线段 BC 的延长线上时,若 CE=BC ,在图 3 中画出图形,并运用上述结论求出 S △ABC :S △AEF 的值.例二、 (2014?上海)已知:如图,梯形 ABCD 中,AD ∥BC , 长线上一点,且∠ CDE=∠ABD .( 1)求证:四边形 ACED 是平行四边形; ( 2)联结 AE ,交 BD 于点 G ,求证: = .AB=DC ,对角线 AC 、BD 相交于点 F ,点 E 是边 BC 延例五、 (13 年安徽省)我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”。

初三数学《相似三角形》知识点归纳

初三数学《相似三角形》知识点归纳

初三数学《相似三角形》知识提纲(何老师归纳)一:比例的性质及平行线分线段成比例定理(一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项2:比例尺= 图上距离/实际距离3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作:cda b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。

③ 比例中项:若c a b c a b cbb a ,,2是则即⋅==的比例中项. (二)比例式的性质1.比例的基本性质:bc ad dcb a =⇔= 2.合比:若,则或a b c d a b b c d d a b a c d c =±=±±=±3.等比:若……(若……)a b c d e f mn k b d f n =====++++≠04、黄金分割:把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=215-AB ≈0.618AB , (三)平行线分线段成比例定理1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.如图:当AD∥BE∥CF 时,都可得到=.=,=,nmb a =语言描述如下:=,=,=.(4)上述结论也适合下列情况的图形:图(2) 图(3) 图(4) 图(5)2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.A 型 X 型由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或. 3.推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 如上图:若=.=,=,则AD ∥BE ∥CF此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.4.定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例. 二:相似三角形: (一):定义:1:对应角相等,对应边成比例的三角形,叫做相似三角形。

相似三角形详细讲义(最新整理)

相似三角形详细讲义(最新整理)

用数学语言表述是:
(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.
MC

AC,ADE=∠DE于点5,求:;
ADE 与△
3:2=AD 相交于点,若BD O COD ∆接矩形的一边在斜边上,且矩形的DEFG
FC
2
cm
10=DEFG S 矩形3和4,它的内接正方形有情况中正方形的大小。

AC和BC的延长线交于
的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的
7m
A.1.25m B.10m C.20m D.8m
(2008•金华)如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( )A.6米B.8米C.18米D.24米
课堂练习
练习题
1、如图1,∠ADC=∠ACB=900,∠1=∠B,AC=5,AB=6,则AD=______.
2.如图2,AD∥EF∥BC,则图的相似三角形共有_____对.
3.如图3,正方形ABCD中,E是AD的中点,BM⊥CE,AB=6,CE=3,则BM=______.
5
4.ΔABC的三边长为,,2,ΔA'B'C'的两边为1和,若ΔABC∽ΔA'B'C',则ΔA'B'C'的笫三边长为
2105
,AB=8,AD=6,EF垂直平分DBC,BC=,S。

相似三角形的简单模型(教案)

相似三角形的简单模型(教案)
4.掌握相似三角形在生活中的应用,如摄影、建筑、工程设计等领域。
二、核心素养目标
1.培养学生的几何直观和空间想象能力,通过观察、操作、推理等过程,掌握相似三角形的判定与性质,形成对几何图形的深入认识。
2.培养学生的数据分析能力,让学生在实际问题中运用相似三角形的知识,学会从数据中提炼信息,解决问题。
-对于实际问题的难点,可以通过案例分析,如建筑物的影子问题,让学生学会如何从实际问题中抽象出相似三角形的模型,并运用所学知识进行解答。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“相似三角形的简单模型”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量高大建筑物高度或远处距离的情况?”(如树木的高度、河对岸的距离等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索相似三角形的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调相似三角形的判定方法和性质这两个重点。对于难点部分,我会通过具体例子和对比来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如测量教室中某物体的高度,演示相似三角形的基本原理。
-将相似三角形的知识与实际问题结合,构建数学模型,解决具体问题。
举例解释:
-对于判定方法的难点,可以通过提供具有挑战性的题目,如多边形内部的相似三角形辨识,帮助学生克服在复杂图形中找相似三角形的困难。
-在性质证明的难点上,可以通过逐步引导和小组讨论的方式,让学生理解证明过程中的每一步逻辑,特别是如何从已知条件推导出相似性质。

【精品】初三数学课堂讲义---相似

【精品】初三数学课堂讲义---相似
图( 11)
4、如图(12 ),某校准备耗资 1600 元,在一块上、 下两底分别为 10m、20m的梯形 ABCD空? 地上种植花木,
AD∥ BC.
( 1)如果在△ AMD和△ BMC地上种植太阳花,单价为
8
元/
2
m
,将△
AMD地上种满花(图中阴影部分)
,共
花了 160 元,请计算种满△ BMC地上所需的费用;
BF 的长是(

A.5
B.8.2
C.6.4
D.1.8
9、以下各图放置的小正方形的边长都相同, 分别以小正方形的顶点为顶点画三角形, 则与△ ABC 相似的
三角形图形为(

A
BC
10. 如图,这是圆桌上方的灯泡(看作一个点)发出的光线照射桌面后在地面上形成的阴影(圆形)的
示意图,已知桌面的直径为 1.2m,桌面距离地面 1m,若灯泡离地面 3m,则地面上阴影部分的面积为
( 20XX 年吉林省中考试题)
F
BD
E
C
G
F
图3
E
B
DC
图 18-4
例 5、如图 18-4 , ?ABC中, E 为中线 AD 上一点,且 AE=1/3AD.BE的延长线交 AC 于点 F,则 AF:FC=__ _.
优秀学习资料 欢迎下载 例 6、 如图 1, AD 是△ ABC 的高, AE 是△ ABC 的外接圆直径,求证: AB ·AC=AE ·AD.
A
D
E N
B
MC
2.如图,在 △ ABC 中,∠ C 60 ,以 AB 为直径的半圆 O 分别交 AC ,BC 于点 D ,E ,已知 O C
D E
优秀学习资料 欢迎下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抄作业风波漫画释义满分晋级5相似三角形的 简单模型三角形12级 相似三角形的 性质与判定三角形13级 相似三角形 的简单模型 三角形14级 锐角三角函数暑期班 第四讲暑期班 第五讲暑期班 第六讲中考内容中考要求A B C图形的相似了解比例的基本性质,了解线段的比、成比例线段,会判断四条线段是否成比例,会利用线段的比例关系求未知线段;了解黄金分割;知道相似多边形及其性质;认识现实生活中物体的相似;了解图形的位似关系会用比例的基本性质解决有关问题;会利用图形的相似解决一些简单的实际问题;能利用位似变换将一个图形放大或缩小相似三角形了解两个三角形相似的概念会利用相似三角形的性质与判定进行简单的推理和计算;会利用三角形的相似解决一些实际问题三角形的相似是平面几何中极为重要的内容,是北京中考数学中的重点考察内容,近几年的中考题虽然以直接证相似为结论的题目在减少,但作为一种解决问题的工具,在解题中必不可少。

相似性应用广泛,与三角形、平行四边形联系紧密。

估计北京中考的填空题、选择题将注重“相似三角形的判定与性质”等基础知识的考查,将年份2010年2011年2012年题号 3 4,20 11,20分值4分9分9分考点相似三角形的简单计算根据三角形相似求比例;三角形相似与圆、解直角三角形的综合根据三角形相似求比例;三角形相似与圆、解直角三角形的综合中考考点分析中考内容与要求知识互联网位似图形:两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行或共线,像这样的两个图形叫做位似图形. 位似中心:对应顶点的连线相交于一点,这个点叫做位似中心.位似比:相似比叫做位似比.位似图形的性质:位似图形上的任意一对对应点到位似中心的距离之比等于位似比. 如图所示,已知ABC △与A B C '''△是位似图形,点O 为位似中心, 那么OA OB OC AB AC BC k OA OB OC A B A C B C ======'''''''''(k 为位似比)【例1】 ⑴如图,正方形ABCD 的两边BC ,AB 分别在平面直角坐标系的x 轴、y 轴的正半轴上,正方形A ′B ′C ′D ′与正方形ABCD 是以AC 的中点O ′为中心的位似图形,已知AC =23,若点A ′的坐标为(1,2),则正方形A ′B ′C ′D ′与正方形ABCD 的相似比是( )(2012广西玉林)模块一 位似知识导航夯实基础O'A'D'C'B'B (O )CDAC 1B 1A 1OCB AA.61 B. 31 C. 21 D. 32 ⑵三角尺在灯泡O 的照射下在墙上形成的影子如图所示.若cm OA 20=,cm 'OA 50=,则这个三角尺的周长 与它在墙上形成的影子的周长的比是( )A .5∶2B .2∶5C .4∶25D .25∶4(2013西城期末)⑶如图,△ABC 与△111C B A 为位似图形,点O 是它们的位似中心,位似比是1:2,已知△ABC 的面 积为3,那么△111C B A 的面积是 .(2012辽宁阜新)【解析】⑴B ⑵B ⑶12图形 重要结论AD AE DEDE BC ADE ABC AB AC BC ⇔⇔==∥△∽△AB OA OBAB CD AOB COD CD OC OD⇔⇔==∥△∽△ 知识导航模块二 相似三角形的两种基本模型三角尺灯泡O A【例2】 ⑴ 如图,在△ABC 中,BC DE ∥,BD AD 2=,6=DE ,则BC = .(2013石景山期末)⑵ 如图,在△ABC 中,DE ∥BC ,21=AB AD ,8=BCED S 四边形, 则ABC S ∆的面积为( )(2012贵州遵义)A .9B .10C .12D .13【解析】⑴9 ⑵A【例3】 若D 为BC 中点,ED 交AB 于点F ,且EF :FD =2:3,试求AF :FB 的值.B D CA FE【解析】如下图,作平行线,构造基本相似模型,AF :FB=1:4.MB DC A FE M B D C AFE MB D CAFEMB DC A FE M B D C A FE MB D CA FE夯实基础EDCBA【例4】 如图,AD 和BC 相交于点E ,AB CD EF ∥∥.⑴求证:ABC FEC △∽△,ACD AFE △∽△.⑵求证:111AB CD EF+=. 【解析】 ⑴ ∵AB CD EF ∥∥∴BAC EFC ABC FEC ∠=∠∠=∠,ACD AFE ADC AEF ∠=∠∠=∠,∴ABC FEC △∽△,ACD AFE △∽△ ⑵ 由⑴可知ABC FEC △∽△,ACD AFE △∽△∴EF CF EF AFAB AC CD AC ==, ∴EF EF CF AF AB CD AC AC+=+ 即111CF AF EF AB CD AC +⎛⎫+== ⎪⎝⎭∴111AB CD EF +=【例5】 一块直角三角形木板的一条直角边AB 长为1.5米,面积为1.5平方米,要把它加工成一个面积最大的正方形桌面.甲、乙两位同学的加工方法如图所示,请你用学过的知识说明哪位同学的加工方法符合要求(加工损耗忽略不计,计算结果中的分数可保留).(2013大兴期末)(甲)CEDBF A (乙)DEF GC A BMN(乙)DEF G CA B【解析】 甲同学的加工方法好∵S △ABC =AB ·BC =23,∵AB =23, ∴BC =2 .∵∠B =90°,能力提升FEDBA∴AC=25. 如图甲∵四边形DBFE 是正方形, ∴DE ∥AB .∴△CDE ∽△CBA . ∴D E C DAB C B=. 设DE =x ,则CD =2-x , ∴2322x x -= .∴x= . 如图乙过B 点作BM ⊥AC 于点M 交DE 于点N , 由S △ABC =AB ·BC =AC ·BM , 可得BM =.∵DE ∥AC ,∴BN ⊥DE . ∴△BDE ∽△BAC .∴DE BNAC BM=. 设DE =y ,∴655625y y -= ∴y =3037 . ∵>3037, ∴甲同学的正方形面积大.【例6】在ABC △中,BD CE =,DE 的延长线交BC 的延长线于P ,过C 作CM AB ∥交DP 于M ,求证:AD BP AE CP ⋅=⋅.【解析】∵CM AB ∥,∴PCM PBD △∽△,∴CM PCBD PB=, ∵CM AB ∥,∴CEM AED △∽△, ∴CM AD CE AE =,∵BD CE =, MPE D CBA∴CM CMCE BD=,∴PC ADPB AE=,∴AD BP AE CP⋅=⋅【例7】如图,1n+个边长为2的等边三角形有一条边在同一直线上.D1D2D3D4B5B4B3B2B1C5C4C3C2C1A⑴证明:2233AC D AC B△∽△,并写出2233C DC B的值.⑵设211B D C△的面积为1S,322B D C△的面积为2S,…,1n n nB D C+△的面积为nS,则2S=;nS=(用含n的式子表示).【解析】⑴∵122C C B△和233C C B△都是等边三角形∴12223360C C B C C B∠=∠=︒又∵2233C AD C AB∠=∠∴2233AC D AC B△∽△∴2223334263C D ACC B AC===⑵23331nn+,.下列说法正确的是.⑴有两个角对应相等的两个三角形相似;⑵ 两边对应成比例且一角相等的两个三角形相似;⑶ 三边对应成比例的两个三角形相似.【解析】⑴⑶._____________________ 探索创新第05讲精讲:三角形内接正方形问题探究;三角形的内接正方形是指正方形四个顶点都在三角形边上的正方形,正方形有4个顶点,而三角形只有3条边,所以,正方形一定有两个顶点在同一条边上,即正方形一定有一条边落在三角形的边上.【变式1】如图,Rt △ABC (∠C =90°)中有三个内接正方形,DF =9厘米,GK =6厘米,猜想第三个正方形的边长PQ 的长. 【解析】369=-=-=EG EF GF ,设x PQ =,∵PQ GK ∥,∴∠FKG =∠KQP .又∵∠FGK =∠KPQ =90°,∴△FGK ∽△KPQ .∴ PQ GKKP FG =. ∴ x x 663=-.解得4=x .答:第三个正方形的边长为4厘米.【变式3】如图所示,四边形EFGH 是三角形ABC 的内接矩形,AD ⊥BC ,垂足为D ,BC =21cm ,AD =14cm , EF :FG =1:2,求矩形EFGH 的面积. 【解析】如图,设矩形的边长EF =x ,则FG =2x ,∵四边形EFGH 是三角形ABC 的内接矩形, ∴EH ∥BC ,EH =FG , ∴△AEH ∽△ABC ,又∵AD ⊥BC ,则ID =x ,ID AD AI -=,∴AD AIBC EH =,BC =21cm ,AD =14cm , ∴ 1414212x x -=, 解得,x =6cm ,即2x =12cm ,∴S 矩形EFGH =EF ×FG =6×12=72cm 2.答:矩形EFGH 的面积为72cm 2.【变式4】四边形ABCD 为正方形,D E ,在线段AC BC ,上,F G ,在AB 上,如果1ADF CDE S S ∆∆==, 3BEG S ∆=,求ABC ∆的面积.【解析】 辅助线同变式2.设正方形边长为x ,则226AF CI BG x x x===,,.由CDE CAB ∆∆∽,得CI DECH AB=, G F EDCBA PQK FGDA IHG D F EA∴228x xx x xx=++,解得2x =,∴63AB CH ==,, ∴192ABC S AB CH ∆=⋅=【变式5】如图,在△ABC 中,AB=5,BC=3,AC=4,动点E (与点A 、C 不重合)在AC 边上, EF ∥AB 交BC 于F 点.试问在AB 上是 否存在点P ,使得EFP ∆为等腰直角三角 形?若不存在,请简要说明理由;若存在, 请求出EF 的长.【解析】① 如图过E (或F ),分别作AB 垂线,垂足为1P (或2P ),当 1EF FP =(或2EF FP =)时,(或2EFP ∆)为等腰直角三角形.过C 作CH AB ⊥于H ,交EF 于Q ,则EF QH =,设EF QH x ==,AB CH AC BC ⋅=⋅,得 2.4CH = ∵ABC ∆∽EFC ∆ ∴EF CQ AB CH =,即 2.45 2.4x x-= ∴6037x =,∴6037EF x == ② 作EF 的中垂线DP ,交AB 于P ,当2DP EF =时EFP ∆为等腰直角三角形. 设EF x =,则0.5DP x =. ∵ABC ∆∽EFC ∆ ∴EF CQ AB CH =,即 2.40.55 2.4x x -= 解得12049x =,即12049EF x ==.【变式6】如图,在△ABC 中,∠C=90°,AC =4,BC =3,四边形DEFG 为△ABC 的内接正方形,若设正方形的边长为x ,容易算出x 的长为6037. 探究与计算:(1)如图13—2,若三角形内有并排的两个全等的正方形,它们组成的矩形内接于△ABC ,则正方形的边长为 ;(2)如图13—3,若三角形内有并排的三个全等的正方形,它们组成的矩形内接于△ABC ,则正方形的边长为 .猜想与证明:如图13—4,若三角形内有并排的n 个全等的正方形,它们组成的矩形内接于△ABC ,请你猜想正方形的边长是多少?并对你的猜想进行证明.【解析】探究与计算:(1)6049;(2)6061.猜想与证明:若 三角形内有并排的n 个全等的正方形,它们组成的矩形内 接于△ABC ,正方形的边长是602512n+.证明如下:如图2,过点C 作CN ⊥AB ,垂足为N ,交GF 于点 M .设小正方形的边长为x .∵四边形GDEF 为矩形, ∴GF ∥AB . CM ⊥GF .容易算出125CD =.∴CM GFCN AB=. 即1251255xnx -=.∴x =602512n +.即小正方形的边长是602512n +.图13—1 A D 图13—2图13—3AD DE E 图13—4A D E 图2ADEN训练1. 如图,正方形ABCD 中,过点D 作DP 交AC 于点M 、交AB 于点N 、交CB 延长线于点P 使PB BC =,若1MN =,3PN =,则DM 的长为 . 【解析】 2.训练 2. 三个边长分别为2、3、5的正方形,则EKMG S = .【解析】 154.训练3. 如图,已知平行四边形ABCD 中,过点B 的直线顺次与AC 、AD 及CD 的延长线相交于点E 、F 、G ,若5BE =,2EF =,则FG 的长是 .【解析】10.5训练4. 如图,已知ABC △中,四边形DEGF 为正方形,D E ,在线段AC BC ,上,F G ,在AB上,如果1ADF CDE S S ==△△,3BEG S =△,求ABC △的面积.GFEDCBA【解析】 过点C 作CH AB ⊥于点H ,交DE 于I .设正方形边长为x ,则226AF CI BG x x x ===,,.由CDE CAB △∽△,得CI DECH AB=, ∴228xx x x x x=++,解得2x =,∴63AB CH ==,, ∴192ABC S AB CH =⋅=△.思维拓展训练(选讲)EFGDC AB知识模块一 位似 课后演练【演练1】 如图,在119⨯的正方形网格中,TAB △的顶点坐标分别为()11T ,,()23A ,, ()42B ,. 以点()11T ,为位似中心,按:3:1TA TA =′在位似中心的同侧将TAB △放大为TA B ''△′′,放大后点A B 、的对应点分别为A B 、′′.画出TA B ''△′′,并写出点A B 、′′的坐标. T BAOyx x yOABA'B'T【解析】 如图所示,点A B 、′′的坐标分别为()()47104,、,. 知识模块二 相似三角形的两种基本模型 课后演练【演练2】 已知:如图,直线DE 和BC 的延长线相交于P ,AD AE =.求证:BP BDCP CE=【解析】 如图,过C 作CM AB ∥交DP 于M ,∵CM AB ∥ ∴PBD PCM △∽△,∴BP BDCP CM=, ∵CM AB ∥,∴14∠=∠,又∵AD AE =,∴12∠=∠,∴24∠=∠, ∵23∠=∠,∴34∠=∠, ∴CM CE = ∴BP BDCP CE=.【演练3】 如图,已知DE AB ∥,2OA OC OE =⋅,求证:AD BC ∥.实战演练4321PME DCBA【解析】∵DE AB ∥,∴AOB EOD △∽△,OE ODOA OB=, 又∵2OA OC OE =⋅, ∴OE OAOA OC =, ∴OD OAOB OC=, ∵AOD COB ∠=∠, ∴AOD COB △∽△, ∴DAO BCO ∠=∠, ∴AD BC ∥【演练4】 如图1,图2,两个全等的等腰直角三角形中,各有一个内接正方形.如果图1中正方形的面积是81,求图2中正方形的面积.图1EFCBD A图2E'D'F'G'C'B'A'【解析】 正方形AEDF 的面积为81,所以正方形AEDF 的边长为9.又∵ABC △为等腰直角三角形 ∴45B C ==︒∠∠故BDE △和CDF △是等腰直角三角形 ∴9BE DE DF CF ====∴18AB AC ==∵90A B D G ''''==︒∠∠,45A G F B ''''==︒∠∠ 故A G F '''△和B D G '''△都是等腰直角三角形 设A G x ''=,则18B G x ''=-,F G ''=,)182D G x ''=-)182x =-,解得6x =∴F G ''=∴图2中正方形的面积为72.【演练5】 ABC △中,正方形EFGH 的两个顶点E 、F 在BC 上,另两个顶点G 、H 分别在AC 、AB 上,15BC =,BC 边上的高10AD =,求EFGH S 正方形.【解析】设正方形EFGH 的边长为x ,AD 、HG 的交点为M ,则有AM HG AD BC =,即101015x x -=解得,6x = 故2636EFGH S ==四边形训练1. 如图,矩形ABCD 中,BE AC ⊥于点F ,点E 恰是CD 的中点,下列式子成立的是( )A .12EF AF =B .1EF CF=C .12CF AC =D .12CF AF =【解析】D.训练2. 如图,已知平行四边形ABCD 中,过点B 的直线顺次与AC 、AD 及CD 的延长线相交于点E 、F 、G , 若5BE =,2EF =,则FG 的长是 . 【解析】10.5训练3. 如图,把PQR △沿着PQ 的方向平移到P Q R '''△的位置,它们重叠部分的面积是PQR△面积的一半,若2PQ =,则此三角形移动的距离PP '是( )A .12B .2C .1D .21-【解析】 D .课后测F E DC A EFGDC ABHGF E D CB A第十七种品格:成就雷妮与DOB美国DOB公司总裁雷妮女士从小生活经历比较坎坷,她幼年就失去了双亲,被一位亲戚抚养,但她的监护人却将她作为一个女佣来对待,她的童年浸满了辛酸。

相关文档
最新文档