不等式常见考试题型总结

合集下载

基本不等式题型总结

基本不等式题型总结

基本不等式题型总结在数学学习中,不等式是一个重要而又常见的概念。

而基本不等式,作为不等式的基础和基本类型,是我们解决更复杂的不等式问题的关键。

本文将对一些常见的基本不等式题型进行总结和探讨,希望能帮助读者更好地掌握和应用这些不等式。

一、根式不等式根式不等式是一种常见的基本不等式题型。

在解决根式不等式问题时,我们需要注重两个关键点:一是化简根式表达式,二是确定根式的范围。

以求解不等式$\sqrt{x+1} > 3$为例,可以通过平方两边来消除根式,得到$x+1 > 9$。

然后解得$x > 8$。

但我们需要注意的是,由于根式的非负性质,我们还需要考虑$x+1\geq 0$的条件。

综合考虑,解集为$x > 8$。

二、分式不等式分式不等式是另一类常见的基本不等式题型。

在解决分式不等式问题时,我们需要注重两个关键点:一是去分母,二是确定分式的范围。

以求解不等式$\frac{1}{x-2} \geq 2$为例,我们可以通过去分母的方法得到$x-2 \geq \frac{1}{2}$。

然后解得$x \geq\frac{5}{2}$。

但我们需要注意的是,由于分式的定义域,我们需要考虑$x-2\neq 0$的条件。

综合考虑,解集为$x > \frac{5}{2}$。

三、绝对值不等式绝对值不等式是基本不等式中的一种特殊类型。

在解决绝对值不等式问题时,我们需要注重两个关键点:一是分情况讨论,二是确定绝对值的范围。

以求解不等式$|2x-1| \leq 3$为例,我们可以分别讨论$2x-1$的正负情况。

当$2x-1\geq 0$时,不等式可以化简为$2x-1 \leq 3$,解得$x \leq 2$。

当$2x-1<0$时,不等式可以化简为$1-2x \leq 3$,解得$x \geq -1$. 综合考虑,解集为$x \in [-1,2]$。

四、幂函数不等式幂函数不等式是一种常见而又稍微复杂的不等式类型。

基本不等式题型20种

基本不等式题型20种

基本不等式题型20种不等式是数学中重要的概念,它描述了数之间的大小关系。

在解决实际问题和推导数学推论中,不等式起着非常重要的作用。

本文将介绍20种常见的基本不等式题型。

一、一元一次不等式一元一次不等式是最简单的不等式类型。

例如:解不等式3x+4>10。

解:首先将不等式转化为等式:3x+4=10;然后解方程:3x=6;得到解:x=2。

二、一元二次不等式一元二次不等式是一元二次函数的不等式形式。

例如:解不等式x^2-5x+6>0。

解:首先求出一元二次函数的根:(x-2)(x-3)>0;然后画出函数的图像或根据韦达定理判断函数的正负;得到解:x<2或x>3。

三、绝对值不等式绝对值不等式是含有绝对值符号的不等式。

例如:解不等式|2x-3|≥5。

解:将含有绝对值的不等式拆分为两个不等式:2x-3≥5或2x-3≤-5;然后求解这两个不等式得到:x≥4或x≤-1。

四、分式不等式分式不等式是含有分式的不等式。

例如:解不等式(3x-2)/(2x+1)≤1。

解:首先将不等式化简:3x-2≤2x+1;然后解方程:x≤3。

五、根式不等式根式不等式是含有根式的不等式。

例如:解不等式√(x-4)≥2。

解:将不等式平方得:x-4≥4;然后解方程:x≥8。

六、乘法不等式乘法不等式是含有乘法的不等式。

例如:解不等式2x(x-1)≤0。

解:将不等式化简:2x(x-1)≤0;然后求解这个不等式得到:0≤x≤1。

七、除法不等式除法不等式是含有除法的不等式。

例如:解不等式(3x+6)/(x+2)≤4。

解:首先将不等式转化为等式:(3x+6)/(x+2)=4;然后解方程:x=-5;由于分母不能为0,所以解为x<-2或x>-5。

八、加法不等式加法不等式是含有加法的不等式。

例如:解不等式x+2>5。

解:将不等式化简:x>3。

九、减法不等式减法不等式是含有减法的不等式。

例如:解不等式2x-5≥1。

《基本不等式》17种题型高一

《基本不等式》17种题型高一

基本不等式是高中数学中非常重要且基础的一部分。

它在高一数学中占据着重要的地位,对于学生的数学基础和逻辑推理能力的培养起着至关重要的作用。

在高一数学教学中,基本不等式的学习也是一个重要的环节,不仅需要掌握它的概念和性质,还需要学会运用它解决实际问题。

本文将从基本不等式的概念入手,详细介绍其性质和运用方法,并列举17种题型,帮助学生全面理解和掌握基本不等式的相关知识。

一、基本不等式的概念基本不等式是指在任意三个实数a、b、c之间,必有以下基本不等式成立:1)正数的不等式:a >b ⟹ a +c > b + ca > 0,b > 0 ⟹ ac > bca > b, c > 0 ⟹ ac > bca > b, c < 0 ⟹ ac < bc2)负数的不等式:a <b ⟹ a +c < b + ca < 0,b < 0 ⟹ ac > bca < b, c > 0 ⟹ ac < bca < b, c < 0 ⟹ ac > bc以上基本不等式是学习基本不等式的基础,对于解决实际问题是非常重要的。

二、基本不等式的性质基本不等式还具有一些重要的性质,包括:1)传递性:若a > b,b > c,则a > c2)对称性:若a > b,则-b > -a3)倒置性:若a > b,则1/a < 1/b,且a/b > 0这些性质对于运用基本不等式解决实际问题时起着重要的作用,可以帮助学生更好地理解和运用基本不等式。

三、基本不等式的运用方法基本不等式在解决实际问题时有着广泛的应用,其运用方法主要包括:1)利用基本不等式的性质化简题目;2)利用基本不等式构造等式或方程组,进而求解问题;3)利用基本不等式证明不等式关系,讨论最值等问题。

学生在解决实际问题时,可以根据具体情况选择不同的运用方法,灵活运用基本不等式,解决各种复杂的问题。

基本不等式12种题型

基本不等式12种题型

基本不等式12种题型在数学中,基本不等式是重要的一种运算表示方法,它涉及不同类型的数据,可以构成一系列不等式和等式,有助于理解形状、性质和变化规律的数学问题。

许多数学题的解决都离不开不等式的运用,不等式的题型也是考试题型中的重要类型,本文将简要介绍基本不等式12种常见题型。

1、比较不等式比较不等式是一种两个不同数之间的大小比较,表示结果不等式,即大于、小于、大于等于或小于等于等。

例如:2a + b > 3,表示2a + b大于3。

2、区间不等式区间不等式是一种不等式,用于表示一个数字处于两个不同数字之间,即大于等于或小于等于的情况,例如:1 < x < 2。

即表示x介于1和2之间,大于1小于2。

3、极值不等式极值不等式用于表达某一数值在一系列数值中的位置,比如最大值、最小值和极值点,例如:f(x)<f(2),表示在函数f(x)中x=2处的值小于其他全部x处的值。

4、组合不等式组合不等式是所有不等式的一个组合,即将几个不同的不等式进行合并,使得总的结果能够得到满足,例如2a + b > 2且b < 4,表示2a + b大于2,并且b小于4。

5、不等关系不等式不等关系不等式是指在有两个变量的不等式中,一个变量的取值存在一定的不等关系,即两个变量均存在大于、小于、大于等于或小于等于等关系,例如:x>2和x+2>y,表示x大于2,且x+2大于y。

6、方程不等式方程不等式也叫不等式方程,是指一个方程中关于未知数的不等式,即未知数的取值存在一定的不等关系,例如:3x-2<7,表示3x-2小于7。

7、多项式不等式多项式不等式是指多项式的不等式,即系数和未知数之间存在一定的不等关系,例如:3x^2+2x+1>0,表示3x^2+2x+1大于0。

8、指数不等式指数不等式是指指数的不等式,即指数和未知数之间存在一定的不等关系,例如:2x > 8,表示2x大于8。

基本不等式的常见题型

基本不等式的常见题型
2a b b 2b a a
12.已知x 0, y 0, x y 1, 则
13.已知2 x y 0,
1
1

的最小值是 _____.
1 x 1 2 y
1
1

1, 则x y的最小值是 _____.
2 x-y x +2 y
1 1
4x
9y
14.已知x 0, y 0, 1, 则
2.基本不等式
一、知识点梳理
(1)基本不等式成立的条件:a≥0,b≥0.
(2)等号成立的条件:当且仅当 a=b 时取等号.
a+b
称为正数 a,b 的算术平均数, ab称为正数 a,b 的几何平均数.
2
(3)其中
1 a 2+b2 2ab, a,b R
(当且仅当 a= b时取等号 )
2
a+b
的最小值为_______.
xy
a2 1
的最小值为_______.
ab
x2 3y
的最小值为_______.
xy
[题组训练]
(�+1)(2�+1)
1. (2019 天津,13,5 分)设 x>0,y>0,x+2y=5,则
��
的最小值为
.
1 a
2.设a 0, b >0, 且a b 1, 则 的最小值为_______.
1 1
2.若 2m+n=1 上,且 m,n 为正数,则 + 的最小值为________.
m n
1
4
3.已知正数 x,y 满足 x+y=1,则�+1+�的最小值为________.

不等式考试题型

不等式考试题型

不等式考试题型题型一:求不等式的特殊解1)求63<+x 的所有正整数解2)求)1(2)3(410-≥--x x 的非负整数解,并在数轴上表示出来3)求不等式0123≥+-x 的非负整数解4)设不等式02≤-a x 只有3个正整数解,求正整数a 的值题型二:不等式与方程的综合题例 关于x 的不等式12-≤-a x 的解集如图,求a 的取值范围不等式组⎪⎩⎪⎨⎧+>+<+1159m x x x 的解集是2>x ,则m 的取值范围是?若关于x 、y 的二元一次方程组⎪⎩⎪⎨⎧=-+=+03135p y x y x 的解是正整数,求整数p 的值已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,求b a 的值题型三:确定方程或不等式中字母取值范围例 k 为何值时方程)(365k x x +=-的值是非正数已知关于x 的方程953-=-x k 的解是非负数,求k 的取值范围已知在不等式03≤-a x 的正整数解是1,2,3,求a 的取值范围若1)1(+>+a x a 得解是1<x ,求a 的范围若⎪⎩⎪⎨⎧>-<+ax x x 148得解集为3>x ,求a 的取值范围题型四:求最小值问题例 x 取什么值时,代数式645+x 的值不小于3187x --的值,并求出x 的最小值题型五:不等式解法的变式应用例 x 取什么值时,6)3()2(2----x x 的值是非负数例 x 取哪些非负数时,523-x 的值不小于312+x 与1的差题型六:解不定方程例 求方程0204=-+y x 的正整数解已知⎩⎨⎧-<->-232a x ax 无解,求a 的取值范围题型七:不等式组解的分类讨论例 解关于x 的不等式组⎩⎨⎧+->-+-<-4)1(22)2(384x a x a ax ax。

高中数学基本不等式题型总结:

高中数学基本不等式题型总结:

高中数学基本不等式题型总结:
一、一元一次不等式
1. 原理:在一元一次不等式中,如果两个不等式的不等号方向
相同,且两个不等式的等号两边都乘以同一个正数或同一个负数,
那么不等式保持不变。

2. 解法:
a. 将不等式化简为标准形式:ax + b > 0 或 ax + b < 0,其中 a
和 b 均为实数,且a ≠ 0。

b. 对不等式进行相同操作后得到的不等式,得到不等式的解集。

二、一元二次不等式
1. 原理:在一元二次不等式中,解不等式的关键是确定二次函
数的凹凸性和零点情况。

2. 解法:
a. 将不等式化简为标准形式:ax^2 + bx + c > 0 或 ax^2 + bx + c < 0,其中 a、b 和 c 均为实数,且a ≠ 0。

b. 利用一元二次函数的凹凸性和零点情况进行分析,得到不等
式的解集。

三、绝对值不等式
1. 原理:对于绝对值不等式,根据绝对值的定义可分为绝对值大于等于零和绝对值小于等于零两种情况。

2. 解法:
a. 将不等式化简为标准形式:|ax + b| > c、|ax + b| < c 或 |ax + b| ≥ c、|ax + b| ≤ c,其中 a、b 和 c 均为实数,且a ≠ 0。

b. 根据绝对值的定义和不等式方向进行分析,得到不等式的解集。

四、其他常见不等式
1. 根据题目要求和不等式的特点,灵活运用数学运算符和基本不等式的性质,确定不等式的解集。

以上是高中数学中基本的不等式题型总结,希望能对你的研究有所帮助。

不等式常见题型及解析题

不等式常见题型及解析题

不等式常见题型及解析题一、一元一次不等式1.问题描述解不等式$a x+b>c$,其中$a>0$。

2.解法分析根据不等式的性质,我们可以将不等式转化为等价的形式:$$ax+b=c$$然后确定不等式的解集。

(1)当$a>0$时将不等式转化为等式,我们得到$ax+b=c$,解得$x=\fr ac{c-b}{a}$。

此时,对于任意一个满足$c-b>0$的$x$,都可以使得$a x+b>c$,所以解集为$\le ft(\fr ac{c-b}{a},+∞\ri gh t)$。

(2)当$a<0$时将不等式转化为等式,我们得到$ax+b=c$,解得$x=\fr ac{c-b}{a}$。

此时,对于任意一个满足$c-b<0$的$x$,都可以使得$a x+b<c$,所以解集为$\le ft(-∞,\f r ac{c-b}{a}\r igh t)$。

(3)当$a=0$时此时,不等式退化为$b>c$或$b<c$,没有变量$x$,所以不存在解。

二、一元二次不等式1.问题描述解不等式$a x^2+bx+c>0$,其中$a>0$。

2.解法分析和一元一次不等式类似,我们可以将不等式转化为等价的形式:$$ax^2+b x+c=0$$然后确定不等式的解集。

(1)当$a>0$时判断二次函数$a x^2+b x+c$的图像与$x$轴的交点数:-当判别式$Δ=b^2-4a c$大于0时,二次函数与$x$轴有两个交点,此时不等式的解集为$\le ft(-∞,x_1\ri gh t)\c up\le ft(x_2,+∞\ri g ht)$,其中$x_1$和$x_2$分别为二次方程$a x^2+b x+c=0$的两个根。

-当判别式$Δ=b^2-4a c$等于0时,二次函数与$x$轴有一个交点,此时不等式的解集为$\ma th bb{R}$,即全体实数的集合。

-当判别式$Δ=b^2-4a c$小于0时,二次函数与$x$轴没有交点,此时不等式的解集为空集。

高三数学不等式题型情况总结全

高三数学不等式题型情况总结全

不等式的解题归纳第一部分 含参数不等式的解法 例1解关于x 的不等式022≤-+k kx x例2.解关于x 的不等式:(x-2x +12)(x+a)<0.例3、若不等式13642222<++++x x kkx x 对于x 取任何实数均成立,求k 的取值范围.例4若不等式ax 2+bx+1>0的解集为{x ︱-3<x<5},求a 、b 的值.例5 已知关于x 的二次不等式:a 2x +(a-1)x+a-1<0的解集为R ,求a 的取值范围.例6、1.定义在R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时,有 ()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.【课堂练习】1、已知(2a -1) 2x -(a-1)x-1<0的解集为R ,求实数a 的取值范围.2、解关于x 的不等式:.0)2(2>+-+a x a x3、解关于x 的不等式:.012<-+ax ax【课后练习】1.如果不等式x 2-2ax +1≥21(x -1)2对一切实数x 都成立,a 的取值范围是2.如果对于任何实数x ,不等式kx 2-kx +1>0 (k>0)都成立,那么k 的取值范围是3.对于任意实数x ,代数式 (5-4a -2a )2x -2(a -1)x -3的值恒为负值,求a 的取值范围4.设α、β是关于方程 2x -2(k -1)x +k +1=0的两个实根,求 y=2α +2β关于k 的解析式,并求y 的取值范围第二部分 绝对值不等式1.(2010年高考福建卷)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值;(2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围.2.设函数()|1|||f x x x a =-+-,(1)若1a =-,解不等式()3f x ≥; (2)如果x R ∀∈,()2f x ≥,求a 的取值范围3.设有关于x 的不等式()a x x >-++73lg(1)当1a =时,解此不等式; (2)当a 为何值时,此不等式的解集为R4.已知()|1||2|g x x x =---。

基本不等式常见题型(原卷版)

基本不等式常见题型(原卷版)

基本不等式常见题型(原卷版)题型一:由基本不等式比较大小 1.(多选)若10a b -<<<,则( )A .222a b ab +>B .11a b< C .a b +>D .11a b a b +>+2.(多选)设0a >,0b >,则下列不等式中成立..的是( )A .()114a b a b ⎛⎫++≥ ⎪⎝⎭B .3322a b ab +≥C .22222a b a b ++≥+ D3.(多选)已知实数0a >,0b >,1a b +=.则下列不等式正确的是( )A .22a b +≥BC .112216a b ⎛⎫⎛⎫++≤ ⎪⎪⎝⎭⎝⎭D .222a b a b b a +≤++题型二:有基本不等式证明不等式1.(多选)以下结论正确的是( )A .函数1y x x =+的最小值是2;B .若,R a b ∈且0ab >,则2b a a b+≥;C .y =2; D .函数12(0)y x x x =++<的最大值为0.2.已知a ,b ,c 均为正实数.(1)求证:a b c ++≥若1a b +=,求证:11119a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.题型三:基本不等式求最大值1.当0x >时,234x x +的最大值为 __.2.实数,a b 满足2221a b +=,则ab 的最大值为___________.3.(1)已知1x >,求1411x x ++-的最小值;(2)已知01x <<,求()43x x -的最大值.题型四:基本不等式求最小值1.已知,a b 为正实数且2a b +=,则2b a b+的最小值为( )A .32B 1C .52D .32.已知m ,R n ∈,且12n m +=,则93m n +的最小值为( ) A .4 B .6 C .8 D .93.已知42244924x x y y ++=,则2253x y +的最小值是( )A .2B .127C .52D .4.题型五:二次或一次商式的最值1.当0x >时,函数231x x y x ++=+的最小值为( ) A .23 B .231- C .231+ D .42.已知a b >,且8ab =,则222a b a b+--的最小值是( ) A .6 B .8 C .14 D .163.函数25(2)2x x y x x +-=>- 的最小值为______.题型六:条件等式求最值1.若实数,x y 满足:,0,310x y xy x y >---=,则xy 的最小值为( )A .1B .2C .3D .42.已知0x >,0y >,且44x y += .(1)求xy 的最大值;(2)求12x y+的最小值.题型七:条件等式求最值1.已知0,0a b >>,若不等式313m a b a b+≥+恒成立,则m 的最大值为________. 2.若“()0,x ∀∈+∞,不等式1a x x<+恒成立”为真命题,则实数a 的取值范围是______.题型八:基本不等式的应用1.某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买10g 黄金,售货员先将5g 的砝码放在左盘,将黄金放于右盘使之平衡后给顾客;然后又将5g 的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金( )A .大于10gB .小于10gC .等于10gD .以上都有可能2.某大型广场计划进行升级改造.改造的重点工程之一是新建一个矩形音乐喷泉综合体1111D C B A ,该项目由矩形核心喷泉区ABCD (阴影部分)和四周的绿化带组成.规划核心喷泉区ABCD 的面积为10002m ,绿化带的宽分别为2m 和5m (如图所示).当整个项目1111D C B A 占地面积最小时,核心喷泉区的边BC 的长度为( )A .20mB .50mC .1010mD .100m。

不等式知识点总结及题型归纳

不等式知识点总结及题型归纳

不等式知识点总结及题型归纳一、解不等式1、一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x < 有两相等实根ab x x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x xx <<∅∅2、简单的一元高次不等式的解法: 标根法:其步骤是:1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。

()()()如:x x x +--<1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。

解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。

()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <二、线性规划1、用二元一次不等式(组)表示平面区域二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 3、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. ②线性目标函数:关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤: 1)寻找线性约束条件,列出线性目标函数; 2)由二元一次不等式表示的平面区域做出可行域;3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解.三、基本不等式2a bab +≤1、若a,b ∈R ,则a 2+b 2≥2ab ,当且仅当a=b 时取等号.2、如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 变形: 有:a+b ≥ab 2;ab ≤22⎪⎭⎫⎝⎛+b a ,当且仅当a=b 时取等号.3、如果a,b ∈R+,a·b=P (定值),当且仅当a=b 时,a+b 有最小值P 2;如果a,b ∈R+,且a+b=S (定值),当且仅当a=b 时,ab 有最大值42S .注:1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. 2)求最值的重要条件“一正,二定,三取等” 4、常用不等式有:12211a b a b+≥≥≥+(根据目标不等式左右的运算结构选用) ; 2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); 3)若0,0a b m >>>,则b b ma a m+<+(糖水的浓度问题)。

高三数学二轮复习高考不等式题型总结

高三数学二轮复习高考不等式题型总结

高考冲刺篇、---不等式(αωξ)题型1:恶心配凑法1.若,112160022=+b a b a ,>,>则bb a a −+−634最小值为 .2.已知,>,>,>000c b a 则()ac bc c b a ++++252222的最小值为 . 3.已知,>,>,>200c b a 且2=+b a ,则252−+−+c c ab c b ac 的最小值为 .4.已知,>>0,0y x 且1=+y x ,则xy y x ++22的最大值为 .5.若[]1,1−∈x ,则()2214x x x−+−的最大值为 . 6.已知,>>0,0y x 则()()75211222++++y x y x 的最小值为 .7.已知R c b a ∈,,,5222=++c b a ,则2786c bc ab +−的最大值为 .8.已知,>,>00b a ,4=+b a 则111122+++b a 的最大值为 .9.已知,>>0,0y x ,213213=+++y x y x 则yx 1−的最小值为 .10.已知,>,>21b a 则()41222−+−+b a b a 的最小值为 . 11.已知,>>0,0y x ,26421=+++yy x x 则xy 的最大值为 .12.若00,0>,>>z y x ,且1222=++z y x ,则zxy z 11++的最小值为 .13.若,>,>00b a ()()324ab b a =−,则ba 11+的最小值为 .题型2:配积消元法和换元法1.已知,>>0,0y x 且14522=−+y xy x ,则22812y xy x −+的最小值为 .2.若12,,22=−+∈∈y xy x R y R x ,则222252yxy x y x +−−的最大值为 .3.已知()()()()y x P C B A ,,1,3,2,1,1,2−−满足()()1−=⋅⨯⋅OB OP OA OP ,则2OP OCOP ⋅的最大值为 .4.若,>,>10b a 且2=+b a ,则1221−+b b a 的最小值为 . 5.已知,>>0,0y x 则yx y y x x 23+++的最大值为 . 题型3:导数法和函数法1.已知00,0>,>>z y x ,且,63=++z y x 则z y x 323++的最小值为 .2.已知00,0>,>>z y x ,且,2=++z y x 则z y x ++2331的最小值为 . 3.若,4,0,⎥⎦⎤⎢⎣⎡∈πβα则()()βαβα++−sin 2sin 的最大值为 .题型4:设值左右法1.已知,>,>00b a 且b a b a 13612+≤++,则ba ab 3+的最大值为 .题型5:费马点1.00,0>,>>z y x ,且()92=−+xy y x ,,()162=−+yz z y ,()252=−+zx x z ,则=++zx yz xy .题型6:设比例关系法1.已知,>,>00b a ,333b a b a −=+若122≤+kb a 恒成立,则k 的最大值为 .2.设[]2,1,∈b a ,则abb a 22+的最大值为 .3.已知,>>0,0y x 则2222282yx xy y x xy +++的最大值为 .题型7:参数法1.已知,>,>,>000c b a 且222c b a =+,则abc c b a 333++的最小值为 .2.x x 3154−+−的最大值为 .3.若,,R b a ∈,6222=+b a 则3−a b 的最大值为 . 题型8:万能k 法和主元法1.若,>,>00b a 且对于任意的b a ,,()2223442a ab b k a ab ++≤+恒成立,则k 的最大值为 . 2.若,>>0,0y x xy yx y x 4344=+−,则y 的最大值为 .3.已知,>,>,>000c b a (),bc c b a a =++则cb a +的最大值为 .4.若,14,,22=++∈∈y xy x R y R x 则y x +2的最大值为 .5.若()b a b b a +≥+γ228对任意R b a ∈,恒成立,则γ的最大值为 .6.若,>>0,0y x 则()yx y x 2122+++的最小值为 .7.若,>>0,0y x ()4=−y x xy ,则y x +的最小值为 .8.若,>>0,0y x ()4=+y x xy ,则y x +2的最小值为 .9.若,>>0,0y x ()422=+y x y x ,则y x +的最小值为 .答案:题型1 1.4 2.4 3.105+ 4.89 5.2 6.21 7.45 8.452+ 9.21− 10.6 11.4 12.223+ 13.22题型2 1.37 2.42 3.425 4.213 5.53题型3 1.437 2.1213 3.5题型4 1.91题型5 1.38题型6 1.6 2.25 3.32题型7 1.22+ 2.2 3.1题型8 1.22 2.31 3.212− 4.5102 5.4 6.552 7.32 8.32 9.2。

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式基本不等式求最值 利用基本不等式求最值:一正、二定、三等号.三个不等式关系:(1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R +,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b2)2,当且仅当a =b 时取等号.上述三个不等关系揭示了a 2+b 2,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R +,a +b ≥2ab (或ab ≤(a +b2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则112-+b a 的最小值为 .练习:1.若实数满足,且,则的最小值为 .2.若实数,x y 满足133(0)2xy x x +=<<,则313x y +-的最小值为 . 3.已知0,0,2a b c >>>,且2a b +=,则2ac c c b ab +-+的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +yx +y 的最大值为 .【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________.变式:1.若,a b R +∈,且满足22a b a b +=+,则a b +的最大值为_________.2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______3.设R y x ∈,,1422=++xy y x ,则y x +2的最大值为_________,x y 0x y >>22log log 1x y +=22x y x y+-4.已知正数a ,b 满足195ab a b+=-,则ab 的最小值为 【题型二】含条件的最值求法【典例4】已知正数y x ,满足1=+y x ,则1124+++y x 的最小值为练习1.已知正数y x ,满足111=+yx ,则1914-+-y yx x 的最小值为 .2.已知正数满足,则的最小值为 .3.已知函数(0)xy a b b =+>的图像经过点(1,3)P ,如下图所示,则411a b+-的最小值为 .4.己知a ,b 为正数,且直线 与直线 互相平行,则2a+3b 的最小值为________.5.常数a ,b 和正变量x ,y 满足ab =16,a x +2b y =12.若x +2y 的最小值为64,则a b=________.6.已知正实数,a b 满足()()12122a b b b a a+=++,则ab 的最大值为 .,x y 22x y +=8x yxy+60ax by +-=2(3)50x b y +-+=【题型三】代入消元法【典例5】(苏州市2016届高三调研测试·14)已知14ab =,,(0,1)a b ∈,则1211ab+--的最小值为 .练习1.设实数x ,y 满足x 2+2xy -1=0,则x 2+y 2的最小值是 .2.已知正实数x ,y 满足,则x + y 的最小值为 .3.已知正实数,x y 满足(1)(1)16x y -+=,则x y +的最小值为 .4.若2,0>>b a ,且3=+b a ,则使得214-+b a 取得最小值的实数a = 。

高一上基本不等式常考的六种题型

高一上基本不等式常考的六种题型

高一上基本不等式常考的六种题型在高一上学期的数学学习中,基本不等式是一个重要的内容,也是考试中常常出现的题型之一。

掌握基本不等式的相关知识对于学生提高数学成绩和解题能力非常重要。

在高一上学期中,基本不等式常考的六种题型主要包括:绝对值不等式、一元一次不等式、一元二次不等式、二元一次不等式、含参不等式和综合不等式。

第一种题型是绝对值不等式。

绝对值不等式是一种常见的不等式类型,通常会涉及到绝对值符号的运用。

学生在解这种类型的不等式时,需要根据绝对值的定义进行分情况讨论,注意绝对值不等式的解集是一个或多个区间的并集。

第二种题型是一元一次不等式。

一元一次不等式是一种简单的不等式类型,主要涉及到一元一次方程的解法和不等式的性质。

学生在解这种不等式时,一般需要先化简,然后根据不等式的性质进行变形,最终求解不等式的解集。

第三种题型是一元二次不等式。

一元二次不等式是一种稍微复杂一点的不等式类型,通常需要运用一元二次方程的解法和一元二次函数的性质。

学生在解这种不等式时,一般需要将不等式化为标准形式,然后利用一元二次函数的性质进行分析,最终求解不等式的解集。

第四种题型是二元一次不等式。

二元一次不等式是一种涉及到两个变量的不等式类型,通常需要通过综合不等式的知识进行分析。

学生在解这种不等式时,一般需要将不等式化为标准形式,然后利用二元一次不等式的性质进行分析,最终求解不等式的解集。

第五种题型是含参不等式。

含参不等式是一种涉及到参数的不等式类型,通常需要通过对参数的不同取值进行讨论。

学生在解这种不等式时,一般需要将不等式根据参数的不同取值进行分情况讨论,最终求解不等式的解集。

第六种题型是综合不等式。

综合不等式是一种综合不同类型不等式的题型,通常需要学生综合运用不等式的知识进行解答。

学生在解这种不等式时,一般需要综合不等式的不同性质,运用不等式的基本解法,最终求解不等式的解集。

总的来说,高一上学期基本不等式常考的六种题型涵盖了不同的不等式类型,学生在学习和解题的过程中需要不断练习,掌握不等式的基本性质和解法,提高解题的能力和速度。

基本不等式总结题型

基本不等式总结题型

基本不等式总结题型一、基本不等式的概念基本不等式呢,就是那个超有用的不等式啦,对于正数a、b,有(a + b)/2 ≥ √(ab)。

这就像是数学世界里的一个小宝藏,在好多题型里都会用到哦。

二、基本不等式总结题型1. 求最值题型比如给你一个式子y = x+1/x(x>0),要求这个式子的最小值。

这时候就可以用基本不等式啦。

因为x和1/x都是正数,根据基本不等式(a + b)/2 ≥ √(ab),这里 a = x,b = 1/x,那么y=x + 1/x≥2√(x×1/x)=2,所以y的最小值就是2啦。

还有像已知2x + 3y = 6,求xy的最大值这种题。

我们可以把2x和3y看作基本不等式里的a和b,由2x+3y = 6可得y=(6 - 2x)/3,那么xy=x×(6 - 2x)/3=-2/3x² + 2x。

再根据基本不等式变形可得2x+3y≥2√(6xy),6≥2√(6xy),解这个不等式就可以求出xy的最大值。

2. 证明不等式题型比如说要证明(a² + b²)/2≥ab。

我们可以从基本不等式出发,因为(a - b)²≥0,展开得到a² - 2ab + b²≥0,移项就得到a² + b²≥2ab,两边同时除以2,就得到(a² + b²)/2≥ab啦。

再比如证明1/(a + b)+1/(b + c)+1/(c + a)≥9/(2(a + b + c))(a,b,c都是正数)。

这种题就需要巧妙地构造基本不等式的形式,把式子进行变形然后利用基本不等式来证明。

3. 比较大小题型例如比较(a + b)/2和√((a² + b²)/2)的大小(a,b都是正数)。

我们可以采用作差法,把(a + b)/2 - √((a² + b²)/2)进行化简,然后根据基本不等式的性质来判断这个差是大于0、小于0还是等于0,从而得出两个式子的大小关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《不等式》常见考试题型总结一、高考与不等式高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。

不等式常与下列知识相结合考查:①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大;②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题;③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查.二、常见考试题型(1)求解不等式解集的题型(分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法) (2)不等式的恒成立问题(不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合法) (3)不等式大小比较常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。

(4)不等式求函数最值技巧一:凑项 例:已知54x <,求函数14245y x x =-+-的最大值。

技巧二:凑系数例. 当时,求(82)y x x =-的最大值。

技巧三: 分离例. 求2710(1)1x x y x x ++=>-+的值域。

技巧四:换元例. 求2710(1)1x x y x x ++=>-+的值域。

技巧五:函数的单调性(注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()af x x x=+的单调性。

) 例:求函数2y =的值域。

技巧六:整体代换(多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。

) 例:(1)已知0,0x y >>,且191x y+=,求x y +的最小值。

(2)若+∈R y x ,且12=+y x ,求yx11+的最小值(3)已知+∈R y x b a ,,,且1=+yb x a ,求y x +的最小值技巧七、利用1cos sin22=+αα转换式子技巧八、已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab ≤a 2+b 22。

同时还应化简1+y 2中y 2前面的系数为 12 , x 1+y 2=x2·1+y 22= 2 x ·12 +y22下面将x ,12 +y22分别看成两个因式: x ·12 +y22≤x 2+(12 +y 22 )22 =x 2+y 22 +12 2 =34即x 1+y 2= 2 ·x12 +y 22 ≤ 342技巧九:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab的最小值.这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解 二是直接用基本不等式。

例:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。

2.若直角三角形周长为1,求它的面积最大值。

技巧十:取平方例、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值. (5)证明不等式常用方法:比较法、分析法、综合法和放缩法。

基本不等式—最值求法的题型基础题型一:指数类最值的求法 1. 已知3a b +=,求33a b +的最小值。

变式1.已知23a b +=,求39a b +的最小值。

变式2.已知2x y -=,求133x y +的最小值。

变式3.已知23x y -=-,求124x y +的最小值。

变式4.已知点(,)x y 在直线112y x =-上,求139x y +的最小值。

基础题型二:对数类最值的求法2. 已知0,0x y >>,且24x y +=,求22log log x y +的最大值。

变式1.已知0,0x y >>,且24x y +=,求1122log log 3x y +的最小值。

变式2.已知点(,)x y 是圆226x y +=在第一象限内的任一点,求x y +的最大值。

能力题型一:常数变形(加或减去某个常数使两个因式的积为常数)1. 已知2x >,求1()12f x x x =++-的最小值。

变式1.已知3x >,求4()232f x x x =-+-的最小值。

变式2.已知1x <,求4()21f x x x =+-的最大值。

能力题型二:代换变形(把整式乘到分式中去以便于用基本不等式)1. 已知0,0x y >>,且21x y +=,求21x y +的最小值。

2. 变式1.已知0,0x y >>,且23x y +=,求23x y +的最小值。

变式2.已知0,0x y <<,且32x y +=-,求12x y+的最大值。

能力题型三:指数与系数的变形(调整字母的系数和指数)1. 已知0,0x y >>,且2221x y +=,求变式1.已知0,0x y >>,且2223x y +=,求221x y +的最大值。

变式2.已知0,0a b >>,且223a b +=,求212a b -+的最小值。

能力题型四:对勾函数及其应用【对勾函数】1y x x =+,由1x x=得顶点的横坐标为1x =±。

b y ax x =+,由bax x=得顶点的横坐标为b x a =±。

(1)11b b y ax a x a x x =+=-++--,由(1)1ba x x -=-得顶点的横坐标为1b x a =±。

例1.求2([1,4])y x x x =+∈ 的值域。

变式1.求2([2,1])y x x x =+∈-- 的值域。

变式2.求23([2,4])y x x x =+∈ 的值域。

例2.求4(2)1y x x x =+≥+ 的值域。

变式1.求12(3)2y x x x =+≥- 的值域。

变式2.求2(2)1y x x x =+≤-- 的值域。

例3.求4sin (0)sin 2y x x x π=+≤≤ 的值域。

变式1.求4sin (0)sin 1y x x x π=+≤≤- 的值域。

变式2.求2cos (0)cos 1y x x x π=+≤≤+ 的值域。

基本不等式例题例1. 已知, 且,求的最小值及相应的值.例2. 的最小值为________。

例3.已知,,成等差数列,成等比数列,则的最小值是( ) 例4.函数的图象恒过定点,若点在直线上,则的最小值为_________.例5. 若,则的最小值是( )例6.下列各函数中,最小值为2的是( )A B. C. D.例7(1)已知54x <,求函数14245y x x =-+-的最大值. (2)求函数1422++=x x y 的最小值求22242y x x =--+的最大值.练习. 设,则的最大值为例8.已知,,且. 求的最大值及相应的的值例9若x ,y 是正数,则22)21()21(xy y x +++的最小值是 练习:已知实数x ,y 满足x +y -1=0,则x 2+y 2的最小值例10.若实数a 、b 满足a+b=2,是3a +3b的最小值是基本不等式证明例 已知a ,b 为正数,求证:ab ba +≥b a +.例实际应用:某单位用木材制作如图所示的框架,框架的下部是边长分别为x y(单位:m)的矩形,上部是等腰直角三角形,要使框架围成的总面积为82m ,问x y 分别为多少时用料最省?基 本 不 等 式 应 用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

相关文档
最新文档