江门市2020年中考数学模拟试题及答案

合集下载

广东省江门市2019-2020学年第四次中考模拟考试数学试卷含解析

广东省江门市2019-2020学年第四次中考模拟考试数学试卷含解析

广东省江门市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.估计56﹣24的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间 2.已知A (,1y ),B (2,2y )两点在双曲线32m y x+=上,且12y y >,则m 的取 值范围是( ) A .m 0> B .m 0< C .3m 2>- D .3m 2<-3.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )A .13;13B .14;10C .14;13D .13;144.如图,正方形ABCD 的边长是3,BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE•OP ;③S △AOD =S 四边形OECF ;④当BP=1时,tan ∠OAE= 1316,其中正确结论的个数是( )A .1B .2C .3D .45.等腰三角形的两边长分别为5和11,则它的周长为( )A .21B .21或27C .27D .256.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=07.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个8.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D . 9.在如图的计算程序中,y 与x 之间的函数关系所对应的图象大致是( )A .B .C .D .10.如图,等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与ABC △有交点,则k 的取值范围是( ).A .12k <<B .13k ≤≤C .14k ≤<D .14k ≤≤11.如图,A ,C ,E ,G 四点在同一直线上,分别以线段AC ,CE ,EG 为边在AG 同侧作等边三角形△ABC ,△CDE ,△EFG ,连接AF ,分别交BC ,DC ,DE 于点H ,I ,J ,若AC=1,CE=2,EG=3,则△DIJ 的面积是( )A .38 B.34 C .12 D .3 12.点A (a ,3)与点B (4,b )关于y 轴对称,则(a+b )2017的值为( )A .0B .﹣1C .1D .72017二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为_____. 14.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________. 15.如图,在平面直角坐标系中,OB 在x 轴上,∠ABO =90°,点A 的坐标为(2,4),将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在反比例函数y =k x的图象上,则k 的值为_____.16.分解因式:x 2﹣4=_____.17.观察下列一组数13,25,37,49,511,…探究规律,第n 个数是_____.18.函数y=的自变量x的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:12+(12)-2 - 8sin60°20.(6分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.建立模型:(1)y与x的函数关系式为:_(02)_(24)xyx--≤≤⎧=⎨--<≤⎩,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:x 0 121321523724y 0 189815878(3)观察所画的图象,写出该函数的两条性质:.21.(6分)计算(﹣12)﹣2﹣(π﹣3)0+|3﹣2|+2sin60°;22.(8分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.(1)求⊙O的半径长;(2)求线段DG的长.23.(8分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=1x+1的图象.同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.(1)函数y=1x+1的图象可以由我们熟悉的函数的图象向上平移个单位得到;(2)函数y=1x+1的图象与x轴、y轴交点的情况是:;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是.24.(10分)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:本次调查中,一共调查了位好友.已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?25.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;。

广东省江门市2019-2020学年中考数学考前模拟卷(2)含解析

广东省江门市2019-2020学年中考数学考前模拟卷(2)含解析

广东省江门市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B2.如图所示的四边形,与选项中的一个四边形相似,这个四边形是()A.B.C.D.3.如图,以O为圆心的圆与直线y x3=-+交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为()A.23πB.πC.23πD.13π4.如图,等边△ABC的边长为1cm,D、E分别AB、AC是上的点,将△ADE沿直线DE折叠,点A 落在点A′处,且点A′在△ABC外部,则阴影部分的周长为()cmA.1 B.2 C.3 D.45221)的结果是()A.221B.22C.12D.2+26.已知,如图,AB//CD,∠DCF=100°,则∠AEF 的度数为 ( )A .120°B .110°C .100°D .80°7.已知正比例函数(0)y kx k =≠的图象经过点(1,3)-,则此正比例函数的关系式为( ). A .3y x =- B .3y x = C .13y x = D .13y x =- 8.下列运算正确的( )A .(b 2)3=b 5B .x 3÷x 3=xC .5y 3•3y 2=15y 5D .a+a 2=a 39.某机构调查显示,深圳市20万初中生中,沉迷于手机上网的初中生约有16000人,则这部分沉迷于手机上网的初中生数量,用科学记数法可表示为( )A .1.6×104人B .1.6×105人C .0.16×105人D .16×103人10.-10-4的结果是( )A .-7B .7C .-14D .1311.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件12.下列各运算中,计算正确的是( )A .a 12÷a 3=a 4B .(3a 2)3=9a 6C .(a ﹣b )2=a 2﹣ab+b 2D .2a•3a=6a 2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在△ABC 中,MN ∥BC 分别交AB ,AC 于点M ,N ;若AM=1,MB=2,BC=3,则MN 的长为_____.14.如图,已知直线m ∥n ,∠1=100°,则∠2的度数为_____.15.若正多边形的一个外角是45°,则该正多边形的边数是_________.16.如图,将ABC △的边AB 绕着点A 顺时针旋转()090a α︒︒<<得到AB ',边AC 绕着点A 逆时针旋转()090ββ︒︒<<得到AC ',联结B C ''.当90αβ︒+=时,我们称AB C ''△是ABC △的“双旋三角形”.如果等边ABC △的边长为a ,那么它的“双旋三角形”的面积是__________(用含a 的代数式表示).17.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若()P 1,1-,()Q 2,3,则P ,Q 的“实际距离”为5,即PS SQ 5+=或PT TQ 5.+=环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B 两个小区的坐标分别为()A 3,1,()B 5,3-,若点()M 6,m 表示单车停放点,且满足M 到A ,B 的“实际距离”相等,则m =______.18.在平面直角坐标系中,点A 1,A 2,A 3和B 1,B 2,B 3分别在直线y=1455x +和x 轴上,△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3都是等腰直角三角形.则A 3的坐标为_______. .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在正方形ABCD 中,点P 是对角线AC 上一个动点(不与点,A C 重合),连接PB 过点P 作PF PB ⊥,交直线DC 于点F .作PE AC ⊥交直线DC 于点E ,连接,AE BF .(1)由题意易知,ADC ABC ∆∆≌,观察图,请猜想另外两组全等的三角形∆ ∆≌ ;∆ ∆≌ ;(2)求证:四边形AEFB 是平行四边形;(3)已知22AB =,PFB ∆的面积是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由.20.(6分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?21.(6分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.22.(8分)先化简,再求值:2221()4244a a a a a a -÷--++,其中a 是方程a 2+a ﹣6=0的解. 23.(8分)如图,在△ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C 作AB 的平行线,交DE 的延长线于点F ,连接BF ,CD .(1)求证:四边形CDBF 是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=42,求DF 的长.24.(10分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.25.(10分)已知点O 是正方形ABCD 对角线BD 的中点.(1)如图1,若点E 是OD 的中点,点F 是AB 上一点,且使得∠CEF=90°,过点E 作ME ∥AD ,交AB 于点M ,交CD 于点N .①∠AEM=∠FEM ; ②点F 是AB 的中点;(2)如图2,若点E 是OD 上一点,点F 是AB 上一点,且使,请判断△EFC 的形状,并说明理由;(3)如图3,若E 是OD 上的动点(不与O ,D 重合),连接CE ,过E 点作EF ⊥CE ,交AB 于点F ,当时,请猜想的值(请直接写出结论).26.(12分)知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C 表示)开展社会实践活动,车到达A 地后,发现C 地恰好在A 地的正北方向,且距离A 地13千米,导航显示车辆应沿北偏东60°方向行驶至B 地,再沿北偏西37°方向行驶一段距离才能到达C 地,求B 、C 两地的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)27.(12分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,点D是边BC上任意一点,连接AD,过点C 作CE⊥AD于点E.(1)如图1,若∠BAD=15°,且CE=1,求线段BD的长;(2)如图2,过点C作CF⊥CE,且CF=CE,连接FE并延长交AB于点M,连接BF,求证:AM=BM.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:在计算器上依次按键转化为算式为﹣=-1.414…;计算可得结果介于﹣2与﹣1之间.故选A.考点:1、计算器—数的开方;2、实数与数轴2.D【解析】【分析】根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可.【详解】解:作AE⊥BC于E,则四边形AECD为矩形,∴EC=AD=1,AE=CD=3,∴BE=4,由勾股定理得,AB=22AE BE +=5,∴四边形ABCD 的四条边之比为1:3:5:5,D 选项中,四条边之比为1:3:5:5,且对应角相等,故选D .【点睛】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键.3.C【解析】过点O 作OE AB ⊥,∵y x 3=-+,∴3,0)D ,3)C ,∴COD V 为等腰直角三角形,45ODC ∠=︒,26sin 45322OE OD =⋅︒==, ∵OAB △为等边三角形,∴60OAB ∠=︒,∴62sin 603OE AO ===︒ ∴»60122π22ππ3606AB r︒=⋅=⋅=︒.故选C. 4.C【解析】【分析】由题意得到DA′=DA ,EA′=EA ,经分析判断得到阴影部分的周长等于△ABC 的周长即可解决问题.【详解】如图,由题意得:DA′=DA,EA′=EA,∴阴影部分的周长=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故选C.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.5.D【解析】【分析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式2×2×2+1)2.21故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.6.D【解析】【分析】先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【详解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故选D.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.7.A【解析】【分析】根据待定系数法即可求得.【详解】解:∵正比例函数y=kx的图象经过点(1,﹣3),∴﹣3=k,即k=﹣3,∴该正比例函数的解析式为:y=﹣3x.故选A.【点睛】此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.8.C【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.详解:A、(b2)3=b6,故此选项错误;B、x3÷x3=1,故此选项错误;C、5y3•3y2=15y5,正确;D、a+a2,无法计算,故此选项错误.故选C.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.9.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】用科学记数法表示16000,应记作1.6×104,故选A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.C【解析】解:-10-4=-1.故选C.11.C【解析】【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.12.D【解析】【分析】根据同底数幂的除法、积的乘方、完全平方公式、单项式乘法的法则逐项计算即可得.【详解】A、原式=a9,故A选项错误,不符合题意;B、原式=27a6,故B选项错误,不符合题意;C、原式=a2﹣2ab+b2,故C选项错误,不符合题意;D、原式=6a2,故D选项正确,符合题意,故选D.【点睛】本题考查了同底数幂的除法、积的乘方、完全平方公式、单项式乘法等运算,熟练掌握各运算的运算法则是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【详解】∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.14.80°.【解析】【分析】如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.【详解】如图,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案为80°.【点睛】本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.15.1;【解析】【分析】根据多边形外角和是360度,正多边形的各个内角相等,各个外角也相等,直接用360°÷45°可求得边数.【详解】∵多边形外角和是360度,正多边形的一个外角是45°,∴360°÷45°=1即该正多边形的边数是1.【点睛】本题主要考查了多边形外角和是360度和正多边形的性质(正多边形的各个内角相等,各个外角也相等). 16.214a . 【解析】 【分析】首先根据等边三角形、“双旋三角形”的定义得出△A B'C'是顶角为150°的等腰三角形,其中AB'=AC'=a .过C'作C'D ⊥AB'于D ,根据30°角所对的直角边等于斜边的一半得出C'D 12=AC'12=a ,然后根据S △AB'C'12=AB'•C'D 即可求解. 【详解】∵等边△ABC 的边长为a ,∴AB=AC=a ,∠BAC=60°.∵将△ABC 的边AB 绕着点A 顺时针旋转α(0°<α<90°)得到AB',∴AB'=AB=a ,∠B'AB=α. ∵边AC 绕着点A 逆时针旋转β(0°<β<90°)得到AC',∴AC'=AC=a ,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°. 如图,过C'作C'D ⊥AB'于D ,则∠D=90°,∠DAC'=30°,∴C'D 12=AC'12=a ,∴S △AB'C'12=AB'•C'D 12=a•12a 14=a 1.故答案为:14a 1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30°角的直角三角形的性质,等边三角形的性质以及三角形的面积. 17.1. 【解析】 【分析】根据两点间的距离公式可求m 的值. 【详解】依题意有2222(63)(m 1)(65)(m 3)-+-=-++,解得m 0=, 故答案为:1. 【点睛】考查了坐标确定位置,正确理解实际距离的定义是解题关键. 18.A 3(299,44) 【解析】 【分析】设直线y=1455x +与x 轴的交点为G ,过点A 1,A 2,A 3分别作x 轴的垂线,垂足分别为D 、E 、F ,由条件可求得312A FA D A E GD GE GF==,再根据等腰三角形可分别求得A 1D 、A 2E 、A 3F ,可得到A 1,A 2,A 3的坐标. 【详解】 设直线y=1455x +与x 轴的交点为G , 令y=0可解得x=-4, ∴G 点坐标为(-4,0), ∴OG=4,如图1,过点A 1,A 2,A 3分别作x 轴的垂线,垂足分别为D 、E 、F ,∵△A 1B 1O 为等腰直角三角形, ∴A 1D=OD ,又∵点A 1在直线y=x+上, ∴=,即=,解得A 1D=1=()0, ∴A 1(1,1),OB 1=2, 同理可得=,即=,解得A 2E==()1,则OE=OB 1+B 1E=,∴A 2(,),OB 2=5, 同理可求得A 3F= =()2,则OF=5+=,∴A 3(,);故答案为(,)【点睛】本题主要考查等腰三角形的性质和直线上点的坐标特点,根据题意找到点的坐标的变化规律是解题的关键,注意观察数据的变化.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1),,,PEF PCB ADE BCF ;(2)见解析;(3)存在,2 【解析】 【分析】(1)利用正方形的性质及全等三角形的判定方法证明全等即可;(2)由(1)可知PEF PCB ∆∆≌,则有EF BC =,从而得到AB EF =,最后利用一组对边平行且相等即可证明;(3)由(1)可知PEF PCB ∆∆≌,则PF PB =,从而得到PBF ∆是等腰直角三角形,则当PB 最短时,PBF ∆的面积最小,再根据AB 的值求出PB 的最小值即可得出答案.【详解】解:(1)Q 四边形ABCD 是正方形,,45AD DC BC ACD ACB ︒∴==∠=∠=,,PE AC PB PF ⊥⊥Q , 90EPC BPF ︒∴∠=∠=,,45EPF CPB PEC PCE ︒∴∠=∠∠=∠=,PE PC ∴=,在PEF ∆和PCB ∆中,PEF BCP PE PCEPF CPB ∠=∠⎧⎪=⎨⎪∠=∠⎩()PEF PCB ASA ∴∆∆≌EF BC DC ∴==DE CF ∴=在ADE ∆和BCF ∆中,90AD BC D BCF DE CF ︒=⎧⎪∠=∠=⎨⎪=⎩, ()ADE BCF SAS ∴∆∆≌故答案为,,,PEF PCB ADE BCF ; (2)证明:由(1)可知PEF PCB ∆∆≌, EF BC ∴=,AB BC =QAB EF ∴=//AB EF Q∴四边形AEFB 是平行四边形.(3)解:存在,理由如下:PEF PCB ∆∆Q ≌PF PB ∴= 90BPF ︒∠=QPBF ∆∴是等腰直角三角形, PB ∴最短时,PBF ∆的面积最小,∴当PB AC ⊥时,PB 最短,此时cos 452PB AB =⋅︒==,PBF ∆∴的面积最小为12222⨯⨯=.【点睛】本题主要考查全等三角形的判定及性质,平行四边形的判定,掌握全等三角形的判定方法和平行四边形的判定方法是解题的关键.20. (1) 每次下调10% (2) 第一种方案更优惠. 【解析】 【分析】(1)设出平均每次下调的百分率为x ,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答. 【详解】解:(1)设平均每次下调的百分率为x ,根据题意得 5000×(1-x )2=4050解得x=10%或x=1.9(舍去) 答:平均每次下调10%. (2)9.8折=98%,100×4050×98%=396900(元)100×4050-100×1.5×12×2=401400(元), 396900<401400,所以第一种方案更优惠. 答:第一种方案更优惠. 【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键. 21.(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台. 【解析】 【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可; (2)设购买甲型设备m 台,乙型设备()10m -台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m 的值,即可确定方案;(3)因为公司要求每月的产量不低于2040吨,据此可得关于m 的不等式,解之即可由m 的值确定方案,然后进行比较,做出选择即可. 【详解】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元, 由题意得:3216263x y x y -=⎧⎨+=⎩,解得:1210x y =⎧⎨=⎩,则甲,乙两种型号设备每台的价格分别为12万元和10万元; (2)设购买甲型设备m 台,乙型设备()10m -台, 则()121010110m m +-≤, ∴5m ≤,∵m 取非负整数,∴0,1,2,3,4,5m =, ∴有6种购买方案;(3)由题意:()240180102040m m +-≥, ∴4m ≥, ∴m 为4或5,当4m =时,购买资金为:124106108⨯+⨯=(万元), 当5m =时,购买资金为:125105110⨯+⨯=(万元), 则最省钱的购买方案是选购甲型设备4台,乙型设备6台. 【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键. 22.13. 【解析】 【分析】先计算括号里面的,再利用除法化简原式, 【详解】22214244a a a a a a ⎛⎫-÷ ⎪--++⎝⎭ , =()()()()222222a a a a a a-++⋅+- ,=2222a a a a a --+⋅- ,=222a a a a -+⋅-, =2a a+,由a 2+a ﹣6=0,得a=﹣3或a=2, ∵a ﹣2≠0, ∴a≠2, ∴a=﹣3, 当a=﹣3时,原式=32133-+=-. 【点睛】本题考查了分式的化简求值及一元二次方程的解,解题的关键是熟练掌握分式的混合运算. 23.(1)证明见解析;(2)1.【解析】【分析】(1)先证明出△CEF≌△BED,得出CF=BD即可证明四边形CDBF是平行四边形;(2)作EM⊥DB于点M,根据平行四边形的性质求出BE,DF的值,再根据三角函数值求出EM的值,∠EDM=30°,由此可得出结论.【详解】解:(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED.∴CF=BD.∴四边形CDBF是平行四边形.(2)解:如图,作EM⊥DB于点M,∵四边形CDBF是平行四边形,BC=42∴1222BE BC==DF=2DE.在Rt△EMB中,EM=BE•sin∠ABC=2,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=4,∴DF=2DE=1.【点睛】本题考查了平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练的掌握平行四边形的判定与全等三角形的判定与性质.24.50 见解析(3)115.2° (4)3 5【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.25.(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).【解析】试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS 证明△ABE≌△CBE 得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM (ASA),得AM=FM,设AM=x,则AF=2x,DN =x,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD 中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE =x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC =90°,∴∠CEG+∠FEG=90°.又∠MEG =90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG =∠AEF,∴∠AEF=∠MEF,∴△AEM≌△FEM (ASA),∴AM=FM.设AM=x,则AF=2x,DN =x,DE=x,∴BD=x.∴AB=x.∴=2x:x=.考点:四边形综合题.26.(3.【解析】分析:作BD⊥AC,设AD=x,在Rt△ABD中求得BD=3x,在Rt△BCD中求得CD=433x,由AC=AD+CD建立关于x的方程,解之求得x的值,最后由BC=BDcos DBC∠可得答案.详解:过点B作BD⊥ AC,依题可得:∠BAD=60°,∠CBE=37°,AC=13(千米),∵BD⊥AC,∴∠ABD=30°,∠CBD=53°,在Rt△ABD中,设AD=x,∴tan∠ABD=AD BD即tan30°=3 ADBD=∴3,在Rt△DCB中,∴tan∠CBD=CD BD即tan53°=43 CDBD=,∴43x∵CD+AD=AC,∴43x=13,解得,x=433∴BD=12-33在Rt△BDC中,∴cos∠CBD=tan60°=BD BC,即:BC=123320535BDcos DBC-==-∠千米),故B、C两地的距离为()千米.点睛:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.27.(1) 2﹣;(2)见解析3【解析】分析:(1)先求得:∠CAE=45°-15°=30°,根据直角三角形30°角的性质可得AC=2CE=2,再得∠ECD=90°-60°=30°,设ED=x,则CD=2x x=1,求得x的值,可得BD的长;(2)如图2,连接CM,先证明△ACE≌△BCF,则∠BFC=∠AEC=90°,证明C、M、B、F四点共圆,则∠BCM=∠MFB=45°,由等腰三角形三线合一的性质可得AM=BM.详解:(1)∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵∠BAD=15°,∴∠CAE=45°﹣15°=30°,Rt△ACE中,CE=1,∴AC=2CE=2,Rt△CED中,∠ECD=90°﹣60°=30°,∴CD=2ED,设ED=x,则CD=2x,∴,,x=,3∴,∴BD=BC﹣CD=AC﹣CD=2;(2)如图2,连接CM,∵∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∵AC=BC,CE=CF,∴△ACE≌△BCF,∴∠BFC=∠AEC=90°,∵∠CFE=45°,∴∠MFB=45°,∵∠CFM=∠CBA=45°,∴C、M、B、F四点共圆,∴∠BCM=∠MFB=45°,∴∠ACM=∠BCM=45°,∵AC=BC,∴AM=BM.点睛:本题考查了三角形全等的性质和判定、等腰直角三角形的性质和判定、等腰三角形三线合一的性质、直角三角形30°角的性质和勾股定理,第二问有难度,构建辅助线,证明△ACE≌△BCF是关键.。

2020年广东省江门市新会区中考数学一模试题

2020年广东省江门市新会区中考数学一模试题

2020年广东省江门市新会区中考数学一模试题一.选择题(共10小题)1.2020的相反数和倒数分别是()A. ﹣2020,12020- B. ﹣2020,12020C. 2020,12020- D. 2020,120202.下列运算正确的是()A. a3+a4=a7B. a7÷a2=a5C. a3•a2=a6D. (﹣a4)2=﹣a63.据统计,因防范新冠肺炎疫情需要.到2020年2月下旬,我国各个企业每天生产的口罩数量,已经超过了1.16亿个,占全世界生产总量的一半以上.1.16亿个转换为以个为单位,用科学记数法可表示为()A.1.16×108个B. 1.16×109个C. 11.6×108个D. 0.116×109个4.若函数y=k x(k≠0)的图象过点(4,﹣7),那么它一定还经过点()A. (4,7) B. (﹣4,﹣7) C. (﹣4,7) D. (3,﹣7)5.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是()A. 1个B. 2个C. 3个D. 4个6.“牟合方盖”是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法,“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图、左视图、俯视图依次是()A. (2)、(4)、(1)B. (3)、(1)、(2)C. (1)、(4)、(2)D. (3)、(4)、(1)7.如图,若AB是⊙O的直径,CD是⊙O的弦,∠BCD=36°,则∠ABD的度数为()A. 36°B. 44°C. 54°D. 72°8.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求共同购买该物品的人数和物品的价格.设有x个人,物品的价格为y钱,则可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩9.如图,将△ABC绕点C顺时针旋转得到△EDC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.下列结论一定正确的是()A. AC=ADB. AB⊥EBC. BC=DED. ∠A=∠EBC10.如图,在平行四边形ABCD中,∠DAB=60°,AB=5,BC=3,点P从点D出发,沿DC,CB向终点B匀速运动.设点P所走过的路程为x,点P所经过的线段与AD, AP所围成的图形的面积为y, y随x的变化而变化.在下列图象中,能正确反映y与x的函数关系的是()A. B. C. D.二.填空题(共7小题)11.在全世界爆发的新型冠状病毒直经大小约100纳米,这样小的病毒无法在光学显微镜下看到,只能用电子显微镜观看,100纳米用科学记数法可表示为__(1纳米=0.000000001米). 12.若关于x 的一元二次方程(k ﹣1)x 2+x +2=0有两个实数根,则k 的取值范围是__.13.函数y =kx+2的图象经过点A (﹣3,1),则k 的值为__. 14.分解因式:2122239x x -+=__.15.洋洋掷一枚硬币,结果一连9次都掷出正面朝上,请问他第10次掷硬币时出现正面朝上的机会为__. 16.如图,耀华同学从O 点出发,前进10米后向右转20°,再前进10米后又向右转20°,…,这样一直走下去,他第一次回到出发点O 时一共走了__米.17.如图,在△ABC 中,∠A =50°,BC =6,以BC 为直径的半圆O 与AB 、AC 分别交于点D 、E ,则图中由O 、D 、E 三点所围成的扇形面积(阴影部分)等于__(结果保留π)三.解答题(共8小题)18.求不等式组238152332x x x -<⎧⎪⎨⎛⎫+>- ⎪⎪⎝⎭⎩的整数解.19.先化简,再求值:22699x x x -+-÷(x ﹣3﹣393x x -+),其中x 2﹣1. 20.如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC ∠的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE 与AC 的位置及数量关系,并证明你的结论.21.学校团委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱存入银行,定期一年,到期后取回本金,而把利息捐给家庭贫困的儿童.学校共有学生1200人全部参加了此项活动,图1是该校各年级学生人数比例分布的扇形统计图,图2是该校学生人均存款情况的条形统计图.(1)求该学校的人均存款数; (2)若银行一年定期存款的年利率是2.25%,且每702元能提供给1位家庭贫困儿童一年的基本费用,那么该学校一年能够帮助多少位家庭贫困儿童?22.山地自行车越来越受年轻人的喜爱.某车行经营的A 型山地自行车去年销售总额为30万元,今年每辆车售价比去年降低了200元.若卖出的数量相同,销售总额将比去年减少10%, (1)今年A 型车每辆售价多少元?(2)该车行计划再进一批A 型车和新款B 型车共60辆,要使这批车获利不少于4万元,A 型车至多进多少辆? A 、B 两种型号车的进货和销售价格如表:A 型车B 型车 进货价格(元) 12001400 销售价格(元) 今年的销售价格220023.如图,在△ABC 中,点D 、E 、F 分别是AB 、BC 、CA 中点,AH 是边BC 上的高.(1)求证:四边形ADEF 是平行四边形. (2)求证:∠DHF =∠DEF .24.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.25.如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:AE=DF;(2)如图2,若AB=2,过点M作MG⊥EF交线段BC于点G,判断△GEF的形状,并说明理由;(3)如图3,若AB=23,过点M作MG⊥EF交线段BC的延长线于点G.①直接写出线段AE长度的取值范围;②判断△GEF的形状,并说明理由.2020年广东省江门市新会区中考数学一模试题一.选择题(共10小题)1.2020的相反数和倒数分别是()A. ﹣2020,12020- B. ﹣2020,12020C. 2020,12020- D. 2020,12020答案B2.下列运算正确的是()A. a3+a4=a7B. a7÷a2=a5C. a3•a2=a6D. (﹣a4)2=﹣a6B.3.据统计,因防范新冠肺炎疫情需要.到2020年2月下旬,我国各个企业每天生产的口罩数量,已经超过了1.16亿个,占全世界生产总量的一半以上.1.16亿个转换为以个为单位,用科学记数法可表示为()A. 1.16×108个B. 1.16×109个C. 11.6×108个D. 0.116×109个答案A4.若函数y=kx(k≠0)的图象过点(4,﹣7),那么它一定还经过点()A. (4,7)B. (﹣4,﹣7)C. (﹣4,7)D. (3,﹣7)答案C5.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数是()A. 1个B. 2个C. 3个D. 4个答案C6.“牟合方盖”是由我国古代数学家刘徽首先发现并采用一种用于计算球体体积的方法,“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图、左视图、俯视图依次是()A. (2)、(4)、(1)B. (3)、(1)、(2)C. (1)、(4)、(2)D. (3)、(4)、(1)答案D7.如图,若AB是⊙O的直径,CD是⊙O的弦,∠BCD=36°,则∠ABD的度数为()A. 36°B. 44°C. 54°D. 72°答案C9.如图,将△ABC绕点C顺时针旋转得到△EDC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.下列结论一定正确的是()A. AC=ADB. AB⊥EBC. BC=DED. ∠A=∠EBC答案D10.如图,在平行四边形ABCD中,∠DAB=60°,AB=5,BC=3,点P从点D出发,沿DC,CB向终点B匀速运动.设点P所走过的路程为x,点P所经过的线段与AD, AP所围成的图形的面积为y, y随x的变化而变化.在下列图象中,能正确反映y与x的函数关系的是()A. B. C. D.答案A二.填空题(共7小题)11.在全世界爆发的新型冠状病毒直经大小约100纳米,这样小的病毒无法在光学显微镜下看到,只能用电子显微镜观看,100纳米用科学记数法可表示为__(1纳米=0.000000001米). 答案1×10﹣7米12.若关于x 的一元二次方程(k ﹣1)x 2+x +2=0有两个实数根,则k 的取值范围是__. 答案k ≤98且k ≠1 13.函数y =kx+2的图象经过点A (﹣3,1),则k 的值为__. 答案314.分解因式:2122239x x -+=__. 答案12(x-23)2 15.洋洋掷一枚硬币,结果一连9次都掷出正面朝上,请问他第10次掷硬币时出现正面朝上的机会为__. 答案他第10次掷硬币时出现正面朝上的机会为1216.如图,耀华同学从O 点出发,前进10米后向右转20°,再前进10米后又向右转20°,…,这样一直走下去,他第一次回到出发点O 时一共走了__米.答案18017.如图,在△ABC 中,∠A =50°,BC =6,以BC 为直径的半圆O 与AB 、AC 分别交于点D 、E ,则图中由O 、D 、E 三点所围成的扇形面积(阴影部分)等于__(结果保留π)答案2π三.解答题(共8小题)18.求不等式组238152332x x x -<⎧⎪⎨⎛⎫+>- ⎪⎪⎝⎭⎩的整数解.解:238?152332x x x -<⎧⎪⎨⎛⎫+>- ⎪⎪⎝⎭⎩①②,由①得:x >﹣2, 由②得:x <196, 则不等式组的解集是﹣2<x <196, 它的整数解是﹣1,0,1,2,3.19.先化简,再求值:22699x x x -+-÷(x ﹣3﹣393x x -+),其中x﹣1. 解:22699x x x -+-÷(x ﹣3﹣393x x -+)=2(3)(3)(3)x x x -+-÷(3)(3)393x x x x -+-++ =333(3)x x x x x -++-=1x, 当x﹣1+1. 20.如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC ∠的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE 与AC 的位置及数量关系,并证明你的结论.解:(1)如图所示;(2)OE AC ∕∕,12OE AC =. 理由如下:∵AD 平分BAC ∠, ∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠, ∴BOD BAC ∠=∠,∴OE AC ∕∕,∵OA OB =,∴OE 为ABC ∆的中位线,∴OE AC ∕∕,12OE AC =. 21.学校团委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱存入银行,定期一年,到期后取回本金,而把利息捐给家庭贫困的儿童.学校共有学生1200人全部参加了此项活动,图1是该校各年级学生人数比例分布的扇形统计图,图2是该校学生人均存款情况的条形统计图.(1)求该学校的人均存款数;(2)若银行一年定期存款的年利率是2.25%,且每702元能提供给1位家庭贫困儿童一年的基本费用,那么该学校一年能够帮助多少位家庭贫困儿童?解:(1)由题意得:七年级人数:1200×40%=480(人),八年级人数:1200×35%=420(人),九年级人数:1200×25%=300(人).人均存款数为:(400×480+300×420+500×300)÷1200=390(元);(2)利息为:390×1200×2.25%=10530(元),10530÷702=15(人),答:该学校一年能帮助15位家庭贫困儿童.22.山地自行车越来越受年轻人的喜爱.某车行经营的A型山地自行车去年销售总额为30万元,今年每辆车售价比去年降低了200元.若卖出的数量相同,销售总额将比去年减少10%,(1)今年A型车每辆售价多少元?(2)该车行计划再进一批A型车和新款B型车共60辆,要使这批车获利不少于4万元,A型车至多进多少辆?A、B两种型号车的进货和销售价格如表:解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+200)元,由题意,得:300000200 x+=() 300000110x-%,解得:x=1800.经检验,x=1800是原方程的根.答:今年A型车每辆售价1800元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,由题意,得(1800﹣1200)a+(2200﹣1400)(60﹣a)≥40000,解得:a≤40,故要使这批车获利不少于4万元,A型车至多进40辆.23.如图,在△ABC中,点D、E、F分别是AB、BC、CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形.(2)求证:∠DHF =∠DEF .解:(1)∵E 、F 分别为BC 、AC 的中点,∴EF ∥AB 且EF =12AB , ∵点D 是AB 的中点,∴AD =12AB , EF =AD ,又EF ∥AD ,∴四边形ADEF 是平行四边形;(2)连接DH 、DF ,∵AH ⊥BC 于H ,点D 、F 分别是AB 、CA 的中点,∴DH =12AB ,FH =12AC , ∵点D 、E 、F 分别是AB 、BC 、CA 的中点, ∴EF =12AB ,DE =12AC , ∴DH =EF ,FH =DE ,∴1DH FH DF EF DE FD===, ∴△DFE ∽△FDH ,∴∠DHF =∠DEF .24.如图,已知抛物线经过点A (﹣1,0)、B (3,0)、C (0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3;(2)设直线BC的解析式为:y=kx+b,则有:303k bb+==⎧⎨⎩,解得13kb=-⎧⎨=⎩,故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3),∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3);(3)如图,∵S△BNC=S△MNC+S△MNB=12MN(OD+DB)=12MN•OB,∴S△BNC=12(﹣m2+3m)•3=﹣32(m﹣32)2+278(0<m<3);∴当m=32时,△BNC的面积最大,最大值为278.25.如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:AE=DF;(2)如图2,若AB=2,过点M作MG⊥EF交线段BC于点G,判断△GEF的形状,并说明理由;(3)如图3,若AB=23,过点M作MG⊥EF交线段BC的延长线于点G.①直接写出线段AE长度的取值范围;②判断△GEF的形状,并说明理由.解:(1)如图1,证明:矩形ABCD中,∠EAM=∠FDM=90°,∠AME=∠FMD.∵AM=DM,∴△AEM≌△DFM.∴AE=DF.(2)答:△GEF是等腰直角三角形.证明:过点G作GH⊥AD于H,如图2,∵∠A=∠B=∠AHG=90°,∴四边形ABGH是矩形.∴GH=AB=2.∵MG⊥EF,∴∠GME=90°.∴∠AME+∠GMH=90°.∵∠AME+∠AEM=90°,∴∠AEM=∠GMH.∴△AEM≌△HMG.∴ME=MG.∴∠EGM=45°.由(1)得△AEM≌△DFM,∴ME=MF.∵MG⊥EF,∴GE=GF.∴∠EGF=2∠EGM=90°.∴△GEF是等腰直角三角形.(3)①当C、G重合时,如图3,∵四边形ABCD是矩形,∴∠AME +∠AEM =90°.∵MG ⊥EF ,∴∠EMG =90°.∴∠AME +∠DMC =90°,∴∠AEM =∠DMC ,∴△AEM ∽△DMC ∴AE AM MD CD =, ∴223AE =, ∴AE =23 ∴23<AE ≤23. ②△GEF 是等边三角形.证明:过点G 作GH ⊥AD 交AD 延长线于点H ,如图4,∵∠A =∠B =∠AHG =90°,∴四边形ABGH 是矩形.∴GH =AB =3∵MG ⊥EF ,∴∠GME =90°.∴∠AME +∠GMH =90°.∵∠AME +∠AEM =90°,∴∠AEM =∠GMH .∴△AEM∽△HMG.∴EM AM MG GH=.在Rt△GME中,∴tan∠MEG=MG GH EM AM=∴∠MEG=60°.由(1)得△AEM≌△DFM.∴ME=MF.∵MG⊥EF,∴GE=GF.∴△GEF 是等边三角形。

2020年广东省江门市中考数学一模试卷答案版

2020年广东省江门市中考数学一模试卷答案版

中考数学一模试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.如图,数轴上的点A,B分别对应实数a,b,下列结论正确的是( )A. a+b<0B. |a|>|b|C. a+b>0D. a•b>02.化简代数式+的结果是( )A. x+1B. x-1C.D.3.据权威统计,去年江门有80%以上的家庭年收入不低于10万元,下面一定不低于10万元的是( )A. 家庭年收入的平均数B. 家庭年收入的众数C. 家庭年收入的中位数D. 家庭年收入的平均数和众数4.将点A(2,-1)向左平移3个单位长度,再向上平移4个单位长度得到点B,则点B的坐标是( )A. (5,3)B. (-1,3)C. (-1,-5)D. (5,-5)5.关于x的一元二次方程x2-2x+m=0总有实数根,则m应满足的条件是( )A. m≥1B. m≤1C. m=1D. m<16.我国古代数学名著《孙子算经》中记载了一道题,大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为( )A. B.C. D.7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A. 1,2,3B. 1,1,C. 1,1,D. 1,2,8.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于点D,DE恰好是AB的垂直平分线,垂足为E.若BC=6,则AB的长为( )A. 3B. 4C. 8D. 109.如图,正△ABC的边长为1,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值和最大值分别是( )A.2,1+2 B. 2,3 C. 2,1+ D. 2,1+10.如图,P(m,m)是反比例函数y=在第一象限内的图象上一点,以P为顶点作等边△PAB,使AB落在x轴上,则△POB的面积为( )A. 2+B. 2+C. 2+D.二、填空题(本大题共6小题,共24.0分)11.李克强总理在第十三届二次全国人民代表大会作的政府工作报告中,2018年国内生产总值(GDP)总量突破90万亿元,90万亿元用科学记数法可表示为______.(提示:1万亿=1,000,000,000,000)12.医院为了解医护人员的服务质量,随机调查了来就诊的200名病人,调查的结果如图所示.根据图中给出的信息,这200名顾客中对该医院医护人员的服务质量表示不满意的有______人.13.分解因式:4x2y3-4x2y2+x2y=______.14.把函数y=x2的图象向右平移两个单位,再向下平移一个单位得到的函数关系式是______.15.在平行四边形ABCD中,∠A=132°,在AD上取一点E,使DE=DC,则∠ECB的度数是______.16.如图,在△ABC中,∠A=65°,BC=6,以BC为直径的半圆O与AB、AC分别交于点D、E,则图中由O、D、E三点所围成的扇形面积等于______.(结果保留π)三、解答题(本大题共9小题,共66.0分)17.计算:--()-1+4cos30°18.先化简,再求值:÷(x-),其中x=1.19.用尺规作图:如图,△ABC是直角三角形,∠ACB=90°.(1)利用尺规作∠ABC的平分线,交AC于点O,再以O为圆心,OC的长为半径作⊙O(保留作图痕迹,不写作法);(2)在你所作的图中,判断AB与⊙O的位置关系,并证明你的结论.20.在一个不透明的盒子里,装有5个分别标有数字1,2,3,4,5的小球,它们的形状、大小、质地等完全相同.雄威同学先从盒子里随机取出第一个小球,记下数字为x;不放回盒子,再由丽贤同学随机取出第二个小球,记下数字为y.(1)请用树状图或列表法表示出坐标(x,y)的所有可能出现的结果;(2)求雄威同学、丽贤同学各取一个小球所确定的点(x,y)落在反比例函数y=的图象上的概率.21.水果店进口一种高档水果,卖出每斤水果盈利(毛利润)5元,每天可卖出1000斤,经市场调査后发现,在进价不变的情况下,若每斤售价涨0.5元,每天销量将减少40斤.(1)若以每斤盈利9元的价钱出售,问每天能盈利多少元?(2)若水果店要保证每天销售这种水果的毛利润为6000元,同时又要使顾客觉得价不太贵,则每斤水果应涨价多少元?22.已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.23.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m为常数且m≠0)的图象在第二象限交于点C,CD⊥x轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两个函数图象的另一个交点E的坐标;(3)请观察图象,直接写出不等式kx+b≥的解集.24.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)试猜想BC,BD,BE三者之间的等量关系,并加以证明;(3)若tan∠CED=,⊙O的半径为3,求OA的长.25.如图,已知抛物线y=-x2+bx+c与x轴交于原点O和点A(6,0),抛物线的顶点为B.(1)求该抛物线的解析式和顶点B的坐标;(2)若动点P从原点O出发,以每秒1个长度单位的速度沿线段OB运动,设点P 运动的时间为t(s).问当t为何值时,△OPA是直角三角形?(3)若同时有一动点M从点A出发,以2个长度单位的速度沿线段AO运动,当P、M其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t(s),连接MP,当t为何值时,四边形ABPM的面积最小?并求此最小值.答案和解析1.【答案】C【解析】解:根据数轴,a<0,b>0,且|a|<|b|,A、应为a+b>0,故本选项错误;B、应为|a|<|b|,故本选项错误;C、∵a<0,b>0,且|a|<|b|,∴a+b>0,故本选项正确;D、应该是a•b<0,故本选项错误.故选:C.根据数轴确定出a、b的正负情况以及绝对值的大小,然后对各选项分析判断后利用排除法求解.本题考查了实数与数轴的关系,根据数轴确定出a、b的正负情况以及绝对值的大小是解题的关键.2.【答案】A【解析】解:原式=-==x+1,故选:A.根据分式的运算法则即可求出答案.本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.3.【答案】C【解析】解:由题意知,家庭年收入的中位数一定不低于10万元,故选:C.根据平均数、众数和中位数的概念判断即可得.本题主要考查众数,解题的关键是掌握平均数、众数和中位数的概念.4.【答案】B【解析】解:将点A(2,-1)向左平移3个单位长度,再向上平移4个单位长度得到点B(-1.3),故选:B.根据:横坐标,右移加,左移减;纵坐标,上移加,下移减的规律即可解决问题.本题考查坐标平移,记住坐标平移的规律是解决问题的关键.5.【答案】B【解析】解:由题意可得,△=(-2)2-4m≥0,∴m≤1,故选:B.利用一元二次方程根的判别式(△=b2-4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.本题考查了一元二次方程根的判别式,熟练运用根的判别式公式是解题的关键.6.【答案】D【解析】解:设大马有x匹,小马有y匹,由题意得:,故选:D.设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.7.【答案】D【解析】解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.8.【答案】B【解析】解:∵AD是∠CAB的平分线,∴∠BAD=∠CAD,∵DE是AB的垂直平分线,∴DB=DA,∴∠BAD=∠DBA,∴∠BAD=∠DBA=∠CAD,∵∠C=90°,∴∠BAD=∠DBA=∠CAD=30°,∴AB=2AC,由勾股定理得,AB2-AC2=BC2,解得,AB=4,故选:B.根据角平分线的性质得到∠BAD=∠CAD,根据线段垂直平分线的性质、三角形内角和定理得到∠DBA=30°,根据含30度角的直角三角形的性质、勾股定理计算即可.本题考查的是含30度角的直角三角形的性质、线段垂直平分线的性质,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.9.【答案】C【解析】解:由图分析可知A'D=CDCD+AD=AD+A'D则当点D在A'A线段上时,AD+A'D有最小值为2当点D在C'处时,AD+A'D有最大值为1+故选:C.由对称性可知A'D=CD,所以CD+AD=AD+A'D,在图中拖动点D,即可判断出值的变化.本题考查了线段求和的极值问题,需要感受点D的运动使线段之和产生的变化,是一道很好的极值问题.10.【答案】C【解析】解:如图,作PD⊥OB,∵P(m,m)是反比例函数y=在第一象限内的图象上一点,∴m=,解得:m=2,∴PD=2,∵△ABP是等边三角形,∴BD=PD=,∴S△POB=OB•PD=(OD+BD)•PD=2+,故选:C.依据P(m,m)是反比例函数y=在第一象限内的图象上一点,求得点P的坐标,即可求得点B坐标,即可解题.本题考查了等边三角形的性质,考查了反比例函数点坐标的特性,本题中求得m的值是解题的关键.11.【答案】9×1013【解析】解:数13.8万用科学记数法表示为9×1013,故答案为:9×1013.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】8【解析】解:这200名顾客中对该医院医护人员的服务质量表示不满意的人数:200×(1-45%-42%-9%)=8人,故答案为8.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.这200名顾客中对该医院医护人员的服务质量表示不满意的人数:200×(1-45%-42%-9%)=8人.本题考查了扇形统计图,熟练掌握扇形统计图的意义是解题的关键.13.【答案】x2y(2y-1)2【解析】解:原式=x2y(4y2-4y+1)=x2y(2y-1)2,故答案为:x2y(2y-1)2原式提取公因式,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.【答案】y=(x-2)2-1【解析】解:y=x2的图象向右平移两个单位,再向下平移一个单位得y=(x-2)2-1.故答案是:y=(x-2)2-1.按照“左加右减,上加下减”的规律.考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.15.【答案】66°【解析】解:在平行四边形ABCD中,∠A=132°,∴∠BCD=∠A=132°,∠D=180°-132°=48°,∵DE=DC,∴∠ECD=(180°-48°)=66°,∴∠ECB=132°-66°=66°.故答案为:66°.利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.本题主要考查平行四边形对角相等和邻角互补的性质,熟练掌握性质是解题的关键.16.【答案】π【解析】解:∵直径BC=6,∴半径OE=3,∵∠A=65°,∴∠ABC+∠ACB=180-∠A=115°,∵OD=OB,OC=OE,∴∠ODB=∠ABC,∠OEC=∠ACB,∴∠ABC+∠ADO+∠OEC+∠ACB=2×115°=230°,∴由三角形内角和定理得:∠DOB+∠EOC=180°+180°-230°=130°,∠DOE=180°-130°=50°,∴图中由O、D、E三点所围成的扇形面积S==π,故答案为:π.先求出半径,再求出∠BOD+∠COE,求出∠EOD,根据扇形的面积公式求出即可.本题考查了等腰三角形的性质,扇形的面积计算等知识点,能求出∠DOE的度数是解此题的关键.17.【答案】解:原式=2-2(-)-2+4×=2-2+2-2+2=2.【解析】直接利用负指数幂、二次根式的性质、特殊角的三角函数值分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:原式=÷[-]=÷=-,把x=1代入原式得:原式=-=1-.【解析】首先利用分式的混合运算法则进而化简得出答案.此题主要考查了分式的化简求值,正确掌握分式的混合运算法则是解题关键.19.【答案】解:(1)如图,⊙O即为所求.(2)作OH⊥AB于H.由作图可知:BO平分∠ABC,∵OC⊥BC,OH⊥AB,∴OH=OC,∴AB是⊙O的切线.【解析】(1)利用尺规作出∠AB长度平分线即可解决问题.(2)作OH⊥AB于H.证明OH=OC即可解决问题.本题考查作图-复杂作图,角平分线的性质,直线与圆的位置关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.【答案】解:(1)列表得:则共有20种等可能的结果;(2)∵雄威同学、丽贤同学各取一个小球所确定的点(x,y)落在反比例函数y=的图象上的有(1,5),(5,1),∴点(x,y)落在反比例函数y=的图象上的概率为=.【解析】(1)首先根据题意列出表格,然后由表格求得所有等可能的结果;(2)由(1)中的列表求得点(x,y)落在反比例函数y=的图象上的情况,再利用概率公式即可求得答案.此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.也考查了反比例函数图象上点的坐标特征.21.【答案】解:(1)1000-×40=680(斤),9×680=6120(元).答:每天能盈利6120元.(2)设每斤水果涨价x元,则每天可卖出(1000-40×)斤水果,依题意,得:(x+5)(1000-40×)=6000,解得:x1=2.5,x2=5.又∵要使顾客觉得价不太贵,∴x=2.5.答:每斤水果应涨价2.5元.【解析】(1)根据每斤售价涨0.5元则每天销量将减少40斤,可求出每斤盈利9元时每天的销售量,再利用总利润=每斤利润×销售数量,即可求出结论;(2)设每斤水果涨价x元,则每天可卖出(1000-40×)斤水果,根据总利润=每斤利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.【答案】(1)证明:∵四边形ABCD是平行四边形,∴∠4=∠C,AD=CB,AB=CD.∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD.∴AE=CF.在△AED和△CBF中,,∴△ADE≌△CBF(SAS).(2)解:当四边形BEDF是菱形时,四边形AGBD是矩形.证明:∵四边形ABCD是平行四边形,∴AD∥BC.∵AG∥BD,∴四边形AGBD是平行四边形.∵四边形BEDF是菱形,∴DE=BE.∵AE=BE,∴AE=BE=DE.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°.∴∠2+∠3=90°.即∠ADB=90°.∴▱四边形AGBD是矩形.【解析】(1)在证明全等时常根据已知条件,分析还缺什么条件,然后用(SAS,ASA ,SSS)来证明全等;(2)先由菱形的性质得出AE=BE=DE,再通过角之间的关系求出∠2+∠3=90°即∠ADB=90°,所以判定四边形AGBD是矩形.本题主要考查了平行四边形的基本性质和矩形的判定及全等三角形的判定.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.三角形全等的判定条件:SSS,SAS,AAS,ASA.23.【答案】解:(1)∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∵CD⊥OA,∴DC∥OB,∴=,∴=,∴CD=10,∴点C坐标(-2,10),∵B(0,6),A(3,0),∴解得,∴一次函数为y=-2x+6.∵反比例函数y=经过点C(-2,10),∴m=-20,∴反比例函数解析式为y=-.(2)由解得或,∴E的坐标为(5,-4).(3)由图象可知kx+b≥的解集:x≤-2或0<x≤5.【解析】(1)先求出A、B、C坐标,再利用待定系数法确定函数解析式.(2)两个函数的解析式作为方程组,解方程组即可解决问题.(3)根据图象一次函数的图象在反比例函数图象的上方,即可解决问题.本题考查一次函数与反比例函数的交点问题,解题的关键是学会利用待定系数法确定函数解析式,知道两个函数图象的交点坐标可以利用解方程组解决,学会利用图象确定自变量取值范围,属于中考常考题型.24.【答案】(1)证明:如图,连接OC,(1分)∵OA=OB,CA=CB,∴OC⊥AB,(2分)∴AB是⊙O的切线.(3分)(2)解:BC2=BD•BE.(4分)证明:∵ED是直径,∴∠ECD=90°,∴∠E+∠EDC=90°.又∵∠BCD+∠OCD=90°,∠OCD=∠ODC(OC=OD),∴∠BCD=∠E.(5分)又∵∠CBD=∠EBC,∴△BCD∽△BEC.(6分)∴.∴BC2=BD•BE.(7分)(3)解:∵tan∠CED=,∴.∵△BCD∽△BEC,∴.(8分)设BD=x,则BC=2x,∵BC2=BD•BE,∴(2x)2=x•(x+6).(9分)∴x1=0,x2=2.∵BD=x>0,∴BD=2.∴OA=OB=BD+OD=3+2=5.(10分)【解析】(1)连接OC,根据等腰三角形的性质易得OC⊥AB;即可得到证明;(2)易得∠BCD=∠E,又有∠CBD=∠EBC,可得△BCD∽△BEC;故可得BC2=BD•BE;(3)易得△BCD∽△BEC,BD=x,由三角形的性质,易得BC2=BD•BE,代入数据即可求出答案.本题考查常见的几何题型,包括切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.25.【答案】解:(1)将O(0,0),A(6,0)代入y=-x2+bx+c,得:,解得:,∴该抛物线的解析式为y=-x2+2x.∵y=-x2+2x=-(x-3)2+3,∴顶点B的坐标为(3,3).(2)设直线OB的解析式为y=kx,将B(3,3)代入y=kx,得:3=3k,解得:k=,∴直线OB的解析式为y=x.过点P作PC⊥x轴于点C,如图1所示.设点P的坐标为(x,x),则点C的坐标为(x,0).∵tan∠POC==,∴∠POC=60°.当∠APO=90°,则cos∠POC==,∴OP=3.∵OP=1×t=3,∴t=3.(3)当运动时间为t时,OP=t,AM=2t,PC=t,PC=t,OM=6-2t.∵当P、M其中一个点停止运动时另一个点也随之停止运动,∴0≤t≤3.S四边形ABPM=S△ABO-S△POM,=•OA•y B-•OM•PC,=×6×3-×(6-2t)×t,=t2-t+9,=(t-)2+.∵>0,∴当t=时,四边形ABPM的面积取最小值,最小值为.【解析】(1)根据点O,A的坐标,利用待定系数法可求出二次函数的解析式,再将二次函数解析式由一般式变形为顶点式,即可得出顶点B的坐标;(2)由点B的坐标,利用待定系数法可求出直线OB的解析式,过点P作PC⊥x轴于点C,设点P的坐标为(x,x),则点C的坐标为(x,0),由tan∠POC=可得出∠POC=60°,结合OA的值可找出当∠APO=90°时OP的长,由点P的运动速度为1可求出此时t的值;(3)当运动时间为t时,OP=t,AM=2t,PC=t,PC=t,OM=6-2t,结合点P,M的运动速度可得出0≤t≤3,由S四边形ABPM=S△ABO-S△POM可得出四边形ABPM的面积关于t 的函数关系式,再利用二次函数的性质即可解决最值问题.本题考查了待定系数法求二次函数解析式、解直角三角形、待定系数法求一次函数解析式、三角形的面积以及二次函数的性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)通过解直角三角形找出当∠APO=90°时OP的长;(3)利用分割图形求面积法,找出四边形ABPM的面积关于t的函数关系式。

广东省江门市2019-2020学年第二次中考模拟考试数学试卷含解析

广东省江门市2019-2020学年第二次中考模拟考试数学试卷含解析

广东省江门市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算4+(﹣2)2×5=()A.﹣16 B.16 C.20 D.242.如图,△ABC内接于⊙O,BC为直径,AB=8,AC=6,D是弧AB的中点,CD与AB的交点为E,则CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:23.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )A.2 B.3 C.4 D.54.如图,四边形ABCD是边长为1的正方形,动点E、F分别从点C,D出发,以相同速度分别沿CB,DC运动(点E到达C时,两点同时停止运动).连接AE,BF交于点P,过点P分别作PM∥CD,PN∥BC,则线段MN的长度的最小值为()A5B 51-C.12D.15.3的倒数是()A.3B.3-C.13D.13-6.如图,矩形ABCD内接于⊙O,点P是»AD上一点,连接PB、PC,若AD=2AB,则cos∠BPC的值为()A.55B.255C.32D.35107.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°8.若正六边形的边长为6,则其外接圆半径为()A.3 B.32C.33D.69.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是()用水量x(吨) 3 4 5 6 7频数 1 2 5 4﹣x xA.平均数、中位数B.众数、中位数C.平均数、方差D.众数、方差10.在2014年5月崇左市教育局举行的“经典诗朗诵”演讲比赛中,有11名学生参加决赛,他们决赛的成绩各不相同,其中的一名学生想知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的()A.众数B.中位数C.平均数D.方差11.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣812.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△ACD:S△ACB=1:1.其中正确的有()A.只有①②③B.只有①②④C.只有①③④D.①②③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.分解因式:ab2﹣9a=_____.14.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是__ .15.如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG 绕点D旋转180°得到△BDE,△ABC的面积=_____cm1.16.如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_________m.17.如图,直线y kx b =+经过(2,1)A 、(1,2)B --两点,则不等式122x kx b >+>-的解集为_______.18.如图,AD 是△ABC 的角平分线,DE ,DF 分别是△ABD 和△ACD 的高,得到下面四个结论:①OA =OD ;②AD ⊥EF ;③当∠BAC =90°时,四边形AEDF 是正方形;④AE 2+DF 2=AF 2+DE 2.其中正确的是_________.(填序号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 .(2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率20.(6分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+,则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744 0737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.21.(6分)(1)解方程:11122x x --+=0; (2)解不等式组32193(1)x x x ->⎧⎨+<+⎩,并把所得解集表示在数轴上. 22.(8分)如图,二次函数y =12x 2+bx+c 的图象交x 轴于A 、D 两点,并经过B 点,已知A 点坐标是(2,0),B 点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D 点的坐标;二次函数的对称轴上是否存在一点C ,使得△CBD 的周长最小?若C 点存在,求出C 点的坐标;若C 点不存在,请说明理由.23.(8分)﹣(﹣1)20184﹣(13)﹣1 24.(10分)关于x 的一元二次方程ax 2+bx+1=1.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根.。

广东省江门市2019-2020学年中考数学模拟试题(1)含解析

广东省江门市2019-2020学年中考数学模拟试题(1)含解析

广东省江门市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数y =ax 2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c <1;②a ﹣b+c <1;③b+2a <1;④abc >1.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③2.扇形的半径为30cm ,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为( )A .10cmB .20cmC .10πcmD .20πcm3.﹣23的相反数是( )A .﹣8B .8C .﹣6D .64.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A .3.386×108B .0.3386×109C .33.86×107D .3.386×1095.下列各式中计算正确的是( )A .x 3•x 3=2x 6B .(xy 2)3=xy 6C .(a 3)2=a 5D .t 10÷t 9=t6.将二次函数2y x =的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+7.△ABC 在网络中的位置如图所示,则cos ∠ACB 的值为( )A .12B .2C 3D 38.下列图形中,主视图为①的是( )A.B.C.D.9.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m10.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm 23 23.5 24 24.5 25销售量/双 1 3 3 6 2则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,2411.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是()A.B.C.D.12.下列说法正确的是()A.负数没有倒数B.﹣1的倒数是﹣1C.任何有理数都有倒数D.正数的倒数比自身小二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,直线y=x+1(记为l1)与直线y=mx+n(记为l2)相交于点P(a,2),则关于x的不等式x+1≥mx+n的解集为__________.14.请写出一个开口向下,并且与y轴交于点(0,1)的抛物线的表达式_________15.如图,正方形ABCD的边长为6,E,F是对角线BD上的两个动点,且EF=12xx,连接CE,CF,则△CEF周长的最小值为_____.16.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).17.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.18.已知16xx+=,则221xx+=______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地要走多少千米?开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)20.(6分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.21.(6分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹.已知:如图,线段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.22.(8分)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径r的长.23.(8分)解不等式313212xx+->-,并把解集在数轴上表示出来.24.(10分)如图,在每个小正方形的边长为1的网格中,点A,B,M,N均在格点上,P为线段MN上的一个动点(1)MN的长等于_______,(2)当点P在线段MN上运动,且使PA2+PB2取得最小值时,请借助网格和无刻度的直尺,在给定的网格中画出点P的位置,并简要说明你是怎么画的,(不要求证明)25.(10分)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由. 26.(12分)抛物线M :()2410y ax ax a a =-+-≠与x 轴交于A ,B 两点(点A 在点B 左侧),抛物线的顶点为D .(1)抛物线M 的对称轴是直线________;(2)当2AB =时,求抛物线M 的函数表达式;(3)在(2)的条件下,直线l :()0y kx b k =+≠经过抛物线的顶点D ,直线y n =与抛物线M 有两个公共点,它们的横坐标分别记为1x ,2x ,直线y n =与直线l 的交点的横坐标记为()330x x >,若当21n -≤≤-时,总有13320x x x x ->->,请结合函数的图象,直接写出k 的取值范围.27.(12分)化简分式2222334424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭,并从0、1、2、3这四个数中取一个合适的数作为x 的值代入求值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=1,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;③由抛物线的开口向下知a<1,∵对称轴为1>x=﹣>1,∴2a+b<1,故本选项正确;④对称轴为x=﹣>1,∴a、b异号,即b>1,∴abc<1,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.2.A【解析】试题解析:扇形的弧长为:12030180π⨯=20πcm,∴圆锥底面半径为20π÷2π=10cm,故选A.考点:圆锥的计算.3.B【解析】∵32-=﹣8,﹣8的相反数是8,∴32-的相反数是8,故选B .4.A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:数字338 600 000用科学记数法可简洁表示为3.386×108 故选:A【点睛】本题考查科学记数法—表示较大的数.5.D【解析】试题解析:A 、336x x x ⋅=,原式计算错误,故本选项错误; B 、()3236xy x y =, 原式计算错误,故本选项错误; C 、()236a a =,原式计算错误,故本选项错误; D 、109t t t ÷=, 原式计算正确,故本选项正确;故选D .点睛:同底数幂相除,底数不变,指数相减.6.B【解析】【分析】抛物线平移不改变a 的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h )1+k ,代入得:y=(x+1)1-1.∴所得图象的解析式为:y=(x+1)1-1;故选:B .【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.7.B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则2BD.cos∠ACB=222ADAB==,故选B.8.B【解析】分析:主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.详解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选B.点睛:此题主要考查了简单几何体的主视图,关键是掌握主视图所看的位置.9.D【解析】【详解】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.10.A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.11.B【解析】【分析】俯视图是从上面看几何体得到的图形,据此进行判断即可.【详解】由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得拿掉第一排的小正方形,拿掉这个小立方体木块之后的几何体的俯视图是,故选B.【点睛】本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形.12.B【解析】【分析】根据倒数的定义解答即可.【详解】A、只有0没有倒数,该项错误;B、﹣1的倒数是﹣1,该项正确;C、0没有倒数,该项错误;D、小于1的正分数的倒数大于1,1的倒数等于1,该项错误.故选B.【点睛】本题主要考查倒数的定义:两个实数的乘积是1,则这两个数互为倒数,熟练掌握这个知识点是解答本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x≥1【解析】【详解】把y=2代入y=x+1,得x=1,∴点P的坐标为(1,2),根据图象可以知道当x≥1时,y=x+1的函数值不小于y=mx+n相应的函数值,因而不等式x+1≥mx+n的解集是:x≥1,故答案为x≥1.【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.14.221y x x =-++(答案不唯一)【解析】【分析】根据二次函数的性质,抛物线开口向下a<0,与y 轴交点的纵坐标即为常数项,然后写出即可.【详解】∵抛物线开口向下,并且与y 轴交于点(0,1)∴二次函数的一般表达式2y ax bx c =++中,a<0,c=1,∴二次函数表达式可以为:221y x x =-++(答案不唯一).【点睛】本题考查二次函数的性质,掌握开口方向、与y 轴的交点与二次函数二次项系数、常数项的关系是解题的关键.15.【解析】【分析】如图作CH ∥BD ,使得CH =EF =,连接AH 交BD 由F ,则△CEF 的周长最小.【详解】如图作CH ∥BD ,使得CH =EF =,连接AH 交BD 由F ,则△CEF 的周长最小.∵CH =EF ,CH ∥EF ,∴四边形EFHC 是平行四边形,∴EC =FH ,∵FA =FC ,∴EC+CF =FH+AF =AH ,∵四边形ABCD 是正方形,∴AC ⊥BD ,∵CH ∥DB ,∴AC ⊥CH ,∴∠ACH =90°,在Rt △ACH 中,AH∴△EFC 的周长的最小值=故答案为:22+45.【点睛】本题考查轴对称﹣最短问题,正方形的性质、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.16.AB=AD(答案不唯一).【解析】已知OA=OC,OB=OD,可得四边形ABCD是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD或BC=CD或AC⊥BD,本题答案不唯一,符合条件即可.17.60°【解析】【分析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【详解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,故答案为60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.18.34【解析】∵16xx+=,∴221xx+=22126236234xx⎛⎫+-=-=-=⎪⎝⎭,故答案为34.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)开通隧道前,汽车从A 地到B 地要走)千米;(2)汽车从A 地到B 地比原来少走的路程为)]千米.【解析】【分析】(1)过点C 作AB 的垂线CD ,垂足为D ,在直角△ACD 中,解直角三角形求出CD ,进而解答即可; (2)在直角△CBD 中,解直角三角形求出BD ,再求出AD ,进而求出汽车从A 地到B 地比原来少走多少路程.【详解】(1)过点C 作AB 的垂线CD ,垂足为D ,∵AB ⊥CD ,sin30°=CD BC,BC =80千米, ∴CD =BC•sin30°=80×12=40(千米),AC =CD sin 45︒=(千米), AC+BC =80+1-8(千米), 答:开通隧道前,汽车从A 地到B 地要走(80+1-8)千米; (2)∵cos30°=BD BC,BC =80(千米),∴BD =BC•cos30°=千米), ∵tan45°=CD AD,CD =40(千米), ∴AD =CD 40tan 45︒=(千米),∴AB =AD+BD =40+千米),∴汽车从A 地到B 地比原来少走多少路程为:AC+BC ﹣AB =80+1-8﹣40﹣40+40(千米).答:汽车从A 地到B 地比原来少走的路程为 [40+40]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.20.共有7人,这个物品的价格是53元.【解析】【分析】根据题意,找出等量关系,列出一元一次方程.【详解】解:设共有x 人,这个物品的价格是y 元,83,74,x y x y -=⎧⎨+=⎩解得7,53,x y =⎧⎨=⎩ 答:共有7人,这个物品的价格是53元.【点睛】本题考查了二元一次方程的应用.21.见解析【解析】【分析】作∠CAB=∠α,再作∠CAB 的平分线,在角平分线上截取AD=h ,可得点D ,过点D 作AD 的垂线,从而得出△ABC .【详解】解:如图所示,△ABC 即为所求.【点睛】考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键.22.(1)详见解析;(2)详见解析;(3)22.【解析】(1)由BD是⊙O的切线得出∠DBA=90°,推出CH∥BD,证△AEC∽△AFD,得出比例式即可.(2)证△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根据直角三角形斜边上中线性质得出CF=DF=BF 即可.(3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,连接OC,BC,求出∠FCB=∠CAB 推出CG是⊙O切线,由切割线定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG 中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,从而由勾股定理求得AB=BG 的长,从而得到⊙O的半径r.23.见解析【解析】【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集.在数轴上表示出来即可.【详解】解:去分母,得3x+1-6>4x-2,移项,得:3x-4x>-2+5,合并同类项,得-x>3,系数化为1,得x<-3,不等式的解集在数轴上表示如下:【点睛】此题考查解一元一次不等式,在数轴上表示不等式的解集,解题关键在于掌握运算顺序.24.(134(2)见解析.【解析】【分析】(1)根据勾股定理即可得到结论;(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P即可得到结果.【详解】(1)22MN=+=;3534(2)取格点S,T,得点R;取格点E,F,得点G;连接GR交MN于点P【点睛】本题考查了作图-应用与设计作图,轴对称-最短距离问题,正确的作出图形是解题的关键.25.(1)y=x2-4x+3.(2)当m=52时,四边形AOPE面积最大,最大值为758.(3)P点的坐标为:P1(3+5,15-),P2(35-,1+5),P3(5+5,1+5),P4(55-,15-).【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=12×3×3+12PG•AE,=92+12×3×(-m2+5m-3),=-32m2+152m,=32(m-52)2+758,∵-32<0,∴当m=52时,S有最大值是758;(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),则-m2+4m-3=2-m,解得:m=5+52或552-,∴P的坐标为(5+5,1+5)或(55-,152-);如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则-m2+4m-3=m-2,解得:3+535-P3+5152)或(352-,52);综上所述,点P 的坐标是:(2,2)或,12-)或12)或(32-,. 点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.26.(1)2x =;(2)213222y x x =-+-;(3)54k > 【解析】【分析】(1)根据抛物线的函数表达式,利用二次函数的性质即可找出抛物线M 的对称轴;(2)根据抛物线的对称轴及2AB =即可得出点A 、B 的坐标,根据点A 的坐标,利用待定系数法即可求出抛物线M 的函数表达式;(3)利用配方法求出抛物线顶点D 的坐标,依照题意画出图形,观察图形可得出2b <-,再利用一次函数图象上点的坐标特征可得出122k b +=,结合b 的取值范围即可得出k 的取值范围. 【详解】(1)∵抛物线M 的表达式为241y ax ax a =-+-,∴抛物线M 的对称轴为直线422a x a-=-=. 故答案为:2x =.(2)∵抛物线241y ax ax a =-+-的对称轴为直线2x =,2AB =,∴点A 的坐标为()1,0,点B 的坐标为()3,0.将()1,0A 代入241y ax ax a =-+-,得:410a a a -+-=, 解得:12a =-, ∴抛物线M 的函数表达式为213222y x x =-+-. (3)∵()221311222222y x x x =-+-=--+, ∴点D 的坐标为12,2⎛⎫ ⎪⎝⎭. ∵直线y=n 与直线l 的交点的横坐标记为()330x x >,且当21n -≤≤-时,总有13320x x x x ->->, ∴x 2<x 3<x 1,∵x 3>0,∴直线l 与y 轴的交点在()0,2-下方,∴2b <-.∵直线l :()0y kx b k =+≠经过抛物线的顶点D , ∴122k b +=, ∴15424b k =->.【点睛】本题考查了二次函数的性质、待定系数法求二次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)利用二次函数的性质找出抛物线的对称轴;(2)根据点的坐标,利用待定系数法求出二次函数表达式;(3)依照题意画出图形,利用数形结合找出.27.x 取0时,为1 或x 取1时,为2 【解析】试题分析:利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.试题解析:解:原式=[22322x x x x ----()()]234x x -÷- =233224x x x x x --÷---() =32223x x x x x -+-⨯--()() = x +1,∵x 1-4≠0,x-2≠0,∴x≠1且x≠-1且x≠2,当x=0时,原式=1.或当x=1时,原式=2.。

广东省江门市2019-2020学年中考第五次模拟数学试题含解析

广东省江门市2019-2020学年中考第五次模拟数学试题含解析

广东省江门市2019-2020学年中考第五次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.最小的正整数是( )A .0B .1C .﹣1D .不存在2.下列说法不正确的是( )A .选举中,人们通常最关心的数据是众数B .从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大C .甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定D .数据3,5,4,1,﹣2的中位数是43.下列各点中,在二次函数2y x =-的图象上的是( )A .()1,1B .()2,2-C .()2,4D .()2,4--4.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .47B .37C .34D .135.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为( )A .B .C .D .6.已知x+1x =3,则x 2+21x =( ) A .7 B .9 C .11 D .87.实数a 在数轴上对应点的位置如图所示,把a ,﹣a ,a 2按照从小到大的顺序排列,正确的是( )A .﹣a <a <a 2B .a <﹣a <a 2C .﹣a <a 2<aD .a <a 2<﹣a8.如图,在四边形ABCD 中,∠A+∠D=α,∠ABC 的平分线与∠BCD 的平分线交于点P ,则∠P=( )A.90°-12αB.90°+12αC.2D.360°-α9.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为()A.﹣2B.4 C.﹣4 D.210.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为()A.B.C.D.11.如图所示几何体的主视图是( )A.B.C.D.12.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可得到最佳加工时间为()A.4.25分钟B.4.00分钟C.3.75分钟D.3.50分钟二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为_____.14.若正多边形的一个内角等于120°,则这个正多边形的边数是_____.15.若关于x的二次函数y=ax2+a2的最小值为4,则a的值为______.16.已知点A,B的坐标分别为(﹣2,3)、(1,﹣2),将线段AB平移,得到线段A′B′,其中点A与点A′对应,点B与点B′对应,若点A′的坐标为(2,﹣3),则点B′的坐标为________.17.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=1x的图象上.若点B在反比例函数y=kx的图象上,则k的值为_____.18.甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率( )A .58B .38C .1116D .1220.(6分)如图,AB 是⊙O 的直径,弦DE 交AB 于点F ,⊙O 的切线BC 与AD 的延长线交于点C ,连接AE .(1)试判断∠AED 与∠C 的数量关系,并说明理由;(2)若AD=3,∠C=60°,点E 是半圆AB 的中点,则线段AE 的长为 .21.(6分)小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的作法是这样的:如图:(1)利用刻度尺在∠AOB 的两边OA ,OB 上分别取OM =ON ;(2)利用两个三角板,分别过点M ,N 画OM ,ON 的垂线,交点为P ;(3)画射线OP .则射线OP 为∠AOB 的平分线.请写出小林的画法的依据______.22.(8分)为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A 书法、B 阅读,C 足球,D 器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?23.(8分)如图所示是一幢住房的主视图,已知:120BAC ∠=︒,房子前后坡度相等,4AB =米,6AC =米,设后房檐B 到地面的高度为a 米,前房檐C 到地面的高度b 米,求-a b 的值.24.(10分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE 于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.25.(10分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m<0,n>0),E点在边BC上,F点在边OA上.将矩形OABC沿EF折叠,点B正好与点O重合,双曲线过点E.(1) 若m=-8,n =4,直接写出E、F的坐标;(2) 若直线EF的解析式为,求k的值;(3) 若双曲线过EF的中点,直接写出tan∠EFO的值.26.(12分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.(1)如图1,连接AB′.①若△AEB′为等边三角形,则∠BEF等于多少度.②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.(2)如图2,连接CB′,求△CB′F周长的最小值.(3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.27.(12分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(32,0),且与y轴相交于点C.(1)求这条抛物线的表达式;。

广东省江门市2019-2020学年中考数学模拟试题含解析

广东省江门市2019-2020学年中考数学模拟试题含解析

广东省江门市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列说法中,正确的是( )A.两个全等三角形,一定是轴对称的B.两个轴对称的三角形,一定是全等的C.三角形的一条中线把三角形分成以中线为轴对称的两个图形D.三角形的一条高把三角形分成以高线为轴对称的两个图形2.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.10000x﹣90005x-=100 B.90005x-﹣10000x=100C.100005x-﹣9000x=100 D.9000x﹣100005x-=1003.如图,△ABC为等腰直角三角形,∠C=90°,点P为△ABC外一点,CP=2,BP=3,AP的最大值是()A.2+3 B.4 C.5 D.324.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.1.其中合理的是()A.①B.②C.①②D.①③5.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<06.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为12,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)7.不等式组12342xx+>⎧⎨-≤⎩的解集表示在数轴上正确的是()A.B.C.D.8.在Rt△ABC中,∠C=90°,如果sinA=12,那么sinB的值是()A.3B.12C.2D.229.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为()A.60°B.65°C.70°D.75°10.若二元一次方程组3,354x yx y+=⎧⎨-=⎩的解为,,x ay b=⎧⎨=⎩则-a b的值为()A.1 B.3 C.14-D.7411.若函数2myx+=的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<212.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小时)0 1 2 3 4人数(人) 2 2 3 1 1A.3,2.5 B.1,2 C.3,3 D.2,2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD中,AB=2,E是BC的中点,AE⊥BD于点F,则CF的长是_________.14.关于x的不等式组10x ax->⎧⎨->⎩的整数解共有3个,则a的取值范围是_____.15.已知b是a,c的比例中项,若a=4,c=16,则b=________.16.化简:+3=_____.17.因式分解:-2x2y+8xy-6y=__________.18.分解因式:(2a+b)2﹣(a+2b)2= .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里:三角形数 1 3 6 10 15 21 a …正方形数 1 4 9 16 25 b 49 …五边形数 1 5 12 22 C 51 70 …(1)按照规律,表格中a=___,b=___,c=___.(2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.20.(6分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。

广东省江门市2019-2020学年中考数学模拟试题(3)含解析

广东省江门市2019-2020学年中考数学模拟试题(3)含解析

广东省江门市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连接CD .则下列说法错误的是A .射线OE 是∠AOB 的平分线 B .△COD 是等腰三角形C .C 、D 两点关于OE 所在直线对称 D .O 、E 两点关于CD 所在直线对称2.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 3.等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( ) A .9B .10C .9或10D .8或104.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A .32︒B .58︒C .138︒D .148︒5.在平面直角坐标系中,位于第二象限的点是( ) A .(﹣1,0)B .(﹣2,﹣3)C .(2,﹣1)D .(﹣3,1)6.某区10名学生参加市级汉字听写大赛,他们得分情况如上表:那么这10名学生所得分数的平均数和众数分别是()人数 3 4 21分数80 85 90 95A.85和82.5 B.85.5和85 C.85和85 D.85.5和807.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,则可列方程组为()A.100131003x yx y+=⎧⎪⎨+=⎪⎩B.100131003x yx y+=⎧⎪⎨+=⎪⎩C.1003100x yx y+=⎧⎨+=⎩D.1003100x yx y+=⎧⎨+=⎩8.若函数2yx=与y=﹣2x﹣4的图象的交点坐标为(a,b),则12a b+的值是()A.﹣4 B.﹣2 C.1 D.2 9.下列各数:π,sin30°,﹣3,9其中无理数的个数是()A.1个B.2个C.3个D.4个10.下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a211.下列实数中,无理数是()A.3.14 B.1.01001 C.39D.22 712.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76°B.78°C.80°D.82°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(11·湖州)如图,已知A、B是反比例函数(k>0,x<0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为14.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是______.15.一元二次方程x(x﹣2)=x﹣2的根是_____.16.在△ABC中,若∠A,∠B满足|cosA-12|+(sinB-22)2=0,则∠C=_________.17.如图,若∠1+∠2=180°,∠3=110°,则∠4= .18.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=13S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF试说明AC=EF;求证:四边形ADFE是平行四边形.20.(6分)如图,在Rt△ABC与Rt△ABD中,∠ABC=∠BAD=90°,AD=BC,AC,BD相交于点G,过点A作AE∥DB交CB的延长线于点E,过点B作BF∥CA交DA的延长线于点F,AE,BF相交于点H.图中有若干对三角形是全等的,请你任选一对进行证明;(不添加任何辅助线)证明:四边形AHBG 是菱形;若使四边形AHBG是正方形,还需在Rt△ABC的边长之间再添加一个什么条件?请你写出这个条件.(不必证明)21.(6分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数) 频率5 a0.26 18 0.367 14 b8 8 0.16合计c 1(1)统计表中的a=________,b=________,c=________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.22.(8分)(1)解方程:x2﹣5x﹣6=0;(2)解不等式组:43(2)123xx x x +≤+⎧⎪-⎨<⎪⎩.23.(8分)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,CN 为⊙O 的切线,OM ⊥AB 于点O ,分别交AC 、CN 于D 、M 两点.求证:MD=MC ;若⊙O 的半径为5,AC=45,求MC 的长.24.(10分)如图,四边形ABCD内接于⊙O ,对角线AC 为⊙O 的直径,过点C 作AC 的垂线交AD 的延长线于点E ,点F 为CE 的中点,连接DB ,DC ,DF .求∠CDE 的度数;求证:DF 是⊙O 的切线;若AC=25DE ,求tan ∠ABD 的值.25.(10分)如图,在△ABC 中,AB=AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD=∠B,求证:AC•CD=CP•BP ;若AB=10,BC=12,当PD ∥AB 时,求BP 的长.26.(12分)如图,已知点A ,C 在EF 上,AD ∥BC ,DE ∥BF ,AE =CF. (1)求证:四边形ABCD 是平行四边形;(2)直接写出图中所有相等的线段(AE =CF 除外).27.(12分)二次函数y=x 2﹣2mx+5m 的图象经过点(1,﹣2). (1)求二次函数图象的对称轴; (2)当﹣4≤x≤1时,求y 的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,∴△EOC≌△EOD(SSS).∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意.C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.∴C、D两点关于OE所在直线对称,正确,不符合题意.D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.2.D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.3.B【解析】【分析】【详解】由题意可知,等腰三角形有两种情况:当a,b为腰时,a=b,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意.所以n只能为1.故选B4.D【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.【详解】如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠1=148°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可.【详解】根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C (﹣3,1)符合,故选:D . 【点睛】本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质. 6.B 【解析】 【分析】根据众数及平均数的定义,即可得出答案. 【详解】解:这组数据中85出现的次数最多,故众数是85;平均数=110(80×3+85×4+90×2+95×1)=85.5. 故选:B. 【点睛】本题考查了众数及平均数的知识,掌握各部分的概念是解题关键. 7.B 【解析】 【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可. 【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:B . 【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组. 8.B 【解析】 【分析】求出两函数组成的方程组的解,即可得出a 、b 的值,再代入12a b+求值即可. 【详解】解方程组224y xy x ⎧=⎪⎨⎪=--⎩①②, 把①代入②得:2x=﹣2x ﹣4, 整理得:x 2+2x+1=0, 解得:x=﹣1, ∴y=﹣2,交点坐标是(﹣1,﹣2), ∴a=﹣1,b=﹣2, ∴12a b+=﹣1﹣1=﹣2, 故选B . 【点睛】本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a 、b 的值. 9.B 【解析】 【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可. 【详解】 sin30°=12,9=3,故无理数有π,-3, 故选:B . 【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数. 10.D 【解析】 【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题. 【详解】故选项A 错误,故选项B 错误,故选项C 错误,故选项D正确,故选:D.【点睛】考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大. 11.C【解析】【分析】先把能化简的数化简,然后根据无理数的定义逐一判断即可得.【详解】A、3.14是有理数;B、1.01001是有理数;C、39是无理数;D、227是分数,为有理数;故选C.【点睛】本题主要考查无理数的定义,属于简单题.12.B【解析】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=12∠ABK,∠SHC=∠DCF=12∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣12(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,。

广东省江门市2019-2020学年中考数学一月模拟试卷含解析

广东省江门市2019-2020学年中考数学一月模拟试卷含解析

广东省江门市2019-2020学年中考数学一月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.3a2﹣2a2=1 B.a2•a3=a6C.(a﹣b)2=a2﹣b2D.(a+b)2=a2+2ab+b22.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b3.如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长为()A.B.C.D.4.如图,在5×5的方格纸中将图①中的图形N平移到如图②所示的位置,那么下列平移正确的是( )A.先向下移动1格,再向左移动1格B.先向下移动1格,再向左移动2格C.先向下移动2格,再向左移动1格D.先向下移动2格,再向左移动2格5.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A .1个B .2个C .3个D .4个6.浙江省陆域面积为101800平方千米。

数据101800用科学记数法表示为( )A .1.018×104B .1.018×105C .10.18×105D .0.1018×1067.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm8.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >﹣2B .a <﹣3C .a >﹣bD .a <﹣b9.如图,在平面直角坐标系中,直线y=k 1x+2(k 1≠0)与x 轴交于点A ,与y 轴交于点B ,与反比例函数y=2k x 在第二象限内的图象交于点C ,连接OC ,若S △OBC =1,tan ∠BOC=13,则k 2的值是( )A .3B .﹣12C .﹣3D .﹣610.已知A(x 1,y 1),B(x 2,y 2)是反比例函数y =(k≠0)图象上的两个点,当x 1<x 2<0时,y 1>y 2,那么一次函数y =kx -k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限11.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A .B .C .D .12.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为()2 1100x -=B .2890x x ++=化为()2425x += C .22740t t --=化为2781416t ⎛⎫-= ⎪⎝⎭ D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,PA ,PB 是⊙O 是切线,A ,B 为切点,AC 是⊙O 的直径,若∠P=46°,则∠BAC= ▲ 度.14.已知关于x 的一元二次方程(a-1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是_______________.15.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=1x的图象上,则菱形的面积为_____.16.如图,在四个小正方体搭成的几何体中,每个小正方体的棱长都是1,则该几何体的三视图的面积之和是_____.17.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.18.把多项式9x 3﹣x 分解因式的结果是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙两种品牌粽子每盒分别为多少元?阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?20.(6分)如图,抛物线232 2y ax x=--(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.21.(6分)如图,△ABC与△A1B1C1是位似图形.(1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;(2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;(3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.22.(8分)列方程或方程组解应用题:去年暑期,某地由于暴雨导致电路中断,该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,10分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求吉普车的速度.23.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A :自带白开水;B :瓶装矿泉水;C :碳酸饮料;D :非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:请你补全条形统计图;在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.24.(10分)如图,∠MON 的边OM 上有两点A 、B 在∠MON 的内部求作一点P ,使得点P 到∠MON 的两边的距离相等,且△PAB 的周长最小.(保留作图痕迹,不写作法)25.(10分)如图所示是一幢住房的主视图,已知:120BAC ∠=︒,房子前后坡度相等,4AB =米,6AC =米,设后房檐B 到地面的高度为a 米,前房檐C 到地面的高度b 米,求-a b 的值.26.(12分)已知:如图所示,在ABC ∆中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.27.(12分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P 与点A 重合;当伞慢慢撑开时,动点P 由A 向B 移动;当点P 到达点B 时,伞张得最开、已知伞在撑开的过程中,总。

广东省江门市2019-2020学年中考数学五月模拟试卷含解析

广东省江门市2019-2020学年中考数学五月模拟试卷含解析

广东省江门市2019-2020学年中考数学五月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图不变,左视图不变B .左视图改变,俯视图改变C .主视图改变,俯视图改变D .俯视图不变,左视图改变2.二次函数2y ax bx c =++(a 、b 、c 是常数,且a≠0)的图象如图所示,下列结论错误的是( )A .4ac <b 2B .abc <0C .b+c >3aD .a <b3.3-的相反数是( ) A .3B .-3 C .3 D .3-4.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差5.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是( ) 年龄(岁) 12 13 14 15 16 人数 12252A .2,14岁B .2,15岁C .19岁,20岁D .15岁,15岁6.如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是( )A.B.C.D.7.已知x2-2x-3=0,则2x2-4x的值为()A.-6 B.6 C.-2或6 D.-2或308.甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数()的概率最大.A.3 B.4 C.5 D.69.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A.172 B.171 C.170 D.16810.在反比例函数1kyx-=的图象的每一个分支上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1D.k<111.在3-,1-,0,1这四个数中,最小的数是()A.3-B.1-C.0 D.112.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,朝上一面上的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是()A.1216B.172C.136D.112二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解a3-6a2+9a=_____.14.某数学兴趣小组在研究下列运算流程图时发现,取某个实数范围内的x作为输入值,则永远不会有输出值,这个数学兴趣小组所发现的实数x的取值范围是_____.15.如图,矩形纸片ABCD中,AB=3,AD=5,点P是边BC上的动点,现将纸片折叠使点A与点P重合,折痕与矩形边的交点分别为E,F,要使折痕始终与边AB,AD有交点,BP的取值范围是_____.16.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩17.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影部分的面积为_____.18.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x ﹣3=0的解.根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.x …﹣3 ﹣52﹣2 ﹣32﹣1﹣12121322 …y …﹣8 ﹣21858m ﹣98﹣2 ﹣15835812 …(1)直接写出m的值,并画出函数图象;(2)根据表格和图象可知,方程的解有个,分别为;(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.20.(6分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:品种 A B原来的运费45 25现在的运费30 20(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.21.(6分)如图,Rt△ABC中,∠C=90°,∠A=30°,BC=1.(1)实践操作:尺规作图,不写作法,保留作图痕迹.①作∠ABC的角平分线交AC于点D.②作线段BD的垂直平分线,交AB于点E,交BC于点F,连接DE、DF.(2)推理计算:四边形BFDE的面积为.22.(8分)如图,抛物线y=x1﹣1x﹣3与x轴交于A、B两点(点A在点B的左侧),直线l与抛物线交于A,C两点,其中点C的横坐标为1.(1)求A,B两点的坐标及直线AC的函数表达式;(1)P是线段AC上的一个动点(P与A,C不重合),过P点作y轴的平行线交抛物线于点E,求△ACE 面积的最大值;(3)若直线PE为抛物线的对称轴,抛物线与y轴交于点D,直线AC与y轴交于点Q,点M为直线PE 上一动点,则在x轴上是否存在一点N,使四边形DMNQ的周长最小?若存在,求出这个最小值及点M,N的坐标;若不存在,请说明理由.(4)点H是抛物线上的动点,在x轴上是否存在点F,使A、C、F、H四个点为顶点的四边形是平行四边形?如果存在,请直接写出所有满足条件的F点坐标;如果不存在,请说明理由.23.(8分)如图,在边长为1个单位长度的小正方形组成的12×12网格中建立平面直角坐标系,格点△ABC(顶点是网格线的交点)的坐标分别是A(﹣2,2),B(﹣3,1),C(﹣1,0).(1)将△ABC绕点O逆时针旋转90°得到△DEF,画出△DEF;(2)以O为位似中心,将△ABC放大为原来的2倍,在网格内画出放大后的△A1B1C1,若P(x,y)为△ABC 中的任意一点,这次变换后的对应点P1的坐标为.24.(10分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.求证:∠1=∠2;连结BE、DE,判断四边形BCDE的形状,并说明理由.。

江门市2020年中考数学一模试卷(I)卷

江门市2020年中考数学一模试卷(I)卷

江门市2020年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)上海世博会是我国第一次举办的综合类世界博览会,据统计自2010年5月1日开幕至5月31日,累计参观人数约为8 030 000人用科学记数法表示应为()A . 803×104B . 80.3×105C . 8.03×106D . 0.803×1072. (2分)下列各对数中,互为相反数的是:()A . -(-2)和2B . 和C . 和D . 和3. (2分)(2017·景泰模拟) 下列各图中,是中心对称图形的是()A .B .C .D .4. (2分)下列各角不是多边形的内角的是()A . 180°B . 540°C . 1900°D . 1080°5. (2分) (2015七下·定陶期中) 如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=32°,则∠2的度数为()A . 25°B . 28°C . 30°D . 32°6. (2分)(2020·丽水模拟) 如图是某城市居民家庭人口数的统计图,那么这个城市家庭人口数的众数是()A . 2人B . 3人C . 4人D . 5人7. (2分) (2017八上·路北期末) 把x3﹣2x2y+xy2分解因式,结果正确的是()A . x(x+y)(x﹣y)B . x(x2﹣2xy+y2)C . x(x+y)2D . x(x﹣y)28. (2分)如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A . 19B . 16C . 18D . 209. (2分)下列数据不能确定物体位置的是()A . 北偏东30°B . 祥云花园4楼8号C . 希望路25号D . 东经118°,北纬40°10. (2分)如图,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发匀速行驶.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.下列说法中正确的是()A . B点表示此时快车到达乙地B . B-C-D段表示慢车先加速后减速最后到达甲地C . 慢车的速度为125km/hD . 快车的速度为 km/h二、填空题 (共6题;共6分)11. (1分)从数轴上表示-1的点开始,向右移动6个单位长度,再向左移动5个单位长度,最后到达的终点所表示的数是________.12. (1分) (2018九上·泗洪月考) 如图,AB为半圆O的直径,AC是⊙O的一条弦,D为弧BC的中点,作DE⊥AC,交AB的延长线于点F,连接DA.若∠F=30°,DF=6,则阴影区域的面积________.13. (1分) (2017九上·江都期末) 将抛物线向右平移个单位,再向上平移个单位,所得抛物线的表达式为________.14. (1分)在一个不透明的盒子里装有白球和红球共14个,其中红球比白球多4个,所有球除颜色不同外,其它方面均相同,摇匀后,从中摸出一个球为红球的概率为________.15. (1分)(2018·杭州模拟) 如图,矩形ABCD中,AD=10,AB=8,点E为边DC上一动点,连接AE,把△ADE 沿AE折叠,使点D落在点D′处,当△DD′C是直角三角形时,DE的长为________.16. (1分)(2016·温州) 已知的三边长分别为: AB= ,BC= ,AC=,其中a>7.则的面积为________.三、解答题 (共13题;共102分)17. (5分) (2019八下·北京期末) 计算:18. (5分)先化简,后求值:(),其中x= .19. (5分) (2020七下·思明月考) 关于x,y方程组,若方程组的解x与y满足条件x+y >2,求m的取值范围.20. (5分)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点 M在DE上,且DC=DM,求证:ME=BD.21. (5分) (2018七下·昆明期末) 列方程(组)解应用题星耀水乡1号码头的游船有两种类型,一种有2个座位,另一种有3个座位.这两种游船的收费标准是:一条2座游船每小时的租金为60元,一条3座游船每小时的租金为100元.某公司组织19名员工到1号码头租船游览,如果租用的每条船正好坐满,并且1小时共花费租金600元,求该公司租用2座游船和3座游船各多少条.22. (6分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=________ .23. (12分)(2012·玉林) 如图,在平面直角坐标系xOy中,梯形AOBC的边OB在x轴的正半轴上,AC∥OB,BC⊥OB,过点A的双曲线y= 的一支在第一象限交梯形对角线OC于点D,交边BC于点E.(1)填空:双曲线的另一支在第________象限,k的取值范围是________;(2)若点C的坐标为(2,2),当点E在什么位置时,阴影部分的面积S最小?(3)若 = ,S△OAC=2,求双曲线的解析式.24. (10分) (2017七下·岳池期末) 已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.25. (4分)下图是六(2)班60名同学喜欢各种球类运动的人数情况统计图.(1)最受欢迎的球类运动是________.(2)喜欢打排球的人数占全班人数的________.(3)喜欢踢足球的人数占全班人数的________.(4)喜欢打乒乓球的有________人.26. (10分)如图,在平行四边形中,∠BAD的平分线交于E,点在上,且,连接.(1)判断四边形的形状并证明;(2)若、相交于点,且四边形的周长为,,求的长度及四边形的面积.27. (15分)(2014·内江) 如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x 轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.28. (10分)(2017·郯城模拟) 在△ABC中,AB=AC=5,cos∠ABC= ,将△ABC绕点C顺时针旋转,得到△A1B1C.(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1 ,求线段EF1长度的最大值与最小值的差.29. (10分)(2020·遂宁) 阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2 , c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2 , c1+c2=0,求出a2 , b2 , c2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y=x2﹣4x+3的旋转函数.(2)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C ,点A、B、C关于原点的对称点分别是A1、B1、C1 ,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共13题;共102分)17-1、18-1、19-1、20-1、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、25-4、26-1、26-2、27-1、27-2、28-1、28-2、29-1、29-2、。

广东省江门市名校2020届数学中考模拟试卷

广东省江门市名校2020届数学中考模拟试卷

广东省江门市名校2020届数学中考模拟试卷一、选择题1.(11·钦州)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立体的个数是A.3B.4C.5D.62.如图是由5个相同的正方体搭成的几何体,其左视图是()A. B.C. D.3.若反比例函数y=kx(k≠0)的图象经过点P(﹣1,3),则该函数的图象不经过的点是( )A.(3,﹣1)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)42,0,﹣1,其中最小的是()A B.2 C.0 D.﹣15.设函数kyx=(0k≠,0x>)的图象如图所示,若1zy=,则z关于x的函数图象可能为()A.B.C .D .6.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①22S S >乙甲;②22S S <甲乙.③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的是( )A.①③B.①④C.②④D.②③7.若a b ,则实数a ,b 的大小关系为( )A .a >bB .a <bC .a =bD .a≥b8.如图是小刚进入中考复习阶段以来参加的10次物理水平测试成绩(满分70分)的统计图,那么关于这10次测试成绩,下列说法错误的是( )A .中位数是55B .众数是60C .方差是26D .平均数是549.对于函数y =﹣2x+5,下列表述: ①图象一定经过(2,﹣1);②图象经过一、二、四象限;③与坐标轴围成的三角形面积为12.5;④x 每增加1,y 的值减少2;⑤该图象向左平移1个单位后的函数表达式是y =﹣2x+4,正确的是( )A .①③B .②⑤C .②④D .④⑤10.如图,点A 、B 、C 在半径为2的圆O 上,且∠BAC=60°,作OM ⊥AB 于点M ,ON ⊥AC 于点N ,连接MN ,则MN 的长为( )A.1 C.2 11.方程24222x x x x =-+-- 的解为( )A .2B .2或4C .4D .无解12.已知直线y=x+1与反比例函数k y x =的图象的一个交点为P(a,2),则ak 的值为( ) A .2B .12C .-2D .-12二、填空题 13.将数12000000科学记数法表示为_____.14.若方程244x a x x =+--有增根,则a=________.15.计算:|1|=_____.16.如图,在△ABC 中,∠ABC=90°,且BC=6,AB=3,AD 是∠BAC 的平分线,与BC 相交于点E ,点G 是BC 上一点,E 为线段BG 的中点,DG ⊥BC 于点G ,交AC 于点F ,则FG 的长为_____.17.若m ,n 为实数,且m =2n+8,则m+n 的算术平方根为_____. 18.在平面直角坐标系xOy 中,点A (-2,m )绕坐标原点O 顺时针旋转90°后,恰好落在图中⊙P 中的阴影区域(包括边界)内,⊙P 的半径为1,点P 的坐标为(3,2),则m 的取值范围是______.三、解答题19.如图,直线l 的解析式为y =﹣x+4,它与x 轴、y 轴分别相交于A 、B 两点.平行于直线l 的直线m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动,它与x 轴、y 轴分别相交于M 、N 两点,设运动时间为t 秒(0<t≤4).(1)求A 、B 两点的坐标;(2)以MN 为对角线作矩形OMPN ,记△MPN 和△OAB 重合部分的面积为S 1,在直线m 的运动过程中,当t 为何值时,S 1为△OAB 面积的516?20.(1)解不等式组:31122(6)5x x x x -⎧+>⎪⎨⎪--≥⎩,并求其整数解. (2)先化简,再求代数式(2124a a a ++-)÷12a a -+的值,其中011|4|2tan 60()3a -=-+-+. 21.如图,已知⊙A 与菱形ABCD 的边BC 相切于点E ,与边AB 相交于点F ,连接EF .(1)求证:CD 是⊙A 的切线;(2)若⊙A 的半径为2,tan ∠BEF=3,求图中阴影部分的面积.22.如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,求证:BE =DC .23.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售y (件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y 与x 之间的函数关系;(2)如果规定每天漆器笔筒的销售量不低于260件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3490元,试确定该漆器笔筒销售单价的范围.24.某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?25.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知线段a和∠α,求作:等腰△ABC,使得顶角∠A=∠α,a为底边上的高线.【参考答案】***一、选择题13.2×10714.41511617.318.2≤m≤4.三、解答题19.(1)A(4,0),B(0,4);(2)t=73或t=3.【解析】【分析】(1)由直线的解析式,分别让x、y为0,可求得A、B的坐标;(2)由已知易求得三角形ABO的面积,然后用t表示出重合部分的面积,根据题意列出方程即可得到答案.【详解】(1)y=﹣x+4,令y=0,得x=4,令x=0,得y=4,故A(4,0),B(0,4);(2)S△ABO=12×4×4=8,当0<t≤2时,S△MNP=12t2,如图1由题意得12t2=8×516,解得此时t不合题意舍去),如图2,当2<t≤4时,S1=S△ABO﹣S△OMN﹣2S△MAF,即S 1=8﹣12t 2﹣2×12(4﹣t)2=516×8, 解得t =73或t =3. 【点睛】本题考查了一次函数的应用;在求解第二问时,要思考全面,分类讨论的应用是正确解答本题的关键.20.(1)﹣1,0,1,2;(2)65. 【解析】【分析】(1)先分别解两不等式得到x<3和x≥﹣1,,再利用大小小大中间找确定不等式组的解集,然后在x 的取值范围内找出所有整数即可.(2)先根据分式混合运算的法则把原式进行化简,再求出a 的值代入进行计算即可.【详解】 (1)31122(6)5,x x x x -⎧+>⎪⎨⎪--≥⎩①② 由不等式①,得x <3,由不等式②,得x≥﹣1,故原不等式组的解集是﹣1≤x<3,它的整数解是:﹣1,0,1,2;(2)211,242a a a a a -⎛⎫+÷ ⎪+-+⎝⎭ ()()()212,221a a a a a a -++=⋅+-- 2211,21a a a a -+=⋅-- ()211,21a a a -=⋅-- 1,2a a -=-当011|4|2tan 60()4373a -=-+=+=时, 原式=715.726-=- 【点睛】考查不等式以及分式的混合运算,掌握分式混合运算的法则是解题的关键.21.(1)详见解析;(2)23π 【解析】【分析】(1)作AH ⊥CD 于H ,连结AE ,AC , 根据菱形性质得到AC 平分∠BCD ,AE ⊥BC ,AH ⊥CD ,得到AE =AH ,即CD 为⊙A 的半径,所以⊙A 与边CD 也相切;(2)tan ∠BEFBEF =30°,得到∠AEF =60°,又因为AE =AF ,得到∠FAE =60°,∠B =30°,然后利用扇形公式算出扇形FAE 面积,用三角形ABE 的面积减去扇形AEF 面积即可【详解】(1)证明:作AH ⊥CD 于H ,连结AE ,AC ,如图,∵BC 与⊙A 相切于点E ,∴AE ⊥BC ,∵四边形ABCD 为菱形,∴AC 平分∠BCD ,而AE ⊥BC ,AH ⊥CD ,∴AE =AH ,即CD 为⊙A 的半径,∴⊙A 与边CD 也相切;(2)解:∵tan ∠BEF ∴∠BEF =30°,∵∠AEB =90°,∴∠AEF =60°,∵AE =AF ,∴∠FAE =60°,∠B =30°,∵AE =2,∴S 扇形FAE =260223603ππ∙⨯=︒,BE ===AE tanB∴S 阴影=S △ABE ﹣S 扇形AEF =12﹣23π=23π.【点睛】本题考查切线性质、菱形性质和阴影部分面积的计算等知识点,做出辅助线找到扇形与三角形,利用面积相减是本题关键22.见解析.【解析】【分析】只需要证明△CBE ≌△ACD ,即可解答【详解】解:由题意知∠CAD+∠ACD =90°,∠ACD+∠BCE =90°,∴∠BCE =∠CAD .在△CBE 与△ACD 中,CEB ADC BCE CAD BC AC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△CBE ≌△ACD (AAS ).∴BE =DC .【点睛】此题考查三角形全等的判定与性质,难度不大23.(1)10700y x =-+;(2)销售单价为44元时,每天获取的利润最大,3640W =最大元;(3)4456x ≤≤.【解析】【分析】(1)可用待定系数法来确定y 与x 之间的函数关系式;(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3490元时,对应x 的值,根据增减性,求出x 的取值范围.【详解】(1)设y kx b =+y=k x+b ∴ 经过点(40,300),(55,150)4030055150k b k b +=⎧∴⎨+=⎩ 解得10700k b =-⎧⎨=⎩ 故y 与x 的关系式为:10700y x =-+(2)30<44x ≤设利润为(30)(30)(10700)w x y x x =-⋅=--+221010002100010(50)4000w x x x =-+-=--+100-<∴x<50时,w 随x 的增大而增大,∴当44x =时,3640W =最大(2)由题意,得-10x+700≥260,解得x≤44,∴30<x≤44,设利润为w=(x-30)•y=(x-30)(-10x+700),w=-10x 2+1000x-21000=-10(x-50)2+4000,∵-10<0,∴x <50时,w 随x 的增大而增大,∴x=44时,w 最大=-10(44-50)2+4000=3640,答:当销售单价为44元时,每天获取的利润最大,最大利润是3640元;(3)w-150=-10x 2+1000x-21000-150=3490,-10(x-50)2=-360,x-50=±6,x1=56,x2=44,如图所示,由图象得:当44≤x≤56时,捐款后每天剩余利润不低于3490元.【点睛】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.24.(1)每千克应涨价5元;(2)每千克这种水果涨价7.5元,能使商场获利最多.【解析】【分析】(1)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值;(2)根据题意列出二次函数解析式,然后转化为顶点式,最后求其最值即可.【详解】解:(1)设每千克应涨价x元,由题意列方程得:(5+x)(200﹣10x)=1500解得x=5或x=10,∴为了使顾客得到实惠,那么每千克应涨价5元;(2)设涨价x元时总利润为y,则y=(5+x)(200﹣10x)=﹣10x2+150x+1000=﹣10(x2﹣15x)+1000=﹣10(x﹣7.5)2+1562.5,答:若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.【点睛】本题考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好.25.见解析【解析】【分析】先作∠MAN=∠α,在作∠MON的平分线AP,在AP上截取AD=a,然后过点D作AP的垂线分别交AM、AN 于B、C,则△ABC为所作.【详解】解:如图,△ABC为所作.【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的判定定理.。

江门市2020年中考数学押题卷及答案

江门市2020年中考数学押题卷及答案
①求 | PC﹣ PD| 的最大值及对应的点 P 的坐标; ②设 Q( 0, 2t )是 y 轴上的动点,若线段 PQ与函数 y= a| x| 2﹣ 2a| x|+3 的图象只有一个 公共点,求 t 的取值范围.
6
参考答案
第Ⅰ卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分. 在每小题给出的四个选项中,只有一项是符 合题目要求的)

14. 下列各式是按新定义的已知“△”运算得到的,观察下列等式:
2△ 5=2× 3+5=11, 2△(﹣ 1)= 2× 3+(﹣ 1)= 5, 6△ 3=6× 3+3=21, 4△(﹣ 3)= 4× 3+(﹣ 3)= 9……
根据这个定义,计算(﹣ 2018 )△ 2018 的结果为
15.若关于 x 的一元二次方程 x2﹣ 4x+k= 0 有两个相等的实数根,则 k 的值为
①求 y 与 m之间的函数关系式;
②商店怎样安排进货方案,才能使销售完这批电动自行车获得的利润最大?最大利润是多少?
型号


售价(元 / 辆)
2000
2800
5
23.( 本题 12 分 ) 在 Rt △ ABC中, ∠ ACB= 90°,CD是 AB边的中线, DE⊥ BC于 E,连结 CD,点 P 在射线 CB上(与
22.( 本题 12 分 )
根据《太原市电动自行车管理条例》的规定, 2019 年 5 月 1 日起,未上牌的电动自行车将禁止上
路行驶,而电动自行车上牌登记必须满足国家标准.某商店购进了甲.乙两种符合国家标准的新款
电动自行车.其中甲种车总进价为 22500 元,乙种车总进价为 45000 元,已知乙种车每辆的进价是

广东省江门市2019-2020学年中考第三次模拟数学试题含解析

广东省江门市2019-2020学年中考第三次模拟数学试题含解析

广东省江门市2019-2020学年中考第三次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是()A.本市明天将有85%的地区下雨B.本市明天将有85%的时间下雨C.本市明天下雨的可能性比较大D.本市明天肯定下雨2.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为()A.13 B.15 C.17 D.193.如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.4.下列计算正确的是()A.a3•a3=a9 B.(a+b)2=a2+b2 C.a2÷a2=0 D.(a2)3=a65.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A.甲B.乙C.丙D.都一样6.在1、﹣1、3、﹣2这四个数中,最大的数是()A.1 B.﹣1 C.3 D.﹣27.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是()A.90°B.60°C.45°D.30°8.如图,已知▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S△AFE:S四边形FCDE为( )A.1:3 B.1:4 C.1:5 D.1:69.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置是()A.B.C.D.10.已知抛物线y=ax2﹣(2a+1)x+a﹣1与x轴交于A(x1,0),B(x2,0)两点,若x1<1,x2>2,则a的取值范围是()A.a<3 B.0<a<3 C.a>﹣3 D.﹣3<a<011.在Rt△ABC中,∠C=90°,那么sin∠B等于()A.ACABB.BCABC.ACBCD.BCAC12.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.40二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.14.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.15.设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为 .16.计算a 10÷a 5=_______.17.如图,在边长为3的菱形ABCD 中,点E 在边CD 上,点F 为BE 延长线与AD 延长线的交点.若DE=1,则DF 的长为________.18.不等式42x ->4﹣x 的解集为_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,D 为BC 边上一点,AC=DC ,E 为AB 边的中点,(1)尺规作图:作∠C 的平分线CF ,交AD 于点F (保留作图痕迹,不写作法);(2)连接EF ,若BD=4,求EF 的长.20.(6分)小明准备用一块矩形材料剪出如图所示的四边形ABCD (阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD 的长度.(结果保留根号).21.(6分)如图,点A 的坐标为(﹣4,0),点B 的坐标为(0,﹣2),把点A 绕点B 顺时针旋转90°得到的点C 恰好在抛物线y=ax 2上,点P 是抛物线y=ax 2上的一个动点(不与点O 重合),把点P 向下平移2个单位得到动点Q ,则:(1)直接写出AB所在直线的解析式、点C的坐标、a的值;(2)连接OP、AQ,当OP+AQ获得最小值时,求这个最小值及此时点P的坐标;(3)是否存在这样的点P,使得∠QPO=∠OBC,若不存在,请说明理由;若存在,请你直接写出此时P 点的坐标.22.(8分)问题提出(1)如图1,正方形ABCD的对角线交于点O,△CDE是边长为6的等边三角形,则O、E之间的距离为;问题探究(2)如图2,在边长为6的正方形ABCD中,以CD为直径作半圆O,点P为弧CD上一动点,求A、P 之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.23.(8分)如图,MN是一条东西方向的海岸线,在海岸线上的A处测得一海岛在南偏西32°的方向上,向东走过780米后到达B处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)24.(10分)如图,∠A =∠D ,∠B =∠E ,AF =DC .求证:BC =EF .25.(10分)如图1,已知扇形MON 的半径为2,∠MON=90°,点B 在弧MN 上移动,联结BM ,作OD ⊥BM ,垂足为点D ,C 为线段OD 上一点,且OC=BM ,联结BC 并延长交半径OM 于点A ,设OA=x ,∠COM 的正切值为y.(1)如图2,当AB ⊥OM 时,求证:AM=AC ;(2)求y 关于x 的函数关系式,并写出定义域;(3)当△OAC 为等腰三角形时,求x 的值.26.(12分)如图,已知△ABC,以A 为圆心AB 为半径作圆交AC 于E,延长BA 交圆A 于D 连DE 并延长交BC 于F, 2CE CF CB =⋅(1)判断△ABC 的形状,并证明你的结论;(2)如图1,若BE=CE=23求⊙A 的面积;(3)如图2,若tan ∠CEF=12,求cos ∠C 的值.。

2020年广东省江门市培英中学中考模拟数学试题(解析版)

2020年广东省江门市培英中学中考模拟数学试题(解析版)

2020年中考数学模拟试卷一.选择题1. ﹣2的倒数是【】A. 2B. 12C.12- D. ﹣0.2【答案】C【解析】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以2的倒数为()1122÷-=-.故选C.考点:倒数.2. PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为()A. 0.25×10-5 B.2.5×10-5B. 2.5×10-6C. 2.5×10-7【答案】C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以:0.0000025=2.5×10-6;故选C.【考点】科学记数法—表示较小的数.3. 如图所示物体的俯视图是()A. B. C. D.【答案】D【解析】【分析】根据俯视图是从上面看到的图形判定则可.【详解】从上面向下看,易得到横排有3个正方形.故选D.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4. 下列运算正确的是()A. (a3)2=a5B. a3+a2=a5C. (a3﹣a)÷a=a2D. a3÷a3=1【答案】D【解析】【分析】A、利用幂的乘方法则即可判定;B、利用同类项的定义即可判定;C、利用多项式除以单项式的法则计算即可判定;D、利用同底数的幂的除法法则计算即可.【详解】解:A、(a3)2=a6,故错误;B、∵a3和a2不是同类项,∴a3+a2≠a5,故错误;C、(a3﹣a)÷a=a2-1,故错误;D、a3÷a3=a0=1,正确.故选:D.【点睛】本题考查了幂的乘方、合并同类项、多项式除以单项式、同底数幂的除法等知识,解答是注意按照先关法则进行计算即可.5. 以下图形既是轴对称图形,又是中心对称图形的是()A. 等腰三角形B. 平行四边形C. 矩形D. 等腰梯形【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、轴对称图形,不是中心对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,也是轴对称图形;D、不是中心对称图形,是轴对称图形故选:C【点睛】本题考查中心对称图形;轴对称图形.6. 如图,AB=AC,AD∥BC,∠BAC=100°,则∠CAD的度数是()A. 30°B. 35°C. 40°D. 50°【答案】C【解析】试题分析:根据等腰三角形性质,三角形内角和定理求出∠C,根据平行线的性质得出∠CAD=∠C,即可求出答案:∵AB=AC,∠BAC=100°,∴∠B=∠C=40°.∵AD∥BC,∴∠CAD=∠C=40°.故选C.考点:1.平行线的性质;2.等腰三角形的性质.7. 如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=()A. 35°B. 55°C.70° D. 110°【答案】B【解析】试题分析:因为AB是⊙O的直径,所以∠ACB=900,由内角和定理求得∠B=550,根据同弧所对的圆周角相等可得∠ADC=550.故选B.考点:1、直径所对的圆周角是直角.2、同弧所对的圆周角相等.8. 矩形具有而菱形不具有的性质是【】A. 两组对边分别平行B. 对角线相等C. 对角线互相平分D. 两组对角分别相等【答案】B【解析】根据矩形与菱形的性质对各选项解析判断后利用排除法求解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.9. 某旅游公司2012年三月份共接待游客16万人次,2012年五月份共接待游客81万人次.设每月的平均增长率为x,则可列方程为()A. 16(1+x)2=81B. 16(1﹣x)2=81C. 81(1+x)2=16D. 81(1﹣x)2=16【答案】A【解析】【分析】依题意可知四月份的人数=16(1+x),则五月份的人数为:16(1+x)(1+x),再令16(1+x)(1+x)=81即可得出答案.【详解】解:设每月的平均增长率为x,依题意得:16(1+x)2=81.故选A.【点睛】此题主要考查了由实际问题抽象出一元二次方程中增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,x为增长或减少的百分率.增加用+,减少用﹣.10. 在同一平面直角坐标系中,函数y=mx+m(m≠0)与(m≠0)的图象可能是()A. B.C. D.【答案】D【解析】【分析】【详解】A.由反比例函数图象得m<0,则一次函数图象经过第二、三、四象限,所以A选项错误;B.由反比例函数图象得m>0,则一次函数图象经过第一、二、三象限,所以B选项错误;C.由反比例函数图象得m<0,则一次函数图象经过第二、三、四象限,所以C选项错误;D.由反比例函数图象得m>0,则一次函数图象经过第一、二、三象限,所以D选项正确.故选D.考点:反比例函数的图象;一次函数的图象.二.填空题11. 因式分解:x2﹣4x+4= _________【答案】(x﹣2)2【解析】【分析】直接利用完全平方公式因式分解,即可得到答案.【详解】解:x2﹣4x+4=(x﹣2)2;故答案为:(x﹣2)2【点睛】本题考查了因式分解,解题的关键是熟练掌握完全平方公式分解因式.12. 五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),现从中任意取出一张卡片,则该卡片上的数字是负数的概率是_________. 【答案】25【解析】【分析】由五张分别写有-1,2,0,-4,5的卡片(除数字不同以外,其余都相同),直接利用概率公式求解即可求得答案.【详解】解:∵五张分别写有﹣1,2,0,﹣4,5的卡片(除数字不同以外,其余都相同),∴该卡片上的数字是负数的概率是:25 故答案为:25. 【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13. 一个五边形的内角和是_______【答案】540°【解析】【分析】利用多边形的内角和公式:()2180n ︒-• 进行计算即可. 【详解】解:根据正多边形内角和公式:()52180540︒-⨯=︒ 故答案为:540°.【点睛】本题主要考查了多边形的内角和,头键是掌握内角和的计算公式.14. 如果关于x 的一元二次方程x 2﹣2x+m=0有两个不相等的实数根,那么m 的取值范围是_____.【答案】m <1.【解析】【分析】若一元二次方程有两不等根,则根的判别式△=b 2-4ac >0,建立关于m 的不等式,求出m 的取值范围.【详解】∵方程有两个不相等的实数根,a =1,b =﹣2,c =m ,∴△=b 2﹣4ac =(﹣2)2﹣4×1×m >0, 解得m <1.故答案为m <1.【点睛】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15. 如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为______.【答案】1.6【解析】【分析】由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可得:AD=AB ,∵∠B=60°, ∴△ABD 是等边三角形,∴BD=AB ,∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.故答案为1.6.【点睛】此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用. 16. 如图,在Rt ABC △中,90,4,2C AC BC ∠=︒==分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为 .(结果保留π)【答案】542π- 【解析】【分析】图中阴影部分的面积为两个半圆的面积-三角形的面积,然后利用三角形的面积计算即可.【详解】解: 设各个部分的面积为:S 1、S 2、S 3、S 4、S 5,如图所示,∵两个半圆的面积和是:S 1+S 5+S 4+S 2+S 3+S 4,△ABC 的面积是S 3+S 4+S 5,阴影部分的面积是:S 1+S 2+S 4, ∴图中阴影部分的面积为两个半圆的面积减去三角形的面积.即阴影部分的面积=12π×4+12π×1-4×2÷2=542π-. 故答案为:542π-. 三.解答题 17. ()012352011π-︒+--- 【答案】解:原式=6【解析】此题考查学生的计算思路:将式子中的每项分别算出解:原式1351622=++-= 点评:此题属于低档题,但计算要小心. 18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =. 【答案】11x +,2【解析】【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.然后代x的值,进行二次根式化简.【详解】解:原式=1111 ()(1)(1)11(1)(1)1(1)(1)1x x x x x xx x x x x x x x x x x--÷+=÷=⋅=-+---+--++.当21x=-时,原式=222112===-+.考点:1.分式的化简求值;2.二次根式化简.19. 如图所示,在△ABC中,∠ABC=∠ACB.(1)尺规作图:过顶点A作△ABC的角平分线AD;(不写作法,保留作图痕迹)(2)在AD上任取一点E,连接BE、CE.求证:△ABE≌△ACE.【答案】(1)如图所示,见解析;(2)见解析.【解析】【分析】(1)根据角平分线的尺规作图方法即可解答;(2)根据AD是△ABC的角平分线,得到∠BAD=∠CAD,再由∠ABC=∠ACB证得AB=AC,即可证明△ABE≌△ACE(SAS).【详解】(1)如图所示:(2)证明:∵AD是△ABC的角平分线,∴∠BAD =∠CAD ,∵∠ABC =∠ACB ,∴AB =AC ,∵在△ABE 和△ACE 中AB AC BAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACE (SAS ).【点睛】此题考查角平分线的作图方法,角平分线定理的应用,熟记定理内容并熟练应用解题是关键. 20. 为了解某县2015年初中毕业生数学质量检测成绩等级的分布情况,随机抽取了该县若干名初中毕业生的数学质量检测成绩,按A ,B ,C ,D 四个等级进行统计分析,并绘制了如下尚不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)本次抽取的学生有 名;补全条形统计图1;(2)根据调查结果,请估计该县1430名初中毕业生数学质量检测成绩为A 级的人数是(3)某校A 等级中有甲、乙、丙、丁4名学生成绩并列第一,现在要从这4位学生中抽取2名学生在校进行学习经验介绍,用列举法求出恰好选中甲乙两位学生的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江门市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。

2.考生必须把答案写在答题卡上,在试卷上答题一律无效。

考试结束后,本试卷和答题卡一并交回。

3.本试卷满分120分,考试时间120分钟。

一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。

①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。

只要求填写最后结果,每小题填对得3分。

)13. 已知ab=10,a+b=7,则a2b+ab2= .14. 点P(5,﹣3)关于x轴对称的点P′的坐标为____________.15. a是9的算术平方根,而b的算术平方根是9,则a+b=______________.16. 某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的优惠价格买了5件,结果商店都获利200元,那么这批衬衫的进价 _________元,售价_________ 元. 17.将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.18.如图,点A是反比例函数y=(x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是.三、解答题(本题共7小题,共66分。

解答应写出文字说明、证明过程或推演步骤。

)19.(6分)计算:(1)(﹣)2+|1﹣|﹣()﹣1(2)﹣+.20.(8分)已知不等式组的解集为﹣6<x<3,求m,n的值.21. (10分)如图,在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过AC的中点E作FG∥AD,交BA的延长线于点F,交BC于点G,(1)求证:AE=AF;(2)若BC=AB,AF=3,求BC的长.22.(10分)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200 人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)23.(10分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).①用含a的代数式表示小王四月份生产乙种产品的件数;②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.24.(10分)如图,边长为4的正方形ABCD中,动点P以每秒1个单位的速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位的速度从点A出发沿正方形的边AD﹣DC﹣CB方向顺时针做折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t秒.(1)当点P在BC上运动时,PB=;(用含t的代数式表示)(2)当点Q在AD上运动时,AQ=;(用含t的代数式表示)(3)当点Q在DC上运动时,DQ=,QC=;(用含t的代数式表示)(4)当t等于多少时,点Q运动到DC的中点?(5)当t等于多少时,点P与点Q相遇?25.(12分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.参考答案一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1.D2.C3.B4.C5.C6.A7.D8.C9.C 10.C 11.A 12.D二、填空题(本题共6小题,满分18分。

只要求填写最后结果,每小题填对得3分。

)13.70 14.(5,3) 15. 84 16. 200,300 17. 64° 18. 2﹣2三、解答题(本题共7小题,共66分。

解答应写出文字说明、证明过程或推演步骤。

)19.(6分)解:(1)原式=2+﹣1﹣2 =﹣1;(2)原式=6﹣3+2 = 5.20.(8分)解:不等式组整理得:,即3m﹣3<x<2n+1,由不等式组的解集为﹣6<x<3,可得3m﹣3=﹣6,2n+1=3,解得:m=﹣1,n=1.21. (10分)解:(1)∵∠BAC=90°,AD平分∠BAC,∴∠DAB=∠CAB=×90°=45°,∵FG∥AD∴∠F=∠DAB=45°,∠AEF=45°,∴∠F=∠AEF,∴AE=AF;(2)∵AF=3,∴AE=3,∵点E是AC的中点,∴AC=2AE=6,在Rt△ABC中,AB2+AC2=BC2,AB2+32=()2,AB=,BC=.22. (10分)解:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣所有等可能的结果为12种,其中符合要求的只有2种,则P==.23.(10分)解:(1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:,解这个方程组得:;答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,∴一小时生产甲产品4件,生产乙产品3件,所以小王四月份生产乙种产品的件数:3(25×8﹣)=;②依题意:,1680﹣0.6a≥1500,解得:a≤300.24. (10分)解:(1)∵动点P以每秒1个单位的速度从点B出发沿线段BC方向运动,∴BP=1×t=t,故答案为:t,(2)∵动点Q同时以每秒4个单位的速度从点A出发,∴AQ=4×t=4t,故答案为:4t,(3)∵DQ=4t﹣AD∴DQ=4t﹣4,∵QC=CD﹣DQ∴QC=4﹣(4t﹣4)=8﹣4t故答案为:4t﹣4,8﹣4t(4)根据题意可得:4t=4+2t=1.5答:当t等于1.5时,点Q运动到DC的中点.(5)根据题意可得:4t+t=4×3t=答:当t等于时,点P与点Q相遇.25. (10分)解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣x+3,解方程组,解得或,则此时P点坐标为(,);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得+b=0,解得b=﹣,∴直线PC的解析式为y=﹣x﹣,解方程组,解得或,则此时P点坐标为(,﹣),综上所述,符合条件的点P的坐标为(,)或(,﹣),。

相关文档
最新文档