人教版九年级数学上册小专题(七)旋转中的计算与证明
专题(九) 利用旋转证明或计算
解:(1)连接 AH,依题意,得正方形 ABCD 与正方形 AEFG 全等,∴AB=AG,∠B=∠G=90°,可证 Rt△ABH≌Rt △AGH,∴BH=GH (2)∵∠1=30°,△ABH≌△AGH, ∴∠2=∠3=30°,设 BH=x,AH=2x,在 Rt△ABH 中, BH2+AB2=AH2, 即 x2+62=(2x)2, ∴x=2 3, ∴BH=2 3
二、利用旋转进行证明
3.某校九年级学习小组在学习探究过程中,用两块完全相
同的且含60°角的直角三角板ABC与AFE按如图①所示位置 放置.现将 Rt△AEF 绕 A 点按逆时针方向旋转角 α(0°< α < 90°), 如图②, AE与BC交于点M,AC 与 EF 交于点 N,BC 与EF交于点P.
2.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线 段BC绕点B逆时针旋转60°得到线段BD.
(1)如图①,直接写出∠ABD的大小;(用含α的式子表示)
(2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形
状并加以证明;
(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.
α 解:(1)∠ABD=30°- (2)△ABE 是等边三角形.证明:连 2 接 AD,CD,∠DBC=60°,BD=BC,∴△BDC 是等边三角 形,∠BDC=60°,BD=DC,又∵AB=AC,AD=AD,∴△ ABD≌△ ACD,∴∠ ADB=∠ADC,∴∠ ADB=150° ,∵∠ ABE=∠DBC=60°, ∴∠ABD=∠EBC, 又∵BD=BC, ∠ADB =∠ECB=150°,∴△ABD≌△EBC,∴AB=EB,∴△ABE 是等边三角形 (3)∵BDC 是等边三角形,∴∠BCD=60°,∴ ∠DCE=∠BCE-∠BCD=90°,又∵∠DEC=45°,∴CE= α CD=BC,∴∠EBC=15°.∵∠EBC=∠ABD=30°-2,∴α ,BA =BC,D ,E 是 AC 边上的两 1 1 点,且满足∠DBE = ∠ ABC(0°<∠CBE< ∠ABC).以点 B 2 2 为 旋 转 中 心 , 将 △BEC 按 逆 时 针 方 向 旋 转 ∠ABC 得 到 △BE ′A( 点 C 与点 A 重合 , 点 E 到点 E′处 ), 连接 DE ′.求证: DE′= DE. (2)如图②, 在△ABC 中, BA =BC,∠ ABC=90°, D,E 是 1 AC 边 上 的 两 点 , 且 满 足 ∠DBE = ∠ABC(0 ° < ∠CBE < 2 45° ).求证: DE2= AD2+EC2.
上册专题旋转人教版九年级数学全一册完美课件
图 Z3-3
上册 专题3 旋转-2020秋人教版九年级数学全一册 课件(共 19张PP T)
【解析】 如答图,连接 MP, ∵△ABC 为等边三角形, ∴AB=AC,∠BAC=60°, ∵△PAC 绕点 A 逆时针旋转后得到△MAB, ∴AM=AP,∠MAP=∠BAC=60°,BM=CP=10, ∴△AMP 为等边三角形, ∴MP=AP=6,∠APM=60°, 在△PBM 中,PM=6,BM=10,PB=8, ∵62+82=102,∴PM2+PB2=BM2, ∴∠BPM=90°, ∴∠APB=∠APM+∠BPM=60°+90°=150°.
3.如图 Z3-3,P 是正三角形 ABC 内的一点,且 PA=6,PB=8,PC=10.若将△PAC 绕点 A 逆时针旋转后得到△MAB,则点 P 与点 M 之间的距离为___6___,∠APB= __1_5_0___°.
上册 专题3 旋转-2020秋人教版九年级数学全一册 课件(共 19张PP T)
变式跟进 3 答图
上册 专题3 旋转-2020秋人教版九年级数学全一册 课件(共 19张PP T)
上册 专题3 旋转-2020秋人教版九年级数学全一册 课件(共 19张PP T)
题型三 坐标系中的旋转作图 典例 在平面直角坐标系中,△ABC 的位置如图 Z3-4 所示 (每个小方格都是边长为 1 个单位长度的正方形). (1)将△ABC 沿 x 轴方向向左平移 6 个单位,画出平移后得到 的△A1B1C1; (2)将△ABC 绕着点 A 顺时针旋转 90°,画出旋转后得到的 △AB2C2,并直接写出点 B2,C2 的坐标.
变式跟进 1.[2019·菏泽]下列图形中,既是轴对称图形,又是中心对称图形的是 ( C)
A
B
人教版九年级数学上册 旋转专题综合练习经典题目 (无答案)
旋转专题一类型一:旋60°造等边1.如图, P是等边△ABC内部一点.若PC = 3, PA = 4, PB = 5,求△ABC的边长.2.如图, P是等边△ABC外一点,若PA = 3, PB = 4, PC = 5,求∠APB的度数.3.如图,四边形ABCD中,AB = BD=AD,∠BCD= 30°.求证:DC2 +BC2=AC2.类型二:旋90°,造垂直4.如图,四边形ABCD被对角线BD分为等腰直角三角形ABD和直角三角形CBD,其中∠A和∠C都是直角,另一条对角线AC的长度为2,求四边形ABCD的面积.5.如图5,△PAB 中,∠APB= 45°,PA = 2,PB= 4,以AB为一边作正方形 ABCD.求PD的长.6.如图,△ABC中,AC=BC= 90°,D为AB的中点,若E是直线AC上任意一点,DF丄DE,交直线BC于F点。
G为EF的中点,延长CG交AB于点H.(1)证明:DE=DF;(2)证明:CG=GH.7.如图, E是正方形ABCD的边CD上任意一点,F是边AD上的点,且FB平分∠ABE. 证明:BE = AF+CE.8.如图,已知△ABC中,∠ACB= 135° ,将△ABC绕点A顺时针旋转90°,得到△AED,连接 CD, CE.(1)求证:△ACD为等腰直角三角形;(2)若BC=1, AC=2,求四边形ACED的面积.类型三:旋180°,造中心对称9.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8 时,则阴影部分的面积为多少?10.如图,在△ABC中,AB = 2AC, AD为BC边上的中线,AD⊥AC,求∠BAC的度数.类型四:大角夹半角11.如图, △ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC= 120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN.(1)求证:MN = BM+ NC;(2)△AMN的周长为多少?12.已知:正方形ABCD中,∠MAN = 45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC (或它们的延长线)于点M,N.如图 (1),当∠MAN绕点A旋转到BM = DN 时,易证BM+ DN = MN.(1)如图 (2),当∠MAN绕点A旋转到BM≠DN时,线段BM, DN和MN之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN绕点A旋转到如图(3)的位置时,线段BM,DN和MN之间又有怎样的数量关系?请直接写出你的猜想.旋转专题二类型三:旋180°,造中心对称1.已知矩形ABCD的一条边AD = 8,将矩形ABCD折叠,使得顶点B落在CD边上的 P点处.(1)如图 (1),已知折痕与边BC交于点O,连接AP,OP, OA.若△OCP与△PDA的面积比为 1 : 4,求边CD的长;(2)如图 (2),在(1)的条件下,擦去折痕AO,线段OP,连接BP.动点M在线段AP上(点M与点P, A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB 于点F,作ME丄BP于点E.试问当动点M,N在移动过程中,线段EF的长度是否发生变化?若变化,说明变化规律;若不变,求出线段EF的长度.类型四:大角夹半角2.数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且 60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB, AD于点E, F (不包括线段的端点).(1 )初步尝试:如图2 (1),若 AD = AB,求证:①△BCE ≌△ACF,②AE + AF = AC;(2)类比发现:如图 (2),若AD = 2AB,过点C作CH丄AD于点H.求证:AE = 2FH;(3)深入探究:如图 (3),若AD = 3AB,探究得:AC AF3AE 的值为常数t,则t= .类型五:旋转任意角3.如图,△ABC 与△ADE 中,∠BAC=∠DAE=ɑ°,AD = AE, AB = AC,连接CE.请你在图中确定一个以已知点为顶点的多边形,使它的面积等于S△ABC-S△ADE的差,并说明理由.4.如图,点E是菱形ABCD对角线CA延长线上的任意一点,以线段AE为边作一个菱形AEFG,使菱形AEFG∽菱形ABCD,且面积之比为2 : 5,EC = 8,610AF,连接DG,求DG的长.55.如图 (1),△ABC是等腰直角三角形,四边形ADEF是正方形,D, F分别在AB, AC 边上,此时BD=CF, BD丄CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(θ)090时,如图 (2) , BD= CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图 (3),延长BD交CF于点G.①求证:BD丄CF;②当,42AB AD时,求线段BG的长.6.如图,已知△ABC是等腰直角三角形,∠BAC = 90°,点D是BC的中点,作正方形DEFG, 连接AE.若BC=DE = 2,将正方形DEFG绕点D逆时针方向旋转,在旋转过程中,当AE为最大值时,求AF的值.1 7.拓展.(1)如图 (1),在四边形 ABCD 中,AB = AD,∠B = ∠D = 90°,E, F 分别是边BC, CD 上的点,且12EAF BAD .求证:EF = BE + FD. (2)如图 (2),在四边形 ABCD 中,AB = AD,∠B +∠D=180°,E,F 分别是边 BC,CD 上的点且12EAF BAD . (1)中的结论是否仍然成立?不用证明. (3)如图(3),在四边形 中,AB = AD, ∠B + ∠ADC= 180°,E 、F 分别是边 BC,CD 上的点,且12EAF BAD .(1)中的结论是否仍然成立?若成立,请证明; 若不成立,请写出它们之间的数量关系,并证明.。
备战2021年九年级中考数学考点专题训练——专题七:图形的旋转
备战2021中考数学考点专题训练——专题七:图形的旋转1.如图,在平面直角坐标系中,点B的坐标是(1,0),若点A的坐标为(a,b),将线段BA绕点B顺时针旋转90°得到线段BA′,则点A′的坐标是.2.△ABC和△DCE是等边三角形,则在此图中,△ACE绕着点逆时针方向旋转度可得到△.3.如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE的度数为度.4.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是.5.如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4),将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是.6.如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连结BD,如果∠DAC=∠DBA,那么∠BAC度数是度.7.如图,在△ABC中,∠BAC=70°,在同一平面内将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=.8.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为.9.如图,△ADB是由△AEC绕点A沿顺时针方向旋转42度得到,则∠BAC=度.10.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为.11.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转60°后,得到△P′AB,则点P与P′之间的距离为,∠APB=.12.如图,Rt△ABC中,∠C=90°,AB=5,AC=3,现将△ABC绕着顶点B旋转,记点C的对应点为点C1,当点A,B,C1三点共线时,求∠BC1C的正切值=.13.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(4,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是.14.如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转一定角度后得△EDC,点D在AB边上,斜边DE交AC于点F,则图中阴影部分面积为.15.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,以点B为旋转中心,将线段BO逆时针旋转60°得到线段BO′,连接AO′.则下列结论:①△BO′A可以由△BOC绕点B逆时针方向旋转60°得到;②连接OO′,则OO′=4;③∠AOB=150°;④S四边形AOBO′=6+4.其中正确的结论是.16.如图,在△ABC中,∠ACB=90°,AC=BC=10,在△DCE中,∠DCE=90°,DC=EC=6,点D在线段AC上,点E在线段BC的延长线上.将△DCE绕点C旋转60°得到△D′CE′(点D的对应点为点D′,点E的对应点为点E′),连接AD′、BE′,过点C作CN⊥BE′,垂足为N,直线CN交线段AD′于点M,则MN的长为.17.如图,正方形ABCD的边长为1,P为AB上的点,Q为AD上的点,且△APQ的周长为2,则∠PCQ=度.18.如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△ABE绕着点A旋转后能与△ADF重合,若AF=5cm,则四边形ABCD的面积为.19.在平面直角坐标系中,点A(﹣3,4),将线段OA绕原点O顺时针旋转90°,得到线段OA′,则点A′的坐标为.20.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.21.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD=.22.如图,△ABC是等边三角形,点D是BC上一点,∠BAD=15°,△ABD经旋转后至△ACE的位置,则至少应旋转度.23.如图可以看作是由基本图形经得到的.24.如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕着点B顺时针旋转后得到矩形A'BC'D',点A 的对应点A'在对角线AC上,点C、D分别与点C'、D'对应,A′D'与边BC交于点E,那么BE的长是.25.将点A(2,0)绕着原点按逆时针方向旋转135°得到点B,则点B的坐标为.26.若一个正六边形旋转一定的角度后,与原图形完全重合,则旋转的度数至少是°.27.在△ABC中,AB=AC,∠A=80°,将△ABC绕着点B旋转,使点A落在直线BC上,点C落在点C′,则∠BCC′=.28.如图,在△ABC中,AB=4,AC=3,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为.29.已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.则阴影部分的面积是.30.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,则∠CEF=度.31.如图,把△ABC绕着点A顺时针方向旋转角度α(0°<α<90°),得到△AB'C',若B',C,C'三点在同一条直线上,∠B'CB=46°,则α的度数是.32.如图,将△ABC绕点A逆时针旋转一定的角度后,得到△ADE,且点B的对应点D恰好落在BC边上,若∠B=70°,则∠CAE的度数是度.33.在等腰Rt△ABC中,已知∠ABC=90°,P是△ABC内一点,使PA=11,PB=6,PC=7,则边AC的长为.34.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点C顺时针旋转至△A1B1C的位置,其中B1C⊥AB,B1C、A1B1交AB于M、N两点,则线段MN的长为.备战2021中考数学考点专题训练——专题七:图形的旋转参考答案1.如图,在平面直角坐标系中,点B的坐标是(1,0),若点A的坐标为(a,b),将线段BA绕点B顺时针旋转90°得到线段BA′,则点A′的坐标是.【答案】解:过点A作AC⊥x轴,过点A′作A′D⊥x轴,垂足分别为C、D,显然Rt△ABC≌Rt△A′BD,∵点A的坐标为(a,b),点B的坐标是(1,0),∴OD=OB+BD=OB+AC=1+b,A′D=BC=OC﹣OB=a﹣1,∵点A′在第四象限,∴点A′的坐标是(b+1,﹣a+1).故答案为:(b+1,﹣a+1).2.△ABC和△DCE是等边三角形,则在此图中,△ACE绕着点逆时针方向旋转度可得到△.【答案】解:△ABC和△DCE是等边三角形,故∠DCE=∠ACB=60°,则∠ACD=60度.故要由△ACE通过旋转得到△BCD,只需要将△ACE绕着C点逆时针方向旋转60度即可得到.故填:C,60,BCD.3.如图,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE的度数为度.【答案】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠BAD=40°,△ABC≌△ADE,∴∠DAE=∠BAC∵∠BAC=60°∴∠BAE=40°+60°=100°.故填空答案:100.4.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是.【答案】解:当正方形放在③的位置,即是中心对称图形.故答案为:③.5.如图,在平面直角坐标系中,矩形OABC的顶点B坐标为(8,4),将矩形OABC绕点O逆时针旋转,使点B落在y轴上的点B′处,得到矩形OA′B′C′,OA′与BC相交于点D,则经过点D的反比例函数解析式是.【答案】解:∵B(8,4),∴OA=8,AB=OC=4,∴A′O=OA=8,A′B′=AB=4,tan∠COD==,即=,解得CD=2,∴点D的坐标为(2,4),设经过点D的反比例函数解析式为y=(k≠0),则=4,解得k=8,所以,经过点D的反比例函数解析式为y=.故答案为:y=.6.如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连结BD,如果∠DAC=∠DBA,那么∠BAC度数是度.【答案】解:设∠BAC=x,由旋转的性质,可得∠DAE=∠BAC=x,∴∠DAC=∠DBA=2x,又∵AB=AD,∴∠ADB=∠ABD=2x,又∵△ABD中,∠BAD+∠ABD+∠ADB=180°,∴x+2x+2x=180°,∴x=36°,即∠BAC=36°,故答案为:367.如图,在△ABC中,∠BAC=70°,在同一平面内将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=.【答案】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=70°,∴∠ACC′=∠AC′C=∠BAC=70°,∴∠CAC′=180°﹣2×70°=40°;由题意知:∠BAB′=∠CAC′=40°,故答案为40°.8.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB′的长为.【答案】解:∵在Rt△ABC中,∠B=30°,AC=1,∴AB=2AC=2,根据中心对称的性质得到BB′=2AB=4.故答案为:4.9.如图,△ADB是由△AEC绕点A沿顺时针方向旋转42度得到,则∠BAC=度.【答案】解:∵△ADB是由△AEC绕点A沿顺时针方向旋转42°得到;∴AB的对应边为AC,∴旋转角∠BAC=42°.故答案为:42.10.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至ED,连接AE、DE,△ADE的面积为3,则BC的长为.【答案】解:如图,作DG⊥BC于G,作EF⊥AD于F.得矩形ABGD,则BG=AD=2.∵△ADE的面积为3.∴EF=3.根据旋转的性质,可知DE=DC,DE⊥DC,∠CDG=∠EDF.∴△CDG≌△EDF.∴EF=GC=3,∴BC=BG+GC=2+3=5.11.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转60°后,得到△P′AB,则点P与P′之间的距离为,∠APB=.【答案】解:连接PP′,如图,∵△PAC绕点A逆时针旋转60°后,得到△P′AB,∴∠PAP′=60°,PA=P′A=6,P′B=PC=10,∴△PAP′为等边三角形,∴PP′=PA=6,∠P′PA=60°,在△BPP′中,P′B=10,PB=8,PP′=6,∵62+82=102,∴PP′2+PB2=P′B2,∴△BPP′为直角三角形,且∠BPP′=90°,∴∠APB=∠P′PB+∠BPP′=60°+90°=150°.故答案为6,150°.12.如图,Rt△ABC中,∠C=90°,AB=5,AC=3,现将△ABC绕着顶点B旋转,记点C的对应点为点C1,当点A,B,C1三点共线时,求∠BC1C的正切值=.【答案】解:如图作CE⊥AB,垂足为E,情形①当点C1在线段AB上时,∵∠C=90°,AB=5,AC=3,∴BC===4,∵AB•CE=AC•BC,∴CE=,∴EB===,∵BC=BC1,∴EC1=BC1﹣EB=4﹣=,∴tan∠BC1C==3.情形②当C1′在AB的延长线上时,tan∠BC1′C===.故答案为3或.13.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(4,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是.【答案】解:分逆时针旋转和顺时针旋转两种情况(如图所示):①顺时针旋转时,点B′与点O重合,∵点D(4,3),四边形OABC为正方形,∴OA=BC=4,BD=1,∴点D′的坐标为(﹣1,0);②逆时针旋转时,点B′落在y轴正半轴上,∵OC=BC=4,BD=1,∴点B′的坐标为(0,8),点D′的坐标为(1,8).故答案为:(﹣1,0)或(1,8).14.如图,Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转一定角度后得△EDC,点D在AB边上,斜边DE交AC于点F,则图中阴影部分面积为.【答案】解:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AB=2BC=4,AC=2,∵△EDC是△ABC旋转而成,∴BC=CD=BD=AB=2,∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCF=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=AB=2,∴DF是△ABC的中位线,∴DF=BC=×2=1,CF=AC=×2=,∴S阴影=DF×CF=×=.15.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,以点B为旋转中心,将线段BO逆时针旋转60°得到线段BO′,连接AO′.则下列结论:①△BO′A可以由△BOC绕点B逆时针方向旋转60°得到;②连接OO′,则OO′=4;③∠AOB=150°;④S四边形AOBO′=6+4.其中正确的结论是.【答案】解:如图,连接OO′;∵△ABC为等边三角形,∴∠ABC=60°,AB=CB;由题意得:∠OBO′=60°,OB=O′B,∴△OBO′为等边三角形,∠ABO′=∠CBO,∴OO′=OB=4;∠BOO′=60°,∴选项②正确;在△ABO′与△CBO中,,∴△ABO′≌△CBO(SAS),∴AO′=OC=5,△BO′A可以由△BOC绕点B逆时针方向旋转60°得到,∴选项①正确;在△AOO′中,∵32+42=52,∴△AOO′为直角三角形,∴∠AOO′=90°,∠AOB=90°+60°=150°,∴选项③正确;∵+=,∴选项④正确.综上所述,正确选项为①②③④.故答案为:①②③④.16.如图,在△ABC中,∠ACB=90°,AC=BC=10,在△DCE中,∠DCE=90°,DC=EC=6,点D在线段AC上,点E在线段BC的延长线上.将△DCE绕点C旋转60°得到△D′CE′(点D的对应点为点D′,点E的对应点为点E′),连接AD′、BE′,过点C作CN⊥BE′,垂足为N,直线CN交线段AD′于点M,则MN的长为.【答案】解:①若将△DCE绕点C顺时针旋转60°得到△D′CE′,如图中左边所示,过点B作E′C的垂线交其延长线于F点,过点D′作CM的垂线交CM于H点,过A点作CM的垂线交其延长线于G点.∵∠ACD′=60°,∠ACB=∠D′CE′=90°,∴∠BCE′=360°﹣∠ACD′﹣∠ACB﹣∠D′CE′=120°.∴∠BCF=180°﹣∠BCE′=60°,BF=sin∠BCF•BC=×10=,∴S=BF•CE′=.△BCE′∵∠ACG+∠BCN=90°,∠BCN+∠CBN=90°,∴∠ACG=∠CBN,又∵AC=BC,∴Rt△ACG≌Rt△CBN,∴AG=CN,CG=BN.同理△CD′H≌△E′CN,D′H=CN,CH=NE′.∴AG=D′H,在△AMG和△D′MH中,∴△AMG≌△D′MH,∴HM=MG,∴M为GH中点,CM=(CG+CH)=(NB+NE′)=BE′.又∵BF=,∠BCF=60°,∴CF=5,FE′=CF+CE′=11,∴BE′===14,∴CM=BE′=7.CN•BE′,又∵S△BCE′=∴CN=2S÷BE′=,△BCE′∴MN=CM+CN=7.②同理,当△CDE逆时针旋转60°时,MN如图中右边所示,MN=7﹣.故答案为:7+或7﹣.17.如图,正方形ABCD的边长为1,P为AB上的点,Q为AD上的点,且△APQ的周长为2,则∠PCQ=度.【答案】解:把Rt△CBP绕C顺时针旋转90°,得到Rt△CDE,如图,则E在AD的延长线上,并且CE=CP,DE=PB,∠ECP=90°,∵△APQ的周长为2,∴QP=2﹣AQ﹣AP,而正方形ABCD的边长为1,∴DE=PB=1﹣AP,DQ=1﹣AQ,∴QE=DE+DQ=2﹣AQ﹣AP,∴QE=QP,而CQ公共,∴△CQE≌△CQP,∴∠PCQ=∠QCE,∴∠PCQ=45°.故答案为:45.18.如图,四边形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△ABE绕着点A旋转后能与△ADF重合,若AF=5cm,则四边形ABCD的面积为.【答案】解:∵AE⊥BC,∴∠AEB=∠AEC=90°,∵AB=AD,△BEA旋转后能与△DFA重合,∴△ADF≌△ABE,∴∠AEB=∠F,AE=AF,∵∠C=90°,∴∠AEC=∠C=∠F=90°,∴四边形AECF是矩形,又∵AE=AF,∴矩形AECF是正方形,∵AF=5cm,∴四边形ABCD的面积=四边形AECF的面积=52=25cm2.故答案为:25cm2.19.在平面直角坐标系中,点A(﹣3,4),将线段OA绕原点O顺时针旋转90°,得到线段OA′,则点A′的坐标为.【答案】解:如图:画出点A,把它绕点O顺时针旋转90°可得A′的坐标为(4,3).20.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为cm.【答案】解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB==13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为:42.21.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD=.【答案】解:设CD=x,∵B′C′∥AB,∴∠BAD=∠B′,由旋转的性质得:∠B=∠B′,AC=AC′=3,∴∠BAD=∠B,∴AD=BD=4﹣x,∴(4﹣x)2=x2+32,解得:x=.故答案为:.22.如图,△ABC是等边三角形,点D是BC上一点,∠BAD=15°,△ABD经旋转后至△ACE的位置,则至少应旋转度.【答案】解:依题意可知,旋转中心为点A,B、C为对应点,∴旋转角为∠BAC=60°.故本题答案为:60°.23.如图可以看作是由基本图形经得到的.【答案】解:根据旋转的意义,正方形AGOF围绕O点顺时针旋转90°可得到正方形OFDE,再旋转90°,可得到正方形OECH,因此可以看作是由基本图形正方形AGOF经绕点O旋转得到的.24.如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕着点B顺时针旋转后得到矩形A'BC'D',点A 的对应点A'在对角线AC上,点C、D分别与点C'、D'对应,A′D'与边BC交于点E,那么BE的长是.【答案】解:如图,过点B作BF⊥AC,过点E作EH⊥AC,∵AB=3,AD=4,∠ABC=90°,∴AC===5,=AB×BC=AC×BF,∵S△ABC∴3×4=5BF,∴BF=∴AF===,∵将矩形ABCD绕着点B顺时针旋转后得到矩形A'BC'D',∴AB=BA',∠BAD=∠BA'D'=90°,且BF⊥AC,∴∠BAC=∠BA'A,AF=A'F=,∠BA'A+∠EA'C=90°,∴A'C=AC﹣AA'=,∵∠BA'A+∠EA'C=90°,∠BAA'+∠ACB=90°,∴∠ACB=∠EA'C,∴A'E=EC,且EH⊥AC,∴A'H=HC=A'C=,∵∠ACB=∠ECH,∠ABC=∠EHC=90°,∴△EHC∽△ABC,∴∴∴EC=,∴BE=BC﹣EC=4﹣=,故答案为:.25.将点A(2,0)绕着原点按逆时针方向旋转135°得到点B,则点B的坐标为.【答案】解:过B作BH⊥x轴于H,如图,∵点A的坐标为(2,0),∴OA=2,∵点A绕着原点按逆时针方向旋转135°得到点B,∴OB=OA=2,∠AOB=135°,∴∠BOH=45°,∴△OBH为等腰直角三角形,∴BH=OH=×2=2,∴B(﹣2,2).故答案为(﹣2,2).26.若一个正六边形旋转一定的角度后,与原图形完全重合,则旋转的度数至少是°.【答案】解:正六边形旋转最小的度数为360°÷6=60°.故答案为:60.27.在△ABC中,AB=AC,∠A=80°,将△ABC绕着点B旋转,使点A落在直线BC上,点C落在点C′,则∠BCC′=.【答案】解:如图:△ABC中,AB=AC,∠A=80°,则∠ABC=∠ACB=50°;由旋转的性质知:∠A′BC′=∠A′BC=50°;①当点A′在CB的延长线上时;由旋转的性质知:BC′=BC,故∠BCC′=∠A′BC′=25°;②当点A′在线段BC上时;由旋转的性质知:BC′=BC,故∠BCC′=(180°﹣∠A′BC′)=65°;综上可得:∠BCC′=65°或25°.故答案为:65°或25°.28.如图,在△ABC中,AB=4,AC=3,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为.【答案】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===5,故答案为:5.29.已知每个网格中小正方形的边长都是1,如图中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.则阴影部分的面积是.【答案】解:连接AB,阴影部分面积=S扇形AOB ﹣S△ABO=﹣×2×2=π﹣2.故答案为:π﹣2.30.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,则∠CEF=度.【答案】解:∵△DCF是△BCE旋转以后得到的图形,∴CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°.故填:45.31.如图,把△ABC绕着点A顺时针方向旋转角度α(0°<α<90°),得到△AB'C',若B',C,C'三点在同一条直线上,∠B'CB=46°,则α的度数是.【答案】解:由题意可得:AC=AC′,∠C'=∠ACB,∴∠ACC'=∠C',∵把△ABC绕着点A顺时针方向旋转α,得到△AB′C′,点C刚好落在边B′C′上,∴∠B'CB+∠ACB=∠C'+∠CAC′,∠B'CB=∠CAC'=46°.故答案为:46°.32.如图,将△ABC绕点A逆时针旋转一定的角度后,得到△ADE,且点B的对应点D恰好落在BC边上,若∠B=70°,则∠CAE的度数是度.【答案】解:∵将△ABC绕点A逆时针旋转一定的角度后,得到△ADE,∴AB=AD,∠BAD=∠CAE,∴∠B=∠ADB=70°,∴∠BAD=40°=∠CAE,故答案为:40.33.在等腰Rt△ABC中,已知∠ABC=90°,P是△ABC内一点,使PA=11,PB=6,PC=7,则边AC的长为.【答案】解:如图,将△CPB绕点B逆时针旋转90°得△AEB,连接PE,∴△CPB≌△AEB,∴AE=CP=7,BE=BP=6,∠EBP=90°,∴∠BEP=∠BPE=45°,在Rt△PBE中,由勾股定理可得,PE=6,在△PEA中,PE2=(6)2=72,AE2=72=49,PA2=112=121,∴AE2+PE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠BEA=135°,过点A作AQ⊥BE,角BE的延长线于Q.则∠QEA=∠QAE=45°,∴QA=QE==,QB=BE+QE=6+,∴AB2=AQ2+BQ2=()2+(6)2=85+42,∴AB=,∴AC=,故答案为.34.如图,在△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC绕点C顺时针旋转至△A1B1C的位置,其中B1C⊥AB,B1C、A1B1交AB于M、N两点,则线段MN的长为.【答案】解:Rt△ABC中,AC=4,BC=3,由勾股定理得:AB=5,由于△ABC的面积:S=AC•BC=AB•CM,得:CM==,由旋转的性质知:BC=B1C=3,则B1M=,∵B1C⊥AB,B1C⊥A1C,∴△B1CA1∽△B1MN,∴=,即:=即:MN=×=0.8.故答案为:0.8.。
人教版九年级上册(新)第23章《旋转》教材分析 (文字稿)
第二十三章 《旋转》教材分析一、本章知识的地位与作用“图形与变换”是义务教育阶段数学课程中“空间与图形”领域的一个重要内容,在教材中占有重要的地位.和平移、轴对称一样,旋转也是现实生活中广泛存在的现象,是现实世界运动变化的最简洁形式之一.旋转是工具性的知识. 学习旋转的基本性质, 欣赏并体验旋转在现实生活中的广泛应用, 不仅是初中学习的重要目标之一, 也是密切数学与现实之间联系的重要桥梁之一.旋转变换在平面几何中有着广泛的应用, 特别是在解(证)有关等腰三角形(主要是等腰直角三角形、等边三角形)以及正方形等问题时, 更是经常用到的思维方法. 此前, 学生已学习了平移、轴对称两种图形变换, 对图形变换已具有一定的认识, 通过本章的学习, 学生对图形变换的认识会更完整, 同时, 也能对平移、轴对称有更深的认识. 进一步建立的几何变换的意识可帮助我们用运动的观点认识图形,从而使解决问题的思路更加简明、清晰.二、主要内容三、课程学习目标(一)课标要求1. 通过具体实例认识平面图形关于旋转中心的旋转, 探索旋转的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等,两组对应点与旋转中心连线所成的角相等.2. 能够按要求画出简单平面图形旋转后的图形, 欣赏旋转在现实生活中的应用.3. 通过具体实例认识中心对称、中心对称图形的概念,探索它们的基本性质:成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分. 了解线段、平行四边形是中心对称图形.,认识并欣赏自然界和现实生活中的中心对称图形.4. 探索图形之间的变化关系(轴对称、平移、旋转及其组合),会运用轴对称、平移、旋转的组合进行图案设计.旋转及其性质 中心对称 关于原点对称的点的坐标图案设计中心对称图形旋转的基本知识特殊的旋转 --中心对称 平移、旋转、轴对称的综合运用平移及其性质 轴对称及其性(二)实际教学要求1.基本要求:①了解图形的旋转,理解对应点到旋转中心的距离相等、对应点与旋转中心的连线所成角彼此相等(等于旋转角)的性质;——什么是旋转?旋转的三要素是什么?旋转前、后图形之间对应元素具有哪些性质?②通过具体实例认识旋转, 能依据旋转前后的图形,指出旋转中心和旋转角及旋转前后的对应点;——怎样确定旋转中心与旋转角?③能够按要求作出简单平面图形旋转后的图形,利用旋转进行简单的图案设计;④通过具体实例认识中心对称,掌握作与已知图形中心对称的图形的方法,并能指出图形的对称中心;⑤了解中心对称图形的概念,能识别中心对称图形.了解线段、平行四边形是中心对称图形,了解中心对称与中心对称图形的区别.——旋转与中心对称之间具有怎样的联系?中心对称与中心对称图形之间具有怎样的关系?⑥了解关于原点对称的点的坐标之间的关系.2.略高要求:①探索它们的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质,旋转前、后的图形全等;②探索中心对称的基本性质,理解对应点所连线段被对称中心平分的性质;③能运用旋转的知识解决简单的计算问题.3.较高要求:①能运用旋转的知识进行图案设计;②能综合运用平移、对称、旋转等变换解决相对复杂的问题.(三)2015中考说明中对旋转的要求基本要求:认识平面图形关于旋转中心的旋转;理解旋转的基本性质;了解中心对称、中心对称图形的概念;理解中心对称的基本性质.略高要求:能画出平面图形关于给定旋转中心的旋转图形;探索线段、平行四边形、正多边形、圆的中心对称性质;能利用旋转的性质解决有关简单问题.较高要求:运用旋转的有关内容解决有关问题.四、课时安排本章教学时间约需9课时, 具体分配如下(仅供参考):23.1图形的旋转2课时23.2中心对称2课时23.3课题学习图案设计1课时(补充)旋转的应用(计算与证明) 2- 3课时数学活动、小结1课时五、教学重点难点重点:1. 图形旋转的基本性质.2. 中心对称的基本性质.3. 两个点关于原点对称时, 它们坐标之间的关系.难点:1. 图形旋转的基本性质的归纳与运用.2. 中心对称的基本性质的归纳与运用.六、教学建议:1、注重与学生已学的图形变换的经验联系,类比学习.在本章学习前,学生已经学习了平移、轴对称,对图形变换已经有所认识,一般地,学习一种图形变换大致包括以下内容⑴通过具体实例认识图形变换; ⑵探索图形变换的性质;⑶作出一个图形变换后的图形⑷利用图形的变换进行图案设计;⑸用坐标表示图形变换.本章“旋转”的学习也是从以上几个方面展开的. 关于⑸,本章正文中只涉及一些特殊旋转用坐标表示的问题,如以原点为对称中心的中心对称的坐标表示,在数学活动和习题中则涉及用坐标表示以原点为旋转中心,旋转角为直角的旋转.2、注意揭示旋转概念的实际背景与广泛应用旋转与现实生活联系紧密, 为此, 在教学中应列举大量实例来使学生认识和感受它们, 增强学生对旋转的理解. 利用图形变换进行图案设计、解决实际问题既可以进一步促进学生对知识的理解,又加强了图形变换与现实生活的联系.3、注意培养动手操作的意识教材在探索旋转的性质、中心对称的性质以及如何设计图案最美观等问题时, 安排了转动硬纸板、转动三角板、转动模板等应用动手操作来探索结论的内容. 动手操作是解决问题的一种方法, 应给学生操作的时间和体验,加强学生主动进行动手操作的意识.4、注意安排对重要结论的探究教材在发现旋转的性质、中心对称的性质、关于原点对称的点的坐标特征、图形之间的变换关系、如何设计图案最美观、从坐标的角度揭示中心对称与轴对称的关系等问题中,教科书注意安排画图、分析、归纳等探究活动.教学中,应充分利用这些资源,进行开放式探究,重视培养学生观察、发现、比较、归纳、说理等综合能力,从而逐步提高学生的探究能力.5、注意概念之间的区别与联系⑴平移、旋转、轴对称学习旋转变换与学习平移、轴对称的过程基本一致, 主要都是研究变换过程中的不变量, 是研究几何问题、发现几何结论的有效工具. 平移、轴对称、旋转都是全等变换, 只改变图形的位置, 不改变图形的形状和大小. 由于变换方式的不同, 故变换前后具有各自的性质.⑵旋转与中心对称中心对称是一种特殊的旋转(旋转180°), 满足旋转的性质, 由旋转的性质可以得到中心对称性质⑶中心对称与轴对称教材中P74的数学活动1还从坐标的角度揭示了中心对称与轴对称的关系. 作点A关于x轴的对称点B,作点B关于y轴的对称点C,则点A与点C关于原点对称. 由此可知,将一点作上述两次轴对称变换相当于作出这个点关于原点的对称点.⑷两个图形成中心对称与中心对称图形6、注意用计算机辅助教学利用几何画板的旋转功能, 可以方便地作出一个图形绕某一点旋转某个角度后的图形.利用几何画板的度量功能, 可以发现旋转变换中的不变量; 关于原点对称的点的坐标特征. 进行图案设计时, 利用计算机, 可以让学生直观地看到改变旋转中心、旋转角会出现不同的效果. 同时利用计算机, 可以直观地看到图形运动变换的过程,对图形性质的探究和发现会很有帮助.7、培养学生良好的作图习惯,加强学生对图形的认识和理解.几何作图是本章教学过程中不可缺少的重要组成部分. 通过作图可以加深学生对旋转的认识和理解. 旋转的过程中, 实际上其运动轨迹均为圆, 利用圆规构造旋转变换的图形是学生应该掌握并熟练应用的. 在教学中,教师应当指导学生利用尺规和其它工具规范作图, 培养学生良好的作图习惯.本章主要作图有:OA'①按要求作旋转后的图形;②已知旋转前后的图形,确定旋转中心、旋转角;③作一个图形关于一点成中心对称的图形;④已知成中心对称的两个图形(或已知某一图形是中心对称图形), 确定对称中心;⑤在平面直角坐标系中, 作一个图形关于原点对称的图形.上述五种作图是本章的基本技能. 在教学中一定要让学生动手完成.8、从三个层面理解借助旋转移动图形:①从旋转的角度认识静态图形,发现图形关系,实际不需要移图;②图形按指令语言(题干)要求移动,解决在图形移动过程中形成的问题;③根据题目需要和图形特征有目的的旋转图形的某一部分,形成新的图形关系,从而将分散的条件集中,使知识与知识之间形成紧密的联系,产生新的信息,有利于解决问题。
人教版数学九年级上学期课时练习-《旋转》全章复习与巩固(知识讲解)(人教版)
专题23.7《旋转》全章复习与巩固(知识讲解)【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质;2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形;3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.特别说明:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA=OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;''').(3)旋转前、后的图形全等(△ABC≌△A B C特别说明:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.特别说明:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.特别说明:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转平移、轴对称、旋转之间的对比【典型例题】类型一、旋转三要素1.如图,E是正方形ABCD的边AB上任意一点(不与点A,B重合),DAE△按逆时针方向旋转后恰好能够与DCF重合.(1)旋转中心是________,旋转角为________;(2)请你判断DFE△的形状,并说明理由.【答案】(1) 点D ;90° (2) 等腰直角三角形,理由见分析 【分析】(1)由已知可知,旋转中心为点D ,旋转角∠ADC = 90°,即可求解; (2)由旋转的性质可得DE = DF ,∠EDF = ∠ADC = 90,可得结论. (1)解:由题意得:旋转中心是点D ;旋转角为∠ADC ,在正方形ABCD 中,∠ADC =90°, ∠旋转角为90°; 故答案为:点D ;90°(2)解:根据题意得:DE DF =,90EDF ADC ∠=∠=︒,∠DEF 是等腰直角三角形.【点拨】本题考查了旋转的性质,正方形的性质,掌握旋转的性质是解题的关键. 举一反三:【变式1】在ABC 中,30B ACB ∠+∠=︒,4AB =,ABC 逆时针旋转一定角度后与ADE 重合,且点C 恰好成为AD 中点,如图. (1) 旋转中心是点______,AE =______; (2) 求直线BC 与直线DE 的夹角.【答案】(1) A ,AC (2)30 【分析】(1)根据旋转后A 点与自身对应,则旋转中心为点A ,进而根据12AC AD =,可知AE 与AC 对应,即可求解;(2)延长BC 交ED 于点F ,取AB 中点G ,连接EG ,证明AEG △是等边三角形,进而求得1,120,902EG AB BG EGB BEA ==∠=︒∠=︒在EBF △中,根据三角形内角和定理求得EFB ∠,即直线BC 与直线DE 的夹角.(1)解:∠旋转后A 点与自身对应,∠旋转中心为点A , 12AC AD =,则AC 旋转后与AD 不对应,则AC 与AE 对应 故答案为:A ,AC(2)延长BC 交ED 于点F ,取AB 中点G ,连接EG ,30ABC ACB ∠+∠=︒,4AB =,180150BAC B ACB ∴∠=︒-∠-∠=︒∴ABC 逆时针旋转150︒后与ADE 重合, ∴150CAE BAC ∠=∠=︒,BCA DEA ∠=∠36060EAG EAC DAB ∴∠=︒-∠-∠=︒ G 是AB 的中点,122AG AB ∴== 1,22AD AB AC AD === ∴2AE AC ==∴AEG 是等边三角形60AGE ∴∠=︒ 120EGB ∴∠=︒又2EG AG AE BG ====30∴∠=∠=︒GBE GEB∴∠=∠+∠=︒90BEA BEG GEABEF中∠+∠FBE BEF=∠+∠+∠+∠CBA ABE BEA AED=∠+∠+∠+∠ABE BEA CBA AED()==︒+︒︒12030150∴∠=︒EFB30即直线BC与直线DE的夹角为30【点拨】本题考查了旋转的性质,等边三角形的判定,三角形内角和定理,掌握旋转的性质是解题的关键.【变式2】如图,点P是正方形ABCD内一点,连接P A,PB,PC,将∠ABP绕点B 顺时针旋转到∠CBP′的位置.(1)旋转中心是点__________,旋转角度是__________.(2)连接PP′,∠BPP′的形状是__________ 三角形.(3)若P A=2,PB=4,∠APB=135°,求PC的长.【答案】(1)B,90°;(2)等腰直角;(3)6【分析】(1)根据旋转的定义解答;(2)根据旋转的性质可得BP=BP′,又旋转角为90°,然后根据等腰直角三角形的定义判定;(3)∠根据勾股定理列式求出PP′,先根据旋转的性质求出∠BP′C=135°,再求出∠PP′C=90°,然后根据勾股定理列式进行计算即可得解.解:(1)∠P是正方形ABCD内一点,∠ABP绕点B顺时针旋转到∠CBP′的位置,∠旋转中心是点B,点P旋转的度数是90度,故答案为:B ,90°;(2)根据旋转的性质BP=BP′,旋转角为90°,∠∠BPP′是等腰直角三角形; 故答案为:等腰直角;(3)在等腰Rt ∠BPP '中,∠PB =BP '=4,∠PP ′= ∠∠BP ′C =∠BP A =135°,∠∠PP ′C =∠BP ′C -∠BP ′P =135°-45°=90°, ∠P 'C =P A =2 在Rt ∠PP ′C 中,PC 6==【点拨】本题考查旋转的性质,勾股定理,正方形的性质,等腰直角三角形的判定和性质,解题的关键是熟练掌握旋转的性质和正方形的性质.类型二、利用旋转性质求值或证明2.如图,点E 是正方形ABCD 内一点,将BEC △绕点C 顺时针旋转90°至DFC △. (1) 若30EBC ∠=︒,80BCE ∠=︒,求DFC ∠; (2) 若3CE =,求CEF △的面积.【答案】(1) 70DFC ∠=︒ (2) CEF △的面积为92【分析】(1)根据三角形内角和定理,先算出70BEC ∠=︒,根据旋转性质,得出70DFC BEC ∠=∠=︒;(2)根据旋转性质得出90ECF ∠=︒,3CF CE ==,即可算出∠CEF 的面积. (1)解:∠30EBC ∠=︒,80BCE ∠=︒,∠18070BEC EBC BCE ∠=︒-∠-∠=︒,∠将BEC △绕点C 顺时针旋转90°至DFC △, ∠70DFC BEC ∠=∠=︒.(2)∠将BEC △绕点C 顺时针旋转90°至DFC △, ∠90ECF ∠=︒,3CF CE ==, ∠11933222CEF S CE CF ∆=⨯⨯=⨯⨯=.【点拨】本题主要考查了三角形内角和定理,旋转的性质,根据旋转得出90ECF ∠=︒,3CF CE ==,是解题的关键.举一反三:【变式1】已知在Rt ABC △中,90ACB ∠=︒,AC BC =,CD AB ⊥于点D .在边BC 上取一点E ,连接DE ,将线段DE 绕点E 顺时针旋转90°得到线段EF ,连接AF ,交线段CD 于点G .(1) 如图,若点E 与点C 重合,求证:FCG ADG △△≌; (2) 探究线段AG 与GF 之间满足的数量关系,并说明理由;(3) 若10AB =,请直接写出点C 与点F 之间的最小距离,不必写解答过程. 【答案】(1)见分析(2)AG =GF ,理由见分析(3)5 【分析】(1)根据题意,∠ABC 是等腰直角三角形,CD ∠AB ,所以CD =AD ,根据旋转的性质,CD =CF ,所以CF =AD ,又因为∠GCF =∠GDA =90°,∠CGF =∠DGA ,所以FCG ADG △△≌(ASA );(2)作EH ∠BC ,交CD 于点H ,连接FH ,则可证明∠FEH ≌∠CED (SAS ),得到FH =DC =AD ,∠EHF =∠ECD =45°,从而证明∠FHG =90°,又因为对顶角相等,可证明∠FGH≌∠AGD (AAS ),所以AG =GF ;(3)根据(2)中的结论,CF ,所以当CE 取最小值0时CF有最小值5.解:(1)根据题意,∠ABC 是等腰直角三角形,∠CD AB ⊥∠CD 是斜边AB 的中线 ∠CD =AD∠线段DE 绕点E 顺时针旋转90°得到线段EF ∠∠FCG =∠ADG =90°,CD =CF ∠AD =CF在△FCG 和ADG 中FCG ADG CF ADFGC AGD ∠=∠⎧⎪=⎨⎪∠=∠⎩∠FCG ADG △△≌(ASA ) (2)AG =GF ,理由如下:作EH ∠BC ,交CD 于点H ,连接FH ,如图,∠∠ABC 是等腰直角三角形,CD ∠AB∠∠BCD =12ACB ∠=45°,CD =AD =12AB∠EH ∠BC∠∠EHC =∠BCD =45° ∠CE =HE∠∠FED +∠DEH =∠DEH +∠HEC ∠∠FEH =∠DEC 又∠EF =ED∠∠FEH ≌∠CED (SAS )∠FH =DC =AD ,∠EHF =∠ECD =45° ∠∠CHF =∠CHE +∠EHF =45°+45°=90° ∠∠FHG =90°=∠ADG 又∠∠FGH =∠AGD ∠∠FGH ≌∠AGD (AAS ) ∠AG =GF (3)连接CF ,∠FH =AD =12AB =11052⨯=,CH∠CF当CE 最小时CF 最小,CE 最小值为0,∠CF 5=点C 与点F 之间的最小距离为5.【点拨】本题考查全等三角形的判定与性质,旋转的性质,勾股定理,熟练掌握等腰直角三角形的性质和全等三角形的判定与性质是解题的关键.【变式2】如图,P 是等边ABC 内的一点,且5,4,3PA PB PC ===,将APB △绕点B 逆时针旋转,得到CQB △.(1) 旋转角为_____度; (2) 求点P 与点Q 之间的距离;(3)求BPC∠的度数;S.(4)求ABC的面积ABC【答案】+9.【分析】(1)根据∠QCB是∠P AB绕点B逆时针旋转得到,可知∠ABC为旋转角即可得出答案,(2)连接PQ,根据等边三角形得性质得∠ABC=60°,BA=BC,由旋转的性质得BP =BQ,∠PBQ=∠ABC=60°,CQ=AP=5,BP=BQ=4,∠PBQ=60°,于是可判断∠PBQ 是等边三角形,所以PQ=PB=4;(3)先利用勾股定理的逆定理证明∠PCQ是直角三角形,且∠QPC=90°,再加上∠BPQ =60°,然后计算∠BPQ+∠QPC即可.(4)由直角三角形的性质可求CH,PH的长,由勾股定理和三角形的面积公式可求解.解:(1)∠∠ABC是等边三角形,∠∠ABC=60°,∠∠QCB是∠P AB绕点B逆时针旋转得到的,∠旋转角为60°故答案为:60;(2)连接PQ,如图1,∠∠ABC是等边三角形,∠∠ABC=60°,BA=BC,∠∠QCB是∠P AB绕点B逆时针旋转得到的,∠∠QCB∠∠P AB,∠BP=BQ,∠PBQ=∠ABC=60°,CQ=AP=5,∠BP=BQ=4,∠PBQ=60°,∠∠PBQ是等边三角形,∠PQ=PB=4;(3)∠QC =5,PC =3,PQ =4, 而32+42=52, ∠PC 2+PQ 2=CQ 2,∠∠PCQ 是直角三角形,且∠QPC =90°, ∠∠PBQ 是等边三角形, ∠∠BPQ =60°,∠∠BPC =∠BPQ +∠QPC =60°+90°=150°; (4)如图2,过点C 作CH ∠BP ,交BP 的延长线于H , ∠∠BPC =150°, ∠∠CPH =30°, ∠CH 12=PC 32=,PH=, ∠BH =4 ∠BC 2=BH 2+CH 2232⎛⎫=+ ⎪⎝⎭2425⎛+ ⎝⎭= ∠S △ABC =2, ∠S △ABC 25=+=9.【点拨】本题考查了旋转的性质,等边三角形的判定与性质,全等三角形的性质,勾股定理的逆定理,掌握旋转的性质是本题的关键.类型三、中心对称图形与轴对称图形3、如图,在平面直角坐标系中,ABC 为格点三角形(顶点为网格线的交点),∠ABC =90°,点A 的坐标为(1,4).已知ABC 与DEF 关于点(),0a 成中心对称(点D ,E ,F 分别为A ,B ,C 的对应点,0a ≥且4a ≠).连接AF ,CD .(1) 若0a =,画出此时DEF 的位置;(2) 线段AF 与CD 的位置和大小关系是______;(3) 若四边形AFDC 是一个轴对称图形,则a 的值为______. 【答案】(1)见分析(2)AF CD ∥,且AF CD =(3)1 【分析】(1)当0a =时,点(a ,0)即为原点,作出ABC 关于原点成中心对称的图形即可;(2)设对称中心为点P (a ,0),根据中心对称的性质,即可得出结论; (3)当四边形AFDC 是菱形或矩形时,可得出a 的值. (1)如图,DEF 即为所画;(2)如图所示,AF CD ∥,且AF CD =故答案为:AF CD ∥,且AF CD =(3)∠ABC 是直角三角形,且B (1,0),∠ABC 与DEF 关于点()1,0成中心对称时,四边形AFDC 是菱形,如图,∠1,a = 故答案为:1【点拨】本题考查作图-中心对称、轴对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.举一反三:【变式1】已知:BD 是ABC 的角平分线,点E ,F 分别在BC AB ,上,且DE AB ,BE AF =.(1) 如图1,求证:四边形ADEF 是平行四边形;(2) 如图2,若ABC 为等边三角形,在不添加辅助线的情况下,请你直接写出所有是轴对称但不是中心对称的图形.【答案】(1)证明见分析(2)等边ABC ,等边BEF ,等边CDE ,等腰BDE ,等腰梯形ABED ,等腰梯形ACEF【分析】(1)由角平分线可知ABD CBD ∠=∠,由平行可知BDE ABD ∠=∠,可得CBD BDE ∠=∠,DE BE AF ==,进而结论得证;(2)由题意可得四边形ADEF 是菱形,,,D E F 是等边三角形的中点,然后根据在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;在平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫做轴对称图形;对图中的三角形与四边形的对称性进行判断即可.(1)证明:∠BD 是ABC 的角平分线∠ABD CBD ∠=∠ ∠DE AB ∥ ∠BDE ABD ∠=∠ ∠CBD BDE ∠=∠ ∠DE BE AF == ∠DE AF ∥,DE AF = ∠四边形ADEF 是平行四边形.(2)解:由(1)知四边形ADEF 是平行四边形∠EF AC∠ABC 是等边三角形 ∠60EFB C B ∠=∠=∠=︒ ∠BE EF DE == ∠四边形ADEF 是菱形 ∠,,AF BF BE CE CD AD === ∠,,D E F 是等边三角形的中点 ∠,BG EF BD EF ⊥⊥∠由轴对称图形与中心对称图形的定义可知,是轴对称图形但不是中心对称图形的有:等边ABC ,等边 BEF ,等边CDE △,等腰BDE ,等腰梯形ABED ,等腰梯形ACEF .【点拨】本题考查了角平分线,等腰三角形的判定与性质,等边三角形的判定性质,平行四边形的判定与性质,菱形的判定与性质,轴对称图形,中心对称图形等知识.解题的关键在于对知识的熟练掌握与灵活运用.【变式2】 在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,ABC 的顶点都在格点上,请解答下列问题:(1)作出ABC 向左平移4个单位长度后得到的111A B C △,并写出点1C 的坐标; (2)作出ABC 关于原点O 对称的222A B C △,并写出点2C 的坐标;222A B C △可看作111A B C △以点(________,________)为旋转中心,旋转________°得到的.(3)已知ABC 关于直线l 对称的333A B C △的顶点3A 的坐标为()4,2--,请直接写出直线l 的函数解析式________.【答案】(1)图见详解,C 1(-1,2);(2)图见详解,C 2(-3,-2),(-2,0),180;(3)y =-x【分析】(1)根据平移的性质即可画出ABC 向左平移4个单位后的111A B C △;(2)根据中心对称的性质即可作出ABC 关于原点O 对称的222A B C △,再根据旋转的性质即可得出结论;(3)根据轴对称的性质,可以知道直线必过点(-1,1),即可求出解析式. 解:(1)如图所示,点C 1的坐标(-1,2);(2)如图所示,点C 2的坐标(-3,-2),222A B C △可看作111A B C △以点(-2,0)为旋转中心,旋转180°得到的;(3)因为A 的坐标为(2,4),A 3的坐标为(-4,-2),所以直线必过点(-1,1),所以直线的解析式为y =-x .【点拨】本题主要考查了平移,轴对称,中心对称的作图,熟练其概念准确的画出图形是解决本题的关键.类型四、直角坐标系中的中心对称图形4、已知∠ABC的三个顶点的坐标分别为A(-5,0)、B(-2,3)、C(-1,0).(1)画出∠ABC关于坐标原点O成中心对称的∠A′B′C′;(2)将∠ABC绕坐标原点O顺时针旋转90°,画出对应的∠A′′B′′C′′;(3)若以A′、B′、C′、D′为顶点的四边形为平行四边形,则在第四象限中的点D′坐标为.【答案】(1)见分析(2)见分析(3)(6,-2)【分析】(1)根据关于原点对称的点的横坐标与纵坐标都互为相反数解答;(2)根据网格结构找出点A、B、C绕坐标原点O顺时针旋转90°的点A″、B″、C″的坐标,然后顺次连接即可;(3)根据平行四边形的对边平行且相等解答.(1)如图所示,∠A′B′C′就是求作的图形;(2)如图所示,∠A′′B′′C′′就是求作的三角形;(3)如图所示,点D′坐标为(6,-2);【点拨】本题考查了利用旋转变换作图,平行四边形的性质,熟练掌握网格结构准确找出对应点的位置是解题的关键.举一反三:【变式1】如图,△ABC 三个顶点的坐标分别是A (1,1),B (4,2),C (3,4).(1) 若ABC 经过平移后得到111A B C △,已知点C 的对应点1C 的坐标为()2,4-,画出111A B C △;(2) 请画出△ABC 关于原点对称的△A 2B 2C 2. 【答案】(1)见分析(2)见分析 【分析】(1)根据C 点的平移方式依次得到A 点和B 点的对应点的位置,顺次相连即可; (2)根据中心对称的定义确定对应点的位置后顺次连接即可. (1)如图,△A 1B 1C 1即为所求. (2)如图,△A 2B 2C 2即为所求.【点拨】本题考查了平面直角坐标系内的图形的平移和中心对称,解题关键是牢记平移作图与中心对称图形的作图方法.【变式2】 已知抛物线y =﹣2x 2+8x ﹣7.(1) 二次函数的图象与已知抛物线关于y 轴对称,求它的解析式;(2) 二次函数y =ax 2+bx +c 的图象与已知抛物线关于原点对称,求a ,b ,c 的值. 【答案】(1)y =﹣2x 2﹣8x ﹣7(2)a =2,b =8,c =7 【分析】(1)抛物线y =﹣2x 2+8x ﹣7的图象关于y 轴对称的抛物线x 互为相反数,y 不变进行求解即可;(2)抛物线y =﹣2x 2+8x ﹣7的图象关于原点对称的抛物线x 、y 均互为相反数进行求解即可;(1)解:抛物线y =﹣2x 2+8x ﹣7的图象关于y 轴对称的抛物线x 互为相反数,y 不变,∠y =﹣2(﹣x )2+8(﹣x )﹣7=﹣2x 2﹣8x ﹣7;(2)抛物线y =﹣2x 2+8x ﹣7的图象关于原点对称的抛物线x 、y 均互为相反数,∠﹣y =﹣2(﹣x )2+8(﹣x )﹣7=﹣2x 2﹣8x ﹣7, 即y =2x 2+8x +7∠二次函数y =ax 2+bx +c 中的a =2,b =8,c =7.【点拨】本题主要考查二次函数的图象及性质,掌握二次函数的图象及性质是解题的关键.类型五、旋转几何综合拓展5、∠ABC 和∠DEC 是等腰直角三角形,90ACB DCE ∠=∠=︒,AC BC =,CD CE =.(1)【观察猜想】当∠ABC 和∠DEC 按如图1所示的位置摆放,连接BD 、AE ,延长BD 交AE 于点F ,猜想线段BD 和AE 有怎样的数量关系和位置关系.(2)【探究证明】如图2,将∠DCE 绕着点C 顺时针旋转一定角度()090αα︒<<︒,线段BD 和线段AE 的数量关系和位置关系是否仍然成立?如果成立,请证明:如果不成立,请说明理由.(3)【拓展应用】如图3,在∠ACD 中,45ADC ∠=︒,CD =4=AD ,将AC 绕着点C 逆时针旋转90°至BC ,连接BD ,求BD 的长.【答案】(1)BD AE = ,BD AE ⊥(2)成立,理由见分析(3)【分析】(1)通过证明BCD ACE ≅,即可求证;(2)通过证明BCD ACE ≅,即可求证;(3)过点C 作CH CD ⊥,垂足为C ,交AD 于点H ,根据旋转的性质,等腰直角三角形的性质,勾股定理,即可求解.解:(1)BD AE = ,BD AE ⊥,证明如下:在BCD △和ACE 中,90ACB DCE ∠=∠=︒,AC BC =,CD CE =,BCD ACE ∴≅,,BD AE CBD CAE ∴=∠=∠,90ACB ∠=︒,90CBD BDC ∴∠+∠=︒,BDC ADF ∠=∠,90CAE ADF ∴∠+∠=︒,BD AE ∴⊥;(2)成立,理由如下:∠ACB DEC ∠=∠,∠ACB ACD DCE ACD ∠+∠=∠+∠,即BCD ACE ∠=∠,在BCD △和ACE 中,∠AC BC =,BCD ACE ∠=∠,CD CE =,∠BCD ACE ≌,∠BD AE =,CBD CAE ∠=∠,∠BGC AGF ∠=∠,∠CBD BGC CAE AGF ∠+∠=∠+∠,∠90ACB ∠=︒,∠90CBD BGC ∠+∠=︒,∠90CAE AGF ∠+∠=︒,∠90AFB ∠=︒,∠BD AE ⊥;(3)如图,过点C 作CH CD ⊥,垂足为C ,交AD 于点H ,由旋转性质可得:90ACB ∠=︒,AC BC =,∠CH CD ⊥,∠90DCH ∠=︒,∠90ADC CHD ∠+∠=︒,且45ADC ∠=︒,∠45CHD ∠=︒,∠CHD ADC ∠=∠,∠CD CH ==在Rt DCH 中:2DH =,∠90ACB DCH ∠=∠=︒,∠ACB ACH DCH ACH ∠+∠=∠+∠,即ACD BCH ∠=∠,在ACD △和BCH 中,∠AC BC =,ACD BCH ∠=∠,CD CH =,∠ACD BCH ≌△△,∠4BH AD ==,CBH DAC ∠=∠,∠12CBH DAC ∠+∠=∠+∠,∠90ACB ∠=︒,∠190CBH ∠+∠=︒,∠290DAC ∠+∠=︒,∠90∠=°,BHA∠BH AD⊥,∠BHD△是直角三角形,在Rt BDH中,BD=【点拨】本题考查了全等三角形的判定和性质,勾股定理,旋转的性质,等腰直角三角形的性质等,熟练掌握知识点是解题的关键.举一反三:【变式1】如图1,在∠ABC中,∠C=90°,∠ABC=30°,AC=1,D为∠ABC内部的一动点(不在边上),连接BD,将线段BD绕点D逆时针旋转60°,使点B到达点F的位置;将线段AB绕点B顺时针旋转60°,使点A到达点E的位置,连接AD,CD,AE,AF,BF,EF.(1)求证:∠BDA∠∠BFE;(2)∠CD+DF+FE的最小值为;∠当CD+DF+FE取得最小值时,求证:AD∠BF.(3)如图2,M,N,P分别是DF,AF,AE的中点,连接MP,NP,在点D运动的过程中,请判断∠MPN的大小是否为定值.若是,求出其度数;若不是,请说明理由.【答案】(1)见解答;(2);∠见解答;(3)是,∠MPN=30°.【分析】(1)由旋转60°知,∠ABD=∠EBF、AB=AE、BD=BF,故由SAS证出全等即可;(2)∠由两点之间,线段最短知C、D、F、E共线时CD+DF+FE最小,且CD+DF+FE 最小值为CE,再由∠ACB=90°,∠ABC=30°,AC=1求出BC和AB,再由旋转知AB=BE,∠CBE=90°,最后根据勾股定理求出CE即可;∠先由∠BDF 为等边三角形得∠BFD =60°,再由C 、D 、F 、E 共线时CD +DF +FE 最小,∠BFE =120°=∠BDA ,最后ADF =∠ADB -∠BDF =120°-60°=60°,即证;(3)由中位线定理知道MN ∠AD 且PN ∠EF ,再设∠BEF =∠BAD =α,∠P AN =β,则∠PNF =60°-α+β,∠FNM =∠F AD =60°+α-β,得∠PNM =120°.(1)证明:∠∠DBF =∠ABE =60°,∠∠DBF -∠ABF =∠ABE -∠ABF ,∠∠ABD =∠EBF ,在∠BDA 与∠BFE 中,BD BF ABD EBF AB BE ⎧⎪∠∠⎨⎪⎩===,∠∠BDA ∠∠BFE (SAS );(2)∠∠两点之间,线段最短,即C 、D 、F 、E 共线时CD +DF +FE 最小,∠CD +DF +FE 最小值为CE ,∠∠ACB =90°,∠ABC =30°,AC =1,∠BE =AB =2,BC∠∠CBE =∠ABC +∠ABE =90°,∠CE=∠证明:∠BD =BF ,∠DBF =60°,∠∠BDF 为等边三角形,即∠BFD =60°,∠C 、D 、F 、E 共线时CD +DF +FE 最小,∠∠BFE =120°,∠∠BDA ∠∠BFE ,∠∠BDA =120°,∠∠ADF =∠ADB -∠BDF =120°-60°=60°,∠∠ADF =∠BFD ,∠AD ∠BF ;(3)∠MPN 的大小是为定值,理由如下:如图,连接MN ,∠M ,N ,P 分别是DF ,AF ,AE 的中点,∠MN ∠AD 且PN ∠EF ,∠AB =BE 且∠ABE =60°,∠∠ABE 为等边三角形,设∠BEF =∠BAD =α,∠P AN =β,则∠AEF =∠APN =60°-α,∠EAD =60°+α,∠∠PNF =60°-α+β,∠FNM =∠F AD =60°+α-β,∠∠PNM =∠PNF +∠FNM =60°-α+β+60°+α-β=120°,∠∠BDA ∠∠BFE ,∠MN =12AD =12FE =PN , ∠∠MPN =12(180°-∠PNM )=30°. 【点拨】本题是三角形与旋转变换的综合应用,熟练掌握旋转的性质、三角形全等的判定与性质、平行线的判定、勾股定理的应用、中位线的性质及等腰、等边三角形的判定与性质是解题关键 .【变式2】 如图1,正方形ABCD 的边长为4,点P 在边AD 上(P 不与,A D 重合),连接,PB PC .将线段PB 绕点P 顺时针旋转90°得到PE ,将线段PC 绕点P 逆时针旋转90°得到PF .连接EF EA FD ,,.(1)求证:∠PDF ∆的面积212S PD =; ∠EA FD =;(2)如图2,EA FD.的延长线交于点M,取EF的中点N,连接MN,求MN的取值范围.【答案】(1)∠见详解;∠见详解;(2)4≤MN<【分析】≌,即可得到结论;(1)∠过点F作FG∠AD交AD的延长线于点G,证明PFG CPD∠过点E作EH∠DA交DA的延长线于点H,证明PEH BPA≌,可得≌,结合PFG CPDGD=EH,同理:FG=AH,从而得AHE FGD≌,进而即可得到结论;(2)过点F作FG∠AD交AD的延长线于点G,过点E作EH∠DA交DA的延长线于点EF,HG= 2AD=8,EH+FG= AD=4,然后求出当点P与点D重H,可得∠AMD=90°,MN=12合时,EF最大值=P与AD的中点重合时,EF最小值= HG=8,进而即可得到答案.解:(1)∠证明:过点F作FG∠AD交AD的延长线于点G,∠∠FPG+∠PFG=90°,∠FPG+∠CPD=90°,∠∠FPG=∠CPD,又∠∠PGF=∠CDP=90°,PC=PF,∠PFG CPD ≌(AAS ),∠FG =PD ,∠PDF ∆的面积21122S PD FG PD =⋅=; ∠过点E 作EH ∠DA 交DA 的延长线于点H ,∠∠EPH +∠PEH =90°,∠EPH +∠BP A =90°,∠∠PEH =∠BP A ,又∠∠PHE =∠BAP =90°,PB =PE ,∠PEH BPA ≌(AAS ),∠EH =P A ,由∠得:FG =PD ,∠EH +FG =P A +PD =AD =CD ,由∠得:PFG CPD ≌,∠PG =CD ,∠PD +GD = CD = EH +FG ,∠FG + GD = EH +FG ,∠GD =EH ,同理:FG =AH ,又∠∠AHE =∠FGD ,∠AHE FGD ≌,∠EA FD =;(2)过点F 作FG ∠AD 交AD 的延长线于点G ,过点E 作EH ∠DA 交DA 的延长线于点H ,≌,由(1)得:AHE FGD∠∠HAE=∠GFD,∠∠GFD+∠GDF=90°,∠∠HAE+∠GDF=90°,∠∠HAE=∠MAD,∠GDF=∠MDA,∠∠MAD+∠MDA=90°,∠∠AMD=90°,∠点N是EF的中点,EF,∠MN=12∠EH=DG=AP,AH=FG=PD,∠HG=AH+DG+AD=PD+AP+AD=2AD=8,EH+FG=AP+PD=AD=4,当点P与点D重合时,FG=0,EH=4,HG=8,此时EF最大值当点P与AD的中点重合时,FG=2,EH=2,HG=8,此时EF最小值= HG=8,【点拨】本题主要考查全等三角形的判定和性质,正方形的性质,勾股定理,旋转的性质,添加辅助线,构造直角全等的直角三角形,是解题的关键.。
人教版初中数学九年级上册第二十三章:旋转(全章教案)
第二十三章旋转本章的内容包括:图形的旋转的概念与性质,中心对称(图形)的概念及性质,简单的图案设计.教材通过具体事例认识平面图形的旋转,探索旋转的基本性质;能够按要求画出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用;通过具体实例认识中心对称图形的概念,探索它们的基本性质;探索图形之间的变化关系,会用轴对称、平移、旋转的组合进行图案设计.本章内容是中考的必考内容,主要考查图形的旋转的性质,中心对称(图形)的概念及性质.【本章重点】平面图形的旋转变换和中心对称图形的性质.【本章难点】旋转作图、中心对称、旋转等图形变换的灵活运用.【本章思想方法】1.体会对比数学思想.如:本章中要运用对比法学习图形的旋转,将变化前后的图形互相对比,可以发现旋转前后的图形只存在位置上的不同,从而,由旋转的定义及特征,进一步发展空间观念,提升设计图案能力.2.体会和掌握转化思想.如:在利用旋转的性质进行计算和证明时,利用转化法把求线段的相等转化为关于旋转的性质的问题.3.掌握数形结合思想.如:在解旋转知识与平面直角坐标系等知识的综合题时,利用几何图形将“数”与“形”结合起来,运用数形结合的思想解答.23.1图形的旋转1课时23.2中心对称3课时23.3课题学习图案设计1课时23.1图形的旋转一、基本目标【知识与技能】1.了解旋转及其旋转中心、旋转角、对应点的概念及应用它们解决一些实际问题.2.通过具体实例认识旋转,探索它的基本性质.3.了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.【过程与方法】通过具体实例认识平面图形的旋转,通过提问、小组交流等方式探讨旋转的基本性质.【情感态度与价值观】1.通过具体实例认识平面图形的旋转,体会数学知识应用的价值,提高学生学习数学的兴趣.2.了解数学对促进社会进步和发展人类理性精神的作用,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】旋转及对应点的有关概念及其应用.【教学难点】旋转的基本性质.环节1自学提纲,生成问题【5 min阅读】阅读教材P59~P62的内容,完成下面练习.【3 min反馈】1.观察教材P59“思考”,回答问题.(1)教材上面的情景中的转动现象,有什么共同的特征?解:指针、风车叶片分别绕中间点旋转.(2)钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?解:形状、大小不变,位置发生变化.(3)从3时到5时,时针转动了__60__°.(4)风车每片叶轮转到与下一片原来的位置重合时,风车旋转了__60__°。
2022年九年级数学复习专题---图形的变换(平移、翻折、旋转)综合问题题
2022年中考数学复习专题---图形的变换(平移、翻折、旋转)综合题班级:___________姓名:___________学号:___________1.综合与实践 问题情境:综合与实践课上,同学们以“三角形纸片的折叠与旋转“为主题展开数学活动,探究有关的数学问题. 动手操作:已知:三角形纸片ABC 中,6120AB AC BC BAC ==∠=︒,,.将三角形纸片ABC 按如下步骤进行操作: 第一步:如图1,折叠三角形纸片ABC ,使点C 与点A 重合,然后展开铺平,折痕分别交BC AC ,于点D E ,,连接AD ,易知AD CD =.第二步:在图1的基础上,将三角形纸片ABC 沿AD 剪开,得到ABD ∆和ACD ∆.保持ABD ∆的位置不变,将ACD ∆绕点D 逆时针旋转得到FDG ∆(点F G ,分别是A C ,的对应点),旋转角为()0360αα︒<<︒问题解决:(1)如图2,小彬画出了旋转角0120α︒<<︒时的图形,设线段FG AC ,交于点P ,连接AG DP ,.小彬发现DP 所在直线始终垂直平分线段AG .请证明这一结论;(2)如图3,小颖画出了旋转角90α=︒时的图形,设直线AF 与直线CG 相交于点O ,连接CF 判断此时COF ∆的形状,说明理由;(3)在ACD ∆绕点D 逆时针旋转过程中,当FG BC ⊥时,请直接写出B F ,两点间的距离.2.如图,△ABC 中,已知∠C=90°,∠B=60°,点D 在边BC 上,过D 作DE ⊥AB 于E . (1)连接AD ,取AD 的中点F ,连接CF ,EF ,判断△CEF 的形状,并说明理由(2)若.把△BED 绕着点D 逆时针旋转m (0<m <180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m=3.问题背景:如图1,在矩形ABCD 中,30AB ABD =∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F . 实验探究:(1)在一次数学活动中,小明在图1中发现AEDF=_________. 将图1中的BEF 绕点B 按逆时针方向旋转90︒,连接,AE DF ,如图2所示,发现AEDF=_________. (2)小亮同学继续将BEF 绕点B 按逆时针方向旋转,连接,AE DF ,旋转至如图3所示位置,请问探究(1)中的结论是否仍然成立?并说明理由. 拓展延伸:(3)在以上探究中,当BEF 旋转至D 、E 、F 三点共线时,AE 的长为____________.4.如图,在Rt ABC 中,90ACB ∠=︒,CD 平分ACB ∠.P 为边BC 上一动点,将DPB 沿着直线DP 翻折到DPE ,点E 恰好落在CDP 的外接圆O 上. (1)求证:D 是AB 的中点.(2)当60BDE ∠=︒,BP =DC 的长.(3)设线段DB 与O 交于点Q ,连结QC ,当QC 垂直于DPE 的一边时,求满足条件的所有QCB ∠的度数.5.如图1,O 为正方形ABCD 的中心,分别延长OA 、OD 到点,F E ,使OF=2OA ,OE 2OD =,连接EF ,将FOE ∆绕点O 按逆时针方向旋转角α得到F OE ''∆,连接,AE BF ''(如图2).(1)探究AE '与BF '的数量关系,并给予证明; (2)当30α=︒时,求证:AOE '为直角三角形.6.如图,在△ABC 中,AB =∠B =45°,∠C =60°. (1)求BC 边上的高线长.(2)点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将△AEF 折叠得到△PEF . ①如图2,当点P 落在BC 上时,求∠AEP 的度数. ②如图3,连结AP ,当PF ⊥AC 时,求AP 的长.7.如图1,点C 在线段AB 上,分别以AC 、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN , 连结AM 、BD .(1)AM与BD的关系是:________.(2)如果将正方形BCMN绕点C顺时针旋转锐角α(如图2).(1) 中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.8.已知正方形ABCD,一等腰直角三角板的一个锐角顶点与A重合,将此三角板绕A点旋转时,两边分别交直线BC、CD于M、N.(1)当M、N分别在边BC、CD上时(如图1),求证:BM+DN=MN;(2)当M、N分别在边BC、CD所在的直线上时(如图2),线段BM、DN、MN之间又有怎样的数量关系,请直接写出结论;(不用证明)(3)当M、N分别在边BC、CD所在的直线上时(如图3),线段BM、DN、MN之间又有怎样的数量关系,请写出结论并写出证明过程.9.如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.(1)如图,当BP=BA时,∠EBF=______°,猜想∠QFC =______°;(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.(3)已知线段AB=BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.10.我们知道,直角坐标系是研究“数形结合”的重要工具.请探索研究下列问题:(1)如图1,点A 的坐标为(-5,1),将点A 绕坐标原点(0,0)按顺时针方向旋转90°,得对应点A ',若反比例函数(0)k y x x=>的图像经过点A ',求k 的值.(2)将(1)中的(0)ky x x =>的图像绕坐标原点(0,0)按顺时针方向旋转45°,如图2,旋转后的图像与x 轴相交于点B ,若直线x =C 与点D ,求△BCD 的面积. (3)在(2)的情况下,半径为6的M 的圆心M 在x 轴上,如图3,若要使△BCD 完全在M 的内部,求M 的圆心M 横坐标xm 的范围(直接写出结果,不必写详细的解答过程).11.对于平面直角坐标系xOy 中的点A 和点P ,若将点P 绕点A 逆时针旋转90︒后得到点Q ,则称点Q 为点P 关于点A 的“垂链点”,图1为点P 关于点A 的“垂链点”Q 的示意图.(1)已知点A 的坐标为(0,0),点P 关于点A 的“垂链点”为点Q ;①若点P 的坐标为(2,0),则点Q 的坐标为________; ②若点Q 的坐标为(2,1)-,则点P 的坐标为________; (2)如图2,已知点C 的坐标为(1,0),点D 在直线113y x =+上,若点D 关于点C 的“垂链点”在坐标轴上,试求出点D 的坐标;(3)如图3,已知图形G 是端点为(1,0)和(0,2)-的线段,图形H 是以点O 为中心,各边分别与坐标轴平行的边长为6的正方形,点M 为图形G 上的动点,点N 为图形H 上的动点,若存在点(0,)T t ,使得点M 关于点T 的“垂链点”恰为点N ,请直接写出t 的取值范围.12.如图,正比例函数y =12x 与反比例函数()0k y x x =>的图象交于点A ,将正比例函数y =12x 向上平移6个单位,交y 轴于点C ,交反比例函数图象于点B ,已知AO =2BC . (1)求反比例函数解析式;(2)作直线AB ,将直线AB 向下平移p 个单位,恰与反比例函数图象有唯一交点,求p 的值.13.综合与实践:问题情境:(1)如图,点E 是正方形ABCD 边CD 上的一点,连接BD 、BE ,将DBE ∠绕点B 顺针旋转90︒,旋转后角的两边分别与射线DA 交于点F 和点G .①线段BE 和BF 的数量关系是______.②写出线段DE 、DF 和BD 之间的数量关系.并说明理由;操作探究:(2)在菱形ABCD 中,60ADC ∠=︒,点E 是菱形ABCD 边CD 所在直线上的-点,连接BD 、BE ,将DBE ∠绕点B 顺时针旋转120︒,旋转后角的两边分别与射线DA 交于点F 和点G .①如图,点E 在线段DC 上时,请探究线段DE 、DF 和BD 之间的数量关系,写出结论并给出证明;②如图,点E在线段CD的延长线上时,BE交射线DA于点M,若2==,直接写出线段FM和AGDE DC a的长度.14.两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=4.固定△ABC不动,将△DEF 进行如下操作:(1)操作发现如图①,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC,CF,FB,四边形CDBF的形状在不断的变化,那么它的面积大小是否变化呢?如果不变化,请求出其面积.(2)猜想论证如图②,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)拓展探究如图③,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,求sinα翻折问题姓名:___________班级:___________学号:___________1.如图将矩形纸片ABCD 沿AE 翻折,使点B 落在线段DC 上,对应的点为F . (1)求证:EFC DAF ∠=∠;(2)若3tan 4AE EFC =∠=,求AB 的长.2.如图,在Rt△ABC 中,∠C=90°,AC=BC=2,AD 是BC 边上的中线,将A 点翻折与点D 重合,得到折痕EF ,求:CE AE 的值.3.如图,点A ,M ,N 在O 上,将MN 沿MN 折叠后,与AM 交于点B .(1)若70MAN ∠=︒,则ANB ∠=________°; (2)如图1,点B 恰好是翻折所得MN 的中点, ①若MA MN =,求AMN ∠的度数;②若tan MAN ∠=tan AMN ∠的值; (3)如图2,若222AB BN MN +=,求MBAB的值.4.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE ,沿AE 翻折△ABE 使点B 落在点F 处.(1)连接CF ,若CF ∥AE ,求m 的值;(2)连接DF ,若65≤DF ,求m 的取值范围.5.如图1,一张矩形纸ABCD ,ABa AD=,点,E F 分别在边,CD AB 上,且AE EF =,把ADE 沿AE 翻折得到AGE .(1)如图1,若1AD =.(Ⅰ)当AD DE =时,AFE ∠=_____度; (Ⅱ)当//AG EF 时,求AF 的长度.(2)若直线EG 与边AB 交于点H ,当2AH FH =时,求a 的最小值.6.如图,在折纸游戏中,正方形ABCD 沿着BE ,BF 将BC ,AB 翻折,使A ,C 两点恰好落在点P . (1)求证:45EBF ∠=︒.(2)如图,过点P 作//MN BC ,交BF 于点Q . ①若5BM =,且10MP PN ⋅=,求正方形折纸的面积. ②若12QP BC =,求AM BM的值.7.如图,在ABC 中,12,120AC BC ACB ==∠=︒,点D 是AB 边上一点,连接CD ,以CD 为边作等边CDE △.(1)如图1,若45CDB ∠=︒,求等边CDE △的边长;(2)如图2,点D 在AB 边上移动过程中,连接BE ,取BE 的中点F ,连接,CF DF ,过点D 作DG AC ⊥于点G . ①求证:CFDF .②如图3,将CFD 沿CF 翻折得CFD ',连接BD ',求出BD '的最小值.8.在矩形ABCD 中,1AB =,BC a =,点E 是边BC 上一动点,连接AE ,将ABE △沿AE 翻折,点B 的对应点为点B '.(1)如图,设BE x =,BC =E 从B 点运动到C 点的过程中. ①AB CB ''+最小值是______,此时x =______; ②点B '的运动路径长为.(2)如图,设35BE a =,当点B 的对应点B '落在矩形ABCD 的边上时,求a 的值.9.如图1,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CD 边的垂直平分线EH 交BD 于点E ,连接AE ,CE .(1)过点A 作//AF EC 交BD 于点F ,求证:AF BF =;(2)如图2,将ABE △沿AB 翻折得到'ABE △.①求证:'//BE CE ;②若'//AE BC ,1OE =,求CE 的长度.10.如图,矩形ABCD 中,已知6AB =.8BC =,点E 是射线BC 上的一个动点,连接AE 并延长,交射线DC 于点F .将ABE △沿直线AE 翻折,点B 的对应点为点B ',延长AB '交直线CD 于点M .(1)如图1,若点B '恰好落在对角线AC 上,求BE CE的值. (2)如图2.当点E 为BC 的中点时,求DM 之长.(3)若32BE CE =,求sin DAB '∠.11.【基础巩固】(1)如图①,ABC ACD CED α∠=∠=∠=,求证:ABC CED ∽△△.【尝试应用】(2)如图②,在菱形ABCD 中,60A ∠=︒,点E ,F 分别为边,AD AB 上两点,将菱形ABCD 沿EF 翻折,点A 恰好落在对角线DB 上的点P 处,若2PD PB =,求AE AF的值. 【拓展提高】(3)如图③,在矩形ABCD 中,点P 是AD 边上一点,连接,PB PC ,若2,4,120PA PD BPC ==∠=︒,求AB 的长.12.如图,在ABC 中,60B ∠=︒,AD BC ⊥于点D ,CE AB ⊥于点E ,AB CE =.(1)如图1,将ABD △沿AD 翻折到AFD ,AF 交CE 于点G ,探索线段AB 、AG 、CG 之间有何等量关系,并加以证明;(2)如图2,H 为直线BC 上任意一点,连接AH ,将AH 绕点A 逆时针旋转60°到AH ',连接CH ',若BD =,求CH '的最小值.13.如图,在矩形ABCD 中,12BC AB =,F 、G 分别为AB 、DC 边上的动点,连接GF ,沿GF 将四边形AFGD 翻折至四边形EFGP ,点E 落在BC 上,EP 交CD 于点H ,连接AE 交GF 于点O(1)GF 与AE 之间的位置关系是:______,GF AE 的值是:______,请证明你的结论;(2)连接CP ,若3tan 4CGP ∠=,GF =CP 的长14.如图,在矩形ABCD 中,8AB =,10BC =,点P 在矩形的边CD 上由点D 向点C 运动.沿直线AP 翻折ADP ∆,形成如下四种情形,设DP x =,ADP ∆和矩形重叠部分(阴影)的面积为y .(1)如图4,当点P 运动到与点C 重合时,求重叠部分的面积y ;(2)如图2,当点P 运动到何处时,翻折ADP ∆后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?15.如图1,ABC 中,AB AC =,点D 在BA 的延长线上,点E 在BC 上,连接DE 、DC ,DE 交AC 于点G ,且DE DC =.(1)找出一个与BDE ∠相等的角;(2)若AB =mAD ,求DG GE的值(用含m 的式子表示); (3)如图2,将ABC 沿BC 翻折,若点A 的对应点A '恰好落在DE 的延长线上,求BE EC的值.16.在等腰直角三角形ABC中,∠BAC=90°,AB=AC,D是斜边BC的中点,连接AD.(1)如图1,E是AC的中点,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′,当时,求AE的值.(2)如图2,在AC上取一点E,使得CE=13AC,连接DE,将△CDE沿CD翻折到△CDE′,连接AE′交BC于点F,求证:DF=CF.。
人教版九年级上册数学 期末专题复习---《旋转的性质》(含答案)
人教版九年级上册数学期末专题复习---《旋转的性质》一、选择题1.如图,在正方形网格中,将△ABC顺时针旋转后得到△A'B′C′,则下列4个点中能作为旋转中心的是( )A.点PB.点QC.点RD.点S2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )A.55°B.60°C.65°D.70°3.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是( )A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)4.如图所示,△ABC的顶点坐标分别为A(3,6),B(1,3),C(4,2).若将△ABC绕着点C顺时针旋转90º,得到△A'B'C',点A,B的对应点A',B'的坐标分别为(a,b),(c,d),则(ab-cd)2023的值为()A.0B.1C.-1D.无法计算5.在下列几何图形中:(1)两条互相平分的线段;(2)两条互相垂直的直线;(3)两个有公共顶点的角;(4)两个有一条公共边的正方形.其中是中心对称图形的有( )A.1个B.2个C.3个D.4个6.在如图所示的四个图案中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有( )A.1个 B.2个 C.3个 D.4个7.将一副三角板按如图①的位置摆放,将△DEF绕点A(F)逆时针旋转60°后,得到如图②,测得CG=6,则AC长是()A.6+2B.9C.10D.6+68.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方向旋转60°后得到△AB/C/,若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是()A.πB.πC.2πD.4π9.如图所示,在等边△ABC中,点D是边AC上一点,连接BD,将△BCD绕着点B逆时针旋转60º,得到△BAE,连接ED,则下列结论中:①AE∥BC;②∠DEB=60º;③∠ADE=∠BDC.其中正确结论的序号是()A.①②B.①③C.②③D.只有①10.如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE.给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于;④△BDE周长的最小值为6.上述结论中正确的个数是( )A.1B.2C.3D.4二、填空题11.如图,在△BDE中,∠BDE=90°,2D的坐标是(5,0),∠BDO=15°,将△BDE旋转到△ABC 的位置,点C在BD 上,则旋转中心的坐标为_______.12.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正确的结论是 .13.在Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD,把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_______.14.如图,已知∠MON=120°,点A,B分别在OM,ON上,且OA=OB=a,将射线OM绕点O逆时针旋转得到OM′,旋转角为α(0°<α<120°且α≠60°),作点A关于直线OM′的对称点C,画直线BC交OM′于点D,连接AC,AD,有下列结论:①AD=CD;②∠ACD的大小随着α的变化而变化;③当α=30°时,四边形OADC为菱形;④△ACD面积的最大值为a2;其中正确的是 .(把你认为正确结论的序号都填上).15.P是等边△ABC内部一点,∠APB、∠BPC、∠CPA的大小之比是5:6:7,将△ABP逆时针旋转,使得AB与AC 重合,则以PA、PB、PC的长为边的三角形的三个角∠PCQ:∠QPC:∠PQC= .16.如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为.三、解答题17.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得到△A′BO′,点A,O旋转后的对应点分别为A′,O′,记旋转角为α.(1)如图①,若α=90°,求AA′的长;(2)如图②,若α=120°,求点O′的坐标.18.如图所示,正方形ABCD的边BC上有一点E,∠DAE的平分线交CD于点F.求证:AE=DF+BE.19.如图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成,在Rt△ABC中,已知直角边BC=5,AC=7,将四个直角三角形中边长为5的直角边分别向外延长一倍,得到如图②所示的“数学风车”.⑴这个风车是中心对称图形吗?若是,指出这个风车至少需要绕着它的中心旋转多少度才能和它本身重合;⑵求这个风车的外围周长(即求图②中的实线的长).20.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.答案1. A.2. C;3. A;4. C.5. C6. B.7. A;8. C.9.A10.C11. (3,23)12.①②③13. 80或120.14.:①③④.15. 3:4:2.16.(36,0).17.解:(1)∵点A(4,0),点B(0,3),∴OA=4,OB=3.∴AB=5.∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°.∴△ABA′为等腰直角三角形,(2)作O′H⊥y轴于点H.∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°.∴∠HBO′=60°.在Rt△BHO′中,∵∠BO′H=90°-∠HBO′=30°,18.解:如图,将△ADF绕点A顺时针旋转90°得△ABF′,则∠3=∠1,∠AFD=∠F′,∠ABF′=∠D,BF′=DF.∵四边形ABCD为正方形,∴AB∥CD,∠ABC=∠D=90°,∴∠AFD=∠FAB,∠ABF′=∠D=90°,∴∠ABF′+∠ABC=180°,∴F′,B,C三点共线.∵∠FAB=∠2+∠BAE,∴∠AFD=∠2+∠BAE.又∵∠DAE的平分线交CD于点F,∴∠1=∠2,∴∠3=∠2,∴∠AFD=∠3+∠BAE,∴F′=∠3+∠BAE.∵∠F′AE=∠3+∠BAE,∴∠F′AE=∠F′,∴AE=EF′=BF′+BE=DF+BE.19.解:⑴这个风车是中心对称图形,这个风车至少需要绕着它的中心旋转90度才能和它本身重合;⑵风车的其中一个直角三角形的较短直角边长为5,较长直角边长为7+5=12,则斜边长为13,所以这个风车的外围周长为4×(5+13)=4×18=72.20.证明:(1)∵将△ADF绕点A顺时针旋转90°后,得到△ABQ,∴QB=DF,AQ=AF,∠BAQ=∠DAF,∵∠EAF=45°,∴∠DAF+∠BAE=45°,∴∠QAE=45°,∴∠QAE=∠FAE,在△AQE和△AFE中,∴△AQE≌△AFE(SAS),∴∠AEQ=∠AEF,∴EA是∠QED的平分线;(2)由(1)得△AQE≌△AFE,∴QE=EF,在Rt△QBE中,QB2+BE2=QE2,又∵QB=DF,∴EF2=BE2+DF2.。
秋人教版九级上册数学专题课件:专题坐标系中的旋转问题(共5张PPT)
(4)直接说明点△A均1B在1C格1和点△A上2B,2C2三是否个成顶中心点对的称,坐若标是,分直别接写为出A对(称2,中心2的),坐标B.(1,0),C(3,1).
(2)画出△A1B1C1绕点(0,-1)顺时针旋转90°得到的△A2B2C2; (3)画出△ABC绕着点O按逆时针方向旋转90°得到的△A3B3C3; 一、求坐标 1.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).
(4)直接说明△A1B1C1和△A2B2C2是否成中心对称,若是,直接写出对称中心的坐标.
(2)画出△A(B4C绕)直原点接O说按逆明时△针方A向1B旋1转C910和°后△的A△2AB22BC2C22是,并否写成出点中C心2的对坐标称__,___若___是__,; 直接写出对称中心的坐标.
(2)画出△A1B1C1绕点(0,-1)顺时针旋转90°得到的△A2B2C2; (2)画出△ABC关于原点O对称的△A2B2C2;
((12))画 画出出△△AA(BB1CC向关)画上于平原出移点△5O个对A单称B位C的关后△得A于2到Bx对2C轴应2;的对△称A1的B1C△1,A并1B写1出CC11,的坐并标写; 出点C1的坐标;
二、求旋转中心
3.(广雅月(考2)如)画图,出在△平面A直BC角绕坐标原系点中,O按已知逆△时AB针C的方三个向顶旋点的转坐9标0分°别后为A的(-△3,A52),BB2(C-22,,1并),写C(-出1,点3)C.2的坐标_(_-__4,__-__4_)_;
(1)若△ABC经过平移后得到△A1B1C1,点C1的坐标为(4,0),作出△A1B1C1的图形; 4.(武汉期中)如图,△ABC的三个顶点都在边长为1的小正方形组成的网格的格点上,以点O为原点建立直角坐标系,回答下列问题:
人教版九年级数学上册第二十三章旋转章末复习课件(共53张)
条件 AB=AD, ∠B+∠D=180°, 可将△ABC绕点A逆时
针旋转, 使 AB和AD重合, 得到△ADE, 这样就可以将
求四边形ABCD的 面积转化为求△ACE的面积了.
章末复习
解 如图23-Z-6, 将△ABC绕点A逆时针旋转, 使AB和AD重合, 得到
△ADE, 则∠B=∠ADE.
∵∠B+∠ADC=180°, ∴∠ADE+∠ADC=180°, ∴C, D, E三点共线, ∴S四边形
不是
不是
选项
章末复习
相关题1
如图23-Z-2, 其中中心对 称图形有( B ).
A.1个
B.2个
C.3个
D.4个
章末复习
专题二 利用旋转的性质计算
【要点指点】利用旋转的性质进行计算时, 要抓住旋转的三要素, 找准
旋转前、后相等的量:①对应点到旋转中心的距离相等;②对应 点
与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.
中心对称的性质
设计图案
中心对称
中心对称图形
关于原点对称
的点的坐标
常见的中心对称图形:平行四边
形、圆、正多边形( 边数为偶数)
章末复习
归纳整合
专题一 中心对称图形与轴对称图形
【要点指点】中心对称图形是绕着一个点旋转180°后能与本来
的图 形重合的图形, 而轴对称图形是沿着一条直线翻折后直线两
旁的部分能够 完全重合的图形. 一个图形可以既是轴对称图形又
(3)作出△ABC关于原点O 对称的△A3B3C3.
章末复习
解:(1)(2)(3)如图所示.
章末复习
专题五 网格中的图案设计
【要点指点】在网格中设计轴对称图形、中心对称图形等是
九年级数学上人教版《 旋转的应用》课堂笔记
《旋转的应用》课堂笔记
一、旋转对称图形的概念
1.旋转对称图形:把一个图形绕着一个定点旋转一个角度后,与初始图形重
合,这种图形叫做旋转对称图形。
2.旋转对称图形的性质:旋转对称图形具有旋转不变性和对称性,即旋转前
后图形的形状和大小保持不变,只改变位置和方向。
二、如何判断一个图形是否为旋转对称图形
1.观察图形的形状和大小是否在旋转前后保持不变。
2.观察旋转前后图形的位置和方向是否发生变化。
3.判断旋转中心是否存在,以及旋转角度是否为360°的整数倍。
三、旋转对称图形的应用
1.在几何中,可以利用旋转对称图形的性质证明一些几何定理和性质。
2.在生活中,很多机械零件和建筑物都是利用旋转对称设计的,如螺旋桨、
圆形屋顶等。
3.在艺术中,旋转对称可以创造出很多美丽的图案和造型,如旋转对称的花
朵、旋转对称的舞蹈动作等。
四、注意事项
1.要注意区分旋转对称图形与其他图形变换的不同之处,如平移、翻折等。
2.在进行旋转对称图形的判断时,要注意观察图形是否具有旋转不变性和对
称性,并确定旋转中心和旋转角度。
3.在实际应用中,要注意选择合适的旋转中心和旋转角度,以达到预期的效
果。
九年级数学人教版(上册)小专题7 二次函数的最值及函数值的范围
满足 2≤x≤5 时,与其对应的函数值 y 的最大值为-3,则 h 的值为
(C ) A.3 或 4
B.0 或 4
C.0 或 7
D.7 或 3
当 a>0,x1≤x≤x2 时, k≤y≤y1, y 最大=y1,y 最小=k.
当 a<0,x1≤x≤x2 时, y2≤y≤k , y = 最大 k ,y = 最小 y2 .
类型 1 由自变量的取值范围求函数值的取值范围
1.已知二次函数 y=-x2+2x+3,当 x≥2 时,y 的取值范围是
(B ) A.y≥3
第二十二章 二次函数
小专题7 二次函数的最值及函数值的范围
对于二次函数 y=a(x-h)2+k 图象上的两点(x1,y1),(x2,y2), 求函数值的范围(最值)时考虑以下四种情况:
当 a>0,x1≤x≤x2 时, y2≤y≤y1, y 最大=y1,y 最小=y2.
当 a<0,x1≤x≤x2 时, y1≤y≤y2 , y = 最大 y2,y = 最小 y1.
类型 2 由自变量取值范围下函数的最值,求待定字母的值 4.若二次函数 y=x2+4x+a 的最小值是 2,则 a 的值是 6 .
5.已知关于 x 的二次函数 y=ax2+a2. (1)若它的最小值为 4,则 a 的值为 2 . (2)若它的最大值为 4,则 a 的值为 -2 .
6.当 a≤x≤a+1 时,函数 y=x2-2x+1 的最小值为 1,则 a
的值为( D )
A.-1
B.2
C.0 或 2
D.-1 或 2
7.【易错】已知二次函数 y=ax2+2ax+3a2+3(其中 x 是自变量),
当 x≥2 时,y 随 x 的增大而增大,且当-2≤x≤1 时,y 的最大值为
初中数学:利用旋转证明三角形全等综合证明题专题
已知,如图,∠1=∠2,∠C =∠D ,BD=BC ,△ABD ≌△E BC 吗?为什么?如图,已知ΔABC ,BD 、CE 分别是AC 、AB 边上的高,B F=AC , ∠CAG=∠F ,请你判断AG 与AF 是否相等,说明理由。
如图,∠A =∠B ,∠1=∠2,EA =EB ,你能证明AC =BD 吗?∠1=∠2,∠B =∠C ,AB =AC ,D 、A 、E 在一条直线上.求证:AD =AE ,∠D =∠E .已知:∠1=∠2,∠B =∠C ,AB =AC .求证:AD =AE ,∠D =∠E .ABCDE1 2两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90∘,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(2)证明:DC⊥BE.如图,在Rt△ABC中,∠ACB=90∘,点D. F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90∘后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数。
如图,在正方形ABCD中,△PBC、△QCD是两个等边三角形,PB与DQ交于M,BP与CQ交于E,CP与DQ交于F. 求证:PM=QM.如图,已知长方形ABCD,过点C引∠A的平分线AM的垂线,垂足为M,AM交BC于E,连接MB,MD. (1)求证:BE=DC;(2)求证:∠MBE=∠MDC如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF.求证:DE=BF.如图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE,CD为邻边做▱CDFE,过点C作CG∥AB交EF于点G,连接BG,DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由;(2)求证:△BCG≌△DCE.如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE 于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE,求证:AE=BD.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF.求证:BE=AF.如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:(1)AE=BF;(2)AE⊥BF.如图,在△ABD和△ACE中,有下列四个等式:(1)AB=AC;(2)AD=AE;(3)∠1=∠2;(4)BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题.(要求写出已知,求证及证明过程)如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE 的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.正方形ABCD和正方形AEFG有一公共点A,点G.E分别在线段AD、AB上(如图(1)所示),连接DF、BF.(1)求证:DF=BF,(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG、BE(如图(2)所示),在旋转过程中,请猜想线段DG、BE始终有什么数量关系和位置关系并证明你的猜想.(1)已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:①AC=BD;②∠APB=60度;(2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为_______;∠APB的大小为_______;(3)如图③,在△AOB和△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,则AC与BD 间的等量关系式为_______;∠APB的大小为_______.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.△DAC, △EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N,求证:(1)AE=BD (2)CM=CN (3) △CMN为等边三角形(4)MN∥BC已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:BD=AE.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学试卷
小专题(七)旋转中的计算与证明
类型1基于“半角”的旋转
在很多题目中都有这样的题设条件:一个大角中有一个共顶点的小角,小角正好是大角的一半(如例1).当面对这样的信息时,往往可以考虑使用旋转变换,并且旋转后,多半还有一对轴对称的全等三角形出现,此时,很多问题即可迎刃而解了.总结此类问题解题的思路即是:半角信息——带形旋转——轴对称的全等三角形.
【例1】如图,已知四边形ABCD是正方形,对角线AC,BD相交于O.设E,F分别是AB上不同的两个点,且∠EOF=45°,请你用等式表示线段AE,BF和EF之间的数量关系,并证明.
【思路点拨】将△OFB绕点O顺时针旋转90°,得△OHA.连接HE,利用条件可证△EOH≌△EOF,从而得EH =EF.然后在Rt△AEH中,利用勾股定理得EH2=AH2+AE2,进而得出结论.
1.已知在△ABC中,AB=AC,D,E是BC边上的点,将△ABD绕点A旋转,得到△ACD′,连接D′E.
(1)如图1,当∠BAC=120°时,∠DAE=60°时,求证:DE=D′E;
(2)如图2,当DE=D′E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.
(3)如图3,在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D′EC是等腰直角三角形?(直接写出结论,不必说明理由)
类型2基于“等边三角形”的旋转
方法归纳:将等边三角形内的一个小三角形,旋转60度,从而使小三角形的一边与原等边三角形的边重合,连接小三角形的钝角顶点,得三角形.通过旋转将不相关的线段转化到同一个三角形中,将分散的已知条件集中起来,使问题得以解决.
【例2】如图,点P为等边△ABC内一点,且PA=2,PB=1,PC=3,求∠APB的度数.
【思路点拨】将△APC绕点A顺时针旋转60°,得△ADB.连接DA,DP,DB,得AD=AP,DB=PC=3,∠DAP=60°.从而可证△ADP为等边三角形,所以DP=AP=2,∠DPA=60°.在△DPB中,利用勾股定理逆定理可得∠DBP=90°,∠DPB=60°.从而可得∠APB=120°.
2.如图所示,点P 是等边△ABC 内一点,PB =2,PC =1,∠BPC =150°,求PA 的长.
3.如图所示,△ABC 是边长为1的等边三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一角等于60°.角的两边分别交AB 、AC 于M 、N ,连接MN ,构成一个△AMN ,求△AMN 的周长.
参考答案
【例1】 AE 2+BF 2=EF 2.证明:将△OFB 绕点O 顺时针旋转90°,得△OHA.连接HE ,∴OH =OF ,AH =BF ,∠BOF =∠AOH ,∠HOF =90°.∵四边形ABCD 是正方形,∴∠DAB =90°,∠AOB =90°.∵∠EOF =45°,∴∠AOE +∠BOF =∠AOB -∠EOF =90°-45°=45°.∴∠AOE +∠AOH =∠EOH =45°.∴∠EOH =∠EOF.在△EOH 和△EOF 中,OH =OF ,∠EOH =∠EOF ,OE =OE ,∴△EOH ≌△EOF(SAS).∴EF =EH.∵在Rt △AEH 中,由勾股定理得EH 2=AH 2+AE 2,AH =BF ,∴AE 2+BF 2=EF 2.
1.(1)证明:∵△ABD 绕点A 旋转得到△ACD′,∴AD =AD′,∠CAD ′=∠BAD.∵∠BAC =120°,∠DAE =60°,∴∠D ′AE =∠CAD ′+∠CAE =∠BAD +∠CAE =∠BAC -∠DAE =120°-60°=60°.∴∠DAE =∠D′AE.在△ADE 和△AD′E 中,AD =AD′,∠DAE =∠D′AE ,AE =AE ,∴△ADE ≌△AD ′E(SAS).∴DE =D′E.
(2)∠DAE =12
∠BAC.理由如下:在△ADE 和△AD′E 中,AD =AD′,AE =AE ,DE =D′E ,∴△ADE ≌△AD ′E(SSS).∴∠DAE =∠D′AE.∴∠BAD +∠CAE =∠CAD′+∠CAE =∠D′AE =∠DAE.∴∠DAE =12
∠BAC. (3)∵∠BAC =90°,AB =AC ,∴∠B =∠ACB =∠ACD′=45°.∴∠D ′CE =45°+45°=90°.∵△D ′EC 是等腰直角三角形,∴D ′E =2CD ′.由(2)可得DE =D′E ,∵△ABD 绕点A 旋转得到△ACD′,∴BD =CD′.∴DE =2BD.
【例2】∵△ABC为等边三角形,∴AB=AC,∠BAC=60°.将△APC绕点A顺时针旋转60°,得△ADB.连接DA,DP,DB,得AD=AP=2,DB=PC=3,∠DAP=60°.∴△ADP为等边三角形,所以DP=AP=2,∠DPA =60°.在△DPB中,DB=3,BP=1,DP=2,∴DP2+BP2=DB2.∴∠DBP=90°,∠DPB=60°.∴∠APB=∠DPB +∠DPA=60°+60°=120°.
2.将△APC绕点C按逆时针旋转60°,使CA移至CB处,PC移到P′C,PA移到P′B.∵∠PCP′=60°,∴△PCP′是等边三角形.∴∠P′PC=60°,PP′=PC=1.∵∠BPC=150°,∴∠BPP′=90°.在Rt△BP′P中,BP=2,PP′=PC=1,由勾股定理得P′B=22+1=5=PA.∴PA= 5.
3.因为△ABC为等边三角形,△DBC为等腰三角形,∠BDC=120°,所以以D为旋转中心,按顺时针方向将△DBM旋转120°如图,且N、C、E三点在同一条直线上.所以DM=DE,CE=BM,∠BDM=∠CDE.因为∠MDN =60°,所以∠BDM+∠NDC=60°.所以∠NDE=60°.在△DMN和△DEN中,DM=DE,∠MDN=∠EDN,DN=DN,所以△DMN≌△DEN.所以NE=MN.所以△AMN的周长=AM+MN+AN=AM+NE+AN=AM+NC +CE+AN=AM+NC+MB+AN.即△AMN的周长=AB+AC.因为AB=AC=1,故△AMN的周长为2.。