高中数学必修一 课时作业12
高中数学人教版A版必修一课时作业及解析:第一章1-2函数及其表示
高中数学人教版A版必修一第一章集合与函数概念§1.2函数及其表示1.2.1 函数的概念课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.函数(1)设A、B是非空的数集,如果按照某种确定的__________,使对于集合A中的____________,在集合B中都有________________和它对应,那么就称f:________为从集合A到集合B的一个函数,记作__________________.其中x 叫做________,x的取值范围A叫做函数的________,与x的值相对应的y值叫做________,函数值的集合{f(x)|x∈A}叫做函数的________.(2)值域是集合B的________.2.区间(1)设a,b是两个实数,且a<b,规定:①满足不等式__________的实数x的集合叫做闭区间,表示为________;②满足不等式__________的实数x的集合叫做开区间,表示为________;③满足不等式________或________的实数x的集合叫做半开半闭区间,分别表示为______________.(2)实数集R可以用区间表示为__________,“∞”读作“无穷大”,“+∞”读作“__________”,“-∞”读作“________”.我们把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为________,________,________,______.一、选择题1.对于函数y=f(x),以下说法正确的有()①y 是x 的函数②对于不同的x ,y 的值也不同③f (a )表示当x =a 时函数f (x )的值,是一个常量 ④f (x )一定可以用一个具体的式子表示出来 A .1个B .2个 C .3个D .4个2.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( )A .①②③④B .①②③C .②③D .②3.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )24.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有( )A .10个B .9个C .8个D .4个 5.函数y =1-x +x 的定义域为( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1} 6.函数y =x +1的值域为( ) A .[-1,+∞) B .[0,+∞) C .(-∞,0] D .(-∞,-1]二、填空题7.已知两个函数f (x )和g (x )的定义域和值域都是{1,2,3},其定义如下表:8.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2011)f (2010)=________. 9.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为______________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________. 三、解答题11.已知函数f (1-x1+x )=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少?(6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2m,渠深为1.8m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应关系是否为函数,关键是看对于数集A 中的任一个值,按照对应关系所对应数集B 中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x ,只要认清楚对应关系,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f (x )以表格形式给出时,其定义域指表格中的x 的集合;②当f (x )以图象形式给出时,由图象范围决定;③当f (x )以解析式给出时,其定义域由使解析式有意义的x 的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.§1.2 函数及其表示 1.2.1 函数的概念知识梳理1.(1)对应关系f 任意一个数x 唯一确定的数f (x ) A →B y =f (x ),x ∈A 自变量 定义域 函数值 值域 (2)子集2.(1)①a ≤x ≤b [a ,b ] ②a <x <b (a ,b ) ③a ≤x <b a <x ≤b [a ,b ),(a ,b ] (2)(-∞,+∞) 正无穷大 负无穷大 [a ,+∞) (a ,+∞) (-∞,b ] (-∞,b ) 作业设计1.B [①、③正确;②不对,如f (x )=x 2,当x =±1时y =1;④不对,f (x )不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示.]2.C [①的定义域不是集合M ;②能;③能;④与函数的定义矛盾.故选C.] 3.D [A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.]4.B [由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.]5.D [由题意可知⎩⎨⎧1-x ≥0,x ≥0,解得0≤x ≤1.]6.B 7.3 2 1解析 g [f (1)]=g (2)=3,g [f (2)]=g (3)=2, g [f (3)]=g (1)=1. 8.2010解析 由f (a +b )=f (a )f (b ),令b =1,∵f (1)=1, ∴f (a +1)=f (a ),即f (a +1)f (a )=1,由a 是任意实数,所以当a 取1,2,3,…,2010时,得f (2)f (1)=f (3)f (2)=…=f (2011)f (2010)=1.故答案为2010. 9.{-1,1,3,5,7}解析 ∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7. 10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x ≤1,0≤x +23≤1,得⎩⎪⎨⎪⎧0≤x ≤12,-23≤x ≤13,即x ∈[0,13].11.解 由1-x 1+x=2,解得x =-13,所以f (2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10∶30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11∶00至12∶00他骑了13千米.(5)9∶00~10∶00的平均速度是10千米/时;10∶00~10∶30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2m ,上底为(2+2h )m ,高为h m ,∴水的面积A=[2+(2+2h)]h2=h2+2h(m2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如下图所示.1.2.2 函数的表示法 第1课时 函数的表示法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.函数的三种表示法(1)解析法——用____________表示两个变量之间的对应关系; (2)图象法——用______表示两个变量之间的对应关系; (3)列表法——列出______来表示两个变量之间的对应关系.一、选择题1.一个面积为100cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( ) A .y =50x (x >0) B .y =100x (x >0)C .y =50x (x >0)D .y =100x (x >0)2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( ) A .0B .1C .2D .33.如果f (1x )=x1-x,则当x ≠0时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 4.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )等于( )A .2x +1B .2x -1C .2x -3D .2x +75.若g (x )=1-2x ,f [g (x )]=1-x 2x 2,则f (12)的值为( ) A .1B .15C .4D .306.在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )二、填空题7.一个弹簧不挂物体时长12cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg 物体后弹簧总长是13.5cm ,则弹簧总长y (cm)与所挂物体质量x (kg)之间的函数关系式为________________________________________________________________________.8.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________. 9.已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为__________________.三、解答题10.已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图象过(0,3)点,求f (x )的解析式.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.能力提升12.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6·时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10] B .y =[x +310]C .y =[x +410]D .y =[x +510]13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等. 2.如何求函数的解析式求函数的解析式的关键是理解对应关系f 的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法).1.2.2 函数的表示法 第1课时 函数的表示法知识梳理(1)数学表达式 (2)图象 (3)表格 作业设计1.C [由x +3x2·y =100,得2xy =100.∴y =50x (x >0).]2.B [由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.]3.B [令1x =t ,则x =1t ,代入f (1x )=x1-x,则有f (t )=1t 1-1t=1t -1,故选B.] 4.B [由已知得:g (x +2)=2x +3,令t =x +2,则x =t -2,代入g (x +2)=2x +3,则有g (t )=2(t -2)+3=2t -1,故选B.]5.B [令1-2x =12,则x =14,∴f (12)=1-(14)2(14)2=15.] 6.B [当t <0时,S =12-t 22,所以图象是开口向下的抛物线,顶点坐标是(0,12);当t >0时,S =12+t 22,开口是向上的抛物线,顶点坐标是(0,12).所以B 满足要求.]7.y =12x +12解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k+12,k =12.所以所求的函数解析式为y =12x +12.8.f (x )=-x 2+23x (x ≠0)解析 ∵f (x )=2f (1x )+x ,①∴将x 换成1x ,得f (1x )=2f (x )+1x .②由①②消去f (1x ),得f (x )=-23x -x3,即f (x )=-x 2+23x (x ≠0).9.f (x )=2x +83或f (x )=-2x -8 解析 设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a 2x +ab +b .∴⎩⎨⎧a 2=4ab +b =8,解得⎩⎪⎨⎪⎧a =2b =83或⎩⎨⎧a =-2b =-8.10.解 设f (x )=ax 2+bx +c (a ≠0).由f (0)=f (4)知⎩⎨⎧f (0)=c ,f (4)=16a +4b +c ,f (0)=f (4),得4a +b =0.① 又图象过(0,3)点, 所以c =3.②设f (x )=0的两实根为x 1,x 2,则x 1+x 2=-b a ,x 1·x 2=ca . 所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a)2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f (x )=x 2-4x +3.11.解 因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y … -5 0 3 4 3 0 -5 …连线,描点,得函数图象如图:(1)根据图象,容易发现f (0)=3,f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2). (3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].12.B [方法一 特殊取值法,若x =56,y =5,排除C 、D ,若x =57,y =6,排除A ,所以选B.方法二 设x =10m +α(0≤α≤9),0≤α≤6时, [x +310]=[m +α+310]=m =[x 10],当6<α≤9时,[x +310]=[m +α+310]=m +1=[x10]+1, 所以选B.]13.解 因为对任意实数x ,y ,有 f (x -y )=f (x )-y (2x -y +1), 所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1).又f (0)=1, ∴f (x )=x (x +1)+1=x 2+x +1.第2课时分段函数及映射课时目标 1.了解分段函数的概念,会画分段函数的图象,并能解决相关问题.2.了解映射的概念.1.分段函数(1)分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的____________的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的______;各段函数的定义域的交集是空集.(3)作分段函数图象时,应_____________________________________.2.映射的概念设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A 中的任意一个元素x,在集合B中____________确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的__________.一、选择题1.已知,则f(3)为()A.2B.3C.4D.52.下列集合A到集合B的对应中,构成映射的是()3.一旅社有100间相同的客房,经过一段时间的经营实践,发现每间客房每天的定价与住房率有如下关系:A.100元B.90元C.80元D.60元4.已知函数,使函数值为5的x的值是()A.-2B.2或-5 2C.2或-2D.2或-2或-5 25.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m元收费;用水超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水为() A.13立方米B.14立方米C.18立方米D.26立方米6.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列不能表示从P到Q的映射的是()A.f:x→y=12x B.f:x→y=13xC.f:x→y=23x D.f:x→y=x二、填空题7.已知,则f(7)=____________.8.设则f {f [f (-34)]}的值为________,f (x )的定义域是______________.9.已知函数f (x )的图象如下图所示,则f (x )的解析式是__________________.三、解答题 10.已知,(1)画出f (x )的图象; (2)求f (x )的定义域和值域.11.如图,动点P从边长为4的正方形ABCD的顶点B开始,顺次经C、D、A绕周界运动,用x表示点P的行程,y表示△APB的面积,求函数y=f(x)的解析式.能力提升12.设f:x→x2是集合A到集合B的映射,如果B={1,2},则A∩B一定是() A.∅B.∅或{1}C.{1}D.∅13.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d是车速v(公里/小时)的平方与车身长S(米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d关于v的函数关系式(其中S为常数).1.全方位认识分段函数(1)分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.(2)分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.对映射认识的拓展映射f:A→B,可理解为以下三点:(1)A中每个元素在B中必有唯一的元素与之对应;(2)对A中不同的元素,在B中可以有相同的元素与之对应;(3)A中元素与B中元素的对应关系,可以是:一对一、多对一,但不能一对多.3.函数与映射的关系映射f:A→B,其中A、B是两个“非空集合”;而函数y=f(x),x∈A为“非空的实数集”,其值域也是实数集,于是,函数是数集到数集的映射.由此可知,映射是函数的推广,函数是一种特殊的映射.第2课时 分段函数及映射知识梳理1.(1)对应关系 (2)并集 (3)分别作出每一段的图象 2.都有唯一 一个映射 作业设计 1.A [∵3<6,∴f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.] 2.D3.C [不同的房价对应着不同的住房率,也对应着不同的收入,因此求出4个不同房价对应的收入,然后找出最大值对应的房价即可.] 4.A [若x 2+1=5,则x 2=4,又∵x ≤0,∴x =-2, 若-2x =5,则x =-52,与x >0矛盾,故选A.]5.A [该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎨⎧mx , 0≤x ≤10,2mx -10m ,x >10. 由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13(立方米).]6.C [如果从P 到Q 能表示一个映射,根据映射的定义,对P 中的任一元素,按照对应关系f 在Q 中有唯一元素和它对应,选项C 中,当x =4时,y =23×4=83∉Q ,故选C.] 7.6解析 ∵7<9,∴f (7)=f [f (7+4)]=f [f (11)]=f (11-3)=f (8). 又∵8<9,∴f (8)=f [f (12)]=f (9)=9-3=6. 即f (7)=6.8.32 {x |x ≥-1且x ≠0}解析 ∵-1<-34<0,∴f (-34)=2×(-34)+2=12.而0<12<2,∴f (12)=-12×12=-14.∵-1<-14<0,∴f (-14)=2×(-14)+2=32.因此f {f [f (-34)]}=32.函数f (x )的定义域为{x |-1≤x <0}∪{x |0<x <2}∪{x |x ≥2}={x |x ≥-1且x ≠0}.9.f (x )=⎩⎨⎧ x +1, -1≤x <0,-x ,0≤x ≤1解析 由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎨⎧ -a +b =0,b =1.∴⎩⎨⎧a =1,b =1.当0<x <1时,设f (x )=kx ,将(1,-1)代入,则k =-1. 10.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.解 当点P 在BC 上运动,即0≤x ≤4时,y =12×4x =2x ;当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8;当点P 在DA 上运动,即8<x ≤12时,y =12×4×(12-x )=24-2x .综上可知,f (x )=⎩⎨⎧ 2x , 0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.12.B [由题意可知,集合A 中可能含有的元素为:当x 2=1时,x =1,-1;当x 2=2时,x =2,- 2. 所以集合A 可为含有一个、二个、三个、四个元素的集合.无论含有几个元素,A ∩B =∅或{1}.故选B.]13.解 根据题意可得d =k v 2S .∵v =50时,d =S ,代入d =k v 2S 中,解得k =12500.∴d =12500v 2S .当d =S 2时,可解得v =25 2.∴d =⎩⎪⎨⎪⎧ S 2 (0≤v <252)12500v 2S (v ≥252).§1.2习题课课时目标 1.加深对函数概念的理解,加深对映射概念的了解.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.通过具体实例,理解简单的分段函数,并能简单应用.1.下列图形中,不可能作为函数y=f(x)图象的是()2.已知函数f:A→B(A、B为非空数集),定义域为M,值域为N,则A、B、M、N的关系是()A.M=A,N=B B.M⊆A,N=BC.M=A,N⊆B D.M⊆A,N⊆B3.函数y=f(x)的图象与直线x=a的交点()A.必有一个B.一个或两个C.至多一个D.可能两个以上4.已知函数,若f(a)=3,则a的值为()A.3B.- 3C.±3D.以上均不对5.若f(x)的定义域为[-1,4],则f(x2)的定义域为()A.[-1,2]B.[-2,2]C.[0,2]D.[-2,0]6.函数y=xkx2+kx+1的定义域为R,则实数k的取值范围为() A.k<0或k>4B.0≤k<4C.0<k<4D.k≥4或k≤0一、选择题1.函数f (x )=xx 2+1,则f (1x )等于( )A .f (x )B .-f (x )C.1f (x )D.1f (-x )2.已知f (x 2-1)的定义域为[-3,3],则f (x )的定义域为( )A .[-2,2]B .[0,2]C .[-1,2]D .[-3,3]3.已知集合A ={a ,b },B ={0,1},则下列对应不是从A 到B 的映射的是()4.与y =|x |为相等函数的是( )A .y =(x )2B .y =x 2C .D .y =3x 35.函数y =2x +1x -3的值域为( )A .(-∞,43)∪(43,+∞)B .(-∞,2)∪(2,+∞)C .RD .(-∞,23)∪(43,+∞)6.若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B 等于( )A .[1,+∞)B .(1,+∞)C .[2,+∞)D .(0,+∞)二、填空题7.设集合A=B={(x,y)|x∈R,y∈R},点(x,y)在映射f:A→B的作用下对应的点是(x-y,x+y),则B中点(3,2)对应的A中点的坐标为____________.8.已知f(x+1)=x+2x,则f(x)的解析式为___________________________________.9.已知函数,则f(f(-2))=______________________________.三、解答题10.若3f(x-1)+2f(1-x)=2x,求f(x).11.已知,若f(1)+f(a+1)=5,求a的值.能力提升12.已知函数f(x)的定义域为[0,1],则函数f(x-a)+f(x+a)(0<a<12)的定义域为()A.∅B.[a,1-a] C.[-a,1+a]D.[0,1]13.已知函数(1)求f(-3),f[f(-3)];(2)画出y=f(x)的图象;(3)若f(a)=12,求a的值.1.函数的定义域、对应关系以及值域是构成函数的三个要素.事实上,如果函数的定义域和对应关系确定了,那么函数的值域也就确定了.两个函数是否相同,只与函数的定义域和对应关系有关,而与函数用什么字母表示无关.求函数定义域时,要注意分式的字母不能为零;偶次根式内的被开方式子必须大于或等于零.2.函数图象是描述函数两个变量之间关系的一种重要方法,它能够直观形象地表示自变量、函数值的变化趋势.函数的图象可以是直线、光滑的曲线,也可以是一些孤立的点、线段或几段曲线等.3.函数的表示方法有列举法、解析法、图象法三种.根据解析式画函数的图象时,要注意定义域对函数图象的制约作用.函数的图象既是研究函数性质的工具,又是数形结合方法的基础.§1.2习题课双基演练1.C[C选项中,当x取小于0的一个值时,有两个y值与之对应,不符合函数的定义.]2.C[值域N应为集合B的子集,即N⊆B,而不一定有N=B.]3.C[当a属于f(x)的定义域内时,有一个交点,否则无交点.]4.A[当a≤-1时,有a+2=3,即a=1,与a≤-1矛盾;当-1<a<2时,有a2=3,∴a=3,a=-3(舍去);当a≥2时,有2a=3,∴a=32与a≥2矛盾.综上可知a = 3.]5.B [由-1≤x 2≤4,得x 2≤4,∴-2≤x ≤2,故选B.]6.B [由题意,知kx 2+kx +1≠0对任意实数x 恒成立,当k =0时,1≠0恒成立,∴k =0符合题意.当k ≠0时,Δ=k 2-4k <0,解得0<k <4,综上,知0≤k <4.]作业设计1.A [f (1x )=1x 1x 2+1=x 1+x 2=f (x ).] 2.C [∵x ∈[-3,3],∴0≤x 2≤3,∴-1≤x 2-1≤2,∴f (x )的定义域为[-1,2].]3.C [C 选项中,和a 相对应的有两个元素0和1,不符合映射的定义.故答案为C.]4.B [A 中的函数定义域与y =|x |不同;C 中的函数定义域不含有x =0,而y =|x |中含有x =0,D 中的函数与y =|x |的对应关系不同,B 正确.]5.B [用分离常数法.y =2(x -3)+7x -3=2+7x -3. ∵7x -3≠0,∴y ≠2.] 6.C [化简集合A ,B ,则得A =[1,+∞),B =[2,+∞).∴A ∩B =[2,+∞).]7.(52,-12)解析 由题意⎩⎨⎧ x -y =3x +y =2,∴⎩⎪⎨⎪⎧ x =52y =-12.8.f (x )=x 2-1(x ≥1)解析 ∵f (x +1)=x +2x=(x )2+2x +1-1=(x +1)2-1,∴f (x )=x 2-1. 由于x +1≥1,所以f (x )=x 2-1(x ≥1).9.4解析 ∵-2<0,∴f (-2)=(-2)2=4,又∵4≥0,∴f (4)=4,∴f (f (-2))=4.10.解 令t =x -1,则1-x =-t ,原式变为3f (t )+2f (-t )=2(t +1),①以-t 代t ,原式变为3f (-t )+2f (t )=2(1-t ),②由①②消去f (-t ),得f (t )=2t +25. 即f (x )=2x +25.11.解 f (1)=1×(1+4)=5,∵f (1)+f (a +1)=5,∴f (a +1)=0.当a +1≥0,即a ≥-1时,有(a +1)(a +5)=0,∴a =-1或a =-5(舍去).当a +1<0,即a <-1时,有(a +1)(a -3)=0,无解.综上可知a =-1.12.B [由已知,得⎩⎨⎧ 0≤x +a ≤1,0≤x -a ≤1⇒⎩⎨⎧-a ≤x ≤1-a ,a ≤x ≤1+a . 又∵0<a <12,∴a ≤x ≤1-a ,故选B.]13.解 (1)∵x ≤-1时,f (x )=x +5,∴f (-3)=-3+5=2,∴f [f (-3)]=f (2)=2×2=4.(2)函数图象如右图所示.(3)当a ≤-1时,f (a )=a +5=12,a =-92≤-1; 当-1<a <1时,f (a )=a 2=12,a =±22∈(-1,1); 当a ≥1时,f (a )=2a =12,a =14∉[1,+∞),舍去. 故a 的值为-92或±22.。
新教材高中数学第四章指数函数与对数函数 指数函数的概念课时作业新人教A版必修第一册
4.2.1 指数函数的概念必备知识基础练1.(多选)下列函数是指数函数的有( ) A .y =x 4B .y =(12)xC .y =22xD .y =-3x2.已知某种细胞分裂时,由1个分裂成2个,2个分裂成4个……依此类推,那么1个这样的细胞分裂3次后,得到的细胞个数为( )A .4个B .8个C .16个D .32个3.如果指数函数f (x )=a x(a >0,且a ≠1)的图象经过点(2,4),那么a 的值是( ) A . 2 B .2 C .3 D .44.若函数f (x )是指数函数,且f (2)=2,则f (x )=( ) A .(2)x B .2xC .(12)xD .(22)x5.已知f (x )=3x -b(b 为常数)的图象经过点(2,1),则f (4)的值为( )A .3B .6C .9D .86.已知函数f (x )=⎩⎪⎨⎪⎧2x,x <0,3x ,x >0,则f (f (-1))=( )A .2B . 3C .0D .127.已知函数y =a ·2x和y =2x +b都是指数函数,则a +b =________.8.已知函数f (x )是指数函数,且f (-32)=525,则f (3)=________.关键能力综合练1.若函数y =(m 2-m -1)·m x是指数函数,则m 等于( ) A .-1或2 B .-1 C .2 D .122.函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +3,x ≤0,则f (f (-2))的值为( )A .14B .12C .2D .43.若函数f (x )=(12a -1)·a x是指数函数,则f (12)的值为( )A .-2B .2C .-2 2D .2 24.若函数y =(2a -1)x(x 是自变量)是指数函数,则a 的取值范围是( ) A .a >0且a ≠1 B .a ≥0且a ≠1 C .a >12且a ≠1 D .a ≥125.某产品计划每年成本降低p %,若三年后成本为a 元,则现在成本为( ) A .a (1+p %)元 B .a (1-p %)元 C .a (1-p %)3元 D .a1+p %元 6.(多选)设指数函数f (x )=a x(a >0,且a ≠1),则下列等式中正确的是( ) A .f (x +y )=f (x )f (y ) B .f (x -y )=f (x )f (y )C .f (xy)=f (x )-f (y ) D .f (nx )=[f (x )]n(n ∈Q )7.某厂2018年的产值为a 万元,预计产值每年以7%的速度增加,则该厂到2022年的产值为________万元.8.若函数y =(k +2)a x+2-b (a >0,且a ≠1)是指数函数,则k =________,b =________. 9.已知指数函数f (x )=a x(a >0,且a ≠1), (1)求f (0)的值;(2)如果f (2)=9,求实数a 的值.10.已知函数f (x )=(a 2+a -5)a x是指数函数. (1)求f (x )的表达式;(2)判断F (x )=f (x )-f (-x )的奇偶性,并加以证明.核心素养升级练1.某乡镇现在人均一年占有粮食360千克,如果该乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x 年后若人均一年占有y 千克粮食,则y 关于x 的解析式为( )A .y =360(1.041.012)x -1B .y =360×1.04xC .y =360×1.04x1.012D .y =360(1.041.012)x2.已知函数f (x )=⎩⎪⎨⎪⎧3x(x >0)2x -3(x ≤0),若f (a )-f (2)=0,则实数a 的值等于________.3.截止到2018年底,我国某市人口约为130万.若今后能将人口年平均递增率控制在3‰,经过x 年后,此市人口数为y (万).(1)求y 与x 的函数关系y =f (x ),并写出定义域;(2)若按此增长率,2029年年底的人口数是多少?(3)哪一年年底的人口数将达到135万?4.2.1 指数函数的概念必备知识基础练1.答案:BC解析:对于A,函数y =x 4不是指数函数, 对于B,函数y =(12)x是指数函数;对于C,函数y =22x=4x是指数函数; 对于D,函数y =-3x不是指数函数. 2.答案:B解析:由题意知1个细胞分裂3次的个数为23=8. 3.答案:B解析:由题意可知f (2)=a 2=4,解得a =2或a =-2(舍). 4.答案:A解析:由题意,设f (x )=a x(a >0且a ≠1), 因为f (2)=2,所以a 2=2,解得a = 2. 所以f (x )=(2)x. 5.答案:C 解析:f (2)=32-b=1=30,即b =2,f (4)=34-2=9.6.答案:B解析:f (-1)=2-1=12,f (f (-1))=f (12)=312= 3.7.答案:1解析:因为函数y =a ·2x是指数函数,所以a =1, 由y =2x +b是指数函数,所以b =0,所以a +b =1. 8.答案:125解析:设f (x )=a x(a >0且a ≠1),则f (-32)=a -32=525=5-32,得a =5,故f (x )=5x,因此,f (3)=53=125.关键能力综合练1.答案:C解析:由题意可得⎩⎪⎨⎪⎧m 2-m -1=1m >0m ≠1,解得m =2.2.答案:C解析:由题意f (-2)=-2+3=1,∴f (f (-2))=f (1)=2. 3.答案:B解析:因为函数f (x )=(12a -1)·a x 是指数函数,所以12a -1=1,即a =4,所以f (x )=4x,那么f (12)=412=2.4.答案:C解析:由于函数y =(2a -1)x(x 是自变量)是指数函数,则2a -1>0且2a -1≠1,解得a >12且a ≠1.5.答案:C解析:设现在成本为x 元,因为某产品计划每年成本降低p %,且三年后成本为a 元, 所以(1-p %)3x =a , 所以x =a(1-p %)3.6.答案:ABD解析:因指数函数f (x )=a x(a >0,且a ≠1),则有: 对于A,f (x +y )=ax +y=a x ·a y=f (x )f (y ),A 中的等式正确;对于B,f (x -y )=a x -y=a x·a -y=a x a y =f (x )f (y ),B 中的等式正确;对于C,f (x y )=a x y ,f (x )-f (y )=a x -a y ,显然,a xy≠a x -a y,C 中的等式错误;对于D,n ∈Q ,f (nx )=a nx =(a x )n =[f (x )]n,D 中的等式正确. 7.答案:a (1+7%)4解析:2018年产值为a ,增长率为7%. 2019年产值为a +a ×7%=a (1+7%)(万元).2020年产值为a (1+7%)+a (1+7%)×7%=a (1+7%)2(万元). ……2022年的产值为a (1+7%)4万元. 8.答案:-1 2解析:根据指数函数的定义,得⎩⎪⎨⎪⎧k +2=1,2-b =0,解得⎩⎪⎨⎪⎧k =-1,b =2.9.解析:(1)f (0)=a 0=1. (2)f (2)=a 2=9,∴a =3.10.解析:(1)由a 2+a -5=1,可得a =2或a =-3(舍去), ∴f (x )=2x.(2)F (x )=2x -2-x,定义域为R , ∴F (-x )=2-x-2x=-F (x ), ∴F (x )是奇函数.核心素养升级练1.答案:D解析:不妨设现在乡镇人口总数为a ,则现在乡镇粮食总量为360a ,故经过x 年后,乡镇人口总数为a (1+0.012)x ,乡镇粮食总量为360a (1+0.04)x, 故经过x 年后,人均占有粮食y =360a (1+0.04)xa (1+0.012)x =360(1.041.012)x. 2.答案:2解析:由已知,得f (2)=9; 又当x >0时,f (x )=3x, 所以当a >0时,f (a )=3a, 所以3a-9=0,所以a =2. 当x <0时,f (x )=2x -3, 所以当a <0时,f (a )=2a -3, 所以2a -3-9=0,所以a =6, 又因为a <0,所以a ≠6. 综上可知a =2.3.解析:(1)2018年年底的人口数为130万;经过1年,2019年年底的人口数为130+130×3‰=130(1+3‰)(万);经过2年,2020年年底的人口数为130(1+3‰)+130(1+3‰)×3‰=130(1+3‰)2(万);经过3年,2021年年底的人口数为130(1+3‰)2+130(1+3‰)2×3‰=130(1+3‰)3(万).……所以经过的年数与(1+3‰)的指数相同,所以经过x年后的人口数为130(1+3‰)x(万).即y=f(x)=130(1+3‰)x(x∈N*).(2)2029年年底,经过了11年,过2029年底的人口数为130(1+3‰)11≈134(万).(3)由(2)可知,2029年年底的人口数为130(1+3‰)11≈134<135.2030年年底的人口数为130(1+3‰)12≈134.8(万),2031年年底的人口数为130(1+3‰)13≈135.2(万).所以2031年年底的人口数将达到135万.。
高中数学 本册素养等级测评课时作业(含解析)新人教B版必修第一册-新人教B版高一第一册数学试题
本册素养等级测评一、单选题(本大题共5小题,每小题8分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“∃x <0,使x 2-3x +1≥0”的否定是( C ) A .∃x <0,使x 2-3x +1<0 B .∃x ≥0,使x 2-3x +1<0 C .∀x <0,使x 2-3x +1<0 D .∀x ≥0,使x 2-3x +1<0解析:命题“∃x <0,使x 2-3x +1≥0”的否定是“∀x <0,x 2-3x +1<0”,故选C . 2.设f (x )=ax 5+bx 3+cx +7(其中a 、b 、c 为常数,x ∈R ),若f (-7)=-17,则f (7)=( A )A .31B .17C .-31D .24解析:令g (x )=ax 5+bx 3+cx ,则g (x )为奇函数. ∴f (-7)=g (-7)+7=-17,∴g (-7)=-24. ∴f (7)=g (7)+7=24+7=31.3.对于α:a -1a +1>0,β:关于x 的方程x 2-ax +1=0有实数根,则α是β成立的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由α:a -1a +1>0解得a >1或a <-1,β:关于x 的方程x 2-ax +1=0有实数根,则Δ=a 2-4≥0,解得a ≥2或a ≤-2.∵{a |a ≥2或a ≤-2}{a |a >1或a <-1},∴α是β成立的必要不充分条件,故选B .4.关于x 的不等式(a 2-1)x 2-(a -1)x -1<0的解集为R ,则实数a 的取值X 围为( D )A .⎝ ⎛⎭⎪⎫-35,1B .⎣⎢⎡⎦⎥⎤-35,1C .⎝ ⎛⎦⎥⎤-35,1∪{-1} D .⎝ ⎛⎦⎥⎤-35,1 解析:当a 2-1=0时,a =±1,若a =1,则原不等式可化为-1<0,显然恒成立;若a =-1,则原不等式可化为2x -1<0,不恒成立,所以a =-1舍去;当a 2-1≠0时,因为(a 2-1)x 2-(a -1)x -1<0的解集为R ,所以只需⎩⎪⎨⎪⎧a 2-1<0,Δ=[-a -1]2+4a 2-1<0,解得-35<a <1.综上,实数a 的取值X 围为⎝ ⎛⎦⎥⎤-35,1.故选D . 5.若关于x 的方程f (x )-2=0在(-∞,0)内有解,则y =f (x )的图像可以是( D )解析:因为关于x 的方程f (x )-2=0在(-∞,0)内有解,所以函数y =f (x )与y =2的图像在(-∞,0)内有交点,观察图像可知只有D 中图像满足要求.6.已知不等式(x +y )(1x +ay)≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为( B )A .2B .4C .6D .8解析:(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥1+a +2a =(a +1)2(x ,y ,a >0),当且仅当y=ax 时取等号,所以(x +y )·⎝⎛⎭⎪⎫1x +a y的最小值为(a +1)2,于是(a +1)2≥9恒成立,所以a ≥4,故选B .7.已知f (x )=(x -a )(x -b )-2,并且α,β是函数f (x )的两个零点,则实数a ,b ,α,β的大小关系可能是( C )A .a <α<b <βB .a <α<β<bC .α<a <b <βD .α<a <β<b解析:∵α,β是函数f (x )的两个零点,∴f (α)=f (β)=0.又∵f (a )=f (b )=-2<0,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间,故它们之间的关系可能为α<a <b <β.故选C .8.函数f (x )=x |x |.若存在x ∈[1,+∞),使得f (x -2k )-k <0,则实数k 的取值X 围是( D )A .(2,+∞)B .(1,+∞)C .(12,+∞)D .⎝ ⎛⎭⎪⎫14,+∞ 解析:当k ≤12时,x -2k ≥0,因此f (x -2k )-k <0,可化为(x -2k )2-k <0,即存在x∈[1,+∞),使g (x )=x 2-4kx +4k 2-k <0成立,由于g (x )=x 2-4kx +4k 2-k 的对称轴为直线x =2k ≤1,所以g (x )=x 2-4kx +4k 2-k 在[1,+∞)上单调递增,因此只要g (1)<0,即1-4k +4k 2-k <0,解得14<k <1.又因为k ≤12,所以14<k ≤12.当k >12时,f (x -2k )=(x -2k )|x -2k |=⎩⎪⎨⎪⎧-x -2k 2,1≤x ≤2k ,x -2k 2,x >2k .当1≤x ≤2k 时,f (x -2k )-k =-(x -2k )2-k <0恒成立,满足存在x ∈[1,+∞),使得f (x -2k )-k <0成立.综上,k >14.故选D .二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.设全集U ={0,1,2,3,4},集合M ={0,1,4},N ={0,1,3},则( AC ) A .M ∩N ={0,1} B .∁U N ={4} C .M ∪N ={0,1,3,4} D .集合M 的真子集个数为8解析:由题意,M ∩N ={0,1},A 正确;∁U N ={2,4},B 不正确;M ∪N ={0,1,3,4},C 正确;集合M 的真子集个数为23-1=7,D 不正确;故选AC .10.下列对应关系f ,能构成从集合M 到集合N 的函数的是( ABD )A .M =⎩⎨⎧⎭⎬⎫12,1,32,N ={-6,-3,1},f ⎝ ⎛⎭⎪⎫12=-6,f (1)=-3,f ⎝ ⎛⎭⎪⎫32=1 B .M =N ={x |x ≥-1},f (x )=2x +1 C .M =N ={1,2,3},f (x )=2x +1D .M =Z ,N ={-1,1},n 为奇数时,f (n )=-1,n 为偶数时,f (n )=1解析:对于A ,M ={12,132},N ={-6,-3,1},f ⎝ ⎛⎭⎪⎫12=-6,f (1)=-3,f ⎝ ⎛⎭⎪⎫32=1,满足函数的定义“集合M 中每一个元素在集合N 中都有唯一的元素与之对应”,则f 能构成从集合M 到集合N 的函数,满足题意;对于B ,M =N ={x |x ≥-1},f (x )=2x +1,满足函数的定义“集合M 中每一个元素在集合N 中都有唯一的元素与之对应”,则f 能构成从集合M 到集合N 的函数,满足题意;对于C ,M =N ={1,2,3},f (x )=2x +1,∵f (2)=5∉N ,∴不满足函数的定义“集合M 中每一个元素在集合N 中都有唯一的元素与之对应”,则f 不能构成从集合M 到集合N 的函数,不满足题意;对于D ,M =Z ,N ={-1,1},n 为奇函数时,f (n )=-1,n 为偶函数时,f (n )=1,满足函数的定义“集合M 中每一个元素在集合N 中都有唯一的元素与之对应”,则f 能构成从集合M 到集合N 的函数,满足题意;故选ABD .11.已知f (x )=x +1x -1(x ≠±1),则下列各式成立的是( CD ) A .f (x )+f (-x )=0 B .f (x )·f (-x )=-1 C .f (x )-1f -x=0D .f (x )·f (-x )=1解析:∵f (x )+f (-x )=x +1x -1+-x +1-x -1=2x 2+2x 2-1≠0,∴A 不符合题意,∵f (x )·f (-x )=x +1x -1×-x +1-x -1=1,∴B 不符合题意,D 符合题意,∵f (x )-1f -x =x +1x -1--x -1-x +1=0,∴C 符合题意;故选CD .12.下列命题中正确的是( AC ) A .y =x +1x(x <0)的最大值是-2B .y =x 2+3x 2+2的最小值是2C .y =2-3x -4x (x >0)的最大值是2-4 3D .y =2-3x -4x(x >0)的最小值是2-4 3解析:y =x +1x =-⎝ ⎛⎭⎪⎫-x -1x ≤-2,当且仅当x =-1时,等号成立,所以A 正确;y =x 2+3x 2+2=x 2+2+1x 2+2>2,取不到最小值2,所以B 错误;y =2-3x -4x (x >0)=2-⎝⎛⎭⎪⎫3x +4x ≤2-43,当且仅当3x =4x 时,等号成立,所以C 正确;y =2-3x -4x(x >0)的最大值是2-43,所以D 错误.故选AC .三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上) 13.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则函数f (x )的解析式为__f (x )=2x +7__.解析:由题意,设f (x )=ax +b (a ≠0). ∵f (x )满足3f (x +1)-2f (x -1)=2x +17, ∴3[a (x +1)+b ]-2[a (x -1)+b ]=2x +17, 即ax +(5a +b )=2x +17,∴⎩⎪⎨⎪⎧a =2,5a +b =17,解得⎩⎪⎨⎪⎧a =2,b =7.∴f (x )=2x +7.14.函数y =3-2x -x 2的定义域是__[-3,1]__,值域为__[0,2]__.解析:要使函数有意义,需3-2x -x 2≥0,即x 2+2x -3≤0,解得-3≤x ≤1.∴定义域为[-3,1].∵-x 2-2x +3=-(x -1)2+4 ∴y =-x 2-2x +3的值域为[0,2].15.关于x 的不等式x 2-ax +a +3≥0在区间[-2,0]上恒成立,则实数a 的取值X 围是__[-2,+∞)__.解析:由题意得a ≥x 2+3x -1=(x -1)+4x -1+2.因为-2≤x ≤0,所以-3≤x -1≤-1.所以(x -1)+4x -1+2=-[(1-x )+41-x]+2≤-24+2=-2. 当且仅当x =-1时取到等号.所以a ≥-2. 故实数a 的取值X 围为[-2,+∞). 16.给出以下四个命题:①若集合A ={x ,y },B ={0,x 2},A =B ,则x =1,y =0;②若函数f (x )的定义域为(-1,1),则函数f (2x +1)的定义域为(-1,0); ③函数f (x )=1x的单调递减区间是(-∞,0)∪(0,+∞);④若f (x +y )=f (x )f (y ),且f (1)=1,则f 2f 1+f 4f 3+…+f 2 018f 2 017+f 2 020f 2 019=2 020.其中正确的命题有__①②__.(写出所有正确命题的序号)解析:①由A ={x ,y },B ={0,x 2},A =B 可得⎩⎪⎨⎪⎧y =0,x =x 2或⎩⎪⎨⎪⎧x =0,y =x 2.(舍)故x =1,y=0,正确;②由函数f (x )的定义域为(-1,1),得函数f (2x +1)满足-1<2x +1<1,解得-1<x <0,即函数f (2x +1)的定义域为(-1,0),正确;③函数f (x )=1x的单调递减区间是(-∞,0),(0,+∞),不能用并集符号,错误;④由题意f (x +y )=f (x )f (y ),且f (1)=1,则f 2f 1+f 4f 3+…+f 2 018f 2 017+f 2 020f 2 019=f 1·f 1f 1+f 3·f 1f 3+…+f 2 017·f 1f 2 017+f 2 019·f 1f 2 019=f (1)+f (1)+…+f (1)=1+1+…+1=1010,错误.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知集合A ={x |x <a },B ={x |1≤x ≤2},C ={x |mx +2=0}. (1)若A ∪(∁R B )=R ,某某数a 的取值X 围; (2)若C ∩B =C ,某某数m 的取值X 围.解:(1)∵B ={x |1≤x ≤2},∴∁R B ={x |x <1或x >2}.又∵A ={x |x <a },A ∪(∁R B )=R ,∴a >2,即实数a 的取值X 围是(2,+∞). (2)∵C ∩B =C ,∴C ⊆B . 当C =∅时,m =0符合题意.当C ≠∅时,由mx +2=0得x =-2m ,故1≤-2m≤2,解得-2≤m ≤-1.综上可知,实数m 的取值X 围为[-2,-1]∪{0}.18.(12分)若集合A ={x |x 2+x -6=0},B ={x |x 2+x +a =0},且B ⊆A ,某某数a 的取值X 围.解:A ={-3,2}.对于x 2+x +a =0,①当Δ=1-4a <0,即a >14时,B =∅,B ⊆A 成立;②当Δ=1-4a =0,即a =14时,B =⎩⎨⎧⎭⎬⎫-12,B ⊆A 不成立;③当Δ=1-4a >0,即a <14时,若B ⊆A 成立,则B ={-3,2},∴a =-3×2=-6. 综上,a 的取值X 围为a >14或a =-6.19.(12分)已知函数f (x )=ax 2-2x +1(a ≠0). (1)若函数f (x )有两个零点,某某数a 的取值X 围;(2)若函数f (x )在区间(0,1)与(1,2)上各有一个零点,某某数a 的取值X 围.解:(1)函数f (x )有两个零点,即方程ax 2-2x +1=0(a ≠0)有两个不等实根,令Δ>0,即4-4a >0,解得a <1.又因为a ≠0,所以实数a 的取值X 围为(-∞,0)∪(0,1).(2)若函数f (x )在区间(0,1)与(1,2)上各有一个零点,由f (x )的图像过点(0,1)可知,只需⎩⎪⎨⎪⎧f 0>0,f 1<0,f 2>0,即⎩⎪⎨⎪⎧1>0,a -1<0,4a -3>0,解得34<a <1.所以实数a 的取值X 围为⎝ ⎛⎭⎪⎫34,1. 20.(12分)为了净化空气,某科研单位根据实验得出,在一定X 围内,每喷洒1个单位的净化剂,空气中释放的浓度y (单位:毫克/米3)随着时间x (单位:天)变化的函数关系式近似为y =⎩⎪⎨⎪⎧168-x -1,0≤x ≤4,5-12x ,4<x ≤10.若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4(毫克/米3)时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒a (1≤a ≤4)个单位的净化剂,要使接下来的4天中能够持续有效净化,试求a 的最小值(精确到0.1,参考数据:2取1.4).解析:(1)因为一次喷洒4个单位的净化剂, 所以浓度f (x )=4y =⎩⎪⎨⎪⎧648-x-4,0≤x ≤4,20-2x ,4<x ≤10.则当0≤x ≤4时,由648-x-4≥4,解得x ≥0,所以此时0≤x ≤4.当4<x ≤10时,由20-2x ≥4,解得x ≤8, 所以此时4<x ≤8.综上,得0≤x ≤8,即若一次投放4个单位的净化剂,则有效净化时间可达8天. (2)设从第一次喷洒起,经x (6≤x ≤10)天,浓度g (x )=2⎝ ⎛⎭⎪⎫5-12x +a ⎣⎢⎡⎦⎥⎤168-x -6-1=10-x +16a 14-x -a =(14-x )+16a14-x-a -4≥214-x ·16a14-x-a -4=8a -a -4.因为14-x ∈[4,8],而1≤a ≤4.所以4a ∈[4,8],故当且仅当14-x =4a 时,y 有最小值为8a -a -4. 令8a -a -4≥4,解得24-162≤a ≤4,所以a 的最小值为24-162≈1.6. 21.(12分)已知函数f (x )=x 2-2x -8,g (x )=2x 2-4x -16. (1)求不等式g (x )<0的解集;(2)若对一切x >2,均有f (x )≥(m +2)x -m -15成立,某某数m 的取值X 围. 解:(1)g (x )=2x 2-4x -16<0,即(2x +4)(x -4)<0, ∴-2<x <4,∴不等式g (x )<0的解集为{x |-2<x <4}. (2)∵f (x )=x 2-2x -8.当x >2时,f (x )≥(m +2)x -m -15恒成立, ∴x 2-2x -8≥(m +2)x -m -15, 即x 2-4x +7≥m (x -1).∴对一切x >2,均有不等式x 2-4x +7x -1≥m 成立.而x 2-4x +7x -1=(x -1)+4x -1-2≥2x -1×4x -1-2=2(当且仅当x =3时等号成立),∴实数m 的取值X 围是(-∞,2].22.(12分)定义在(-∞,0)∪(0,+∞)上的函数y =f (x )满足f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ),且函数f (x )在(0,+∞)上是增函数.(1)求f (-1),并证明函数y =f (x )是偶函数;(2)若f (4)=2,解不等式f (x -5)-f ⎝ ⎛⎭⎪⎫3x ≤1.解:(1)令x =y ≠0,则f (1)=f (x )-f (x )=0. 再令x =1,y =-1可得f (-1)=f (1)-f (-1) =-f (-1),∴f (-1)=0.证明:令y =-1可得f (-x )=f (x )-f (-1)=f (x ), ∴f (x )是偶函数.(2)∵f (2)=f (4)-f (2),∴f (2)=12f (4)=1.又f (x -5)-f (3x )=f (x 2-5x 3),∴f ⎝ ⎛⎭⎪⎫x 2-5x 3≤f (2).∵f (x )是偶函数,在(0,+∞)上单调递增, ∴-2≤x 2-5x3≤2且x 2-5x3≠0,解得-1≤x <0或0<x ≤2或3≤x <5或5<x ≤6.所以不等式的解集为{x |-1≤x <0或0<x ≤2或3≤x <5或5<x ≤6}.。
2023版新教材高中数学第三章函数的概念与性质-函数的概念课时作业新人教A版必修第一册
3.1.1 函数的概念必备知识基础练1.下列四个图形中,不是以x为自变量的函数的图象是( )2.已知函数f(x)=+,则f(3)=( )A.1 B.2C.3 D.43.已知函数f(x)=x,则下列函数与f(x)表示同一函数的是( )A.y=B.y=C.y=()2D.y=4.函数y=f(x)与y轴的交点个数为( )A.至少1个 B.至多一个C.有且只有一个 D.与f(x)有关,不能确定5.[2022·广东深圳高一期末]函数f(x)=的定义域为( )A.[1,2)∪(2,+∞) B.(1,+∞)C.[1,2) D.[1,+∞)6.[2022·山东青岛高一期末](多选)下面选项中,变量y是变量x的函数的是( ) A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP (国内生产总值)C.x表示某地区的学生某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税7.函数f(x)=的定义域是________.8.已知函数f(x)=-1,且f(a)=3,则a=________.关键能力综合练1.[2022·安徽歙县高一期末]∀x∈R,[x]表示不超过x的最大整数,十八世纪,函数y=[x]被“数学王子”高斯采用,因此得名高斯函数,人们更习惯称之为“取整函数”,则[4.8]-[-3.5]=( )A.0 B.1 C.7 D.82.学习了函数的概念后,对于构成函数的要素:定义域、对应关系和值域,甲、乙、丙三个同学得出了各自的判断:甲:存在函数f(x),g(x),它们的定义域相同,值域相同,但对应关系不同;乙:存在函数f(x),g(x),它们的定义域相同,对应关系相同,但值域不同;丙:存在函数f(x),g(x),它们的对应关系相同,值域相同,但定义域不同.上述三个判断中,正确的个数是( )A.3 B.2 C.1 D.03.函数f(x)=-(x+3)0的定义域是( )A.(-∞,-3)∪(3,+∞)B. (-∞,-3)∪(-3,3)C.(-∞,-3)D.(-∞,3)4.若函数f(x)=3x-1,则f(f(1))的值为( )A.2 B.4C.5 D.145.已知函数f(x)=的定义域为R,则a的取值范围是( )A.[0,1] B.(0,+∞)C.[1,+∞) D.[0,+∞)6.(多选)下列各组函数是同一个函数的是( )A.f(x)=·与g(x)=B.f(x)= 与g(x)=xC.f(x)=与g(x)=D.f(x)=与g(x)=7.[2022·江苏盐城高一期末]函数f(x)=的定义域为________.8.[2022·辽宁营口高一期末][x]为不超过x的最大整数,若函数f(x)=[x],x∈(a,b),f(x)的值域为{-1,0,1,2},则b-a的最大值为________.9.求下列函数的定义域:(1)y=·;(2)y=.10.已知定义域为R的函数f(x)=2x2-3和g(x)=4x,求f(g(-1)),g(f(-1)),f(f(-2)),g(g(-2))的值.核心素养升级练1.已知函数f(x)的定义域为(0,4),则函数g(x)=的定义域为( )A.(0,16) B.(-1,2)C.(-1,0)∪(0,2) D.(-2,0)∪(0,2)2.若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f(x)=x2,值域为{0,1}的“同族函数”共有________个.3.已知函数f(x)=.(1)求f(2)+f(),f(3)+f()的值;(2)求证:f(x)+f()是定值;(3)求f(2)+f(3)+…+f(2 022)+f()+f()+…+f()的值.3.1.1 函数的概念必备知识基础练1.答案:C解析:由函数定义:定义域内的每一个x都有唯一函数值与之对应,A、B、D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的函数值与之对应,不符合函数定义.2.答案:C解析:f(3)=+=3.3.答案:A解析:f(x)=x的定义域是R,四个选项中,B选项定义域是{x|x≠0},C选项定义域是{x|x≥0},不是同一函数,AD选项定义域都是R,D选项对应法则是y=|x|,不是同一函数,A选项化简后为y=x,是同一函数.4.答案:B解析:由函数定义可知,定义域包含x=0时,则与y轴有1个交点,当定义域不包含x=0时,则与y轴无交点,所以函数y=f(x)与y轴的交点个数最多为1个.5.答案:A解析:函数f(x)=有意义,则有,解得x≥1且x≠2,所以原函数的定义域是[1,2)∪(2,+∞).6.答案:ABD解析:ABD均满足函数的定义,C选项,同一个分数可以对应多个考试号,不满足对于任意的x,都有唯一的y与其对应,故C选项错误.7.答案:(-2,+∞)解析:x+2>0,x>-2,所以f(x)的定义域为(-2,+∞).8.答案:16解析:因为f(x)=-1,f(a)=3,所以-1=3,解得:a=16.关键能力综合练1.答案:D解析:由题意可知[4.8]-[-3.5]=4-(-4)=8.2.答案:B解析:甲:f(x)=x2,g(x)=|x|,两个函数的定义域和值域相同,但对应关系不同,故甲正确;乙:根据函数相等的定义可知,若两个函数的定义域相同,对应关系相同,值域一定相同,故乙错误;丙:f(x)=x2,x∈(1,2),g(x)=x2,x∈(-2,-1),两个函数的对应关系相同,值域相同,但定义域不同,故丙正确.3.答案:B解析:由f(x)=-(x+3)0,则,解得x<3且x≠-3,所以函数的定义域为(-∞,-3)∪(-3,3).4.答案:C解析:由f(x)=3x-1,所以f(1)=2,所以f(f(1))=f(2)=5.5.答案:D解析:由题意,函数f(x)=有意义,则满足ax2+1≥0,因为函数f(x)的定义域为R,即不等式ax2+1≥0在R上恒成立,当a=0时,1≥0恒成立,符合题意;当a>0时,ax2+1≥0恒成立,符合题意.当a<0时,不符合题意,综上可得,实数a的取值范围是[0,+∞).6.答案:CD解析:A选项,f(x)的定义域为{x|x≥1},g(x)的定义域为{x|x≤-1或x≥1},不是同一个函数.B选项,f(x)=,x≤0,f(x)==-x≠g(x),不是同一个函数.C选项,f(x)===g(x),是同一个函数.D选项,f(x)==1(x>0),g(x)==1(x>0),是同一个函数.7.答案:[1,5]解析:由-x2+6x-5≥0,得x2-6x+5≤0,(x-1)(x-5)≤0,解得1≤x≤5,所以函数的定义域为[1,5].8.答案:4解析:因为函数f(x)=[x],x∈(a,b),f(x)的值域为{-1,0,1,2},所以b最大取到3,a最小取到-1,所以b-a的最大值为3-(-1)=4.9.解析:(1)依题意⇒2≤x≤3,所以函数的定义域为[2,3].(2)依题意,解得-2≤x<2且x≠-.所以函数的定义域为[-2,-)∪(-,2).10.解析:由已知g(-1)=4×(-1)=-4,f(-1)=2×(-1)2-3=-1,同理g(-2)=-8,f(-2)=5,所以f(g(-1))=f(-4)=29,g(f(-1))=g(-1)=-4,f(f(-2))=f(5)=47,g(g(-2))=g(-8)=-32.核心素养升级练1.答案:C解析:因为f(x)的定义域为(0,4),所以0<x2<4,解得-2<x<0或0<x<2.又因为x+1>0,解得x>-1,所以g(x)的定义域为(-1,0)∪(0,2).2.答案:3解析:已知函数解析式为f(x)=x2,值域为{0,1}的“同族函数”的定义域可以为:{0,1},{0,-1},{0,-1,1},所以“同族函数”共有3个.3.解析:(1)f(x)=,f(2)+f()=+=1,f(3)+f()=+=1.(2)f(x)+f()=+=+=1.(3)f(2)+f(3)+…+f(2 022)+f()+f()+…+f()=[f(2)+f()]+[f(3)+f()]+…+[f(2 022)+f()]=2 021×1=2 021.。
高中数学选择性必修一 高考训练 练习习题 课时作业(十三)
课时作业(十三) 椭圆及其标准方程[练基础]1.椭圆3x 2+4y 2=12的焦点坐标为( )A .(±1,0)B .(0,±1)C .(±7,0)D .(0,±7)2.“0<m <1”是“方程x 2m +y 22-m=1表示椭圆”的( ) A .充分必要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件3.设F 1,F 2是椭圆x 225+y 29=1的焦点,P 为椭圆上一点,则△PF 1F 2的周长为( ) A .16 B .18C .20D .不确定4.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)5.已知椭圆C :x 2a2+y 2=1(a >1)的左、右焦点分别为F 1、F 2,过F 1的直线与椭圆交于M 、N 两点,若△MNF 2的周长为8,则△MF 1F 2面积的最大值为( )A.32B. 3 C .2 3 D .36.[多选题]下列说法正确的有( )A .方程x 2+xy =x 表示两条直线B .椭圆x 210-m +y 2m -2=1的焦距为4,则m =4 C .曲线x 225+y 29=1关于坐标原点对称 D .椭圆C :y 25+x 2=1的焦距是2 7.设F 1,F 2为椭圆y 29+x 24=1的两个焦点,P 为椭圆上任一点,∠PF 2F 1为直角,则|PF 1||PF 2|=________.8.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-4,0)和C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin C sin B等于________. 9.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.10.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,且F 1(-1,0),椭圆经过点P ⎝⎛⎭⎫1,32.求椭圆的方程.[提能力]11.已知椭圆x 225+y 216=1的两焦点F 1,F 2,P 为椭圆上一点,若∠F 1PF 2=π3,则△F 1PF 2的内切圆半径为( )A.33B.233C. 3 D .2 312.[多选题]设椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,点P 为椭圆C 上一动点,则下列说法中正确的是( )A .当点P 不在x 轴上时,△PF 1F 2的周长是6B .当点P 不在x 轴上时,△PF 1F 2面积的最大值为 3C .存在点P ,使PF 1⊥PF 2D .PF 1的取值范围是[1,3]13.点P 为椭圆x 24+y 23=1上位于第一象限内的一点,过点P 作x 轴的垂线,垂足为M ,O 为坐标原点,则△PMO 的面积的最大值为________.14.已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m =________时,点B 横坐标的绝对值最大,最大值为________.15.如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分.过对称轴的截口BAC 是椭圆的一部分,灯丝位于椭圆的一个焦点F 1上,片门位于另一个焦点F 2上.由椭圆一个焦点F 1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F 2.已知BF 1⊥F 1F 2,|F 1B |=53,|F 1F 2|=4. (1)试建立适当的坐标系,求截口BAC 所在的椭圆的方程;(2)如图,若透明窗DE 所在的直线与截口BAC 所在的椭圆交于一点P ,且∠F 1PF 2=90°,求△F 1PF 2的面积.[培优生]16.现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为y 225+x 24=1,将此椭圆绕y 轴旋转一周后,得一橄榄状的几何体(图2),其体积等于________.。
(人教A版)高中数学必修1(全册)课时同步作业汇总
(人教A版 )高中数学必修1 (全册 )课时同步作业汇总活页作业(一) 集合的含义(时间:45分钟总分值:100分)一、选择题(每题5分 ,共25分)1.以下几组对象可以构成集合的是( )A.充分接近π的实数的全体B.善良的人C.世|界著名的科学家D .某单位所有身高在1.7 m 以上的人 解析:A 、B 、C 中标准不明确 ,应选D. 答案:D2.下面有四个语句: ①集合N *中最|小的数是0; ②-a ∉N ,那么a ∈N ;③a ∈N ,b ∈N ,那么a +b 的最|小值是2; ④x 2+1=2x 的解集中含有两个元素. 其中正确语句的个数是( ) A .0 B .1 C .2D .3解析:N *是不含0的自然数 ,所以①错误; 取a = 2 ,那么-2∉N ,2∉N ,所以②错误;对于③ ,当a =b =0时 ,a +b 取得最|小值是0 ,而不是2 ,所以③错误;对于④ ,解集中只含有元素1 ,故④错误.答案:A3.集合A 含有三个元素2,4,6 ,且当a ∈A 时 ,有6-a ∈A ,那么a 为( ) A .2 B .2或4 C .4D .0解析:假设a =2∈A ,那么6-a =4∈A ;或a =4∈A ,那么6-a =2∈A ;假设a =6∈A ,那么6-a =0∉A .应选B.答案:B4.假设集合M 中的三个元素a ,b ,c 是△ABC 的三边长 ,那么△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .等腰三角形解析:由集合中元素的互异性可知△ABC 的三边长满足a ≠b ≠c .应选D. 答案:D5.设a ,b ∈R ,集合A 中含有0 ,b ,ba三个元素 ,集合B 中含有1 ,a ,a +b 三个元素 ,且集合A 与集合B 相等 ,那么a +2b =( )A .1B .0C .-1D .不确定解析:由题意知a +b =0 ,∴b a=-1 ,∴a =-1 ,b =1 ,∴a +2b =1.答案:A二、填空题(每题5分 ,共15分)6.集合A中只含有1 ,a2两个元素 ,那么实数a不能取的值为________.解析:由a2≠1 ,得a≠±1.答案:±17.假设集合P含有两个元素1,2 ,集合Q含有两个元素1 ,a2 ,且P ,Q相等 ,那么a =________.解析:由于P ,Q相等 ,故a2=2 ,从而a=± 2.答案:± 28.集合P中元素x满足:x∈N ,且2<x<a ,又集合P中恰有三个元素 ,那么整数a =________.解析:∵x∈N ,且2<x<a ,∴结合数轴可得a=6.答案:6三、解答题(每题10分 ,共20分)9.假设所有形如3a+2b(a∈Z,b∈Z)的数组成集合A,判断6-22是不是集合A中的元素.解:∵3a+2b(a∈Z ,b∈Z)中 ,令a=2 ,b=-2 ,可得6-2 2 ,∴6-22是集合A中的元素.10.设集合A中含有三个元素3 ,x ,x2-2x.(1)求实数x应满足的条件;(2)假设-2∈A ,求实数x.解:(1)由集合中元素的互异性可知 ,x≠3 ,且x≠x2-2x ,x2-2x≠3.解得x≠3 ,且x≠0 ,且x≠-1.(2)∵-2∈A ,∴x=-2或x2-2x=-2.由于x2-2x=(x-1)2-1≥-1 ,∴x=-2.一、选择题(每题5分 ,共10分)1.2a∈A ,a2-a∈A ,假设A只含这两个元素 ,那么以下说法中正确的选项是( ) A.a可取全体实数B.a可取除去0以外的所有实数C.a可取除去3以外的所有实数D .a 可取除去0和3以外的所有实数解析:∵2a ∈A ,a 2-a ∈A ,∴2a ≠a 2-a .∴a (a -3)≠0.∴a ≠0且a ≠3.应选D. 答案:D2.集合A 中的元素y 满足y ∈N 且y =-x 2+1 ,假设t ∈A ,那么t 的值为( ) A .0 B .1C .0或1D .小于等于1解析:∵y ∈N 且y =-x 2+1≤1 ,∴y =0或1.∵t ∈A ,∴t =0或1. 答案:C二、填空题(每题5分 ,共10分)3.集合A 是由m -1,3m ,m 2-1三个元素组成的集合 ,且3∈A ,那么实数m 的值为________.解析:由m -1=3 ,得m =4 ,此时3m =12 ,m 2-1=15 ,故m =4符合题意;由3m =3 ,得m =1 ,此时m -1=m 2-1=0 ,故舍去;由m 2-1=3 ,得m =±2 ,经检验m =±2符合题意.故填4或±2.答案:4或±24.假设a ,b ∈R 且a ≠0 ,b ≠0 ,那么|a |a +|b |b的可能取值所组成的集合中元素的个数为________.解析:当a >0 ,b >0时 ,|a |a +|b |b=2;当ab <0时 ,|a |a +|b |b =0;当a <0 ,b <0时 ,|a |a+|b |b=-2.所以集合中的元素为2,0 ,-2.即集合中元素的个数为3. 答案:3三、解答题(每题10分 ,共20分)5.集合A 的元素由kx 2-3x +2=0的解构成 ,其中k ∈R ,假设A 中的元素只有一个 ,求k 的值.解:由题意知A 中元素即方程kx 2-3x +2=0(k ∈R )的解. 假设k =0 ,那么x =23 ,知A 中只有一个元素 ,符合题意;假设k ≠0 ,那么方程为一元二次方程.当Δ=9-8k =0 ,即k =98时 ,方程kx 2-3x +2=0有两个相等的实数解 ,此时A 中只有一个元素.综上所述 ,k =0或98.6.集合A 中的元素全为实数 ,且满足:假设a ∈A ,那么1+a1-a ∈A .(1)假设a =2 ,求出A 中其他所有元素. (2)0是不是集合A 中的元素 ?请说明理由. 解:(1)由2∈A ,得1+21-2=-3∈A .又由-3∈A, 得1-31+3=-12∈A .再由-12∈A ,得1-121+12=13∈A .由13∈A ,得1+131-13=2∈A . 故A 中除2外 ,其他所有元素为-3 ,-12 ,13.(2)0不是集合A 中的元素.理由如下: 假设0∈A ,那么1+01-0=1∈A ,而当1∈A 时 ,1+a1-a不存在 ,故0不是集合A 中的元素.活页作业(二) 集合的表示(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.集合A ={x ∈N |-3≤x ≤3} ,那么有( ) A .-1∈A B .0∈A C.3∈AD .2∈A解析:∵0∈N 且-3<0< 3 ,∴0∈A . 答案:B2.集合M ={y |y =x 2} ,用自然语言描述M 应为( ) A .函数y =x 2的函数值组成的集合B.函数y=x2的自变量的值组成的集合C.函数y=x2的图象上的点组成的集合D.以上说法都不对解析:从描述法表示的集合来看 ,代表元素是函数值 ,即集合M表示函数y=x2的函数值组成的集合.答案:A3.集合{-2,1}等于( )A.{(x-1)(x+2)=0} B.{y|y=x+1 ,x∈Z}C.{x|(x+1)(x-2)=0} D.{x|(x-1)(x+2)=0}解析:选项A是含有一个一元二次方程的集合 ,选项B是函数y=x+1 ,x∈Z的函数值组成的集合 ,有无数多个元素 ,选项C是方程(x+1)(x-2)=0的解的集合为{-1,2} ,选项D是方程(x-1)(x+2)=0的解的集合为{1 ,-2}.应选D.答案:D4.假设1∈{x ,x2} ,那么x=( )A.1 B.-1C.0或1 D.0或1或-1解析:∵1∈{x ,x2} ,∴x=1或x2=1 ,∴xx=1 ,那么x=x2=1 ,不符合集合中元素的互异性.答案:B5.以下集合中表示同一集合的是( )A.M={(3,2)} ,N={(2,3)}B.M={3,2} ,N={2,3}C.M={(x ,y)|x+y=1} ,N={y|x+y=1}D.M={1,2} ,N={(1,2)}解析:A中M、N都为点集 ,元素为点的坐标 ,顺序不同表示的点不同;C中M、N分别表示点集和数集;D中M为数集 ,N为点集 ,应选B.答案:B二、填空题(每题5分 ,共15分)6.集合A={x|x2=a ,x∈R} ,那么实数a的取值范围是________.解析:当x∈R时 ,a=x2≥0.答案:a≥07.集合A={-1,0,1} ,集合B={y|y=|x| ,x∈A} ,那么B=____________.解析:∵|-1|=1 ,|0|=0 ,|1|=1 ,∴B={0,1}.答案:{0,1}8.集合A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫125-x ∈N x ∈N ,那么用列举法表示为__________________.解析:根据题意 ,5-x 应该是12的因数 ,故其可能的取值为1,2,3,4,6,12 ,从而可得到对应xx ∈N ,所以x 的值为4,3,2,1.答案:{4,3,2,1}三、解答题(每题10分 ,共20分) 9.用另一种方法表示以下集合. (1){绝|对值不大于2的整数}; (2){能被3整除 ,且小于10的正数}; (3){x |x =|x | ,x <5 ,且x ∈Z }; (4){(x ,y )|x +y =6 ,x ∈N *,y ∈N *}; (5){-3 ,-1,1,3,5}. 解:(1){-2 ,-1,0,1,2}. (2){3,6,9}.(3)∵x =|x | ,∴x ∵x ∈Z ,且x <5 , ∴x =0或1或2或3或4. ∴集合可以表示为{0,1,2,3,4}.(4){(1,5) ,(2,4) ,(3,3) ,(4,2) ,(5,1)}. (5){x |x =2k -1 ,-1≤k ≤3 ,k ∈Z }.10.集合A ={x |ax 2-3x -4=0 ,x ∈R } ,假设A 中至|多有一个元素 ,求实数a 的取值范围.解:当a =0时 ,A =⎩⎨⎧⎭⎬⎫-43;当a ≠0时 ,关于x 的方程ax 2-3x -4=0应有两个相等的实数根或无实数根 , ∴Δ=9+16a ≤0 ,即a ≤-916. 综上 ,所求实数a 的取值范围是a =0或a ≤-916.一、选择题(每题5分 ,共10分)1.设x =13-52 ,y =3+2π ,集合M ={m |m =a +2b ,a ∈Q ,b ∈Q } ,那么x ,y 与集合M 的关系是( )A .x ∈M ,y ∈MB .x ∈M ,y ∉MC .x ∉M ,y ∈MD .x ∉M ,y ∉M 解析:x =13-52=3+523-523+52=-341-2×541∈M ,y ∉M .应选B. 答案:B2.用描述法表示如下图阴影局部的点(包括边界上的点)的坐标的集合是( )A .{-2≤x ≤0且-2≤y ≤0}B .{(x ,y )|-2≤x ≤0且-2≤y ≤0}C .{(x ,y )|-2≤x ≤0且-2≤y <0}D .{(x ,y )|-2≤x ≤0或-2≤y ≤0}解析:阴影局部为点集 ,且包括边界上的点 ,所以-2≤x ≤0且-2≤y ≤0. 答案:B二、填空题(每题5分 ,共10分)3.集合A ={(x ,y )|y =2x +1} ,B ={(x ,y )|y =x +3} ,a ∈A 且a ∈B ,那么a 为________.解析:∵a ∈A 且a ∈B ,∴a 是方程组⎩⎨⎧y =2x +1 y =x +3的解.解方程组得⎩⎪⎨⎪⎧x =2 y =5 ∴a为(2,5).答案:(2,5)4.A ={1,2,3} ,B ={1,2} ,定义集合间的运算A +B ={x |x =x 1+x 2 ,x 1∈A ,x 2∈B } ,那么集合A +B 中元素的最|大值是________.解析:当x 1=1 ,x 2=1或2时 ,x =2或3;当x 1=2 ,x 2=1或2时 ,x =3或4;当x 1=3 ,x 2=1或2时 ,x =4或5.∴集合A +B 中元素的最|大值是5.答案:5三、解答题(每题10分 ,共20分)5.集合A ={(x ,y )|2x -y +m >0} ,B ={(x ,y )|x +y -n ≤0} ,假设点P (2,3)∈A ,且P (2,3)∉B ,试求m ,n 的取值范围.解:∵点P ∈A ,∴2×2-3+m >0.∴m >-1. ∵点P ∉B ,∴2+3-n >0.∴n <5.∴所求m ,n 的取值范围分别是{m |m >-1} ,{n |n <5}.6.集合P ={x |x =2k ,k ∈Z } ,M ={x |x =2k +1 ,k ∈Z } ,a ∈P ,b ∈M ,设c =a +b ,那么c 与集合M 有什么关系 ?解:∵a ∈P ,b ∈M ,c =a +b , 设a =2k 1 ,k 1∈Z ,b =2k 2+1 ,k 2∈Z , ∴c =2k 1+2k 2+1=2(k 1+k 2)+1. 又k 1+k 2∈Z , ∴c ∈M .活页作业(三) 集合间的根本关系(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分) 1.以下关系中 ,表示正确的选项是( ) A .1∈{0,1} B .1{0,1} C .1⊆{0,1}D .{1}∈{0,1}解析:、⊆表示集合之间的关系 ,故B 、C 错误;∈表示元素与集合之间的关系 ,故D 错误.答案:A2.假设x ,y ∈R ,A ={(x ,y )|y =x } ,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫xy ⎪⎪⎪y x =1 ,那么A ,B 的关系为( ) A .A B B .A B C .A =BD .A ⊆B解析:集合A 表示函数y =x 图象上所有点组成的集合 ,集合B 中要求x ≠0 ,所以集合B 表示除点(0,0)以外的y =x 图象上的点组成的集合 ,A B 成立.答案:B3.全集U =R ,那么正确表示集合M ={-1,0,1}和N ={x |x 2+x =0}关系的韦恩(Venn)图是( )解析:∵M={-1,0,1} ,N={0 ,-1} ,∴N M.应选B.答案:B4.集合A={x|0≤x<3 ,x∈N}的真子集的个数是( )A.16 B.8C.7 D.4解析:易知集合A={0,1,2} ,∴A的真子集为∅ ,{0} ,{1} ,{2} ,{0,1} ,{0,2} ,{1,2} ,共有7个.答案:C5.设A={x|1<x<2} ,B={x|x<a} ,假设A⊆B ,那么a的取值范围是( )A.a≤2B.a≤1C.a≥1D.a≥2解析:如图 ,在数轴上表示出两集合 ,只要a≥2 ,就满足A⊆B.答案:D二、填空题(每题5分 ,共15分)6.右图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系 ,那么A ,B ,C ,D ,E分别代表的图形的集合为______________.解析:由以上概念之间的包含关系可知:集合A={四边形} ,集合B={梯形} ,集合C ={平行四边形} ,集合D={菱形} ,集合E={正方形}.答案:A={四边形} ,B={梯形} ,C={平行四边形} ,D={菱形} ,E={正方形}7.设集合M={(x ,y)|x+y<0 ,xy>0}和P={(x ,y)|x<0 ,y<0} ,那么M与P的关系为________.解析:∵xy>0 ,∴x ,y同号.又x+y<0 ,∴x<0 ,y<0 ,即集合M表示第三象限内的点.而集合P表示第三象限内的点 ,故M=P.答案:M=P8.集合A={x|-2≤x≤3} ,B={x|x≥m} ,假设A⊆B ,那么实数m的取值范围为_________________________________.解析:集合A ,B 在数轴上的表示如下图.由图可知 ,假设A ⊆B ,那么m ≤-2. 答案:m ≤-2三、解答题(每题10分 ,共20分)9.集合A ={(x ,y )|x +y =2 ,x ,y ∈N } ,试写出A 的所有子集. 解:∵A ={(x ,y )|x +y =2 ,x ,y ∈N } , ∴A ={(0,2) ,(1,1) ,(2,0)}. ∴A 的子集有:∅ ,{(0,2)} ,{(1,1)} ,{(2,0)} ,{(0,2) ,(1,1)} ,{(0,2) ,(2,0)} ,{(1,1) ,(2,0)} ,{(0,2) ,(1,1) ,(2,0)}.10.集合A ={x |1<ax <2} ,B ={x |-2<x <2} ,求满足A ⊆B 的实数a 的取值范围. 解:B ={x |-2<x <2}. (1)当a =0时 ,A =∅ ,显然A ⊆B . (2)当a >0时 ,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a<x <2a . ∵A ⊆B ,由以下图可知 ,∴⎩⎪⎨⎪⎧1a ≥-2 2a ≤2 解得a ≥1.(3)当a <0时 ,A =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫2a<x <1a .∵A ⊆B ,由以下图可知 ,∴⎩⎪⎨⎪⎧1a ≤22a ≥-2 解得a ≤-1.综上可知 , a =0 ,或a ≥1 ,或a ≤-1时 ,A ⊆B .一、选择题(每题5分 ,共10分)1.集合A ={x |x 2-3x +2=0 ,x ∈R } ,B ={x |0<x <5 ,x ∈N } ,那么满足条件A ⊆C ⊆B 的集合C 的个数为( )A .1B .2C .3D .4解析:因为集合A ={1,2} ,B ={1,2,3,4} ,所以当满足A ⊆C ⊆B 时 ,集合C 可以为{1,2} ,{1,2,3} ,{1,2,4} ,{1,2,3,4} ,故满足条件的集合C 有4个.答案:D2.集合M =⎩⎨⎧⎭⎬⎫x⎪⎪⎪⎪x =m +16 m ∈Z,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x =n 2-13 n ∈Z ,那么集合M ,N 的关系是( )A .M ⊆NB .M NC .N ⊆MD .N M解析:设n =2m 或2m +1 ,m ∈Z , 那么有N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪x =2m 2-13或x =2m +12-13m ∈Z =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪⎪ x =m -13或x =m +16 m ∈Z . 又∵M =⎩⎨⎧⎭⎬⎫x⎪⎪⎪⎪x =m +16 m ∈Z ,∴M N .答案:B二、填空题(每题5分 ,共10分)3.假设A ={1,2} ,B ={x |x ⊆A } ,那么B =________.解析:∵x ⊆A ,∴x =∅ ,{1} ,{2} ,{1,2} ,∴B ={∅ ,{1} ,{2} ,{1,2}}.答案:{∅ ,{1} ,{2} ,{1,2}}4.集合A ={x |ax 2+2x +a =0 ,a ∈R } ,假设集合A 有且仅有2个子集 ,那么a 的取值构成的集合为________________.解析:∵集合A 有且仅有2个子集 ,∴A 仅有一个元素 ,即方程ax 2+2x +a =0(a ∈R )仅有一个根.当a =0时 ,方程化为2x =0 , ∴x =0 ,此时A ={0} ,符合题意.当a ≠0时 ,Δ=22-4·a ·a =0 ,即a 2=1 ,∴a =±1. 此时A ={-1} ,或A ={1} ,符合题意. ∴a =0或a =±1. 答案:{0,1 ,-1}三、解答题(每题10分 ,共20分)5.设集合A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x x +4⎝ ⎛⎭⎪⎫x -12=0 x ∈Z ,B ={x |x 2+2(a +1)x +a 2-1=0} ,假设B ⊆A ,求实数a 的值.解:由题意得A ={0 ,-4}.(1)当B =∅时 ,方程x 2+2(a +1)x +a 2-1=0无解 , ∴Δ=4(a +1)2-4(a 2-1)<0. ∴a <-1. (2)当BA (B ≠∅)时 ,那么B ={0}或B ={-4} ,即方程x 2+2(a +1)x +a 2-1=0只有一解 , ∴Δ=8a +8=0. ∴aB ={0}满足条件.(3)当B =A 时 ,方程x 2+2(a +1)x +a 2-1=0 有两实根0 ,-4 ,∴⎩⎨⎧16-8a +1+a 2-1=0 a 2-1=0.∴a =1.综上可知 ,a ≤-1 ,或a =1.6.设集合A ={x |-1≤x +1≤6} ,B ={x |m -1<x <2m +1}. (1)当x ∈Z 时 ,求A 的非空真子集的个数; (2)假设A ⊇B ,求m 的取值范围. 解:化简集合A 得A ={x |-2≤x ≤5}. (1)∵x ∈Z ,∴A ={-2 ,-1,0,1,2,3,4,5} ,即A 中含有8个元素.∴A 的非空真子集的个数为28-2=254(个). (2)①当m ≤-2时 ,B =∅⊆A ;②当m >-2时 ,B ={x |m -1<x <2m +1} , 因此 ,要B ⊆A ,那么只要⎩⎨⎧m -1≥-22m +1≤5⇒-1≤m ≤2.综上所述 ,m 的取值范围是{m |-1≤m ≤2或m ≤-2}.活页作业(四)并集、交集(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.设集合M ={m ∈Z |-3<m <2} ,N ={n ∈Z |-1≤n ≤3} ,那么M ∩N =( ) A .{0,1} B .{-1,0,1} C .{0,1,2}D .{-1,0,1,2}解析:由题意 ,得M ={-2 ,-1,0,1} ,N ={-1,0,1,2,3} ,∴M ∩N ={-1,0,1}. 答案:B2.假设集合M ={x |-2≤x <2} ,N ={0,1,2} ,那么M ∩N 等于( ) A .{0} B .{1} C .{0,1,2}D .{0,1}解析:M ={x |-2≤x <2} ,N ={0,1,2} ,那么M ∩N ={0,1} ,应选D. 答案:D3.以下各组集合 ,符合Venn 图所示情况的是( )A .M ={4,5,6,8} ,N ={4,5,6,7,8}B .M ={x |0<x <2} ,N ={x |x <3}C .M ={2,5,6,7,8} ,N ={4,5,6,8}D .M ={x |x <3} ,N ={x |0<x <2}解析:因为{4,5,6,8}⊆{4,5,6,7,8} ,即M ⊆N ,所以选项A 错误.又因{x |0<x <2}⊆{x |x <3} ,所以选项B 错误 ,选项C 显然错误 ,选项D 正确.答案:D4.设集合A ={1,2} ,那么满足A ∪B ={1,2,3}的集合B 的个数是( ) A .1 B .3 C .4D .8解析:∵A ={1,2} ,且A ∪B ={1,2,3} ,∴B ={3}或{1,3}或{2,3}或{1,2,3}. 答案:C5.设集合A ={x ∈N |1≤x ≤10} ,B ={x ∈R |x 2+x -6=0} ,那么图中阴影表示的集合为( )A .{2}B .{3}C .{-3,2}D .{-2,3}解析:∵A ={1,2,3,4,5,6,7,8,9,10} ,B ={-3,2} ,∴图中阴影表示的集合为A ∩B ={2}.答案:A二、填空题(每题5分 ,共15分)6.集合M ={x |-3<x ≤5} ,N ={x |-5<x <-2 ,或x >5} ,那么M ∪N =____________ ,M ∩N =__________________.解析:借助数轴可知:M ∪N ={x |x >-5} ,M ∩N ={x |-3<x <-2}.答案:{x |x >-5} {x |-3<x <-2}7.集合A ={(x ,y )|y =x 2,x ∈R } ,B ={(x ,y )|y =x ,x ∈R } ,那么A ∩B 中的元素个数为________.解析:由⎩⎪⎨⎪⎧y =x 2y =x 得⎩⎪⎨⎪⎧x =0y =0 或⎩⎨⎧x =1y =1.答案:28.设集合A ={x |-1<x <2} ,B ={x |x <a } ,假设A ∩B ≠∅ ,那么a 的取值范围是________.解析:利用数轴分析可知 ,a >-1.答案:a >-1三、解答题(每题10分 ,共20分)9.集合A ={1,3,5} ,B ={1,2 ,x 2-1} ,假设A ∪B ={1,2,3,5} ,求x 及A ∩B . 解:∵B ⊆(A ∪B ) , ∴x 2-1∈(A ∪B ).∴x 2-1=3或x 2-1=5 ,解得x =±2或x =± 6. 假设x 2-1=3 ,那么A ∩B ={1,3}; 假设x 2-1=5 ,那么A ∩B ={1,5}.10.设集合A ={x |x 2-3x +2=0} ,B ={x |x 2-4x +a =0} ,假设A ∪B =A ,求实数a 的取值范围.解:A ={1,2} ,∵A ∪B =A ,∴B ⊆A .集合B 有两种情况:B =∅或B ≠∅. (1)B =∅时 ,方程x 2-4x +a =0无实数根 , ∴Δ=16-4a <0.∴a >4. (2)B ≠∅时 ,当Δ=0时 ,a =4 ,B ={2}⊆A 满足条件;当Δ>0时 ,假设1,2是方程x 2-4x +a =0的根 , 由根与系数的关系知1+2=3≠4 ,矛盾 ,∴a =4. 综上 ,a 的取值范围是a ≥4.一、选择题(每题5分 ,共10分)1.集合A ={1,2} ,B ={x |mx -1=0} ,假设A ∩B =B ,那么符合条件的实数m 的值组成的集合为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 12 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1 12 C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 0 12D .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1 -12解析:当m =0时 ,B =∅ ,A ∩B =B ;当m ≠0时 ,x =1m ,要使A ∩B =B ,那么1m =1或1m=2 ,即m =1或m =12,选C.答案:C2.定义集合{x |a ≤x ≤b }的 "长度〞是b -a .m ,n ∈R ,集合M =xm ≤x ≤m +23 ,N =xn-34≤x ≤n ,且集合M ,N 都是集合{x |1≤x ≤2}的子集 ,那么集合M ∩N 的 "长度〞的最|小值是( )A.23B.12C.512D .13解析:集合M ,N 的 "长度〞分别为23 ,34 ,又M ,N 都是集合{x |1≤x ≤2}的子集 ,如图 ,由图可知M ∩N 的 "长度〞的最|小值为53-54=512.答案:C二、填空题(每题5分 ,共10分)3.集合A ={1,3 ,m } ,B ={1 ,m } ,A ∪B =A ,那么m =________.解析:由A ∪B =A 得B ⊆A ,所以有m =3或m =m .由m =m 得m =0或1 ,经检验 ,m =1时 ,B ={1,1}矛盾 ,m =0或3时符合题意.答案:0或34.设集合A ={5 ,a +1} ,集合B ={a ,b }.假设A ∩B ={2} ,那么A ∪B =______________. 解析:∵A ∩B ={2} ,∴2∈A .故a +1=2 ,a =1 ,即A ={5,2};又2∈B ,∴b =2 ,即B ={1,2}.∴A ∪B ={1,2,5}.答案:{1,2,5}三、解答题(每题10分 ,共20分)5.A ={x |2a ≤x ≤a +3} ,B ={x |x <-1或x >5} ,假设A ∩B =∅ ,求a 的取值范围. 解:A ∩B =∅ ,A ={x |2a ≤x ≤a +3}. (1)假设A =∅ ,有2a >a +3 ,∴a >3. (2)假设A ≠∅ ,如下图.那么有⎩⎪⎨⎪⎧2a ≥-1a +3≤5 2a ≤a +3解得-12≤a ≤2.综上所述 ,a 的取值范围是-12≤a ≤2或a >3.6.集合M ={x |2x -4=0} ,N ={x |x 2-3x +m =0}. (1)当m =2时 ,求M ∩N ,M ∪N . (2)当M ∩N =M 时 ,求实数m 的值. 解:由得M ={2}. (1)当m =2时 ,N ={1,2}. ∴M ∩N ={2} ,M ∪N ={1,2}. (2)假设M ∩N =M ,那么M ⊆N , ∴2∈N . ∴4-6+m =0. ∴m =2.活页作业(五) 补集及集合运算的综合应用(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.全集U ={0,1,2} ,且∁U A ={2} ,那么A 等于( ) A .{0} B .{1} C .∅D .{0,1}解析:∵∁U A ={2} ,∴A ={0,1}. 答案:D2.A ={x |x +1>0} ,B ={-2 ,-1,0,1} ,那么(∁R A )∩B =( ) A .{-2 ,-1} B .{-2} C .{-1,0,1}D .{0,1} 解析:解不等式求出集合A ,进而得∁R A ,再由集合交集的定义求解. 因为集合A ={x |x >-1} ,所以∁R A ={x |x ≤-1}. 那么(∁R A )∩B ={x |x ≤-1}∩{-2 ,-1,0,1} ={-2 ,-1}. 答案:A3.如下图 ,U 是全集 ,A ,B 是U 的子集 ,那么图中阴影局部表示的集合是( )A.A∩B B.B∩(∁U A)C.A∪B D.A∩(∁U B)解析:阴影局部在B中且在A的外部 ,由补集与交集的定义可知阴影局部可表示为B∩(∁U A).答案:B4.设集合M={x|x=3k ,k∈Z} ,P={x|x=3k+1 ,k∈Z} ,Q={x|x=3k-1 ,k∈Z} ,那么∁Z(P∪Q)=( )A.M B.PC.Q D.∅解析:x=3k ,k∈Z表示被3整除的整数;x=3k+1 ,k∈Z表示被3整除余1的整数;x=3k-1表示被3整除余2的整数 ,所以∁Z(P∪Q)=M.答案:A5.集合A={x|x<a} ,B={x|1<x<2} ,且A∪(∁R B)=R,那么实数a的取值范围是( ) A.a≤1B.a<1C.a≥2D.a>2解析:如下图 ,假设能保证并集为R ,那么只需实数a在数2的右边 ,注意等号的选取.选C.答案:C二、填空题(每题5分 ,共15分)6.集合U={2,3,6,8} ,A={2,3} ,B={2,6,8} ,那么(∁U A)∩B=________.解析:(∁U A)∩B={6,8}∩{2,6,8}={6,8}.答案:{6,8}7.设全集U=R ,集合A={x|x≥0} ,B={y|y≥1} ,那么∁U A与∁U B的包含关系是______________.解析:∵∁U A={x|x<0} ,∁U B={y|y<1} ,∴∁U A∁U B.如图.答案:∁U A∁U B8.设全集S={1,2,3,4} ,且A={x∈S|x2-5x+m=0} ,假设∁S A={2,3} ,那么m=________.解析:因为S={1,2,3,4} ,∁S A={2,3} ,所以A={1,4} ,即1,4是方程x2-5x+m=0的两根 ,由根与系数的关系可得m=1×4=4.答案:4三、解答题(每题10分 ,共20分)9.全集U={2,3 ,a2-2a-3} ,A={2 ,|a-7|} ,∁U A={5} ,求a的值.解:由|a-7|=3 ,得a=4或a=10.当a=4时 ,a2-2a-3=5 ,当a=10时 ,a2-2a-3=77∉U ,所以a=4.10.集合A={x|3≤x<7} ,B={x|2<x<10} ,C={x|x<a}.(1)求(∁R A)∩B;(2)假设A⊆C ,求a的取值范围.解:(1)∵A={x|3≤x<7} ,∴∁R A={x|x<3或x≥7}.∴(∁R A)∩B={x|2<x<3或7≤x<10}.(2)∵C={x|x<a} ,且A⊆C ,如下图 ,∴a≥7.∴a的取值范围是{a|a≥7}.一、选择题(每题5分 ,共10分)1.全集U=R,集合A={x|-2≤x≤3} ,B={x|x<-2或x>4} ,那么集合(∁U A)∩(∁U B)等于( )A.{x|3<x≤4}B.{x|x≤3或x≥4}C.{x|3≤x<4} D.{x|-1≤x≤3}解析:∵∁U A={x|x<-2或x>3} ,∁U B={x|-2≤x≤4} ,如图 ,∴(∁U A)∩(∁U B)={x|3<x≤4}.应选A.答案:A2.设A ,B ,I均为非空集合 ,且满足A⊆B⊆I ,那么以下各式中错误的选项是( ) A.(∁I A)∪B=I B.(∁I A)∪(∁I B)=IC.A∩(∁I B)=∅D.(∁I A)∩(∁I B)=∁I B解析:方法一符合题意的Venn图 ,如图.观察可知选项A ,C ,D 均正确 ,(∁I A )∪(∁I B )=∁I A ,应选项B 错误.方法二 运用特例法 ,如A ={1,2,3} ,B ={1,2,3,4} ,I ={1,2,3,4,5}.逐个检验只有选项B 错误.答案:B二、填空题(每题5分 ,共10分)3.全集U =R ,A ={x |x <-3 ,或x ≥2} ,B ={x |-1<x <5} ,那么集合C ={x |-1<x <2}=______________.(用A ,B 或其补集表示)解析:如下图 ,由图可知C ⊆∁U A ,且C ⊆B ,∴C =B ∩(∁U A ). 答案:B ∩(∁U A )4.某班共50人 ,参加A 项比赛的共有30人 ,参加B 项比赛的共有33人 ,且A ,B 两项都不参加的人数比A ,B 都参加的人数的13多1人 ,那么只参加A 项不参加B 项的有____人.解析:如下图 ,设A ,B 两项都参加的有x 人 ,那么仅参加A 项的共(30-x )人 ,仅参加B 项的共(33-x )人 ,A ,B 两项都不参加的共⎝ ⎛⎭⎪⎫13x +1人 ,根据题意得x +(30-x )+(33-x )+⎝ ⎛⎭⎪⎫13x +1=50 ,解得x =21 ,所以只参加A 项不参加B 项的共有30-21=9(人).故填9.答案:9三、解答题(每题10分 ,共20分)5.设全集是实数集R ,A ={x |2x 2-7x +3≤0} ,B ={x |x 2+a <0}. (1)当a =-4时 ,求A ∩B 和A ∪B ;(2)假设(∁R A )∩B =B ,求实数a 的取值范围.解:(1)∵A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤3,当a =-4时 ,B ={x |-2<x <2} ,∴A ∩B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫12≤x <2 ,A ∪B ={x |-2<x ≤3}.(2)∁R A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x <12 或x >3 ,当(∁R A )∩B =B 时 ,B ⊆∁R A .①当B =∅ ,即a ≥0时 ,满足B ⊆∁R A ;②当B ≠∅ ,即a <0时 ,B ={x |--a <x <-a }. 要使B ⊆∁R A ,需-a ≤12 ,解得-14≤a <0.综上可得 ,实数a 的取值范围是⎩⎨⎧a ⎪⎪⎪⎭⎬⎫a ≥-14.6.设全集I =R ,集合M ={x |(x +3)2≤0} ,N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,集合B ={x |a -1≤x ≤5-a ,a ∈R } ,假设B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3} ,N ={x |x 2+x -6=0}={-3,2}.∴∁I M ={x |x ∈R 且x ≠-3}. ∴(∁I M )∩N ={2}. (2)A =(∁I M )∩N ={2} , ∵B ∪A =A ,∴B ⊆A . ∴B =∅或B ={2}.当B =∅时 ,a -1>5-a ,∴a >3;当B ={2}时 ,⎩⎪⎨⎪⎧a -1=25-a =2解得a =3.综上所述 ,所求a 的取值范围是{a |a ≥3}.活页作业(六) 函数的概念(时间:30分钟 总分值:60分)一、选择题(每题4分 ,共12分)1.设f:x→x2是集合A到集合B的函数 ,如果集合B={1} ,那么集合A不可能是( ) A.{1} B.{-1}C.{-1,1} D.{-1,0}解析:假设集合A={-1,0} ,那么0∈A ,但02=0∉B.应选D.答案:D2.各个图形中 ,不可能是函数y=f(x)的图象的是( )解析:因垂直x轴的直线与函数y=f(x)的图象至|多有一个交点.应选A.答案:A3.假设函数y=f(x)的定义域为M={x|-2≤x≤2} ,值域为N={y|0≤y≤2} ,那么函数y=f(x)的图象可能是( )解析:选项A ,定义域为{x|-2≤x≤0} ,不正确.选项C ,当x在(-2,2]取值时 ,y 有两个值和x对应 ,不符合函数的概念.选项D ,值域为[0,1] ,不正确 ,选项B正确.答案:B二、填空题(每题4分 ,共8分)4.假设(2m ,m+1)表示一个开区间 ,那么m的取值范围是________.解析:由2m<m+1 ,解得m<1.答案:(-∞ ,1)5.函数y=f(x)的图象如下图 ,那么f(x)的定义域是________________;其中只与x 的一个值对应的y值的范围是________________.解析:观察函数图象可知f (x )的定义域是[-3,0]∪[2,3]; 只与x 的一个值对应的y 值的范围是[1,2)∪(4,5]. 答案:[-3,0]∪[2,3] [1,2)∪(4,5] 三、解答题6.(本小题总分值10分)求以下函数的定义域. (1)y =2x +1+3-4x . (2)y =1|x +2|-1.解:由得⎩⎪⎨⎪⎧2x +1≥0⇒x ≥-12 3-4x ≥0⇒x ≤34∴函数的定义域为⎣⎢⎢⎡⎦⎥⎥⎤-1234. (2)由得 ,|x +2|-1≠0 , ∴|xx ≠-3 ,x ≠-1.∴函数的定义域为(-∞ ,-3)∪(-3 ,-1)∪(-1 ,+∞).一、选择题(每题5分 ,共10分)1.四个函数:(1)y =x +1;(2)y =x 3;(3)y =x 2-1; (4)y =1x.其中定义域相同的函数有( )A .(1) ,(2)和(3)B .(1)和(2)C .(2)和(3)D .(2) ,(3)和(4)解析:(1) ,(2)和(3)中函数的定义域均为R ,而(4)函数的定义域为{x |x ≠0}. 答案:A2.函数f (x )=-1 ,那么f (2)的值为( ) A .-2 B .-1 C .0D .不确定解析:∵f (x )=-1 ,∴f (2)=-1. 答案:B二、填空题(每题5分 ,共10分)3.集合A ={1,2,3} ,B ={4,5} ,那么从A 到B 的函数f (x )有________个.解析:抓住函数的 "取元任意性 ,取值唯一性〞 ,利用列表方法确定函数的个数.f (1) 4 4 4 4 5 5 5 5 f (2) 4 4 5 5 4 4 5 5 f (3)45454545由表可知 ,这样的函数有8个 ,故填8. 答案:8 4.函数y =x +26-2x -1的定义域为________.(并用区间表示)解析:要使函数解析式有意义 ,需满足⎩⎪⎨⎪⎧ x +2≥06-2x ≥0 6-2x ≠1⇒⎩⎪⎨⎪⎧x ≥-2x ≤3x ≠52⇒-2≤x ≤3 ,且x ≠52.∴函数的定义域为⎣⎢⎢⎡⎭⎪⎪⎫-2 52∪⎝ ⎛⎦⎥⎥⎤52 3.答案:⎣⎢⎢⎡⎭⎪⎪⎫-2 52∪⎝ ⎛⎦⎥⎥⎤52 3三、解答题5.(本小题总分值10分)将长为a 的铁丝折成矩形 ,求矩形面积y 关于边长x 的解析式 ,并写出此函数的定义域.解:设矩形一边长为x ,那么另一边长为12(a -2x ) ,所以y =x ·12(a -2x )=-x 2+12ax .由题意可得⎩⎪⎨⎪⎧0<x <a 2 0<12a -2x <a2解得0<x <a2,即函数定义域为⎝ ⎛⎭⎪⎪⎫0 a 2.活页作业(七) 函数概念的综合应用(时间:30分钟 总分值:60分)一、选择题(每题4分 ,共12分)1.函数f (x )=x +1x,那么f (1)等于( ) A .1 B .2 C .3D .0解析:f (1)=1+11=2.答案:B2.以下各组函数表示相等函数的是( )A .y =x 2-9x -3与y =x +3B .y =x 2-1与y =x -1 C .y =x 0(x ≠0)与y =1(x ≠0) D .y =2x +1 ,x ∈Z 与y =2x -1 ,x ∈Z解析:A 中两函数定义域不同 ,B 、D 中两函数对应关系不同 ,C 中定义域与对应关系都相同.答案:C3.函数y =x +1的值域为( ) A .[-1 ,+∞) B .[0 ,+∞) C .(-∞ ,0]D .(-∞ ,-1]解析:∵x +1≥0 ,∴y =x +1 ≥0. 答案:B二、填空题(每题4分 ,共8分) 4.函数y =x +1x的定义域为________. 解析:要使函数式有意义 ,需使⎩⎪⎨⎪⎧x +1≥0x ≠0 ,所以函数的定义域为{x |x ≥-1且x ≠0}.答案:{x |x ≥-1且x ≠0}5.函数f (x )=2x -3 ,x ∈{x ∈N |1≤x ≤5} ,那么函数的值域为__________________. 解析:函数的定义域为{1,2,3,4,5}. 故当x =1,2,3,4,5时 ,y =-1,1,3,5,7 ,即函数的值域为{-1,1,3,5,7}. 答案:{-1,1,3,5,7} 三、解答题6.(本小题总分值10分)假设f (x )=ax 2- 2 ,且f (f (2))=- 2 ,求a 的值. 解:因为f (2)=a (2)2-2=2a - 2 ,所以f (f (2))=a (2a -2)2-2=- 2.于是a (2a -2)2=0,2a -2=0或a =0 ,所以a=22或a =0.一、选择题(每题5分 ,共10分)1.以下函数中 ,值域为(0 ,+∞)的是( ) A .y =x B .y =100x +2C .y =16xD .y =x 2+x +1解析:A 中y =x 的值域为[0 ,+∞); C 中y =16x的值域为(-∞ ,0)∪(0 ,+∞);D 中y =x 2+x +1=⎝ ⎛⎭⎪⎫x +122+34的值域为⎣⎢⎢⎡⎭⎪⎪⎫34 +∞;B 中函数的值域为(0 ,+∞) ,应选B. 答案:B2.假设函数f (x )=(a 2-2a -3)x 2+(a -3)x +1的定义域和值域都为R ,那么a 的值是( )A .-1或3B .-1C .3D .不存在解析:由⎩⎪⎨⎪⎧a 2-2a -3=0 a -3≠0得a =-1.答案:B二、填空题(每题5分 ,共10分)3.函数f (x )=x -1.假设f (a )=3 ,那么实数a =________. 解析:因为f (a )=a -1=3 ,所以a -1=9 ,即a =10. 答案:104.给出定义:假设m -12<x ≤m +12(其中m 为整数) ,那么m 叫做离实数x 最|近的整数 ,记作{x } ,即{x }=m .在此根底上给出以下关于函数f (x )=|x -{x }|的四个结论.①f ⎝ ⎛⎭⎪⎫-12=12; ②f (3.4)=-0.4;③f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14; ④y =f (x )的定义域为R ,值域是⎣⎢⎢⎡⎦⎥⎥⎤-1212. 那么其中正确的序号是________.解析:由题意得f ⎝ ⎛⎭⎪⎫-12=-12--12=-12-(-1)=12 ,①正确; f (3.4)=|3.4-{3.4}|=|3.4-3|=0.4 ,②错误; f ⎝ ⎛⎭⎪⎫-14=-14--14=⎪⎪⎪⎪⎪⎪-14-0=14,f ⎝ ⎛⎭⎪⎫14=14-14=⎪⎪⎪⎪⎪⎪14-0=14, ∴f ⎝ ⎛⎭⎪⎫-14=f ⎝ ⎛⎭⎪⎫14 ,③正确; y =f (x )的定义域为R ,值域为⎝ ⎛⎦⎥⎥⎤-1212 ,④错误.答案:①③ 三、解答题5.(本小题总分值10分)函数f (x )=x 21+x2.(1)求f (2)+f ⎝ ⎛⎭⎪⎫12 ,f (3)+f ⎝ ⎛⎭⎪⎫13的值. (2)求证:f (x )+f ⎝ ⎛⎭⎪⎫1x是定值.(3)求f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+ f (2 017)+f ⎝⎛⎭⎪⎫12 017的值.(1)解:∵f (x )=x 21+x2 ,∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1. f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明:f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)解:由(2)知f (x )+f ⎝ ⎛⎭⎪⎫1x =1 ,∴f (2)+f ⎝ ⎛⎭⎪⎫12=1 ,f (3)+f ⎝ ⎛⎭⎪⎫13=1 ,f (4)+f ⎝ ⎛⎭⎪⎫14=1 ,… ,f (2 017)+f ⎝⎛⎭⎪⎫12 017=1.∴f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+…+f (2 017)+f ⎝ ⎛⎭⎪⎫12 017=2 016.活页作业(八) 函数的表示法(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.小明骑车上学 ,开始时匀速行驶 ,途中因交通堵塞停留了一段时间 ,后为了赶时间加快速度行驶.与以上事件吻合得最|好的图象是( )解析:方法一:出发时距学校最|远 ,先排除A ,中途堵塞停留 ,距离不变 ,再排除D ,堵塞停留后比原来骑得快 ,因此排除B ,选C.方法二:由小明的运动规律知 ,小明距学校的距离应逐渐减小 ,由于小明先是匀速运动 ,故前段是直线段 ,途中停留时距离不变 ,后段加速 ,直线段比前段下降得快 ,故应选C.答案:C 2.f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,那么f (x )=( )A.x +1x -1B .1-x 1+x C.1+x1-xD .2x x +1解析:设t =1-x 1+x ,那么x =1-t 1+t ,f (t )=1-t 1+t ,即f (x )=1-x1+x .答案:B3.函数f (x )是一次函数 ,2f (2)-3f (1)=5,2f (0)-f (-1)=1 ,那么f (x )=( ) A .3x +2 B .3x -2 C .2x +3D .2x -3解析:设f (x )=kx +b (k ≠0) ,那么⎩⎨⎧22k +b -3k +b =52b --k +b =1.解得⎩⎪⎨⎪⎧k =3 b =-2∴f (x )=3x -2. 答案:B4.f ⎝ ⎛⎭⎪⎫12x -1=2x +3 ,且f (m )=6 ,那么m 等于( )A .-14B.14C.32D .-32解析:设12x -1=m ,那么x =2m +2 ,∴f (m )=2(2m +2)+3=4m +7=6 ,∴m =-14.答案:A5.函数f (2x +1)=3x +2 ,且f (a )=2 ,那么a 的值等于( ) A .1 B .3 C .5D .-1解析:由f (2x +1)=3x +2 ,令2x +1=t , ∴x =t -12.∴f (t )=3·t -12+2.∴f (x )=3x -12+2.∴f (a )=3a -12+2=2.∴a =1.答案:A二、填空题(每题5分 ,共15分)6.如图 ,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0) ,(1,2) ,(3,1) ,那么f ⎝⎛⎭⎪⎫1f 3的值等于________.解析:∵f (3)=1 ,1f 3=1 ,∴f ⎝ ⎛⎭⎪⎫1f 3=f (1)=2.答案:27.函数f (x ) ,g (x )分别由下表给出:x 1 2 3 f (x )131x 1 2 3 g (x )321那么f (g (1))=____________. 解析:∵g (1)=3 ,∴f (g (1))=f (3)=1. 又∵x ,f (g (x )) ,g (f (x ))的对应值表为x 1 2 3 f (g (x ))131g (f (x ))3 1 3∴f (g (x ))>g (f (x ))答案:1 28.假设f (x )是一次函数 ,f (f (x ))=4x -1 ,那么f (x )=______.解析:设f (x )=kx +b (k ≠0) ,那么f (f (x ))=kf (x )+b =k (kx +b )+b =k 2x +kb +b =4x ⎩⎪⎨⎪⎧k 2=4 kb +b =-1解得⎩⎪⎨⎪⎧k =2b =-13或⎩⎨⎧k =-2b =1.所以f (x )=2x -13或f (x )=-2x +1.答案:2x -13或-2x +1三、解答题(每题10分 ,共20分) 9.下表表示函数y =f (x ).x0<x <5 5≤x <1010≤x <1515≤x ≤20y =f (x )-46810(1)写出函数的定义域、值域; (2)写出满足f (x )≥x 的整数解的集合.解:(1)从表格中可以看出函数的定义域为(0,5)∪[5,10)∪[10,15)∪[15,20]=(0,20].函数的值域为{-4,6,8,10}.(2)由于当5≤x <10时 ,f (x )=6 ,因此满足f (x )≥x 的x 的取值范围是5≤xx ∈Z ,故x ∈{5,6}.10.函数f (x )=g (x )+h (x ) ,g (x )关于x 2成正比 ,h (x )关于x 成反比 ,且g (1)=2 ,h (1)=-3 ,求:(1)函数f (x )的解析式及其定义域; (2)f (4)的值.解:(1)设g (x )=k 1x 2(k 1≠0) ,h (x )=k 2x(k 2≠0) , 由于g (1)=2 ,h (1)=-3 , 所以k 1=2 ,k 2=-3. 所以f (x )=2x 2-3x,定义域是(0 ,+∞). (2)由(1)得f (4)=2×42-34=612.一、选择题(每题5分 ,共10分)1.正方形的周长为x ,它的外接圆的半径为y ,那么y 关于x 的解析式为( )A .y =12xB .y =24xC .y =28x D .y =216x 解析:正方形边长为x4 ,而(2y )2=⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫x 42,∴y 2=x 232.∴y =x 42=28x .答案:C2.以下函数中 ,不满足f (2x )=2f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +1D .f (x )=-x解析:对于A ,f (2x )=|2x |=2|x |=2f (x );对于B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x );对于C ,f (2x )=2x +1≠2f (x );对于D ,f (2x )=-2x =2f (x ).答案:C二、填空题(每题5分 ,共10分)3.观察以下图形和所给表格中的数据后答复以下问题:梯形个数 1 2 3 4 5 … 图形周长58111417…当梯形个数为. 解析:由表格可推算出两变量的关系 ,或由图形观察周长与梯形个数关系为l =3n +2(n ∈N *).答案:l =3n +2(n ∈N *)4.R 上的函数f (x )满足:(1)f (0)=1;(2)对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1) ,那么f (x )=________.解析:因为对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1) ,所以令y =x ,有f (0)=f (x )-x (2x -x +1) ,即f (0)=f (x )-x (x +1) ,又f (0)=1 ,所以f (x )=x (x +1)+1=x 2+x +1 ,即f (x )=x 2+x +1.答案:x 2+x +1三、解答题(每题10分 ,共20分)5.画出函数f (x )=-x 2+2x +3的图象 ,并根据图象答复以下问题: (1)比拟f (0) ,f (1) ,f (3)的大小;(2)假设x 1<x 2<1 ,比拟f (x 1)与f (x 2)的大小;(3)求函数f (x )的值域.解:因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y…-5343-5…连线 ,描点 ,得函数图象如图:(1)根据图象 ,容易发现f (0)=3 ,f (1)=4 ,f (3)=0 ,所以f (3)<f (0)<f (1). (2)根据图象 ,容易发现当x 1<x 2<1时 ,有f (x 1)<f (x 2).(3)根据图象 ,可以看出函数的图象是以(1,4)为顶点 ,开口向下的抛物线 ,因此 ,函数值域为(-∞ ,4].6.函数f (x )=xax +b(a ,b 为常数 ,且a ≠0)满足f (2)=1 ,方程f (x )=x 有唯一解 ,求函数f (x )的解析式 ,并求f (f (-3))的值.解:由f (x )=x ,得xax +b=x , 即ax 2+(b -1)x =0.因为方程f (x )=x 有唯一解 , 所以Δ=(b -1)2=0 ,即b =1. 又f (2)=1 , 所以22a +1=1 ,a =12.所以f (x )=x 12x +1=2x x +2.所以f (f (-3))=f (6)=128=32.活页作业(九) 分段函数、映射(时间:45分钟 总分值:100分)一、选择题(每题5分 ,共25分)1.集合M ={x |0≤x ≤6} ,P ={y |0≤y ≤3} ,那么以下对应关系中 ,不能构成M 到P 的映射的是( )A .f :x →y =12xB .f :x →y =13xC .f :x →y =xD .f :x →y =16x解析:由映射定义判断 ,选项C 中 ,x =6时 ,y =6∉P . 答案:C2.在给定映射f :A →B ,即f :(x ,y )→(2x +y ,xy )(x ,y ∈R )的条件下 ,与B 中元素⎝ ⎛⎭⎪⎪⎫16 -16对应的A 中元素是( ) A.⎝ ⎛⎭⎪⎪⎫16 -136 B.⎝ ⎛⎭⎪⎪⎫13 -12或⎝ ⎛⎭⎪⎪⎫-14 23 C.⎝ ⎛⎭⎪⎪⎫136 -16 D.⎝ ⎛⎭⎪⎪⎫12 -13或⎝ ⎛⎭⎪⎪⎫-23 14 解析:由⎩⎪⎨⎪⎧ 2x +y =16 xy =-16 得⎩⎪⎨⎪⎧ x =13y =-12或⎩⎪⎨⎪⎧x =-14y =23.应选B.答案:B3.以下图象是函数y =⎩⎪⎨⎪⎧x 2x <0x -1 x ≥0的图象的是( )解析:由于f (0)=0-1=-1 ,所以函数图象过点(0 ,-1);当x <0时 ,y =x 2,那么函数图象是开口向上的抛物线y =x 2在y 轴左侧的局部.因此只有图象C 符合.答案:C4.f (x )=⎩⎨⎧ x -5x ≥6f x +2x <6那么f (3)为( )A .2B .3C .4D .5解析:f (3)=f (5)=f (7)=7-5=2. 答案:A5.f (x )=⎩⎨⎧2xx >0f x +1x ≤0那么f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43等于( ) A .-2 B .4 C .2D .-4解析:∵f ⎝ ⎛⎭⎪⎫43=2×43=83 ,f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-43+1=f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23=2×23=43 ,∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=83+43=4.答案:B二、填空题(每题5分 ,共15分)6.函数f (x )的图象如下图 ,那么f (x )的解析式是____________________.解析:由图可知 ,图象是由两条线段组成.当-1≤x <0时 ,设f (x )=ax +b ,将(-1,0) ,(0,1)代入解析式 ,那么⎩⎨⎧ -a +b =0 b =1.∴⎩⎨⎧a =1b =1.∴f (x )=x +1.当0≤x ≤1时 ,设f (x )=kx ,将(1 ,-1)代入 ,那么k =-1 ,∴f (x )=-x .。
功到自然成课时作业本高中数学必修1第2章 函数
第2章 函 数 函数的概念 函数的概念与图像 第1课时 函数的概念创新练习 (1~10题每小题7分,11~12题美小题15分,共100分) 1.对应x →y (其中y =21x,x ∈R ,y ∈R +) (填“是”或“不是”)R 到R +的函数. 2.函数12f x x-(的定义域为 . 3.已知函数f (x )=2x +1的值域为{-1,1,3,5,7},则其定义域为 .4.已知函数221()1x f x x -=+,若3()5f x =。
则x = .5.给出下列函数:①()f x =2()f x =;③2()x f x x=;④()f x =其中与f (x )=x 表示同一函数的是 (用序号表示).6.若函数21,1()1,1x x f x x x-⎧⎪⎨⎪⎩<,≥,则()(2)f f = .7.已知函数()f x =的定义域为A ,若2?A ,则a 的取值范围 是 . 8.已知函数21,1()(3),1,x x f x f x x +⎧=⎨+⎩≥<则5()2f f ⎛⎫- ⎪⎝⎭= .9.若函数1,0,()1,x 0,x f x ⎧=⎨-⎩><则对于任意不想打的两个实数a ,b ,代数式 a ()22b a bf a b +-+-的值为 . 10.已知函数f (x )=x 2-2x ,x ∈[a ,b ]的值域为[-1,3],则b -a 的取值范围是 . 11.已知函数,0,()2,0.x bx c x f x x ++⎧=⎨⎩≤>f (-4)=f (0),f (-2)=-2. (1)求函数f (x )的解析式;(2)定义满足f (x 0)=x 0的x 0为函数f (x )的不动点,求函数出f (x )的所有不动点.12.已知函数21122,0,22()122,,1.2x x x f x x x ⎧⎡⎫-++∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪-+∈⎢⎥⎪⎣⎦⎩,若0101x 0,,(),2x f x ⎡⎫∈=⎪⎢⎣⎭00()f x x =,求x 0的值.第2课时 函数的图像创新练习 (1~10题每小题7分,11~12题每小题15分,共100分) 1.函数f (x )=x 2(x =-1,0,1,2)的图像为 .2.函数,0,()1,0x x f x x x⎧⎪=⎨⎪⎩≥<的图像为 .3.若函数f (x )的图像恒过定点(0,-1),则函数f (x +2)的图像恒过定点 .4.函数31,0,()11,0x x f x x x⎧+⎪=⎨+⎪⎩<>的图像大致是 . 5.已知函数y =f (x )的定义域为R ,则函数y =f (x -1)与y =f (1-x )的图像关于直线 对称. 6.函数12,0,()12,0x x f x ax x +⎧=⎨+⎩>≤的图像关于y 轴对称,则实数a 的值为 . 7.若y =f (x )的图像如图所示,则不等式f (x )>0的解集为 .8.若集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},则从M 到N 的四中对应如图所示,其中能表示为M 到N 的函数关 系的是 (用序号表示).9.已知函数y =f (x )的图像如图所示,则不等式xf (x )<0的解集为 . 10.若函数2()()ax bf x x c +=+的图像如图所示,则a ,b ,c ,的值的符号是 . 11.作出下列函数的图像:(1)21,1,2,1;x x y x x x -⎧=⎨-⎩≥< (2)11,0,,0.x x y x x ⎧--⎪=⎨-⎪⎩≥< 12.已知函数1()(0)f x x x x=->的图像如图所示,分别作出下列函数的图像:(1)y =f (|x |);(2)y =|f (x )|;(3)y =|f (-x )|;(4)y =-f (-x );(5)y =f (x )+|f (x )|.函数的表示方法 第1课时 函数的表示方法创新练习 (1~10题每小题7分,11~12题美小题15分,共100分) 1.已知a ,b 为常数,若f (x )=x +4,f (ax +b )=x +10,则a +b = . 2.若函数f (x )和g (x )的自然量和函数值的对应表格如下:则f (g (1))= ,g (f (1))= .3.若函数221,1,()2,1,x x f x x x x ⎧-⎪=⎨+-⎪⎩≤>则1(2)f f ⎛⎫⎪⎝⎭的值 为 .4.已知函数2,0,()2,0,x x f x x x +⎧=⎨-+⎩≤>则不等式f (x )≥2x 的解集为 .5.已知函数21,1,()1, 1.x x f x x x -⎧⎪=⎨⎪⎩<≥若f (f (x ))=0,则x = .6.若函数f (x )的定义域为R ,且满足f (xy )=f (x )+f (y ),则1()f f x x ⎛⎫+=⎪⎝⎭. 7.函数f (x )对于任意的实数x 满足条件1(1)()f x f x +=,若f (1)=-5,则f (f (5)) = .8.已知函数22,,()52,.x x a f x x x x a +⎧=⎨++⎩>≤若f (x )=2x 恰有3个实数根,则实数a 的取值范围是 .9.已知函数[][]2,0,1,(),0,1,x f x x x ⎧∈⎪=⎨∉⎪⎩则使f (f (x ))=2成立的实数x 的集合为 .10.用min {a ,b }表示a ,b 两个数中的较小值,若函数f (x )=min {x +2,4-x }则 f (x )max = . 11.定义运算“*”为*a b a b =+,其中a ,b 是正实数,已知1*k =3.(1)求正实数k 的值; (2)求函数f (x )=k *x 的值域. 12.已知函数11()(1)1xf x x x+=≠-,定义*11()(())()n n f x f f x n N +=∈,试求函数4()f x 的解析式.第2课时 函数表示方法的应用x 1 2 3 4 x 1 2 3 4f (x )4312课标定位 进一步理解并掌握函数的三种表示方法,并能通过建立函数模型求解一些简单的应用性问题.创新练习 (1~10题每小题7分,11~12题美小题15分,共100分)1.若函数1,0,()0,0,1,0,x f x x x ⎧⎪==⎨⎪-⎩><1,()0,x g x x ⎧=⎨⎩为有理数,为无理数,则()()f g e = .2.已知函数f (x ),g (x )分别由下表给出: 则()(1)f g 的值为 ;当()()2g f x =时,x = .3.已知函数()f x 满足112()32f x f x x ⎛⎫-=- ⎪⎝⎭,则(2)f = . 4.若函数[]2()(2)3,,f x x a x x a b =+++∈的图像关于直线x =1对称,则b = . 5.制衣定义域为R 的函数()f x 满足(+2)=2()f x f x ,且当[]0,2x ∈时,2()=f x x ,则当[]4,2x ∈--时,()f x 的最大值为 .6.已知函数()y f x =的图像关于直线x =1对称,且当x <0时,1()=f x x,则当x >0 时,()f x = .7.某公司将进货单价为8元一个的商铺,按10元一个销售,每天可卖出100个,若这种商品的销售单价每上涨1元,则销售量就减少10个,为获得最大利润,此商品销售价应该为 . 8.用min {a ,b }表示a ,b 两个数中的最小值,若函数{}()=min ,f x x x t +的图像关于直线12x =-对称,则t 的值为 .9.已知函数2()=f x x 的值域为{1,4},这样的函数的个数为 .10.已知a ,t 为正实数,函数2()=2f x x x a -+,且对任意的[]0,x t ∈,都有[](),f x a a ∈-.若对每一个正实数a ,记t 的最大值为()g a ,则函数()g a 的值域为 . 11.已知函数2(1),01,()=1,12,x x f x x x -⎧⎨-⎩≤≤<≤记()()3()=()f x f f f x ,(1)解不等式()f x x ≤;(2)设集合A ={0,1,2},求证:对任意的3,()x A f x x ∈=.12.由市场调查,某商品在最近40天内的价格()f t 与实际t 满足关系**111,020,,()241,2040,.t t t N f t t t t N ⎧+∈⎪=⎨⎪-+∈⎩≤<≤≤销售量()g t 与实际t 满足关系*143()(040,)33g t t t t N =-+∈≤≤,求这种商品的日销售额(销售量与价格的乘积)的最大值.函数的简单性质 函数的单调性第1课时 函数单调性的概念创新练习 (1~10题每小题7分,11~12题每小题15分,共100分) 1.若函数y =(k -1)x +1是R 上的减函数,则k 的取值范围是 . 2.函数y =-x 2+2x 的单调区间是 .3.函数2,0,(),0x x f x x x ⎧=⎨⎩≥<的单调区间是 . 4.若函数()=2f x x a +的单调区间是(]-3∞,,则a = . 5.已知函数2()=3f x x mx =+在区间[)2+∞,(]-0∞,上是单调减函数,则实数b 的取值范围是 . 6.已知2()=23f x x mx -+在(]-2∞,上是减函数,在上是增函数,则(1)f = .7.函数()=1f x x x +-的单调区间是 .8.下列函数:①1()f x x=;②()=f x x ;③2()=(1)f x x -;④()=1f x ax +(a 为长),其中一定满足:“对任意的12,(0,)x x ∈+∞,当12x x <时,都有12()()f x f x <成立”的是(用序号表示).9.函数2()=4f x x x x +-的单调区间是 .10.函数2()=1xf x x -在区间(-1,1)上的单调性为 .11.已知a >0,函数2()2x a f x x a -+在区间[1,4]上的最大值为13,求实数a 的值.12.已知()f x 是定义R 上的函数,对任意的1212,()x x R x x ∈≠,恒有[]1212()()()0x x f x f x -->,且存在0x R ∈,对任意的12,x x R ∈,恒有0102012()()()()f x x x x f x f x f x +=++的成立.(1)求(0)+(1)f f 的值;(2)求0x 的值.第2课时 函数单调性的应用创新练习 (1~10题每小题7分,11~12题每小题15分,共100分) 1.若函数()af x x x=-在(0,+∞)上是减函数,则实数a 的取值范围是 . 2.若2()2f x x ax =-+与()ag x x=在区间[1,2]上都是减函数,则实数a 的取值范围 是 . 3.已知2,0,(),0,x x f x x x ⎧=⎨⎩≤>则使(2)()f x f x ->的x 的取值范围是 .4.若c <0,()f x 是区间[a ,b ]上的减函数,则()+f x c 在[a ,b ]上的最小值为 ;()cf x 在[a ,b ]上的最小值为 .5.函数(f x 的单调区间是 . 6.若()1axf x x=-为区间(-1,1)上的增函数,则实数a 的取值范围是 . 7.若函数()f x x a =-在区间[0,1]上的最大值为M (a ),则M (a )的最小值为 .8.已知函数()f x 是R 上的单调函数,则满足4()3x f x f x -⎛⎫= ⎪-⎝⎭的x 的值为 .9.已知函数1()=x-f x x ,1()g x x m x---,若对任意的[]11,3x ∈,存在[]22,1x ∈--,使得12()()f x g x ≥成立,则实数m 的取值范围是 .10.已知函数2,0,(),0,x x f x x x ⎧=⎨-⎩≥<则满足不等式(()3)4f f x ->的x 的取值范围 是 . 11.设函数()f x 是定义在(0,+∞)上的减函数,且对任意的x ,y ∈(0,+∞)满足()()()f xy f x f y =+.若(2)=1f ,求满足不等式()(1)2f a f a -+≥的a 的取值范围.12.已知函数1()1(0)f x x x=->. (1)求()f x 的单调区间.(2)是否存在实数a ,b (0<a <b ),使得当x ∈[a ,b ]时,()f x 的值域为11,22a b --⎡⎤⎢⎥⎣⎦.若存在,求a ,b 的值;若不存在,青请说明理由.函数的奇偶性第1课时 函数奇偶性的概念1.函数y =的奇偶性是 .2.对于定义在R 上的函数()f x ,给出下列三个命题:①若(-2)=(2)f f ,则()f x 是偶函数;②若(-2)(2)f f ≠,则()f x 不是偶函数;③若 (-2)=(2)f f ,则f (x )一定不是奇函数.其中正确的命题为 (永序号表示).3.若函数22,0,()=,0x ax x f x x x x ⎧+⎪⎨-+⎪⎩<≥是奇函数,则a = .4.下列函数:①()=f x x x +;②()=f x x x ;③2()=1x f x x+;④3()=f x x x +.其中既是奇函数,又是增函数是 (用序号表示). 5.奇函数()f x 的定义域为R ,则下列说法:①()()f f x 是奇函数;②()y f x =的图像必经过点(,())a f x -;③()y f x =的图像关于原点对称;④(-)+()0f x f x =.其中正确说法的个数是 . 6.若()f x 是R 上的任意函数,则下列叙述:①()()f x f x -g 是奇函数;②()()f x f x -g是奇函数;③()-()f x f x -是偶函数;④()+()f x f x -是偶函数,其中正确的是 (用序号表示).7.若不恒为0的函数()f x 和()g x 分别是R 上的偶函数和奇函数,则下列结论:①|f (x )·|-g (x )是奇函数;②|f (x )|+g (x )是偶函数;③f (x )-|g (x )|是奇函数; ④f (x )+|g (x )|是偶函数.其中正确的是 (用序号表示).8.若f (x )与g (x )都是定义在R 上的奇函数,则:①f (x )+g (x );②f (x )-g (x ); ③f (x )·g (x );④f (g (x )).其中一定是奇函数的是 (永序号表示). 9.若f (x )是R 上的奇函数,则下列函数:①y =f (|x |);②y =|f (x )|;③y =xf (x );④y =f (f (x )).其中奇函数是 (用序号表示).10.定义在(-1,1)上的函数f (x )满足f (x )-f (x )=()()1x y f x f x f xy ⎛⎫-== ⎪-⎝⎭,则f (x )的奇偶性是 .11.判断下列函数的奇偶性,并给出证明.(1)f (x )=x 2+|x |; (2)f (x )=x 3-1x; (3)f (x )=1x ; (4)f (x )=22,0,,0.x x x x x x ⎧-⎪⎨+⎪⎩≤>12.已知f (x )是定义R 上的不恒为零的函数,且对于任意的a ,b ∈R 都是满足 f (ab )=af (b )+bf (a ).(1)求f (0),f (1)与f (-1)的值; (2)判断f (x )的奇偶性.第2课时 函数奇偶性的应用创新练习 (1~10题每小题7分,11~12题每小题15分,共100分)1.对于下列命题:①偶函数的图像一定与y 轴相交;②奇函数的图像一定过原点;③既 是奇函数又是偶函数的函数一定是f (x )=0(x ∈R ).其中正确的个数是 .2.已知函数f (x )是R 是哪个的奇函数,当x ≥0时,f (x )=x (1-x )+b (b 为常数),则 f (-2)= .3.已知函数f (x )=x 2+|x +a |是偶函数,则a = .4.已知函数f (x )是奇函数,当x >0时,f (x )=x -|x |,则当x <0时,f (x )= .5.已知函数f (x )是偶函数,且当x ≥0时,f (x )=x 2-2x ,则 f (x )的单调增区间为 .6.若f (x )是偶函数,且当x ∈[0,+∞)时,f (x )=x -1,则f (x -1)<0的解集是 .7.已知f (x )是偶函数,且在(-∞,0)上是减函数,若f (1)=0,则xf (x )>0的解集 为 .8.已知函数224,0,()=4,0.x x x f x x x x ⎧+⎪⎨-⎪⎩≥<若f (a -2)+f (a )>0,则A 的取值范围是 .9.已知函数f (x )=(x -a )(bx -2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,8],则 a +b = .10.已知函数f (x )满足f (-x )=f (x )(x ∈R ),且对任意的x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2),若f (2-a )≥f (a ),则a 的取值范围是 . 11.已知函数f (x )=|x +1|+|x -a |(x ∈R ,a 是常数)的图像关于y 轴对称. (1)求a 的值;(2)设g (x )=f (x -t )-f (x +t )(t ≠0),试判断g (x )的奇偶性,并给出证明.12.已知函数f (x )是定义域为R 的函数,对任意的x ∈R 满足f (x )f (-x )=1,f (x )≠1. (1)若1()()1()f xg x f x +=-,求证g (x )的奇函数;(2)若11()()12h x f x =+-,试判断h (x )的奇偶性,并给出证明.第3课时 函数的单调性与奇偶性创新练习 (1~10题每小题7分,11~12题每小题15分,共100分)1.给定函数:①y =-x 2,x ∈R ;②y =-x |x |,x ∈R ;③y =x ,x ∈R ;④y =|x |,x ∈R .在其定义域内既是奇函数又是减函数的是 (用序号表示).2.若函数f (x )=x |x +a |+b 是奇函数,则a = ,b = .3.若函数y =f (x )是偶函数,y =f (x -2)在[0,2]上单调递增,则f (-1),f (0),f (2)的大小关系是 .4.已知f (x )是R 上的增函数,集合A ={x |f (x +t )<f (2)},B ={x |f (x )<f (-1)},若A ≠⊂B ,则实数t 的取值范围是 .5.已知函数221()1x x f x x ++=+,若2()3f a =,则f (-a )= .6.对于函数:①f (x )=|x -2|+1;②f (x )=(x -2)2;③1()=2f x x -,有如下三个命题.命题甲:f (x +2)是偶函数;命题乙:f (x )在(-∞,2)上是减函数,在(2,+∞)上是增函数;命题丙:f (x +2)-f (x )在(-∞,+∞)上是增函数.使命题甲、乙、丙都正确的函数是 (用序号表示) .7.已知函数f (x )在定义域[-1,1]上单调递减,若f (a )+f (a -1)≤0,则实数a 的取值范围是 .8.已知函数f (x )是定义在R 上的偶函数,在[-∞,0]上是减函数,且f (2)=0,则使f (x )<0的x 的取值范围是 .9.已知f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x 2.若福任意的x ∈[a ,a +2],不等式())f x a f +≥恒成立,则实数a 的取值范围是 .10.如果对于函数f (x )定义域D 上的任意x 1,x 2,当x 1<x 2时,都有f (x 1)≤f (x 2),且存在m 1,m 2∈D ,m 1≠m 2,单f (m 1)=f (m 2),则称f (x )是定义域D 是哪个的不严格增函数.已知函数g (x )是定义在A ={-1,0,1}上的不严格增函数,且值域B ⊆A ,那么这样的函数g (x )有 个.11.已知函数f (x )是定义在R 上的单调函数,且对任意的x ∈R ,有f (x )-f (-x )=0恒成立,若f (-3)=2.(1)试判断f (x )在R 上的单调性,并说明理由; (2)求使f (1-x )+f (1+2x )<0成立的x 的取值范围. 12.已知函数f (x )=x |x -a |(a ∈R ,x ∈R ). (1)判断函数f (x )的奇偶性,并说明理由.(2)函数f (x )在[0,+∞)上能否单调递增?若能,求出实数a 的取值范围;若不能,请说明理由.映射的概念创新练习 (1~10题每小题7分,11~12题每小题15分,共100分)1.已知集合,1b M a ⎧⎫=⎨⎬⎩⎭,N ={a ,0},若f :x →x 表示M 到N 的映射,则a +b = . 2.集合A 中有两个元素,B ={-1,1,-4,4},f 是A 到B 的映射,若对应法则f 是求算术 平方根,则A = .3.已知集合A ={1+x ,1+2x },B ={y ,y 2},若f :x →x 表示A 到B 的映射,则x +y = .4.已知集合A ={a ,b },B ={-1,0,1},则满足f (a )+f (b )=0的映射f :A →B 的个数 为 .5.已知集合A ={a ,b ,c },B ={-1,0,1},则f :A →B 中满足f (b )=0的映射共有 个.6.若集合A ={x |0≤x ≤2},B ={y |0≤y ≤6},则下列从A 到B的对应:①x →y =2x ;②x →y =;③x →y =3x ;④x →y =.其中不少映射的 是 (用序号表示).7.已知集合A 中的元素(x ,y )在映射f 的作用下与B 中元素(xy ,x +y )对应,则在f 的作用下,A 中元素(2,3)在B 中对应的元素为 ;与B 众元素(2,3)对应 的A 的元素为 .8.若集合A ={-1,1,2},B={3,4,5,6},试写出一个从集 合A 到集合B 的函数: .9.已知f :x →x 2+1是A 到B 的一个函数,若值域B ={1,2},则定义域A = . 10.已知集合A ={3,k },B ={a 4,a 2+3a },定义映射f :A →B ,使x →3x +1,则整数k 和 a 的值分别为 . 11.已知集合A 到集合110,1,,23B ⎧⎫=⎨⎬⎩⎭的映射f :11x x →-,那么集合A 中的元素最多有几个?试写出元素最多的集合A .12.设集合A ={a ,b ,c },B ={-1,0,1},f 是A 到B 的映射,试问:满足f (a )+f (b )=f (c )的映射共有多少个?阶段检测(二)一、填空题(本大题共14小题,每小题5分,共70分)1.函数()f x x=的定义域为 . 2.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么函数g (x )=ax 3+bx 2+cx 的奇偶性是 .3.设S =max {a ,b }为a ,b 中的最大者,当x >0时,1max ,S x x ⎧⎫=⎨⎬⎩⎭,则S 的最小值为 .4.下列函数:①()f x =1()f x x =;③1()f x x =;④()f x =.其中 以(0,+∞)为定义域的是 (用序号表示).5.已知定义在R 上的函数f (x ),当x ∈[-1,1]时,f (x )=x 2-x ,且对任意的实数x 满 足f (x -1)=2f (x ),则f (x )在区间[5,7]上的最大值是 .6.下列说法:①图像关于原点对称的函数是奇函数;②图像关于y 轴对称的函数是偶函 数;③奇函数的图像一定过原点;④偶函数的图像一定与y 轴相交.其中错误的是 (用序号表示).7.若函数f (x )是定义在R 上的奇函数,则函数f (x )=|f (x )|+f (|x |)的图像关 于 对称.8.下列函数:①y =1+x 3;②1y x =;③y =x +x 3;④1-y x=.其中既是奇函数,又在定义 域上是增函数的是 (用序号表示).9.当x ∈[0,2]时,函数f (x )=ax 3+4(a -1)x-3在x =2是取得最大值,则a 的取值范围是 .10.已知函数2()()a f x x a R x=+∈,则下列说的:①任给a ∈R ,f (x )在(0,+∞)上 是增函数;②任给a ∈R ,f (x )在(-∞,0)上是减函数;③存在a ∈R ,f (x )是奇函数; ④存在a ∈R ,f (x )是偶函数.其中正确的是 (用序号表示).11.若函数22(1)()1x x f x x ++=+的最大值为M ,最小值为m ,则M +m = . 12.已知函数()12ax f x x=-满足f (f (x ))=x ,那么实数a = . 13.对任意的a ,b ∈R ,记{},,max ,,,a a b a b b a b ⎧=⎨⎩≥<则函数f (x )=max {|x +1|,|x -2|}(x ∈R )的最小值是 .14.函数f (x )的定义域为D ,若对应任意的x 1,x 2∈D ,当x1<x2时,都有f (x 1)≤f (x 2),则称函数f (x )在D 上为非减函数.若函数f (x )在[0,1]上为非减函数,且满足一下三个 条件:①f (0)=0;②1()32x f f x ⎛⎫= ⎪⎝⎭;③f (1-x )=1-f (x ),则1138f ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭= . 二、解答题(本大题栋6小题,共90分)15.(本小题满分14分)已知函数2()f x x n =-满足f (m )=n ,且x =1是方程f (x )=x 的一个根,求f (4)的值.16.(本小题满分14分)已知a >1,且对任意的x ∈[a ,2a ],都存在y ∈[a ,a 2]满足xy =a 3,求实数a 的取值范围.17.(本小题满分14分)某厂生产某产品x 吨所需要的费用为P 元,卖出x 吨的价格为每吨Q 元.已知2110005,10x P x x Q a b=++=+.若生产出的产品能全部卖掉,且当产量为150吨时利润最大,此时每吨的价格为40元,求实数a ,b 的值.18.(本小题满分16分)定义:如果函数y =f (x )在定义域内给定的区间[a ,b ]上存在x 0(a <x 0<b ),满足0()()()f b f a f x b a-=-,则称函数y =f (x )是[a ,b ]上的“平均值函数”. (1)若f (x )=|x |-mx 是[-1,1]上的“平均值函数”,求实数m 的取值范围.(2)若g (x )=x 2-mx -1,问:g (x )是不是[0,1]上的“平均值函数”?若是,求出实数m 的取值范围;若不是,说明理由.19.(本小题满分16分)设函数f (x )=x 2+bx +c (b ,c ∈R ).(1)若y =xf (x )是奇函数,求b 的值;(2)若对任意的x 1,x 2∈[-1,1],恒有|f (x 1)-f (x 2)|≤4,求b 的取值范围.20.(本小题满分16分)在区间D 上,如果函数f (x )为增函数,而函数1()f x x为减函数,则称函数f (x )为“弱增”函数.已知函数()1f x =-. (1)判断函数f (x )在区间(0,1)上是否为“若增”函数;(2)当x ∈[0,1]时,不等式11ax bx --恒成立,求实数a ,b 的取值范围.。
高中数学选择性必修一 高考训练 练习习题 课时作业(十二)
课时作业(十二) 两条直线平行和垂直的判定[练基础]1.过点A (2,5)和点B (-4,5)的直线与直线y =3的位置关系是( )A .相交B .平行C .重合D .以上都不对2.已知直线l 1,l 2,l 1的倾斜角为60°.若l 1⊥l 2,则l 2的斜率为( )A .-33B .33C .-3D .33.过A (m ,1),B (-1,m )两点的直线与直线y =3x 垂直,则m =( )A .12B .2C .-12D .-2 4.顺次连接A (-4,3),B (2,5),C (6,3),D (-3,0)所构成的图形是( )A .平行四边形B .直角梯形C .等腰梯形D .以上都不对5.(多选)已知点A (-4,2),B (6,-4),C (12,6),D (2,12),那么下面四个结论正确的是( )A.AB ∥CD B .AB ⊥CDC .AC ∥BD D .AC ⊥BD6.若两条直线l 1,l 2的方向向量分别为(1,2)和(1,k ),当l 1∥l 2时,k 的值为________.7.已知△ABC 的三个顶点分别是A (2,2),B (0,1),C (4,3),点D (m ,1)在边BC 的高所在的直线上,则实数m =________.8.已知平面直角坐标系中,A (-2,3),B (3,-2),C (12,m ),D (0,-3). (1)若点C 在直线AB 上,求m 的值;(2)若直线AC 与直线BD 平行,求m 的值;(3)若直线AC 与直线BC 垂直,求m 的值.[提能力]9.如图所示,在平面直角坐标系中,以O (0,0),A (1,1),B (3,0)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(-3,1) B.(4,1)C.(-2,1) D.(2,-1)10.(多选)已知直线l1经过点A(3,a),B(a-1,2),直线l2经过点C(1,2),D(-2,a +2).若l1⊥l2,则a的值可以是()A.-4 B.-3C.3 D.411.直线l1,l2的斜率k1,k2是关于k的方程2k2-4k+m=0的两根,若l1⊥l2,则m=________;若l1∥l2,则m=________.12.在平面直角坐标系中,四边形OPQR的顶点按逆时针顺序依次是O(0,0),P(1,t),Q(1-2t,2+t),R(-2t,2),其中t∈(0,+∞),试判断四边形OPQR的形状,并给出证明.[培优生]13.将一张画了直角坐标系(两坐标轴单位长度相同)的纸折叠一次,使点(2,0)与点(-2,4)重合,点(2 021,2 022)与点(m,n)重合,则m+n=()A.1 B.2 023C.4 043 D.4 046。
高中数学课时作业十二基本不等式的应用湘教版必修第一册
课时作业(十二) 基本不等式的应用[练基础]1.已知a >0,b >0,a +b =1,则1a +1b的最小值是( )A .3B .4C .5D .62.已知a >0,b >0,ab =1,且m =b +1a ,n =a +1b,则m +n 的最小值是( )A .3B .4C .5D .63.某工厂过去的年产量为a ,技术革新后,第一年的年产量增长率为p ()p >0,第二年的年产量增长率为q ()q >0,p ≠q ,这两年的年产量平均增长率为x ,则( )A .x =p +q2 B .x =pqC .x >p +q2D .x <p +q24.已知a >0,b >0,2a +1b =16,若不等式2a +b ≥9m 恒成立,则m 的最大值为( )A .8B .7C .6D .55.某人要用铁管做一个形状为直角三角形且面积为1 m 2的铁架框(铁管的粗细忽略不计),在下面四种长度的铁管中,最合理(够用,又浪费最少)的是( )A .4.6 mB .4.8 mC .5 mD .5.2 m6.(多选)小王从甲地到乙地往返的速度分别为a 和b (a <b ),其全程的平均速度为v ,则( )A .a <v <abB .v =abC .ab <v <a +b2D .v =2aba +b7.已知x >0,y >0,若2y x +8xy>m +2恒成立,则实数m 的取值范围是________.8.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则该公司年平均利润的最大值是________万元.9.已知x >0,y >0,且x +4y =40. (1)求xy 的最大值;(2)求1x +1y的最小值.10.某公司今年3月欲抽调一批销售员推销A 产品,根据过去的经验,每月A 产品销售数量y (万件)与销售员的数量x (人)之间的函数关系式为y =920xx 2+3x +1 600(x >0).在该月内,销售员数量为多少时,销售的数量最大?最大销售量为多少?(精确到0.1万件)[提能力]11.(多选)若对于任意的x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 可能的值为( )A .0B .15C .1D .212.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8 13.若两个正实数x ,y 满足4x+1y=1,且不等式x +4y >m 2-6m 恒成立,则实数m的取值范围是________.14.在4×□+9×□=60的两个□中,分别填入两个自然数,使它们的倒数和最小,应分别填上________和________.15.某单位决定用18.8万元把一会展中心(长方体状,高度恒定)改造成方舱医院,假设方舱医院的后墙利用原墙不花钱,正面用一种复合板隔离,每米造价40元,两侧用砖砌墙,每米造价45元,顶部每平方米造价20元.问:(1)改造后方舱医院的面积S 的最大值是多少?(2)为使S 达到最大,且实际造价又不超过预算,那么正面复合板应设计为多长?[培优生]16.我们学习了二元基本不等式:设a >0,b >0,a +b2≥ab ,当且仅当a =b 时,等号成立,利用基本不等式可以证明不等式,也可以利用“和定积最大,积定和最小”求最值.(1)对于三元基本不等式请猜想:设a >0,b >0,c >0,a +b +c3≥________,当且仅当a=b =c 时,等号成立(把横线补全).(2)利用(1)猜想的三元基本不等式证明:设a >0,b >0,c >0,求证:(a 2+b 2+c 2)(a +b +c )≥9abc . (3)利用(1)猜想的三元基本不等式求最值:设a >0,b >0,c >0,a +b +c =1,求(1-a )(1-b )(1-c )的最大值.课时作业(十二) 基本不等式的应用1.解析:因为a >0,b >0,a +b =1, 所以1a +1b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +ab≥2+2b a ·ab=4, 当且仅当a =b =12时等号成立,故选B. 答案:B2.解析:∵a >0,b >0,ab =1,且m =b +1a ,n =a +1b,则m +n =a +1a +b +1b ≥2a ·1a+2b ·1b=4, 当且仅当a =1a,b =1b即a =1,b =1时取等号. 故选B. 答案:B3.解析:由题意,可得a (1+p )(1+q )=a (1+x )2,即(1+p )(1+q )=(1+x )2,因为(1+p )(1+q )≤⎝ ⎛⎭⎪⎫1+p +1+q 22,当且仅当p =q 时取等号,p ≠q ,所以(1+p )(1+q )<⎝ ⎛⎭⎪⎫1+p +1+q 22, 则1+x <2+p +q 2=1+p +q 2,即x <p +q 2,故选D. 答案:D4.解析:可得6⎝ ⎛⎭⎪⎫2a +1b =1,所以2a +b =6⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=6⎝⎛⎭⎪⎫5+2a b+2b a ≥6×(5+4)=54,当且仅当2a b=2ba时等号成立,所以9m ≤54,即m ≤6,故选C.答案:C5.解析:设直角三角形两直角边长分别为x m ,y m ,则12xy =1,即xy =2.周长l =x +y +x 2+y 2≥2xy +2xy =22+2≈4.83(m), 当且仅当x =y 时等号成立.结合实际问题,可知选C. 故选C. 答案:C6.解析:设甲、乙两地之间的距离为s ,则全程所需的时间为s a +s b, ∴v =2ss a +s b=2aba +b .∵b >a >0,由基本不等式可得ab <a +b2,∴v =2ab a +b <2ab2ab=ab , 另一方面v =2ab a +b <2·⎝ ⎛⎭⎪⎫a +b 22a +b =a +b2,v -a =2ab a +b -a =ab -a 2a +b >a 2-a2a +b =0,∴v >a ,则a <v <ab . 故选AD. 答案:AD7.解析:因为x >0,y >0,所以2y x +8x y ≥8,当且仅当2y x =8x y时,“=”成立.所以m +2<8,解得m <6.答案:m <68.解析:每台机器运转x 年的年平均利润为y x=18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元.答案:89.解析:(1)因为x >0,y >0,∴40=x +4y ≥24xy =4xy (当且仅当x =4y ,即x =20,y =5时等号成立) 所以xy ≤100, 因此xy 的最大值为100.(2)因为x +4y =40,即140(x +4y )=1,所以1x +1y =140(x +4y )⎝ ⎛⎭⎪⎫1x +1y =140⎝ ⎛⎭⎪⎫5+4y x +x y ≥140⎝ ⎛⎭⎪⎫5+24y x ·x y =940, (当且仅当x =2y ,即x =403,y =203时等号成立)所以1x +1y 的最小值为940.10.解析:依题意得y =920x +3+1 600x(x ∈N *). 因为x +1 600x≥2x ·1 600x=80,当且仅当x =1 600x,即x =40时上式等号成立,所以y max =92083≈11.1(万件).所以当销售员为40人时,销售量最大,最大销售量约为11.1万件. 11.解析:对于∀x >0,不等式xx 2+3x +1≤a 恒成立.即对∀x >0,不等式1x +1x+3≤a 恒成立.∵x +1x+3≥3+2x ·1x =5.当且仅当x =1时,取等号,所以1x +1x+3的最大值为15.所以a ≥15. 故选BCD. 答案:BCD12.解析:(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥1+a +2y x ·axy=1+a +2a , 当且仅当y x =axy,即y =ax 时取等号. 依题意得1+a +2a ≥9,即(a -2)(a +4)≥0,又a +4>0, ∴a ≥2,解得a ≥4,故a 的最小值为4. 故选B. 答案:B 13.解析:∵4x+1y=1,∴x +4y =(x +4y )⎝ ⎛⎭⎪⎫4x +1y =4+16y x +x y+4≥8+216y x ·xy=16.当且仅当x =16y ,即y =4且x =64时取等号.∵x +4y >m 2-6m 恒成立,则16>m 2-6m ,解得-2<m <8.答案:-2<m <814.解析:设两数分别为x ,y (x ,y ∈N *),即4x +9y =60,1x +1y =⎝ ⎛⎭⎪⎫1x +1y 4x +9y 60 =160⎝ ⎛⎭⎪⎫13+4x y +9y x ≥160×(13+12)=512,当且仅当4x y =9yx,且4x +9y =60,即x =6且y =4时,等号成立,故应分别填上6,4. 答案:6 415.解析:(1)设正面复合板长为x m ,侧面长为y m ,总造价为z 元,则方舱医院的面积S =xy ,总造价z =40x +2×45y +20xy =40x +90y +20xy .由条件知z ≤188 000,即4x +9y +2xy ≤18 800. ∵x >0,y >0, ∴y ≤18 800-4x 9+2x .令t =9+2x ,则x =t -92(t >9),∴S =xy ≤t -92·18 800-(2t -18)t=-t 2+9 418t -9×9 409t=-⎝⎛⎭⎪⎫t +9×9 409t+9 418 ≤-2t ·9×9 409t+9 418=-2×3×97+9 418 =8 836,当且仅当t =9×9 409t,即t =291时等号成立.故S 的最大值为8 836 m 2.(2)由(1)知,当S =8 836 m 2时,t =291,t =9+2x ,∴x =141,则y =8 836141=1883.∴方舱医院的面积S 达到最大值8 836 m 2,实际造价又不超过预算时,正面复合板的长应设计为141 m .16.解析:(1)对于三元基本不等式猜想:设a >0,b >0,c >0,a +b +c3≥3abc ,当且仅当a =b =c 时,等号成立.(2)因为a >0,b >0,c >0,又因为a +b +c ≥33abc >0,a 2+b 2+c 2≥ 33a 2b 2c 2>0,所以(a 2+b 2+c 2)(a +b +c )≥93a 3b 3c 3=9abc , 当且仅当a =b =c 时,等号成立. 即(a 2+b 2+c 2)(a +b +c )≥9abc , (3)因为a >0,b >0,c >0,a +b +c3≥3abc ,所以abc ≤⎝ ⎛⎭⎪⎫a +b +c 33,又因为a +b +c =1,0<1-a <1,0<1-b <1,0<1-c <1,所以(1-a )(1-b )(1-c )≤⎝ ⎛⎭⎪⎫1-a +1-b +1-c 33=827,当且仅当a =b =c =13时,等号成立.所以(1-a )(1-b )(1-c )的最大值为827.。
高中数学新人教A版必修1 课时分层作业 全套25课时
- 1 - 课时分层作业(一) 集合的含义(建议用时:60分钟)[合格基础练]一、填空题1.若1∈A ,且集合A 与集合B 相等,则1________B (填“∈”或“”).∈ [由集合相等的定义可知,1∈B .]2.设集合A 是由1,k 2为元素构成的集合,则实数k 的取值范围是________. k ≠±1 [∵1∈A ,k 2∈A ,结合集合中元素的互异性可知k 2≠1,解得k ≠±1.]3.用符号“∈”或“”填空:(1)设集合B 是小于11的所有实数的集合,则23________B ,1+2________B ;(2)设集合C 是满足方程x =n 2+1(其中n 为正整数)的实数x 的集合,则3________C ,5________C ;(3)设集合D 是满足方程y =x 2的有序实数对为(x ,y )的集合,则-1________D ,(-1,1)________D .(1)∈ (2)∈ (3)∈ [(1)∵23=12>11,∴23B ;∵(1+2)2=3+22<3+2×4=11,∴1+2<11,∴1+2∈B .(2)∵n 是正整数,∴n 2+1≠3,∴3C ;当n =2时,n 2+1=5,∴5∈C .(3)∵集合D 中的元素是有序实数对(x ,y ),则-1是数,∴-1D ;又(-1)2=1,∴(-1,1)∈D .]二、选择题4.下列各组对象不能构成集合的是( )A .拥有手机的人B .2019年高考数学难题C .所有有理数D .小于π的正整数 B [B 选项中“难题”的标准不明确,不符合确定性,所以选B.]5.集合M 是由大于-2且小于1的实数构成的,则下列关系式正确的是( ) A.5∈MB .0M C .1∈M D .-π2∈M D [5>1,故A 错;-2<0<1,故B 错;1不小于1,故C 错;-2<-π2<1,故D 正确.] 6.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( )A .3.14B .-5。
人教版(B版)高中数学选择性必修第一册课时作业(十三) 点到直线的距离
课时作业(十三) 点到直线的距离
一、选择题
1.点(5,-3)到直线x +2=0的距离等于( )
A .7
B .5
C .3
D .2
2.点(1,-1)到直线x -y +1=0的距离是( ) A.322 B.22
C.32
D.12
3.点P 在x 轴上,且到直线3x -4y +6=0的距离为6,则点P 的坐标为( )
A .(8,0)
B .(-12,0)
C .(8,0)或(-12,0)
D .(-8,0)或(12,0)
4.两条平行线l 1:3x +4y -7=0和l 2:3x +4y -12=0间的距离为
( )
A .3
B .2
C .1 D.12
二、填空题
5.若点(2,k)到直线5x -12y +6=0的距离是4,则k 的值是________.
6.若点P 在直线x +y -4=0上,O 为原点,则|OP|的最小值是________.
7.分别过点A(-2,1)和点B(3,-5)的两条直线均垂直于x 轴,则这两条直线间的距离是________.
三、解答题
8.求与直线l :5x -12y +6=0平行且与直线l 距离为3的直线方程.
9.已知△ABC 三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC
的面积S.
[尖子生题库]
10.已知点P(2,-1).
(1)求过点P且与原点的距离为2的直线的方程;
(2)求过点P且与原点的距离最大的直线的方程,并求出最大距离;
(3)是否存在过点P且与原点的距离为6的直线?若存在,求出该直线的方程;若不存在,说明理由.。
最新人教A版高中数学必修一培优课时作业(十二)基本不等式
课时作业(十二) 基本不等式[练基础]1.不等式a 2+1≥2a 中等号成立的条件是( )A .a =±1B .a =1C .a =-1D .a =02.若a ≥0,b ≥0且a +b =2,则( )A .ab ≤12B .ab ≥12C .a 2+b 2≥2D .a 2+b 2≤33.“a ,b 为正数”是“a +b >2ab ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.设x >0,则y =3-3x -1x的最大值是( ) A .3 B .3-2 2 C .3-2 3 D .-15.已知x >0,y >0,且2x +y =1,则xy 的最大值是( )A.14 B .4 C.18D .8 6.(多选)设a ,b ∈R ,则下列不等式一定成立的是( )A .a 2+b 2≥2abB .a +1a≥2 C .b 2+1≥2b D.⎪⎪⎪⎪b a +⎪⎪⎪⎪a b ≥27.若a <1,则a +1a -1与-1的大小关系是________. 8.已知正数x ,y 满足x +2y =2,则1y +8x的最小值为________. 9.已知a >b >c ,你能比较出4与⎝⎛⎭⎫1a -b +1b -c (a -c )的大小吗?10.(1)若x <3,求y =2x +1+1x -3的最大值; (2)已知x >0,求y =2x x 2+1的最大值.[提能力]11.(多选)下列命题中正确的是( )A .y =x +1x()x <0的最大值是-2 B .y =x 2+3x 2+2的最小值是2 C .y =2-3x -4x()x >0的最大值是2-43 D .y =x +4x -1()x >1最小值是5 12.(多选)下列结论正确的是( ) A .若x <0,则y =x +1x的最大值为-2 B .若a >0,b >0,则ab ≤⎝⎛⎭⎫a +b 22C .若a >0,b >0,且a +4b =1,则1a +1b的最大值为9 D .若x ∈[]0,2,则y =x 4-x 2的最大值为213.已知x >0,y >0,且x +2y =3,则xy 的最大值为________,3x +y xy的最小值为________. 14.已知5x 2y 2+y 4=1()x ,y ∈R ,则x 2+2y 2的最小值是________.15.已知正常数a ,b 和正变数x ,y 满足a +b =10,a x +b y=1,x +y 的最小值为18,求a ,b 的值.[培优生]16.《几何原本》中的几何代数法(以几何方法研究代数问题)成了后世数学家处理问题的重要依据.通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图,在AB 上取一点C ,使得AC =a ,BC =b ,过点C 作CD ⊥AB 交半圆周于点D ,连接OD .作CE ⊥OD 交OD 于点E .由CD ≥DE 可以直接证明的不等式为( )A.ab ≥2ab a +b (a >0,b >0)B.a +b 2≥ab (a >0,b >0)C. a 2+b 22≥a +b 2(a >0,b >0) D .a 2+b 2≥2ab (a >0,b >0)课时作业(十二) 基本不等式1.解析:当a 2+1=2a ,即(a -1)2=0,即a =1时,等号成立.故选B.答案:B2.解析:因为a 2+b 2≥2ab ,所以(a 2+b 2)+(a 2+b 2)≥(a 2+b 2)+2ab ,即2(a 2+b 2)≥(a +b )2=4,所以a 2+b 2≥2.故选C.答案:C3.解析:若a ,b 为正数,取a =1,b =1,则a +b =2ab ,则“a ,b 为正数”不是“a +b >2ab ”的充分条件;若a +b >2ab ,取a =1,b =0,则b 不是正数,则“a ,b 为正数”不是“a +b >2ab ”的必要条件.故“a ,b 为正数”是“a +b >2ab ”的既不充分也不必要条件.故选D.答案:D4.解析:y =3-3x -1x =3-⎝⎛⎭⎫3x +1x ≤3-23x ·1x =3-23,当且仅当3x =1x ,即x =33时取等号.故选C.答案:C5.解析:由题意得,xy =12×2xy ≤12×⎝⎛⎭⎫2x +y 22=12×⎝⎛⎭⎫122=18, 当且仅当x =14,y =12时等号成立,所以xy 的最大值是18.故选C. 答案:C6.解析:当a ,b ∈R 时,a 2+b 2≥2ab 成立,故A 正确;当a >0时,a +1a≥2,等号成立的条件是a =1,当a <0时,a +1a≤-2,等号成立的条件是a =-1,故B 不正确;当b ∈R 时,b 2+1-2b =(b -1)2≥0,所以b 2+1≥2b ,故C 正确;⎪⎪⎪⎪b a >0,⎪⎪⎪⎪a b >0,所以⎪⎪⎪⎪b a +⎪⎪⎪⎪a b ≥2⎪⎪⎪⎪b a ×⎪⎪⎪⎪a b =2,等号成立的条件是当且仅当⎪⎪⎪⎪b a =⎪⎪⎪⎪a b ,即a 2=b 2时,故D 正确.故选ACD.答案:ACD7.解析:因为a <1,即1-a >0,所以-⎝⎛⎭⎫a -1+1a -1=(1-a )+11-a ≥2(1-a )·11-a=2.即a +1a -1≤-1. 答案:a +1a -1≤-1 8.解析:因为x >0,y >0且x +2y =2,所以1y +8x =x +2y 2y +4x +8y x=5+x 2y +8y x ≥5+2x 2y ·8y x =9(当且仅当x 2y =8y x ,即x =4y =43时取等号),即1y +8x的最小值为9.答案:99.解析:⎝⎛⎭⎫1a -b +1b -c (a -c )≥4,理由如下: 因为a -c =(a -b )+(b -c ), 所以⎝⎛⎭⎫1a -b +1b -c [(a -b )+(b -c )] =2+b -c a -b +a -b b -c, 又a >b >c ,所以b -c a -b +a -b b -c≥2, 故⎝⎛⎭⎫1a -b +1b -c (a -c )≥4, 当且仅当b -c a -b =a -b b -c时,取“=”. 10.解析:(1)因为x <3,所以3-x >0.又因为y =2(x -3)+1x -3+7=-⎣⎡⎦⎤2(3-x )+13-x +7,由基本不等式可得2(3-x )+13-x ≥22(3-x )·13-x =22,当且仅当2(3-x )=13-x,即x =3-22时,等号成立,于是-⎣⎡⎦⎤2(3-x )+13-x ≤-22,-⎣⎡⎦⎤2(3-x )+13-x +7≤7-22,故y 的最大值是7-2 2.(2)y =2x x 2+1=2x +1x.因为x >0,所以x +1x ≥2x ·1x =2,所以0<y ≤22=1,当且仅当x =1x,即x =1时,等号成立.故y 的最大值为1. 11.解析:对于A ,y =x +1x =-⎝⎛⎭⎫-x -1x ≤-2-x ·⎝⎛⎭⎫-1x =-2,当且仅当-x =-1x,即x =-1时,等号成立,所以y =x +1x ()x <0的最大值是-2,故A 正确;对于B ,y =x 2+3x 2+2=x 2+2+1x 2+2>2,因为x 2+2=1x 2+2,即x 2+2=1无解,即等号不成立,所以y =x 2+3x 2+2取不到最小值2,故B 错误;对于C ,y =2-3x -4x (x >0)=2-(3x +4x )≤2-23x ·4x =2-43,当且仅当3x =4x ,即x =233时,等号成立,所以y =2-3x -4x(x >0)的最大值是2-43,故C 正确;对于D ,y =x +4x -1=x -1+4x -1+1≥2()x -1·4x -1+1=5,当且仅当x -1=4x -1,即x =3时,等号成立,所以y =x +4x -1()x >1最小值是5,故D 正确;故选ACD.答案:ACD 12.解析:A 选项,由x <0可得y =x +1x =-⎣⎡⎦⎤()-x +⎝⎛⎭⎫-1x ≤-2()-x ·⎝⎛⎭⎫-1x =-2,当且仅当-x =-1x,即x =-1时,等号成立;即y =x +1x 的最大值为-2;A 正确;B 选项,由a >0,b >0,可得⎝⎛⎭⎫a +b 22-ab =a 2+b 2-2ab 4=⎝⎛⎭⎫a -b 22≥0,即ab ≤⎝⎛⎭⎫a +b 22,故B 正确;C 选项,若a >0,b >0,且a +4b =1,则1a +1b =⎝⎛⎭⎫1a +1b ()a +4b =1+4b a +a b +4≥5+24b a ·a b =9,当且仅当4b a =a b,即⎩⎨⎧a =13b =16时,等号成立;即1a +1b 的最小值为9,故C 错;D 选项,因为0≤x ≤2,所以y =x 4-x 2≤x 2+()4-x 22=2,当且仅当x =4-x 2,即x =2时,等号成立,故D 正确.故选ABD.答案:ABD13.解析:∵x >0,y >0∴x +2y =3≥22xy ,解之得:xy ≤98. 当且仅当x =2y ,即x =32,y =34时,等号成立. ∴xy 的最大值为98. 3x +y xy =3y +1x =13()x +2y ⎝⎛⎭⎫3y +1x =73+13⎝⎛⎭⎫3x y +2y x ≥73+233x y ·2y x =7+263. 当且仅当3x y =2y x ,即x =36-35,y =18-3610时,等号成立. ∴3x +y xy 的最小值为7+263. 另解: ∵x >0,y >0,且x +2y =3∴x =3-2y >0,∴0<y <32. ∴xy =y ()3-2y =-2y 2+3y =-2⎝⎛⎭⎫y -342+98. ∵0<y <32, ∴当y =34时,()xy max =98,此时x =32. 答案:98 7+26314.解析:∵5x 2y 2+y 4=1∴y ≠0且x 2=1-y 45y2 ∴x 2+2y 2=1-y 45y 2+2y 2=15y 2+9y 25≥215y 2·9y 25=65, 当且仅当15y 2=9y 25,即x 2=815,y 2=13时取等号. ∴x 2+y 2的最小值为65. 答案:6515.解析:因为x +y =(x +y )·1=(x +y )·⎝⎛⎭⎫a x +b y=a +b +ay x +bx y≥a +b +2ab =(a +b )2, 当且仅当ay x =bx y, 即y x =b a时,等号成立, 所以x +y 的最小值为(a +b )2=18, 又a +b =10,所以ab =16.所以a ,b 是方程x 2-10x +16=0的两根, 所以a =2,b =8或a =8,b =2.16.解析:由三角形相似,知CD 2=DE ·OD =AC ·BC ,即DE =DC 2OD =ab a +b 2=2ab a +b, 由CD ≥DE ,得ab ≥2ab a +b,故选A. 答案:A。
2023版新教材高中数学第一章集合与常用逻辑用语-全称量词与存在量词课时作业新人教A版必修第一册
1.5.1 全称量词与存在量词必备知识基础练进阶训练第一层1.下列命题中,是全称量词命题的是( )A.∃x∈R,x2≤0B.当a=3时,函数f(x)=ax+b是增函数C.存在平行四边形的对边不平行D.平行四边形都不是正方形2.下列语句是存在量词命题的是( )A.整数n是2和5的倍数B.存在整数n,使n能被11整除C.若3x-7=0,则x=D.∀x∈M,p(x)3.[2022·山东临沂高一期中]下列命题中是全称量词命题并且是真命题的是( )A.每个二次函数的图象都开口向上B.存在一条直线与已知直线不平行C.对任意实数a,b,若a-b≤0则a≤bD.存在一个实数x,使等式x2-2x+1=0成立4.以下四个命题既是存在量词命题又是真命题的是( )A.锐角三角形有一个内角是钝角B.至少有一个实数x,使x2≤0C.两个无理数的和必是无理数D.存在一个负数x,使>25.(多选)下列命题中,既是存在量词命题又是真命题的是( )A.所有的正方形都是矩形B.有些梯形是平行四边形C.∃x∈R,3x+2>0D.至少有一个整数m,使得m2<16.下列命题,是全称量词命题的是________,是存在量词命题的是________(填序号).①正方形的四条边相等;②有两个角是45°的三角形是等腰直角三角形;③正数的平方根不等于0;④至少有一个正整数是偶数.7.选择适当的符号“∀”、“∃”表示下列命题:有一个实数x,使x2+2x+3=0:________.关键能力综合练进阶训练第二层1.(多选)下列命题中,是存在量词命题且为假命题的有( )A.∃x∈R,x2-2x+1<0B.有的矩形不是平行四边形C.∃x∈R,x2+2x+2≥0D.∀x∈R,x3+3≠02.已知命题:“∀x∈R,方程x2+4x+a=0有解”是真命题,则实数a的取值范围是( )A.a<4 B.a≤4C.a>4 D.a≥43.若命题“∃x∈R,x2+4x+m=0”为假命题,则实数m的取值范围是( )A.[4,+∞) B.(4,+∞)C.(-∞,4] D.(-∞,4)4.命题“任意x∈[1,2],x≥a”为真命题的一个充分不必要条件是( )A.a≥1 B.a<1C.a≥4 D.a≤45.[2022·河北沧州高一月考](多选)已知命题p:∃x∈R,x2+2x+2-a=0为真命题,则实数a的取值可以是( )A.1 B.0C.3 D.-36.若命题“∃x∈R,x2+3≤m”为假命题,则满足条件的一个自然数m的值为______ __.7.[2022·河北沧州高一月考]若命题“∀x∈(3,+∞),x>a”是真命题,则a的取值范围是________.8.用符号“∀”与“∃”表示下列含有量词的命题,并判断真假:(1)任意实数的平方大于或等于0;(2)对任意实数a,二次函数y=x2+a的图象关于y轴对称;(3)存在整数x,y,使得2x+4y=3;(4)存在一个无理数,它的立方是有理数.9.判断下列命题是全称量词命题还是存在量词命题,并判断其真假.(1)命题p:有一对实数(x,y),使x-3y+1<0.(2)命题q:∀x∈R,x2-4x+3>0.核心素养升级练进阶训练第三层1.[2022·广东广州高一期末]下列全称量词命题与存在量词命题中:①设A、B为两个集合,若A⊆B,则对任意x∈A,都有x∈B;②设A、B为两个集合,若A⊈B,则存在x∈A,使得x∉B;③∀x∈{y|y是无理数},x2是有理数;④∀x∈{y|y是无理数},x3是无理数.其中真命题的个数是( )A.1 B.2C.3 D.42.命题“∀1≤x≤2,使x2-a≥0”是真命题,则a的取值范围是________.3.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},且B≠∅.(1)若命题p:“∀x∈B,x∈A”是真命题,求实数m的取值范围;(2)若命题q:“∃x∈A,x∈B”是真命题,求实数m的取值范围.1.5.1 全称量词与存在量词必备知识基础练1.答案:D解析:全称量词命题是含有全称量词的命题,全称量词有所有,任意,每一个.AC选项含有存在量词:存在,所以是存在量词命题,B选项存在一个a=3使得函数是增函数,所以B选项也是存在量词命题. D选项所有的平行四边形都不是正方形,所以是全称量词命题.2.答案:B解析:对于A,不是命题,不能判断真假,故A错误;对于B,命题含有存在量词“存在”,故B是存在量词命题,B正确;对于C,是“若p则q”的形式命题,C错误;对于D,是全称量词命题,D错误.3.答案:C解析:易知C正确;A选项是假命题;B选项是存在量词命题;D选项是存在量词命题.4.答案:B解析:锐角三角形的内角都是锐角,A是假命题.x=0时,x2≤0,所以B选项中的命题既是存在量词命题又是真命题.+(-)=0,所以C选项中的命题是假命题.x<0时,<0<2,所以D选项中的命题是假命题.5.答案:CD解析:命题“所有的正方形都是矩形”是全称量词命题,该命题为真命题,A不满足要求;命题“有些梯形是平行四边形”为存在量词命题,该命题为假命题,B不满足要求;命题“∃x∈R,3x+2>0”为存在量词命题,取x=0,则3×0+2>0,该命题为真命题,C满足要求;命题“至少有一个整数m,使得m2<1”为存在量词命题,取m=0,则02<1,该命题为真命题,D满足要求.6.答案:①②③ ④解析:④含有存在量词,至少有一个,为存在量词命题,①②③含有全称量词:任意的或者包含所有的意思,为全称量词命题.7.答案:∃x∈R,有x2+2x+3=0关键能力综合练1.答案:AB解析:ABC均为存在量词命题,D不是存在量词命题,故D错误,选项A:因为x2-2x+1=(x-1)2≥0,所以命题为假命题;选项B:因为矩形都是平行四边形,所以命题为假命题;选项C:x2+2x+2=(x+1)2+1>0,故命题为真命题,故C错误.2.答案:B解析:“∀x∈R,方程x2+4x+a=0有解”是真命题,故Δ=16-4a≥0,解得:a≤4.3.答案:B解析:因为命题“∃x∈R,x2+4x+m=0”为假命题,则Δ=16-4m<0,解得m>4.4.答案:B解析:命题“对任意x∈[1,2],x≥a”为真命题,则a≤1,只有(-∞,1)是(-∞,1]的真子集,故选项B符合题意.5.答案:AC解析:由于命题p:∃x∈R,x2+2x+2-a=0为真命题,则Δ=22-4(2-a)=4a -4≥0,解得a≥1.符合条件的为A、C选项.6.答案:答案不唯一,0,1,2都可以.解析:因为x2+3≥3,又命题 “∃x∈R,x2+3≤m”为假命题,所以m<3,因为m 为自然数,所以m为0,1,2都可以.7.答案:(-∞,3]解析:对于任意x>3,x>a恒成立,即大于3的数恒大于a,∴a≤3.8.解析:(1)∀x∈R,x2≥0,是真命题;(2)∀a∈R,二次函数y=x2+a的图象关于y轴对称,真命题;(3)∃x∈Z,y∈Z,2x+4y=3假命题,因为2x+4y=2(x+2y)必为偶数;R Q,x3∈Q.真命题,例如x=,x3=2∈Q.(4)∃x∈∁9.解析:(1)命题p是存在量词命题.当x=0,y=1时,x-3y+1=-2<0成立,故命题p是真命题.(2)命题q是全称量词命题.由x2-4x+3=(x-1)(x-3)>0,得x<1或x>3.只有当x<1或x>3时,x2-4x+3>0成立,故命题q是假命题.核心素养升级练1.答案:B解析:对于①,因集合A、B满足A⊆B,则由集合包含关系的定义知,对任意x∈A,都有x∈B,①是真命题;A⃘,则由集合不包含关系的定义知,存在x∈A,使得对于②,因集合A、B满足Bx∉B,②是真命题;对于③,显然π∈{y|y是无理数},π2也是无理数,则③是假命题;对于④,显然∈{y|y是无理数},()3=2却是有理数,则④是假命题.所以①②是真命题.2.答案:{a|a≤1}解析:因为命题“∀1≤x≤2,使x2-a≥0”是真命题,所以∀1≤x≤2,x2-a≥0恒成立,即x2≥a恒成立,因为当1≤x≤2时,1≤x2≤4,所以a≤1,a的取值范围是{a|a≤1}.3.解析:(1)因为命题p:“∀x∈B,x∈A”是真命题,所以B⊆A,又B≠∅,所以,解得2≤m≤3.(2)因为B≠∅,所以m+1≤2m-1,得m≥2.又命题q:“∃x∈A,x∈B”是真命题,所以A∩B≠∅,若A∩B=∅,且B≠∅时,则2m-1<-2或m+1>5,且m≥2,即m>4,故若A∩B≠∅,且B≠∅时,有2≤m≤4,故实数m的取值范围为2≤m≤4.。
高中数学课时作业十九幂函数新人教A版必修第一册
课时作业(十九) 幂函数练 基 础1.[2022·江苏徐州高一期末]若幂函数f (x )的图象过点(4,2),则f (2)的值为( ) A .12 B .22C . 2D .2 2.如图,①②③④对应四个幂函数的图象,其中①对应的幂函数是( )A .y =x 3B .y =x 2C .y =xD .y =x 583.设a =(12)34,b =(15)34,c =(2)12,则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .a <b <cD .b >c >a4.已知函数f (x )=(m 2-m -1)xm 2-2m -2是幂函数,且为偶函数,则实数m =( ) A .2或-1 B .-1 C .4 D .25.(多选)已知幂函数f (x )=(m -2)x m,则( ) A .m =3B .定义域为[0,+∞)C .(-1.5)m<(-1.4)mD .f (2)=26.写出一个在区间[-1,1]上单调递增的幂函数:f (x )=________.7.已知幂函数f (x )=⎪⎪⎪⎪⎪⎪12m x m在(0,+∞)上单调递减,则f (2)=________.8.已知幂函数f (x )的图象过点(3,27).(1)求出此函数f (x )的解析式;(2)判断函数f (x )的奇偶性,并给予证明.提 能 力9.(多选)已知幂函数f (x )=x α图象过点(4,2),则下列命题中正确的是( ) A .α=12B .函数f (x )的定义域为(0,+∞)C .函数f (x )为偶函数D .若x >1,则f (x )>1 10.若幂函数y =(m 2+3m +3)x m2+2m -3的图象不过原点,且关于原点对称,则( )A .m =-2B .m =-1C .m =-2或m =-1D .-3≤m ≤-111.已知幂函数f (x )的图象过点(-2,16),则f (x )=________,f (x +1)≤f (3x -1)的解集为________.12.已知幂函数f (x )=(m 2-3m -9)x m -3在(0,+∞)上单调递减.(1)求m 的值;(2)若(2a -1)m >(a +2)m,求a 的取值范围.培 优 生13.已知幂函数y =x a与y =x b的部分图象如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图象分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b =( )A .12 B .1 C . 2 D .2课时作业(十九) 幂函数1.解析:设f (x )=x α,因为幂函数f (x )的图象过点(4,2),所以4α=2,解得α=12,所以f (x )=x 12,所以f (2)=212= 2.答案:C2.解析:根据函数图象可得:①对应的幂函数y =x α在[0,+∞)上单调递增,且增长速度越来越慢,故α∈(0,1),故D 选项符合要求.答案:D3.解析:构造幂函数y =x 34,x >0,由该函数在定义域内单调递增,知1>a >b ;又c =212>1,知a <c .故c >a >b .答案:B4.解析:由幂函数的定义知m 2-m -1=1,解得m =-1或m =2. 又因为f (x )为偶函数,所以指数m 2-2m -2为偶数,故只有m =2满足. 答案:D5.解析:∵f (x )为幂函数,∴m -2=1,得m =3,∴f (x )=x 3,A 对; 函数f (x )的定义域为R ,B 错误;由于f (x )在R 上为增函数,-1.5<-1.4,∴(-1.5)3<(-1.4)3,C 对; ∴f (2)=23=8,∴f (2)=22,D 错误. 答案:AC6.解析:因为幂函数f (x )在区间[-1,1]上单调递增,所以幂函数可以是f (x )=x . 答案:x (答案不唯一)7.解析:由题意得⎪⎪⎪⎪⎪⎪12m =1且m <0,则m =-2,f (x )=x -2,故f (2)=14.答案:148.解析:(1)设幂函数f (x )=x α,因为f (x )的图象过点(3,27),所以有3α=27⇒α=3,因此f (x )=x 3;(2)函数f (x )是奇函数,理由如下:∵定义域为R 且f (-x )=(-x )3=-x 3=-f (x ),所以函数f (x )是奇函数. 9.解析:∵幂函数f (x )=x α图象过点(4,2), ∴4α=2,即α=12,∴f (x )=x 12,故A 正确;又函数的定义域为[0,+∞),故B 错误; 函数为非奇非偶函数,故C 错误; 当x >1时,f (x )=x 12>1,故D 正确. 答案:AD10.解析:根据幂函数的概念,得m 2+3m +3=1,解得m =-1或m =-2. 若m =-1,则y =x -4,其图象不关于原点对称,所以不符合题意,舍去; 若m =-2,则y =x -3,其图象不过原点,且关于原点对称. 答案:A11.解析:依题意,设f (x )=x α,则f (-2)=(-2)α=16,解得α=4,于是得f (x )=x 4,显然f (x )是偶函数,且在[0,+∞)上单调递增,而f (x +1)≤f (3x -1)⇔f (|x +1|)≤f (|3x -1|),即有|x +1|≤|3x -1|,解得x ≤0或x ≥1,所以f (x +1)≤f (3x -1)的解集为(-∞,0]∪[1,+∞). 答案:x 4(-∞,0]∪[1,+∞)12.解析:(1)因为f (x )是幂函数,所以m 2-3m -9=1, 所以m 2-3m -10=0,即(m +2)(m -5)=0, 解得m =-2或m =5.因为f (x )在(0,+∞)上单调递减,所以m -3<0,即m <3,则m =-2. (2)由(1)可知m =-2,则(2a -1)m >(a +2)m等价于1(2a -1)2>1(a +2)2,所以⎩⎪⎨⎪⎧(2a -1)2<(a +2)22a -1≠0a +2≠0,即⎩⎪⎨⎪⎧3a 2-8a -3<0a ≠12a ≠-2,解得-13<a <12或12<a <3.故a 的取值范围是(-13,12)∪(12,3).13.解析:由题意,|AB |=(m 2)a-(m 2)b,|CD |=m a -m b,根据图象可知b >1>a >0,因为0<m <1时,(m 2)a>(m 2)b,m a >m b ,因为|AB |=|CD |,所以m 2a -m 2b =(m a +m b )(m a -m b )=m a-m b,因为m a-m b>0,可得m a+m b=1.答案:B。
苏教版高中数学必修1全册课时作业及答案
苏教版高中数学必修1 全册课时作业目录1.1第1课时集合的含义1.1第2课时集合的表示1.2子集、全集、补集1.3交集、并集2.1.1函数的概念和图象2.1.2习题课2.1.2函数的表示方法2.1.3习题课2.1.3第1课时函数的单调性2.1.3第2课时函数的最大(小)值2.1.3第3课时奇偶性的概念2.1.3第4课时奇偶性的应用2.1.4映射的概念2.2.1函数的单调性(一)2.2.1函数的单调性(二)2.2.1分数指数幂2.2.2 习题课2.2.2习题课2.2.2函数的奇偶性2.2.2指数函数(一)2.2.2指数函数(二)2.2习题课2.3.1第1课时对数的概念2.3.1第2课时对数运算2.3.2习题课2.3.2对数函数(一)2.3.2对数函数(二)2.3映射的概念2.4幂函数2.5.1函数的零点2.5.2用二分法求方程的近似解2.5习题课2.6习题课2.6函数模型及其应用3.1.1分数指数幂3.1.2指数函数(一)3.1.2指数函数(二)3.1习题课3.2.1第1课时对数(一)3.2.1第2课时对数(二)3.2.2对数函数(一)3.2.2对数函数(二)3.2习题课3.3幂函数3.4.1习题课3.4.1第1课时函数的零点3.4.1第2课时用二分法求方程的近似解3.4.2习题课3.4.2函数模型及其应用第1章集合§1.1集合的含义及其表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.一般地,一定范围内某些确定的、不同的对象的全体构成一个________.集合中的每一个对象称为该集合的________,简称______.2.集合通常用________________表示,用____________________表示集合中的元素.3.如果a是集合A的元素,就说a________集合A,记作a____A,读作“a______A”,如果a不是集合A的元素,就说a__________A,记作a____A,读作“a________A”.4.集合中的元素具有________、________、________三种性质.5.实数集、有理数集、整数集、自然数集、正整数集分别用字母____、____、____、____、____或______来表示.一、填空题1.下列语句能确定是一个集合的是________.(填序号)①著名的科学家;②留长发的女生;③2010年广州亚运会比赛项目;④视力差的男生.2.集合A只含有元素a,则下列各式正确的是________.(填序号)①0∈A;②a∉A;③a∈A;④a=A.3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是________.(填序号)①直角三角形;②锐角三角形;③钝角三角形;④等腰三角形.4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是________.(填序号)①1;②-2;③6;④2.5.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为________.6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有________个元素.7.由下列对象组成的集体属于集合的是________.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为________.9.用符号“∈”或“∉”填空-2______R,-3______Q,-1_______N,π______Z.二、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合; (2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升 12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第1章集合§1.1集合的含义及其表示第1课时集合的含义知识梳理1.集合元素元 2.大写拉丁字母A,B,C…小写拉丁字母a,b,c,… 3.属于∈属于不属于∉不属于4.确定性互异性无序性 5.R Q Z N N*N+作业设计1.③解析①、②、④都因无法确定其构成集合的标准而不能构成集合.2.③解析由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”.3.④解析集合M的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的.4.③解析因A中含有3个元素,即a2,2-a,4互不相等,将各项中的数值代入验证知填③. 5.3解析由2∈A可知:若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A={0,3,2},符合题意.6.2解析 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素. 7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④. 8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的. (2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素. (4)不正确,因为个子高没有明确的标准. 11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3,∴a =-32.12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6; 当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8; 当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明 (1)若a ∈A ,则11-a∈A .又∵2∈A ,∴11-2=-1∈A .∵-1∈A ,∴11--1=12∈A .∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =11-a,即a 2-a +1=0,方程无解.∴a ≠11-a,∴A 不可能为单元素集.第2课时 集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法将集合的元素____________出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.2.两个集合相等如果两个集合所含的元素____________,那么称这两个集合相等. 3.描述法将集合的所有元素都具有的______(满足的______)表示出来,写成{x |p (x )}的形式. 4.集合的分类(1)有限集:含有________元素的集合称为有限集. (2)无限集:含有________元素的集合称为无限集. (3)空集:不含任何元素的集合称为空集,记作____.一、填空题1.集合{x ∈N +|x -3<2}用列举法可表示为___________________________________. 2.集合{(x ,y )|y =2x -1}表示________.(填序号) ①方程y =2x -1; ②点(x ,y );③平面直角坐标系中的所有点组成的集合; ④函数y =2x -1图象上的所有点组成的集合.3.将集合⎩⎪⎨⎪⎧x ,y |⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =52x -y =1表示成列举法为______________.4.用列举法表示集合{x |x 2-2x +1=0}为________.5.已知集合A ={x ∈N |-3≤x ≤3},则有________.(填序号) ①-1∈A ;②0∈A ;③3∈A ;④2∈A .6.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解集不可表示为________.①{(x ,y )|⎩⎪⎨⎪⎧x +y =3x -y =-1};②{(x ,y )|⎩⎪⎨⎪⎧x =1y =2};③{1,2};④{(1,2)}.7.用列举法表示集合A ={x |x ∈Z ,86-x∈N }=______________________________.8.下列各组集合中,满足P =Q 的为________.(填序号) ①P ={(1,2)},Q ={(2,1)}; ②P ={1,2,3},Q ={3,1,2};③P ={(x ,y )|y =x -1,x ∈R },Q ={y |y =x -1,x ∈R }.9.下列各组中的两个集合M 和N ,表示同一集合的是________.(填序号) ①M ={π},N ={3.141 59}; ②M ={2,3},N ={(2,3)};③M ={x |-1<x ≤1,x ∈N },N ={1};④M ={1,3,π},N ={π,1,|-3|}. 二、解答题10.用适当的方法表示下列集合①方程x (x 2+2x +1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合; ③不等式x -2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是________.①{x |x =1};②{y |(y -1)2=0};③{x =1};④{1}.13.已知集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },若x 0∈M ,则x 0与N 的关系是____________________________________________________.1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示. 2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时 集合的表示知识梳理1.一一列举 2.完全相同 3.性质 条件 4.(1)有限个 (2)无限个 (3)∅ 作业设计 1.{1,2,3,4}解析 {x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}. 2.④解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合. 3.{(2,3)}解析 解方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1.得⎩⎪⎨⎪⎧x =2,y =3.所以答案为{(2,3)}.4.{1}解析 方程x 2-2x +1=0可化简为(x -1)2=0, ∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}. 5.② 6.③解析 方程组的集合中最多含有一个元素,且元素是一对有序实数对,故③不符合. 7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N ,∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}. 8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集. 9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1, ∴解集为{0,-1};②{x |x =2n +1,且x <1 000,n ∈N }; ③{x |x >8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ; 集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3, 所以B ={y |y ≥3}.集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P是抛物线y =x 2+3上的点}. 12.③解析 由集合的含义知{x |x =1}={y |(y -1)2=0} ={1},而集合{x =1}表示由方程x =1组成的集合. 13.x 0∈N解析 M ={x |x =2k +14,k ∈Z },N ={x |x =k +24,k ∈Z },∵2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数, ∴x 0∈M 时,一定有x 0∈N .§1.2子集、全集、补集课时目标 1.理解子集、真子集的意义,会判断两集合的关系.2.理解全集与补集的意义,能正确运用补集的符号.3.会求集合的补集,并能运用Venn图及补集知识解决有关问题.1.子集如果集合A的__________元素都是集合B的元素(若a∈A则a∈B),那么集合A称为集合B的________,记作______或______.任何一个集合是它本身的______,即A⊆A. 2.如果A⊆B,并且A≠B,那么集合A称为集合B的________,记为______或(______).3.______是任何集合的子集,______是任何非空集合的真子集.4.补集设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的______,记为______(读作“A在S中的补集”),即∁S A={x|x∈S,且x∉A}.5.全集如果集合S包含我们所要研究的各个集合,这时S可以看做一个______,全集通常记作U.集合A相对于全集U的补集用Venn图可表示为一、填空题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是________.2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是________.3.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=________.4.已知全集U=R,集合M={x|x2-4≤0},则∁U M=________.5.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是_____________________________.6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是________.7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________. 8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=________,∁U B=______,∁B A=________.9.已知全集U,A B,则∁U A与∁U B的关系是____________________.二、解答题10.设全集U={x∈N*|x<8},A={1,3,5,7},B={2,4,5}.(1)求∁U(A∪B),∁U(A∩B);(2)求(∁U A)∪(∁U B),(∁U A)∩(∁U B);(3)由上面的练习,你能得出什么结论?请结事Venn图进行分析.11.已知集合A={1,3,x},B={1,x2},设集合U=A,求∁U B.能力提升12.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.13.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.2.∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.3.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.§1.2子集、全集、补集知识梳理1.任意一个子集A⊆B B⊇A子集 2.真子集A B B A3.空集空集 4.补集∁S A 5.全集作业设计1.P Q解析∵P={x|y=x+1}={x|x≥-1},Q={y|y≥0},∴P Q.2.7解析M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.3.{3,9}解析在集合U中,去掉1,5,7,剩下的元素构成∁U A.4.{x|x<-2或x>2}解析∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.5.②解析由N={-1,0},知N M.6.S P=M解析运用整数的性质方便求解.集合M、P表示成被3整除余1的整数集,集合S表示成被6整除余1的整数集.7.-3解析∵∁U A={1,2},∴A={0,3},故m=-3.8.{0,1,3,5,7,8} {7,8} {0,1,3,5}解析由题意得U={0,1,2,3,4,5,6,7,8},用Venn图表示出U,A,B,易得∁U A={0,1,3,5,7,8},∁U B={7,8},∁B A={0,1,3,5}.9.∁U B∁U A解析画Venn图,观察可知∁U B∁U A.10.解 (1)∵U ={x ∈N *|x <8}={1,2,3,4,5,6,7},A ∪B ={1,2,3,4,5,7},A ∩B ={5},∴∁U (A ∪B )={6},∁U (A ∩B )={1,2,3,4,67}.(2)∵∁U A ={2,4,6},∁U B ={1,3,6,7},∴(∁U A )∪(∁U B )={1,2,3,4,6,7},(∁U A )∩(∁U B )={6}.(3)∁U (A ∪B )=(∁U A )∩(∁U B )(如左下图);∁U (A ∩B )=(∁U A )∪(∁U B )(如右下图).11.解 因为B ⊆A ,因而x 2=3或x 2=x .①若x 2=3,则x =± 3.当x =3时,A ={1,3,3},B ={1,3},此时∁U B ={3};当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}.②若x 2=x ,则x =0或x =1. 当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1; 当x =0时,A ={1,3,0},B ={1,0},U =A ={1,3,0},从而∁U B ={3}. 综上所述,∁U B ={3}或{-3}或{3}. 12.解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3经检验都符合题意.13.解 (1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a}.∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2.§1.3交集、并集课时目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.交集(1)定义:一般地,由____________________元素构成的集合,称为集合A与B的交集,记作________.(2)交集的符号语言表示为A∩B=__________.(3)交集的图形语言表示为下图中的阴影部分:(4)性质:A∩B=______,A∩A=____,A∩∅=____,A∩B=A⇔______.2.并集(1)定义:一般地,________________________的元素构成的集合,称为集合A与B的并集,记作______.(2)并集的符号语言表示为A∪B=______________.(3)并集的图形语言(即Venn图)表示为图中的阴影部分:(4)性质:A∪B=______,A∪A=____,A∪∅=____,A∪B=A⇔______,A____A∪B,A∩B____A∪B.一、填空题1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B=________.2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B=________.3.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是________.①A⊆B;②B⊆C;③A∩B=C;④B∪C=A.4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N=________. 5.设集合A={5,2a},集合B={a,b},若A∩B={2},则a+b等于________.6.集合M={1,2,3,4,5},集合N={1,3,5},则下列关系正确的是________.①N∈M;②M∪N=M;③M∩N=M;④M>N.7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.8.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________. 9.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=______,b=______.二、解答题10.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.11.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.能力提升12.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为________.13.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).1.对并集、交集概念全方面的感悟(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.拓展交集与并集的运算性质,除了教材中介绍的以外,还有A⊆B⇔A∪B=B,A⊆B⇔A ∩B =A .这种转化在做题时体现了化归与转化的思想方法,十分有效.§1.3 交集、并集知识梳理 1.(1)所有属于集合A 且属于集合B 的 A ∩B (2){x |x ∈A ,且x ∈B } (4)B ∩A A ∅ A ⊆B 2.(1)由所有属于集合A 或属于集合B A ∪B (2){x |x ∈A ,或x ∈B } (4)B ∪A A A B ⊆A ⊆ ⊆ 作业设计1.{0,1,2,3,4} 2.{x |-1≤x <1}解析 由交集定义得{x |-1≤x ≤2}∩{x |x <1}={x |-1≤x <1}. 3.④解析 参加北京奥运会比赛的男运动员与参加北京奥运会比赛的女运动员构成了参加北京奥运会比赛的所有运动员,因此A =B ∪C . 4.{(3,-1)}解析 M 、N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1.5.3解析 依题意,由A ∩B ={2}知2a =2, 所以,a =1,b =2,a +b =3. 6.②解析 ∵N M ,∴M ∪N =M . 7.0或1解析 由A ∪B =A 知B ⊆A , ∴t 2-t +1=-3①或t 2-t +1=0②或t 2-t +1=1③①无解;②无解;③t =0或t =1. 8.1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 9.-1 2解析 ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ), ∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}, ∴a =-1,b =2.10.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3},即方程x 2+px +q =0的两个实根为1,3.∴⎩⎪⎨⎪⎧1+3=-p 1×3=q ,∴⎩⎪⎨⎪⎧p =-4q =3.11.解 ∵A ∩B =B ,∴B ⊆A .∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a},∴-1a ∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.12.6解析 x 的取值为1,2,y 的取值为0,2,∵z =xy ,∴z 的取值为0,2,4,所以2+4=6. 13.解 符合条件的理想配集有 ①M ={1,3},N ={1,3}. ②M ={1,3},N ={1,2,3}. ③M ={1,2,3},N ={1,3}. 共3个.第2章 函数 §2.1 函数的概念 2.1.1 函数的概念和图象课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对集合A 中的每一个元素x ,在集合B 中都有惟一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个________,通常记为y =f(x),x ∈A.其中,所有的输入值x 组成的集合A 叫做函数y =f(x)的________. 2.若A 是函数y =f(x)的定义域,则对于A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的________. 3.函数的三要素是指函数的定义域、值域、对应法则.一、填空题1.对于函数y =f(x),以下说法正确的有________个. ①y 是x 的函数;②对于不同的x ,y 的值也不同;③f(a)表示当x =a 时函数f(x)的值,是一个常量; ④f(x)一定可以用一个具体的式子表示出来.2.设集合M ={x|0≤x≤2},N ={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有________.3.下列各组函数中,表示同一个函数的是________.①y =x -1和y =x 2-1x +1;②y =x 0和y =1;③f(x)=x 2和g(x)=(x +1)2;④f(x)=x 2x 和g(x)=xx2. 4.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有________个. 5.函数y =1-x +x 的定义域为________. 6.函数y =x +1的值域为________.7.已知两个函数f(x)和g(x)的定义域和值域都是{1,2,3},其定义如下表:x 1 2 3 f(x) 2 3 1x 1 2 3 g(x) 1 3 2x 1 2 3 g[f(x)]填写后面表格,其三个数依次为:________.8.如果函数f(x)满足:对任意实数a ,b 都有f(a +b)=f(a)f(b),且f(1)=1,则f 2f 1+f 3f 2+f 4f 3+f 5f 4+…+f 2 011f 2 010=________. 9.已知函数f(x)=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________.二、解答题11.已知函数f (1-x1+x)=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远? (2)何时开始第一次休息?休息多长时间? (3)第一次休息时,离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度分别是多少? (6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m,渠深为1.8 m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应法则是否为函数,关键是看对于数集A中的任一个值,按照对应法则所对应数集B中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x,只要认清楚对应法则,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f(x)以表格形式给出时,其定义域指表格中的x的集合;②当f(x)以图象形式给出时,由图象范围决定;③当f(x)以解析式给出时,其定义域由使解析式有意义的x的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.第2章函数概念与基本初等函数Ⅰ§2.1函数的概念和图象2.1.1 函数的概念和图象知识梳理1.函数定义域 2.值域作业设计1.2解析①、③正确;②不对,如f(x)=x2,当x=±1时y=1;④不对,f(x)不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示. 2.②③解析 ①的定义域不是集合M ;②能;③能;④与函数的定义矛盾. 3.④解析 ①中的函数定义域不同;②中y =x 0的x 不能取0;③中两函数的对应法则不同. 4.9解析 由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”. 5.{x|0≤x≤1}解析 由题意可知⎩⎪⎨⎪⎧1-x≥0,x≥0,解得0≤x≤1.6.[0,+∞) 7.3 2 1解析 g[f(1)]=g(2)=3,g[f(2)]=g(3)=2,g[f(3)]=g(1)=1. 8.2 010解析 由f(a +b)=f(a)f(b),令b =1,∵f(1)=1,∴f(a+1)=f(a),即f a +1f a=1,由a 是任意实数,所以当a 取1,2,3,…,2 010时,得f 2f 1=f 3f 2=…=f 2 011f 2 010=1.故答案为2 010.9.{-1,1,3,5,7}解析 ∵x=1,2,3,4,5,∴f(x)=2x -3=-1,1,3,5,7.10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x≤1,0≤x+23≤1,得⎩⎪⎨⎪⎧0≤x≤12,-23≤x≤13,即x∈[0,13].11.解 由1-x 1+x =2,解得x =-13,所以f(2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10:30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11:00至12:00他骑了13千米.(5)9:00~10:00的平均速度是10千米/时;10:00~10:30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h)m ,高为h m ,∴水的面积A =[2+2+2h ]h 2=h 2+2h(m 2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)函数图象如下确定.由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如下图所示.2.1.2 函数的表示方法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.1.函数的三种表示法(1)列表法:用列表来表示两个变量之间函数关系的方法. (2)解析法:用等式来表示两个变量之间函数关系的方法. (3)图象法:用图象表示两个变量之间函数关系的方法. 2.分段函数在定义域内不同部分上,有不同的解析表达式,像这样的函数通常叫做分段函数.一、填空题1.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为________.2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是________.3.如果f (1x )=x1-x,则当x ≠0时,f (x )=________.4.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )=__________________________________. 5.已知f (x )=⎩⎪⎨⎪⎧ x -5 x ≥6f x +2x <6,则f (3)=_________________________________. 6.已知f (x )=⎩⎪⎨⎪⎧x -3 x ≥9f [f x +4] x <9,则f (7)=________________________________.7.一个弹簧不挂物体时长12 cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3 kg 物体后弹簧总长是13.5 cm ,则弹簧总长y (cm)与所挂物体质量x (kg)之间的函数关系式为________________________________.8.已知函数y =f (x )满足f (x )=2f (1x)+x ,则f (x )的解析式为____________.9.已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为________. 二、解答题 10.已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图象过(0,3)点,求f (x )的解析式.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.能力提升12.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d 是车速v (公里/小时)的平方与车身长S (米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d 关于v 的函数关系式(其中S 为常数).13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等. 2.如何求函数的解析式求函数的解析式的关键是理解对应法则f 的本质与特点(对应法则就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法). 3.分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集. 分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.1.2 函数的表示方法作业设计1.y =50x(x>0)解析 由x +3x2·y=100,得2xy =100.∴y =50x (x>0).2.1解析 由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.3.1x -1解析 令1x =t ,则x =1t ,代入f(1x )=x1-x,则有f(t)=1t 1-1t=1t -1.4.2x -1解析 由已知得:g(x +2)=2x +3, 令t =x +2,则x =t -2, 代入g(x +2)=2x +3,则有g(t)=2(t -2)+3=2t -1. 5.2解析 ∵3<6,∴f(3)=f(3+2)=f(5)=f(5+2)=f(7)=7-5=2. 6.6解析 ∵7<9,∴f(7)=f[f(7+4)]=f[f(11)]=f(11-3)=f(8). 又∵8<9,∴f(8)=f[f(12)]=f(9)=9-3=6. 即f(7)=6.7.y =12x +12解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k +12,k =12. 所以所求的函数解析式为y =12x +12.8.f(x)=-x 2+23x(x≠0)解析 ∵f(x)=2f(1x)+x ,①∴将x 换成1x ,得f(1x )=2f(x)+1x .②由①②消去f(1x ),得f(x)=-23x -x3,即f(x)=-x 2+23x (x≠0).9.f(x)=2x +83或f(x)=-2x -8解析 设f(x)=ax +b(a≠0),则f(f(x))=f(ax +b)=a 2x +ab +b.∴⎩⎪⎨⎪⎧a 2=4ab +b =8,解得⎩⎪⎨⎪⎧a =2b =83或⎩⎪⎨⎪⎧a =-2b =-8.10.解 设f(x)=ax 2+bx +c(a≠0). 由f(0)=f(4)知⎩⎪⎨⎪⎧f 0=c ,f 4=16a +4b +c ,f 0=f 4,得4a +b =0.①又图象过(0,3)点, 所以c =3.②设f(x)=0的两实根为x 1,x 2,则x 1+x 2=-b a ,x 1·x 2=ca.所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a )2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f(x)=x 2-4x +3.11.解 因为函数f(x)=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 …y … -5 0 3 4 3 0 -5…连线,描点,得函数图象如图:(1)根据图象,容易发现f (0)=3, f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].12.解 根据题意可得d =kv 2S .∵v =50时,d =S ,代入d =kv 2S 中,解得k =12 500.∴d =12 500v 2S .当d =S2时,可解得v =25 2.∴d =⎩⎪⎨⎪⎧S 2 0≤v <25212 500v 2S v ≥252.13.解 因为对任意实数x ,y ,有 f (x -y )=f (x )-y (2x -y +1), 所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1).又f (0)=1,∴f (x )=x (x +1)+1=x 2+x +1.。
2023版新教材高中数学第二章等式与不等式-不等式及其性质课时作业新人教B版必修第一册
2.2.1 不等式及其性质必备知识基础练1.完成一项装修工程,请木工需付工资每人50元,请瓦工需付工资每人40元,现有工人工资预算2 000元,设木工x人,瓦工y人,则工人满足的关系式是( ) A.5x+4y<200 B.5x+4y≥200C.5x+4y=200 D.5x+4y≤2002.下列结论中正确的是( )A.若ac>bc,则a>b B.若a2>b2,则a>bC.若>,则a>b D.若<,则a>b3.设M=3x2-x+1,N=x2+x-1,则( )A.M>NB.M<NC.M=ND.M与N的大小关系与x有关4.已知c>a>b>0,则________.(填“>”“<”或“=”)5.若1<a<3,-4<b<2,那么a-|b|的取值范围是( )A.(-3,3] B.(-3,5)C.(-3,3) D.(1,4)6.(1)比较x2+3与2x的大小;(2)已知a,b为正数,且a≠b,比较a3+b3与a2b+ab2的大小.关键能力综合练7.下列不等式中,正确的是( )A.若a-c>b-d且c>d,则a>bB.若a>b且k∈N+,则a k>b kC.若a>b>0,c>d,则ac>bdD.若a>b,则ac2>bc28.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①A+B+C=90°+90°+C>180°,这与三角形内角和为180°相矛盾,A=B=90°不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角A,B,C中有两个直角,不妨设A=B=90°,正确顺序的序号为( )A.①②③ B.①③②C.②③① D.③①②9.要证明+<2 可选择的方法有以下几种,其中最合理的为( )A.综合法 B.分析法C.反证法 D.归纳法10.已知α∈(0,),β∈[0,],则2α-的取值范围是( )A.(0,) B.(-,)C.(0,1) D.(-,1)11.(多选)已知a,b,c,d均为实数,则下列命题正确的是( )A.若ab<0,bc-ad>0,则->0B.若ab>0,->0,则bc-ad>0C.若bc-ad>0,->0,则ab>0D.若<<0,则<12.已知1<a<6,3<b<4,求a-b,的取值范围.核心素养升级练13.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:①男学生人数多于女学生人数;②女学生人数多于教师人数;③教师人数的两倍多于男学生人数.(1)若教师人数为4,则女学生人数的最大值为________;(2)该小组人数的最小值为________.14.已知a>0,b>0,试比较+与+的大小.2.2.1 不等式及其性质必备知识基础练1.解析:由题意可得,总的工资为50x+40y,又因为现有工人工资预算2 000元,故50x+40y≤2 000,化简可得5x+4y≤200.答案:D2.解析:对于A,c>0时,结论成立,故A不正确;对于B,a=-2,b=-1,满足a2>b2,但a<b,故B不正确;对于C,利用不等式的性质,可得结论成立;对于D,a=-1,b=2,满足<,但a<b,故D不正确.答案:C3.解析:因为M-N=3x2-x+1-(x2+x-1)=2x2-2x+2=2(x-)2+>0,所以M>N.答案:A4.解析:因为c>a,所以c-a>0,又因为a>b,所以>.答案:>5.解析:∵-4<b<2,∴0≤|b|<4,∴-4<-|b|≤0.又∵1<a<3,∴-3<a-|b|<3.答案:C6.解析:(1)(x2+3)-2x=x2-2x+3=(x-1)2+2≥2>0,所以x2+3>2x.(2)(a3+b3)-(a2b+ab2)=a3+b3-a2b-ab2=a2(a-b)-b2(a-b)=(a-b)(a2-b2)=(a-b)2(a+b),因为a>0,b>0,且a≠b,所以(a-b)2>0,a+b>0.所以(a3+b3)-(a2b+ab2)>0,即a3+b3>a2b+ab2.关键能力综合练7.解析:若a-c>b-d且c>d,则a>b,故A正确;当a=1,b=-2,k=2时,命题不成立,故B错误;令a=2,b=1,c=-2,d=-3,满足a>b>0,c>d,但推不出ac>bd,故C错误;令c=0可知D错误.答案:A8.解析:根据反证法的步骤,应该是先提出假设,再推出矛盾,最后否定假设,从而肯定结论.答案:D9.解析:要证明+<2最合理的方法是分析法.答案:B10.解析:因为α∈(0,),β∈[0,],所以2α∈(0,1),∈[0,],则-∈[-,0],所以2α-∈(-,1).答案:D11.解析:对于A,若ab<0,bc-ad>0,不等式两边同时除以ab得-<0,所以A不正确;对于B,若ab>0,->0,不等式两边同时乘以ab得bc-ad>0,所以B正确;对于C,若->0,当两边同时乘以ab时可得bc-ad>0,所以ab>0,所以C正确;对于D,由<<0,可知b<a<0,所以a+b<0,ab>0,所以<成立,所以D正确.答案:BCD12.解析:∵3<b<4,∴-4<-b<-3.∴1-4<a-b<6-3,即-3<a-b<3.又<<,∴<<,即<<2.综上,a-b的取值范围为(-3,3),的取值范围为(,2).核心素养升级练13.解析:设男学生、女学生、教师人数分别为x,y,z,则x>y>z.(1)若教师人数为4,则4<y<x<8,当x=7时,y取得最大值6.(2)当z=1时,1=z<y<x<2,不满足条件;当z=2时,2=z<y<x<4,不满足条件;当z=3时,3=z<y<x<6,y=4,x=5,满足条件.所以该小组人数的最小值为3+4+5=12.答案:(1)6 (2)1214.解析:方法一 作差法(+)-(+)=(-)+(-)=+==.∵a>0,b>0,∴+>0,>0,(-)2≥0,∴≥0,∴+≥+.方法二 作商法=====1+≥1.∵a>0,b>0,∴+>0,+>0,∴+≥+.方法三 平方法∵(+)2=++2,(+)2=a+b+2,∴(+)2-(+)2=.∵a>0,b>0,∴≥0,∵+>0,+>0,∴+≥+.。
2022_2023学年新教材高中数学课时作业十二一元二次不等式的解法新人教A版必修第一册
课时作业(十二) 一元二次不等式的解法练 基 础1.设集合A ={}x |x 2-3x -4<0,B ={x |x <3},则A ∩B =( )A .{x |x <-1}B .{x |x <4}C .{x |-4<x <1}D .{x |-1<x <3}2.[2022·山东滕州高一期中]关于x 的不等式-x 2+5x +6<0的解集为( ) A.{x |x <-2或x >3} B .{x |-2<x <3} C .{x |-1<x <6} D .{x |x <-1或x >6}3.设m +n >0,则关于x 的不等式(m -x )·(n +x )>0的解集是( ) A.{x |x <-n 或x >m } B .{x |-n <x <m } C.{x |x <-m 或x >n } D .{x |-m <x <n }4.已知不等式ax 2+bx +2>0的解集是{x |-1<x <2},则b -a 的值等于( ) A .-4 B .-2 C .2 D .45.(多选)已知不等式ax 2+bx +c ≥0的解集是{x |-2≤x ≤1},则( ) A .a <0 B .a -b +c >0 C .c >0 D .a +b =06.若函数y =x 2-ax -b 的两个零点是2和3,则不等式bx 2-ax -1>0的解集为________ .7.已知a <0,则关于x 的不等式x 2-4ax -5a 2<0的解集是________. 8.已知关于x 的不等式x 2-2ax -8a 2<0,a >0. (1)若a =52,解不等式;(2)若不等式的解集为{x |x 1<x <x 2}(x 1<x 2),且x 2-x 1≤12.求a 的取值范围.提 能 力9.已知b ,c ∈R ,关于x 的不等式x 2+bx +c <0的解集为{x |-2<x <1},则关于x 的不等式cx 2+bx +1>0的解集为( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <1B .⎩⎨⎧⎭⎬⎫x |-1<x <12C .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-12或x >1 D .⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-1或x >1210.(多选)已知集合{x |x 2+ax +b =0,a >0}有且仅有两个子集,则下面正确的是( ) A .a 2-b 2≤4 B .a 2+1b≥4C .若不等式x 2+ax -b <0的解集为{x |x 1<x <x 2},则x 1x 2>0D .若不等式x 2+ax +b <c 的解集为{x |x 1<x <x 2},且|x 1-x 2|=4,则c =411.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集是B ,不等式x 2+ax +b <0的解集是A ∩B ,那么a =________,b =________.12.已知关于x 的不等式ax 2+bx +c ≥0.(1)当a =-1,b =2,c =1时,求该不等式的解集;(2)从下面两个条件中任选一个,并求出此时该不等式的解集. ①a =1,b =-2-m ,c =2m ; ②a =m ,b =m -2,c =-2.培 优 生13.设0<b <1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数解恰有3个,则( ).A.-1<a <0 B .0<a <1 C .1<a <3 D .3<a <5课时作业(十二) 一元二次不等式的解法1.解析:由题意可得A ={x |-1<x <4},则A ∩B ={x |-1<x <3},故选D. 答案:D2.解析:由-x 2+5x +6=-(x -6)(x +1)<0,解得x <-1或x >6.故选D. 答案:D3.解析:不等式变形为(x -m )(x +n )<0,方程(x -m )(x +n )=0的两根为m ,-n ,显然由m +n >0得m >-n ,所以不等式的解为-n <x <m .故选B. 答案:B4.解析:因为不等式ax 2+bx +2>0的解集是{x |-1<x <2},所以⎩⎪⎨⎪⎧a <0-b a =12a =-2,解得⎩⎪⎨⎪⎧b =1a =-1,所以b -a =2,故选C. 答案:C5.解析:由已知得a <0,ax 2+bx +c =0的两根为-2和1, ∴-ba =(-2)+1=-1,c a=(-2)×1=-2, ∴b =a ,c =-2a, ∵a <0, ∴b <0,c >0,∴a -b +c =c >0,a +b =2a <0, 所以ABC 正确,D 错误;故选ABC. 答案:ABC6.解析:根据题意,⎩⎪⎨⎪⎧2+3=a 2×3=-b ⇒⎩⎪⎨⎪⎧a =5b =-6,则不等式可化为-6x 2-5x -1>0⇒6x 2+5x +1<0⇒(2x +1)(3x +1)<0⇒⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <-13. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-12<x <-137.解析:因为x 2-4ax -5a 2<0,所以(x -5a )(x +a )<0, 又a <0,所以不等式x 2-4ax -5a 2<0的解集为{x |5a <x <-a }. 答案:{x |5a <x <-a }8.解析:(1)由题意,x 2-5x -50<0⇒(x +5)(x -10)<0,则不等式的解集为{x |-5<x <10}. (2)由题意,(x +2a )(x -4a )<0,而a >0,则-2a <x <4a ,所以x 1=-2a ,x 2=4a ,于是4a +2a ≤12⇒a ≤2,则0<a ≤2.9.解析:因为不等式x 2+bx +c <0的解集为{x |-2<x <1},所以⎩⎪⎨⎪⎧-b =-2+1c =-2×1即⎩⎪⎨⎪⎧b =1c =-2, 不等式cx 2+bx +1>0等价于-2x 2+x +1>0, 解得-12<x <1.故选A.答案:A10.解析:由于集合{x |x 2+ax +b =0,a >0}有且仅有两个子集,所以Δ=a 2-4b =0,a 2=4b ,由于a >0,所以b >0.A ,a 2-b 2=4b -b 2=-(b -2)2+4≤4,当b =2,a =22时等号成立,故A 正确.B ,a 2+1b =4b +1b≥24b ·1b =4,当且仅当4b =1b ,b =12,a =2时等号成立,故B 正确.C ,不等式x 2+ax -b <0的解集为{x |x 1<x <x 2},x 1x 2=-b <0,故C 错误.D ,不等式x 2+ax +b <c 的解集为{x |x 1<x <x 2},即不等式x 2+ax +b -c <0的解集为{x |x 1<x <x 2},且|x 1-x 2|=4,则x 1+x 2=-a ,x 1x 2=b -c ,则|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=a 2-4(b -c )=4c =16,∴c =4,故D 正确,故选ABD. 答案:ABD11.解析:由题意,A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2}, 则不等式x 2+ax +b <0的解集为{x |-1<x <2}. 由根与系数的关系可知,a =-1,b =-2. 答案:-1 -212.解析:(1)当a =-1,b =2,c =1时不等式为-x 2+2x +1≥0,可化为x 2-2x -1≤0,解得1-2≤x ≤1+2,所以不等式的解集为[1-2,1+2]. (2)若选①,a =1,b =-2-m ,c =2m ,不等式为x 2-(2+m )x +2m ≥0, 即(x -2)(x -m )≥0,当m >2时,不等式解集为{x |x ≤2或x ≥m }, 当m =2时,不等式解集为R ,当m <2时,不等式解集为{x |x ≤m 或x ≥2},综上所述:当m >2时,不等式解集为{x |x ≤2或x ≥m },当m =2时,不等式解集为R ,当m <2时,不等式解集为{x |x ≤m 或x ≥2}.若选②a =m ,b =m -2,c =-2.不等式为mx 2+(m -2)x -2≥0, 若m =0,-2x -2≥0,不等式解集为{x |x ≤-1}, 若m ≠0,不等式可化为(mx -2)(x +1)≥0,当m >0时,不等式解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-1或x ≥2m ,当m <-2时,不等式解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2m ,当m =-2时,不等式解集为{x |x =-1},当-2<m <0时,不等式解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2m ≤x ≤-1, 综上所述:当m <-2时,不等式解集为⎩⎨⎧⎭⎬⎫x |-1≤x ≤2m ,当m =-2时,不等式解集为{x |x=-1},当-2<m <0时,不等式解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2m≤x ≤-1,当m =0时,不等式解集为{x |x ≤-1},当m >0时,不等式解集为⎩⎨⎧⎭⎬⎫x |x ≤-1或x ≥2m .13.解析:关于x 的不等式(x -b )2>(ax )2,即(a 2-1)x 2+2bx -b 2<0, ∵0<b <1+a ,[(a +1)x -b ]·[(a -1)x +b ]<0的解集中的整数恰有3个, ∴a >1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-b a -1<x <b a +1,又0<b a +1<1,∴解集中的整数为-2,-1,0. ∴-3≤-b a -1<-2,即2<ba -1≤3,∴2a -2<b ≤3a -3, ∵b <1+a ,∴2a -2<1+a ,解得a <3, 综上,1<a <3.故选C. 答案:C。
高中数学课时作业(湘教版选修第一册)课时作业(十二) 直线的斜率
课时作业(十二) 直线的斜率[练基础]1.直线l 经过原点和点(-2,2),则l 的斜率是( )A .0B .-1C .1D .不存在2.[2022·湖南省邵东一中高二月考]直线3 x +3y +1=0的倾斜角是( )A .30°B .60°C .120°D .150°3.两点A (5,y ),B (3,-1)的直线的倾斜角是135°,则y 等于( )A .2B .-2C .3D .-34.“直线l 的斜率不小于0”是“直线l 的倾斜角为锐角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.直线l 的倾斜角等于直线3 x -y =0倾斜角的2倍,则直线l 的斜率是( ) A .233B .3C .23D .-36.(多选)下列说法中,正确的是( )A .直线的倾斜角为α,且tan α>0,则α为锐角B .直线的斜率为tan α,则此直线的倾斜角为αC .若直线的倾斜角为α,则sin α>0D .任意直线都有倾斜角α,且α≠90°时,斜率为tan α7.已知点A (m ,2),B (3,0),若直线AB 的斜率为1,则m =________.8.已知点A (1,1),B (3,5),若点C (-2,t )在直线AB 上,则实数t 的值为________.9.已知两点P (1-m ,1+m )和Q (3,5m ).(1)m 为何值时,直线PQ 的斜率不存在;(2)m 为何值时,直线PQ 的斜率等于-3.[提能力]10.(多选)若经过A (1-a ,1+a )和B (3,a )的直线的倾斜角为钝角,则实数a 的值可能为( )A .-2B .0C .1D .211.若直线l 的方程为x -y sin θ+2=0,则直线l 的倾角α的范围是( )A .[0,π]B .⎣⎡⎦⎤π4,π2C .⎣⎡⎦⎤π4,3π4D .⎣⎡⎭⎫π4,π2 ∪⎝⎛⎭⎫π2,3π4 12.直线x -ay -1=0的倾斜角大于π4,则正实数a 的取值范围为________. 13.已知两点A (-3,4),B (3,2),过点P (1,0)的直线l 与线段AB 有公共点,则l 的倾斜角α的取值范围是________;直线l 的斜率k 的取值范围是________.14.已知点M (2,2),N (5,-2),点P 在x 轴上,分别求满足下列条件的P 点坐标.(1)∠MOP =∠OPN (O 是坐标原点);(2)∠MPN 是直角.[培优生]15.已知正△ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点P (x ,y )是△ABC内部及其边界上一点,则y x +1的最大值为( ) A .12 B .32C .23D .33-32。
高中数学选择性必修一 高考训练 练习习题 课时作业(十二)
课时作业(十二) 圆与圆的位置关系[练基础]1.圆x 2+y 2=9和圆x 2+y 2-8x +6y +9=0的位置关系是( )A .外离B .相交C .内切D .外切2.若圆C 1:(x +2)2+(y -m )2=9与圆C 2:(x -m )2+(y +1)2=4外切,则m 的值为( )A .2B .-5C .2或-5D .不确定3.圆x 2+y 2-6x =0和圆x 2+y 2-4x +6y =0交于A ,B 两点,则两圆公共弦的弦长|AB |为( ) A.9105 B.91010C.7105D.710104.圆(x -2)2+y 2=4与圆x 2+(y -2)2=4的公共弦所对的圆心角是( )A .60°B .45°C .120°D .90°5.过圆x 2+y 2=4外一点M (4,-1)引圆的两条切线,则经过两切点的直线方程为( )A .4x -y -4=0B .4x +y -4=0C .4x +y +4=0D .4x -y +4=06.[多选题]若圆C 1:x 2+y 2-3x -3y +3=0与圆C 2:x 2+y 2-2x -2y =0的交点为A ,B ,则( )A .公共弦AB 所在直线方程为x +y -3=0 B .线段AB 中垂线方程为x -y +1=0C .公共弦AB 的长为2 2D .在过A ,B 两点的所有圆中,面积最小的圆是圆C 17.若圆C 1:(x +2)2+(y -2)2=m (m >0)与圆C 2:x 2+y 2-4x -10y +13=0有3条公切线,则m =________.8.若圆x 2+y 2-2ax +a 2=2和x 2+y 2-2by +b 2=1外离,则a ,b 满足的条件是________.9.已知两圆相交于点A (1,3),B (m ,-1),两圆的圆心均在直线x -y +c =0上,则m +c 的值为________.10.求圆心为(2,1)且与已知圆x 2+y 2-3x =0的公共弦所在直线经过点(5,-2)的圆的方程.[提能力]11.[多选题]已知圆C 1:x 2+y 2=r 2,圆C 2:(x -a )2+(y -b )2=r 2(r >0)交于不同的A (x 1,y 1),B (x 2,y 2)两点,下列结论正确的有( )A .a (x 1-x 2)+b (y 1-y 2)=0B .2ax 1+2by 1=a 2+b 2C .x 1+x 2=aD.y1+y2=2b12.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=() A.4 B.4 2C.8 D.8 213.若圆O1:x2+y2=5与圆O2:(x-m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是________.14.在平面直角坐标系中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是________.15.已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,满足以l被圆C截得的弦AB为直径的圆过原点?若存在,求出直线l的方程;若不存在,说明理由.[培优生]16.[多选题]如图,已知A(2,0),B(1,1),C(-1,1),D(-2,0),CD是以OD为直径的圆上的一段圆弧,CB是以BC为直径的圆上的一段圆弧,BA是以OA为直径的圆上的一段圆弧,三段弧构成曲线W,则下述正确的是()A.曲线W与x轴围成区域的面积等于2πB.曲线W上有5个整点(横、纵坐标均为整数的点)C.CB所在圆的方程为x2+(y-1)2=1D.CB与BA的公切线方程为x+y=2+1。
功到自然成课时作业本高中数学必修1 第1章 集合
第1章集合集合的含义及其表示第1课时集合的含义创新练习(1~10题每小题7分,11~12题每小题15分,共100分)1.方程:x2-2x+l=0的解集为.2.若a是小于9的自然数,且a是集合A={x|x=2n,n是整数}中的一个元素,则a的值可以是,3.若集合A={x|ax2-2x+l=0,x,a∈R}仅有一个元素,则a= .4.若x,y是非零实数,则的取值集合为.5.将集合{(x,y)|x2-y2=5,x,y是整数}用列举法表示为.6.对于集合:①{(1,2)};②{(2,1)};③{1,2};④{2,1}.其中表示同一集合的两个集合是(用序号表示).7.对于集合:①{x|x=l};②{y|(y-1)2=0};③x =l};④{1}.其中不同于另外三个集合的是(用序号表示).8.给出下列集合:,其中是有限集的是.9.给出下列语句:①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{2,3,1};③方程(x-1)2(x-2)=0的所有解构成的集合可表示为1{l,1,2};④集合{x|y=x2}与集合{(x,y)|y =x2}是同一集合.其中正确的有(用序号表示).*10.若集合A由三个元素2,x,x2-x构成,则实数x的取值范围是.11.已知集合A={1,2},B={a+2,2a},其中a∈R,我们把集合{x|x=x1·x2,x1是A中元素,x2是B中元素}记为集合A×B.若集合A×B中的最大元素是2a+4,求实数a的取值集合.12.已知集合A={x|(x-1)(x-a)(x-a2+2)=0,a∈R}.(1)若2∈A,求实数a的值;(2)若集合A中所有元素的和为0,求实数a的值.第2课时元素与集合的关系创新练习(1~10题每小题7分,11~12题每小题15分,共100分)1.已知集合A={1,2,a2},B={1,a+2},若4∈A且4?B,则a= .2.若集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为 .3.给出下列叙述:①集合N中最小的数是1;②若a∈N,b∈N*,则a+b的最小值是2;③方程x2-2x+1=0的解得是{1,1};④{x|x2-x-2=0,x∈N*}={-1,2}.其中正确的个数是 .4.已知P和Q是两个集合,定义集合P-Q={x|x∈P且x?Q}.若P={1,2,3,4,5},Q={2,4,5},则P-Q= .5.已知集合A ={x ,2,y ,6},若a ∈A ,则6-a ∈A ,那么x ,y 的值分别为 .6.定义集合A *B ={x |x ∈A 且x ?B }.若A ={x |1<x <2,B =x |2x -3>0},则A *B = .7.已知A ={奇数},B ={偶数},x =4k +1,y =4k +2,z =4k +3(k ∈Z ),则x ,x +y ,x -y ,x +z ,x -z ,y +z ,y -z 中,属于集合A 的元素是 ;属于集合B 的元素是 .8.对于数集A ,B ,定义:A +B ={x |x =a +b ,a ∈A ,b ∈B },A ÷B ={x |x =b a ,a ∈A ,b ∈B , 若集合A ={1,2},则集合(A +A )÷A 中所有元素之和为 .9.已知b ∈{1,a }且b ∈{2,a 2},则a +b = .*10.已知集合A 是整数集,且当x ,y ∈A 时必有xy ∈A ,若这样的集合是无限集,则集 合A 可以是 .11.已知非空集合S 的元素是实数,且满足:①1?S ;②若a ∈S ,则a -11∈S ,求证:集合S 中至少含有三个元素.12.设P 是一个集数,且至少含有两个数,若对任意的a ,b ∈P ,都有a +b ,a -b ,ab , ba ∈P (其中b ≠0),则称P 是一个数域.例如有理数集Q 是数域.求证: (1)数域必含有0与1两个数;(2)数域必为无限集;(3)数集A ={x |x =a +b ·2,a ,b ∈Q }是数域.子集、全集、补集创新练习 (1~10题每小题7分,11~12题每小题15分,共100分)1.已知集合A ={1,2,3},B ={1,x },若B ?A ,则x 是值为 .2.若集合A ?{1,2,3},且A 中元素至少含有一个奇数,则满足条件的集合A 共有 .3.已知集合A ={菱形},B ={正方形},C ={平行四边形},则集合A ,B ,C 之间的关系是 .4.已知集合A ={x |1≤x ≤2},集合B ={x |x ≥a },且A ?B ,则实数a 的取值范围是 .5.若集合P ={x |x <1},Q ={x |x >-1},则下列关系:①P ?Q ;②Q ≠⊂P ;③R PQ ;④Q R P ,其中正确的个数是 . 6.若全集U ={2,3,5},A ={2,a 2-1}是U 的子集,且U A ={5},则实数a 的取值集合为 . 7.已知集合A ={x |kx -1=0},集合B ={x |x-k +1=0},若A ?B ,则实数k 的取值集合为 .8.若集合S ={1,2,3},A ,B 是S 的两个非空子集,且B 中最小数大于A 中最大数,则这样的集合A ,B 共有 对.9.已知集合A 满足:若a ∈A ,则11-a∈A .若2∈A ,则满足条件的元素个数最少的集合 为 .10.若非空集合S={x|1≤x≤m}满足:当x∈S时,有x2∈S,则m= .11.已知集合M={0,1,a},N={a2,b},问:是否存在实数a,b,使得a∈N且N?M?若存在,求出实数a,b的值;若不存在,请说明理由.12.定义闭集合S,若a,b∈S,则a+b∈S,a-b∈S.(1)举出两个闭集合A,B是真包含于R的无限闭集合,且A?B;⊂B.(2)举出两个闭集合A,B是真包含于R的无限闭集合,且A≠交集、并集第1课时集合的交集与并集创新练习(1~10题每小题7分,11~12题每小题15分,共100分)1.若集合P={x|x2-3x+2=0},Q={x|x=2m,m∈P},则集合P∪Q中元素的个数为 .2.若集合A={2,3},B={x|x2-4x+3=0},则A∪B= .3.若集合A={-1,0,1,2},B={x|(x-1)(x-2)<0},则A∩B= .4.已知集合A满足A∩{2,4}={4},且A∩{6,8}={8}.若A?{2,4,6,8,10},则集合A为 .5.满足M?{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M= .6.如图,已知集合A={2,3,4,5,6,8},B={1,3,5,7},C={2,4,5,7,8,9},永列举法写出途中阴影部分表示的集合为 .7.若集合A={1,2,3},B∩A={3},B∪A={1,2,3,4,5},则集合B的子集的个数为 .8.已知集合A{x|x>2},B={x|x<a},若A∩B={x|b<x<2b+3},且A∩B≠∅,则实数a的值为 .9.已知全集U=A∪B中有m个元素,U A∪U B中有n个元素,若A∩B非空,则A∩B的元素个数为 .10.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 .11.已知集合A={x|a<x<1-a},B={x|x>0},问是否存在实数a,使得A∩B=∅,若存在,求出a的取值范围;若不存在,请说明理由.12.已知集合A={x|x2-2x-3=0},B={x|x2+ax+b=0},且A∪B={-1,2,3}.(1)求a,b满足的关系;(2)求a,b的所有可能的取值集合.第2课时交集与并集的性质创新练习(1~10题每小题7分,11~12题每小题15分,共100分)1.已知集合A={1,3,B={1,3},且A∪B=A,则m= .2.已知集合M={x|-1≤x<2},N={x|x≤a},若M∩N≠∅,则实数a的取值范围是 .3.某班由学生45人,其中音乐爱好者30人,体育爱好者40人,还有4人既不爱好音乐又不爱好体育,则该班级中既爱好音乐又爱好体育的有 .4.若集合M={a,b},则满足M∪N={a,b,c}的非空集合N的个数为 .5.若集合A⊆B⊆C,则以下结论:①A∪B⊆C;②A∩C⊆B;③A⊆B∩C;④A∪C⊆B.其中不正确的有(用序号表示).6.若U为全集,且集合B⊆A,则下论结论:①A∪B=A;②U A∩B=∅;③U A⊆UB;④A∪U B=U.其中正确的有(用序号表示).7.给出下列结论:①a∈A∪B⇒a∈A;②a∈A∩B⇒a∈A∪B;③A∪B=A⇒A∩B=B;④A∪C=B∪C⇒A=B.其中正确的有(用序号表示).8.已知A,B均为集合U={2,4,6,8,10}的子集,且A∩B={4},(U B)∩A={10},则A= .9.已知集合A={2,3,5,9},B={1,3,6,8},若a∈A,b∈B时,|a-b|∈A∪B,则数对{a,b}的个数是 .10.设集合S={A0,A1,A2,A3,A4},在S上定义⊙运算为A i⊙A j=A k,其中k=|i-j|(i,j∈{0,1,2,3,4}),那么满足条件(A i⊙A j)⊙A2=A1(A i∈S,A j∈S)的有序数对(i,j)共有对.11.已知集合A={x|x2-3x+2=0},B={x|x2+bx+c=0},是否存在实数b,c,使得集合{x|x∈A∪B 且x?A∩B}={1,3}?若存在,求出b和c的值;若不存在,请说明理由.12.设A,B是非空集合,定义A*B={x|x∈A∪B且x?A∩B}.(1)已知A={x|0≤x≤2},B={y|y≥0},求A*B;(2)已知A=(1,2),B=(a,2a-1),求A*B.阶段检测(一)一、填空题(本大题共14小题,每小题5分,共70分)1.已知集合M={1,3,5,7},N={5,6,7},则M∪N= .2.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},那么U(A∪B)= .3.已知集合A={x|-1≤2x+1≤5},B={x|0<x≤2},则A∩B= .4.已知集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集和U(A∩B)中的元素共有个.5.若全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},则途中的阴影部分表示的集合为 .6.若集合A={0,1,2,3},B={0,1},C={x|x∈A且x?B},则集合C为 .7.已知全集U=Z,集合A={-1,0,1,2},B={x|x2=x},则A∩(UB)= .8.已知集合A,B,C满足A∩B=A,B∪C=C,则集合A与C之间的关系是 .9.若集合A={x|5<x<1},B={x|m<x<2},且A∩B=(-1,n),则m+n= .10.若集合A={x|0<x<9},B={y|y∈Z且4y∈Z},则集合A∩B的子集的个数为 .11.定义集合A={x|x∈A且x?B},若集合P={x|x≤1},Q={y|y≥-1},则P-Q= .12.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小镇,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有人.13.已知集合M={a2,a},N={-a,2a-1},若M∪N恰好含有三个元素,则M∩N= .14.已知U为全集,集合A,B满足A∪B=U,则下列关系:①B⊆U A;②A⊆U B;③U A⊆B;④(U A)∩(U B)=U.其中一定正确的是(用序号表示).二、解答题(本大题共6小题,共90分)15.(本小题满分14分)设集合A={x|x2+2bx+b+2=0}={a},求实数a和b的值.16.(本小题满分14分)高一(1)班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小镇,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组、物理和化学小组的有、数学和化学小组的人数分别为a,b,c,求a+b+c的值.17.(本小题满分14分)对于非空集合A,定义集合S={(a,b)|a∈A,b∈A,a+b∈A},T={(a,b)|a∈A,a-b∈A}.(1)若A={0,1,2,3},求S∩T;(2)若A={-1,2,3},求S∪T.18.(本小题满分16分)已知集合A={1,x,y},B={1,2x,x2},是否存在实数x和y,使得A=B?若存在,求出x与y 的值;若不存在,请说明理由.19.(本小题满分16分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-bx+c=0},且C≠∅.(1)若A∩B=B,求实数a的值;(2)若C={x|x∈A且x?B},求实数b,c的值.20.(本小题满分16分)若集合A具有以下性质:①0∈A,1∈A;②若x,y∈A,则x-y∈A,且x≠0时,1x∈A,则称集合A为“优集”.(1)分别判断集合B={-1,0,1}与有理数集Q是否是“优集”,并说明理由;(2)设集合A是“优集”,求证:若x,y∈A,则(i)x+y∈A;(ii)xy∈A.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:①中不满足偶函数定义中的任意性,因此①不对; ②中由 f(x)+f(-x)=0 可知 f(-x)=-f(x),因此 f(x)是 D 上的奇 函数;当 f(-2)≠f(2)时,函数 f(x)一定不是偶函数,故③对; ④中若满足 f(-2)=f(2)=0,此时函数可能是奇函数,因此④ 正确.
8.设函数 y=f(x)是奇函数,若 f(-2)+f(-1)-3=f(1)+f(2) +3,则 f(1)+f(2)= -3 .
有( B )
A.f(x)≤2
B.f(x)≥2
C.f(x)≤-2 D.f(x)∈R
解析:可画出满足题意的一个 f(x)的大致图象如图所示,由 图易知当 x<0 时,有 f(x)≥2.故选 B.
5.若函数 f(x)是奇函数,则 f(1+ 2)+f1-1 2=( B )
A.-1
B.0
C.1
D.2
解析:1-1
2=1-
1+ 2 21+
2=-(1+
2).
∵f(x)是奇函数,
∴f1-1 2=f[-(1+ 2)]=-f(1+ 2). ∴f(1+ 2)+f1-1 2=0.选 B.
6.已知函数 f(x)满足 f(x)·f(-x)=1,且 f(x)>0 恒成立,则函 数 g(x)=ffxx- +11是( A )
13.已知 f(x),g(x)分别是定义在 R 上的偶函数和奇函数,
且 f(x)-g(x)=x3+x2+1,则 f(1)+g(1)=( C )Leabharlann A.-3B.-1C.1
D.3
解析:用“-x”代替“x”,得 f(-x)-g(-x)=(-x)3+(- x)2+1,化简得 f(x)+g(x)=-x3+x2+1,令 x=1,得 f(1)+g(1) =1,故选 C.
A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D.非奇非偶函数
解析:∵f(x)·f(-x)=1,f(x)>0 恒成立,∴f(-x)=f1x>0, ∴g(-x)=ff- -xx- +11=ff11xx-+11=11+-ffxx=-g(x),∴g(x)是奇函 数.
二、填空题 7.对于函数 y=f(x),定义域为 D∈[-2,2],以下命题正确 的是②③④.(填序号) ①若 f(-1)=f(1),f(-2)=f(2),则 y=f(x)是 D 上的偶函数; ②若对于任意 x∈[-2,2],都有 f(-x)+f(x)=0,则 y=f(x) 是 D 上的奇函数; ③若 f(2)≠f(-2),则 f(x)不是偶函数; ④若 f(-2)=f(2),则该函数可能是奇函数.
是偶函数,则下列结论中正确的是( C )
A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数 C.f(x)|g(x)|是奇函数 D.|f(x)g(x)|是奇函数
解析:f(x)为奇函数,g(x)为偶函数,故 f(x)g(x)为奇函数, |f(x)|g(x)为偶函数,f(x)|g(x)|为奇函数,|f(x)g(x)|为偶函数,故选 C.
解析:∵f(x)是奇函数,∴f(-2)=-f(2),f(-1)=-f(1).又 f(-2)+f(-1)-3=f(1)+f(2)+3,∴f(1)+f(2)=-3.
9.已知 f(x)=x5+ax3+bx-8,且 f(-2)=10,则 f(2)= -26 .
解析:令 h(x)=x5+ax3+bx,易知 h(x)为奇函数. 因为 f(x)=h(x)-8,h(x)=f(x)+8, 所以 h(-2)=f(-2)+8=18. h(2)=-h(-2)=-18, 所以 f(2)=h(2)-8=-18-8=-26.
课时作业12 函数的奇偶性
时间:45 分钟
——基础巩固类——
一、选择题
1.下列函数中,既是奇函数又是增函数的为( D )
A.y=x+1
B.y=-x2
C.y=1x
D.y=x|x|
解析:y=x+1 不是奇函数;y=-x2 是偶函数,且在[0, +∞)上是减函数;y=1x在(0,+∞)上是减函数,故 A,B,C 都错.选 D.实际上,y=x|x|=x-2,x2x,≥x0<,0, 画出图象(图略), 由图象可知,该函数既是奇函数又是增函数.
x)在 R 上一定是( A )
A.奇函数
B.偶函数
C.既是奇函数又是偶函数 D.非奇非偶函数
解析:∵F(-x)=f(-x)-f[-(-x)]=f(-x)-f(x)=-[f(x) -f(-x)]=-F(x),定义域为 R,∴函数 F(x)在 R 上是奇函数.
4.已知 f(x)为偶函数,且当 x≥0 时,f(x)≥2,则当 x<0 时,
解:(1)由奇函数定义,得 f(-x)=-f(x), 即p--3xx+2+q2=-p3xx2++q2. ∴-3x+q=-3x-q,∴2q=0,∴q=0. 又 f(2)=53,∴p×3×22+2 2=53, 解得 p=2,∴p=2,q=0.
(2)f(x)=2x23+x 2=23(x+1x). 设 1<x1<x2,则 Δx=x1-x2<0, Δy=f(x1)-f(x2)=23(x1+x11-x2-x12) =23[(x1-x2)+x2x-1x2x1]=23(x1-x2)·x1xx12x-2 1 =23Δx·x1xx12x-2 1. ∵1<x1<x2,∴x1x2>1,∴上式<0,即 f(x1)<f(x2). ∴f(x)在(1,+∞)上是增函数.
14.若函数 y=(x+1)(x-a)为偶函数,则 a 等于 1.
解析:∵y=(x+1)(x-a)=x2+(1-a)x-a 为偶函数,∴1 -a=0,即 a=1.
15.已知函数 f(x)=p3xx2++q2是奇函数,且 f(2)=53. (1)求 p,q 的值; (2)判断 f(x)在(1,+∞)上的单调性.
2.奇函数 y=f(x)(x∈R)的图象必定经过点( C )
A.(a,f(-a)) B.(-a,f(a)) C.(-a,-f(a)) D.(a,f(1a))
解析:∵y=f(x)是奇函数,∴f(-a)=-f(a).∴选 C.
3.设 f(x)是定义在 R 上的一个函数,则函数 F(x)=f(x)-f(-
11.判断下列函数的奇偶性. (1)f(x)=x2+x12; (2)f(x)=|2x+1|-|2x-1|; (3)f(x)=x-xx-x2+,2x,≥x0<,0.
解:(1)偶函数.定义域为{x|x≠0},关于原点对称,又因 为 f(-x)=(-x)2+-1x2=x2+x12=f(x),所以 f(x)为偶函数.
(2)奇函数.定义域为 R. 又因为 f(-x)=|-2x+1|-|-2x-1|=|2x-1|-|2x+1|=- f(x),所以 f(x)为奇函数. (3)奇函数.画出其图象如图,可见 f(x)的定义域为 R,且 图象关于原点对称,所以 f(x)为奇函数.
——能力提升类——
12.设函数 f(x),g(x)的定义域都为 R,且 f(x)是奇函数,g(x)
三、解答题 10.已知函数 f(x)=x2+1 1在区间[0,+∞)上的图象如图所示, 请据此在该坐标系中补全函数 f(x)在定义域内的图象,请说明你 的作图依据.
解:∵f(x)=x2+1 1,∴f(x)的定义域为 R. 又对任意 x∈R,都有 f(-x)=-x12+1=x2+1 1=f(x),∴f(x)为偶函数. 则 f(x)的图象关于 y 轴对称,其图象如图所示.