湖北省武汉市武昌区部分学校2016届九年级上期末数学试卷含答案解析
武汉市武昌部分学校2016届九年级1月联考数学试题含答案
23、(本题 10分)已知,AB是⊙O 的直径,点 P 在弧 AB上(不含点 A、B),把△AOP 沿 OP对折,点 A 的对应点 C 恰好落在⊙O 上.
(1)当 P、C 都在 AB上方时(如图 1),判断 PO与 BC的位置关系; (2)当 P 在 AB上方而 C 在 AB下方时(如图 2),(1)中结论还成立吗?证明你的结论; (3)当 P、C 都在 AB上方时(如图 3),过 C 点作 CD⊥直线 AP于 D,且 CD是⊙O 的切线,证明: AB=4PD .
19、(本题 8 分)如图,已知⊙O 是△ABC的外接圆,AB是⊙O 的直径,D 是 AB延长线上的一点, AE⊥CD交 DC的延长线于 E,CF⊥AB于 F,且 CE=CF. (1)求证:DE是⊙O 的切线; (2)若 AB=6,BD=3,求 AE和 BC的长.
20、(本题 8 分)如图,在平面直角坐标系 xOy中,△AOB三个顶点的坐标分别为 O(0,0)、A(-2, 3)、B(-4,2),将△AOB绕点 O 顺时针旋转 90°后,点 A、O、B 分别落在点 A'、O'、B'处.
B.1
C.-9
D.9
10、如图,⊙A 与⊙B 外切于点 D,PC、PD、PE分别是圆的切线,C、D、E 是切点,若∠CDE=x°, ∠ECD=y°,⊙B 的半径为 R,则弧 DE的长度是( )
π(90 ‒ x)R π(90 ‒ y)R
A.
90
B.
90
.
π(180 ‒ x)R
B.C. 180
D.
π(180 ‒ y)R 180
16、如图,扇形 OAB中,∠AOB=60°,扇形半径为 4,点 C 在弧 AB上,CD⊥OA,垂足为 D,当△OCD 的面积最大时,图中阴影部分的面积为____________
湖北省武汉市2016年初中毕业生考试数学试题(有答案)
2016年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2的值在( ) A .0和1之间B .1和2之间C .2和3之间D .3和4之间2.若代数式在31x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x =33.下列计算中正确的是( )4.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +9 6.已知点A (a ,1)与点A ′(5,b )关于坐标原点对称,则实数a 、b 的值是( ) A .a =5,b =1B .a =-5,b =1C .a =5,b =-1D .a =-5,b =-17.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )8.某车间20名工人日加工零件数如下表所示: 日加工零件数4 5 6 7 8 人数 26543这些工人日加工零件数的众数、中位数、平均数分别是( )A .5、6、5B .5、5、6C .6、5、6D .5、6、69.如图,在等腰Rt △ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( ) A .π2B .πC .22D .210.平面直角坐标系中,已知A (2,2)、B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .5B .6C .7D .8二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算5+(-3)的结果为___________12.某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为___________13.一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小正方体,则朝上一面的数字是5的概率为___________14.如图,在□ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD ′E 处,AD ′与CE 交于点F .若∠B =52°,∠DAE =20°,则∠FED ′的大小为___________15.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b 为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为___________5,则BD的长为___________ 16.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5三、解答题(共8题,共72分)17.(本题8分)解方程:5x+2=3(x+2)18.(本题8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE19.(本题8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图请你根据以上的信息,回答下列问题:(1) 本次共调查了__________名学生,其中最喜爱戏曲的有__________人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是__________(2) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数20.(本题8分)已知反比例函数xy 4=(1) 若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值 (2) 如图,反比例函数xy 4=(1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积21.(本题8分)如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E (1) 求证:AC 平分∠DAB(2) 连接BE 交AC 于点F ,若cos ∠CAD =54,求FCAF 的值22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:产品 每件售价(万元) 每件成本(万元) 每年其他费用(万元) 每年最大产销量(件) 甲 6 a 20 200 乙201040+0.05x 280其中a 为常数,且3≤a ≤5(1) 若产销甲乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式 (2) 分别求出产销两种产品的最大年利润(3) 为获得最大年利润,该公司应该选择产销哪种产品?请说明理由23.(本题10分)在△ABC 中,P 为边AB 上一点 (1) 如图,若∠ACP =∠B ,求证:AC 2=AP ·AB(2) 若M 为CP 的中点,AC =2① 如图2,若∠PBM =∠ACP ,AB =3,求BP 的长② 如图3,若∠ABC =45°,∠A =∠BMP =60°,直接写出BP 的长24.(本题12分)抛物线y =ax 2+c 与x 轴交于A 、B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方(1) 如图1,若P (1,-3)、B (4,0) ① 求该抛物线的解析式② 若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标(2) 如图2,已知直线P A 、PB 与y 轴分别交于E 、F 两点.当点P 运动时,OCOFOE 是否为定值?若是,试求出该定值;若不是,请说明理由参考答案。
2016年武汉市初中毕业生学业考试数学试卷及答案解析
2016年武汉市初中毕业生学业考试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2的值在( ) A .0和1之间B .1和2之间C .2和3之间D .3和4之间2.若代数式在31x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x =33.下列计算中正确的是( )A .a ·a 2=a 2B .2a ·a =2a 2C .(2a 2)2=2a 4D .6a 8÷3a 2=2a 44.不透明的袋子中装有性状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.运用乘法公式计算(x +3)2的结果是( )A .x 2+9B .x 2-6x +9C .x 2+6x +9D .x 2+3x +96.已知点A (a ,1)与点A ′(5,b )关于坐标原点对称,则实数a 、b 的值是( ) A .a =5,b =1B .a =-5,b =1C .a =5,b =-1D .a =-5,b =-1 7.如图是由一个圆柱体和一个长方体组成的几何体,其左视图是( )8.某车间20名工人日加工零件数如下表所示:日加工零件数4 5 6 7 8 人数265 43这些工人日加工零件数的众数、中位数、平均数分别是( )A .5、6、5B .5、5、6C .6、5、6D .5、6、69.如图,在等腰Rt △ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点.当点P 沿半圆从点A 运动至点B 时,点M 运动的路径长是( ) A .π2 B .π C .22 D .210.平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.计算5+(-3)的结果为_______.12.某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为___________.13.一个质地均匀的小正方体,6个面分别标有数字1、1、2、4、5、5.若随机投掷一次小14.如图,在□ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE 交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为_______.15.将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为_________.16.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD 的长为_______.三、解答题(共8题,共72分)17.(本题8分)解方程:5x+2=3(x+2) .18.(本题8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.19.(本题8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图:18430%8%6%动画新闻体育娱乐戏曲节目类型戏曲娱乐动画体育新闻人数2468101214161820请你根据以上的信息,回答下列问题:(1) 本次共调查了_____名学生,其中最喜爱戏曲的有_____人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是______;(2) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.20.(本题8分)已知反比例函数xy 4=. (1) 若该反比例函数的图象与直线y =kx +4(k ≠0)只有一个公共点,求k 的值; (2) 如图,反比例函数xy 4=(1≤x ≤4)的图象记为曲线C 1,将C 1向左平移2个单位长度,得曲线C 2,请在图中画出C 2,并直接写出C 1平移至C 2处所扫过的面积.21.(本题8分)如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E . (1) 求证:AC 平分∠DAB ;(2) 连接BE 交AC 于点F ,若cos ∠CAD =54,求FCAF 的值.22.(本题10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如下表:产品 每件售价(万元) 每件成本(万元) 每年其他费用(万元) 每年最大产销量(件) 甲 6 a 20 200 乙201040+0.05x 280其中a 为常数,且3≤a ≤5.(1) 若产销甲、 乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.(本题10分)在△ABC中,P为边AB上一点.(1) 如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2) 若M为CP的中点,AC=2,①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.24.(本题12分)抛物线y =ax 2+c 与x 轴交于A 、B 两点,顶点为C ,点P 为抛物线上,且位于x 轴下方.(1)如图1,若P (1,-3)、B (4,0), ① 求该抛物线的解析式;② 若D 是抛物线上一点,满足∠DPO =∠POB ,求点D 的坐标;(2) 如图2,已知直线P A 、PB 与y 轴分别交于E 、F 两点.当点P 运动时,OCOFOE 是否为定值?若是,试求出该定值;若不是,请说明理由.xx y yPFEA B C O O CB A2016年武汉市初中毕业生学业考试数学试卷2016年武汉市中考数学试卷答案及解析一、选择题:1、B2、C3、B4、A5、C6、D7、A8、D9、B 10、A二、填空题: 11、2 12、6.3 ×13、 14、36° 15、-4≤b ≤-2 16、2第15题解析:画出如图所示的示意图,列出不不等式组0<-<3;由x=0代入y=-2x-b 满足:-b ≥2;由x=3代入y=2x+b 满足:6+b ≥2解得:-4≤b ≤-2 第16题解析:方法一:如图①先求AC=5,易证+=则AC ⊥CD;作CE ⊥BC,取CE=2,连接AE,BE 则⊿CAE ∽⊿CDB ∴BD=2AE=2第9题 第10题方法二:作DH⊥BC于H,易证⊿ABC∽⊿CHD ,则CH=6,DH=8BD==2三、解答题:17、解:去括号,得5x+2=3x+6移项,得2x=4系数化为1,得x=218、证明:∵BE=CF∴BE+EC=CF+EC即BC=EF在△ABC与△DEF中∴△ABC≌△DEF(SSS)∴∠B=∠DEF∴AB∥DE19、(1)50;3;72°(2)人数:200×8%=160(人)20、(1)解:根据题意得即k+4x-4=0又因为直线与双曲线只有一个公共点,则⊿=-4k×(-4)=0∴k=-1(2)如图所示:将FID割补到EHB处,ECA割补到FGC处得到矩形IGCH,扫过的面积等于矩形IGCH的面积;即==2×3=621、(1)证明:连接OC,则OC⊥CD又∵AD⊥CD ∴AD∥OC∴∠CAD=∠OCA又∵AO=CO∴∠CAO=∠OCA∴∠CAD=∠CAO∴AC平分∠DBA(2)解:连接BE交OC于H,则OC⊥BE,∴OC∥AD∴∠CAD=∠ACO∴COS∠HCF=,设HC=4m,则FC=5m,FH=3m,又∵△AEF∽△CHF,设EF=3a,则AF=5a AE=4a∴OH=2a∴BH=HE=3a+3 OB=OC=2a+4在Rt△OBH中,+=化简得,9+2x-7=0解得,x=,(另一根为负数舍去)∴==22、解:(1)=(6-a)x-20,(0<x≤200),=-0.05+10x-40, (0<x≤80) (2)甲产品:∵3≤a≤5 ∴6-a>0∴随的x增大而增大,∴当x=200时的最大值为1180-200a,(3≤a≤5)乙产品:=-0.05+460, (0<x≤80)∴当0<x≤80时,随x的增大而增大当x=80时的最大值=440(万元)∴甲产品的最大年利润为(1180-200a)万元,乙产品的最大利润为440万元;(3)①当>时,即1180-200a>440,解得,3≤a<3.7此时选择甲产品。
武汉市部分学校联考2016届九年级上期末数学试卷含答案解析
2.如图汽车标志中不是中心对称图形的是(
)
A.
B.
C.
D.
3.袋子中装有 10 个黑球、1 个白球,它们除颜色外无其他差别,随机从袋子中摸出一个
球,则(
)
A.这个球一定是黑球
B.摸到黑球、白Biblioteka 的可能性的大小一样C.这个球可能是白球
D.事先能确定摸到什么颜色的球
4.抛物线 y=﹣3(x﹣1)2+2 的对称轴是(
21.图中是抛物线形拱桥,当拱顶离水面 2m 时,水面宽 4m,建立如图所示的平面直角坐 标系: (1)求拱桥所在抛物线的解析式; (2)当水面下降 1m 时,则水面的宽度为多少?
22.用一段长 32m 的篱笆和长 8m 的墙,围成一个矩形的菜园.
(1)如图 1,如果矩形菜园的一边靠墙 AB,另三边由篱笆 CDEF 围成 ①设 DE 等于 x m,直接写出菜园面积 y 与 x 之间的函数关系式,并写出自变量的取值范 围; ②菜园的面积能不能等于 110m2?若能,求出此时 x 的值;若不能,请说明理由; (2)如图 2,如果矩形菜园的一边由墙 AB 和一节篱笆 BF 构成,另三边由篱笆 ADEF 围 成,求菜园面积的最大值. 23.如图,∠BAC=60°,∠CDE=120°,AB=AC,DC=DE,连接 BE,P 为 BE 的中点.
2015-2016 学年湖北省武汉市部分学校联考九年级(上)期末数 学试卷
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1.将方程 x2﹣8x=10 化为一元二次方程的一般形式,其中二次项系数为 1,一次项系数、常
数项分别是(
)
A.﹣8、﹣10 B.﹣8、10 C.8、﹣10 D.8、10
(1)如图 1,若 A、C、D 三点共线,求∠PAC 的度数;
湖北省武汉市武昌部分学校九年级数学1月联考试题 新人
湖北省武汉市武昌部分学校2016届九年级数学1月联考试题命题人: 审题人:一、选择题(每小题3分,共30分)1、方程2x2 -3x+2=0的二次项系数和一次项系数分别为()A.3和-2B.2和-3C.2和3D.-3和22、一元二次方程总有实数根,则m应满足的条件是()A. B. m C. D.3、抛物线y=向右平移1个单位,再向上平移2个单位后所得到抛物线为()A. y =B. y =C. y =D.y=4、已知圆锥的底面半径是3,高是4,则这个圆锥的全面积是()A. B. C. D.5、如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A = 22.5°,OC = 4 则CD的长等于()A.2B.4C.4D.86、在平面直角坐标系中,点M(3,-5)关于原点对称的点的坐标是()A.(-3,-5) B.(3,5)C.(5,-3) D.(-3,5)7、如图,在Rt∆ABC中,∠C=90°,∠B = 30°,BC = 4cm,以点C为圆心,以2cm长为半径作圆,⊙C与AB的位置关系是()相离 B.相切 C.相交 D.相交或相切8、用配方法解方程时,配方后得到的方程为() B.C. D.9、已知二次函数y= -(x+h)2,当x<-3时,y随x增大而增大,当x>0时,y随x增大而减小,且h满足h2-2h-3=0,则当x=0时,y的值为()A.-1B.1C.-9D.9 10、如图,⊙A 与⊙B 外切于点D ,PC 、PD 、PE 分别是圆的切线,C 、D 、E 是切点,若∠CDE=x °,∠ECD=y °,⊙B 的半径为R ,则弧DE 的长度是( )B..C. D.填空题(每小题3分,共18分)方程x 2-2x-41=0的判别式的值等于 抛物线y=的顶点坐标为13、把球放在长方体纸盒内,球的一部分露出盒外,从正面看如图所示,⊙O 与矩形ABCD 的边BD,AC 分别相切和相交(E,F 是交点),已知EF=CD=8,则⊙O 的半径为___________。
武汉市部分学校届九级上期末数学试卷含答案解析
2016-2017学年湖北省武汉市部分学校九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.在数1、2、3和4中,是方程x2+x﹣12=0的根的为()A.1 B.2 C.3 D.42.桌上倒扣着背面图案相同的15张扑克牌,其中9张黑桃、6张红桃,则()A.从中随机抽取1张,抽到黑桃的可能性更大B.从中随机抽取1张,抽到黑桃和红桃的可能性一样大C.从中随机抽取5张,必有2张红桃D.从中随机抽取7张,可能都是红桃3.抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5) B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)4.在⊙O中,弦AB的长为6,圆心O到AB的距离为4,则⊙O的半径为()A.10 B.6 C.5 D.45.在平面直角坐标系中,有A(2,﹣1)、B(﹣1,﹣2)、C(2,1)、D(﹣2,1)四点.其中,关于原点对称的两点为()A.点A和点B B.点B和点C C.点C和点D D.点D和点A6.方程x2﹣8x+17=0的根的情况是()A.两实数根的和为﹣8 B.两实数根的积为17C.有两个相等的实数根D.没有实数根7.抛物线y=﹣(x﹣2)2向右平移2个单位得到的抛物线的解析式为()A.y=﹣x2B.y=﹣(x﹣4)2C.y=﹣(x﹣2)2+2 D.y=﹣(x﹣2)2﹣2 8.由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积为()A.4πB.9πC.16πD.25π9.在50包型号为L的衬衫的包裹中混进了型号为M的衬衫,每包20件衬衫,每包中混入的M号衬衫数如表:根据以上数据,选择正确选项()A.M号衬衫一共有47件B.从中随机取一包,包中L号衬衫数不低于9是随机事件C.从中随机取一包,包中L号衬衫数不超过4的概率为0.26D.将50包衬衫混合在一起,从中随机拿出一件衬衫,恰好是M号的概率为0.252 10.在抛物线y=ax2﹣2ax﹣3a上有A(﹣0.5,y1)、B(2,y2)和C(3,y3)三点,若抛物线与y轴的交点在正半轴上,则y1、y2和y3的大小关系为()A.y3<y1<y2B.y3<y2<y1C.y2<y1<y3D.y1<y2<y3二、填空题(本大题共6个小题,每小题3分,共18分)11.掷一枚质地不均匀的骰子,做了大量的重复试验,发现“朝上一面为6点”出现的频率越来越稳定于0.4.那么,掷一次该骰子,“朝上一面为6点”的概率为.12.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为.13.两年前生产1t药品的成本是6000元,现在生产1t药品的成本是4860元,则药品成本的年平均下降率是.14.圆心角为75°的扇形的弧长是2.5π,则扇形的半径为.15.如图,正三角形的边长为12cm,剪去三个角后成为一个正六边形,则这个正六边形的内部任意一点到各边的距离和为cm.16.在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A (0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为.三、解答题(共8题,共72分)17.解方程:x2﹣5x+3=0.18.如图,OA、OB、OC都是⊙O的半径,∠AOB=2∠BOC(1)求证:∠ACB=2∠BAC(2)若AC平分∠OAB,求∠AOC的度数.19.如图,要设计一副宽20cm、长30cm的图案,其中有一横一竖的彩条,横、竖彩条的宽度之比为2:3.如果要彩条所占面积是图案面积的19%,问横、竖彩条的宽度各为多少cm?20.阅读材料,回答问题:材料题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案(3)请直接写出题2的结果.21.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.22.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C是商品件数x的二次函数,调查数据如表:商品的销售价格(单位:元)为P=35﹣x(每个周期的产销利润=P•x﹣C)(1)直接写出产销成本C与商品件数x的函数关系式(不要求写出自变量的取值范围)(2)该公司每个周期产销多少件商品时,利润达到220元?(3)求该公司每个周期的产销利润的最大值.23.如图,在平面直角坐标系中,点A和点B的坐标分别为A(4,0)、B(0,2),将△ABO绕点P(2,2)顺时针旋转得到△OCD,点A、B和O的对应点分别为点O、C和D(1)画出△OCD,并写出点C和点D的坐标(2)连接AC,在直线AC的右侧取点M,使∠AMC=45°①若点M在x轴上,则点M的坐标为.②若△ACM为直角三角形,求点M的坐标(3)若点N满足∠ANC>45°,请确定点N的位置(不要求说明理由)24.已知抛物线y=x2+mx﹣2m﹣2与x轴交于A、B两点,点A在点B的左边,与y轴交于点C(1)当m=1时,求点A和点B的坐标(2)抛物线上有一点D(﹣1,n),若△ACD的面积为5,求m的值(3)P为抛物线上A、B之间一点(不包括A、B),PM⊥x轴于点M,求的值.2016-2017学年湖北省武汉市部分学校九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.在数1、2、3和4中,是方程x2+x﹣12=0的根的为()A.1 B.2 C.3 D.4【考点】一元二次方程的解.【分析】解得方程后即可确定方程的根.【解答】解:方程左边因式分解得:(x+4)(x﹣3)=0,得到:x+4=0或x﹣3=0,解得:x=﹣4或x=3,故选C.2.桌上倒扣着背面图案相同的15张扑克牌,其中9张黑桃、6张红桃,则()A.从中随机抽取1张,抽到黑桃的可能性更大B.从中随机抽取1张,抽到黑桃和红桃的可能性一样大C.从中随机抽取5张,必有2张红桃D.从中随机抽取7张,可能都是红桃【考点】概率的意义.【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:A、黑桃数量多,故抽到黑桃的可能性更大,故正确;B、黑桃张数多于红桃,故抽到两种花色的可能性不相同,故错误;C、从中抽取5张可能会有2张红桃,也可能不是,故错误;D、从中抽取7张,不可能全是红桃,故错误,故选A.3.抛物线y=2(x+3)2+5的顶点坐标是()A.(3,5) B.(﹣3,5)C.(3,﹣5)D.(﹣3,﹣5)【考点】二次函数的性质.【分析】由抛物线的解析式可求得答案.【解答】解:∵y=2(x+3)2+5,∴抛物线顶点坐标为(﹣3,5),故选B.4.在⊙O中,弦AB的长为6,圆心O到AB的距离为4,则⊙O的半径为()A.10 B.6 C.5 D.4【考点】垂径定理;勾股定理.【分析】连结OA,如图,先根据垂径定理得到AC=AB=3,然后在Rt△OAC中,根据勾股定理计算出OA即可.【解答】解:连结OA,如图,∵OC⊥AB,∴AC=BC=AB=3,在Rt△OAC中,∵OC=4,AC=3,∴OA==5,即⊙O的半径为5cm.故选C.5.在平面直角坐标系中,有A(2,﹣1)、B(﹣1,﹣2)、C(2,1)、D(﹣2,1)四点.其中,关于原点对称的两点为()A.点A和点B B.点B和点C C.点C和点D D.点D和点A【考点】关于原点对称的点的坐标.【分析】根据关于原点对称,横纵坐标都互为相反数即可得出答案.【解答】解:A(2,﹣1)与D(﹣2,1)关于原点对称,故选D.6.方程x2﹣8x+17=0的根的情况是()A.两实数根的和为﹣8 B.两实数根的积为17C.有两个相等的实数根D.没有实数根【考点】根的判别式.【分析】根据方程的系数结合根的判别式,即可得出△=﹣4<0,由此可得出方程没有实数根.【解答】解:∵在方程x2﹣8x+17=0中,△=(﹣8)2﹣4×1×17=﹣4<0,∴方程x2﹣8x+17=0没有实数根.故选D.7.抛物线y=﹣(x﹣2)2向右平移2个单位得到的抛物线的解析式为()A.y=﹣x2B.y=﹣(x﹣4)2C.y=﹣(x﹣2)2+2 D.y=﹣(x﹣2)2﹣2【考点】二次函数图象与几何变换.【分析】直接根据函数图象平移的法则即可得出结论.【解答】解:抛物线y=﹣(x﹣2)2向右平移2个单位得到的抛物线的解析式为y=﹣(x﹣2﹣2)2,即y=﹣(x﹣4)2.故选B.8.由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积为()A.4πB.9πC.16πD.25π【考点】圆的认识.【分析】根据题意、利用圆的面积公式计算即可.【解答】解:由所有到已知点O的距离大于或等于3,并且小于或等于5的点组成的图形的面积是以5为半径的圆与以3为半径的圆组成的圆环的面积,即π×52﹣π×32=16π,故选:C.9.在50包型号为L的衬衫的包裹中混进了型号为M的衬衫,每包20件衬衫,每包中混入的M号衬衫数如表:根据以上数据,选择正确选项()A.M号衬衫一共有47件B.从中随机取一包,包中L号衬衫数不低于9是随机事件C.从中随机取一包,包中L号衬衫数不超过4的概率为0.26D.将50包衬衫混合在一起,从中随机拿出一件衬衫,恰好是M号的概率为0.252【考点】随机事件;概率公式.【分析】A.根据表中是数据求得M号衬衫的数量即可判断;B.由题可得,50包中L号衬衫数全部不低于9,据此判断即可;C.由题可得,50包中没有一包中L号衬衫数不超过4,据此判断即可;D.根据50包中M号衬衫的数量除以总包数,求得恰好是M号的概率即可.【解答】解:A.M号衬衫一共有:1×3+4×10+5×15+7×5+9×4+10×3+11×3=252件,故A选项错误;B.从中随机取一包,包中L号衬衫数不低于9的概率为1,是必然事件,故B 选项错误;C.从中随机取一包,包中L号衬衫数不超过4的概率为0,故C选项错误;D.将50包衬衫混合在一起,从中随机拿出一件衬衫,恰好是M号的概率为:=0.252,故D选项正确.故选D.10.在抛物线y=ax2﹣2ax﹣3a上有A(﹣0.5,y1)、B(2,y2)和C(3,y3)三点,若抛物线与y轴的交点在正半轴上,则y1、y2和y3的大小关系为()A.y3<y1<y2B.y3<y2<y1C.y2<y1<y3D.y1<y2<y3【考点】二次函数图象上点的坐标特征.【分析】根据解析式得出抛物线的对称轴,由抛物线与y轴的交点在正半轴可得a<0,即抛物线开口向下,根据二次函数的性质可得答案.【解答】解:∵抛物线的对称轴为x=﹣=1,且抛物线与y轴的交点在正半轴上,∴﹣3a>0,即a<0∴当x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小,且抛物线上的点离对称轴的水平距离越远,函数值越小,∴y3<y1<y2,故选:A.二、填空题(本大题共6个小题,每小题3分,共18分)11.掷一枚质地不均匀的骰子,做了大量的重复试验,发现“朝上一面为6点”出现的频率越来越稳定于0.4.那么,掷一次该骰子,“朝上一面为6点”的概率为0.4.【考点】利用频率估计概率.【分析】利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可.【解答】解:发现“朝上一面为6点”出现的频率越来越稳定于0.4,掷一次该骰子,“朝上一面为6点”的概率为0.4;故答案为:0.412.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,则∠ADE的度数为110°.【考点】圆内接四边形的性质.【分析】根据圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角)可得答案.【解答】解:∵∠B=110°,∴∠ADE=110°.故答案为:110°.13.两年前生产1t药品的成本是6000元,现在生产1t药品的成本是4860元,则药品成本的年平均下降率是10%.【考点】一元二次方程的应用.【分析】设药品成本的年平均下降率是x,根据现在生产1t药品的成本=两年前生产1t药品的成本×1﹣下降率的平方,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设药品成本的年平均下降率是x,根据题意得:6000×(1﹣x)2=4860,解得:x1=10%,x2=190%(舍去).故答案为:10%.14.圆心角为75°的扇形的弧长是2.5π,则扇形的半径为6.【考点】弧长的计算.【分析】根据弧长公式l=来求扇形的半径r的值.【解答】解:依题意得:=2.5π,解得r=6.故答案是:6.15.如图,正三角形的边长为12cm,剪去三个角后成为一个正六边形,则这个正六边形的内部任意一点到各边的距离和为12cm.【考点】正多边形和圆.【分析】作ON⊥BC于N,根据正三角形和正六边形的性质求出正六边形DFHKGE 的面积,根据三角形的面积公式计算即可.【解答】解:作ON⊥BC于N,∵六边形DFHKGE是正六边形,∴AD=DE=DF=BF=4,∴OH=4,由勾股定理得,ON==2,则正六边形DFHKGE的面积=×4×2×6=24,设这个正六边形的内部任意一点到各边的距离和为h,则×4×h=24,解得,h=12,故答案为:12.16.在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A (0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为5.【考点】坐标与图形变化-旋转;轨迹.【分析】在平面直角坐标系中,在y轴上取点P(0,1),过P作直线l∥x轴,作CM⊥OA于M,作CN⊥l于N,构造Rt△BCN≌Rt△ACM,得出CN=CM,若连接CP,则点C在∠BPO的平分线上,进而得出动点C在直线CP上运动;再分两种情况讨论C的路径端点坐标:①当m=﹣5时,②当m=5时,分别求得C(﹣1,0)和C1(4,5),而C的运动路径长就是CC1的长,最后由勾股定理可得CC1的长度.【解答】解:如图1所示,在y轴上取点P(0,1),过P作直线l∥x轴,∵B(m,1),∴B在直线l上,∵C为旋转中心,旋转角为90°,∴BC=AC,∠ACB=90°,∵∠APB=90°,∴∠1=∠2,作CM⊥OA于M,作CN⊥l于N,则Rt△BCN≌Rt△ACM,∴CN=CM,若连接CP,则点C在∠BPO的平分线上,∴动点C在直线CP上运动;如图2所示,∵B(m,1)且﹣5≤m≤5,∴分两种情况讨论C的路径端点坐标,①当m=﹣5时,B(﹣5,1),PB=5,作CM⊥y轴于M,作CN⊥l于N,同理可得△BCN≌△ACM,∴CM=CN,BN=AM,可设PN=PM=CN=CM=a,∵P(0,1),A(0,4),∴AP=3,AM=BN=3+a,∴PB=a+3+a=5,∴a=1,∴C(﹣1,0);②当m=5时,B(5,1),如图2中的B1,此时的动点C是图2中的C1,同理可得C1(4,5),∴C的运动路径长就是CC1的长,由勾股定理可得,CC1===5.三、解答题(共8题,共72分)17.解方程:x2﹣5x+3=0.【考点】解一元二次方程-公式法.【分析】找出a,b,c的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【解答】解:这里a=1,b=﹣5,c=3,∵△=25﹣12=13,∴x=,则x1=,x2=.18.如图,OA、OB、OC都是⊙O的半径,∠AOB=2∠BOC(1)求证:∠ACB=2∠BAC(2)若AC平分∠OAB,求∠AOC的度数.【考点】圆周角定理;圆心角、弧、弦的关系.【分析】(1)根据圆周角定理可得∠BOC=2∠BAC,∠AOB=2∠ACB,再根据条件∠AOB=2∠BOC可得∠ACB=2∠BAC;(2)设∠BAC=x°,则∠OAB=2∠BAC=2x°,再表示出∠AOB=2∠ACB=4∠BAC=4x°,再根据三角形内角和为180°可得方程4x+2x+2x=180,再解即可得x的值,进而可得答案.【解答】(1)证明:在⊙O中,∵∠AOB=2∠ACB,∠BOC=2∠BAC,∵∠AOB=2∠BOC.∴∠ACB=2∠BAC.(2)解:设∠BAC=x°.∵AC平分∠OAB,∴∠OAB=2∠BAC=2x°,∵∠AOB=2∠ACB,∠ACB=2∠BAC,∴∠AOB=2∠ACB=4∠BAC=4x°,在△OAB中,∠AOB+∠OAB+∠OBA=180°,∴4x+2x+2x=180,解得:x=22.5,∴∠AOC=6x°=135°.19.如图,要设计一副宽20cm、长30cm的图案,其中有一横一竖的彩条,横、竖彩条的宽度之比为2:3.如果要彩条所占面积是图案面积的19%,问横、竖彩条的宽度各为多少cm?【考点】一元二次方程的应用.【分析】设横彩条的宽为2xcm,竖彩条的宽为3xcm,要彩条所占面积是图案面积的19%,可得方程,解出即可.【解答】解:设横彩条的宽为2xcm,竖彩条的宽为3xcm.依题意,得(20﹣2x)(30﹣3x)=81%×20×30.解之,得x1=1,x2=19,当x=19时,2x=38>20,不符题意,舍去.所以x=1.答:横彩条的宽为2 cm,竖彩条的宽为3 cm.20.阅读材料,回答问题:材料题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案(3)请直接写出题2的结果.【考点】随机事件.【分析】题1:因为此题需要三步完成,所以画出树状图求解即可,注意要做到不重不漏;题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;问题:(1)绿球代表左转,所以为:至少摸出两个绿球;(2)写出方案;(3)直接写结果即可.【解答】解:题1:画树状图得:∴一共有27种等可能的情况;至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为:.题2:列表得:所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则P=.问题:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于,“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3).21.如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.【考点】切线的判定;圆周角定理.【分析】(1)过点D作DF⊥BC于点F,根据角平分线的性质得到AD=DF.根据切线的判定定理即可得到结论;(2)根据切线的性质得到AB=FB.根据和勾股定理列方程即可得到结论.【解答】(1)证明:过点D作DF⊥BC于点F,∵∠BAD=90°,BD平分∠ABC,∴AD=DF.∵AD 是⊙D 的半径,DF ⊥BC , ∴BC 是⊙D 的切线;(2)解:∵∠BAC=90°. ∴AB 与⊙D 相切, ∵BC 是⊙D 的切线, ∴AB=FB . ∵AB=5,BC=13, ∴CF=8,AC=12. 在Rt △DFC 中, 设DF=DE=r ,则 r 2+64=(12﹣r )2, 解得:r=.∴CE=.22.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C 是商品件数x 的二次函数,调查数据如表:商品的销售价格(单位:元)为P=35﹣x (每个周期的产销利润=P•x ﹣C )(1)直接写出产销成本C 与商品件数x 的函数关系式(不要求写出自变量的取值范围)(2)该公司每个周期产销多少件商品时,利润达到220元? (3)求该公司每个周期的产销利润的最大值.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据题意设出C与x的函数关系式,然后根据表格中的数据即可解答本题;(2)根据题意可以列出相应的方程,从而可以解答本题;(3)根据题意可以得到利润与销售价格的关系式,然后化为顶点式即可解答本题.【解答】解:(1)设C=ax2+bx+c,,解得,,即产销成本C与商品件数x的函数关系式是:C=x2+3x+80;(2)依题意,得(35﹣x)•x﹣(x2+3x+80)=220;解得,x1=10,x2=150,∵每个周期产销商品件数控制在100以内,∴x=10.即该公司每个周期产销10件商品时,利润达到220元;(3)设每个周期的产销利润为y元,∵y=(35﹣x)•x﹣(x2+3x+80)=﹣x2+32x﹣80=﹣(x﹣80)2+1200,∴当x=80时,函数有最大值,此时y=1200,即当每个周期产销80件商品时,产销利润最大,最大值为1200 元.23.如图,在平面直角坐标系中,点A和点B的坐标分别为A(4,0)、B(0,2),将△ABO绕点P(2,2)顺时针旋转得到△OCD,点A、B和O的对应点分别为点O、C和D(1)画出△OCD,并写出点C和点D的坐标(2)连接AC,在直线AC的右侧取点M,使∠AMC=45°①若点M在x轴上,则点M的坐标为(6,0).②若△ACM为直角三角形,求点M的坐标(3)若点N满足∠ANC>45°,请确定点N的位置(不要求说明理由)【考点】三角形综合题.【分析】(1)先确定出OA,OB,再由旋转的性质得出OD=4,CD=2,即可得出结论;(2)先构造出满足条件的点M的位置,利用等腰三角形的性质和等腰直角三角形的性质即可得出结论;(3)同(2)①的方法得出结论.【解答】解:(1)如图1,∵点A和点B的坐标分别为A(4,0)、B(0,2),∴OA=4,OB=2,由旋转知,△POD≌△PAO,△PCD≌△PBO,∴OD=OA=4,CD=OB=2,∴C(2,4),D(0,4);(2)①如图2,∵A(4,0),C(2,4),∴AC=2,以AC为斜边在直线AC右侧作等腰直角三角形ACO',以O'为圆心,O'A为半径作圆,∴∠AMC=∠AO'C=45°,过点O'作O'G⊥AC,∵A(4,0),C(2,4),∴G(3,2),∴直线AC的解析式为y=﹣2x+8,∴直线O'G的解析式为y=x+,设点O'的坐标为(m,m+),∴O'G2=(m﹣3)2+(m+﹣2)2=(×)2,∴m=5或m=1(点O'在直线AC右侧,所以舍去),∴O'(5,3),∴O'A=,在Rt△AO'N中,O'N=3,AN==1,∴AM=2AN=2,∴M(6,0);故答案为(6,0),②如图3,当∠CAM为直角时,分别过点C,M作x轴的垂线,垂足分别为E,F.∵CO=CA,∴OE=AE=OA=2∴∠CAE+∠ACE=90°,∵∠CAE+∠FAM=90°,∴∠ACE=∠FAM,在△ACE和△MAF中,∴△CEA≌△AFM,∴MF=AE=2,AF=CE=4.∴OF=8,∴M(8,2);当∠ACM为直角时,同理可得M(6,6);综上所述,点M的坐标为(8,2)或(6,6).(3)如图3,∵A(4,0),C(2,4),∴AC=2,以AC为斜边在直线AC右侧作等腰直角三角形ACO',以O'为圆心,O'A为半径作圆,∴∠ANC<∠AO'C=45°,过点O'作O'G⊥AC,∵A(4,0),C(2,4),∴G(3,2),直线AC的解析式为y=﹣2x+8,∴直线O'G的解析式为y=x+,设点O'的坐标为(m,m+),∴O'G2=(m﹣3)2+(m+﹣2)2=(×)2,∴m=5或m=1,∴O'(5,3)或(1,1),∵A(4,0),∴O'A=,∴点N在以点(5,3)或点(1,1)为圆心,以为半径的圆内.24.已知抛物线y=x2+mx﹣2m﹣2与x轴交于A、B两点,点A在点B的左边,与y轴交于点C(1)当m=1时,求点A和点B的坐标(2)抛物线上有一点D(﹣1,n),若△ACD的面积为5,求m的值(3)P为抛物线上A、B之间一点(不包括A、B),PM⊥x轴于点M,求的值.【考点】抛物线与x轴的交点.【分析】(1)当m=1时,抛物线解析式为y=x2+x﹣4.然后解方程x2+x﹣4=0可得A、B的坐标;(2)过点D作DE⊥AB于点E,交AC于点F,如图,解方程x2+mx﹣2m﹣2=0得x1=2,x2=﹣2m﹣2,则A为(﹣2m﹣2,0),B(2,0),易得C(0,﹣2m﹣2),所以OA=OC=2m+2,则∠OAC=45°.利用D(﹣1,n)得到OE=1,AE=EF=2m+1.n=﹣3m﹣,再计算出DF=m+,利用三角形面积公式得到(m+)(2m+2)=5.解方程得到m1=,m2=﹣3,最后利用m≥0得到m=;(3)由(2)得点A(﹣2m﹣2,0),B(2,0).设点P的坐标为(p,q).则AM=p+2m+2,BM=2﹣p,AM•BM=﹣p2﹣2mp+4m+4,PM=﹣q.再利用点P在抛物线上得到q=p2+mp﹣2m﹣2,所以AM•BM=2 PM,从而得到的值.【解答】解:(1)当m=1时,抛物线解析式为y=x2+x﹣4.当y=0时,x2+x﹣4=0,解得x1=﹣4,x2=2.∴A(﹣4,0),B(2,0);(2)过点D作DE⊥AB于点E,交AC于点F,如图,当y=0时,x2+mx﹣2m﹣2=0,则(x﹣2)(x+2m+2)=0,解得x1=2,x2=﹣2m﹣2,∴点A的坐标为(﹣2m﹣2,0),B(2,0),当x=0时,y=﹣2m﹣2,则C(0,﹣2m﹣2),∴OA=OC=2m+2,∴∠OAC=45°.∵D(﹣1,n),∴OE=1,∴AE=EF=2m+1.当x=﹣1时,n=﹣m﹣2m﹣2=﹣3m﹣,∴DE=3m+,∴DF=3m+﹣(2m+1)=m+,=DF•AO.又∵S△ACD∴(m+)(2m+2)=5.2m2+3m﹣9=0,解得m1=,m2=﹣3.∵m≥0,∴m=;(3)点A的坐标为(﹣2m﹣2,0),点B的坐标为(2,0).设点P的坐标为(p,q).则AM=p+2m+2,BM=2﹣p,AM•BM=(p+2m+2)(2﹣p)=﹣p2﹣2mp+4m+4,PM=﹣q.因为点P在抛物线上,所以q=p2+mp﹣2m﹣2.所以AM•BM=2 PM.即=2.2017年2月12日。
武汉市武昌区部分学校2016届九年级上期末数学试卷含答案解析
径作圆,则⊙C 与 AB 的位置关系是(
)
A.相离 B.相切 C.相交 D.相切或相交
8.用配方法解方程 x2﹣ 2x﹣ 1=0 时,配方后得的方程为( ) A.(x+1)2=0 B.(x﹣ 1)2=0 C.(x+1)2=2 D.(x﹣ 1)2=2
20.如图,在平面直角坐标系 xOy 中,△AOB 三个顶点的坐标分别为 O(0,0)、A(﹣ 2, 3)、B(﹣ 4,2),将△AOB 绕点 O 逆时针旋转 90°后,点 A、O、B 分别落在点 A′、O′、B′ 处. (1)在所给的直角坐标系 xOy 中画出旋转后的△A′O′B′; (2)求点 B 旋转到点 B′所经过的弧形路线的长.
2015-2016 学年湖北省武汉市武昌区部分学校九年级(上)期末 数学试卷
一、选择题(共 10 小题,每小题 3 分,满分 30 分) 1.方程 2x2﹣ 3x+2=0 的二次项系数和一次项系数分别为( ) A.3 和﹣ 2 B.2 和﹣ 3 C.2 和 3 D.﹣ 3 和 2
2.一元二次方程 x2﹣ 2x+m=0 总有实数根,则 m 应满足的条件是( ) A.m>1 B.m=1 C.m<1D.m≤1
论; (3)当 P、C 都在 AB 上方时(如图 3),过 C 点作 CD⊥直线 AP 于 D,且 CD 是⊙O 的切 线,证明:AB=4PD.
24.如图,在平面直角坐标系中,已知抛物线 y=ax2+bx+c 交 x 轴于 A(2,0),B(6,
0)两点,交 y 轴于点
.
(物线的对称轴与直线 y=2x 交于点 D,作⊙D 与 x 轴相切,⊙D 交 y 轴于点
3.将抛物线 y=﹣ 2x2+1 向右平移 1 个单位,再向上平移 2 个单位后所得到的抛物线为 () A.y=﹣ 2(x+1)2﹣ 1 B.y=﹣ 2(x+1)2+3 C.y=﹣ 2(x﹣ 1)2+1 D.y=﹣ 2(x﹣ 1)2+3
湖北省武汉市九年级上期末数学试卷(含详细解析)(精)
湖北省武汉市九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)方程x(x﹣5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.12.(3分)二次函数y=2(x﹣3)2﹣6()A.最小值为﹣6B.最大值为﹣6C.最小值为3D.最大值为33.(3分)下列交通标志中,是中心对称图形的是()A.B.C.D.4.(3分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件5.(3分)抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的6.(3分)一元二次方程x2+2x+m=0有两个不相等的实数根,则()A.m>3B.m=3C.m<3D.m≤37.(3分)圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切8.(3分)如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π9.(3分)如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是()A.1个B.2个C.3个D.4个10.(3分)二次函数y=﹣x2﹣2x+c在﹣3≤x≤2的范围内有最小值﹣5,则c的值是()A.﹣6B.﹣2C.2D.3二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一元二次方程x2﹣a=0的一个根是2,则a的值是.12.(3分)把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是.13.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.14.(3分)设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高x m,列方程,并化成一般形式是.15.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=.16.(3分)在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC 为边构造▱AOD C.当∠A=°时,线段BD最长.三、解答题(共8题,共72分)17.(8分)解方程:x2+x﹣3=0.18.(8分)如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.19.(8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.20.(8分)如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移个单位时,四边形ABCD为菱形;(2)当a=时,四边形ABCD为正方形.21.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.22.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积.23.(10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED=;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.24.(12分)已知抛物线y=ax2+2x+c与x轴交于A(﹣1,0)、B(3,0)两点,一次函数y=kx+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求k的值;(3)若k=﹣2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标.湖北省武汉市九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)方程x(x﹣5)=0化成一般形式后,它的常数项是()A.﹣5B.5C.0D.1【解答】解:∵x(x﹣5)=0∴x2﹣5x=0,∴方程x(x﹣5)=0化成一般形式后,它的常数项是0,故选:C.2.(3分)二次函数y=2(x﹣3)2﹣6()A.最小值为﹣6B.最大值为﹣6C.最小值为3D.最大值为3【解答】解:∵a=2>0,∴二次函数有最小值为﹣6.故选:A.3.(3分)下列交通标志中,是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选:D.4.(3分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件【解答】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选:C.5.(3分)抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的【解答】解:抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故选:D.6.(3分)一元二次方程x2+2x+m=0有两个不相等的实数根,则()A.m>3B.m=3C.m<3D.m≤3【解答】解:∵一元二次方程x2+2x+m=0有两个不相等的实数根,∴△=(2)2﹣4m>0,解得:m<3.故选:C.7.(3分)圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切【解答】解:∵圆的直径为13cm,∴圆的半径为6.5cm,∵圆心与直线上某一点的距离是6.5cm,∴圆的半径≥圆心到直线的距离,∴直线于圆相切或相交,故选:D.8.(3分)如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π【解答】解:依题意知:图中三条圆弧的弧长之和=×3=2π.故选:B.9.(3分)如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是()A.1个B.2个C.3个D.4个【解答】解:不妨设∠B=80°,∠A=40°,∠C=60°.∵△ABC的内切圆与三边分别相切于点D、E、F,∴BE=BF,AE=AD,CF=CD,∴∠BEF=∠BFE=∠EDF=50°,∠CFD=∠CDF=∠FED=60°,∠AED=∠ADE=∠EFD =70°,∴∠EDF≠∠B,2∠A≠∠FED+∠EDF,故①③不正确,∵∠B+∠BEF+∠EFB=180°,∠B+∠A+∠C=180°,∴∠BEF+∠BFE=∠A+∠C,∴2∠EDF=∠A+∠C,故②正确,∵∠AED=∠EFD,∠BFE=∠EDF,∠CDF=∠FED,∴∠AED+∠BFE+∠CDF=∠EFD+∠EDF+∠FED=180°,故④正确.故选:B.10.(3分)二次函数y=﹣x2﹣2x+c在﹣3≤x≤2的范围内有最小值﹣5,则c的值是()A.﹣6B.﹣2C.2D.3【解答】解:把二次函数y=﹣x2﹣2x+c转化成顶点坐标式为y=﹣(x+1)2+c+1,又知二次函数的开口向下,对称轴为x=﹣1,故当x=2时,二次函数有最小值为﹣5,故﹣9+c+1=﹣5,故c=3.故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一元二次方程x2﹣a=0的一个根是2,则a的值是4.【解答】解:把x=2代入方程x2﹣a=0得4﹣a=0,解得a=4.故答案为4.12.(3分)把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是y=2(x+2)2﹣1.【解答】解:由“左加右减”的原则可知,二次函数y=2x2的图象向下平移1个单位得到y=2x2﹣1,由“上加下减”的原则可知,将二次函数y=2x2﹣1的图象向左平移2个单位可得到函数y=2(x +2)2﹣1,故答案是:y=2(x+2)2﹣1.13.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.【解答】解:画树状图如下:随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于5的占4种,所有两次摸出的小球标号的和等于5的概率为=,故答案为:.14.(3分)设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高x m,列方程,并化成一般形式是x2﹣6x+4=0.【解答】解:设雕像的上部高x m,则题意得:,整理得:x2﹣6x+4=0,故答案为:x2﹣6x+4=015.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=.【解答】解:连接AE,过点F作FH⊥AE,∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=a,∠AFE=∠DEF=120°,∴∠FAE=∠FEA=30°,∴∠AEP=90°,∴FH=,∴AH=,AE=,∵P是ED的中点,∴EP=,∴AP=.∴=16.(3分)在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC 为边构造▱AOD C.当∠A=27°时,线段BD最长.【解答】解:如图,连接OC,延长OA交⊙O于F,连接DF.∵四边形ACDO是平行四边形,∴∠DOF=∠A,DO=AC,∵OF=AO,∴△DOF≌△CAO,∴DF=OC,∴点D的运动轨迹是F为圆心OC为半径的圆,∴当点D在BF的延长线上时,BD的值最大,∵∠AOB=108°,∴∠FOB=72°,∵OF=OB,∴∠OFB=54°,∵FD=FO,∴∠FOD=∠FDO=27°,∴∠A=∠FOD=27°,故答案为27°.三、解答题(共8题,共72分)17.(8分)解方程:x2+x﹣3=0.【解答】解:∵a=1,b=1,c=﹣3,∴b2﹣4ac=1+12=13>0,∴x=,∴x1=,x2=.18.(8分)如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.【解答】解:(1)∵AO ⊥BD ,∴=,∴∠AOB =2∠ACD ,∵∠AOB =80°,∴∠ACD =40°;(2)①当点C 1在上时,∠AC 1D =∠ACD =40°;②当点C 2在上时,∵∠AC 2D +∠ACD =180°,∴∠AC 2D =140°综上所述,∠ACD =140°或40°.19.(8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.【解答】解:(1)如图所示:所有等可能结果为(红、绿、红)、(红、绿、绿)、(红、绿、红)、(红、绿、绿)、(红、红、红)、(红、红、绿),(绿、绿、红)、(绿、绿、绿)、(绿、绿、红)、(绿、绿、绿)(绿、红、红)、(绿、红、绿)这12种等可能结果;(2)因为“取出至少一个红球”的结果数为10钟,所以“取出至少一个红球”的概率为=.20.(8分)如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移2个单位时,四边形ABCD为菱形;(2)当a=﹣时,四边形ABCD为正方形.【解答】解:(1)①线段CD如图所示;②当AB=BC时,四边形ABCD是菱形,此时C(﹣4,6),原来点C坐标(﹣4,8),∴线段CD向下平移2个单位时,四边形ABCD为菱形;故答案为2.(2)由题意AB=5,当PA=PB=时,四边形ABCD是正方形,∴(a)2+(﹣a﹣3)2=()2,解得a=﹣或(舍弃)∴当a=﹣时,四边形ABCD为正方形.故答案为﹣.21.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.【解答】(1)证明:连接O C.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵•OC•CD=•OD•CF,∴CF=,∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=.22.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积.【解答】解:(1)根据题意知,y==﹣x+;(2)根据题意,得:(﹣x+)x=384,解得:x=18或x=32,∵墙的长度为24m,∴x=18;(3)设菜园的面积是S,则S=(﹣x+)x=﹣x2+x=﹣(x﹣25)2+∵﹣<0,∴当x<25时,S随x的增大而增大,∵x≤24,∴当x=24时,S取得最大值,最大值为416,答:菜园的最大面积为416m2.23.(10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED=90°;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.【解答】解:(1)如图1,过E作EH⊥AB于H,连接CD,设EH=x,则AE=2x,AH=x,∵AE=EC,∴AC=2AH=2x,∵C是AB的中点,AD=BD,∴CD⊥AB,∵∠ADB=120°,∴∠DAC=30°,∴DC=2x,∴DC=CE=2x,∵EH∥DC,∴∠HED=∠EDC=∠CED,∵∠AEH=60°,∠AEC=120°,∴∠HEC=60°,∴∠HED=30°,∴∠AED=∠AEH+∠HED=90°;故答案为:90°;(2分)(2)①延长FC交AD于H,连接HE,如图2,∵CF=FB,∴∠FCB=∠FBC,∵∠CFB=120°,∴∠FCB=∠FBC=30°,同理:∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,∴∠DAB=∠ECA=∠FBD,∴AD∥EC∥BF,同理AE∥CF∥BD,∴四边形BDHE、四边形AECH是平行四边形,(4分)∴EC=AH,BF=HD,∵AE=EC,∴AE=AH,∵∠HAE=60°,∴△AEH是等边三角形,∴AE=AH=HE=CE,∠AHE=∠AEH=60°,∴∠DHE=120°,∴∠DHE=∠FCE.∵DH=BF=FC,∴△DHE≌△FCE(SAS),∴DE=EF,∠DEH=∠FEC,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;(7分)②如图3,过E作EM⊥AB于M,∵∠ADC=90°,∠DAC=30°,∴∠ACD=60°,∵∠DBA=30°,∴∠CDB=∠DBC=30°,∴CD=BC=AC,∵AB=3,∵AC=2,BC=CD=1,∵∠ACE=30°,∠ACD=60°,∴∠ECD=30°+60°=90°,∵AE=CE,∴CM=AC=1,∵∠ACE=30°,∴CE=,Rt△DEC中,DE===,由①知:△DEF是等边三角形,∴EF=DE=.(12分)24.(12分)已知抛物线y=ax2+2x+c与x轴交于A(﹣1,0)、B(3,0)两点,一次函数y=kx+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求k的值;(3)若k=﹣2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标.【解答】解:(1)∵抛物线y=ax2+2x+c与x轴交于A(﹣1,0)、B(3,0)两点,∴,解得.所以,抛物线的解析式为y=﹣x2+2x+3;(2)∵抛物线上的点C(m,n),∴n=﹣m2+2m+3,当m=3时,n=0,∴C(3,0),∴一次函数y=kx+b的图象l经过抛物线上的点C(m,n),∴3k+b=0,∴b=﹣3k,∴一次函数的解析式为y=kx﹣3k,∵直线l与抛物线只有一个公共点,∴方程kx﹣3k=﹣x2+2x+3有两个相等的实数根,∴(k﹣2)2+4(3k+3)=0,解得k=﹣4;(3)如图,过C点作CH⊥PD于H,C(m,n)在直线y=kx+b上,∴n=(﹣2m+2)m+b,∵点C在抛物线上,∴n=﹣m2+2m+3,∴b=m2+3,∴直线l为y=(﹣2m+2)x+m2+3,∵直线l与抛物线的对称轴相交于点D,∴D的横坐标为1,代入得:y=﹣2m+2+m2+3=8﹣(﹣m2+2m+3)=8﹣n,∴D(1,8﹣n),设P(1,p),则PD=8﹣n﹣p,HC=m﹣1,PH=p﹣n,在Rt△PCH中,PC=PD=8﹣n﹣p,∴(8﹣n﹣p)2=(p﹣n)2+(m﹣1)2∴(8﹣n﹣p)2﹣(p﹣n)2=(m﹣1)2,∴(8﹣2n)(8﹣2p)=m2﹣2m+1,∵n=﹣m2+2m+3,∴2(4﹣n)(8﹣2p)=4﹣n,∵k=﹣2m+2≠0,∴m≠1,∴n≠4,∴4﹣n≠0,∴2(8﹣2p)=1,∴p=,∴P(1,).。
湖北省武汉市武昌部分学校九年级数学1月联考试题 新人
湖北省武汉市武昌部分学校2016届九年级数学1月联考试题命题人: 审题人:一、选择题(每小题3分,共30分)1、方程2x2 -3x+2=0的二次项系数和一次项系数分别为()A.3和-2B.2和-3C.2和3D.-3和22、一元二次方程总有实数根,则m应满足的条件是()A. B. m C. D.3、抛物线y=向右平移1个单位,再向上平移2个单位后所得到抛物线为()A. y =B. y =C. y =D.y=4、已知圆锥的底面半径是3,高是4,则这个圆锥的全面积是()A. B. C. D.5、如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A = 22.5°,OC = 4 则CD的长等于()A.2B.4C.4D.86、在平面直角坐标系中,点M(3,-5)关于原点对称的点的坐标是()A.(-3,-5) B.(3,5)C.(5,-3) D.(-3,5)7、如图,在Rt∆ABC中,∠C=90°,∠B = 30°,BC = 4cm,以点C为圆心,以2cm长为半径作圆,⊙C与AB的位置关系是()相离 B.相切 C.相交 D.相交或相切8、用配方法解方程时,配方后得到的方程为() B.C. D.9、已知二次函数y= -(x+h)2,当x<-3时,y随x增大而增大,当x>0时,y随x增大而减小,且h满足h2-2h-3=0,则当x=0时,y的值为()A.-1B.1C.-9D.910、如图,⊙A 与⊙B 外切于点D ,PC 、PD 、PE 分别是圆的切线,C 、D 、E 是切点,若∠CDE=x °,∠ECD=y °,⊙B 的半径为R ,则弧DE 的长度是( )B..C. D.填空题(每小题3分,共18分) 方程x 2-2x-41=0的判别式的值等于 抛物线y=的顶点坐标为13、把球放在长方体纸盒内,球的一部分露出盒外,从正面看如图所示,⊙O 与矩形ABCD 的边BD,AC 分别相切和相交(E,F 是交点),已知EF=CD=8,则⊙O 的半径为___________。
湖北省武汉市九年级上期末数学试卷(含详细解析)-名师版
湖北省武汉市九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)方程x(x﹣5)=0化成一般形式后,它的常数项是()A.﹣5 B.5 C.0 D.12.(3分)二次函数y=2(x﹣3)2﹣6()A.最小值为﹣6 B.最大值为﹣6 C.最小值为3 D.最大值为33.(3分)下列交通标志中,是中心对称图形的是()A.B.C.D.4.(3分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件5.(3分)抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的6.(3分)一元二次方程x2+2x+m=0有两个不相等的实数根,则()A.m>3 B.m=3 C.m<3 D.m≤37.(3分)圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切8.(3分)如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π9.(3分)如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是()A.1个B.2个C.3个D.4个10.(3分)二次函数y=﹣x2﹣2x+c在﹣3≤x≤2的范围内有最小值﹣5,则c的值是()A.﹣6 B.﹣2 C.2 D.3二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一元二次方程x2﹣a=0的一个根是2,则a的值是.12.(3分)把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是.13.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.14.(3分)设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高x m,列方程,并化成一般形式是.15.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=.16.(3分)在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC 为边构造▱AOD C.当∠A=°时,线段BD最长.三、解答题(共8题,共72分)17.(8分)解方程:x2+x﹣3=0.18.(8分)如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.19.(8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.20.(8分)如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移个单位时,四边形ABCD为菱形;(2)当a=时,四边形ABCD为正方形.21.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.22.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积.23.(10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED=;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.24.(12分)已知抛物线y=ax2+2x+c与x轴交于A(﹣1,0)、B(3,0)两点,一次函数y=kx+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求k的值;(3)若k=﹣2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标.湖北省武汉市九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)方程x(x﹣5)=0化成一般形式后,它的常数项是()A.﹣5 B.5 C.0 D.1【解答】解:∵x(x﹣5)=0∴x2﹣5x=0,∴方程x(x﹣5)=0化成一般形式后,它的常数项是0,故选:C.2.(3分)二次函数y=2(x﹣3)2﹣6()A.最小值为﹣6 B.最大值为﹣6 C.最小值为3 D.最大值为3【解答】解:∵a=2>0,∴二次函数有最小值为﹣6.故选:A.3.(3分)下列交通标志中,是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、是中心对称图形.故选:D.4.(3分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件【解答】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选:C.5.(3分)抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A.连续抛掷2次必有1次正面朝上B.连续抛掷10次不可能都正面朝上C.大量反复抛掷每100次出现正面朝上50次D.通过抛掷硬币确定谁先发球的比赛规则是公平的【解答】解:抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故选:D.6.(3分)一元二次方程x2+2x+m=0有两个不相等的实数根,则()A.m>3 B.m=3 C.m<3 D.m≤3【解答】解:∵一元二次方程x2+2x+m=0有两个不相等的实数根,∴△=(2)2﹣4m>0,解得:m<3.故选:C.7.(3分)圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切【解答】解:∵圆的直径为13 cm,∴圆的半径为6.5 cm,∵圆心与直线上某一点的距离是6.5cm,∴圆的半径≥圆心到直线的距离,∴直线于圆相切或相交,故选:D.8.(3分)如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A.πB.2πC.4πD.6π【解答】解:依题意知:图中三条圆弧的弧长之和=×3=2π.故选:B.9.(3分)如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是()A.1个B.2个C.3个D.4个【解答】解:不妨设∠B=80°,∠A=40°,∠C=60°.∵△ABC的内切圆与三边分别相切于点D、E、F,∴BE=BF,AE=AD,CF=CD,∴∠BEF=∠BFE=∠EDF=50°,∠CFD=∠CDF=∠FED=60°,∠AED=∠ADE=∠EFD=70°,∴∠EDF≠∠B,2∠A≠∠FED+∠EDF,故①③不正确,∵∠B+∠BEF+∠EFB=180°,∠B+∠A+∠C=180°,∴∠BEF+∠BFE=∠A+∠C,∴2∠EDF=∠A+∠C,故②正确,∵∠AED=∠EFD,∠BFE=∠EDF,∠CDF=∠FED,∴∠AED+∠BFE+∠CDF=∠EFD+∠EDF+∠FED=180°,故④正确.故选:B.10.(3分)二次函数y=﹣x2﹣2x+c在﹣3≤x≤2的范围内有最小值﹣5,则c的值是()A.﹣6 B.﹣2 C.2 D.3【解答】解:把二次函数y=﹣x2﹣2x+c转化成顶点坐标式为y=﹣(x+1)2+c+1,又知二次函数的开口向下,对称轴为x=﹣1,故当x=2时,二次函数有最小值为﹣5,故﹣9+c+1=﹣5,故c=3.故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一元二次方程x2﹣a=0的一个根是2,则a的值是 4 .【解答】解:把x=2代入方程x2﹣a=0得4﹣a=0,解得a=4.故答案为4.12.(3分)把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是y=2(x+2)2﹣1 .【解答】解:由“左加右减”的原则可知,二次函数y=2x2的图象向下平移1个单位得到y =2x2﹣1,由“上加下减”的原则可知,将二次函数y=2x2﹣1的图象向左平移2个单位可得到函数y=2(x+2)2﹣1,故答案是:y=2(x+2)2﹣1.13.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是.【解答】解:画树状图如下:随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于5的占4种,所有两次摸出的小球标号的和等于5的概率为=,故答案为:.14.(3分)设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高x m,列方程,并化成一般形式是x2﹣6x+4=0 .【解答】解:设雕像的上部高x m,则题意得:,整理得:x2﹣6x+4=0,故答案为:x2﹣6x+4=015.(3分)如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=.【解答】解:连接AE,过点F作FH⊥AE,∵六边形ABCDEF是正六边形,∴AB=BC=CD=DE=EF=a,∠AFE=∠DEF=120°,∴∠FAE=∠FEA=30°,∴∠AEP=90°,∴FH=,∴AH=,AE=,∵P是ED的中点,∴EP=,∴AP=.∴=16.(3分)在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC 为边构造▱AOD C.当∠A=27 °时,线段BD最长.【解答】解:如图,连接OC,延长OA交⊙O于F,连接DF.∵四边形ACDO是平行四边形,∴∠DOF=∠A,DO=AC,∵OF=AO,∴△DOF≌△CAO,∴DF=OC,∴点D的运动轨迹是F为圆心OC为半径的圆,∴当点D在BF的延长线上时,BD的值最大,∵∠AOB=108°,∴∠FOB=72°,∵OF=OB,∴∠OFB=54°,∵FD=FO,∴∠FOD=∠FDO=27°,∴∠A=∠FOD=27°,故答案为27°.三、解答题(共8题,共72分)17.(8分)解方程:x2+x﹣3=0.【解答】解:∵a=1,b=1,c=﹣3,∴b2﹣4ac=1+12=13>0,∴x=,∴x1=,x2=.18.(8分)如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.【解答】解:(1)∵AO⊥BD,∴=,∴∠AOB=2∠ACD,∵∠AOB=80°,∴∠ACD=40°;(2)①当点C1在上时,∠AC1D=∠ACD=40°;②当点C2在上时,∵∠AC2D+∠ACD=180°,∴∠AC2D=140°综上所述,∠ACD=140°或40°.19.(8分)甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.【解答】解:(1)如图所示:所有等可能结果为(红、绿、红)、(红、绿、绿)、(红、绿、红)、(红、绿、绿)、(红、红、红)、(红、红、绿),(绿、绿、红)、(绿、绿、绿)、(绿、绿、红)、(绿、绿、绿)(绿、红、红)、(绿、红、绿)这12种等可能结果;(2)因为“取出至少一个红球”的结果数为10钟,所以“取出至少一个红球”的概率为=.20.(8分)如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移 2 个单位时,四边形ABCD为菱形;(2)当a=﹣时,四边形ABCD为正方形.【解答】解:(1)①线段CD如图所示;②当AB=BC时,四边形ABCD是菱形,此时C(﹣4,6),原来点C坐标(﹣4,8),∴线段CD向下平移2个单位时,四边形ABCD为菱形;故答案为2.(2)由题意AB=5,当PA=PB=时,四边形ABCD是正方形,∴(a)2+(﹣a﹣3)2=()2,解得a=﹣或(舍弃)∴当a=﹣时,四边形ABCD为正方形.故答案为﹣.21.(8分)如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E (1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.【解答】(1)证明:连接O C.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵•OC•CD=•OD•CF,∴CF=,∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=.22.(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积.【解答】解:(1)根据题意知,y==﹣x+;(2)根据题意,得:(﹣x+)x=384,解得:x=18或x=32,∵墙的长度为24m,∴x=18;(3)设菜园的面积是S,则S=(﹣x+)x=﹣x2+x=﹣(x﹣25)2+∵﹣<0,∴当x<25时,S随x的增大而增大,∵x≤24,∴当x=24时,S取得最大值,最大值为416,答:菜园的最大面积为416m2.23.(10分)如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED=90°;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.【解答】解:(1)如图1,过E作EH⊥AB于H,连接CD,设EH=x,则AE=2x,AH=x,∵AE=EC,∴AC=2AH=2x,∵C是AB的中点,AD=BD,∴CD⊥AB,∵∠ADB=120°,∴∠DAC=30°,∴DC=2x,∴DC=CE=2x,∵EH∥DC,∴∠HED=∠EDC=∠CED,∵∠AEH=60°,∠AEC=120°,∴∠HEC=60°,∴∠HED=30°,∴∠AED=∠AEH+∠HED=90°;故答案为:90°;(2分)(2)①延长FC交AD于H,连接HE,如图2,∵CF=FB,∴∠FCB=∠FBC,∵∠CFB=120°,∴∠FCB=∠FBC=30°,同理:∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,∴∠DAB=∠ECA=∠FBD,∴AD∥EC∥BF,同理AE∥CF∥BD,∴四边形BDHE、四边形AECH是平行四边形,(4分)∴EC=AH,BF=HD,∵AE=EC,∴AE=AH,∵∠HAE=60°,∴△AEH是等边三角形,∴AE=AH=HE=CE,∠AHE=∠AEH=60°,∴∠DHE=120°,∴∠DHE=∠FCE.∵DH=BF=FC,∴△DHE≌△FCE(SAS),∴DE=EF,∠DEH=∠FEC,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;(7分)②如图3,过E作EM⊥AB于M,∵∠ADC=90°,∠DAC=30°,∴∠ACD=60°,∵∠DBA=30°,∴∠CDB=∠DBC=30°,∴CD=BC=AC,∵AB=3,∵AC=2,BC=CD=1,∵∠ACE=30°,∠ACD=60°,∴∠ECD=30°+60°=90°,∵AE=CE,∴CM=AC=1,∵∠ACE=30°,∴CE=,Rt△DEC中,DE===,由①知:△DEF是等边三角形,∴EF=DE=.(12分)24.(12分)已知抛物线y=ax2+2x+c与x轴交于A(﹣1,0)、B(3,0)两点,一次函数y=kx+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求k的值;(3)若k=﹣2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标.【解答】解:(1)∵抛物线y=ax2+2x+c与x轴交于A(﹣1,0)、B(3,0)两点,∴,解得.所以,抛物线的解析式为y=﹣x2+2x+3;(2)∵抛物线上的点C(m,n),∴n=﹣m2+2m+3,当m=3时,n=0,∴C(3,0),∴一次函数y=kx+b的图象l经过抛物线上的点C(m,n),∴3k+b=0,∴b=﹣3k,∴一次函数的解析式为y=kx﹣3k,∵直线l与抛物线只有一个公共点,∴方程kx﹣3k=﹣x2+2x+3有两个相等的实数根,∴(k﹣2)2+4(3k+3)=0,解得k=﹣4;(3)如图,过C点作CH⊥PD于H,C(m,n)在直线y=kx+b上,∴n=(﹣2m+2)m+b,∵点C在抛物线上,∴n=﹣m2+2m+3,∴b=m2+3,∴直线l为y=(﹣2m+2)x+m2+3,∵直线l与抛物线的对称轴相交于点D,∴D的横坐标为1,代入得:y=﹣2m+2+m2+3=8﹣(﹣m2+2m+3)=8﹣n,∴D(1,8﹣n),设P(1,p),则PD=8﹣n﹣p,HC=m﹣1,PH=p﹣n,在Rt△PCH中,PC=PD=8﹣n﹣p,∴(8﹣n﹣p)2=(p﹣n)2+(m﹣1)2∴(8﹣n﹣p)2﹣(p﹣n)2=(m﹣1)2,∴(8﹣2n)(8﹣2p)=m2﹣2m+1,∵n=﹣m2+2m+3,∴2(4﹣n)(8﹣2p)=4﹣n,∵k=﹣2m+2≠0,∴m≠1,∴n≠4,∴4﹣n≠0,∴2(8﹣2p)=1,∴p=,∴P(1,).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年湖北省武汉市武昌区部分学校九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.方程2x2﹣3x+2=0的二次项系数和一次项系数分别为( )A.3和﹣2 B.2和﹣3 C.2和3 D.﹣3和22.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是( )A.m>1 B.m=1 C.m<1 D.m≤13.将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( ) A.y=﹣2(x+1)2﹣1 B.y=﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+34.已知圆锥的底面半径是3,高是4,则这个圆锥的全面积是( )A.12πB.15πC.24πD.30π5.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为( )A.2 B.4 C.4D.86.在平面直角坐标系中,点M(3,﹣5)关于原点对称的点的坐标是( )A.(﹣3,﹣5)B.(3,5)C.(5,﹣3)D.(﹣3,5)7.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是( )A.相离 B.相切 C.相交 D.相切或相交8.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为( )A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=29.已知二次函数y=﹣(x+h)2,当x<﹣3时,y随x增大而增大,当x>0时,y随x增大而减小,且h满足h2﹣2h﹣3=0,则当x=0时,y的值为( )A.﹣1 B.1 C.﹣9 D.910.如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是( )A.B.C.D.二、填空题(每小题3分,共18分)11.方程x2﹣2x﹣=0的判别式的值等于__________.12.抛物线y=﹣x2﹣2x+1的顶点坐标为__________.13.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为__________.14.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为__________.15.把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x,把第二次转动停止后指针指向的数字的2倍记作y,以长度分别为x、y、5的三条线段能构成三角形的概率为__________.(注:长度单位一致)16.如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为__________.三、解答题(共8题,共72分)17.解方程:x(x﹣3)=4x+6.18.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.19.如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线的一点,AE⊥CD 交DC的延长线于E,CF⊥AB于F,且CE=CF.(1)求证:DE是⊙O的切线;(2)若AB=6,BD=3,求AE和BC的长.20.如图,在平面直角坐标系xOy中,△AOB三个顶点的坐标分别为O(0,0)、A(﹣2,3)、B(﹣4,2),将△AOB绕点O逆时针旋转90°后,点A、O、B分别落在点A′、O′、B′处.(1)在所给的直角坐标系xOy中画出旋转后的△A′O′B′;(2)求点B旋转到点B′所经过的弧形路线的长.21.某菜农搭建了一个横截面为抛物线的大棚,建立如图所示的直角坐标系后,抛物线的表达式为y=﹣x2+2.(1)若菜农的身高是1.60米,他在不弯腰的情况下,横向活动的范围是几米?(精确到0.01米)(2)大棚的宽度是多少?(3)大棚的最高点离地面几米?22.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).(1)求y与x之间的函数关系式,自变量x的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(参考关系:销售额=售价×销量,利润=销售额﹣成本)23.已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.24.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B(6,0)两点,交y轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?2015-2016学年湖北省武汉市武昌区部分学校九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.方程2x2﹣3x+2=0的二次项系数和一次项系数分别为( )A.3和﹣2 B.2和﹣3 C.2和3 D.﹣3和2【考点】一元二次方程的一般形式.【分析】根据方程得出二次项系数和一次项系数即可.【解答】解:2x2﹣3x+2=0二次项系数为2,一次项系数为﹣3,故选B.【点评】本题考查了对一元二次方程的一般形式的应用,能理解题意是解此题的关键,注意:说各个项的系数带着前面的符号.2.一元二次方程x2﹣2x+m=0总有实数根,则m应满足的条件是( )A.m>1 B.m=1 C.m<1 D.m≤1【考点】根的判别式.【分析】根据根的判别式,令△≥0,建立关于m的不等式,解答即可.【解答】解:∵方程x2﹣2x+m=0总有实数根,∴△≥0,即4﹣4m≥0,∴﹣4m≥﹣4,∴m≤1.故选:D.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.3.将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为( ) A.y=﹣2(x+1)2﹣1 B.y=﹣2(x+1)2+3 C.y=﹣2(x﹣1)2+1 D.y=﹣2(x﹣1)2+3 【考点】二次函数图象与几何变换.【专题】几何变换.【分析】根据图象右移减,上移加,可得答案.【解答】解;将抛物线y=﹣2x2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为y=﹣2(x﹣1)2+3,故选:D.【点评】本题考查了二次函数图象与几何变换,函数图象平移的规律是:左加右减,上加下减.4.已知圆锥的底面半径是3,高是4,则这个圆锥的全面积是( )A.12πB.15πC.24πD.30π【考点】圆锥的计算.【专题】计算题.【分析】先利用勾股定理计算出母线长,再利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长计算出圆锥的侧面积,然后计算侧面积与底面积的和即可.【解答】解:圆锥的母线长==5,所以这个圆锥的全面积=π•32+•2π•3•5=24π.故选C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为( )A.2 B.4 C.4D.8【考点】垂径定理;等腰直角三角形;圆周角定理.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.6.在平面直角坐标系中,点M(3,﹣5)关于原点对称的点的坐标是( )A.(﹣3,﹣5)B.(3,5)C.(5,﹣3)D.(﹣3,5)【考点】关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:点M(3,﹣5)关于原点对称的点的坐标是(﹣3,5),故选:D.【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.7.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是( )A.相离 B.相切 C.相交 D.相切或相交【考点】直线与圆的位置关系.【专题】压轴题.【分析】作CD⊥AB于点D.根据三角函数求CD的长,与圆的半径比较,作出判断.【解答】解:作CD⊥AB于点D.∵∠B=30°,BC=4cm,∴CD=BC=2cm,即CD等于圆的半径.∵CD⊥AB,∴AB与⊙C相切.故选:B.【点评】此题考查直线与圆的位置关系的判定方法.通常根据圆的半径R与圆心到直线的距离d的大小判断:当R>d时,直线与圆相交;当R=d时,直线与圆相切;当R<d时,直线与圆相离.8.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为( )A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=2【考点】解一元二次方程-配方法.【分析】在本题中,把常数项﹣1移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:把方程x2﹣2x﹣1=0的常数项移到等号的右边,得到x2﹣2x=1,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=1+1配方得(x﹣1)2=2.故选D.【点评】考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.9.已知二次函数y=﹣(x+h)2,当x<﹣3时,y随x增大而增大,当x>0时,y随x增大而减小,且h满足h2﹣2h﹣3=0,则当x=0时,y的值为( )A.﹣1 B.1 C.﹣9 D.9【考点】二次函数的性质.【分析】根据h2﹣2h﹣3=0,求得h=3或﹣1,根据当x<﹣3时,y随x增大而增大,当x >0时,y随x增大而减小,从而判断h=3符合题意,然后把x=0代入解析式求得y的值.【解答】解:∵h2﹣2h﹣3=0,∴h=3或﹣1,∵当x<﹣3时,y随x增大而增大,当x>0时,y随x增大而减小,∴h=3符合题意,∴二次函数为y=﹣(x+3)2,当x=0时,y=﹣9.故选C.【点评】本题考查了二次函数的性质,根据题意确定h=3是解题的关键.10.如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则的长度是( )A.B.C.D.【考点】弧长的计算;多边形内角与外角;圆周角定理;切线的性质;切线长定理.【专题】压轴题.【分析】点C、D、E都在⊙P上,由圆周角定理可得:∠DPE=2y°;然后在四边形BDPE 中,求出∠B;最后利用弧长公式计算出结果.【解答】解:根据题意,由切线长定理可知:PC=PD=PE,即点C、D、E在以P为圆心,PC长为半径的⊙P上,由圆周角定理得:∠DPE=2∠ECD=2y°.如图,连接BD、BE,则∠BDP=∠BEP=90°,在四边形BDPE中,∠B+∠BDP+∠DPE+∠BEP=360°,即:∠B+90°+2y°+90°=360°,解得:∠B=180°﹣2y°.∴的长度是:=.故选B.【点评】本题考查圆的相关性质.解题关键是确定点C、D、E在⊙P上,从而由圆周角定理得到∠DPE=2∠ECD=2y°.二、填空题(每小题3分,共18分)11.方程x2﹣2x﹣=0的判别式的值等于5.【考点】根的判别式.【分析】写出a、b、c的值,再根据根的判别式△=b2﹣4ac代入数据进行计算即可.【解答】解:由题意得:a=1,b=﹣2,c=﹣,△=b2﹣4ac=(﹣2)2﹣4×1×(﹣)=5.故答案为:5.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.12.抛物线y=﹣x2﹣2x+1的顶点坐标为(﹣2,3).【考点】二次函数的性质.【专题】推理填空题.【分析】将y=﹣x2﹣2x+1化为顶点式即可得抛物线的顶点坐标,本题得以解决.【解答】解:∵y=﹣x2﹣2x+1∴,∴此抛物线的顶点坐标为(﹣2,3),故答案为:(﹣2,3).【点评】本题考查二次函数的性质,解题的关键是可以将抛物线的解析式化为顶点式.13.把球放在长方体纸盒内,球的一部分露出盒外,其主视图如图.⊙O与矩形ABCD的边BC,AD分别相切和相交(E,F是交点),已知EF=CD=8,则⊙O的半径为5.【考点】垂径定理的应用;勾股定理;切线的性质.【专题】几何图形问题.【分析】首先由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,易求得FH的长,然后设求半径为r,则OH=8﹣r,然后在Rt△OFH 中,r2﹣(16﹣r)2=82,解此方程即可求得答案.【解答】解:由题意,⊙O与BC相切,记切点为G,作直线OG,分别交AD、劣弧于点H、I,再连接OF,在矩形ABCD中,AD∥BC,而IG⊥BC,∴IG⊥AD,∴在⊙O中,FH=EF=4,设求半径为r,则OH=8﹣r,在Rt△OFH中,r2﹣(8﹣r)2=42,解得r=5,故答案为:5.【点评】此题考查了切线的性质、垂径定理以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握方程思想与数形结合思想的应用.14.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为(,2)或(﹣,2).【考点】直线与圆的位置关系;二次函数图象上点的坐标特征.【分析】当⊙P与x轴相切时,点P的纵坐标是2或﹣2,把点P的坐标坐标代入函数解析式,即可求得相应的横坐标.【解答】解:依题意,可设P(x,2)或P(x,﹣2).①当P的坐标是(x,2)时,将其代入y=x2﹣1,得2=x2﹣1,解得x=±,此时P(,2)或(﹣,2);②当P的坐标是(x,﹣2)时,将其代入y=x2﹣1,得﹣2=x2﹣1,即﹣1=x2无解.综上所述,符合条件的点P的坐标是(,2)或(﹣,2);故答案是:(,2)或(﹣,2).【点评】本题考查了直线与圆的位置关系,二次函数图象上点的坐标特征.解题时,为了防止漏解或错解,一定要分类讨论.15.把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x,把第二次转动停止后指针指向的数字的2倍记作y,以长度分别为x、y、5的三条线段能构成三角形的概率为.(注:长度单位一致)【考点】列表法与树状图法;三角形三边关系.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:列表得:x1 2 3y1 (1,2)(2,2)(3,2)2 (1,4)(2,4)(3,4)3 (1,6)(2,6)(3,6)因此,点A(x,y)的个数共有9个;则x、y、5的三条线段能构成三角形的有4组:2,4,5;3,4,5;2,6,5;3,6,5;可得P=.故答案为:.【点评】此题主要考查了三角形三边关系和列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为2π﹣4.【考点】扇形面积的计算;二次函数的最值;勾股定理.【专题】几何图形问题.【分析】由OC=4,点C在上,CD⊥OA,求得DC==,运用S△OCD=OD•,求得OD=2时△OCD的面积最大,运用阴影部分的面积=扇形AOC的面积﹣△OCD的面积求解.【解答】解:∵OC=4,点C在上,CD⊥OA,∴DC==∴S△OCD=OD•∴=OD2•(16﹣OD2)=﹣OD4+4OD2=﹣(OD2﹣8)2+16∴当OD2=8,即OD=2时△OCD的面积最大,∴DC===2,∴∠COA=45°,∴阴影部分的面积=扇形AOC的面积﹣△OCD的面积=﹣×2×2=2π﹣4,故答案为:2π﹣4.【点评】本题主要考查了扇形的面积,勾股定理,解题的关键是求出OD=2时△OCD的面积最大.三、解答题(共8题,共72分)17.解方程:x(x﹣3)=4x+6.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】先把方程化为一般式,然后利用求根公式法解方程.【解答】解:x2﹣7x﹣6=0,△=(﹣7)2﹣4×1×(﹣6)=73,x=,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣公式法:利用求根公式解方程.解决本题的关键是把方程化为一般式,确定a、b、c的值.18.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【专题】分类讨论.【分析】(1)首先根据题意画出表格,即可得到P的所以坐标;(2)然后由表格求得所有等可能的结果与数字x、y满足y=﹣x+5的情况,再利用概率公式求解即可求得答案【解答】解:列表得:yx(x,y)1 2 3 41 (1,2)(1,3)(1,4)2 (2,1)(2,3)(2,4)3 (3,1)(3,2)(3,4)4 (4,1)(4,2)(4,3)(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.【点评】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB延长线的一点,AE⊥CD 交DC的延长线于E,CF⊥AB于F,且CE=CF.(1)求证:DE是⊙O的切线;(2)若AB=6,BD=3,求AE和BC的长.【考点】切线的判定;三角形的外接圆与外心.【专题】计算题;证明题;压轴题.【分析】要证DE是⊙O的切线,只要连接OC,再证∠DCO=90°即可.【解答】证明:(1)连接OC;∵AE⊥CD,CF⊥AB,又CE=CF,∴∠1=∠2.∵OA=OC,∴∠2=∠3,∠1=∠3.∴OC∥AE.∴OC⊥CD.∴DE是⊙O的切线.(2)∵AB=6,∴OB=OC=AB=3.在Rt△OCD中,OD=OB+BD=6,OC=3,∴∠D=30°,∠COD=60°.在Rt△ADE中,AD=AB+BD=9,∴AE=AD=.在△OBC中,∵∠COD=60°,OB=OC,∴BC=OB=3.【点评】本题考查了切线的判定,和解直角三角形.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.20.如图,在平面直角坐标系xOy中,△AOB三个顶点的坐标分别为O(0,0)、A(﹣2,3)、B(﹣4,2),将△AOB绕点O逆时针旋转90°后,点A、O、B分别落在点A′、O′、B′处.(1)在所给的直角坐标系xOy中画出旋转后的△A′O′B′;(2)求点B旋转到点B′所经过的弧形路线的长.【考点】作图-旋转变换;弧长的计算.【分析】(1)由△AOB绕点O逆时针旋转90°后得到△A′O′B′可得OA′⊥OA,OB′⊥OB,A′B′⊥AB,OA′=OA,OB′=OB,A′B′=AB,故可画出△A′OB′的图形;(2)点B旋转到点B′所经过的弧形,由图形可得出OB的长度和∠BOB′的弧度,由弧长公式可得出点B旋转到点B′所经过的弧形路线的长.【解答】解:(1)如图;…(2)易得:OB==2;∴的弧长===π,所以点B旋转到点B'所经过的弧形路线的长为π.…【点评】本题主要考查了旋转的性质及弧长的计算公式,题目比较简单,关键是根据题意正确画出图形.21.某菜农搭建了一个横截面为抛物线的大棚,建立如图所示的直角坐标系后,抛物线的表达式为y=﹣x2+2.(1)若菜农的身高是1.60米,他在不弯腰的情况下,横向活动的范围是几米?(精确到0.01米)(2)大棚的宽度是多少?(3)大棚的最高点离地面几米?【考点】二次函数的应用.【分析】(1)根据题意求出y=1.6时x的值,进而求出答案;(2)根据题意求出y=0时x的值,进而求出答案;(3)直接求出函数最值即可.【解答】解:(1)∵抛物线的大棚函数表达式为y=﹣x2+2,∴菜农的身高为1.6m,即y=1.6,则1.6=﹣x2+2,解得x≈±0.894.故菜农的横向活动的范围是0.894﹣(﹣0.894)=1.788≈1.79(米);(2)当y=0则,0=﹣x2+2,解得:x1=2,x2=﹣2,则AB=2×2=4米,所以大棚的宽度是4m;=2,(3)当x=0时,y最大即大棚的最高点离地面2米.【点评】此题主要考查了二次函数应用以及一元二次方程的解法,正确理解方程与函数关系是解题关键.22.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w (千克)与销售价x (元/千克)有如下关系:w=﹣2x+80.设这种产品每天的销售利润为y (元).(1)求y与x之间的函数关系式,自变量x的取值范围;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?(参考关系:销售额=售价×销量,利润=销售额﹣成本)【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据销售利润y=(每千克销售价﹣每千克成本价)×销售量w,即可列出y与x之间的函数关系式;(2)先利用配方法将(1)的函数关系式变形,再利用二次函数的性质即可求解;(3)先把y=150代入(1)的函数关系式中,解一元二次方程求出x,再根据x的取值范围即可确定x的值.【解答】解:(1)y=w(x﹣20)=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,则y=﹣2x2+120x﹣1600.由题意,有,解得20≤x≤40.故y与x的函数关系式为:y=﹣2x2+120x﹣1600,自变量x的取值范围是20≤x≤40;(2)∵y=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∴当x=30时,y有最大值200.故当销售价定为30元/千克时,每天可获最大销售利润200元;(3)当y=150时,可得方程﹣2x2+120x﹣1600=150,整理,得x2﹣60x+875=0,解得x1=25,x2=35.∵物价部门规定这种产品的销售价不得高于28元/千克,∴x2=35不合题意,应舍去.故当销售价定为25元/千克时,该农户每天可获得销售利润150元.【点评】本题考查了二次函数的应用,难度适中.得到每天的销售利润的关系式是解决本题的关键,利用配方法或公式法求解二次函数的最值问题是常用的解题方法.23.已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.【考点】切线的性质;等边三角形的判定与性质;含30度角的直角三角形;圆心角、弧、弦的关系;圆周角定理.【专题】几何综合题;压轴题.【分析】(1)PO与BC的位置关系是平行;(2)(1)中的结论成立,理由为:由折叠可知三角形APO与三角形CPO全等,根据全等三角形的对应角相等可得出∠APO=∠CPO,再由OA=OP,利用等边对等角得到∠A=∠APO,等量代换可得出∠A=∠CPO,又根据同弧所对的圆周角相等得到∠A=∠PCB,再等量代换可得出∠CPO=∠PCB,利用内错角相等两直线平行,可得出PO与BC平行;(3)由CD为圆O的切线,利用切线的性质得到OC垂直于CD,又AD垂直于CD,利用平面内垂直于同一条直线的两直线平行得到OC与AD平行,根据两直线平行内错角相等得到∠APO=∠COP,再利用折叠的性质得到∠AOP=∠COP,等量代换可得出∠APO=∠AOP,再由OA=OP,利用等边对等角可得出一对角相等,等量代换可得出三角形AOP三内角相等,确定出三角形AOP为等边三角形,根据等边三角形的内角为60°得到∠AOP为60°,由OP 平行于BC,利用两直线平行同位角相等可得出∠OBC=∠AOP=60°,再由OB=OC,得到三角形OBC为等边三角形,可得出∠COB为60°,利用平角的定义得到∠POC也为60°,再加上OP=OC,可得出三角形POC为等边三角形,得到内角∠OCP为60°,可求出∠PCD为30°,在直角三角形PCD中,利用30°所对的直角边等于斜边的一半可得出PD为PC的一半,而PC等于圆的半径OP等于直径AB的一半,可得出PD为AB的四分之一,即AB=4PD,得证.【解答】解:(1)PO与BC的位置关系是PO∥BC;(2)(1)中的结论PO∥BC成立,理由为:由折叠可知:△APO≌△CPO,∴∠APO=∠CPO,又∵OA=OP,∴∠A=∠APO,∴∠A=∠CPO,又∵∠A与∠PCB都为所对的圆周角,∴∠A=∠PCB,∴∠CPO=∠PCB,∴PO∥BC;(3)∵CD为圆O的切线,∴OC⊥CD,又AD⊥CD,∴OC∥AD,∴∠APO=∠COP,由折叠可得:∠AOP=∠COP,∴∠APO=∠AOP,又OA=OP,∴∠A=∠APO,∴∠A=∠APO=∠AOP,∴△APO为等边三角形,∴∠AOP=60°,又∵OP∥BC,∴∠OBC=∠AOP=60°,又OC=OB,∴△BCO为等边三角形,∴∠COB=60°,∴∠POC=180°﹣(∠AOP+∠COB)=60°,又OP=OC,∴△POC也为等边三角形,∴∠PCO=60°,PC=OP=OC,又∵∠OCD=90°,∴∠PCD=30°,在Rt△PCD中,PD=PC,又∵PC=OP=AB,∴PD=AB,即AB=4PD.【点评】此题考查了切线的性质,等边三角形的判定与性质,含30°直角三角形的性质,折叠的性质,圆周角定理,以及平行线的判定与性质,熟练掌握性质及判定是解本题的关键.24.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B(6,0)两点,交y轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?【考点】二次函数综合题.【专题】压轴题.【分析】(1)将A、B、C的坐标代入抛物线的解析式中,即可求得待定系数的值;(2)根据(1)得到的抛物线的解析式,可求出其对称轴方程联立直线OD的解析式即可求出D点的坐标;由于⊙D与x轴相切,那么D点纵坐标即为⊙D的半径;欲求劣弧EF的长,关键是求出圆心角∠EDF的度数,连接DE、DF,过D作y轴的垂线DM,则DM即为D点的横坐标,通过解直角三角形易求得∠EDM和∠FDM的度数,即可得到∠EDF的度数,进而可根据弧长计算公式求出劣弧EF的长;(3)易求得直线AC的解析式,设直线AC与PG的交点为N,设出P点的横坐标,根据抛物线与直线AC的解析式即可得到P、N的纵坐标,进而可求出PN,NG的长;Rt△PGA 中,△PNA与△NGA同高不等底,那么它们的面积比等于底边PN、NG的比,因此本题可分两种情况讨论:①△PNA的面积是△NGA的2倍,则PN:NG=2:1;②△PNA的面积是△NGA的,则NG=2PN;可根据上述两种情况所得的不同等量关系求出P点的横坐标,进而由抛物线的解析式确定出P点的坐标.【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(2,0),B(6,0),;∴,解得;∴抛物线的解析式为:;(2)易知抛物线的对称轴是x=4,把x=4代入y=2x,得y=8,∴点D的坐标为(4,8);∵⊙D与x轴相切,∴⊙D的半径为8;连接DE、DF,作DM⊥y轴,垂足为点M;在Rt△MFD中,FD=8,MD=4,∴cos∠MDF=;∴∠MDF=60°,∴∠EDF=120°;∴劣弧EF的长为:;(3)设直线AC的解析式为y=kx+b;∵直线AC经过点,∴,解得;∴直线AC的解析式为:;设点,PG交直线AC于N,则点N坐标为,∵S△PNA:S△GNA=PN:GN;∴①若PN:GN=1:2,则PG:GN=3:2,PG=GN;即=;解得:m1=﹣3,m2=2(舍去);当m=﹣3时,=;∴此时点P的坐标为;②若PN:GN=2:1,则PG:GN=3:1,PG=3GN;即=;解得:m1=﹣12,m2=2(舍去);当m=﹣12时,=;∴此时点P的坐标为;综上所述,当点P坐标为或时,△PGA的面积被直线AC分成1:2两部分.【点评】此题主要考查了二次函数解析式的确定、函数图象交点、图形面积的求法等知识,需要特别注意的是(3)题中,△PGA被直线AC所分成的两部分中,并没有明确谁大谁小,所以要分类讨论,以免漏解.。