高中数学常见题型解法第36招 归纳法、定义法、公式法、累加法、累乘法

合集下载

数学中常用的解题方法知乎

数学中常用的解题方法知乎

数学中常用的解题方法知乎
在数学中,我们经常会遇到各种各样的问题和难题。

为了解决这些问题,数学家们创造了各种不同的解题方法。

在本文中,我们将介绍一些常用的解题方法。

1. 代数法
代数法是最基本的解题方法之一。

它通常用于解决方程、不等式和函数等问题。

这种方法的基本思路是把问题转化为代数式,然后运用代数运算来解决问题。

2. 几何法
几何法是解决几何问题的常用方法。

它通常用于计算几何、解决三角形、四边形和圆等图形的问题。

这种方法的基本思路是利用几何图形的性质和定理来解决问题。

3. 统计法
统计法是解决概率和统计问题的常用方法。

它通常用于分析数据、计算概率和研究随机变量等。

这种方法的基本思路是通过收集和分析数据来推断问题的答案。

4. 数学归纳法
数学归纳法是解决递推问题的常用方法。

它通常用于证明某个命题对所有自然数都成立。

这种方法的基本思路是证明当n取任意自然数时,命题都成立,然后证明当n+1时,命题也成立。

5. 反证法
反证法是解决证明问题的常用方法。

它通常用于证明某个命题是错的。

这种方法的基本思路是假设命题成立,然后找出一个矛盾的例子来证明命题是错的。

除了上述常用的解题方法,还有很多其他的方法,如数学归纳法、递推法、分析法等。

在解决数学问题时,我们可以根据问题的性质和特点选择不同的方法。

通过不断学习和实践,我们可以掌握更多的解题方法,提高自己的数学水平。

数列通项公式的求解方法总结

数列通项公式的求解方法总结

数列通项公式的求解方法总结求数列的通项公式是数列中一类常见的题型,这类题型如果单纯的看某一个具体的题目,它的求解方法灵活是灵活多变的,构造的技巧性也很强,但是此类题目也有很强的规律性,存在着解决问题的通法,本文就高中数学中常见的几类题型从解决通法上做一总结,方便于学生学习和老师的教学。

一、累加法:利用an=a1+(a2-a1)+…(an-an-1)求通项公式的方法称为累加法。

累加法是求型如an+1=an+f(n)的递推数列通项公式的基本方法(f(n)可求前n项和).例1.已知数列an满足an+1=an+2n+1,a1=1,求数列an的通项公式。

解:由an+1=an+2n+1得an+1-an=2n+1则an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+ (a2-a1)+a1=[2(n-1)+1]+[2(n-2)+1]+…+(2×2+1)+(2×1+1)+1=2[(n-1)+(n-2)+…+2+1]+(n-1)+1=2+(n-1)+1=(n-1)(n+1)+1=n2所以数列an的通项公式为an=n2。

例2:在数列{an}中,已知an+1= ,求该数列的通项公式.备注:取倒数之后变成逐差法。

解:两边取倒数递推式化为:=+,即-=所以-=,-=,-=…-=.…,将以上n-1个式子相加,得:-=++…+即=+++…+==1-故an==二、累乘法:利用恒等式an=a1…(an≠0,n?叟n)求通项公式的方法称为累乘法,累乘法是求型如:an+1=g(n)an的递推数列通项公式的基本方法(数列g(n)可求前n项积).例3.已知数列{an}中a1=,an=·an-1(n?叟2)求数列{an}的通项公式。

解:当n?叟2时,=,=,=,…=将这n-1个式子累乘,得到=,从而an=×=,当n=1时,==a1,所以an= 。

注:在运用累乘法时,还是要特别注意项数,计算时项数容易出错.三、公式法:利用熟知的的公式求通项公式的方法称为公式法,常用的公式有an=Sn-Sn-1(n?叟2),等差数列或等比数列的通项公式。

高中数学:7种常用解题方法,可攻克80%的数学题,绝对干货!

高中数学:7种常用解题方法,可攻克80%的数学题,绝对干货!

高中数学:7种常用解题方法,可攻克80%的数学题,绝对干货!高中数学的学习同学往往有拿出题来不知道用什么方法解?做过的题再遇到相似的还是懵,题刷了很多就是没办法提高成绩?因此,在平时教学中,总结和归纳高中数学的解题的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。

为了帮助学生掌握解题的金钥匙,掌握解题的思想方法。

高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法。

高考试题主要从以下几个方面对数学思想方法进行考查:常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。

何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。

有时也将其称为“凑配法”。

最常见的配方是进行恒等变形,使数学式子出现完全平方。

它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。

二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。

换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。

通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。

或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

完整版高中各章节用的数学方法

完整版高中各章节用的数学方法

各章节用的数学方法方法:健身篇-方是相同的方,但法就不一样样样了。

知识是逻辑的载体,方法是能力的化身,创新是思想的积淀。

会集论:图示法,数轴法用到的思想:转变与划归、函数与方程、分类与整合、补集的思想函数:方法:特别值法(抽象函数、图象)、配方法(二次、与二次有关的复合函数)、待定系数法、换元法(复合函数的拆分)、数形联合法(数不够图来凑)、分类议论法(指数函数和对数函数) ,图象变换法(函数图象变换技巧)、赋值法、两重身份法。

思想:数形联合、转变与划归、分类与整合、函数与方程、特别和一般数列:基本量法求数列的通项公式的常用方法:迭代法、叠加法、累成法、构造法(辅助数列法)、归纳法、特别值法、两重身份法。

求数列的前n 项和的常用方法:分组乞降法、倒序相加法(二项式定理、函数关于点对称)、乘公比错位相减法、拆项相消法、公式法、特别值法。

思想:特别和一般、转变和划归、有限和无量、分类与整合、数形联合。

三角函数:化简的通性通法:切割化弦法、弦化切法(齐次式)、降次与升次法、去异求同(角、名、次)法、逆用公式法(应用辅助角)、常值代换、项的分拆与角的配凑、特别值法、。

平面向量:向量法、坐标法。

1、关于非零的向量a,若 a//b ?存在实数 l ,使 b= l a.2、若 a=(x1,y1),b=(x2,y2),则 a//b ? x1y2-x2y1=0 ,和 a ^ b ? x1x2+y1y2=0 。

3、向量和实数的转变:a2= |a|2.agb4、向量夹角公式:cos<a,b>=a b5、向量的平移.不等式:换元法、代入法、数轴标根法(穿根法)、零点分段法。

反证法。

“实系数”直线和圆:坐标法、向量法、参数法、消元法、配方法、待定系数法、换元法、图解法、几何法、代数法。

圆锥曲线:坐标法是基本法、求圆锥曲线方程的常用方法:直接(译)法、待定系数法、定义法、代入法(转代法、随风潜入夜法)、参数法、设而不求法。

高中数学必须掌握的十种数列通项公式的解题方法和典型例题

高中数学必须掌握的十种数列通项公式的解题方法和典型例题

高中数学必须掌握的十种数列通项公式的解题方法和典型例题
在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的考查,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键和解决数列难题的瓶颈。

求通项公式也是学习数列时的一个难点。

由于求通项公式时渗透多种数学思想方法,因此求解过程中往往显得方法多、灵活度大、技巧性强。

通项公式普通的求法:
(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;
(2)构造等差数列:递推式不能构造等比数列时,构造等差数列;
(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。

已知递推公式求通项常见方法:
①已知a1=a,a n+1=qa n+b,求a n时,利用待定系数法求解,其关键是确定待定系数λ,使a n+1+λ=q(a n+λ)进而得到λ。

②已知a1=a,a n=a n-1+f(n)(n≥2),求a n时,利用累加法求解,即
a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)的方法。

③已知a1=a,a n=f(n)a n-1(n≥2),求a n时,利用累乘法求解。

非常实用的十大解题方法及典型例题
方法一数学归纳法
方法二 Sn 法
方法三累加法
方法四累乘法
方法五构造法一
方法六构造法二
方法七构造法三
方法八构造法四
方法九构造五
方法十构造六。

高中数学破题36大招(详例精编)

高中数学破题36大招(详例精编)

目录目录 (1)第1关:极值点偏移问题--对数不等式法 (2)第2关:参数范围问题—常见解题6法 (6)第3关:数列求和问题—解题策略8法 (9)第4关:绝对值不等式解法问题—7大类型 (13)第5关:三角函数最值问题—解题9法 (19)第6关:求轨迹方程问题—6大常用方法 (24)第7关:参数方程与极坐标问题—“考点”面面看 (37)第8关:均值不等式问题—拼凑8法 (43)第9关:不等式恒成立问题—8种解法探析 (49)第10关:圆锥曲线最值问题—5大方面 (55)第11关:排列组合应用问题—解题21法 (59)第12关:几何概型问题—5类重要题型 (66)第13关:直线中的对称问题—4类对称题型 (69)第14关:利用导数证明不等式问题—4大解题技巧 (71)第15关:函数中易混问题—11对 (76)第16关:三项展开式问题—破解“四法” (82)第17关:由递推关系求数列通项问题—“不动点”法 (83)第18关:类比推理问题—高考命题新亮点 (87)第19关:函数定义域问题—知识大盘点 (93)第20关:求函数值域问题—7类题型16种方法 (100)第21关:求函数解析式问题—7种求法 (121)第22关:解答立体几何问题—5大数学思想方法 (124)第23关:数列通项公式—常见9种求法 (129)第24关:导数应用问题—9种错解剖析 (141)第25关:三角函数与平面向量综合问题—6种类型 (144)第26关:概率题错解分类剖析—7大类型 (150)第27关:抽象函数问题—分类解析 (153)第28关:三次函数专题—全解全析 (157)第29关:二次函数在闭区间上的最值问题—大盘点 (169)第30关:解析几何与向量综合问题—知识点大扫描 (178)第31关:平面向量与三角形四心知识的交汇 (179)第32关:数学解题的“灵魂变奏曲”—转化思想 (183)第33关:函数零点问题—求解策略 (194)第34关:求离心率取值范围—常见6法 (199)第35关:高考数学选择题—解题策略 (202)第36关:高考数学填空题—解题策略 (211)第1关:极值点偏移问题--对数不等式法我们熟知平均值不等式:即“调和平均数”小于等于“几何平均数”小于等于“算术平均值”小于等于“平方平均值”等号成立的条件是.我们还可以引入另一个平均值:对数平均值:那么上述平均值不等式可变为:对数平均值不等式,以下简单给出证明:不妨设,设,则原不等式变为:以下只要证明上述函数不等式即可.以下我们来看看对数不等式的作用.题目1:(2015长春四模题)已知函数有两个零点,则下列说法错误的是A. B. C. D.有极小值点,且【答案】C【解析】函数导函数:有极值点,而极值,,A正确.有两个零点:,,即:①②①-②得:根据对数平均值不等式:,而,B正确,C错误而①+②得:,即D成立.题目2:(2011辽宁理)已知函数.若函数的图像与轴交于两点,线段中点的横坐标为,证明:【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,,,则,①②①-②得:,化简得:③而根据对数平均值不等式:③等式代换到上述不等式④根据:(由③得出)∴④式变为:∵,∴,∴在函数单减区间中,即:题目3:(2010天津理)已知函数.如果,且.证明:.【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,则,,两边取对数①②①-②得:根据对数平均值不等式题目4:(2014江苏南通市二模)设函数,其图象与轴交于两点,且.证明:(为函数的导函数).【解析】根据题意:,移项取对数得:①②①-②得:,即:根据对数平均值不等式:,①+②得:根据均值不等式:∵函数在单调递减∴题目5:已知函数与直线交于两点. 求证:【解析】由,,可得:①,②①-②得:③①+②得:④根据对数平均值不等式利用③④式可得:由题于与交于不同两点,易得出则∴上式简化为:∴第2关:参数范围问题—常见解题6法求解参数的取值范围是一类常见题型.近年来在各地的模拟试题以及高考试题中更是屡屡出现.学生遇到这类问题,较难找到解题的切入点和突破口,下面介绍几种解决这类问题的策略和方法.一、确定“主元”思想常量与变量是相对的,一般地,可把已知范围的那个看作自变量,另一个看作常量.例1.对于满足0的一切实数,不等式x2+px>4x+p-3恒成立,求x的取值范围.分析:习惯上把x当作自变量,记函数y= x2+(p-4)x+3-p,于是问题转化为当p时y>0恒成立,求x的范围.解决这个问题需要应用二次函数以及二次方程实根分布原理,这是相当复杂的.若把x与p两个量互换一下角色,即p视为变量,x为常量,则上述问题可转化为在[0,4]内关于p的一次函数大于0恒成立的问题.解:设f(p)=(x-1)p+x2-4x+3,当x=1时显然不满足题意.由题设知当0时f(p)>0恒成立,∴f(0)>0,f(4)>0即x2-4x+3>0且x2-1>0,解得x>3或x<-1.∴x的取值范围为x>3或x<-1.二、分离变量对于一些含参数的不等式问题,如果能够将不等式进行同解变形,将不等式中的变量和参数进行分离,即使变量和参数分别位于不等式的左、右两边,然后通过求函数的值域的方法将问题化归为解关于参数的不等式的问题。

数列通项公式的九种求法

数列通项公式的九种求法

数列通项公式的九种求法各种数列问题在很多情形下,就是对数列通项公式的求解。

特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。

笔者总结出九种求解数列通项公式的方法,希望能对大家有帮助。

一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项公式解:设数列}a {n 公差为)0d (d >∵931a ,a ,a 成等比数列,∴9123a a a =, 即)d 8a (a )d 2a (1121+=+,得d a d 12=∵0d ≠,∴d a 1=……………………①∵255S a =∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d =∴n5353)1n (53a n =⨯-+= 点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。

二、累加法求形如1()n n a a f n --=(f(n)为等差或等比数列或其它可求和的数列)的数列通项,可用累加法,即令n=2,3,…n —1得到n —1个式子累加求得通项。

例2.已知数列{a n}中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a . 解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+ =1121n -+,3121n a n ∴=-+ 点评:累加法是反复利用递推关系得到n —1个式子累加求出通项,这种方法最终转化为求{f(n)}的前n —1项的和,要注意求和的技巧.三、迭代法求形如1n n a qa d +=+(其中,q d 为常数) 的数列通项,可反复利用递推关系迭代求出。

求数列的通项公式的方法整理

求数列的通项公式的方法整理

求数列的通项公式的方法1.定义法:①等差数列通项公式;②等比数列通项公式。

例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.练一练:已知数列 ,3219,1617,815,413试写出其一个通项公式:__________;2.公式法:已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。

例2.已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S n n n .求数列{}n a 的通项公式。

练一练:①已知{}n a 的前n 项和满足2log (1)1n S n +=+,求n a ;②数列{}n a 满足11154,3n n n a S S a ++=+=,求n a ;3.作商法:已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。

如数列}{n a 中,,11=a 对所有的2≥n 都有2321n a a a a n = ,则=+53a a ______ ;4.累加法:若1()n n a a f n +-=求n a :11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。

例3. 已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

如已知数列{}n a 满足11a =,nn a a n n ++=--111(2)n ≥,则n a =________ ;5.累乘法:已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅ (2)n ≥。

高中数学常见题型解法归纳含详解第36招 归纳法、定义法、公式法、累加法、累乘法

高中数学常见题型解法归纳含详解第36招 归纳法、定义法、公式法、累加法、累乘法

【知识要点】一、数列的通项公式如果数列{}n a 的第n 项n a 和项数n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.即()n a f n =.不是每一个数列都有通项公式.不是每一个数列只有一个通项公式. 二、数列的通项的常见求法:通项五法1、归纳法:先通过计算数列的前几项,再观察数列中的项与系数,根据n a 与项数n 的关系,猜想数列的通项公式,最后再证明.2、公式法:若在已知数列中存在:)0(,)(11≠==-++q q a a d a a nn n n 或常数的关系,可采用求等差数列、等比数列的通项公式的求法,确定数列的通项;若在已知数列中存在:)()(n f S a f S n n n ==或的关系,可以利用项和公式11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩,求数列的通项.3、累加法:若在已知数列中相邻两项存在:1()(2)n n a a f n n --=≥的关系,可用“累加法”求通项.4、累乘法:若在已知数列中相邻两项存在:1()(2)nn a g n n a -=≥的关系,可用“累乘法”求通项. 5、构造法:(见下一讲) 【方法讲评】方法一 归纳法使用情景 已知数列的首项和递推公式 解题步骤观察、归纳、猜想、证明.【例1】在数列{n a }中,16a =,且111n n n a a n n---=++*(,2)n N n ∈≥, (1)求234,,a a a 的值;(2)猜测数列{n a }的通项公式,并用数学归纳法证明.【点评】(1)本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明.(2)归纳法在主观题中一般用的比较少,一是因为它要给予严格的证明,二是有时数列的通项并不好猜想.如果其它方法实在不行,再考虑利用归纳法.【反馈检测1】在单调递增数列{}n a 中,11a =,22a =,且21221,,n n n a a a -+成等差数列,22122,,n n n a a a ++成等比数列,1,2,3,n =L .(1)分别计算3a ,5a 和4a ,6a 的值; (2)求数列{}n a 的通项公式(将n a 用n 表示);(3)设数列1{}n a 的前n 项和为n S ,证明:42n n S n <+,n *∈N .方法二公式法使用情景已知数列是等差数列或等比数列或已知)()(n f S a f S n n n ==或.解题步骤已知数列是等差数列或等比数列,先求出等差(比)数列的基本量1,()a d q ,再代入等差(比)数列的通项公式;已知)()(n f S a f S n n n ==或的关系,可以利用项和公式11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩,求数列的通项. 学科*网【例2】已知数列{}n a ,n S 是其前n 项的和,且满足21=a ,对一切*∈N n 都有2321++=+n S S n n 成立,设n a b n n +=.(1)求2a ;(2)求证:数列{}n b 是等比数列; (3)求使814011121>+⋅⋅⋅++n b b b 成立的最小正整数n 的值.【点评】利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项. 【反馈检测2】已知等比数列{n a }中,164a =,公比1q ≠,234,,a a a 又分别是某等差数列的第7项,第3项,第1项.(1)求n a ;(2)设2log n n b a =,求数列{||}n b 的前n 项和n T .【例3】数列{n a }的前n 项和为n S ,1a =1,12n n a S += ( n ∈N *),求{n a }的通项公式.【点评】(1)已知)()(n f S a f S n n n ==或,一般利用和差法.如果已知1()n n S f a +=1()n f a -或也可 以采用和差法.(2)利用此法求数列的通项时,一定要注意检验1n =是否满足,能并则并,不并则分.【例4】已知函数x x x f 63)(2+-= ,n S 是数列}{n a 的前n 项和,点(,)n n S (n N *∈)在曲线)(x f y =上.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若1)21(-=n n b ,6nn n b a c •=,且n T 是数列}{n c 的前n 项和. 试问n T 是否存在最大值?若存在,请求出n T 的最大值;若不存在,请说明理由.【解析】(Ⅰ)因为点(,)n n S 在曲线)(x f y =上,又x x x f 63)(2+-=,所以n n S n 632+-=.当1n =时,311==S a .当1n >时,221(36)[3(1)6(1)]96n n n a S S n n n n n -=-=-+---+-=-所以n a n 69-=.(Ⅱ)因为111(96)()1112(),(32)()2662n n n n n n n n b c a b n ---====- ①所以 231111(1)()(3)()(32)(),2222n n T n =+-+-++-L ②234111111()(1)()(3)()(32)(),22222n n T n +=+-++-++-L ③ ②-③得 132)21)(23()21)(2()21)(2()21)(2(2121+---++-+-+=n n n n T Λ112)21)(23(211])21(1[)21()2(21+-----=-+=n n n .整理得1)21)(12(-+=n n n T , ④方法一 利用差值比较法由④式得1)21)(32(11-+=++n n n T ,所以111111(23)()(21)()[(23)()(21)]()22223111[(21)]()()().2222nn n n n n nT T n n n n n n n ++-=+-+=+-+=+-+=-因为1≥n ,所以021<-n . 又0)21(>n ,所以01<-+n n T T 所以n n T T <+1,所以ΛΛ>>>>>>+1321n n T T T T T . 所以T n 存在最大值11.2T =方法三 利用放缩法由①式得0)21)(21()21)](1(23[111<-=+-=+++n n n n n c ,又因为n T 是数列}{n c 的前n 项和, 所以n n n n T c T T <+<++11. 所以ΛΛ>>>>>>+1321n n T T T T T 所以n T 存在最大值211=T . 【反馈检测3】已知数列{n a }的前n 项和14122333n n n S a +=-⨯+(1,2,3,4n =⋅⋅⋅),求{n a }的通项公式.方法三累加法使用情景在已知数列中相邻两项存在:1()(2)n n a a f n n --=≥的关系解题步骤先给递推式1()(2)n n a a f n n --=≥中的n 从2开始赋值,一直到n ,一共得到1n -个式子,再把这1n -个式子左右两边对应相加化简,即得到数列的通项.【例4】已知数列{}n a ,{}n b ,11=a ,112--+=n n n a a ,111+-+=n n n n a a a b ,n S 为数列{}n b 的前n 项和,nT 为数列{}n S 的前n 项和.(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n S ;(3)求证:312->n T n . 【解析】(1)法一:112--+=n n n a a Θ112211)()()(a a a a a a a a n n n n n +-++-+-=∴---Λ,122121122221-=--=++++=--n nn n Λ【点评】(1)本题11n n a a n --=-,符合累加法的使用情景1()(2)n n a a f n n --=≥,所以用累加法求数列的通项.(2)使用累加法时,注意等式的个数,是1n -个,不是n 个.【反馈检测4】已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.方法四累乘法使用情景若在已知数列中相邻两项存在:1()(2)nn a g n n a -=≥的关系. 解题步骤先给递推式1()(2)nn a g n n a -=≥中的n 从2开始赋值,一直到n ,一共得到1n -个式子,再把这1n -个式子左右两边对应相乘化简,即得到数列的通项.【例5】已知数列{}n a 满足n n n a a n a a 求,1,311+==+【点评】(1)由已知得,11+=+n n a a n n 符合累乘法求数列通项的情景,所以使用累乘法求该数列的通项.(2)使用累乘法求数列的通项时,只要写出1n -个等式就可以了,不必写n 个等式.【反馈检测5】 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.高中数学常见题型解法归纳及反馈检测第36讲:数列通项的求法一(归纳法、定义法、公式法、累加法、累乘法)参考答案【反馈检测1答案】33a =,56a =,492a =,68a =.①当1=n 时,21111a a ⨯-==,221222a ⨯==,猜想成立; ②假设(1,*)n k k k N =≥∈时,猜想成立,即21(1)2k k k a -+=,22(1)2k k a +=,那么 []22(1)121221(1)(1)1(1)(1)22222k k k k k k k k k a a a a +-+-+++++==-=⨯-=,[][]2222212(1)2222(1)(2)(1)1(2)222(1)2k k k kk k k a k a a a k ++++++++=====+∴1+=k n 时,猜想也成立.由①②,根据数学归纳法原理,对任意的*n N ∈,猜想成立.∴当n 为奇数时,8)3)(1(212121++=⎪⎭⎫⎝⎛+++=n n n n a n ;当n 为偶数时,8)2(21222+=⎪⎭⎫⎝⎛+=n n a n . 即数列}{n a 的通项公式为⎪⎪⎩⎪⎪⎨⎧+++=为偶数为奇数n n n n n a n ,8)2(,8)3)(1(2.(方法2)由(2)得⎪⎪⎩⎪⎪⎨⎧+++=为偶数为奇数n n n n n a n ,)2(8,)3)(1(812. 以下用数学归纳法证明24+<n nS n ,*n N ∈. ①当1=n 时,2114341111+⨯=<==a S ; 当2=n 时,222422321111212+⨯=<=+=+=a a S .∴2,1=n 时,不等式成立. ②假设)2(≥=k k n 时,不等式成立,即24+<k kS k , 那么,当k 为奇数时,211)3(8241+++<+=++k k k a S S k k k 22)3)(2(83)1(431)3(2243)1(4++-++=⎥⎦⎤⎢⎣⎡++-++++++=k k k k k k k k k k k 2)1()1(4+++<k k ; 当k 为偶数时,)4)(2(824111++++<+=++k k k k a S S k k k )4)(3)(2(83)1(431)4)(2(2243)1(4+++-++=⎥⎦⎤⎢⎣⎡++-+++++++=k k k k k k k k k k k k k2)1()1(4+++<k k .∴1+=k n 时,不等式也成立.综上所述:42n nS n <+ 【反馈检测2答案】(1)1164()2n n a -=⨯;(2) n T =⎪⎩⎪⎨⎧>+--≤-).7(212)6)(7(),7(2)13(n n n n n n .【反馈检测3答案】42n nn a =-【反馈检测4答案】3 1.n n a n =+-学科*网【反馈检测4详细解析】由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+L 1221(231)(231)(231)(231)3n n --=⨯++⨯+++⨯++⨯++L 12212(3333)(1)3n n n --=+++++-+L13(13)2(1)313n n --=+-+-3313n n =-+-+31n n =+- 所以3 1.n n a n =+- 【反馈检测5答案】(1)12325!.n n n n a n --=⨯⨯⨯【反馈检测5详细解析】因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n n a n a +=+, 故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅L 1221[2(11)5][2(21)5][2(21)5][2(11)5]3n n n n --=-+-+⋅⋅+⨯+⨯⨯L 1(1)(2)212[(1)32]53n n n n n --+-+++=-⋅⋅⨯⨯⨯L L(1)12325!n n n n --=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯。

高中数学各章节解题方法总结

高中数学各章节解题方法总结

高中数学各章节解题方法总结【最新版3篇】《高中数学各章节解题方法总结》篇1高中数学各章节解题方法总结如下:1. 函数与导数:函数思想:将数学问题用函数表示出来,利用函数的性质探究问题的一般规律。

配方法:利用恒等变形的方法,将函数解析式配成一个或几个多项式正整数次幂的和形式,以解决因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等问题。

2. 数列与数学归纳法:数列思想:将数列问题用函数的思想来解决,利用数列的性质探究问题的一般规律。

数学归纳法:通过归纳类比思想,对某种相类似的问题进行研究而得出他们的共同点,从而得出解决这些问题的一般方法。

3. 三角函数与解三角形:三角函数思想:将三角函数问题用函数的思想来解决,利用三角函数的性质探究问题的一般规律。

解三角形思想:通过构建方程组,解三角形的边角关系,求解三角形的问题。

4. 解析几何:数形结合思想:将代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。

方程思想:将解析几何问题转化为方程,对方程的性质进行研究以解决这个问题。

5. 立体几何:空间思维:通过空间想象能力,对立体几何问题进行分析和解决。

向量思想:将立体几何问题转化为向量,利用向量的性质探究问题的一般规律。

6. 概率与统计:概率思想:通过概率统计解决一些实际问题,如摸奖的中奖率、某次考试的及格率等。

统计思想:通过对数据的分析和处理,探究数据的规律,做出合理的判断和预测。

《高中数学各章节解题方法总结》篇2以下是高中数学各章节解题方法的总结:1. 函数与导数函数与导数是高中数学的基础章节之一,主要涉及函数的定义、性质、分类、图像、解析式、图像变换、函数的极值、最值问题、曲线的凸凹性、曲线的切线、导数的概念、性质、计算、导数的应用等内容。

解题方法:-认真理解函数的定义和性质,掌握函数的分类和图像变换规律。

-熟练掌握导数的概念和计算方法,能够根据函数的性质求解最值问题、曲线的凸凹性和切线等问题。

高中数学解题方法总结

   高中数学解题方法总结

高中数学解题方法总结高中数学解题方法总结高中数学是一门重要的学科,它不仅考察学生的逻辑思维能力和数学素养,还培养学生的分析问题和解决问题的能力。

在高中数学学习过程中,我们常常遇到各种各样的数学题目,如何有效地解题成为我们必须面对的问题。

本文将总结一些常见的高中数学解题方法,帮助同学们提高解题的效率和准确性。

一、代数解题方法1. 代数方程式解题法:将问题转化成代数方程式,并通过方程求解的方法来得到问题的答案。

这种方法适用于一次方程、二次方程等各种代数方程的解题。

2. 论证法:通过推理论证,根据已知条件导出结论。

这种方法适用于不等式证明、函数性质证明等问题。

3. 反证法:假设结论不成立,通过推理推导出矛盾,从而证明原结论的真实性。

这种方法适用于矩阵、向量等代数题目的证明。

二、几何解题方法1. 直接证明法:通过已知条件直接推导出结论。

这种方法适用于几何定理的证明,如勾股定理、圆的性质等。

2. 反证法:假设结论不成立,通过推理推导出矛盾,从而证明原结论的真实性。

这种方法适用于几何题目的证明,如等腰三角形的性质证明等。

3. 分析法:通过分析几何图形的性质和已知条件,结合相关定理进行推理和解题。

这种方法适用于几何图形的判断和计算题目。

三、概率解题方法1. 列举法:通过枚举每种可能的情况,计算每种情况发生的概率,从而求得总体概率。

这种方法适用于有限样本空间的概率计算题目。

2. 计数法:通过计算事件的样本点个数和总的样本点个数,求得事件发生的概率。

这种方法适用于有规律的样本空间和复杂的概率计算题目。

3. 条件概率法:通过已知条件和条件概率的定义,计算事件在给定条件下的概率。

这种方法适用于条件概率和贝叶斯定理相关的题目。

四、函数解题方法1. 函数图像法:通过函数图像的性质和已知条件,确定函数的变化规律和相关参数。

这种方法适用于函数的性质和变化规律的题目。

2. 函数方程法:通过已知条件和函数方程的关系,求解函数方程的解,从而得到问题的答案。

高中数学常用方法总结

高中数学常用方法总结

高中数学常用方法总结高中数学是学生初步接触到的繁琐学科之一,它的知识点相对广泛而复杂,学习过程中不乏难点和易错点。

因此,对于高中数学的学习者而言,合理运用常用的数学方法能够事半功倍,让数学学习更加轻松和有效,下面将对高中数学常用方法进行概括和总结。

1.公式推导法公式推导法是一种基于公式的思考方式,理论性较强。

其思考的步骤是从已知条件出发,根据学过的定理或公式自行推导出所需结果。

这种方法能够让学生对数学定理和公式产生更深刻、更全面的理解和认识,更加容易记忆和掌握。

例如,利用勾股定理可求一个直角三角形的斜边长。

2.问题化解法问题化解法能够将一个复杂的问题分解成多个简单的部分,从而通过逐步解决每个简单问题来得出最终结果。

这种方法需要学生具备分析、归纳和推理的能力,但是一旦掌握,能够对各种数学问题产生巨大的帮助。

例如,要求求出一个三角形的面积,可以将三角形分解成两个平行梯形。

3.几何构造法几何构造法主要指的是通过画图的方式解决数学问题。

这种方法适用于平面几何和立体几何中的很多问题,并且在某些难题的解决中具有独特优势。

例如,利用画图法可轻松证明一些几何定理,还可以利用画图进行直观展示,让人们容易理解各种复杂问题。

4.数学归纳法数学归纳法是一种基于归纳法则和递推关系来解决问题的方法。

它通常适用于证明各种数列与函数性质,其中最常见的就是利用数学归纳法来证明某一定理或结论。

例如,运用数学归纳法可以证明1+2+3+...+n=n*(n+1)/2。

5.数学模型法数学模型法是通过将实际问题抽象成数学模型进行分析和求解的一种方法。

它适用于各种实际问题的求解,例如物理学中的常见公式就可以看作是数学模型法的一种具体应用。

这种方法要求学生具有丰富的实践经验和创造性思维,能够将现实问题转化为数学语言,从而更加容易解决。

总之,以上几种常用方法都是基于具体的数学知识体系和思考方式,掌握了这些方法,就能够更好地解决复杂的数学问题,并在日常应用中不断提升。

第36招 归纳法、定义法、公式法、累加法、累乘法

第36招 归纳法、定义法、公式法、累加法、累乘法

【知识要点】一、数列的通项公式如果数列{}n a 的第n 项n a 和项数n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.即()n a f n =.不是每一个数列都有通项公式.不是每一个数列只有一个通项公式. 二、数列的通项的常见求法:通项五法1、归纳法:先通过计算数列的前几项,再观察数列中的项与系数,根据n a 与项数n 的关系,猜想数列的通项公式,最后再证明.2、公式法:若在已知数列中存在:)0(,)(11≠==-++q q a a d a a nn n n 或常数的关系,可采用求等差数列、等比数列的通项公式的求法,确定数列的通项;若在已知数列中存在:)()(n f S a f S n n n ==或的关系,可以利用项和公式11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩,求数列的通项.3、累加法:若在已知数列中相邻两项存在:1()(2)n n a a f n n --=≥的关系,可用“累加法”求通项.4、累乘法:若在已知数列中相邻两项存在:1()(2)nn a g n n a -=≥的关系,可用“累乘法”求通项. 5、构造法:(见下一讲) 【方法讲评】【例1】在数列{n a }中,16a =,且111n n n a a n n---=++*(,2)n N n ∈≥, (1)求234,,a a a 的值;(2)猜测数列{n a }的通项公式,并用数学归纳法证明.【点评】(1)本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明.(2)归纳法在主观题中一般用的比较少,一是因为它要给予严格的证明,二是有时数列的通项并不好猜想.如果其它方法实在不行,再考虑利用归纳法.【反馈检测1】在单调递增数列{}n a 中,11a =,22a =,且21221,,n n n a a a -+成等差数列,22122,,n n n a a a ++成等比数列,1,2,3,n =.(1)分别计算3a ,5a 和4a ,6a 的值; (2)求数列{}n a 的通项公式(将n a 用n 表示);(3)设数列1{}n a 的前n 项和为n S ,证明:42n n S n <+,n *∈N .【例2】已知数列{}n a ,n S 是其前n 项的和,且满足21=a ,对一切*∈N n 都有2321++=+n S S n n 成立,设n a b n n +=.(1)求2a ;(2)求证:数列{}n b 是等比数列; (3)求使814011121>+⋅⋅⋅++n b b b 成立的最小正整数n 的值.【点评】利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项. 【反馈检测2】已知等比数列{n a }中,164a =,公比1q ≠,234,,a a a 又分别是某等差数列的第7项,第3项,第1项.(1)求n a ;(2)设2log n n b a =,求数列{||}n b 的前n 项和n T .【例3】数列{n a }的前n 项和为n S ,1a =1,12n n a S += ( n ∈N *),求{n a }的通项公式.【点评】(1)已知)()(n f S a f S n n n ==或,一般利用和差法.如果已知1()n n S f a +=1()n f a -或也可 以采用和差法.(2)利用此法求数列的通项时,一定要注意检验1n =是否满足,能并则并,不并则分.【例4】已知函数x x x f 63)(2+-= ,n S 是数列}{n a 的前n 项和,点(,)n n S (n N *∈)在曲线)(x f y =上.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若1)21(-=n n b ,6nn n b a c ∙=,且n T 是数列}{n c 的前n 项和. 试问n T 是否存在最大值?若存在,请求出n T 的最大值;若不存在,请说明理由.【解析】(Ⅰ)因为点(,)n n S 在曲线)(x f y =上,又x x x f 63)(2+-=,所以n n S n 632+-=.当1n =时,311==S a .当1n >时,221(36)[3(1)6(1)]96n n n a S S n n n n n -=-=-+---+-=-所以n a n 69-=.(Ⅱ)因为111(96)()1112(),(32)()2662n n n n n n n n b c a b n ---====- ①所以 231111(1)()(3)()(32)(),2222n n T n =+-+-++- ②234111111()(1)()(3)()(32)(),22222n n T n +=+-++-++- ③ ②-③得 132)21)(23()21)(2()21)(2()21)(2(2121+---++-+-+=n n n n T112)21)(23(211])21(1[)21()2(21+-----=-+=n n n .整理得1)21)(12(-+=n n n T , ④方法一 利用差值比较法由④式得1)21)(32(11-+=++n n n T ,所以111111(23)()(21)()[(23)()(21)]()22223111[(21)]()()().2222nn n n n n nT T n n n n n n n ++-=+-+=+-+=+-+=-因为1≥n ,所以021<-n . 又0)21(>n ,所以01<-+n n T T 所以n n T T <+1,所以 >>>>>>+1321n n T T T T T . 所以T n 存在最大值11.2T =方法三 利用放缩法由①式得0)21)(21()21)](1(23[111<-=+-=+++n n n n n c ,又因为n T 是数列}{n c 的前n 项和, 所以n n n n T c T T <+<++11. 所以 >>>>>>+1321n n T T T T T 所以n T 存在最大值211=T . 【反馈检测3】已知数列{n a }的前n 项和14122333n n n S a +=-⨯+(1,2,3,4n =⋅⋅⋅),求{n a }的通项公式.【例4】已知数列{}n a ,{}n b ,11=a ,112--+=n n n a a ,111+-+=n n n n a a a b ,n S 为数列{}n b 的前n 项和,nT 为数列{}n S 的前n 项和.(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n S ;(3)求证:312->n T n . 【解析】(1)法一:112--+=n n n a a 112211)()()(a a a a a a a a n n n n n +-++-+-=∴--- ,122121122221-=--=++++=--n nn n【点评】(1)本题11n n a a n --=-,符合累加法的使用情景1()(2)n n a a f n n --=≥,所以用累加法求数列的通项.(2)使用累加法时,注意等式的个数,是1n -个,不是n 个.【反馈检测4】已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.【例5】已知数列{}n a 满足n n n a a n a a 求,1,311+==+【点评】(1)由已知得,11+=+n n a a n n 符合累乘法求数列通项的情景,所以使用累乘法求该数列的通项.(2)使用累乘法求数列的通项时,只要写出1n -个等式就可以了,不必写n 个等式.【反馈检测5】 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.高中数学常见题型解法归纳及反馈检测第36讲:数列通项的求法一(归纳法、定义法、公式法、累加法、累乘法)参考答案【反馈检测1答案】33a =,56a =,492a =,68a =.①当1=n 时,21111a a ⨯-==,221222a ⨯==,猜想成立; ②假设(1,*)n k k k N =≥∈时,猜想成立,即21(1)2k k k a -+=,22(1)2k k a +=,那么 []22(1)121221(1)(1)1(1)(1)22222k k k k k k k k k a a a a +-+-+++++==-=⨯-=,[][]2222212(1)2222(1)(2)(1)1(2)222(1)2k k k kk k k a k a a a k ++++++++=====+ ∴1+=k n 时,猜想也成立.由①②,根据数学归纳法原理,对任意的*n N ∈,猜想成立.∴当n 为奇数时,8)3)(1(212121++=⎪⎭⎫⎝⎛+++=n n n n a n ;当n 为偶数时,8)2(21222+=⎪⎭⎫⎝⎛+=n n a n . 即数列}{n a 的通项公式为⎪⎪⎩⎪⎪⎨⎧+++=为偶数为奇数n n n n n a n ,8)2(,8)3)(1(2.(方法2)由(2)得⎪⎪⎩⎪⎪⎨⎧+++=为偶数为奇数n n n n n a n ,)2(8,)3)(1(812. 以下用数学归纳法证明24+<n nS n ,*n N ∈. ①当1=n 时,2114341111+⨯=<==a S ; 当2=n 时,222422321111212+⨯=<=+=+=a a S .∴2,1=n 时,不等式成立. ②假设)2(≥=k k n 时,不等式成立,即24+<k kS k , 那么,当k 为奇数时,211)3(8241+++<+=++k k k a S S k k k 22)3)(2(83)1(431)3(2243)1(4++-++=⎥⎦⎤⎢⎣⎡++-++++++=k k k k k k k k k k k 2)1()1(4+++<k k ; 当k 为偶数时,)4)(2(824111++++<+=++k k k k a S S k k k )4)(3)(2(83)1(431)4)(2(2243)1(4+++-++=⎥⎦⎤⎢⎣⎡++-+++++++=k k k k k k k k k k k k k2)1()1(4+++<k k .∴1+=k n 时,不等式也成立.综上所述:42n nS n <+ 【反馈检测2答案】(1)1164()2n n a -=⨯;(2) n T =⎪⎩⎪⎨⎧>+--≤-).7(212)6)(7(),7(2)13(n n n n n n.【反馈检测3答案】42n nn a =-【反馈检测4答案】3 1.n n a n =+-学科*网【反馈检测4详细解析】由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+1221(231)(231)(231)(231)3n n --=⨯++⨯+++⨯++⨯++12212(3333)(1)3n n n --=+++++-+13(13)2(1)313n n --=+-+-3313n n =-+-+31n n =+- 所以3 1.n n a n =+- 【反馈检测5答案】(1)12325!.n n n n a n --=⨯⨯⨯【反馈检测5详细解析】因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n n a n a +=+, 故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅ 1221[2(11)5][2(21)5][2(21)5][2(11)5]3n n n n --=-+-+⋅⋅+⨯+⨯⨯1(1)(2)212[(1)32]53n n n n n --+-+++=-⋅⋅⨯⨯⨯ (1)12325!n n n n --=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯。

数列复习题

数列复习题

数列复习2:已知递推式求通项公式方法归纳:公式法;累加法;累乘法;待定系数法;构造法;倒数法一、公式法(定义法)根据等差数列、等比数列的定义求通项例1.(2009广东三校一模文)数列{}n a 是等差数列,2a ,5a 是方程2x 02712=+-x 的两根,数列{}n b 的前n项和为n T ,且n T 211-=n b ()*∈N n (1)求数列{}n a ,{}n b 的通项公式;练习;(2009汕头一模文)在等比数列{a n }中,a n >0 (n ∈N *),公比q ∈(0,1),且a 1a 5 + 2a 3a 5 +a 2a 8=25,a 3与a s 的等比中项为2。

(1)求数列{a n }的通项公式;二、由递推式求数列通项法对于递推公式确定的数列的求解,通常可以通过递推公式的变换,转化为等差数列或等比数列问题,有时也用到一些特殊的转化方法与特殊数列。

类型1 递推公式为)(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用叠加法(逐差相加法)求解。

例1 (深圳调研文)在数列{}n a 中,11111,(1)2n n nn a a a n ++==++, (I )设nn a b n=,求数列{}n b 的通项公式;练习:(2009山东卷文)已知数列{}n a 满足, *11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列;(Ⅱ)求{}n a 的通项公式。

类型2 递推公式为n n a n f a )(1=+解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例2 在数列{n a }中,1a =1, n n a n na 11+=+,求n a 的表达式练习:(2009清远市第一次调研)已知数列{}n a 的首项211=a ,前n 项和n n a n S 2=. (Ⅰ)求证:n n a n na 21+=+; (Ⅱ)记n n S b ln =,n T 为{}n b 的前n 项和,求n e nT --的值.类型3 递推公式为q pa a n n +=+1(其中p ,q 均为常数)解法:转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

高中数学解题方法技巧汇总

高中数学解题方法技巧汇总

[
5 4
,3)
更多资料关注公众号:学起而飞
5. 已知方程 x 2 +(a-2)x+a-1=0 的两根 x 1 、x 2 ,则点 P(x 1 ,x 2 )在圆 x 2 +y 2 =4 上, 则实数 a=_____
【简解】
1 小题:利用等比数列性质 a m p a m p =a m 2 ,将等式左边后配方(a 3 +a 5 )2 易 求。答案是:5。
+2A[B(m+n)-Cmn]+B 2 +C 2 =0 。
1 解不等式 f(x)>0;
更多资料关注公众号:学起而飞
② 是否存在一个实数 t,使当 t∈(m+t,n-t)时,f(x)<0 ?若不存在,说出理由; 若存在,指出 t 的取值范围。
10. 设 s>1,t>1,m∈R,x=log s t+log t s,y=log s 4 t+log t 4 s+m(log s 2 t+ log t 2 s), 1 将 y 表示为 x 的函数 y=f(x),并求出 f(x)的定义域; 2 若关于 x 的方程 f(x)=0 有且仅有一个实根,求 m 的取值范围。
2 么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量 x、
y 适合条件 x 2 +y 2 =r 2(r>0)时,则可作三角代换 x=rcosθ、y=rsinθ化为三角问
题。
均值换元,如遇到 x+y=S 形式时,设 x= S +t,y= S -t 等等。
2
2
更多资料关注公众号:学起而飞
b
b
a
2
化成三角形式,代入所求表达式的变形式( a ) 999 +( b ) 999 后,完成后面的运算。此
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【知识要点】一、数列的通项公式如果数列{}n a 的第n 项n a 和项数n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.即()n a f n =.不是每一个数列都有通项公式.不是每一个数列只有一个通项公式. 二、数列的通项的常见求法:通项五法1、归纳法:先通过计算数列的前几项,再观察数列中的项与系数,根据n a 与项数n 的关系,猜想数列的通项公式,最后再证明.2、公式法:若在已知数列中存在:)0(,)(11≠==-++q q a a d a a nn n n 或常数的关系,可采用求等差数列、等比数列的通项公式的求法,确定数列的通项;若在已知数列中存在:)()(n f S a f S n n n ==或的关系,可以利用项和公式11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩,求数列的通项.3、累加法:若在已知数列中相邻两项存在:1()(2)n n a a f n n --=≥的关系,可用“累加法”求通项.4、累乘法:若在已知数列中相邻两项存在:1()(2)nn a g n n a -=≥的关系,可用“累乘法”求通项. 5、构造法:(见下一讲) 【方法讲评】方法一 归纳法使用情景 已知数列的首项和递推公式 解题步骤观察、归纳、猜想、证明.【例1】在数列{n a }中,16a =,且111n n n a a n n---=++*(,2)n N n ∈≥, (1)求234,,a a a 的值;(2)猜测数列{n a }的通项公式,并用数学归纳法证明.【点评】(1)本题解题的关键是通过首项和递推关系式先求出数列的前n 项,进而猜出数列的通项公式,最后再用数学归纳法加以证明.(2)归纳法在主观题中一般用的比较少,一是因为它要给予严格的证明,二是有时数列的通项并不好猜想.如果其它方法实在不行,再考虑利用归纳法.【反馈检测1】在单调递增数列{}n a 中,11a =,22a =,且21221,,n n n a a a -+成等差数列,22122,,n n n a a a ++成等比数列,1,2,3,n =.(1)分别计算3a ,5a 和4a ,6a 的值; (2)求数列{}n a 的通项公式(将n a 用n 表示);(3)设数列1{}n a 的前n 项和为n S ,证明:42n n S n <+,n *∈N .方法二公式法使用情景已知数列是等差数列或等比数列或已知)()(n f S a f S n n n ==或.解题步骤已知数列是等差数列或等比数列,先求出等差(比)数列的基本量1,()a d q ,再代入等差(比)数列的通项公式;已知)()(n f S a f S n n n ==或的关系,可以利用项和公式11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩,求数列的通项. 学科*网【例2】已知数列{}n a ,n S 是其前n 项的和,且满足21=a ,对一切*∈N n 都有2321++=+n S S n n 成立,设n a b n n +=.(1)求2a ;(2)求证:数列{}n b 是等比数列; (3)求使814011121>+⋅⋅⋅++n b b b 成立的最小正整数n 的值.【点评】利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项. 【反馈检测2】已知等比数列{n a }中,164a =,公比1q ≠,234,,a a a 又分别是某等差数列的第7项,第3项,第1项.(1)求n a ;(2)设2log n n b a =,求数列{||}n b 的前n 项和n T .【例3】数列{n a }的前n 项和为n S ,1a =1,12n n a S += ( n ∈N *),求{n a }的通项公式.【点评】(1)已知)()(n f S a f S n n n ==或,一般利用和差法.如果已知1()n n S f a +=1()n f a -或也可 以采用和差法.(2)利用此法求数列的通项时,一定要注意检验1n =是否满足,能并则并,不并则分.【例4】已知函数x x x f 63)(2+-= ,n S 是数列}{n a 的前n 项和,点(,)n n S (n N *∈)在曲线)(x f y =上.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)若1)21(-=n n b ,6nn n b a c •=,且n T 是数列}{n c 的前n 项和. 试问n T 是否存在最大值?若存在,请求出n T 的最大值;若不存在,请说明理由.【解析】(Ⅰ)因为点(,)n n S 在曲线)(x f y =上,又x x x f 63)(2+-=,所以n n S n 632+-=.当1n =时,311==S a .当1n >时,221(36)[3(1)6(1)]96n n n a S S n n n n n -=-=-+---+-=-所以n a n 69-=.(Ⅱ)因为111(96)()1112(),(32)()2662n n n n n n n n b c a b n ---====- ①所以 231111(1)()(3)()(32)(),2222n n T n =+-+-++- ②234111111()(1)()(3)()(32)(),22222n n T n +=+-++-++- ③ ②-③得 132)21)(23()21)(2()21)(2()21)(2(2121+---++-+-+=n n n n T112)21)(23(211])21(1[)21()2(21+-----=-+=n n n .整理得1)21)(12(-+=n n n T , ④方法一 利用差值比较法由④式得1)21)(32(11-+=++n n n T ,所以111111(23)()(21)()[(23)()(21)]()22223111[(21)]()()().2222nn n n n n nT T n n n n n n n ++-=+-+=+-+=+-+=-因为1≥n ,所以021<-n . 又0)21(>n ,所以01<-+n n T T 所以n n T T <+1,所以 >>>>>>+1321n n T T T T T . 所以T n 存在最大值11.2T =方法三 利用放缩法由①式得0)21)(21()21)](1(23[111<-=+-=+++n n n n n c ,又因为n T 是数列}{n c 的前n 项和, 所以n n n n T c T T <+<++11. 所以 >>>>>>+1321n n T T T T T 所以n T 存在最大值211=T . 【反馈检测3】已知数列{n a }的前n 项和14122333n n n S a +=-⨯+(1,2,3,4n =⋅⋅⋅),求{n a }的通项公式.方法三累加法使用情景在已知数列中相邻两项存在:1()(2)n n a a f n n --=≥的关系解题步骤先给递推式1()(2)n n a a f n n --=≥中的n 从2开始赋值,一直到n ,一共得到1n -个式子,再把这1n -个式子左右两边对应相加化简,即得到数列的通项.【例4】已知数列{}n a ,{}n b ,11=a ,112--+=n n n a a ,111+-+=n n n n a a a b ,n S 为数列{}n b 的前n 项和,nT 为数列{}n S 的前n 项和.(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前n 项和n S ;(3)求证:312->n T n . 【解析】(1)法一:112--+=n n n a a 112211)()()(a a a a a a a a n n n n n +-++-+-=∴--- ,122121122221-=--=++++=--n nn n【点评】(1)本题11n n a a n --=-,符合累加法的使用情景1()(2)n n a a f n n --=≥,所以用累加法求数列的通项.(2)使用累加法时,注意等式的个数,是1n -个,不是n 个.【反馈检测4】已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.方法四 累乘法使用情景若在已知数列中相邻两项存在:1()(2)nn a g n n a -=≥的关系. 解题步骤先给递推式1()(2)nn a g n n a -=≥中的n 从2开始赋值,一直到n ,一共得到1n -个式子,再把这1n -个式子左右两边对应相乘化简,即得到数列的通项.【例5】已知数列{}n a 满足n n n a a n n a a 求,1,3211+==+【点评】(1)由已知得,11+=+n n a a n n 符合累乘法求数列通项的情景,所以使用累乘法求该数列的通项.(2)使用累乘法求数列的通项时,只要写出1n -个等式就可以了,不必写n 个等式.【反馈检测5】 已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.高中数学常见题型解法归纳及反馈检测第36讲:数列通项的求法一(归纳法、定义法、公式法、累加法、累乘法)参考答案【反馈检测1答案】33a =,56a =,492a =,68a =.①当1=n 时,21111a a ⨯-==,221222a ⨯==,猜想成立; ②假设(1,*)n k k k N =≥∈时,猜想成立,即21(1)2k k k a -+=,22(1)2k k a +=,那么 []22(1)121221(1)(1)1(1)(1)22222k k k k k k k k k a a a a +-+-+++++==-=⨯-=,[][]2222212(1)2222(1)(2)(1)1(2)222(1)2k k k kk k k a k a a a k ++++++++=====+∴1+=k n 时,猜想也成立.由①②,根据数学归纳法原理,对任意的*n N ∈,猜想成立.∴当n 为奇数时,8)3)(1(212121++=⎪⎭⎫⎝⎛+++=n n n n a n ;当n 为偶数时,8)2(21222+=⎪⎭⎫⎝⎛+=n n a n . 即数列}{n a 的通项公式为⎪⎪⎩⎪⎪⎨⎧+++=为偶数为奇数n n n n n a n ,8)2(,8)3)(1(2.(方法2)由(2)得⎪⎪⎩⎪⎪⎨⎧+++=为偶数为奇数n n n n n a n ,)2(8,)3)(1(812. 以下用数学归纳法证明24+<n nS n ,*n N ∈. ①当1=n 时,2114341111+⨯=<==a S ; 当2=n 时,222422321111212+⨯=<=+=+=a a S .∴2,1=n 时,不等式成立. ②假设)2(≥=k k n 时,不等式成立,即24+<k kS k , 那么,当k 为奇数时,211)3(8241+++<+=++k k k a S S k k k 22)3)(2(83)1(431)3(2243)1(4++-++=⎥⎦⎤⎢⎣⎡++-++++++=k k k k k k k k k k k 2)1()1(4+++<k k ; 当k 为偶数时,)4)(2(824111++++<+=++k k k k a S S k k k )4)(3)(2(83)1(431)4)(2(2243)1(4+++-++=⎥⎦⎤⎢⎣⎡++-+++++++=k k k k k k k k k k k k k2)1()1(4+++<k k .∴1+=k n 时,不等式也成立.综上所述:42n nS n <+ 【反馈检测2答案】(1)1164()2n n a -=⨯;(2) n T =⎪⎩⎪⎨⎧>+--≤-).7(212)6)(7(),7(2)13(n n n n n n .【反馈检测3答案】42n nn a =-【反馈检测4答案】3 1.n n a n =+-学科*网【反馈检测4详细解析】由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211()()()()n n n n n a a a a a a a a a a ---=-+-++-+-+1221(231)(231)(231)(231)3n n --=⨯++⨯+++⨯++⨯++12212(3333)(1)3n n n --=+++++-+13(13)2(1)313n n --=+-+-3313n n =-+-+31n n =+- 所以3 1.n n a n =+- 【反馈检测5答案】(1)12325!.n n n n a n --=⨯⨯⨯【反馈检测5详细解析】因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n n a n a +=+, 故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅ 1221[2(11)5][2(21)5][2(21)5][2(11)5]3n n n n --=-+-+⋅⋅+⨯+⨯⨯1(1)(2)212[(1)32]53n n n n n --+-+++=-⋅⋅⨯⨯⨯ (1)12325!n n n n --=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯。

相关文档
最新文档