2018 四川德阳市中考数学真题

合集下载

2018年四川省中考数学真题汇编解析:数与式、方程不等式

2018年四川省中考数学真题汇编解析:数与式、方程不等式

2018年全国各地中考数学真题汇编(四川专版)数与式、方程不等式参考答案与试题解析一.选择题(共10小题)1.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.2.(2018•乐山)方程组==x+y﹣4的解是()A.B.C.D.解:由题可得,,消去x,可得2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为.故选:D.3.(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:∵≈2.236,∴+1≈3.236,故选:C.4.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.5.(2018•绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1923 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.7.(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1,故选:C.8.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.9.(2018•南充)已知=3,则代数式的值是()A.B.C.D.解:∵=3,∴=3,∴x﹣y=﹣3xy,则原式====,故选:D.10.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.二.填空题(共10小题)11.(2018•自贡)分解因式:ax2+2axy+ay2=a(x+y)2.解:原式=a(x2+2xy+y2)…(提取公因式)=a(x+y)2.…(完全平方公式)12.(2018•成都)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.13.(2018•自贡)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为10、20个.解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.14.(2018•绵阳)已知a>b>0,且++=0,则=.解:由题意得:2b(b﹣a)+a(b﹣a)+3ab=0,整理得:2()2+﹣1=0,解得=,∵a>b>0,∴=,故答案为.15.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,∴4n2﹣4mn+2n=0,∴4n﹣4m+2=0,∴m﹣n=.故答案是:.16.(2018•达州)若关于x的分式方程=2a无解,则a的值为1或.解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.17.(2018•自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.18.(2018•眉山)已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为k<6且k≠3.解;﹣2=,方程两边都乘以(x﹣3),得x=2(x﹣3)+k,解得x=6﹣k≠3,关于x的方程程﹣2=有一个正数解,∴x=6﹣k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为:k<6且k≠3.19.(2018•达州)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.20.(2018•遂宁)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣=.解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.三.解答题(共16小题).(2018•攀枝花)解方程:﹣=1.解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.22.(2018•遂宁)计算:()﹣1+(﹣1)0+2sin45°+|﹣2|.解:原式=3+1+2×+2﹣=4++2﹣=6.23.(2018•自贡)解不等式组:,并在数轴上表示其解集.解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.24.(2018•遂宁)先化简,再求值•+.(其中x=1,y=2)解:当x=1,y=2时,原式=•+=+==﹣325.(2018•攀枝花)攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.26.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.27.(2018•宜宾)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.28.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.29.(2018•绵阳)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:4m+1.5(10﹣m)≥33,解得:m≥7.2,令m=8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车1辆,30.(2018•内江)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是00元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,∵﹣10<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=300(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.31.(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣10m+20m=25m2+10m+1=(5m+1)2≥0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.32.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=333.(2018•广安)某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元、1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据题意得:=,解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A型车每辆车售价为1600元.(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.∵B型车的进货数量不超过A型车数量的两倍,∴45﹣a≤2a,解得:a≥15.∵﹣100<0,∴y随a的增大而减小,∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.34.(2018•资阳)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?解:(1)设改建后的绿化区面积为x亩.由题意:x+20%•x=162,解得x=135,162﹣135=27,答:改建后的绿化区面积为135亩和休闲区面积有27亩.(2)设绿化区的面积为m亩.由题意:35000m+25000(162﹣m)≤5500000,解得m≤145,答:绿化区的面积最多可以达到145亩.35.(2018•自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log6,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式3=log464;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34=1.解:(1)由题意可得,指数式43=64写成对数式为:3=log 464,故答案为:3=log 464;(2)设log a M=m ,log a N=n ,则M=a m ,N=a n ,∴==a m ﹣n ,由对数的定义得m ﹣n=log a ,又∵m ﹣n=log a M ﹣log a N ,∴log a =log a M ﹣log a N (a >0,a ≠1,M >0,N >0);(3)log 32+log 36﹣log 34,=log 3(2×6÷4),=log 33,=1,故答案为:1.36.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.(1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n ≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).解:(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为(x +100)元根据题意得:解得400=x经检验,400=x 为原方程的解 500100=+x答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:∴m的取值范围为:16≤m≤25②设销售这批丝绸的利润为y根据题意得:y=(800﹣500﹣2n)m+(600﹣400﹣n)•(50﹣m)=(100﹣n)m+10000﹣50n∵50≤n≤150∴(Ⅰ)当50≤n<100时,100﹣n>0m=25时,销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500(Ⅱ)当n=100时,100﹣n=0,销售这批丝绸的最大利润w=5000(Ⅲ)当100<n≤150时,100﹣n<0当m=16时,销售这批丝绸的最大利润w=﹣66n+11600。

四川德阳2018中考试题

四川德阳2018中考试题
请回答下列问题:
(1)甲组同学按照如图所示的装置,通过实验检验草酸晶体的分解产物。仪器a的名称是_________。装置B的主要作用是_________________。装置C中有气泡逸出,澄清石灰水变浑浊。由此可知草酸晶体分解的产物中一定有______________。
(2)乙组同学认为草酸晶体分解的产物中还有CO。为进行验证,选用甲组实验中的装置A、B和下图所示的部分装置(可以重复选用)进行实验。
A.丁烯中C、H元素的质量比为1:2B.丁烯中碳元素位于元素周期表第二周期
C.丁烯分子中碳原子的结构示意图为 D.丁烯分子中含有4个碳元素和8个氢元素
4.下图表示两种气体发生化学反应的微观示意图,其中相同的球代表同种原子。下列有关说法错误的是
A.该反应属于化合反应B.反应前后原子的种类和数目都不变
C.生成物一定是氧化物D.反应前后各元素的化合价发生了变化
C.滤出的固体中含有银7.6gD.滤出的固体中含有铜6.4g
二、填空题
9.防治空气污染、改善生态环境已成为全民共识。近年来,一些城市空气中出现可吸入悬浮颗粒物与雾形成“雾霾”天气。粒径不大于2.5μm的可吸入悬浮颗粒物(PM2.5)富含大量有毒、有害物质。
(1)下列行为可能会导致“雾霾”加重的是________(填标号)。
(2)若B+E+F→C,则C是___________(填名称或化学式)。
(3)反应④的化学方程式是_______________________________。
(4)反应⑤的化学方程式是_________________的化工原料,某矿石由MgO、Fe2O3、CuO和SiO2组成。用它制备氢氧化镁的流程示意图如下:
a.燃煤脱硫b.植树造林c.静电除尘d.燃放鞭炮

德阳数学中考试题及答案

德阳数学中考试题及答案

德阳数学中考试题及答案一、选择题1. 已知函数 f(x) = |x - 2| + 3,下列哪个表达式的图像与 f(x) 的图像相同?A. f(x) = |2 - x| + 3B. f(x) = |x + 2| + 3C. f(x) = |x - 2| - 3D. f(x) = |2 - x| - 3答案:A2. 若等式 a + b = 7 + a,其中 a 和 b 是整数,则 b 的值是多少?A. 14B. 7C. -7D. 0答案:C3. 已知 x 是一个大于1的正整数,若① x < 10 ;② x 是一个奇数,则 x 的取值范围是多少?A. 2 ≤ x < 10B. 2 ≤ x < 9C. 3 ≤ x < 10D. 3 ≤ x < 9答案:B4. 甲、乙两车分别从 A 点和 B 点同时出发,相向而行。

已知甲车速度为 60 km/h,乙车速度为 80 km/h,两车相距 500 km。

问多久后两车相遇?A. 3 小时B. 4 小时C. 5 小时D. 6 小时答案:B5. 若 4x + 2y = 10,且 x + 3y = 7,求 x 与 y 的值。

A. x = 2,y = 1B. x = 1,y = 2C. x = 3,y = 2D. x = 2,y = 3答案:A二、计算题1. 求下列方程的解:2x - 5 = 7 - x解:将方程两边同时加上 x:2x + x - 5 = 73x - 5 = 7将方程两边同时加上 5:3x - 5 + 5 = 7 + 53x = 12将方程两边同时除以 3:x = 4所以方程的解为 x = 4。

2. 某商店从某公司进货一批商品,进价为 200 元/件,商店按 300 元/件的价格出售,若商店售出一件商品的利润率为 20%,求商店售出一件商品的售价。

解:设售价为 x 元/件。

根据利润率的定义,有:(售价 - 进价) / 进价 = 20%代入已知数据,得:(x - 200) / 200 = 0.2将方程两边同时乘以 200:x - 200 = 0.2 * 200x - 200 = 40将方程两边同时加上 200:x = 40 + 200x = 240所以商店售出一件商品的售价为 240 元。

2018年四川省中考数学真题汇编解析:数与式、方程不等式

2018年四川省中考数学真题汇编解析:数与式、方程不等式

2018年全国各地中考数学真题汇编(四川专版)数与式、方程不等式参考答案与试题解析一.选择题(共10小题)1.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.2.(2018•乐山)方程组==x+y﹣4的解是()A.B.C.D.解:由题可得,,消去x,可得2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为.故选:D.3.(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:∵≈2.236,∴+1≈3.236,故选:C.4.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.5.(2018•绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1923 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.7.(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1,故选:C.8.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.9.(2018•南充)已知=3,则代数式的值是( )A .B .C .D .解:∵=3,∴=3,∴x ﹣y=﹣3xy ,则原式====, 故选:D .10.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是( ) A .8% B .9%C .10%D .11%解:设平均每次下调的百分率为x ,由题意,得 6000(1﹣x )2=4860,解得:x 1=0.1,x 2=1.9(舍去). 答:平均每次下调的百分率为10%. 故选:C .二.填空题(共10小题)11.(2018•自贡)分解因式:ax 2+2axy +ay 2= a (x +y )2 . 解:原式=a (x 2+2xy +y 2)…(提取公因式) =a (x +y )2.…(完全平方公式)12.(2018•成都)已知a >0,S 1=,S 2=﹣S 1﹣1,S 3=,S 4=﹣S 3﹣1,S 5=,…(即当n 为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.13.(2018•自贡)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为10、20个.解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.14.(2018•绵阳)已知a>b>0,且++=0,则=.解:由题意得:2b(b﹣a)+a(b﹣a)+3ab=0,整理得:2()2+﹣1=0,解得=,∵a>b>0,∴=,故答案为.15.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,∴4n2﹣4mn+2n=0,∴4n﹣4m+2=0,∴m﹣n=.故答案是:.16.(2018•达州)若关于x的分式方程=2a无解,则a的值为1或.解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.17.(2018•自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.18.(2018•眉山)已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为k<6且k≠3.解;﹣2=,方程两边都乘以(x﹣3),得x=2(x﹣3)+k,解得x=6﹣k≠3,关于x的方程程﹣2=有一个正数解,∴x=6﹣k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为:k<6且k≠3.19.(2018•达州)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.20.(2018•遂宁)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣=.解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.三.解答题(共16小题).(2018•攀枝花)解方程:﹣=1.解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.22.(2018•遂宁)计算:()﹣1+(﹣1)0+2sin45°+|﹣2|.解:原式=3+1+2×+2﹣=4++2﹣=6.23.(2018•自贡)解不等式组:,并在数轴上表示其解集.解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.24.(2018•遂宁)先化简,再求值•+.(其中x=1,y=2)解:当x=1,y=2时,原式=•+=+==﹣325.(2018•攀枝花)攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.26.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.27.(2018•宜宾)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.28.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.29.(2018•绵阳)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:4m+1.5(10﹣m)≥33,解得:m≥7.2,令m=8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车1辆,30.(2018•内江)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B 型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是00元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A 型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,∵﹣10<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=300(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.31.(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣10m+20m=25m2+10m+1=(5m+1)2≥0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.32.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=333.(2018•广安)某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元、1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据题意得:=,解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A型车每辆车售价为1600元.(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.∵B型车的进货数量不超过A型车数量的两倍,∴45﹣a≤2a,解得:a≥15.∵﹣100<0,∴y随a的增大而减小,∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.34.(2018•资阳)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?解:(1)设改建后的绿化区面积为x亩.由题意:x+20%•x=162,解得x=135,162﹣135=27,答:改建后的绿化区面积为135亩和休闲区面积有27亩.(2)设绿化区的面积为m亩.由题意:35000m+25000(162﹣m)≤5500000,解得m≤145,答:绿化区的面积最多可以达到145亩.35.(2018•自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log6,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N >0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式3=log464;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34=1.解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设log a M=m ,log a N=n ,则M=a m ,N=a n ,∴==a m ﹣n ,由对数的定义得m ﹣n=log a ,又∵m ﹣n=log a M ﹣log a N ,∴log a =log a M ﹣log a N (a >0,a ≠1,M >0,N >0);(3)log 32+log 36﹣log 34,=log 3(2×6÷4),=log 33,=1,故答案为:1.36.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元. (1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n ≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).解:(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为(x +100)元根据题意得:解得400=x经检验,400=x 为原方程的解 500100=+x答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:∴m 的取值范围为:16≤m ≤25②设销售这批丝绸的利润为y根据题意得:y=(800﹣500﹣2n )m +(600﹣400﹣n )•(50﹣m )=(100﹣n)m+10000﹣50n∵50≤n≤150∴(Ⅰ)当50≤n<100时,100﹣n>0m=25时,销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500(Ⅱ)当n=100时,100﹣n=0,销售这批丝绸的最大利润w=5000(Ⅲ)当100<n≤150时,100﹣n<0当m=16时,销售这批丝绸的最大利润w=﹣66n+11600。

【真题】四川省德阳市2018年中考数学试题(含解析)

【真题】四川省德阳市2018年中考数学试题(含解析)

【答案】德阳市2018年初中毕业生学业考试与高中阶段学校招生考试第I卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分)1.如果把收入100元记作+100元,那么支出80元记作十20 元 及+100 元 ^80 元 IX~80 元解析:考察实数的概念,易选02丨下列计算或运算中,正确的是丄06^02^0^及(^2)3^(口一9 IX ^02~62解析:考查幂运算与整式乘法,易选匸选项丄06 ^02 ^04选项 5:考查了立方:(七2)3^-8。

6选项0考查了平方差公式:所以卜一3乂3十…选项从考查了完全平方差公式:3|如图,直线…|6,V是截线且交于点儿若21 = 60。

,22= 100。

,则乙4二^^400 5.50。

^6000.70。

解析:考查三线八角,利用平行转移角,易选2^幺 1=23=60。

,之2二之4=100。

7^4+25=180。

,人 25=80。

(第3题图)4卜列计算或运算中,正确的是^ 8 ―^8 二2^6715-2^= 3745 IX-3^= 7^解析:考查二次根式的加减乘除与化简,易选5选项丄2^^二2^^二々X 士二选项 5:^8-^8^ 3^2-272=72选项 06^15^273 = ^^=3752^3选项从~3^35^把实数1 12X10^3用小数表示为10.0612 5.6120 0.0.00612 612000解析:考查科学计数法,易选匸6^下列说法正确的是儿“明天降雨的概率为50^”,意味着明天一定有半天都在降雨凡了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查〕方式 匕掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件IX —组数据的方差越大,则这组数据的波动也越大解析:考查方差、事件、概率统计,易选01.受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读事件,统计结果如下表所示,则在本次调查中,全班学生 平均每天阅读时间的中位数和众数分别是每天阅读时间(小吋〉0.511.52人数819103克 2,1召.1,1.5匕 1,2解析:考查中位数和众数,易选8丨如图是一个几何体的三视图,根据图中数据计算这个几何体 的表面积是丄 16冗 127110^IX 4^解析:考査三视图与圆锥计算.根据左视图可知,底面圆半径为2,为侧面扇形半径为6,因此侧面扇形面积为1/7^1x 2x 24x 6=12;^因此,表面积为:4冗十12冗 二16:,易选丄9丨已知圆内接正三角形的面积为巧,则该圆的内接正六边形的边心距是克2 凡1 匕6 0.4解析:如图.设的边长为由正三角形的面积公式得IX 1’ 1俯视阁(第8题阁)因此底面圆面积为4疋;又因由120。

2018年四川省德阳市中考数学试卷

2018年四川省德阳市中考数学试卷

2018年四川省德阳市中考数学试卷一、选择题(本大题共12个小题.每小题3分.共36分)1.(3分)如果把收入100元记作+100元.那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元2.(3分)下列计算或运算中.正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b23.(3分)如图.直线a∥b.c.d是截线且交于点A.若∠1=60°.∠2=100°.则∠A=()A.40°B.50°C.60°D.70°4.(3分)下列计算或运算中.正确的是()A.2=B.﹣=C.6÷2=3D.﹣3= 5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.6120006.(3分)下列说法正确的是()A.“明天降雨的概率为50%”.意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子.骰子停止转动后.6点朝上是必然事件D.一组数据的方差越大.则这组数据的波动也越大7.(3分)受央视《朗读者》节目的启发的影响.某校七年级2班近期准备组织一次朗诵活动.语文老师调查了全班学生平均每天的阅读时间.统计结果如下表所示.则在本次调查中.全班学生平均每天阅读时间的中位数和众数分别是()0.51 1.52每天阅读时间(小时)人数89103A.2.1B.1.1.5C.1.2D.1.18.(3分)如图是一个几何体的三视图.根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π9.(3分)已知圆内接正三角形的面积为.则该圆的内接正六边形的边心距是()A.2B.1C .D .10.(3分)如图.将边长为的正方形绕点B逆时针旋转30°.那么图中阴影部分的面积为()A.3B .C.3﹣D.3﹣11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3.那么适合这个不等式组的整数a、b组成的有序数对(a.b)共有()A.3个B.4个C.5个D.6个12.(3分)如图.四边形AOEF是平行四边形.点B为OE的中点.延长FO至点C.使FO=3OC.连接AB、AC、BC.则在△ABC中S△ABO :S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:2二、填空题(每小题3分.共15分)13.(3分)分解因式:2xy2+4xy+2x= .14.(3分)已知一组数据10.15.10.x.18.20的平均数为15.则这组数据的方差为.15.(3分)如下表.从左到右在每个小格子中都填入一个整数.使得其中任意三个相邻格子中所填整数之和都相等.则第2018个格子的数为.3a b c﹣12……16.(3分)如图.点D为△ABC的AB边上的中点.点E为AD的中点.△ADC为正三角形.给出下列结论.①CB=2CE.②tan∠B=.③∠ECD=∠DCB.④若AC=2.点P是AB上一动点.点P到AC、BC边的距离分别为d1.d2.则d12+d22的最小值是3.其中正确的结论是(填写正确结论的番号).17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时.a 的值为.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.19.(7分)如图.点E、F分别是矩形ABCD的边AD、AB上一点.若AE=DC=2ED.且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H.连结AH.已知ED=2.求AH的值.20.(11分)某网络约车公司近期推出了”520专享”服务计划.即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”.为进一步提升服务品质.公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据.这些里程数据均不超过25(公里).他从中随机抽取了200个数据作为一个样本.整理、统计结果如下表.并绘制了不完整的频数分布直方图(如图).组别单次营运里程“x”(公频数里)第一组0<x≤572第二组5<x≤10a第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据统计表、图提供的信息.解答下面的问题:(1)①表中a= ;②样本中“单次营运里程”不超过15公里的频率为;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力.维护交通秩序.来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队.若从该小分队中任意抽取两名司机在某一路口维护交通秩序.请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.21.(10分)如图.在平面直角坐标系中.直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点.已知点A(m.2).点B(﹣1.﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3.直线y3与双曲线y2交于D、E两点.当y2>y3时.求x的取值范围.22.(10分)为配合“一带一路”国家倡议.某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设.已知A工程公司单独建设完成此项工程需要180天.A工程公司单独施工45天后.B工程公司参与合作.两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制.物流园区管委会决定将此项工程划包成两部分.要求两工程公司同时开工.A工程公司建设其中一部分用了m天完成.B工程公司建设另一部分用了n天完成.其中m.n均为正整数.且m<46.n<92.求A、B 两个工程公司各施工建设了多少天?23.(11分)如图.在直角三角形ABC中.∠ACB=90°.点H是△ABC的内心.AH的延长线和三角形ABC的外接圆O相交于点D.连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F.已知CE=1.圆O 的直径为5.①求证:EF为圆O的切线;②求DF的长.24.(14分)如图.在等腰直角三角形ABC中.∠BAC=90°.点A在x轴上.点B在y轴上.点C(3.1).二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式.并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移.当点B落在抛物线上时.求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P.使△ABP是以AB为直角边的等腰直角三角形?如果存在.请求出所有符合条件的点P的坐标;如果不存在.请说明理由.2018年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题.每小题3分.共36分)1.(3分)如果把收入100元记作+100元.那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元【分析】根据题意得出:收入记作为正.支出记作为负.表示出来即可.【解答】解:如果收入100元记作+100元.那么支出80元记作﹣80元.故选:D.【点评】本题考查了正数和负数.能用正数和负数表示题目中的数是解此题的关键.2.(3分)下列计算或运算中.正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b2【分析】根据同底数幂的除法、积的乘方与幂的乘方、平方差公式、完全平方公式逐一判断可得.【解答】解:A、a6÷a2=a4.此选项错误;B、(﹣2a2)3=﹣8a6.此选项错误;C、(a﹣3)(3+a)=a2﹣9.此选项正确;D、(a﹣b)2=a2﹣2ab+b2.此选项错误;故选:C.【点评】本题主要考查整式的混合运算.解题的关键是掌握同底数幂的除法、积的乘方与幂的乘方、平方差公式、完全平方公式.3.(3分)如图.直线a∥b.c.d是截线且交于点A.若∠1=60°.∠2=100°.则∠A=()A.40°B.50°C.60°D.70°【分析】依据∠2是△ABC的外角.即可得到∠A=∠2﹣∠1=40°.也可以利用平行线的性质以及三角形内角和定理.即可得到∠A的度数.【解答】解法一:如图.∵∠2是△ABC的外角.∴∠A=∠2﹣∠1=100°﹣60°=40°.故选:A.解法二:如图.∵a∥b.∴∠1=∠3=60°.∠2=∠4=100°.∴∠5=180°﹣∠4=80°.∴∠A=180°﹣∠3﹣∠5=180°﹣60°﹣80°=40°.故选:A.【点评】本题主要考查了三角形外角性质以及平行线的性质的运用.解题时注意:三角形的外角等于与它不相邻的两个内角的和.4.(3分)下列计算或运算中.正确的是()A.2=B.﹣=C.6÷2=3D.﹣3=【分析】根据二次根性质和运算法则逐一判断即可得.【解答】解:A、2=2×=.此选项错误;B、﹣=3﹣2=.此选项正确;C、6÷2=3.此选项错误;D、﹣3=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.612000【分析】绝对值小于1的正数也可以利用科学记数法表示.一般形式为a×10﹣n.与较大数的科学记数法不同的是其所使用的是负指数幂.指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:6.12×10﹣3=0.00612.故选:C.【点评】本题考查用科学记数法表示较小的数.一般形式为a×10﹣n.其中1≤|a|<10.n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.(3分)下列说法正确的是()A.“明天降雨的概率为50%”.意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子.骰子停止转动后.6点朝上是必然事件D.一组数据的方差越大.则这组数据的波动也越大【分析】根据概率的意义.事件发生可能性的大小.可得答案.【解答】解:A、明天降雨的概率是50%表示明天有可能降雨.此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式.此选项错误;C、掷一枚质地均匀的骰子.骰子停止转动后.6点朝上是随机事件.此选项错误;D、一组数据的方差越大.则这组数据的波动也越大.此选项正确;故选:D.【点评】本题考查了概率的意义、随机事件.利用概率的意义.事件发生可能性的大小是解题关键.7.(3分)受央视《朗读者》节目的启发的影响.某校七年级2班近期准备组织一次朗诵活动.语文老师调查了全班学生平均每天的阅读时间.统计结果如下表所示.则在本次调查中.全班学生平均每天阅读时间的中位数和众数分别是()0.51 1.52每天阅读时间(小时)人数89103A.2.1B.1.1.5C.1.2D.1.1【分析】根据表格中的数据可知七年级2班有30人.从而可以得到全班学生平均每天阅读时间的中位数和众数.本题得以解决.【解答】解:由表格可得.全班学生平均每天阅读时间的中位数和众数分别是1、1.5.故选:B.【点评】本题考查众数、加权平均数、中位数.解答本题的关键是明确题意.会求一组数据的众数和中位数.8.(3分)如图是一个几何体的三视图.根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【分析】由主视图和左视图确定是柱体.锥体还是球体.再由俯视图确定具体形状.确定圆锥的母线长和底面半径.从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体.由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6.底面半径为2.故表面积=πrl+πr2=π×2×6+π×22=16π.故选:A.【点评】考查学生对三视图掌握程度和灵活运用能力.关键是由主视图和左视图确定是柱体.锥体还是球体.9.(3分)已知圆内接正三角形的面积为.则该圆的内接正六边形的边心距是()A.2B.1C.D.【分析】根据题意可以求得半径.进而解答即可.【解答】解:因为圆内接正三角形的面积为.所以圆的半径为.所以该圆的内接正六边形的边心距×sin60°=.故选:B.【点评】本题考查正多边形和圆.解答本题的关键是明确题意.求出相应的图形的边心距.10.(3分)如图.将边长为的正方形绕点B逆时针旋转30°.那么图中阴影部分的面积为()A.3B.C.3﹣D.3﹣【分析】连接BM.根据旋转的性质和四边形的性质.证明△ABM≌△C′BM.得到∠2=∠3=30°.利用三角函数和三角形面积公式求出△ABM的面积.再利用阴影部分面积=正方形面积﹣2△ABM的面积即可得到答案.【解答】解:连接BM.在△ABM和△C′BM中..∴△ABM≌△C′BM.∠2=∠3==30°.在△ABM中.AM=×tan30°=1.S△ABM==.正方形的面积为:=3.阴影部分的面积为:3﹣2×=3﹣.故选:C.【点评】本题考查旋转的性质和正方形的性质.利用旋转的性质和正方形的性质证明两三角形全等是解决本题的关键.11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3.那么适合这个不等式组的整数a、b组成的有序数对(a.b)共有()A.3个B.4个C.5个D.6个【分析】求出不等式组的解集.根据已知求出1≤2、3<4.求出2<a≤4、9≤b<12.即可得出答案.【解答】解:解不等式2x﹣a≥0.得:x≥.解不等式3x﹣b≤0.得:x≤.∵不等式组的整数解仅有x=2、x=3.则1≤2、3<4.解得:2<a≤4、9≤b<12.则a=3时.b=9、10、11;当a=4时.b=9、10、11;所以适合这个不等式组的整数a、b组成的有序数对(a.b)共有6个.故选:D.【点评】本题考查了解一元一次不等式组.不等式组的整数解.有序实数对的应用.解此题的根据是求出a、b的值.12.(3分)如图.四边形AOEF是平行四边形.点B为OE的中点.延长FO至点C.使FO=3OC.连接AB、AC、BC.则在△ABC中S△ABO :S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:2【分析】连接BF.设平行四边形AFEO的面积为4m.由FO:OC=3:1.BE=OB.AF∥OE可得S△OBF =S△AOB=m.S△OBC=m.S△AOC=.由此即可解决问题;【解答】解:连接BF.设平行四边形AFEO的面积为4m.∵FO:OC=3:1.BE=OB.AF∥OE∴S△OBF =S△AOB=m.S△OBC=m.S△AOC=.∴S△AOB :S△AOC:S△BOC=m::m=3:2:1故选:B.【点评】本题主要考查了平行四边形的性质.等高模型等知识.解题的关键是学会利用参数解决问题.属于中考常考题型.二、填空题(每小题3分.共15分)13.(3分)分解因式:2xy2+4xy+2x= 2x(y+1)2 .【分析】原式提取公因式.再利用完全平方公式分解即可.【解答】解:原式=2x(y2+2y+1)=2x(y+1)2.故答案为:2x(y+1)2【点评】此题考查了提公因式法与公式法的综合运用.熟练掌握因式分解的方法是解本题的关键.14.(3分)已知一组数据10.15.10.x.18.20的平均数为15.则这组数据的方差为.【分析】先根据平均数为15列出关于x的方程.解之求得x即可知完整的数据.再根据方差公式计算可得.【解答】解:∵数据10.15.10.x.18.20的平均数为15.∴=15.解得:x=17.则这组数据为10.15.10.17.18.20.∴这组数据的方差是:[2×(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]=.故答案为:.【点评】本题主要考查算术平均数、方差.解题的关键是熟练掌握算术平均数的定义与方差的计算公式.15.(3分)如下表.从左到右在每个小格子中都填入一个整数.使得其中任意三个相邻格子中所填整数之和都相等.则第2018个格子的数为﹣1 .3a b c﹣12……【分析】根据三个相邻格子的整数的和相等列式求出a、c的值.再根据第9个数是3可得b=2.然后找出格子中的数每3个为一个循环组依次循环.再用2018除以3.根据余数的情况确定与第几个数相同即可得解.【解答】解:∵任意三个相邻格子中所填整数之和都相等.∴a+b+c=b+c+(﹣1).3+(﹣1)+b=﹣1+b+c.∴a=﹣1.c=3.∴数据从左到右依次为3、﹣1、b、3、﹣1、b.∵第9个数与第3个数相同.即b=2.∴每3个数“3、﹣1、2”为一个循环组依次循环.∵2018÷3=672…2.∴第2018个格子中的整数与第2个格子中的数相同.为﹣1.故答案为:﹣1.【点评】此题考查数字的变化规律以及有理数的加法.仔细观察排列规律求出a、b、c的值.从而得到其规律是解题的关键.16.(3分)如图.点D为△ABC的AB边上的中点.点E为AD的中点.△ADC为正三角形.给出下列结论.①CB=2CE.②tan∠B=.③∠ECD=∠DCB.④若AC=2.点P是AB上一动点.点P到AC、BC边的距离分别为d1.d2.则d12+d22的最小值是3.其中正确的结论是①③④(填写正确结论的番号).【分析】由题意可得△BCE是含有30°的直角三角形.根据含有30°的直角三角形的性质可判断①②③.易证四边形PMCN是矩形.可得d12+d22=MN2=CP 2.根据垂线段最短.可得CP的值即可求d12+d22的最小值.即可判断④.【解答】解:∵D是AB中点∴AD=BD∵△ACD是等边三角形.E是AD中点∴AD=CD.∠ADC=60°=∠ACD.CE⊥AB.∠DCE=30°∴CD=BD∴∠B=∠DCB=30°.且∠DCE=30°.CE⊥AB∴∠ECD=∠DCB.BC=2CE.tan∠B=故①③正确.②错误∵∠DCB=30°.∠ACD=60°∴∠ACB=90°若AC=2.点P是AB上一动点.点P到AC、BC边的距离分别为d1.d2.∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值.d12+d22的值最小∴根据垂线段最短.则当CP⊥AB时.d12+d22的值最小此时:∠C AB=60°.AC=2.CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④【点评】本题考查了解直角三角形.等边三角形的性质和判定.利用垂线段最短求d 12+d22的最小值是本题的关键.17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时.a 的值为 2 .【分析】首先在坐标系中画出已知函数y=的图象.利用数形结合的方法即可找到使y=a成立的x值恰好有3个的a值.【解答】解:函数y=的图象如图:根据图象知道当y=2时.对应成立的x值恰好有三个.∴a=2.故答案:2.【点评】此题主要考查了利用二次函数的图象解决交点问题.解题的关键是把解方程的问题转换为根据函数图象找交点的问题.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.【分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算.【解答】解:原式=3+8﹣1﹣4×+2=10﹣2+2=10.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式.然后进行二次根式的乘除运算.再合并即可.在二次根式的混合运算中.如能结合题目特点.灵活运用二次根式的性质.选择恰当的解题途径.往往能事半功倍.19.(7分)如图.点E、F分别是矩形ABCD的边AD、AB上一点.若AE=DC=2ED.且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H.连结AH.已知ED=2.求AH的值.【分析】(1)根据全等三角形的判定.证得△AEF≌△DCE.再根据全等三角形的性质.证得ED=AF.进而得证;(2)根据全等三角形的判定方法.证明△AEF≌△BHF.进而求得HB=AB=AE=4.再利用勾股定理求出AH的值即可.【解答】(1)证明:∵EF⊥EC.∴∠CEF=90°.∴∠AEF+∠DEC=90°.∵四边形ABCD是矩形.∴∠AEF+∠AFE=90°.∠DEC+∠DCE=90°.∴∠AEF=∠DCE.∠AFE=∠DEC.∵AE=DC.∴△AEF≌△DCE.∴ED=AF.∵AE=DC=AB=2DE.∴AB=2AF.∴F为AB的中点;(2)解:由(1)知AF=FB.且AE∥BH.∴∠FBH=∠FAE=90°.∠AEF=∠FHB.∴△AEF≌△BHF.∴HB=AE.∵ED=2.且AE=2ED.∴AE=4.∴HB=AB=AE=4.∴AH2=AB2+BH2=16+16=32.∴AH=.【点评】本题主要考查矩形的性质.全等三角形的性质和判定.勾股定理的综合应用.解决此类问题的关键是能灵活运用相关的性质找出相等的线段.20.(11分)某网络约车公司近期推出了”520专享”服务计划.即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”.为进一步提升服务品质.公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据.这些里程数据均不超过25(公里).他从中随机抽取了200个数据作为一个样本.整理、统计结果如下表.并绘制了不完整的频数分布直方图(如图).频数组别单次营运里程“x”(公里)第一组0<x≤572第二组5<x≤10a第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据统计表、图提供的信息.解答下面的问题:(1)①表中a= 48 ;②样本中“单次营运里程”不超过15公里的频率为0.73 ;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力.维护交通秩序.来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队.若从该小分队中任意抽取两名司机在某一路口维护交通秩序.请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【分析】(1)①由频数分布直方图可直接得出a的值;②用第一、二、三组的频数和除以总数量可得;③根据分布表中数据即可得;(2)用总数量乘以样本中“单次营运里程”超过20公里的次数所占比例即可得;(3)画树状图展示所有12种等可能的结果数.找出抽到一男一女的结果数.然后根据概率公式求解.【解答】解:(1)①由条形图知a=48;②样本中“单次营运里程”不超过15公里的频率为=0.73;③补全图形如下:故答案为:①48;②0.73;(2)估计该公司这5000个“单次营运里程”超过20公里的次数为5000×=750次;(3)画树状图为:共有12种等可能的结果数.其中恰好抽到一男一女的结果数为6.∴恰好抽到“一男一女”的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n.再从中选出符合事件A或B的结果数目m.然后利用概率公式求事件A或B的概率.也考查了统计图和统计表.要熟练从统计图表中得出解题所需数据.21.(10分)如图.在平面直角坐标系中.直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点.已知点A(m.2).点B(﹣1.﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3.直线y3与双曲线y2交于D、E两点.当y2>y3时.求x的取值范围.【分析】(1)把点B 代入双曲线求出a的值.即可得到双曲线的解析式;把点A 代入双曲线求出m的值.确定A点坐标.再利用待定系数法求出直线的解析式.即可解答;(2)先求出y3的解析式.再解方程组求出点D点E的坐标.即可解答.【解答】解:(1)∵点B(﹣1.﹣4)在双曲线y2=(a≠0)上.∴a=(﹣1)×(﹣4)=4.∴双曲线的解析式为:.∵点A(m.2)在双曲线上.∴2m=4.∴m=2.∴点A的坐标为:(2.2)∵点A(m.2).点B(﹣1.﹣4)在直线y1=kx+b(k≠0)上.∴解得:∴直线的解析式为:y1=2x﹣2.(2)∵把直线y1沿x轴负方向平移2个单位后得到直线y3.∴y2=2(x+2)﹣2=2x+2.解方程组得:或.∴点D(1.4).点E(﹣2.﹣2).∴由函数图象可得:当y2>y3时.x的取值范围为:x<﹣2或0<x<1.【点评】本题考查了反比例函数与一次函数的交点.解决本题的关键是求出直线和双曲线的解析式.22.(10分)为配合“一带一路”国家倡议.某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设.已知A工程公司单独建设完成此项工程需要180天.A工程公司单独施工45天后.B工程公司参与合作.两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制.物流园区管委会决定将此项工程划包成两部分.要求两工程公司同时开工.A工程公司建设其中一部分用了m天完成.B工程公司建设另一部分用了n天完成.其中m.n均为正整数.且m<46.n<92.求A、B 两个工程公司各施工建设了多少天?【分析】(1)设B工程公司单独完成需要x天.根据题意列出关于x的分式方程.求出分式方程的解得到x的值.经检验即可得到结果;(2)根据题意列出关于m与n的方程.由m与n的范围.确定出正整数m与n的值.即可得到结果.【解答】解:(1)设B工程公司单独完成需要x天.根据题意得:45×+54(+)=1.解得:x=120.经检验x=120是分式方程的解.且符合题意.答:B工程公司单独完成需要120天;(2)根据题意得:m×+n×=1.整理得:n=120﹣m.∵m<46.n<92.∴120﹣m<92.解得42<m<46.∵m为正整数.∴m=43.44.45.又∵120﹣m为正整数.∴m=45.n=90.答:A、B两个工程公司各施工建设了45天和90天.【点评】此题考查了分式方程的应用.以及二元一次方程的应用.找出题中的等量关系是解本题的关键.23.(11分)如图.在直角三角形ABC中.∠ACB=90°.点H是△ABC的内心.AH的延长线和三角形ABC的外接圆O相交于点D.连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F.已知CE=1.圆O 的直径为5.①求证:EF为圆O的切线;②求DF的长.【分析】(1)先判断出∠DAC=∠DAB.∠ABH=∠CBH.进而判断出∠DHB=∠DBH.即可得出结论;(2))①先判断出OD∥AC.进而判断出OD⊥EF.即可得出结论;②先判断出△CDE≌△BDG.得出GB=CE=1.再判断出△DBG∽△ABD.求出DB2=5.即DB=.DG=2.进而求出AE=AG=4.最后判断出△OFD∽△AFE即可得出结论.【解答】解:(1)证明:连接HB.∵点H是△ABC的内心.∴∠DAC=∠DAB.∠ABH=∠CBH.∵∠DBC=∠DAC.∴∠DHB=∠DAB+∠ABH=∠DAC+∠CBH.∵∠DBH=∠DBC+∠CBH.∴∠DHB=∠DBH.∴DH=DB;(2)①连接OD.∵∠DOB=2∠DAB=∠BAC∴OD∥AC.∵AC⊥BC.BC∥EF.∴AC⊥EF.∴OD⊥EF.∵点D在⊙O上.∴EF是⊙O的切线;②过点D作DG⊥AB于G.∵∠EAD=∠DAB.∴DE=DG.∵DC=DB.∠CED=∠DGB=90°.∴△CDE≌△BDG.∴GB=CE=1.在Rt△ADB中.DG⊥AB.∴∠DAB=∠BDG.∵∠DBG=∠ABD.∴△DBG∽△ABD.∴.∴DB2=AB•BG=5×1=5.∴DB=.DG=2.∴ED=2.∵H是内心.∴AE=AG=4.∵DO∥AE.∴△OFD∽△AFE.∴.∴.∴DF=.【点评】此题是圆的综合题.主要考查了三角形内心.圆的有关性质.相似三角形的判定和性质.切线的判定.平行线的性质和判定.求出DB是解本题的关键.24.(14分)如图.在等腰直角三角形ABC中.∠BAC=90°.点A在x轴上.点B在y轴上.点C(3.1).二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式.并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移.当点B落在抛物线上时.求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P.使△ABP是以AB为直角边的等腰直角三角形?如果存在.请求出所有符合条件的点P的坐标;如果不存在.请说明理由.【分析】(1)将点C的坐标代入抛物线的解析式可求得b的值.从而可得到抛物线的解析式.然后利用配方法可将抛物线的解析式变形为y=a(x﹣h)2+k的形式;(2)作CK⊥x轴.垂足为K.首先证明△BAO≌△ACK.从而可得到OA=CK.OB=AK.于是可得到点A、B的坐标.然后依据勾股定理求得AB的长.然后求得点D的坐标.从而可求得三角形平移的距离.最后.依据△ABC扫过区域的面积=S四边形ABDE +S△DEH求解即可;(3)当∠ABP=90°时.过点P作PG⊥y轴.垂足为G.先证明△BPG≌△ABO.从而可得到点P的坐标.然后再判断点P是否在抛物线的解析式即可.当∠PAB=90°.过点P作PF⊥x轴.垂足为F.同理可得到点P的坐标.然后再判断点P是否在抛物线的解析式即可.【解答】解:(1)∵点C(3.1)在二次函数的图象上.∴x2+bx﹣=1.解得:b=﹣.∴二次函数的解析式为y=x2﹣x﹣y=x2﹣x﹣=(x2﹣x+﹣)﹣=(x﹣)2﹣(2)作CK⊥x轴.垂足为K.∵△ABC为等腰直角三角形.∴AB=AC.又∵∠BAC=90°.∴∠BAO+∠CAK=90°.又∵∠CAK+∠ACK=90°.∴∠BAO=∠ACK.在△BAO和△ACK中.∠BOA=∠AKC.∠BAO=∠ACK.AB=AC.∴△BAO≌△ACK.∴OA=CK=1.OB=AK=2.∴A(1.0).B(0.2).∴当点B平移到点D时.D(m.2).则2=m2﹣m﹣.解得m=﹣3(舍去)或m=.∴AB==.∴△ABC扫过区域的面积=S四边形ABDE +S△DEH=×2+××=9.5(3)当∠ABP=90°时.过点P作PG⊥y轴.垂足为G.∵△APB为等腰直角三角形.∴PB=AB.∠PBA=90°.∴∠PBG+∠BAO=90°.又∵∠PBG+∠BPG=90°.∴∠BAO=∠BPG.在△BPG和△ABO中.∠BOA=∠PGB.∠BAO=∠BPG.AB=PB.∴△BPG≌△ABO.∴PG=OB=2.AO=BG=1.∴P(﹣2.1).当x=﹣2时.y≠1.∴点P(﹣2.1)不在抛物线上.当∠PAB=90°.过点P作PF⊥x轴.垂足为F.同理可知:△PAF≌△ABO.∴FP=OA=1.AF=OB=2.∴P(﹣1.﹣1).当x=﹣1时.y=﹣1.∴点P(﹣1.﹣1)在抛物线上.【点评】本题主要考查的是二次函数的综合应用.解答本题主要应用了待定系数法求二次函数的解析式、平移的性质、全等三角形的性质和判定.作辅助线构造全等三角形是解答本题的关键.。

2018年四川德阳市中考数学试卷(含解析)

2018年四川德阳市中考数学试卷(含解析)

2018年四川省德阳市初中毕业、升学考试数学(满分120分,考试时间120分钟)第Ⅰ卷一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018四川省德阳市,题号1,分值:3)如果把收入记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.-80元【答案】D.【解析】由题意可知收入记作“+”,那么支出记作“-”,则支出80元记作-80元.【知识点】实数2.(2018四川省德阳市,题号2,分值:3)下列计算或运算,正确的是()A.a6÷a2=a3B.(-2a2)3=-8a3C.(a-3)(3+a)=a2-9D.(a-b)2=a2-b2【答案】C.【解析】因为a6÷a2=a6-2=a4,所以A错误;因为(-2a2)3=-8a2×3=-8a6,所以B错误;因为(a-3)(3+a)=a2-9,所以C正确;因为(a-b)2=a2-2ab+b2,所以D错误.【知识点】整式的运算3.(2018四川省德阳市,题号3,分值:3)如图,直线a∥b,c,d是截线且交于带你A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°【答案】A.【解析】∵a∥b,∴∠1=∠3=60°,∠2=∠4=100°.∵∠4+∠5=180°,∴∠5=80°.∴∠A=180°-∠3-∠5=40°.【知识点】平行线的性质4.(2018四川省德阳市,题号4,分值:3)下列计算或运算,正确的是()A.2√a2=√a B.√18−√8=√2 C.6√15÷2√3=3√45 D.-3√3=√27【答案】B.【解析】因为2√a2=√a√2=√2a,所以A错误;因为√18−√8=3√2−2√2=√2,所以B错误;因为6√15÷2√3=√152√3=3√5,所以C正确;因为-3√3=−√9×3=−√27,所以D错误.【知识点】二次根式的加减和化简 5.(2018四川省德阳市,题号5,分值:3)把实数6.12×10-3用小数表示为() A.0.0612 B.6120 C.0.00612 D.612000 【答案】C.【解析】6.12×10-3=0.00612. 【知识点】科学记数法 6.(2018四川省德阳市,题号6,分值:3)下列说法正确的是() A.“明天将于的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹生产的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动越大 【答案】D.【解析】因为“明天将于的概率为50%”,说明明天可能下雨也可能不下雨,并不意味着明天一定有半天都在降雨,所以A 错误;由于全国快递包裹生产的包装垃圾数量很大,可采用抽样调查方式,所以B 错误; 掷一枚质地均匀的骰子,骰子停止转动,六个面均可能朝上朝上,所以C 错误; 一组数据的方差越大,则这组数据越不稳定,则这组数据的波动越大,所以D 正确. 【知识点】事件,方差 7.(2018四川省德阳市,题号7,分值:3)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,1 【答案】D.【解析】将这组数据从小到大排列0.5小时的有8人,1小时的有19人,1.5小时的有10人,2小时的有3人,可知中位数为第20和第21个数的平均数,第20个数为1,第21个数为1,所以中位数为1,则出现最多的是19人的1小时,则众数为1,所以中位数为1,众数为1. 【知识点】中位数,众数 8.(2018四川省德阳市,题号8,分值:3)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【答案】A.【解析】由左视图可知底面半径为2,则底面圆的面积为4π,再根据左视图可知扇形半径为6,则扇形的面积为12rl=12×6×2π×2=12π,所以,表面积为4π+12π=16π.【知识点】几何体的三视图,扇形的面积9.(2018四川省德阳市,题号9,分值:3)已知圆内接正三角形的面积为√3,则该圆的内接正六边形的边心距是()A.2B.1C.√3D.√32第9题答图【答案】B.【解析】如图,设△ABC 的边长为a ,由正三角形的面积公式得S △ABC =√34a 2, ∴=√34a 2=√3,解得a=2或-2(舍), ∴BC=2.∵∠BAC=60°,BO=CO , ∴∠BOC=120°, 则∠BCO=30°. ∵OH ⊥BC , ∴BH=12BC=1,在Rt △BOH 中,BO=BH ÷cos30°=2√33, 所以圆的半径r=2√33.则OF=2√33. 如图,正六边形内接于圆,且半径为2√33,可知∠EOF=60°, 在△EOF 中,OE=OF ,OD ⊥EF , ∴∠EOD=30°.在Rt △DOE 中,OD=OF ·cos30°=2√33×√32=1. 所以边心距为1.【知识点】正多边形和圆10.(2018四川省德阳市,题号10,分值:3)如图,将边长为√3的正方形绕点B 逆时针旋转30°,那么图中阴影部分的面积为() A.3 B.√3 C.3-√3 D.3-√32【答案】C.【解析】由旋转可知∠1=∠4=30°, ∴∠2+∠3=60°.∵∠BAM=∠BC ′M=90°,且AB=BC ′, ∴∠2=∠3=30°.在Rt △ABM 中,AB=√3,∠2=30°, 则AM=tan30°×AB=1. ∴S △ABM =S △BMC ′=√32,∴S 阴影=S 正方形-(S △ABM + S △BMC ′)=3-√3.【知识点】正方形的性质,旋转的性质,特殊角的三角函数值11.(2018四川省德阳市,题号11,分值:3)如果关于x 的不等式组{2x −a ≥0,3x −b ≤0.的整数解仅有x=2,x=3,那么适合这个不等式组的整数a ,b 组成的有序数对(a ,b )共有() A.3个 B.4个 C.5个 D.6个 【答案】D.【解析】{2x −a ≥0,3x −b ≤0.解得a2≤x ≤b3,又∵整数解有x=2,x=3, ∴{1<a 2≤2,3≤b3<4. 解得{2<a ≤4,9≤b <12.又∵a ,b 为整数,∴a=3或4,b=9或10或11, ∴(a ,b )共有(3,9),(3,10),(3,11),(4,9),(4,10),(4,11),有6种. 【知识点】不等式组的整数解 12.(2018四川省德阳市,题号12,分值:3)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使FO=3OC ,连接AB ,AC ,BC ,则在△ABC 中,S △ABO :S △AOC :S △BOC ( ) A.6:2:1 B.3:2:1 C.6:3:2 D.4:3:2【答案】B.【解析】∵四边形AOEF是平行四边形,∴AF∥EO,∴∠AFM=∠BOM,∠FAM=∠MBO,∴△AFM∽△BOM,∴OMFM =BMAM=BOAF=12.设S△BOM=S,则S△AOM=2S.∵FO=3OC,OM=12FM,∴OM=OC,∴S△AOC=S△AOM=2S,S△BOC=S△BOM=S,∴S△ABO:S△AOC:S△BOC=3:2:1.【知识点】相似三角形的性质和判定,平行四边形的性质二、填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.(2018四川省德阳市,题号13,分值:3)分解因式:2xy2+4xy+2x=____.【答案】2x(y+1)2.【解析】2xy2+4xy+2x=2x(y2+2y+1)=2x(y+1)2.【知识点】因式分解14.(2018四川省德阳市,题号14,分值:3)已知乙组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为____.【答案】443.【解析】解:10+15+10+x+18+206=15,∴x=17.则S2=16×[(10−15)2+(15−15)2+(10−15)2+(17−15)2+(18−15)2+(20−15)2],=16×(25+0+25+4+9+25),=443.【知识点】平均数,方差15.(2018四川省德阳市,题号15,分值:3)如下表,从左到右造每个格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为____.【答案】-1.【解析】由题意可知3+a+b=a+b+c,可得c=3,同理可得a=-1,b=2.格子中的数每3个数字形成一个循环,易得2018÷3=672……2,得第2018个格子的数为-1.【知识点】探究规律16.(2018四川省德阳市,题号16,分值:3)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,为正三角形,给出下列结论,①CB=2CE,②tan∠B=34点P到AC,BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是____(填写正确结论的番号).【答案】①③④.【解析】①由题意得,AE=DE,AD=BD=CD.∵△ACD是正三角形,∴∠CDA=60°,CE⊥AD,∴∠B=∠DCB=30°.在Rt△BCE中,∠B=30°,CB=2CE.②∵∠B=30°,.∴tan∠B=√33③在正△ACD中,CE是△ACD的中线,∠ACD=30°,∴∠ECD=12∴∠ECD=∠DCB.④如图,PM=d1,PN=d2.在Rt△MPN中,d12+d22=MN2,∵∠ACB=∠CMP=∠CNP=90°,∴四边形MPNC为矩形,∴MN=CP.要使d12+d22最小,只需MN最小,即PC最小,当CP⊥AB时,即P与E重合时,d12+d22最小,,在Rt△ACE中,cos∠ACE=CEAC∵AC=2,∠ACE=30°,∴CE=AC·cos30°=√3,则CE2=3,∴d12+d22的最小值为3.所以正确的有①③④.【知识点】等边三角形的性质,特殊角的三角函数,矩形的判定17.(2018四川省德阳市,题号17,分值:3)已知函数y={(x −2)2−2,x ≤4,(x −6)2−2,x >4.使y=a 成立的x 的值恰好只有3个时,a 的值为____. 【答案】2. 【解析】画出函数解析式的图像,要使y=a 成立的x 的值恰好只有3个,即函数图像与y=2这条直线有3个交点,即a=2.第17题答图【知识点】二次函数的应用三、解答题(本大题共9小题,满分69分,解答应写出文字说明、证明过程或演算步骤) 18.(2018四川省德阳市,题号18,分值:6)计算:√(−3)2+(12)−3−(3√2)0−4cos30°√3.【思路分析】先根据√(−3)2=3,(12)−3=8,(3√2)0=1,cos30°=√32,再代入计算即可.【解题过程】原式=3+8-1-4×√32+2√3,………………………………………………….…..2分=3+8-1-2√3+2√3,………………….……………………………………………………….…4分 =10……………………………………………………………………………………………….6分 【知识点】实数的运算 19.(2018四川省德阳市,题号19,分值:7)如图点E ,F 分别是矩形ABCD 的边AD ,AB 上一点,若AE=DC=2ED ,且EF ⊥EC.(1)求证:点F 为AB 的中点.(2)延长EF 与CB 的延长线相交于点H ,连接AH ,已知ED=2,求AH 的值.第19题图【思路分析】对于(1),先根据矩形的性质证明△AEF ≌△DCE ,可得ED=AF ,进而根据A E=DC=2ED ,可得答案.对于(2),先说明△AEF≌△BHF,可知AE,进而得出AB=BH,再根据AH2=AB2+BH2得出答案.【解题过程】证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°.∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC.∵AE=DC,∴△AEF≌△DCE,………………………………………………………………………………2分∴ED=AF.∵AE=DC=AB=2DE,∴AB=2AF,∴F是AB的中点…………………………………………………………………………………3分(2)解:由(1)得AF=FB,且AE∥BH,∴∠FBH=∠FAE=90°,∠AEF=∠FHB,∴△AEF≌△BHF,………………………………………………………………………………4分∴HB=AE.∵ED=2,且AE=2ED,∴AE=4,…………………………………………………………………………………………5分∴HB=AB=AE=4,∴AH2=AB2+BH2=16+16=32,……………………………………………………………………6分∴AH=4√2………………………………………………………………………………………7分【知识点】矩形的性质,全等三角形的性质和判定,勾股定理20.(2018四川省德阳市,题号20,分值:11)某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务,2分钟响应,0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理,统计结果如下表,并绘制了不完整的频数分布直方图.根据统计表,图提供的信息,解答下面的问题:(1)①表中a=____;②样本中“单次营运历程”不超过15公里的频数为____;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小组中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【思路分析】对于(1),根据总数-除第二组以外各组的频数,即可求出a值,然后求出不超过15公里的频数,进而求出频率,再补全频数分布直方图.对于(2),用样本估计总体的思想解答,即求出超过20公里的频率,再用总数×频率即可.对于(3),画出树状图得出所有可能出现的结果,并得出符合条件的结果,进而根据概率公式得出答案.【解题过程】(1)200-72-26-24-30=48,则a=48;……………………………………………1分由统计表可知不超过15公里的频数为72+48+26=146,所以不超过15公里的频数为146÷200=0.73……………………………………………………………………………………3分 补全频数分布直方图如上……………………………………………………………………5分 (2)这5000个“单次营运里程”超过20公里的次数为30200×5000=750(次)…………7分(3)画出树状图如下:…………………..9分一共有12种可能出现的结果,出现“一男一女”的有6种, ∴P (抽到的恰好是“一男一女”)=612=12……………………………………………………11分【知识点】频数分布直方图,树状图求概率21.(2018四川省德阳市,题号21,分值:10)如图,在平面直角坐标系中,直线y 1=kx+b (k ≠0)与双曲线y 2=ax(a ≠0)交于A ,B 两点,已知点A (m ,2),点B (-1,-4). (1)求直线和双曲线的解析式.(2)把直线y 1沿x 轴负方向平移2个单位后得到直线y 3,直线与双曲线y 2交于D ,E 两点,当y 2>y 3时,求x的取值范围.【思路分析】对于(1),将点B 的坐标代入关系式,求出a ,即可得出关系式,再将点A ,B 的坐标代入y 1=kx+b ,求出k ,b 即可得出关系式. 对于(2),先根据平移求出y 3的关系式,再联立得到方程组求出点D ,E ,再根据反比例函数图像在一次函数图像的上方得出取值范围即可. 【解题过程】(1)∵B (-1,-4),点B 在双曲线上,即a=(-1)×(-4)=4,∵点A 在双曲线上,即2m=4,即m=2,A (2,2)………………………………………….1分 ∵点A (2,2),B (-1,-4)在直线y 1=kx+b 上, ∴{2=2k +b −4=−k +b..............................................................2分 解得{k =2,b =2..................................................................3分∴直线和双曲线的解析式分别为y 1=2x-2和y 2=4x……………………………………………4分(2)∵直线y 3是直线y 1沿x 轴负方向平移2个单位得到,∴y 3=2(x+2)-2=2x+2,…………………………………………………………………………6分解方程组{y =4x ,y =2x +2.得{x =1,y =4.或{x =−2,y =−2...............................................................................8分∴点D (1,4),E (-2,-2),………………………………………………………………..9分 ∴当y 2>y 3时,x 的取值范围是x <-2或0<x <1…………………………………………10分 【知识点】一次函数和反比例函数的综合应用 22.(2018四川省德阳市,题号22,分值:10)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区启动了2期扩建工程.一项地基基础加固处理工程由A ,B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天.A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完全了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A ,B 两个工程公司各施工建设了多少天? 【思路分析】对于(1),设B 工程公司单独建设完成这项工程需要x 天,进而表示出A ,B 两个公司的工作效率,然后根据A 公司施工45的工作量+A ,B 公司合作54天的工作量=1,列出方程,求出解即可. 对于(2),由(1)可知A ,B 两公司的工作效率,再根据A 公司施工m 天的工作量+B 公司施工n 天的工作量=1,可用含m 的代数式表示n ,进而得出关于m 的不等式组,求出m 的解集,再根据m ,n 都是正整数,求出m ,n 的值即可. 【解题过程】(1)设B 工程公司单独建设完成这项工程需要x 天,由题意得 45×1180+54×(1180+1x)=1,……………………………………………………………………..2分解得x=120,经检验,x=120是方程的解且符合题意.答:B 工程单独建设需要120天完成…………………………………………………………4分 (2)∵A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了m 天完成. ∴m ×1180+n ×1120=1,……………………………………………………………………………5分即n=120-23m ……………………………………………………………………………………..6分 又∵m <46,n <92,∴{m <46,120−23m <92............................................................8分 解得42<m <46. ∵m 为正整数, ∴m=43,44,45,而n=120-23m 也是正整数,……………………………………………………………………..9分∴m=45,n=90.答:A 工程公司建设了45天,B 工程公司建设了90天………………………………….10分 【知识点】分式方程的应用,一元一次不等式组的应用 23.(2018四川省德阳市,题号24,分值:11)如图,在直角三角形ABC 中,∠ACB=90°,点H 是△ABC 的内心,AH 的延长线和三角形ABC 的外接圆O 相交于点D ,连结DB. (1)求证:DH=DB.(2)过点D作BC的平行线交AC,AB的延长线分别于点E,F,已知CE=1,圆O的直径为5,①求证:EF为圆O的切线;②求DF的长.【思路分析】对于(1),连接HB,根据三角形内心的性质可知∠DAC=∠DAB,∠ABH=∠CBH,再根据等弧所对的圆周角相等,得∠DBC=∠DAC,然后根据三角形的外角的性质可知∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,及∠DBH=∠DBC+∠CBH,进而根据等角对等边得出答案.(2),对于①,连接OD,根据同弧所对的圆周角等于其所对的圆心角的一半,得∠DOB=∠BAC,可知OD∥AC,再根据BC∥EF,可知AC⊥EF,进而得出OD⊥EF,可得答案.对于②,先作DG⊥AB,再根据“HL”证明△CDE≌△BDG,可得GB=1,然后根据两角分别相等的两个三角形相似,得DB2=AB·BG,即可求出DB,DG,ED,再说明△OFD∽△AFE,根据相似三角形的对应边成比例得出答案. 【解题过程】(1)证明:连接HB,∵点H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,………………………………………………………………1分而∠DBC=∠DAC,∠DHB=∠DAB+∠ABH=∠DAC+∠CBH.又∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,………………………………………………………………………………2分∴DH=DB…………………………………………………………………………………………3分(2)①连接OD,∵∠DOB=2∠DAB=∠BAC,∴OD∥AC………………………………………………………………………………………4分∵AC⊥BC,BC∥EF,∴AC⊥EF,……………………………………………………………………………………5分∴OD⊥EF,∴EF是圆O的切线……………………………………………………………………………6分②如图,过点D作DG⊥AB于点G,∵∠EAD=∠DAB,∴DE=DG,DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1……………………………………………………………………………………7分在Rt△ADB中,DG⊥AB,∴∠ADB=∠DGB,∠DBG=∠ABD,∴△DBG∽△ABD,…………………………………………………………………………8分∴DB2=AB·BG=5×1=5,∴DB=√5,DG=2,∴ED=2…………………………………………………………………………………………9分∵H为内心,AE=AG=4,而DO∥AE,∴△OFD∽△AFE,………………………………………………………………………………10分∴DF DF+DE=OD AE ,即DF DF+2=524, ∴DF=103…………………………………………………………………………………………11分【知识点】三角形内心的性质,圆周角定理,全等三角形的性质和判定,相似三角形的性质和判定24.(2018四川省德阳市,题号24,分值:14)如图,在等腰直角三角形ABC 中,∠BAC=90°,点A 在x 轴上,点B 在y 轴上,点C (3,1),二次函数y=13x 2+bx-32的图像经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x-h)2+k 的形式;(2)把△ABC 沿x 轴正方向平移,当点B 落在抛物线上时,求△ABC 扫过区域的面积;(3)在抛物线上是否存在异于点C 的点P ,使△ABP 是以AB 为直角边的等腰三角形?如果存在,请求出所有符合条件的点P 的坐标;如果不存在,请说明理由.【思路分析】对于(1),将点C 代入关系式求出b 值,即可得出关系式,并写成顶点式.对于(2),作CK ⊥x 轴,再根据“AAS ”得出△ACK ≌△BAO ,并结合全等三角形对应边相等,得出点B 的坐标,再设点D (m ,2),求出m 的值,进而得出AB ,AC ,再根据△ABC 扫过的面积=S 四边形AEDB +S △ABC 得出答案. 对于(3),当∠BAP=90°,可知△ACK ≌△APF ,可知点P 的坐标,再代入关系式验证即可.当∠ABP=90°时,求出点P 的坐标,再代入验证.【解题过程】(1)∵点C (3,1)在二次函数的图象上,∴1=13×32+3b-32,解得b=-16,……………………………………………………………………………………..1分 ∴二次函数的解析式为y=13x 2--16x--32,………………………………………………………2分 化成y=a(x-h)2+k 的形式为y=-13(x--14)2--7348;………………………………………………..3分 (2)作CK ⊥x 轴,∵∠ABO+∠BAO=90°,∠BAO+∠CAK=90°,∴∠ABO=∠CAK …………………………………………………………………………………4分∵AB=AC ,∠AOB=∠AKC=90°,∴△ACK ≌△BAO ,………………………………………………………………………………5分∴OA=CK=1,AK=OB=2,即B (0,2),…………………………………………………………………………………6分∴当点B 平移到抛物线上的点D 时,D (m ,2),由2=-13m 2--16m--32, 解得m 1=-3,m 2=-72…………………………………………………………………………….8分 而AB=AC=2+1=√5,∴△ABC 扫过的面积=S 四边形AEDB +S △ABC =-72×2+-12×√5×√5=9.5………………………………10分 (3)①当∠BAP=90°,由△ACK ≌△APF ,此时,点P (-1,-1),当x=-1时,y=-13×(-1)2--16×(-1)- -32=-1,点P (-1,-1)在抛物线上;②当∠ABP=90°时,同理可得点P (-2,1),………………………………………………12分 当x=-2时,y=13×(-2)2-16×(-2)-32≠1,此时点P(-2,1)不在抛物线上.综上所述,符合条件的点P 有一个,P (-1,-1)…………………………………………14分【知识点】二次函数的应用,全等三角形的性质和判定。

2018年四川省德阳市中考数学试卷

2018年四川省德阳市中考数学试卷

四川省德阳市2018年中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(3分)(2018•德阳)实数﹣的相反数是()A.﹣2 B.C.2D.﹣|﹣0.5|考点:相反数.分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣的相反数是,故选:B.点评:此题主要考查了相反数,正确把握相反数的概念即可.2.(3分)(2018•德阳)如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是()A.84°B.106°C.96°D.104°考点:平行线的性质.分析:根据两直线平行,内错角相等可得∠ABC=∠1,再根据三角形的内角和定理列式计算即可得解.解答:解:∵a∥b,∴∠ABC=∠1=46°,∵∠A=38°,∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣38°﹣46°=96°.故选C.点评:本题考查了平行线的性质,三角形的内角和定理,熟记性质是解题的关键.3.(3分)(2018•德阳)下列运算正确的是()A.a2+a=2a4B.a3•a2=a6C.2a6÷a2=2a3D.(a2)4=a8考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式不能合并,错误;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用单项式除以单项式法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,错误;B、原式=a5,错误;C、原式=2a4,错误;D、原式=a8,正确,故选D点评:此题考查了整式的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.(3分)(2018•德阳)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上面看到的图形判定则可.解答:解:从上面可看到第一横行左下角有一个正方形,第二横行有3个正方形,第三横行中间有一个正方形.故选B.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(3分)(2018•德阳)如图是某射击选手5次设计成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是()A.7、8 B.7、9 C.8、9 D.8、10考点:折线统计图;中位数;众数.分析:由折线图可知,射击选手五次射击的成绩为:7、7、8、10、9,再根据众数、中位数的计算方法即可求得.解答:解:∵射击选手五次射击的成绩为:7、7、8、10、9,∴众数为7,中位数为8,故选:A.点评:本题考查了折线图的意义和众数、中位数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.6.(3分)(2018•德阳)已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是()A.相交B.内切C.外离D.内含考点:圆与圆的位置关系.分析:先求两圆半径的和或差,再与圆心距进行比较,确定两圆位置关系.解答:解:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5﹣3<4<5+3,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.故选A.点评:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.7.(3分)(2018•德阳)已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5 B.2C.﹣2.5 D.﹣6考点:二次函数的最值.分析:把二次函数的解析式整理成顶点式形式,然后确定出最大值.解答:解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤,∴当x=时,y取最大值,y最大=﹣2(﹣2)2+2=﹣2.5.故选:C.点评:本题考查了二次函数的最值.确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.8.(3分)(2018•德阳)如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO 绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A.(,1)B.(,﹣1)C.(1,﹣)D.(2,﹣1)考点:坐标与图形变化-旋转;等边三角形的性质.分析:设A1B1与x轴相交于C,根据等边三角形的性质求出OC、A1C,然后写出点A1的坐标即可.解答:解:如图,设A1B1与x轴相交于C,∵△ABO是等边三角形,旋转角为30°,∴∠A1OC=60°﹣30°=30°,∴A1B1⊥x轴,∵等边△ABO的边长为2,∴OC=×2=,A1C=×2=1,∴点A1的坐标为(,﹣1).故选B.点评:本题考查了坐标与图形变化﹣旋转,等边三角形的性质,熟记等边三角形的性质是解题的关键.9.(3分)(2018•德阳)下列说法中正确的个数是()①不可能事件发生的概率为0;②一个对象在实验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1B.2C.3D.4考点:利用频率估计概率;概率的意义.分析:利用概率的意义、利用频率估计概率的方法对各选项进行判断后即可确定正确的选项.解答:解:①不可能事件发生的概率为0,正确;②一个对象在实验中出现的次数越多,频率就越大,正确;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值,正确;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率,错误,故选C.点评:本题考查了用频率估计概率的知识,解题的关键是了解多次重复试验事件发生的频率可以估计概率.10.(3分)(2018•德阳)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,如果Rt△ABC的面积为1,则它的周长为()A.B.+1 C.+2 D.+3考点:勾股定理;直角三角形斜边上的中线.分析:根据“直角三角形斜边上的中线等于斜边的一半求得AB=;然后利用勾股定理、三角形的面积求得(AC+BC)的值,则易求该三角形的周长.解答:解:如图,∵在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,∴AB=2CD=.∴AC2+BC2=5又Rt△ABC的面积为1,∴AC•BC=1,则AC•BC=2.∴(AC+BC)2=AC2+BC2+2AC•BC=9,∴AC+BC=3(舍去负值),∴AC+BC+AB=3+,即△ABC的周长是3+.故选:D.点评:本题考查了勾股定理,直角三角形斜边上的中线.此题借助于完全平方和公式求得(AC+BC)的长度,减少了繁琐的计算.11.(3分)(2018•德阳)如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A.B.C.2D.考点:勾股定理;含30度角的直角三角形.分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.构建矩形AEFD和直角三角形,通过含30度角的直角三角形的性质求得AE的长度,然后由三角形的面积公式进行解答即可.解答:解:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=,故选:A.点评:本题考查了勾股定理,三角形的面积以及含30度角的直角三角形.解题的难点是作出辅助线,构建矩形和直角三角形,目的是求得△ADC的底边AD以及该边上的高线DF的长度.12.(3分)(2018•德阳)已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<4考点:分式方程的解;一元一次不等式组的整数解.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验确定出分式方程的解,根据已知不等式组只有4个正整数解,即可确定出b的范围.解答:解:分式方程去分母得:3﹣a﹣a2+4a=﹣1,即(a﹣4)(a+1)=0,解得:a=4或a=﹣1,经检验a=4是增根,分式方程的解为a=﹣1,已知不等式组解得:﹣1<x≤b,∵不等式组只有4个3整数解,∴3≤b<4.故选D点评:此题考查了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解本题的关键.二、填空题(每小题3分,共18分,将答案填在答题卡对应的题号后的横线上)13.(3分)(2018•德阳)下列运算正确的个数有1个.①分解因式ab2﹣2ab+a的结果是a(b﹣1)2;②(﹣2)0=0;③3﹣=3.考点:提公因式法与公式法的综合运用;零指数幂;二次根式的加减法.分析:①先提取公因式a,再根据完全平方公式进行二次分解;②根据任何非零数的零指数次幂等于1解答;③合并同类二次根式即可.解答:解:①ab2﹣2ab+a,=a(b2﹣2b+1),=a(b﹣1)2,故本小题正确;②(﹣2)0=1,故本小题错误;③3﹣=2,故本小题错误;综上所述,运算正确的是①共1个.故答案为:1.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2018•德阳)一组数据3,4,5,x,7,8的平均数为6,则这组数据的方差是.考点:方差;算术平均数.分析:先由平均数的公式计算出x的值,再根据方差的公式计算.解答:解:∵3,4,5,x,7,8的平均数是6,∴x=9,∴s2= [(3﹣6)2+(4﹣6)2+(5﹣6)2+(9﹣6)2+(7﹣6)2+(8﹣6)2]=×28=,故答案为:.点评:本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.(3分)(2018•德阳)半径为1的圆内接正三角形的边心距为.考点:正多边形和圆.分析:作出几何图形,再由外接圆半径、边心距和边长的一半组成的三角形中,已知外接圆半径和特殊角,可求得边心距.解答:解:如图,△ABC是⊙O的内接等边三角形,OB=1,OD⊥BC.∵等边三角形的内心和外心重合,∴OB平分∠ABC,则∠OBD=30°;∵OD⊥BC,∴BD=DC,又∵OB=1,∴OD=.故答案是:.点评:考查了等边三角形的性质.注意:等边三角形的外接圆和内切圆是同心圆,圆心到顶点的距离等于外接圆半径,边心距等于内切圆半径.16.(3分)(2018•德阳)如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DE的度数为65°.考点:翻折变换(折叠问题).分析:首先求得∠AEA′,根据折叠的性质可得∠A′ED=∠AED=∠AEA′,在△A′DE 中利用三角形内角和定理即可求解.解答:解:∵∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,又∵∠A′ED=∠AED=∠AEA′=55°,∠DA′E=∠A=60°,∴∠A′DE=180°﹣∠A′ED﹣∠DA′E=180°﹣55°﹣60°=65°.故答案是:65°.点评:本题考查了折叠的性质,找出图形中相等的角和相等的线段是关键.17.(3分)(2018•德阳)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是301.考点:等边三角形的判定与性质;平移的性质.专题:规律型.分析:先证出阴影的三角形是等边三角形,又观察图可得,第n个图形中大等边三角形有n+1个,小等边三角形有2n个,据此求出第100个图形中等边三角形的个数.解答:解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有3个,小等边三角形有4个,第3个图形中大等边三角形有4个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有n+1个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:100+1+2×100=301.故答案为:301.点评:本题主要考查了等边三角形的判定和性质及平移的性质,解题的关键是据图找出规律.18.(3分)(2018•德阳)在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB 边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论正确的是①③④.(填番号)①AC⊥DE;②=;③CD=2DH;④=.考点:直角梯形;全等三角形的判定与性质;含30度角的直角三角形;等腰直角三角形.分析:在等腰直角△ADE中,根据等腰三角形三线合一的性质可得AH⊥ED,即AC⊥ED,判定①正确;进而可判定③;因为△CHE为直角三角形,且∠HEC=60°所以EC=2EH,因为∠ECB=15°,所以EC≠4EB,所以不成立②错误;根据全等三角形对应边相等可得CD=CE,再求出∠CED=60°,得到△CDE为等边三角形,判定③正确;过H 作HM⊥AB于M,所以HM∥BC,所以△AHM∽△ABC,利用相似三角形的性质以及底相等的三角形面积之比等于高之比即可判定④正确.解答:解:∵∠BAD=90°,AB=BC,∴∠BAC=45°,∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°,∴∠BAC=∠CAD,∴∴AH⊥ED,即AC⊥ED,故①正确;∵△CHE为直角三角形,且∠HEC=60°∴EC=2EH∵∠ECB=15°,∴EC≠4EB,∴EH≠2EB;故②错误.:∵∠BAD=90°,AB=BC,∴∠BAC=45°,∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°,∴∠BAC=∠CAD,在△ACD和△ACE中,,∴△ACD≌△ACE(SAS),∴CD=CE,∵∠BCE=15°,∴∠BEC=90°﹣∠BCE=90°﹣15°=75°,∴∠CED=180°﹣∠BEC﹣∠AED=180°﹣75°﹣45°=60°,∴△CDE为等边三角形,∴∠DCH=30°,∴CD=2DH,故③正确;过H作HM⊥AB于M,∴HM∥BC,∴△AHM∽△ABC,∴,∵DH=AH,∴,∵△BEH和△CBE有公共底BE,∴,故④正确,故答案为:①③④.点评:此题考查了直角梯形的性质、全等三角形的判定与性质、相似三角形的判定好性质、等边三角形的判定与性质以及等腰直角三角形性质.此题难度较大,注意掌握数形结合思想的应用.熟记各性质是解题的关键.三、解答题(共66分.解答应写出文字说明、证明过程或推演步骤)19.(6分)(2018•德阳)计算:﹣25+()﹣1﹣|﹣8|+2cos60°.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=﹣32+2﹣4+1=﹣33.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(11分)(2018•德阳)为增强环境保护意识,争创“文明卫生城市”,某企业对职工进行了依次“生产和居住环境满意度”的调查,按年龄分组,得到下面的各组人数统计表:各组人数统计表组号年龄分组频数(人)频率第一组20≤x<25 50 0.05第二组25≤x<30 a 0.35第三组35≤x<35 300 0.3第四组35≤x<40 200 b第五组40≤x≤45 100 0.1(1)求本次调查的样本容量及表中的a、b的值;(2)调查结果得到对生产和居住环境满意的人数的频率分布直方图如图,政策规定:本次调查满意人数超过调查人数的一半,则称调查结果为满意.如果第一组满意人数为36,请问此次调查结果是否满意;并指出第五组满意人数的百分比;(3)从第二张和第四组对生产和居住环境满意的职工中分别抽取3人和2人作义务宣传员,在这5人中随机抽取2人介绍经验,求第二组和第四组恰好各有1人被抽中介绍经验的概率.考点:频数(率)分布直方图;频数(率)分布表;列表法与树状图法.分析:(1)根据第一组的人数是50,频率是0.05即可求得总人数,则根据频率公式即可求得a、b的值;(2)根据第一组的频数是36人,频率是0.06据此即可求得调查的总人数,则满意度即可求得;(3)用A表示从第二组抽取的人,用B表示从第四组抽取的人,利用列举法即可求解.解答:解:(1)调查的总人数:50÷0.05=1000(人),则a=1000×0.35=350,b==0.2;(2)满意的总人数是:36÷0.06=600(人),则调查的满意率是:=0.6,则此次调查结果为满意;第五组的满意的人数是:600×0.16=96(人),则第五组的满意率是:×100%=96%;(3)用A表示从第二组抽取的人,用B表示从第四组抽取的人.,总共有20种情况,则第二组和第四组恰好各有1人被抽中的概率是:=.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10分)(2018•德阳)如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x>0)的图象经过矩形的对称中心E,且与边BC交于点D.(1)求反比例函数的解析式和点D的坐标;(2)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线的解析式.考点:矩形的性质;待定系数法求一次函数解析式;待定系数法求反比例函数解析式.分析:(1)根据中心对称求出点E的坐标,再代入反比例函数解析式求出k,然后根据点D 的纵坐标与点B的纵坐标相等代入求解即可得到点D的坐标;(2)设直线与x轴的交点为F,根据点D的坐标求出CD,再根据梯形的面积分两种情况求出OF的长,然后写出点F的坐标,再利用待定系数法求一次函数解析式求出直线解析式即可.解答:解:(1)∵矩形OABC的顶点B的坐标是(4,2),E是矩形ABCD的对称中心,∴点E的坐标为(2,1),代入反比例函数解析式得,=1,解得k=2,∴反比例函数解析式为y=,∵点D在边BC上,∴点D的纵坐标为2,∴y=2时,=2,解得x=1,∴点D的坐标为(1,2);(2)如图,设直线与x轴的交点为F,矩形OABC的面积=4×2=8,∵矩形OABC的面积分成3:5的两部分,∴梯形OFDC的面积为×8=3,或×8=5,∵点D的坐标为(1,2),∴若(1+OF)×2=3,解得OF=2,此时点F的坐标为(2,0),若(1+OF)×2=5,解得OF=4,此时点F的坐标为(4,0),与点A重合,当D(1,2),F(2,0)时,,解得,此时,直线解析式为y=﹣2x+4,当D(1,2),F(4,0)时,,解得,此时,直线解析式为y=﹣x+,综上所述,直线的解析式为y=﹣2x+4或y=﹣x+.点评:本题考查了矩形的性质,待定系数法求反比例函数解析式,待定系数法求一次函数解析式,(1)根据中心对称求出点E的坐标是解题的关键,(2)难点在于要分情况讨论.22.(11分)(2018•德阳)为落实国家“三农”政策,某地政府组织40辆汽车装运A、B、C 三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:农产品种类 A B C每辆汽车的装载量(吨)4 5 6(1)如果装运C种农产品需13辆汽车,那么装运A、B两种农产品各需多少辆汽车?(2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案.考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)设装运A、B两种农产品各需x、y辆汽车.等量关系:40辆车都要装运,A、B、C三种农产品共200吨;(2)关系式为:装运每种农产品的车辆数≥11.解答:解:(1)设装运A、B两种农产品各需x、y辆汽车.则,解得.答:装运A、B两种农产品各需13、14辆汽车;(2)设装运A、B两种农产品各需x、y辆汽车.则4x+5y+6(40﹣x﹣y)=200,解得:y=﹣2x+40.由题意可得如下不等式组:,即,解得:11≤x≤14.5因为x是正整数,所以x的值可为11,12,13,14;共4个值,因而有四种安排方案.方案一:11车装运A,18车装运B,11车装运C方案二:12车装运A,16车装运B,12车装运C.方案三:13车装运A,14车装运B,13车装运C.方案四:14车装运A,12车装运B,14车装运C.点评:本题考查了二元一次方程组和一元一次不等式组的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装载的几种方案是解决本题的关键.23.(14分)(2018•德阳)如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.考点:切线的判定.专题:证明题.分析:(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出==,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt △BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得=,再利用比例性质可计算出DE=.解答:(1)解:∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴AP=BP=AB=2;(2)证明:∵AP=BP,∴OP为△ABC的中位线,∴OP=BC=1,∴=,而==,∴=,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)解:∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴=,即=,∴DE=.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理、勾股定理和相似三角形的判定与性质.24.(14分)(2018•德阳)如图,已知抛物线经过点A(﹣2,0)、B(4,0)、C(0,﹣8).(1)求抛物线的解析式及其顶点D的坐标;(2)直线CD交x轴于点E,过抛物线上在对称轴的右边的点P,作y轴的平行线交x轴于点F,交直线CD于M,使PM=EF,请求出点P的坐标;(3)将抛物线沿对称轴平移,要使抛物线与(2)中的线段EM总有交点,那么抛物线向上最多平移多少个单位长度,向下最多平移多少个单位长度.考点:二次函数综合题;解一元二次方程-因式分解法;根的判别式;待定系数法求一次函数解析式;待定系数法求二次函数解析式.专题:综合题.分析:(1)由于抛物线与x轴的两个交点已知,抛物线的解析式可设成交点式:y=a(x+2)(x﹣4),然后将点C的坐标代入就可求出抛物线的解析式,再将该解析式配成顶点式,即可得到顶点坐标.(2)先求出直线CD的解析式,再求出点E的坐标,然后设点P的坐标为(m,n),从而可以用m的代数式表示出PM、EF,然后根据PM=EF建立方程,就可求出m,进而求出点P的坐标.(3)先求出点M的坐标,然后设平移后的抛物线的解析式为y=x2﹣2x﹣8+c,然后只需考虑三个临界位置(①向上平移到与直线EM相切的位置,②向下平移到经过点M的位置,③向下平移到经过点E的位置)所对应的c的值,就可以解决问题.解答:解:(1)根据题意可设抛物线的解析式为y=a(x+2)(x﹣4).∵点C(0,﹣8)在抛物线y=a(x+2)(x﹣4)上,∴﹣8a=﹣8.∴a=1.∴y=(x+2)(x﹣4)=x2﹣2x﹣8=(x﹣1)2﹣9.∴抛物线的解析式为y=x2﹣2x﹣8,顶点D的坐标为(1,﹣9).(2)如图,设直线CD的解析式为y=kx+b.∴解得:.∴直线CD的解析式为y=﹣x﹣8.当y=0时,﹣x﹣8=0,则有x=﹣8.∴点E的坐标为(﹣8,0).设点P的坐标为(m,n),则PM=(m2﹣2m﹣8)﹣(﹣m﹣8)=m2﹣m,EF=m﹣(﹣8)=m+8.∵PM=EF,∴m2﹣m=(m+8).整理得:5m2﹣6m﹣8=0.∴(5m+4)(m﹣2)=0解得:m1=﹣,m2=2.∵点P在对称轴x=1的右边,∴m=2.此时,n=22﹣2×2﹣8=﹣8.∴点P的坐标为(2,﹣8).(3)当m=2时,y=﹣2﹣8=﹣10.∴点M的坐标为(2,﹣10).设平移后的抛物线的解析式为y=x2﹣2x﹣8+c,①若抛物线y=x2﹣2x﹣8+c与直线y=﹣x﹣8相切,则方程x2﹣2x﹣8+c=﹣x﹣8即x2﹣x+c=0有两个相等的实数根.∴(﹣1)2﹣4×1×c=0.∴c=.②若抛物线y=x2﹣2x﹣8+c经过点M,则有22﹣2×2﹣8+c=﹣10.∴c=﹣2.③若抛物线y=x2﹣2x﹣8+c经过点E,则有(﹣8)2﹣2×(﹣8)﹣8+c=0.∴c=﹣72.综上所述:要使抛物线与(2)中的线段EM总有交点,抛物线向上最多平移个单位长度,向下最多平移72个单位长度.点评:本题考查了用待定系数法求二次函数的解析式、用待定系数法求一次函数的解析式、解一元二次方程、根的判别式、抛物线与直线的交点问题等知识,而把抛物线与直线相切的问题转化为一元二次方程有两个相等的实数根的问题是解决第三小题的关键,有一定的综合性.。

2018年四川省德阳市中考数学试卷(work解析版)

2018年四川省德阳市中考数学试卷(work解析版)

2018年四川省德阳市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)如果把收入100元记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元2.(3分)下列计算或运算中,正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b23.(3分)如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°4.(3分)下列计算或运算中,正确的是()A.2=B .﹣=C.6÷2=3D.﹣3=5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.6120006.(3分)下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大7.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A .2,1B .1,1.5C .1,2D .1,18.(3分)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是( )A .16πB .12πC .10πD .4π9.(3分)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是( ) A .2 B .1 C . D .10.(3分)如图,将边长为的正方形绕点B 逆时针旋转30°,那么图中阴影部分的面积为( )A .3B .C .3﹣D .3﹣11.(3分)如果关于x 的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有( )A .3个B .4个C .5个D .6个12.(3分)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使FO=3OC ,连接AB 、AC 、BC ,则在△ABC 中S △ABO :S △AOC :S △BOC =( )A.6:2:1B.3:2:1C.6:3:2D.4:3:2二、填空题(每小题3分,共15分)13.(3分)分解因式:2xy2+4xy+2x=.14.(3分)已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.15.(3分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为.16.(3分)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是(填写正确结论的番号).17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.19.(7分)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.20.(11分)某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).根据统计表、图提供的信息,解答下面的问题:(1)①表中a=;②样本中“单次营运里程”不超过15公里的频率为;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.21.(10分)如图,在平面直角坐标系中,直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点,已知点A(m,2),点B(﹣1,﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.22.(10分)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?23.(11分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.24.(14分)如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.2018年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)如果把收入100元记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元【解答】解:如果收入100元记作+100元,那么支出80元记作﹣80元,故选:D.2.(3分)下列计算或运算中,正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b2【解答】解:A、a6÷a2=a4,此选项错误;B、(﹣2a2)3=﹣8a6,此选项错误;C、(a﹣3)(3+a)=a2﹣9,此选项正确;D、(a﹣b)2=a2﹣2ab+b2,此选项错误;故选:C.3.(3分)如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°【解答】解法一:如图,∵∠2是△ABC的外角,∴∠A=∠2﹣∠1=100°﹣60°=40°,故选:A.解法二:如图,∵a∥b,∴∠1=∠3=60°,∠2=∠4=100°,∴∠5=180°﹣∠4=80°,∴∠A=180°﹣∠3﹣∠5=180°﹣60°﹣80°=40°,故选:A.4.(3分)下列计算或运算中,正确的是()A.2=B.﹣=C.6÷2=3D.﹣3=【解答】解:A、2=2×=,此选项错误;B、﹣=3﹣2=,此选项正确;C、6÷2=3,此选项错误;D、﹣3=﹣,此选项错误;故选:B.5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.612000【解答】解:6.12×10﹣3=0.00612,故选:C.6.(3分)下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大【解答】解:A、明天降雨的概率是50%表示明天有可能降雨,此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式,此选项错误;C、掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是随机事件,此选项错误;D、一组数据的方差越大,则这组数据的波动也越大,此选项正确;故选:D.7.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,1【解答】解:由表格可得,全班学生平均每天阅读时间的中位数和众数分别是1、1.5,故选:B.8.(3分)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6,底面半径为2,故表面积=πrl+πr2=π×2×6+π×22=16π,故选:A.9.(3分)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.【解答】解:因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距×sin60°=,故选:B.10.(3分)如图,将边长为的正方形绕点B逆时针旋转30°,那么图中阴影部分的面积为()A.3B.C.3﹣D.3﹣【解答】解:连接BM,在△ABM和△C′BM中,,∴△ABM≌△C′BM,∠2=∠3==30°,在△ABM中,AM=×tan30°=1,S△ABM==,正方形的面积为:=3,阴影部分的面积为:3﹣2×=3﹣,故选:C.11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对(a,b)共有()A.3个B.4个C.5个D.6个【解答】解:解不等式2x ﹣a ≥0,得:x ≥,解不等式3x ﹣b ≤0,得:x ≤,∵不等式组的整数解仅有x=2、x=3,则1≤2、3<4,解得:2<a ≤4、9≤b <12,则a=3时,b=9、10、11;当a=4时,b=9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个,故选:D .12.(3分)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使FO=3OC ,连接AB 、AC 、BC ,则在△ABC 中S △ABO :S △AOC :S △BOC =( )A .6:2:1B .3:2:1C .6:3:2D .4:3:2【解答】解:连接BF .设平行四边形AFEO 的面积为4m .∵FO :OC=3:1,BE=OB ,AF ∥OE∴S △OBF =S △AOB =m ,S △OBC =m ,S △AOC =, ∴S △AOB :S △AOC :S △BOC =m ::m=3:2:1 故选:B .二、填空题(每小题3分,共15分)13.(3分)分解因式:2xy 2+4xy +2x= 2x (y +1)2 .【解答】解:原式=2x (y 2+2y +1)=2x (y +1)2,故答案为:2x (y +1)214.(3分)已知一组数据10,15,10,x ,18,20的平均数为15,则这组数据的方差为 .【解答】解:∵数据10,15,10,x,18,20的平均数为15,∴=15,解得:x=17,则这组数据为10,15,10,17,18,20,∴这组数据的方差是:[2×(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]=,故答案为:.15.(3分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为﹣1.【解答】解:∵任意三个相邻格子中所填整数之和都相等,∴a+b+c=b+c+(﹣1),3+(﹣1)+b=﹣1+b+c,∴a=﹣1,c=3,∴数据从左到右依次为3、﹣1、b、3、﹣1、b,∵第9个数与第3个数相同,即b=2,∴每3个数“3、﹣1、2”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为﹣1.故答案为:﹣1.16.(3分)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是①③④(填写正确结论的番号).【解答】解:∵D是AB中点∴AD=BD∵△ACD是等边三角形,E是AD中点∴AD=CD,∠ADC=60°=∠ACD,CE⊥AB,∠DCE=30°∴CD=BD∴∠B=∠DCB=30°,且∠DCE=30°,CE⊥AB∴∠ECD=∠DCB,BC=2CE,tan∠B=故①③正确,②错误∵∠DCB=30°,∠ACD=60°∴∠ACB=90°若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值,d12+d22的值最小∴根据垂线段最短,则当CP⊥AB时,d12+d22的值最小此时:∠CAB=60°,AC=2,CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为2.【解答】解:函数y=的图象如图:根据图象知道当y=2时,对应成立的x值恰好有三个,∴a=2.故答案:2.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.【解答】解:原式=3+8﹣1﹣4×+2=10﹣2+2=10.19.(7分)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.【解答】(1)证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°,∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC,∵AE=DC,∴△AEF≌△DCE.∴ED=AF,∵AE=DC=AB=2DE,∴AB=2AF,∴F为AB的中点;(2)解:由(1)知AF=FB,且AE∥BH,∴∠FBH=∠FAE=90°,∠AEF=∠FHB,∴△AEF≌△BHF,∴HB=AE,∵ED=2,且AE=2ED,∴AE=4,∴HB=AB=AE=4,∴AH2=AB2+BH2=16+16=32,∴AH=.20.(11分)某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).根据统计表、图提供的信息,解答下面的问题:(1)①表中a=48;②样本中“单次营运里程”不超过15公里的频率为0.73;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【解答】解:(1)①由条形图知a=48;②样本中“单次营运里程”不超过15公里的频率为=0.73;③补全图形如下:故答案为:①48;②0.73;(2)估计该公司这5000个“单次营运里程”超过20公里的次数为5000×=750次;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到一男一女的结果数为6,∴恰好抽到“一男一女”的概率为=.21.(10分)如图,在平面直角坐标系中,直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点,已知点A(m,2),点B(﹣1,﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.【解答】解:(1)∵点B(﹣1,﹣4)在双曲线y2=(a≠0)上,∴a=(﹣1)×(﹣4)=4,∴双曲线的解析式为:.∵点A(m,2)在双曲线上,∴2m=4,∴m=2,∴点A的坐标为:(2,2)∵点A(m,2),点B(﹣1,﹣4)在直线y1=kx+b(k≠0)上,∴解得:∴直线的解析式为:y1=2x﹣2.(2)∵把直线y1沿x轴负方向平移2个单位后得到直线y3,∴y2=2(x+2)﹣2=2x+2,解方程组得:或,∴点D(1,4),点E(﹣2,﹣2),∴由函数图象可得:当y2>y3时,x的取值范围为:x<﹣2或0<x<1.22.(10分)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?【解答】解:(1)设B工程公司单独完成需要x天,根据题意得:45×+54(+)=1,解得:x=120,经检验x=120是分式方程的解,且符合题意,答:B工程公司单独完成需要120天;(2)根据题意得:m×+n×=1,整理得:n=120﹣m,∵m<46,n<92,∴120﹣m<92,解得42<m<46,∵m为正整数,∴m=43,44,45,又∵120﹣m为正整数,∴m=45,n=90,答:A、B两个工程公司各施工建设了45天和90天.23.(11分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.【解答】解:(1)证明:连接HB,∵点H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,∵∠DBC=∠DAC,∴∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,∴DH=DB;(2)①连接OD,∵∠DOB=2∠DAB=∠BAC∴OD∥AC,∵AC⊥BC,BC∥EF,∴AC⊥EF,∴OD⊥EF,∵点D在⊙O上,∴EF是⊙O的切线;②过点D作DG⊥AB于G,∵∠EAD=∠DAB,∴DE=DG,∵DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1,在Rt△ADB中,DG⊥AB,∴∠DAB=∠BDG,∵∠DBG=∠ABD,∴△DBG∽△ABD,∴,∴DB2=AB•BG=5×1=5,∴DB=,DG=2,∴ED=2,∵H是内心,∴AE=AG=4,∵DO∥AE,∴△OFD∽△AFE,∴,∴,∴DF=.24.(14分)如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.【解答】解:(1)∵点C(3,1)在二次函数的图象上,∴x2+bx﹣=1,解得:b=﹣,∴二次函数的解析式为y=x2﹣x﹣y=x2﹣x﹣=(x2﹣x+﹣)﹣=(x﹣)2﹣(2)作CK⊥x轴,垂足为K.∵△ABC为等腰直角三角形,∴AB=AC.又∵∠BAC=90°,∴∠BAO+∠CAK=90°.又∵∠CAK+∠ACK=90°,∴∠BAO=∠ACK.在△BAO和△ACK中,∠BOA=∠AKC,∠BAO=∠ACK,AB=AC,∴△BAO≌△ACK.∴OA=CK=1,OB=AK=2.∴A(1,0),B(0,2).∴当点B平移到点D时,D(m,2),则2=m2﹣m﹣,解得m=﹣3(舍去)或m=.∴AB==.∴△ABC扫过区域的面积=S四边形ABDE +S△DEH=×2+××=9.5(3)当∠ABP=90°时,过点P作PG⊥y轴,垂足为G.∵△APB为等腰直角三角形,∴PB=AB,∠PBA=90°.∴∠PBG+∠BAO=90°.又∵∠PBG+∠BPG=90°,∴∠BAO=∠BPG.在△BPG和△ABO中,∠BOA=∠PGB,∠BAO=∠BPG,AB=PB,∴△BPG≌△ABO.∴PG=OB=2,AO=BG=1,∴P(﹣2,1).当x=﹣2时,y≠1,∴点P(﹣2,1)不在抛物线上.当∠PAB=90°,过点P作PF⊥x轴,垂足为F.同理可知:△PAF≌△ABO,∴FP=OA=1,AF=OB=2,∴P(﹣1,﹣1).当x=﹣1时,y=﹣1,∴点P(﹣1,﹣1)在抛物线上.。

2018年四川省德阳市中考数学试卷含解析(完美打印版)

2018年四川省德阳市中考数学试卷含解析(完美打印版)

2018年四川省德阳市中考数学试卷(含解析)一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)如果把收入100元记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元2.(3分)下列计算或运算中,正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b23.(3分)如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°4.(3分)下列计算或运算中,正确的是()A.2=B.﹣=C.6÷2=3D.﹣3=5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.6120006.(3分)下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大7.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,18.(3分)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π9.(3分)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.10.(3分)如图,将边长为的正方形绕点B逆时针旋转30°,那么图中阴影部分的面积为()A.3B.C.3﹣D.3﹣11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对(a,b)共有()A.3个B.4个C.5个D.6个12.(3分)如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使FO=3OC,连接AB、AC、BC,则在△ABC中S△ABO:S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:2二、填空题(每小题3分,共15分)13.(3分)分解因式:2xy2+4xy+2x=.14.(3分)已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.15.(3分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为.16.(3分)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是(填写正确结论的番号).17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.19.(7分)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.20.(11分)某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).根据统计表、图提供的信息,解答下面的问题:(1)①表中a=;②样本中“单次营运里程”不超过15公里的频率为;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.21.(10分)如图,在平面直角坐标系中,直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点,已知点A(m,2),点B(﹣1,﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.22.(10分)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n 均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?23.(11分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.24.(14分)如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.2018年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)如果把收入100元记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元【分析】根据题意得出:收入记作为正,支出记作为负,表示出来即可.【解答】解:如果收入100元记作+100元,那么支出80元记作﹣80元,故选:D.2.(3分)下列计算或运算中,正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b2【分析】根据同底数幂的除法、积的乘方与幂的乘方、平方差公式、完全平方公式逐一判断可得.【解答】解:A、a6÷a2=a4,此选项错误;B、(﹣2a2)3=﹣8a6,此选项错误;C、(a﹣3)(3+a)=a2﹣9,此选项正确;D、(a﹣b)2=a2﹣2ab+b2,此选项错误;故选:C.3.(3分)如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°【分析】依据∠2是△ABC的外角,即可得到∠A=∠2﹣∠1=40°.也可以利用平行线的性质以及三角形内角和定理,即可得到∠A的度数.【解答】解法一:如图,∵∠2是△ABC的外角,∴∠A=∠2﹣∠1=100°﹣60°=40°,故选:A.解法二:如图,∵a∥b,∴∠1=∠3=60°,∠2=∠4=100°,∴∠5=180°﹣∠4=80°,∴∠A=180°﹣∠3﹣∠5=180°﹣60°﹣80°=40°,故选:A.4.(3分)下列计算或运算中,正确的是()A.2=B.﹣=C.6÷2=3D.﹣3=【分析】根据二次根性质和运算法则逐一判断即可得.【解答】解:A、2=2×=,此选项错误;B、﹣=3﹣2=,此选项正确;C、6÷2=3,此选项错误;D、﹣3=﹣,此选项错误;故选:B.5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.612000【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:6.12×10﹣3=0.00612,故选:C.6.(3分)下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大【分析】根据概率的意义,事件发生可能性的大小,可得答案.【解答】解:A、明天降雨的概率是50%表示明天有可能降雨,此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式,此选项错误;C、掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是随机事件,此选项错误;D、一组数据的方差越大,则这组数据的波动也越大,此选项正确;故选:D.7.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,1【分析】根据表格中的数据可知七年级2班有30人,从而可以得到全班学生平均每天阅读时间的中位数和众数,本题得以解决.【解答】解:由表格可得,全班学生平均每天阅读时间的中位数和众数分别是1、1.5,故选:B.8.(3分)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6,底面半径为2,故表面积=πrl+πr2=π×2×6+π×22=16π,故选:A.9.(3分)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.【分析】根据题意可以求得半径,进而解答即可.【解答】解:因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距×sin60°=,故选:B.10.(3分)如图,将边长为的正方形绕点B逆时针旋转30°,那么图中阴影部分的面积为()A.3B.C.3﹣D.3﹣【分析】连接BM,根据旋转的性质和四边形的性质,证明△ABM≌△C′BM,得到∠2=∠3=30°,利用三角函数和三角形面积公式求出△ABM的面积,再利用阴影部分面积=正方形面积﹣2△ABM的面积即可得到答案.【解答】解:连接BM,在△ABM和△C′BM中,,∴△ABM≌△C′BM,∠2=∠3==30°,在△ABM中,AM=×tan30°=1,S△ABM==,正方形的面积为:=3,阴影部分的面积为:3﹣2×=3﹣,故选:C.11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对(a,b)共有()A.3个B.4个C.5个D.6个【分析】求出不等式组的解集,根据已知求出1≤2、3<4,求出2<a≤4、9≤b<12,即可得出答案.【解答】解:解不等式2x﹣a≥0,得:x≥,解不等式3x﹣b≤0,得:x≤,∵不等式组的整数解仅有x=2、x=3,则1≤2、3<4,解得:2<a≤4、9≤b<12,则a=3时,b=9、10、11;当a=4时,b=9、10、11;所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,故选:D.12.(3分)如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使FO=3OC,连接AB、AC、BC,则在△ABC中S△ABO:S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:2【分析】连接BF.设平行四边形AFEO的面积为4m.由FO:OC=3:1,BE=OB,AF∥OE可得S△OBF =S△AOB=m,S△OBC=m,S△AOC=,由此即可解决问题;【解答】解:连接BF.设平行四边形AFEO的面积为4m.∵FO:OC=3:1,BE=OB,AF∥OE∴S△OBF=S△AOB=m,S△OBC=m,S△AOC=,∴S△AOB:S△AOC:S△BOC=m::m=3:2:1故选:B.二、填空题(每小题3分,共15分)13.(3分)分解因式:2xy2+4xy+2x=2x(y+1)2 .【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=2x(y2+2y+1)=2x(y+1)2,故答案为:2x(y+1)214.(3分)已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.【分析】先根据平均数为15列出关于x的方程,解之求得x即可知完整的数据,再根据方差公式计算可得.【解答】解:∵数据10,15,10,x,18,20的平均数为15,∴=15,解得:x=17,则这组数据为10,15,10,17,18,20,∴这组数据的方差是:[2×(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]=,故答案为:.15.(3分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为﹣1.【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=2,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【解答】解:∵任意三个相邻格子中所填整数之和都相等,∴a+b+c=b+c+(﹣1),3+(﹣1)+b=﹣1+b+c,∴a=﹣1,c=3,∴数据从左到右依次为3、﹣1、b、3、﹣1、b,∵第9个数与第3个数相同,即b=2,∴每3个数“3、﹣1、2”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为﹣1.故答案为:﹣1.16.(3分)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是①③④(填写正确结论的番号).【分析】由题意可得△BCE是含有30°的直角三角形,根据含有30°的直角三角形的性质可判断①②③,易证四边形PMCN是矩形,可得d12+d22=MN2=CP2,根据垂线段最短,可得CP的值即可求d12+d22的最小值,即可判断④.【解答】解:∵D是AB中点∴AD=BD∵△ACD是等边三角形,E是AD中点∴AD=CD,∠ADC=60°=∠ACD,CE⊥AB,∠DCE=30°∴CD=BD∴∠B=∠DCB=30°,且∠DCE=30°,CE⊥AB∴∠ECD=∠DCB,BC=2CE,tan∠B=故①③正确,②错误∵∠DCB=30°,∠ACD=60°∴∠ACB=90°若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值,d12+d22的值最小∴根据垂线段最短,则当CP⊥AB时,d12+d22的值最小此时:∠CAB=60°,AC=2,CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为2.【分析】首先在坐标系中画出已知函数y=的图象,利用数形结合的方法即可找到使y=a成立的x值恰好有3个的a值.【解答】解:函数y=的图象如图:根据图象知道当y=2时,对应成立的x值恰好有三个,∴a=2.故答案:2.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.【分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算.【解答】解:原式=3+8﹣1﹣4×+2=10﹣2+2=10.19.(7分)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.【分析】(1)根据全等三角形的判定,证得△AEF≌△DCE,再根据全等三角形的性质,证得ED=AF,进而得证;(2)根据全等三角形的判定方法,证明△AEF≌△BHF,进而求得HB=AB=AE=4,再利用勾股定理求出AH的值即可.【解答】(1)证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°,∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC,∵AE=DC,∴△AEF≌△DCE.∴ED=AF,∵AE=DC=AB=2DE,∴AB=2AF,∴F为AB的中点;(2)解:由(1)知AF=FB,且AE∥BH,∴∠FBH=∠F AE=90°,∠AEF=∠FHB,∴△AEF≌△BHF,∴HB=AE,∵ED=2,且AE=2ED,∴AE=4,∴HB=AB=AE=4,∴AH2=AB2+BH2=16+16=32,∴AH=.20.(11分)某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).根据统计表、图提供的信息,解答下面的问题:(1)①表中a=48;②样本中“单次营运里程”不超过15公里的频率为0.73;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【分析】(1)①由频数分布直方图可直接得出a的值;②用第一、二、三组的频数和除以总数量可得;③根据分布表中数据即可得;(2)用总数量乘以样本中“单次营运里程”超过20公里的次数所占比例即可得;(3)画树状图展示所有12种等可能的结果数,找出抽到一男一女的结果数,然后根据概率公式求解.【解答】解:(1)①由条形图知a=48;②样本中“单次营运里程”不超过15公里的频率为=0.73;③补全图形如下:故答案为:①48;②0.73;(2)估计该公司这5000个“单次营运里程”超过20公里的次数为5000×=750次;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到一男一女的结果数为6,∴恰好抽到“一男一女”的概率为=.21.(10分)如图,在平面直角坐标系中,直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点,已知点A(m,2),点B(﹣1,﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.【分析】(1)把点B代入双曲线求出a的值,即可得到双曲线的解析式;把点A代入双曲线求出m的值,确定A点坐标,再利用待定系数法求出直线的解析式,即可解答;(2)先求出y3的解析式,再解方程组求出点D点E的坐标,即可解答.【解答】解:(1)∵点B(﹣1,﹣4)在双曲线y2=(a≠0)上,∴a=(﹣1)×(﹣4)=4,∴双曲线的解析式为:.∵点A(m,2)在双曲线上,∴2m=4,∴m=2,∴点A的坐标为:(2,2)∵点A(m,2),点B(﹣1,﹣4)在直线y1=kx+b(k≠0)上,∴解得:∴直线的解析式为:y1=2x﹣2.(2)∵把直线y1沿x轴负方向平移2个单位后得到直线y3,∴y2=2(x+2)﹣2=2x+2,解方程组得:或,∴点D(1,4),点E(﹣2,﹣2),∴由函数图象可得:当y2>y3时,x的取值范围为:x<﹣2或0<x<1.22.(10分)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n 均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?【分析】(1)设B工程公司单独完成需要x天,根据题意列出关于x的分式方程,求出分式方程的解得到x的值,经检验即可得到结果;(2)根据题意列出关于m与n的方程,由m与n的范围,确定出正整数m与n的值,即可得到结果.【解答】解:(1)设B工程公司单独完成需要x天,根据题意得:45×+54(+)=1,解得:x=120,经检验x=120是分式方程的解,且符合题意,答:B工程公司单独完成需要120天;(2)根据题意得:m×+n×=1,整理得:n=120﹣m,∵m<46,n<92,∴120﹣m<92,解得42<m<46,∵m为正整数,∴m=43,44,45,又∵120﹣m为正整数,∴m=45,n=90,答:A、B两个工程公司各施工建设了45天和90天.23.(11分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.【分析】(1)先判断出∠DAC=∠DAB,∠ABH=∠CBH,进而判断出∠DHB=∠DBH,即可得出结论;(2))①先判断出OD∥AC,进而判断出OD⊥EF,即可得出结论;②先判断出△CDE≌△BDG,得出GB=CE=1,再判断出△DBG∽△ABD,求出DB2=5,即DB=,DG=2,进而求出AE=AG=4,最后判断出△OFD∽△AFE即可得出结论.【解答】解:(1)证明:连接HB,∵点H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,∵∠DBC=∠DAC,∴∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,∴DH=DB;(2)①连接OD,∵∠DOB=2∠DAB=∠BAC∴OD∥AC,∵AC⊥BC,BC∥EF,∴AC⊥EF,∴OD⊥EF,∵点D在⊙O上,∴EF是⊙O的切线;②过点D作DG⊥AB于G,∵∠EAD=∠DAB,∴DE=DG,∵DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1,在Rt△ADB中,DG⊥AB,∴∠DAB=∠BDG,∵∠DBG=∠ABD,∴△DBG∽△ABD,∴,∴DB2=AB•BG=5×1=5,∴DB=,DG=2,∴ED=2,∵H是内心,∴AE=AG=4,∵DO∥AE,∴△OFD∽△AFE,∴,∴,∴DF=.24.(14分)如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.【分析】(1)将点C的坐标代入抛物线的解析式可求得b的值,从而可得到抛物线的解析式,然后利用配方法可将抛物线的解析式变形为y=a(x﹣h)2+k的形式;(2)作CK⊥x轴,垂足为K.首先证明△BAO≌△ACK,从而可得到OA=CK,OB=AK,于是可得到点A、B的坐标,然后依据勾股定理求得AB的长,然后求得点D的坐标,从而可求得三角形平移的距离,最后,依据△ABC扫过区域的面积=S四边形ABDE+S△DEH求解即可;(3)当∠ABP=90°时,过点P作PG⊥y轴,垂足为G,先证明△BPG≌△ABO,从而可得到点P的坐标,然后再判断点P是否在抛物线的解析式即可,当∠P AB=90°,过点P作PF⊥x轴,垂足为F,同理可得到点P的坐标,然后再判断点P是否在抛物线的解析式即可.【解答】解:(1)∵点C(3,1)在二次函数的图象上,∴x2+bx﹣=1,解得:b=﹣,∴二次函数的解析式为y=x2﹣x﹣y=x2﹣x﹣=(x2﹣x+﹣)﹣=(x﹣)2﹣(2)作CK⊥x轴,垂足为K.∵△ABC为等腰直角三角形,∴AB=AC.又∵∠BAC=90°,∴∠BAO+∠CAK=90°.又∵∠CAK+∠ACK=90°,∴∠BAO=∠ACK.在△BAO和△ACK中,∠BOA=∠AKC,∠BAO=∠ACK,AB=AC,∴△BAO≌△ACK.∴OA=CK=1,OB=AK=2.∴A(1,0),B(0,2).∴当点B平移到点D时,D(m,2),则2=m2﹣m﹣,解得m=﹣3(舍去)或m=.∴AB==.∴△ABC扫过区域的面积=S四边形ABDE+S△DEH=×2+××=9.5(3)当∠ABP=90°时,过点P作PG⊥y轴,垂足为G.∵△APB为等腰直角三角形,∴PB=AB,∠PBA=90°.∴∠PBG+∠BAO=90°.又∵∠PBG+∠BPG=90°,∴∠BAO=∠BPG.在△BPG和△ABO中,∠BOA=∠PGB,∠BAO=∠BPG,AB=PB,∴△BPG≌△ABO.∴PG=OB=2,AO=BG=1,∴P(﹣2,1).当x=﹣2时,y≠1,∴点P(﹣2,1)不在抛物线上.当∠P AB=90°,过点P作PF⊥x轴,垂足为F.同理可知:△P AF≌△ABO,∴FP=OA=1,AF=OB=2,∴P(﹣1,﹣1).当x=﹣1时,y=﹣1,∴点P(﹣1,﹣1)在抛物线上.。

2018四川德阳中考数学解析

2018四川德阳中考数学解析

2018年四川省德阳市初中毕业、升学考试数学(满分120分,考试时间120分钟)第Ⅰ卷一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018四川省德阳市,题号1,分值:3)如果把收入记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.-80元【答案】D.【解析】由题意可知收入记作“+”,那么支出记作“-”,则支出80元记作-80元.【知识点】实数2.(2018四川省德阳市,题号2,分值:3)下列计算或运算,正确的是()A.a6÷a2=a3B.(-2a2)3=-8a3C.(a-3)(3+a)=a2-9D.(a-b)2=a2-b2【答案】C.【解析】因为a6÷a2=a6-2=a4,所以A错误;因为(-2a2)3=-8a2×3=-8a6,所以B错误;因为(a-3)(3+a)=a2-9,所以C正确;因为(a-b)2=a2-2ab+b2,所以D错误.【知识点】整式的运算3.(2018四川省德阳市,题号3,分值:3)如图,直线a∥b,c,d是截线且交于带你A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°【答案】A.【解析】∵a∥b,∴∠1=∠3=60°,∠2=∠4=100°.∵∠4+∠5=180°,∴∠5=80°.∴∠A=180°-∠3-∠5=40°.【知识点】平行线的性质4.(2018四川省德阳市,题号4,分值:3)下列计算或运算,正确的是()A.2√a2=√a B.√18−√8=√2 C.6√15÷2√3=3√45 D.-3√3=√27【答案】B.【解析】因为2√a2=√a√2=√2a,所以A错误;因为√18−√8=3√2−2√2=√2,所以B错误;因为6√15÷2√3=√152√3=3√5,所以C正确;因为-3√3=−√9×3=−√27,所以D错误.【知识点】二次根式的加减和化简5.(2018四川省德阳市,题号5,分值:3)把实数6.12×10-3用小数表示为() A.0.0612 B.6120 C.0.00612 D.612000 【答案】C.【解析】6.12×10-3=0.00612. 【知识点】科学记数法 6.(2018四川省德阳市,题号6,分值:3)下列说法正确的是() A.“明天将于的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹生产的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动越大 【答案】D.【解析】因为“明天将于的概率为50%”,说明明天可能下雨也可能不下雨,并不意味着明天一定有半天都在降雨,所以A 错误;由于全国快递包裹生产的包装垃圾数量很大,可采用抽样调查方式,所以B 错误; 掷一枚质地均匀的骰子,骰子停止转动,六个面均可能朝上朝上,所以C 错误; 一组数据的方差越大,则这组数据越不稳定,则这组数据的波动越大,所以D 正确. 【知识点】事件,方差 7.(2018四川省德阳市,题号7,分值:3)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,1 【答案】D.【解析】将这组数据从小到大排列0.5小时的有8人,1小时的有19人,1.5小时的有10人,2小时的有3人,可知中位数为第20和第21个数的平均数,第20个数为1,第21个数为1,所以中位数为1,则出现最多的是19人的1小时,则众数为1,所以中位数为1,众数为1. 【知识点】中位数,众数 8.(2018四川省德阳市,题号8,分值:3)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【答案】A.【解析】由左视图可知底面半径为2,则底面圆的面积为4π,再根据左视图可知扇形半径为6,则扇形的面积为12rl=12×6×2π×2=12π,所以,表面积为4π+12π=16π. 【知识点】几何体的三视图,扇形的面积9.(2018四川省德阳市,题号9,分值:3)已知圆内接正三角形的面积为√3,则该圆的内接正六边形的边心距是()A.2B.1C.√3D.√32第9题答图【答案】B.【解析】如图,设△ABC 的边长为a ,由正三角形的面积公式得S △ABC =√34a 2, ∴=√34a 2=√3, 解得a=2或-2(舍), ∴BC=2.∵∠BAC=60°,BO=CO , ∴∠BOC=120°, 则∠BCO=30°. ∵OH ⊥BC , ∴BH=12BC=1,在Rt △BOH 中,BO=BH ÷cos30°=2√33, 所以圆的半径r=2√33.则OF=2√33. 如图,正六边形内接于圆,且半径为2√33,可知∠EOF=60°, 在△EOF 中,OE=OF ,OD ⊥EF ,∴∠EOD=30°.在Rt △DOE 中,OD=OF ·cos30°=2√33×√32=1. 所以边心距为1.【知识点】正多边形和圆10.(2018四川省德阳市,题号10,分值:3)如图,将边长为√3的正方形绕点B 逆时针旋转30°,那么图中阴影部分的面积为() A.3 B.√3 C.3-√3 D.3-√32【答案】C.【解析】由旋转可知∠1=∠4=30°, ∴∠2+∠3=60°.∵∠BAM=∠BC ′M=90°,且AB=BC ′, ∴∠2=∠3=30°.在Rt △ABM 中,AB=√3,∠2=30°, 则AM=tan30°×AB=1. ∴S △ABM =S △BMC ′=√32,∴S 阴影=S 正方形-(S △ABM + S △BMC ′)=3-√3.【知识点】正方形的性质,旋转的性质,特殊角的三角函数值11.(2018四川省德阳市,题号11,分值:3)如果关于x 的不等式组{2x −a ≥0,3x −b ≤0.的整数解仅有x=2,x=3,那么适合这个不等式组的整数a ,b 组成的有序数对(a ,b )共有() A.3个 B.4个 C.5个 D.6个 【答案】D.【解析】{2x −a ≥0,3x −b ≤0.解得a2≤x ≤b3,又∵整数解有x=2,x=3, ∴{1<a 2≤2,3≤b3<4.解得{2<a ≤4,9≤b <12.又∵a ,b 为整数,∴a=3或4,b=9或10或11, ∴(a ,b )共有(3,9),(3,10),(3,11),(4,9),(4,10),(4,11),有6种. 【知识点】不等式组的整数解 12.(2018四川省德阳市,题号12,分值:3)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使FO=3OC ,连接AB ,AC ,BC ,则在△ABC 中,S △ABO :S △AOC :S △BOC ( ) A.6:2:1 B.3:2:1 C.6:3:2 D.4:3:2【答案】B.【解析】∵四边形AOEF是平行四边形,∴AF∥EO,∴∠AFM=∠BOM,∠FAM=∠MBO,∴△AFM∽△BOM,∴OMFM =BMAM=BOAF=12.设S△BOM=S,则S△AOM=2S.∵FO=3OC,OM=12FM,∴OM=OC,∴S△AOC=S△AOM=2S,S△BOC=S△BOM=S,∴S△ABO:S△AOC:S△BOC=3:2:1.【知识点】相似三角形的性质和判定,平行四边形的性质二、填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.(2018四川省德阳市,题号13,分值:3)分解因式:2xy2+4xy+2x=____.【答案】2x(y+1)2.【解析】2xy2+4xy+2x=2x(y2+2y+1)=2x(y+1)2.【知识点】因式分解14.(2018四川省德阳市,题号14,分值:3)已知乙组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为____.【答案】443.【解析】解:10+15+10+x+18+206=15,∴x=17.则S2=16×[(10−15)2+(15−15)2+(10−15)2+(17−15)2+(18−15)2+(20−15)2],=16×(25+0+25+4+9+25),=443.【知识点】平均数,方差15.(2018四川省德阳市,题号15,分值:3)如下表,从左到右造每个格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为____.【答案】-1.【解析】由题意可知3+a+b=a+b+c ,可得c=3, 同理可得a=-1,b=2.格子中的数每3个数字形成一个循环, 易得2018÷3=672……2, 得第2018个格子的数为-1. 【知识点】探究规律 16.(2018四川省德阳市,题号16,分值:3)如图,点D 为△ABC 的AB 边上的中点,点E 为AD 的中点,△ADC为正三角形,给出下列结论,①CB=2CE ,②tan ∠B=34,③∠ECD=∠DCB ,④若AC=2,点P 是AB 上一动点,点P 到AC ,BC 边的距离分别为d 1,d 2,则d 12+d 22的最小值是3.其中正确的结论是____(填写正确结论的番号).【答案】①③④.【解析】①由题意得,AE=DE ,AD=BD=CD. ∵△ACD 是正三角形,∴∠CDA=60°,CE ⊥AD , ∴∠B=∠DCB=30°.在Rt △BCE 中,∠B=30°,CB=2CE. ②∵∠B=30°, ∴tan ∠B=√33.③在正△ACD 中,CE 是△ACD 的中线, ∴∠ECD=12∠ACD=30°,∴∠ECD=∠DCB.④如图,PM=d 1,PN=d 2.在Rt △MPN 中,d 12+d 22=MN 2, ∵∠ACB=∠CMP=∠CNP=90°, ∴四边形MPNC 为矩形, ∴MN=CP.要使d 12+d 22最小,只需MN 最小,即PC 最小,当CP ⊥AB 时, 即P 与E 重合时,d 12+d 22最小, 在Rt △ACE 中,cos ∠ACE=CEAC , ∵AC=2,∠ACE=30°,∴CE=AC ·cos30°=√3,则CE 2=3, ∴d 12+d 22的最小值为3. 所以正确的有①③④.【知识点】等边三角形的性质,特殊角的三角函数,矩形的判定17.(2018四川省德阳市,题号17,分值:3)已知函数y={(x −2)2−2,x ≤4,(x −6)2−2,x >4.使y=a 成立的x 的值恰好只有3个时,a 的值为____.【答案】2. 【解析】画出函数解析式的图像,要使y=a 成立的x 的值恰好只有3个,即函数图像与y=2这条直线有3个交点,即a=2.第17题答图【知识点】二次函数的应用三、解答题(本大题共9小题,满分69分,解答应写出文字说明、证明过程或演算步骤) 18.(2018四川省德阳市,题号18,分值:6)计算:√(−3)2+(12)−3−(3√2)0−4cos30°√3.【思路分析】先根据√(−3)2,(12)−3=8,(3√2)0=1,cos30°=√32,再代入计算即可. 【解题过程】原式=3+8-1-4×√32+2√3,………………………………………………….…..2分=3+8-1-2√3+2√3,………………….……………………………………………………….…4分 =10……………………………………………………………………………………………….6分 【知识点】实数的运算 19.(2018四川省德阳市,题号19,分值:7)如图点E ,F 分别是矩形ABCD 的边AD ,AB 上一点,若AE=DC=2ED ,且EF ⊥EC.(1)求证:点F 为AB 的中点.(2)延长EF 与CB 的延长线相交于点H ,连接AH ,已知ED=2,求AH 的值.第19题图【思路分析】对于(1),先根据矩形的性质证明△AEF ≌△DCE ,可得ED=AF ,进而根据A E=DC=2ED ,可得答案.对于(2),先说明△AEF ≌△BHF ,可知AE ,进而得出AB=BH ,再根据AH 2=AB 2+BH 2得出答案. 【解题过程】证明:∵EF ⊥EC , ∴∠CEF=90°,∴∠AEF+∠DEC=90°.∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC.∵AE=DC,∴△AEF≌△DCE,………………………………………………………………………………2分∴ED=AF.∵AE=DC=AB=2DE,∴AB=2AF,∴F是AB的中点…………………………………………………………………………………3分(2)解:由(1)得AF=FB,且AE∥BH,∴∠FBH=∠FAE=90°,∠AEF=∠FHB,∴△AEF≌△BHF,………………………………………………………………………………4分∴HB=AE.∵ED=2,且AE=2ED,∴AE=4,…………………………………………………………………………………………5分∴HB=AB=AE=4,∴AH2=AB2+BH2=16+16=32,……………………………………………………………………6分∴AH=4√2………………………………………………………………………………………7分【知识点】矩形的性质,全等三角形的性质和判定,勾股定理20.(2018四川省德阳市,题号20,分值:11)某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务,2分钟响应,0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理,统计结果如下表,并绘制了不完整的频数分布直方图.根据统计表,图提供的信息,解答下面的问题:(1)①表中a=____;②样本中“单次营运历程”不超过15公里的频数为____;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小组中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【思路分析】对于(1),根据总数-除第二组以外各组的频数,即可求出a值,然后求出不超过15公里的频数,进而求出频率,再补全频数分布直方图.对于(2),用样本估计总体的思想解答,即求出超过20公里的频率,再用总数×频率即可.对于(3),画出树状图得出所有可能出现的结果,并得出符合条件的结果,进而根据概率公式得出答案.【解题过程】(1)200-72-26-24-30=48,则a=48;……………………………………………1分由统计表可知不超过15公里的频数为72+48+26=146,所以不超过15公里的频数为146÷200=0.73……………………………………………………………………………………3分补全频数分布直方图如上……………………………………………………………………5分(2)这5000个“单次营运里程”超过20公里的次数为30200×5000=750(次)…………7分(3)画出树状图如下:…………………..9分一共有12种可能出现的结果,出现“一男一女”的有6种, ∴P (抽到的恰好是“一男一女”)=612=12……………………………………………………11分【知识点】频数分布直方图,树状图求概率21.(2018四川省德阳市,题号21,分值:10)如图,在平面直角坐标系中,直线y 1=kx+b (k ≠0)与双曲线y 2=ax(a ≠0)交于A ,B 两点,已知点A (m ,2),点B (-1,-4). (1)求直线和双曲线的解析式.(2)把直线y 1沿x 轴负方向平移2个单位后得到直线y 3,直线与双曲线y 2交于D ,E 两点,当y 2>y 3时,求x的取值范围.【思路分析】对于(1),将点B 的坐标代入关系式,求出a ,即可得出关系式,再将点A ,B 的坐标代入y 1=kx+b ,求出k ,b 即可得出关系式. 对于(2),先根据平移求出y 3的关系式,再联立得到方程组求出点D ,E ,再根据反比例函数图像在一次函数图像的上方得出取值范围即可. 【解题过程】(1)∵B (-1,-4),点B 在双曲线上,即a=(-1)×(-4)=4,∵点A 在双曲线上,即2m=4,即m=2,A (2,2)………………………………………….1分 ∵点A (2,2),B (-1,-4)在直线y 1=kx+b 上, ∴{2=2k +b −4=−k +b..............................................................2分 解得{k =2,b =2..................................................................3分∴直线和双曲线的解析式分别为y 1=2x-2和y 2=4x ……………………………………………4分 (2)∵直线y 3是直线y 1沿x 轴负方向平移2个单位得到,∴y 3=2(x+2)-2=2x+2,…………………………………………………………………………6分解方程组{y =4x ,y =2x +2.得{x =1,y =4.或{x =−2,y =−2...............................................................................8分∴点D (1,4),E (-2,-2),………………………………………………………………..9分 ∴当y 2>y 3时,x 的取值范围是x <-2或0<x <1…………………………………………10分 【知识点】一次函数和反比例函数的综合应用 22.(2018四川省德阳市,题号22,分值:10)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区启动了2期扩建工程.一项地基基础加固处理工程由A ,B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天.A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完全了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A ,B 两个工程公司各施工建设了多少天? 【思路分析】对于(1),设B 工程公司单独建设完成这项工程需要x 天,进而表示出A ,B 两个公司的工作效率,然后根据A 公司施工45的工作量+A ,B 公司合作54天的工作量=1,列出方程,求出解即可. 对于(2),由(1)可知A ,B 两公司的工作效率,再根据A 公司施工m 天的工作量+B 公司施工n 天的工作量=1,可用含m 的代数式表示n ,进而得出关于m 的不等式组,求出m 的解集,再根据m ,n 都是正整数,求出m ,n 的值即可. 【解题过程】(1)设B 工程公司单独建设完成这项工程需要x 天,由题意得 45×1180+54×(1180+1x )=1,……………………………………………………………………..2分 解得x=120,经检验,x=120是方程的解且符合题意.答:B 工程单独建设需要120天完成…………………………………………………………4分 (2)∵A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了m 天完成. ∴m ×1180+n ×1120=1,……………………………………………………………………………5分 即n=120-23m ……………………………………………………………………………………..6分又∵m <46,n <92,∴{m <46,120−23m <92............................................................8分 解得42<m <46. ∵m 为正整数, ∴m=43,44,45,而n=120-23m 也是正整数,……………………………………………………………………..9分∴m=45,n=90.答:A 工程公司建设了45天,B 工程公司建设了90天………………………………….10分 【知识点】分式方程的应用,一元一次不等式组的应用 23.(2018四川省德阳市,题号24,分值:11)如图,在直角三角形ABC 中,∠ACB=90°,点H 是△ABC 的内心,AH 的延长线和三角形ABC 的外接圆O 相交于点D ,连结DB. (1)求证:DH=DB.(2)过点D 作BC 的平行线交AC ,AB 的延长线分别于点E ,F ,已知CE=1,圆O 的直径为5, ①求证:EF 为圆O 的切线; ②求DF 的长.【思路分析】对于(1),连接HB,根据三角形内心的性质可知∠DAC=∠DAB,∠ABH=∠CBH,再根据等弧所对的圆周角相等,得∠DBC=∠DAC,然后根据三角形的外角的性质可知∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,及∠DBH=∠DBC+∠CBH,进而根据等角对等边得出答案.(2),对于①,连接OD,根据同弧所对的圆周角等于其所对的圆心角的一半,得∠DOB=∠BAC,可知OD∥AC,再根据BC∥EF,可知AC⊥EF,进而得出OD⊥EF,可得答案.对于②,先作DG⊥AB,再根据“HL”证明△CDE≌△BDG,可得GB=1,然后根据两角分别相等的两个三角形相似,得DB2=AB·BG,即可求出DB,DG,ED,再说明△OFD∽△AFE,根据相似三角形的对应边成比例得出答案. 【解题过程】(1)证明:连接HB,∵点H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,………………………………………………………………1分而∠DBC=∠DAC,∠DHB=∠DAB+∠ABH=∠DAC+∠CBH.又∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,………………………………………………………………………………2分∴DH=DB…………………………………………………………………………………………3分(2)①连接OD,∵∠DOB=2∠DAB=∠BAC,∴OD∥AC………………………………………………………………………………………4分∵AC⊥BC,BC∥EF,∴AC⊥EF,……………………………………………………………………………………5分∴OD⊥EF,∴EF是圆O的切线……………………………………………………………………………6分②如图,过点D作DG⊥AB于点G,∵∠EAD=∠DAB,∴DE=DG,DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1……………………………………………………………………………………7分在Rt△ADB中,DG⊥AB,∴∠ADB=∠DGB,∠DBG=∠ABD,∴△DBG∽△ABD,…………………………………………………………………………8分∴DB2=AB·BG=5×1=5,∴DB=√5,DG=2,∴ED=2…………………………………………………………………………………………9分∵H为内心,AE=AG=4,而DO∥AE,∴△OFD∽△AFE,………………………………………………………………………………10分∴DFDF+DE =ODAE,即DFDF+2=524,∴DF=103…………………………………………………………………………………………11分【知识点】三角形内心的性质,圆周角定理,全等三角形的性质和判定,相似三角形的性质和判定24.(2018四川省德阳市,题号24,分值:14)如图,在等腰直角三角形ABC 中,∠BAC=90°,点A 在x 轴上,点B 在y 轴上,点C (3,1),二次函数y=13x 2+bx-32的图像经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x-h)2+k 的形式;(2)把△ABC 沿x 轴正方向平移,当点B 落在抛物线上时,求△ABC 扫过区域的面积;(3)在抛物线上是否存在异于点C 的点P ,使△ABP 是以AB 为直角边的等腰三角形?如果存在,请求出所有符合条件的点P 的坐标;如果不存在,请说明理由.【思路分析】对于(1),将点C 代入关系式求出b 值,即可得出关系式,并写成顶点式.对于(2),作CK ⊥x 轴,再根据“AAS ”得出△ACK ≌△BAO ,并结合全等三角形对应边相等,得出点B 的坐标,再设点D (m ,2),求出m 的值,进而得出AB ,AC ,再根据△ABC 扫过的面积=S 四边形AEDB +S △ABC 得出答案. 对于(3),当∠BAP=90°,可知△ACK ≌△APF ,可知点P 的坐标,再代入关系式验证即可.当∠ABP=90°时,求出点P 的坐标,再代入验证.【解题过程】(1)∵点C (3,1)在二次函数的图象上,∴1=13×32+3b-32, 解得b=-16,……………………………………………………………………………………..1分 ∴二次函数的解析式为y=13x 2--16x--32,………………………………………………………2分化成y=a(x-h)2+k 的形式为y=-13(x--14)2--7348;………………………………………………..3分 (2)作CK ⊥x 轴,∵∠ABO+∠BAO=90°,∠BAO+∠CAK=90°,∴∠ABO=∠CAK…………………………………………………………………………………4分∵AB=AC ,∠AOB=∠AKC=90°,∴△ACK ≌△BAO ,………………………………………………………………………………5分∴OA=CK=1,AK=OB=2,即B (0,2),…………………………………………………………………………………6分∴当点B 平移到抛物线上的点D 时,D (m ,2),由2=-13m 2--16m--32,解得m 1=-3,m 2=-72…………………………………………………………………………….8分而AB=AC=√22+1=√5,∴△ABC 扫过的面积=S 四边形AEDB +S △ABC =-72×2+-12×√5×√5=9.5………………………………10分 (3)①当∠BAP=90°,由△ACK ≌△APF ,此时,点P (-1,-1),当x=-1时,y=-13×(-1)2--16×(-1)- -32=-1,点P (-1,-1)在抛物线上;②当∠ABP=90°时,同理可得点P (-2,1),………………………………………………12分 当x=-2时,y=13×(-2)2-16×(-2)-32≠1,此时点P(-2,1)不在抛物线上.综上所述,符合条件的点P 有一个,P (-1,-1)…………………………………………14分【知识点】二次函数的应用,全等三角形的性质和判定。

德阳中考数学试卷真题

德阳中考数学试卷真题

德阳中考数学试卷真题一、单项选择题1. ( )已知直线l过点A(1,2),B(3,4)。

下列过点C(5,1)的直线中,与直线l垂直的是()。

A. y=x-3B. x-y+3=0C. x+y-7=0D. 3x-2y-7=02. ( )已知△ABC中,AB=AC,∠BAC=40°,则∠ABC=()。

A. 70°B. 50°C. 40°D. 20°3. ( )下列直线方程中,平行于x轴的直线是()。

A. y=3x-1B. y=2x+3C. y=-3D. y=7x+54. ( )当x=-1,y=0时,关于x轴对称的点是()。

A. (-1,-1)B. (-1,0)C. (-1,1)D. (0,1)5. ( )若a:b=2:3,且a=8,则b=()。

A. 12B. 16C. 18D. 246. ( )在一个凸多边形中,外角的个数为8,则该多边形的边数是()。

A. 4B. 5C. 6D. 77. ( )若4x-3y=7,求x的值,则x=()。

A. 7/3B. -7/3C. 7/4D. -7/48. ( )下列各组数字中,按顺序排列,比值永远递减的是()。

A. 0,1,1,2,1,3,2B. 1,2,3,3,3,4,4C. 1,3,5,7,5,9,7D. 3,5,6,7,9,12,169. ( )若△ABC中∠B=90°,AB=3,AC=4,则BC=()。

A. 5B. 7C. 8D. 910. ( )在△ABC中,已知∠B=35°,AC=4,BC=6,F为BC上的点,且AF垂直于BC,则AF的长度为()。

A. 2B. 3C. 4D. 5二、填空题11. ( ) 已知a+b=5,ab=4,求a²+b²的值:_________。

12. ( ) 已知m:2=1:3,n:4=1:2,求m+n的值:_________。

13. ( ) 如果一个数的5倍增加了50,得到的数是110,请你求出原数:_________。

德阳市中考数学试题及答案

德阳市中考数学试题及答案

德阳市中考数学试题及答案【正文部分】德阳市中考数学试题及答案一、选择题1. 在直角三角形 ABC 中,∠C = 90°,边 AB = 5,AC = 12。

则 BC 的长度为:A) 13 B) 5 C) 7 D) 172. 若 1+1/x=2/y=3/z,且y≠z,求 x 的值。

A) 10 B) 18 C) 19 D) 203. 如图所示,小明在一幅平面坐标系中取点 (x, y) ,若该点在直线OA 上(O 为坐标原点),则点 (x, y) 的坐标为:A) (8, 6) B) (−8, 6) C) (8, −6) D) (−8, −6)4. 如图所示,已知△ABC 中,D 为 BC 的中点,且 BD = CD = 2。

若△ABC 的面积为 14,求△ABD 的面积。

A) 3 B) 4 C) 5 D) 6二、填空题5. 已知函数 f(x) = x^2 + bx + c 与 x 轴交于两点,且交点的横坐标之和为 3,纵坐标之和为 6,则 b 的值为________,c 的值为________。

6. 设数列 {an} 满足 a1 = 1,an+1 = 3an + 2 (n ≥ 1),则 a5 的值为________。

7. 已知 log3 log24 + log8 (a^2 + 2) = 9,求实数 a 的值。

三、解答题8. 解方程组⎧ 3x + 2y = 4⎨ x^2 + y^2 = 259. 在△ABC 中,BD 是边 AC 上的中线,且 AB = 12,BD = 9。

求边 BC 的长度。

【答案部分】一、选择题1. A2. C3. D4. A二、填空题5. b = 2, c = 36. a5 = 737. a = 100三、解答题8. 解:将第一个方程乘以 3,并与第二个方程相减,得到:⎧ 9x + 6y = 12⎨ x^2 + y^2 = 25将第一个方程两边同时除以 3,得到:⎩ 3x + 2y = 4由第一个方程解得 x = 2 - 4y/3,代入第二个方程得:(2 - 4y/3)^2 + y^2 = 25化简并整理后得:y^2 + 16y/3 - 7 = 0解这个二次方程,可得 y = -6 或 y = 7/3当 y = -6 时,代入 x = 2 - 4y/3 可得 x = 10/3当 y = 7/3 时,代入 x = 2 - 4y/3 可得 x = -7/3所以,方程组的解为 (x, y) = (10/3, -6) 或 (-7/3, 7/3)。

与圆有关的位置关系-中考数学知识点分类汇编真题

与圆有关的位置关系-中考数学知识点分类汇编真题

知识点34 与圆有关的位置关系一、选择题1. (2018四川泸州,10题,3分)在平面直角坐标系内,以原点O 为原心,1为半径作圆,点P 在直线y =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )【答案】D【解析】由题可知,B (-2,0),C (0,32),P 为直线上一点,过P 作圆O 的切线PA ,连接AO ,则在Rt △PAO 中,AO=1,由勾股定理可得22AO PO PA -=,要想使PA 最小,要求PO 最小,所以过点O 作OP ⊥BC 于点P ,此时PO=3,PA=2【知识点】一次函数,圆的切线,勾股定理2. (2018四川内江,7,3)已知⊙O 1的半径为3cm ,⊙O 2的半径为2cm ,圆心距O 1O 2=4cm ,则⊙O 1与⊙O 2的位置关系是( )A .外离B .外切C .相交D .内切 【答案】C【解析】解:∵3-2<O 1O 2<3+2,∴⊙O 1与⊙O 2的位置关系是相交.故选择C . 【知识点】圆与圆的位置关系3. (2018江苏无锡,8,3分) 如图,矩形ABCD 中,G 是BC 的中点,过A 、D 、G 三点的O 与边AB 、CD 分别交于点E 、F.给出下列说法:(1)AC 与BD 的交点是O 的圆心;(2)AF 与DE 的交点是O 的圆心;(3)BC 与O相切.其中正确说法的个数是( ) A.0 B. 1 C. 2 D. 3【答案】C【思路分析】利用圆周角定理的推理确定O的圆心,进而判定(1)、(2)的正确性;连接OG,通过证明OG⊥BC 说明BC与O相切.【解题过程】∵矩形ABCD中,∴∠A=∠D=90°,∴AF与DE都是O的直径,AC与BD不是O的直径,∴AF与DE的交点是O的圆心,AC与BD的交点不是O的圆心,∴(1)错误、(2)正确.连接AF、OG,则点O为AF的中点,∵G是BC的中点,∴OG是梯形FABC的中位线,∴OG∥AB,∵AB⊥BC,∴OG⊥BC,∴BC与O相切.∴(3)正确.综上所述,正确结论有两个.【知识点】矩形的性质、圆周角定理的推论、梯形中位线的判定与性质、圆的切线的判定4.(2018·重庆B卷,10,4)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B.32D【答案】B.【解析】如下图,连接OD,则由AD切⊙O于点D,得OD⊥AC.∵在Rt△AOD中,∠A=30°,AD=,tan A=ODAD,∴OD=AD•,tanA=tan30°=3=2.∴AO=2OD=4,AB=OA+OB=6.∵∠AOD=90°-∠A=60°,∴∠ABD=12∠AOD=30°.∵BD平分∠ABC,∴∠ABC=2∠ABD=60°.∴∠C=90°=∠ADO.∴OD∥BC.∴AD AODC OB=42=.∴DC.【知识点】圆圆的切线相似三角形5. (2018山东烟台,10,3分)如图四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD 的延长线上,则∠CDE的度数是()A.56° B.62° C.68° D.78°【答案】C【解析】∵点I是△ABC的内心,∴AI、CI是△ABC的角平分线,∴∠AIC=90°+12∠B=124°,∴∠B=68°.∵四边形ABCD是⊙O的内接四边形,∴∠CDE=∠B=68°,故选C.【知识点】三角形内心;圆内接四边形的性质;6.(2018四川省德阳市,题号9,分值:3)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.第9题答图【答案】B.【解析】如图,设△ABC的边长为a,由正三角形的面积公式得S△ABC=,∴==,解得a=2或-2(舍),∴BC=2.∵∠BAC=60°,BO=CO,∴∠BOC=120°,则∠BCO=30°.∵OH⊥BC,∴BH=BC=1,在Rt△BOH中,BO=BH÷cos30°=,所以圆的半径r=.则OF=.如图,正六边形内接于圆,且半径为,可知∠EOF=60°,在△EOF中,OE=OF,OD⊥EF,∴∠EOD=30°.在Rt△DOE中,OD=OF·cos30°=×=1.所以边心距为1.【知识点】正多边形和圆1. (2018湖北鄂州,8,3分)如图,PA 、PB 是⊙O 的切线,切点为A 、B ,AC 是⊙O的直径,OP 与AB 相交于点D ,连接BC .下列结论:①∠APB =2∠BAC ;②OP ∥BC ;③若tanC =3,则OP =5BC ;④AC 2=4OD ·OP .其中正确的个数为( )A .4个B .3个C .2个D .1个 【答案】A .【思路分析】利用切线长定理证明Rt △APO ≌Rt △BPO ,再利用同角的余角相等,可证得∠AOP =∠C ,得到OP ∥BC ,∠APB =2∠BAC ,故①②正确;利用勾股定理和∠AOP =∠C ,可证得OP =11522AC BC ====,故③正确;利用两角对应相等的两个三角形相似的判定定理证明△ABC ∽△PAO ,再通过等量代换可证得AC 2=4OD ·OP ,故④正确. 【解析】解:A 选项,设OP 与⊙O 交于点E ,∵ PA 、PB 是⊙O 的切线,∴PA =PB ,∠PAO =∠PBO =90°,则在Rt △APO和Rt △BPO 中,∵OA OBAP BP==⎧⎨⎩,∴Rt △APO ≌Rt △BPO (HL ),∴∠APB =2∠APO =2∠BPO ,∠AOE =∠BOE ,∴∠AOP =∠C ,∴OP ∥BC ,故②正确;∵AC 是⊙O 的直径,∴∠ABC =90°,∴∠BAC +∠C =90°,∵∠PAO =90°,∴∠APO +∠AOP =90°,即∠C +∠APO =90°,∴∠APO =∠BAC , ∴∠APB =2∠APO =2∠BAC ,故①正确;∵tanC =3,∴tan ∠AOP =3,则在Rt △ABC 中,3AB BC=,则AB =3BC ,故AC ==,在Rt △BPO 中,3AP AO=,则AP =3OA ,故OP=11522AC BC ====,故③正确;∵OA =OC ,OP ∥BC ,∴OD 是△ABC 的中位线,∴OD =12BC ,BC =2OD ,在△ABC 和△P AO 中,∵∠OAP =∠ABC =90°,∠AOP =∠C ,∴△ABC ∽△PAO ,∴AC BC OP OA =,∴212AC OD OP AC =,∴4AC OD OP AC =,∴AC 2=4OD ·OP ,故④正确.故选A .【知识点】切线长定理;相似三角形的性质和判定;中位线定理;勾股定理;平形线的判定定理;全等三角形的判定定理2.(2018·重庆A卷,9,4)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C.若⊙O的半径为4,BC=6,则PA的长为()A.4 B..3 D.2.5【答案】A.【解析】如下图,连接OD.∵PC切⊙O于点D,∴OD⊥PC.∵⊙O的半径为4,∴PO=PA+4,PB=PA+8.∵OD⊥PC,BC⊥PD,∴OD∥BC.∴△POD∽△PBC.∴OD POBC PB=,即4468PAPA+=+,解得PA=4.故选A.【知识点】圆;直线与圆的位置关系;切线的性质;相似三角形的判定与3. (2018河北省,15,2)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.2【答案】B【解析】设△ABC的AB边上的高为h,△MNI的MN边上的高为r,周长为a,则△ABC的内切圆半径为r.∴△ABC的面积=AB·h=(AB+BC+AC)·r.∴4h=9r.∴.∵△MNI∽△ABC,∴【知识点】三角形的内心,三角形相似4. (2018湖北宜昌,12,3分)如图,直线AB是O的切线,C为切点,//OD AB交O于点D,点E在O 上,连接OC EC ED,,,则CED∠的度数为( )(第12题图)A.30° B.35° C.40° D.45°【答案】D【解析】∵直线AB 是O 的切线,C 为切点,∴∠OCB =90°,∵//OD AB ,∴∠COD =90°,∴∠CED =45°,故选择D.【知识点】圆的切线,圆心角,圆周角,平行线的性质.5. (2018广东省深圳市,10,3分)如图,一把直尺,80°的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B . . 6 D .【答案】D .【思路分析】由切线长定理定理可得,∠CAO =∠OAB ,从而求出∠BAO 的度数,再在Rt △OAB 中,用60°角的正切即可求出半径的长.【解析】解:如图,设圆心为点O ,设另一个切点为点C ,连接OA 、OB 、OC ,则由切线长定理可得,∠CAO =∠OAB =12(180°-60°)=60°,则在Rt △OAB 中,tan ∠BAO =OB AB,即t a n603OB =︒=解得OB =故直径为.故选D .【知识点】切线的性质;切线长定理;锐角三角函数6.(2018湖北荆门,9,3分)如图,在平面直角坐标系xOy 中,()4,0A ,()0,3B ,()4,3C ,I 是ABC ∆的内心,将ABC ∆绕原点逆时针旋转90后,I 的对应点I '的坐标为( )A .()2,3-B .()3,2- C.()3,2- D .()2,3- 【答案】A.【解析】∵I 是△ABC 的内心,()4,0A ,()0,3B ,()4,3C , ∴I 的坐标为(3,2),∴将ABC ∆绕原点逆时针旋转90后,I 的对应点I ′的坐标为(-2,3). 故选A.【知识点】三角形的内心,作图-旋转变换7. (2018山东省泰安市,9,3)如图,BM 与O 相切于点B ,若140MBA ∠=,则ACB ∠的度数为( )A .40B .50C .60D .70【答案】A【解析】(1)根据圆的切线性质可知:∠OBM=90°从而求得∠ABO=50°;(2)连接OA 、OB ,可求得∠AOB 的度数;(3)根据圆周角性质定理可得结论. 解:连接OA 、OB , ∵BM 与O 相切 ∴∠OBM=90°∵140MBA ∠= ∴∠ABO=50° ∵OA=OB ∴∠ABO=∠BAO =50° ∴∠AO B=80° ∴ACB ∠=40【知识点】圆的切线的性质,圆周角性质定理,等腰三角形性质 二、填空题1. (2018四川内江,24,6) 已知△ABC 的三边a ,b ,c 满足a +2b +|c -6|+28=10b ,则△ABC的外接圆半径= . 【答案】258【思路分析】将已知a +2b +|c -6|+28=10b 进行分组,配成完全平方式,利用平方数,绝对值的非负性求出a ,b ,c 的值,从而确定三角形的形状,然后求出外接圆半径.【解题过程】解:原式整理得:2b -10b +25+a -1-4+|c -6|=0,()25b -+2-+4+|c -6|=0,()25b -+)22+|c -6|=0,∵()25b -≥0,)22≥0,|c -6|≥0,∴b =5,c =6,a =5,∴△ABC 为等腰三角形.如图所示,作CD ⊥AB ,设O 为外接圆的圆心,则OA =OC =R ,∵AC =BC =5,AB =6,∴AD =BD =3,∴CD 4,∴OD =CD -OC =4-R ,在Rt △AOD 中,2R =23+()24R -,解得R =258.BCOA【知识点】完全平方公式;绝对值;勾股定理;等腰三角形外接圆;2. (2018安徽省,12,5分)如图,菱形ABOC 的AB ,AC 分别与⊙O 相切于点D,E 若点D 是AB 的中点,则∠DOE【答案】60°【解析】连接OA ,根据菱形的性质得到△AOB 是等边三角形,根据切线的性质求出∠AOD ,同理计算即可. 解:连接OA ,∵四边形ABOC 是菱形, ∴BA=BO , ∵OA=OB ,∴△AOB 是等边三角形, ∵AB 与⊙O 相切于点D , ∴OD ⊥AB ,∴∠AOD=12∠AOB=30°, 同理,∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°, 故答案为:60.【知识点】切线的性质;菱形的性质.3. (2018湖南岳阳,16,4分).如图,以AB 为直径的O 与CE 相切于点C ,CE 交AB 的延长线于点E ,直径18AB =,30A ∠=,弦C D A B ⊥,垂足为点F ,连接AC ,OC ,则下列结论正确的是 .(写出所有正确结论的序号)①BC BD =;②扇形OBC 的面积为274π;③OC F O E C ∆∆;④若点P 为线段OA 上一动点,则AP OP ⋅有最大值20.25.【答案】①③④.【解析】解:∵AB 是⊙O 的直径,且CD ⊥AB , ∴BC BD =,故①正确; ∵∠A=30°, ∴∠COB=60°, ∴扇形OBC=ππ227)2(360602=AB ··,故②错误; ∵CE 是⊙O 的切线, ∴∠OCE=90°,∴∠OCD=∠OFC ,∠EOC=∠COF ,∴OCF OEC ∆∆,故③正确;设AP=x ,则OP=9-x ,∴AP ·OP=x (9-x )=-x 2+9x =481)29(2+-x -, ∴当x =29时,AP ·OP 的最大值为481=20.25,故④正确. 故答案为①③④.【知识点】垂径定理,扇形面积计算公式,相似三角形的判定,二次函数的性质4. (2018江苏连云港,第14题,3分)如图,AB 是⊙O 的弦,点C 在过点B 的切线上,且OC ⊥OA ,OC 交AB于点P ,已知∠OAB =22°,则∠OCB =__________°. 【答案】44【解析】解:连接OB .∵OA =OB ,∴∠OBA =∠OAB =22°,∴∠AOB =136°,∵OC ⊥OA ,∴∠AOC =90°,∴∠COB =46°,∵CB 是⊙O 的切线,∴∠OBC =90°,∴∠OCB =90°-46°=44°,故答案为:44°.【知识点】切线的性质;直角三角形的性质5. (2018江苏泰州,16,3分)如图,△ABC 中,∠ACB =90°,sin A =513,AC =12,将△ABC 绕点C 顺时针旋转90°得到△A′B′C ,P 为线段A′B′上的动点,以点P 为圆心、PA '长为半径作⊙P ,当⊙P 与△ABC 的边相切时,⊙P 的半径为 .【答案】15625或10213【解析】设⊙P 的半径为r ,∴BCAB=sin A=513,222BC AC AB+=,∵AC=12,∴BC=5,AB=13,由旋转得∠A′CB′=∠ACB=90°,∠A′=∠A,A′C= AC=12,B′C= BC=5,A′B′=AB=13,∴∠A′CB=180°,∴A′、C、B′三点共线,∵点P到直线BC的距离小于半径P′A,∴⊙P与直线BC始终相交,过点P作PD⊥AC于点D,则∠B′DP=∠B′CA′=90°,∵∠DB′P=∠CB′A′,∴△B′DP∽△B′CA′,∴PD PBA C A B'=''',∴13 1213 PD r-=,∴12(13)12121313rPD r-==-,当⊙P与AC边相切时,PD=PA′,∴121213r r-=,∴15625r=,延长A′B′交AB于点E,∵∠A+∠B=90°,∠A′=∠A,∴∠A′+∠B=90°,同上得122041313A E A B''==,当⊙P与AB边相切时,A′E=2PA′,∴10213r=,综上所述,⊙P的半径为15625或10213.【知识点】锐角三角函数,直线与圆的位置关系6.(2018山东威海,16,3分)在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为______.【答案】135°【解析】连接CE,∵∠ADC=90°,∴∠DAC+∠DCA=90°;∵⊙E内切于△ADC,∴∠EAC+∠ECA=45°,∴∠AEC=135°;∵△AE≌△EB,∴∠AEB=∠AEC=135°.【知识点】三角形的内切圆、全等三角形的判定与性质7. (2018四川省宜宾市,13,3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,S= .(结果保留根号)【答案】【解析】如图:根据题意可知OH=1,∠BOC=60°,∴△OBC为等边三角形,∴BHOHtan∠BOH,∴,∴S=121×1 2【知识点】正多边形的计算;解直角三角形8. (2018浙江湖州,14,4)如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是.【答案】70°【解析】∵⊙O内切于△ABC,∴OB平分∠ABC.∵∠ABC=40°,∴∠OBD=20°.∴∠BOD=70°.故填70°. 【知识点】三角形的内切圆,切线长定理9.(2018宁波市,17题,4分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为___________【答案】3或【解析】解:(1)当⊙P 与DC 相切时,如图(1)所示,设BP=x ,则PC=8-x;∵DC 于圆相切,∴PC=PM 又∵M 是AB 中点 ∴BM=4在Rt △BMP 中,根据勾股定理可得 ∵BM 2+BP 2=MP 2∴x 2+42=(8-x)2∴解得:x=3 ∴BP=3 (2)如图(2)所有 当⊙P 与DA 相切时过点P 作PE ⊥AD,交AD 与点E∵⊙P 与DA 相切与点E ∴EP=MP=8在Rt △BMP 中,根据勾股定理可得 ∵BM 2+BP 2=MP 2∴BP=综上所述:BP 的值为3或【知识点】切线的判定、勾股定理10. (2018浙江温州,16,5).小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2(第17题图)图2图1所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正六边形的面积为2cm 2,则该圆的半径为 cm.【答案】8【思路分析】设小正六边形的中心为O 连接OP,OA,OB,OC,OD ,连接CP 得两个等边三角形,利用小正六边形的面积得小正六边形的边长为337所以得OP=7,在△OPB 中解三角形得到OB=8所以圆的半径为8 【解题过程】设小正六边形的中心为O,连接OP,OB,OC,OD ,连接CP 得两个等边三角形,利用小正六边形的面积为6个小等边三角形得设小正六边形的边长为x,所以每个小等边三角形的面积为243x ,得32494362=⨯x ,得x=337所以再利用四边形OCPD 为菱形得OP=73337=⨯,在△OPB 中解三角形,过点P 作PH ⊥OB 因为∠OBP=60°∠HPB=30°得到BH=2521=BP ,PH=235,所以在△OPH 中利用勾股定理得OH=211,所以OB=8所以圆的半径为8【知识点】圆的内接正六边形的性质,正六边形的面积,解三角形,菱形的性质和判定,等边三角形的判定和性质。

2018年四川德阳市中考数学模拟试题含答案详解

2018年四川德阳市中考数学模拟试题含答案详解

德阳市2018年初中毕业生学业考试与高中阶段学校招生考试模拟试卷(满分:120分考试时间:120分钟)第I卷选择题(共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列根式中,与是同类二次根式的是()A.B.C.D.2.已知点A(a,1)与点A′(﹣5,b)是关于原点O的对称点,则a+b的值为()A.1 B.5C.6D.43.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3C.0D.0或34.下列图形中,既是轴对称图形又是中心对称图形的有()①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆.A.1个B.2个C.3个D.4个5.如图,⊙O中,弦AB、CD相交于点P,∠A=40°,∠APD=75°,则∠B=()第5题A.15°B.40°C.75°D.35°6.下列关于概率知识的说法中,正确的是()A.“明天要降雨的概率是90%”表示:明天有90%的时间都在下雨B.“抛掷一枚硬币,正面朝上的概率是”表示:每抛掷两次,就有一次正面朝上C.“彩票中奖的概率是1%”表示:每买100张彩票就肯定有一张会中奖D.“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是7.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2013的值为()A.2011 B.2012 C.2013 D.20148.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=59.要使代数式有意义,则a的取值范围是()A.a≥0 B.a≠C.a≥0且a≠D.一切实数10.如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6cm,则AB的长为()第10题A.4cm B.3cm C.2cm D.2cm11.到2014底,我县已建立了比较完善的经济困难学生资助体系.某校2012年发放给每个经济困难学生450元,2014年发放的金额为625元.设每年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.450(1+x)2=625 B.450(1+x)=625C.450(1+2x)=625 D.625(1+x)2=45012.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()第12题A.①②③B.①③④C.③④⑤D.②③⑤第II卷非选择题(共84分)二、填空题(本大题共5小题,每小题3分,共15分.请把答案填在题中的横线上)13.如图,BC=EC,∠1=∠2,要使△ABC≌△DEC,则应添加的一个条件为.(答案不唯一,只需填一个).第13题14.关于x的一元二次方程﹣x2+(2m+1)x+1﹣m2=0无实数根,则m的取值范围是.15.化简:=.16.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.第16题17.观察下面的图形,它们是按一定规律排列的,依照此规律,第个图形共有120个★.第17题三、解答题(本大题共7小题,共69分,解答应写出必要的文字说明,证明过程或演算步骤)18.(4分)计算:.19.(6分)如图,把质地均匀的A、B两个转盘都分成三等分,玲玲和兰兰利用它们做游戏,同时自由转动两个转盘,当两个指针所停区域(停在分界线上重转)的数都是奇数或都是偶数时,则玲玲获胜,当两个指针所停区域的数是一奇一偶时,则兰兰获胜,列表或画树状图,用概率的知识说明这个游戏对她们是否公平?第19题20.(8分)某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个.市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?21.(12分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3)、B(1,2),△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1,直接写出点A1,B1的坐标;(2)在旋转过程中,点B经过的路径的长;(3)求在旋转过程中,线段AB所扫过的面积.第21题22.(12分)如图,已知A(﹣4,2)、B(a,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点;(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;(3)求△AOB的面积.第22题23.(13分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)第23题24.(14分)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.第24题德阳市2018年初中毕业生学业考试与高中阶段学校招生考试模拟试卷(参考答案)一、1.A解析:A、与被开方数相同,是同类二次根式;B、=2 与被开方数不同,不是同类二次根式;C、=2与被开方数不同,不是同类二次根式;D、与的根指数不同,不是同类二次根式.故选A.2.D解析:∵点A(a,1)与点A′(﹣5,b)是关于原点O的对称点,∴a=5,b=﹣1,∴a+b=4,故选D.3.A解析:∵x=2是一元二次方程x2+mx+2=0的一个解,∴4+2m+2=0,∴m=﹣3.故选A.4.D解析:①不是轴对称图形,是中心对称图形,不符合题意;②即是轴对称图形,又是中心对称图形,符合题意;③是轴对称图形,不是中心对称图形,不符合题意;④既是轴对称图形,又是中心对称图形,符合题意.⑤既是轴对称图形,又是中心对称图形.符合题意;⑥既是轴对称图形,又是中心对称图形.符合题意.共4个既是轴对称图形又是中心对称图形.故选D.5.D解析:∵∠APD=75°,∴∠BPD=105°,由圆周角定理,可知∠A=∠D(同弧所对的圆周角相等),在三角形BDP中,∠B=180°﹣∠BPD﹣∠D=35°,故选D.6.D解析:A、“明天要降雨的概率是90%”表示:明天有90%下雨的可能,故此选项错误;B、抛掷一枚硬币,正面朝上的概率是”表示,每抛掷一次出现正面向上与向下的可能都是,并不是一定是,故此选项错误;C、“彩票中奖的概率是1%”表示:每买100张彩票就可能有一张会中奖,故此选项错误;D、“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是,此选项正确.故选D.7.A 解析:根据题意,得m2﹣m﹣1=0,所以m2﹣m=1,所以m2﹣m+2013=1+2013=2014.故选D.8.A解析:方程移项,得x2+4x=﹣1,配方,得x2+4x+4=3,即(x+2)2=3.故选A.9.C解析:根据题意,得,解得a≥0且a≠.故选C.10.B解析:连结OA,如图,∵∠ACD=22.5°,∴∠AOD=2∠ACD=45°,∵⊙O的直径CD垂直于弦AB,∴AE=BE,△OAE为等腰直角三角形,∴AE=OA,∵CD=6,∴OA=3,∴AE=,∴AB=2AE=3(cm).故选B.11.A解析:设每年发放的资助金额的平均增长率为x,则2012年发放给每个经济困难学生450(1+x)元,2013年发放给每个经济困难学生450(1+x)2元,由题意,得450(1+x)2=625.故选A.12.C 解析:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故②错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故④正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故⑤正确.综上所述,③④⑤正确.故选C.二、13.AC=CD解析:添加的条件是AC=CD,理由是:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA,∴∠BCA=∠ECD,∵在△ABC和△DCE中,,∴△ABC≌△DCE.14.m<﹣解析:∵关于x的一元二次方程﹣x2+(2m+1)x+1﹣m2=0的二次项系数a=﹣1,一次项系数b=(2m+1),常数项c=1﹣m2,∴△=(2m+1)2﹣4×(﹣1)(1﹣m2),即△=4m+5,又∵原方程无实根,∴△<0,即4m+5<0,解得m<﹣.15.a﹣b解析:原式=(﹣)÷=•=a ﹣b.16.解析:由题意,可知点P1、P2、P3、P4坐标分别为:(1,2),(2,1),(3,),(4,).解法一:∵S1=1×(2﹣1)=1,S2=1×(1﹣)=,S3=1×(﹣)=,∴S1+S2+S3=1++ =.解法二:∵图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,∴1×2﹣×1=.17.15解析:通过观察,得到星的个数分别是,1,3,6,10,15,…,第一个图形为:1×(1+1)÷2=1,第二个图形为:2×(2+1)÷2=3,第三个图形为:3×(3+1)÷2=6,第四个图形为:4×(4+1)÷2=10,…,所以第n个图形为:n(n+1)÷2个星,设第m个图形共有120个星,则m(m+1)÷2=120,解得m=15.三、18.解:原式=1+2+3﹣5﹣2=4﹣5.19.解:同时自由转动两个转盘,出现的情况如图,共有9种等可能的结果,两个指针所停区域的数都是奇数的概率为,两个指针所停区域的数都是偶数的概率为,两个指针所停区域的数是一奇一偶的概率为+>,所以这个游戏对他们不公平,玲玲获胜的可能性大.20.解:(1)设售价应涨价x元,则(16+x﹣10)(120﹣10x)=770,解得x1=1,x2=5.又要尽可能的让利给顾客,则涨价应最少,所以x2=5(舍去).所以x=1.答:专卖店涨价1元时,每天可以获利770元.(2)设单价涨价x元时,每天的利润为w1元,则w1=(16+x﹣10)(120﹣10x)=﹣10x2+60x+720 =﹣10(x﹣3)2+810(0≤x≤12),即定价为16+3=19(元)时,专卖店可以获得最大利润810元.设单价降价z元时,每天的利润为w2元,则w2=(16﹣z﹣10)(120+30z)=﹣30z2+60z+720 =﹣30(z﹣1)2+750(0≤z≤6),即定价为16﹣1=15(元)时,专卖店可以获得最大利润750元.综上所述,专卖店将单价定为每个19元时,可以获得最大利润810元.21.解:(1)△A1OB1如图所示,A1(﹣3,3),B1(﹣2,1).(2)由勾股定理,得OB==,所以弧BB1==π.(3)由勾股定理,得OA==3,S扇形OAA1==π,S扇形OBB1==π,则线段AB所扫过的面积为:π﹣π=π.22.解:(1)∵m=xy=(﹣4)×2=﹣8,∴﹣4a=﹣8,∴a=2,则y=kx+b过A(﹣4,2),B(2,﹣4)两点,∴解得k=﹣1,b=﹣2.故B(2,﹣4),一次函数的解析式为y=﹣x﹣2.(2)一次函数的值小于反比例函数值的x的取值范围:﹣4<x<0或x>2.(3)由(1),得一次函数y=﹣x﹣2,令x=0,解得y=﹣2,∴一次函数与y轴交点为C(0,﹣2),∴OC=2,∴S△AOB=S△AOC+S△BOC=OC•|y点A横坐标|+OC•|y点B横坐标|=×2×4+×2×2=6.S△AOB=6.23.(1)证明:连结OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)证明:如图,∠DOE=∠ODB+∠OBD=2∠DBE,由(1),得OD⊥EC于点D,∴∠E+∠C=∠E+∠DOE=90°,∴∠C=∠DOE=2∠DBE;(3)解:作OF⊥DB于点F,连结AD,由EA=AO可得:AD是Rt△ODE斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°,又∵OB=AO=2,OF⊥BD,∴OF=1,BF=,∴BD=2BF=2,∠BOD=180°﹣∠DOA=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=﹣.24.解:(1)∵点A(﹣1,0)在抛物线上,∴,解得,∴抛物线的解析式.∵,∴顶点D的坐标为;(2)△ABC是直角三角形.理由如下:当x=0时,y=﹣2,∴C(0,﹣2),则OC=2.当y=0时,,∴x1=﹣1,x2=4,则B(4,0),∴OA=1,OB=4,∴AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)作出点C关于x轴的对称点C′,则C'(0,2).连结C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,CD一定,当MC+MD的值最小时,△CDM的周长最小.设直线C′D的解析式为y=ax+b(a≠0),则,解得,∴.当y=0时,,则,∴.。

四川省德阳市2018年中考数学试题(解析)

四川省德阳市2018年中考数学试题(解析)

2018年四川省德阳市中考数学试卷解读一、选择题<共12小题,每小题3分,满分36分)1.<2018•德阳)实数﹣3的相反数是< )A.3B.C.D.﹣2考点:实数的性质。

专题:常规题型。

分析:根据相反数的定义,只有符合不同的两个数叫做互为相反数解答.解答:解:﹣3的相反数是3.故选A.点评:本题考查了互为相反数的定义,熟记概念是解题的关键.2.<2018•德阳)某厂2018年用于购买原材料的费用2350000元,实数2350000用科学记数法表示为< )lNSrI31BEeA.2.35×105B.23.5×105C.0.235×105D.2.35×106考点:科学记数法—表示较大的数。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2350000用科学记数法表示为:2.35×106.故选:D.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.<2018•德阳)使代数式有意义的x的取值范围是< )A.x≥0B.C.x≥0且D.一切实数考点:二次根式有意义的条件;分式有意义的条件。

分析:根据分式有意义的条件可得2x﹣1≠0,根据二次根式有意义的条件可得x≥0,解出结果即可.解答:解:由题意得:2x﹣1≠0,x≥0,解得:x≥0,且x ≠,故选:C.点评:此题主要考查了分式有意义的条件,二次根式有意义的条件,二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.4.<2018•德阳)某物体的侧面展开图如图所示,那么它的左视图为< )A.B.C.D.考点:几何体的展开图;简单几何体的三视图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

德阳市2018年初中毕业生学业考试与高中阶段学校招生考试
数学试卷
说明:1.本试卷分第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题、填空题,第Ⅱ卷为解答题.全卷共7页.考生作答时,须将答案写在答题卡上,在本试卷上、草稿纸上答题无效,考试结束后,将试卷及答题卡交回.
2.本试卷满分120分,答题时间为120分钟.
第Ⅰ卷(选择题、填空题,共51分)
一、选择题(本大题共12小题,每小题3分,共36分)
()
第Ⅱ卷(共69分)
三、解答题
18.(6分)计算:3630cos 4)23(21)3(03
2+--⎪⎭⎫ ⎝⎛+--o 19.(7分)如图,E,F 分别是矩形ABCD 的边AD,AB 上的点,若AE=DC=2ED,且EF⊥EC.
(1)求证:F 为AB 的中点;
(2)延长EF 与CB 的延长线相交于点H,连接AH,已知ED=2,求AH 的值.
20.(11分)某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况。

老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直
根据统计表、图提提供的信息,解答下面的问题:
分)为配合“一带一路”国家倡议,某铁路货运集裝箱物流园区正式启动了2期扩建工
两个工程公司承担建设,已知A工程公司单独建设完成
23.(11分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线
和三角形ABC的外接圆O相交于点D,连结DB.
(1)求证:DH=DB;
(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5,①求证:EF为圆O的切线;②求DF的长.。

相关文档
最新文档