光学非接触式三维测量技术_图文
非接触式3D测量技术
4.1 三维激光扫描技术
4.1.1 典型的基于面结构光三维测量系统的结构 典型的基于面结构光三维测量系统的结构简图如图4.1所示。此系统由一个数字光栅投
影装置和一个(或多个)CCD摄像机组成,测量时使用数字光栅投影装置向被测物体投射 一组光强呈正旋分布的光栅图像,并使用CCD摄像机同时拍摄经被测物体表面调制而变形 的光栅图像;然后利用拍摄得到的光栅图像,根据相位计算方法得到光栅图像的绝对相位 值;最后根据预先标定的系统参数或相位-高度映射关系从绝对相位值计算出被测物体表 面的三维点云数据。此系统涉及相位计算、系统参数标定和三维重建等多个关键技术[41]。
环境空气湿度:10%-90% 非液化(请尽量保持环境干燥)。
环境光线:应将本机器置于无频闪光源、弱光照的稳定光强环境。
工作环境:置于可稳定放置的环境中工作。通常将其与三脚架稳固连接,或者直接将
其置于工作平台上使用。
其他要求:工作时测量系统与样品的工作距应保持固定,直至扫描测量结束(周围无
震动源)。请勿敲击、碰撞本产品,运输时请将其置于工具箱中,轻拿轻放。 2、配置要求 电源:220V 交流电源 操作系统:Windows7 32位旗舰版或专业版(推荐) 电脑:台式电脑 处理器:英特尔Core i5 750 @ 2.67GHz 主板:微星P55-SD50 (MS-7586) 芯片组:英特尔Core Processor DMI - P55 Express 芯片组 内存:4 GB ( 金士顿DDR3 1333MHz ) 主硬盘:500 GB (西数WDC WD5000AAKS-00V1A0) 主显卡:512 MB (Nvidia GeForce GT 240) 显示器:19英寸宽屏(1440x900)液晶显示器
三维曲面的光学非接触测量技术
第7卷 第3期光学 精密工程Vol.7,No.3 1999年6月OPTICS AND PRECISION EN GIN EERIN G J une,1999三维曲面的光学非接触测量技术杜 颖 李 真 张国雄(天津大学精密仪器与光电子工程学院 天津300072)摘 要 对三维曲面的光学非接触测量中的各种方法进行了较为全面的介绍,并重点说明了目前几种常用测量方法的发展状况和在其原理基础上研制的新型传感器。
关键词 三维曲面 非接触测量 传感器1 引 言 随着科学技术和工业生产的发展,对表面轮廓、几何尺寸、粗糙度、各种模具及自由曲面的测量工作越来越多,精度要求越来越高。
传统的探针式的接触测量方法存在测量力、测量时间长、需进行测头半径的补偿、不能测量较软质材料等局限性。
光学非接触测量技术比较成功地解决了上述问题,以其高响应、高分辨率而倍受重视,该方法具有受环境电磁场影响小、工作距离大、测量精度高及可测量非金属面等特点。
随着各种高性能器件如半导体激光器LD、电荷耦合器件CCD、CMOS图像传感器、位置敏感器件PSD等的出现,光学非接触测量技术得到迅猛的发展,新型传感器不断出现,传感器的性能也大幅度提高。
2 光学非接触测量方法 光学非接触测量技术大体上可分为光纤法、双目立体视觉法、干涉法、离焦法、轴向位移转换法和三角法。
各种测量方法的比较如下。
光纤法:通过被测量的变化来调制波导中的光波,使光纤的光波参量随被测量的变化而改变,从而求得被测信号的大小。
具有灵敏度高、耐腐蚀、电绝缘、不受电磁干扰、光路可挠曲、便于遥测等许多优点,但价格较高。
双目立体视觉法:两台相对位置固定的摄像机与被测物构成三角形,被测物体在两像面上收稿日期:1998-12-18修稿日期:1999-03-09形成立体图像对,进行相关特征点匹配获取被测物体的三维空间尺寸。
若图像某区域光强或颜色不均匀,则匹配不可实现;测量时,两摄像机位置相隔越远,视差深度计算越精确,但盲区现象越严重,覆盖视场越小。
10.1三维非接触式形貌测量方法简介
工程振动测试技术非接触式测量方法是目前发展较快的一种方法,在以下几种情况下,需要采用非接触式测量方法:01 对附加质量比较敏感,传感器的质量对测量结果影响大,如各种轻薄结构;02 直接接触会对试件产生损毁,如各种文物等;03 在恶劣条件下不能接触,如高温高压的试件;04 接触会改变整个系统,如液体表面等。
三维非接触式形貌测量1.电磁学2.声学3.光学根据测量原理的不同,可分为三类,是各学科的相互交叉和相互渗透的结果。
光学方法可依照光源扫描方法的不同分为点扫描、线扫描和全场扫描。
从被测物的运动状态出发,可分为动态测量和静态测量等。
三维非接触式形貌测量1.电磁学2.声学3.光学根据测量原理的不同,可分为三类,是各学科的相互交叉和相互渗透的结果。
光学方法可依照光源扫描方法的不同分为点扫描、线扫描和全场扫描。
从被测物的运动状态出发,可分为动态测量和静态测量等。
3.光学主动式光学三维测量相位测量轮廓法空间相位检测法调制度测量轮廓法飞行时间法主动三角法莫尔云纹法傅立叶变换轮廓法主动式光学三维测量相位测量轮廓法空间相位检测法调制度测量轮廓法飞行时间法主动三角法莫尔云纹法傅立叶变换轮廓法阴影云纹法将一平行光栅置于物体表面,并用一束与光栅表面法线夹角为γ的光线照射,设观测方向与光栅表面法线夹角为φ,如图所示。
在远处观测,从P点入射的光线(假想P点为光栅透光量最大点),由物体表面反射,为观测者所接受,则形成亮点,一系列这样的亮点形成了亮条纹。
它们必然满足以下的几何关系:在远处观测,从P点入射的光线(假想P 点为光栅透光量最大点),由物体表面反射,为观测者所接受,则形成亮点,一系列这样的亮点形成了亮条纹。
它们必然满足以下的几何关系:ϕγtan tan +=na w 式中w 即为物体上的p’点的高度该方法测量精度较低,同时由于制作大面积的光栅很困难,所以阴影云纹法只适用于小范围的测量。
投影云纹法将一光栅投射到物体表面,用摄像机记录下由于物体表面不平而引起变形的栅线,再与未变形的栅线叠加,产生几何干涉云纹条纹图,分析云纹图就可以得到物体表面的等高线分布图。
三维光学轮廓仪的主要工作原理
三维光学轮廓仪的基本原理三维光学轮廓仪是一种常用的非接触式测量设备,可以用来测量物体的三维形状和表面特征。
它通过利用光学原理和图像处理技术,将物体的三维形状转化为数字化的三维模型,从而实现对物体形状和表面特征的测量与分析。
1. 光学投影原理三维光学轮廓仪的工作原理基于光学投影原理。
它通过投射光束到待测物体表面上,然后接收和处理反射回来的光信号,从而测量物体表面的形状和特征。
在三维光学轮廓仪中,通常使用白光或激光作为光源。
光源发出的光经过透镜或光纤束聚光系统进行聚焦,形成一个光斑。
光斑经过投影透镜,被投射到待测物体表面上。
2. 相位移技术在物体表面接收到光斑后,会发生光的反射、散射和吸收等现象。
三维光学轮廓仪利用这些光学特性,通过测量光斑的相位差来获取物体表面的形状信息。
相位差是指光束从光源到物体表面再到相机接收器的光程差。
在三维光学轮廓仪中,通常使用相位移技术来测量光斑的相位差。
相位移技术可以通过改变光源的相位或改变物体表面的相位来实现。
其中一种常用的方法是使用光栅投影技术。
光栅是一种具有周期性结构的光学元件,可以将光束分为多个光斑,从而形成一系列的光条纹。
当光斑经过物体表面时,光斑的相位会发生变化,通过测量光斑的相位差,可以计算出物体表面的形状信息。
3. 相机成像和图像处理在三维光学轮廓仪中,相机是用来接收和记录物体表面反射回来的光信号的关键部件。
相机通常使用CCD或CMOS等成像器件,将光信号转化为数字图像。
当光斑经过物体表面时,相机会接收到反射回来的光信号,并将其转化为二维图像。
这个图像被称为光条纹图像,其中的每个像素点对应着物体表面的一个点。
为了获取物体表面的三维信息,需要对光条纹图像进行处理和分析。
常见的图像处理方法包括:•相位解包:将光条纹图像中的相位信息解包,得到物体表面的相位分布。
•相位提取:从相位分布中提取出物体表面的高度信息。
•滤波处理:对图像进行滤波,去除噪声和干扰,提高测量精度。
非接触式测量技术
目录摘要 (1)1 引言 (1)2 非接触式测量技术简介 (1)2.1 非接触式测量方法的定义 (1)2.2 非接触式测量方法的分类 (2)3 非接触测量技术发展的现状 (2)3.1 光学法 (2)3.1.1 结构光法 (2)3.1.2 激光三角法 (3)3.1.3 激光测距法 (4)3.1.4 光学干涉法 (5)3.1.5 图像分析法 (6)3.2 非光学法 (7)3.2.1 声学测量法 (7)3.2.2 磁学测量法 (8)3.2.3 X射线扫描法 (9)3.2.4 电涡流测量法 (10)3.3 非接触测量技术存在的不足和总结 (11)4 非接触式机器人测量系统 (11)5 非接触测量技术在船体分段测量中的应用 (14)5.1 非接触测量技术在船厂的应用情况 (14)5.2 船体分段测量方法介绍 (14)5.2.1 传统测量方法系统 (14)5.2.2 激光经纬仪测量系统 (14)5.2.3 近景摄影测量系统 (15)5.2.4 全站仪测量系统 (17)5.2.5 三维扫描测量系统 (18)5.3 测量方法的比较 (19)6 非接触测量技术的发展趋势 (21)7 结束语 (21)参考文献 (22)摘要非接触测量方法以光电、电磁、超声波等技术为基础,在仪器的感受元件不与被测物体表面接触的情况下,即可获取被测物体的各种外表或内在的数据特征。
详细阐述了部分常用的光学法和非光学法测量技术及相应的测量仪器,并结合船体分段测量方法说明了这些非接触测量方法的原理、优缺点、精度及适用范围,指出了未来非接触测量技术的发展趋势。
关键词:非接触测量; 光学法; 非光学法;船体分段1 引言开展船体分段测量技术研究的意义在于首先它是实现分段无余量对接的保证,可以大大缩短分段吊装搭接的船台占用时间,其次采用这项技术有助于实现船舶建造的信息流闭环,以及生产状态下的船体建造的“动态虚拟装配”。
最后精确、快速、可靠的船体分段测量技术的突破有助于提升我国造船企业的国际竞争力[1]。
三维测量技术的方法及应用
三维测量技术的方法及应用一、引言三维测量技术是近年来在科学研究和工程实践中日益重要的一项技术。
它可以在不接触被测对象的情况下,通过非接触手段获取物体的三维形状和结构信息,对于工程设计、制造、检测等领域具有重要的应用价值。
本文将详细介绍三维测量技术的方法及应用,以帮助读者了解这一领域的最新进展和应用前景。
二、三维测量技术的分类根据不同的原理和方法,三维测量技术可以分为以下几类:2.1 光学测量技术光学测量技术是利用光线传播的特性来获取物体形状和结构信息的一种方法。
常见的光学测量技术包括激光扫描、光栅投影、相位测量等。
这些技术都能够实现高精度的三维测量,并广泛应用于制造业、航空航天等领域。
2.2 非接触式接触测量技术非接触式接触测量技术是利用电磁波、声波等非接触手段对物体进行测量的方法。
其中,雷达和超声波测量技术是常见的非接触式接触测量技术。
这些技术适用于测量较大尺寸、复杂形状的物体,广泛应用于建筑、地质勘探等领域。
2.3 接触测量技术接触测量技术是通过传感器与被测物体直接接触,通过测量传感器的位移、转角等信息获取物体的三维形状和结构信息的一种方法。
常见的接触测量技术包括坐标测量机、刚体测量等。
这些技术适用于测量较小尺寸、复杂形状的物体,广泛应用于汽车制造、机械加工等领域。
三、三维测量技术的应用三维测量技术在各个领域都有广泛的应用,下面将从工程设计、制造、检测等方面介绍三维测量技术的具体应用。
3.1 工程设计三维测量技术在工程设计中起到了重要的作用。
它可以对物体的三维形状和结构进行精确测量,为工程设计提供准确的数据基础。
通过三维测量技术,设计师可以更好地进行产品设计、装配设计等工作,提高设计效率和质量。
3.2 制造在制造过程中,三维测量技术可以用来检测产品的质量和尺寸是否符合要求。
它可以通过快速、精确地测量产品的几何参数,及时发现并解决制造过程中的问题,确保产品的质量和性能,提高制造效率。
3.3 检测在产品出厂前的检测工作中,三维测量技术也发挥着重要的作用。
非接触式测量技术
目录摘要 (1)1 引言 (1)2 非接触式测量技术简介 (1)2.1 非接触式测量方法的定义 (1)2.2 非接触式测量方法的分类 (2)3 非接触测量技术发展的现状 (2)3.1 光学法 (2)3.1.1 结构光法 (2)3.1.2 激光三角法 (3)3.1.3 激光测距法 (4)3.1.4 光学干涉法 (5)3.1.5 图像分析法 (6)3.2 非光学法 (7)3.2.1 声学测量法 (7)3.2.2 磁学测量法 (8)3.2.3 X射线扫描法 (9)3.2.4 电涡流测量法 (10)3.3 非接触测量技术存在的不足和总结 (11)4 非接触式机器人测量系统 (11)5 非接触测量技术在船体分段测量中的应用 (14)5.1 非接触测量技术在船厂的应用情况 (14)5.2 船体分段测量方法介绍 (14)5.2.1 传统测量方法系统 (14)5.2.2 激光经纬仪测量系统 (14)5.2.3 近景摄影测量系统 (15)5.2.4 全站仪测量系统 (17)5.2.5 三维扫描测量系统 (18)5.3 测量方法的比较 (19)6 非接触测量技术的发展趋势 (21)7 结束语 (21)参考文献 (22)摘要非接触测量方法以光电、电磁、超声波等技术为基础,在仪器的感受元件不与被测物体表面接触的情况下,即可获取被测物体的各种外表或内在的数据特征。
详细阐述了部分常用的光学法和非光学法测量技术及相应的测量仪器,并结合船体分段测量方法说明了这些非接触测量方法的原理、优缺点、精度及适用范围,指出了未来非接触测量技术的发展趋势。
关键词:非接触测量; 光学法; 非光学法;船体分段1 引言开展船体分段测量技术研究的意义在于首先它是实现分段无余量对接的保证,可以大大缩短分段吊装搭接的船台占用时间,其次采用这项技术有助于实现船舶建造的信息流闭环,以及生产状态下的船体建造的“动态虚拟装配”。
最后精确、快速、可靠的船体分段测量技术的突破有助于提升我国造船企业的国际竞争力[1]。
三维dic测量原理
三维dic测量原理
三维DIC(Digital Image Correlation)测量原理是一种非接触式三维形变测量
技术,它可以测量物体表面的微小形状和变形。
该原理基于图像匹配和位移跟踪,并结合计算机视觉和数字图像处理技术,以评估物体的三维形变场。
三维DIC测量原理的过程可以简要概括为以下几个步骤:
首先,通过使用两个相机将目标物体进行成对拍摄,得到两幅或多幅图像。
接下来,通过特定的算法和图像处理技术,对这些图像进行匹配。
即在不同视
角下,通过识别和跟踪物体表面上的特征点和纹理,找到这些点在不同图像间的对应关系。
然后,通过测量这些匹配点的相对位移,可以计算出物体表面的形变和位移信息。
这些位移信息可以用来生成三维位移场图或形变图。
最后,通过进一步处理和分析,可以得到物体的形变、应力分布等相关信息,
以及量化和可视化物体表面的形状和位移变化。
三维DIC测量原理的主要优点在于其非接触性和高精度性能。
因为无需直接接触物体表面,可以避免对被测试物体的破坏,并且能够实时、精确地检测微小的形变和位移变化。
这使得三维DIC成为在材料科学、工程结构分析和生物医学领域
等广泛应用的测量技术。
总结而言,三维DIC测量原理通过图像匹配和位移跟踪,结合计算机视觉和数字图像处理技术,可以实现对物体表面形状和变形的非接触式测量。
它具有高精度、高效率的特点,被广泛应用于各个领域的形变测量和分析。
非接触式测量技术
非接触式测量技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII目录摘要 (1)1 引言 (1)2 非接触式测量技术简介 (2)2.1 非接触式测量方法的定义 (2)2.2 非接触式测量方法的分类 (2)3 非接触测量技术发展的现状 (2)3.1 光学法 (2)3.1.1 结构光法 (2)3.1.2 激光三角法 (4)3.1.3 激光测距法 (5)3.1.4 光学干涉法 (6)3.1.5 图像分析法 (7)3.2 非光学法 (9)3.2.1 声学测量法 (9)3.2.2 磁学测量法 (10)3.2.3 X射线扫描法 (10)3.2.4 电涡流测量法 (12)3.3 非接触测量技术存在的不足和总结 (12)4 非接触式机器人测量系统 (13)5 非接触测量技术在船体分段测量中的应用 (16)5.1 非接触测量技术在船厂的应用情况 (16)5.2 船体分段测量方法介绍 (16)5.2.1 传统测量方法系统 (16)5.2.2 激光经纬仪测量系统 (16)5.2.3 近景摄影测量系统 (18)5.2.4 全站仪测量系统 (19)5.2.5 三维扫描测量系统 (20)5.3 测量方法的比较 (22)6 非接触测量技术的发展趋势 (23)7 结束语 (24)参考文献 (24)摘要非接触测量方法以光电、电磁、超声波等技术为基础,在仪器的感受元件不与被测物体表面接触的情况下,即可获取被测物体的各种外表或内在的数据特征。
详细阐述了部分常用的光学法和非光学法测量技术及相应的测量仪器,并结合船体分段测量方法说明了这些非接触测量方法的原理、优缺点、精度及适用范围,指出了未来非接触测量技术的发展趋势。
关键词:非接触测量; 光学法; 非光学法;船体分段1 引言开展船体分段测量技术研究的意义在于首先它是实现分段无余量对接的保证,可以大大缩短分段吊装搭接的船台占用时间,其次采用这项技术有助于实现船舶建造的信息流闭环,以及生产状态下的船体建造的“动态虚拟装配”。
光学非接触六自由度系统
光学非接触六自由度系统是一种用于精确测量物体在三维空间中的位置和运动的系统。
这种系统通常包括高灵敏度的光学传感器和先进的图像处理技术,能够在不接触被测物体的情况下,捕捉到物体的位置、运动轨迹、速度、角度、加速度和角加速度等运动学指标。
其关键技术和应用领域包括:
1. 技术组成:该系统通常由光学定位传感器、系统控制单元、标识点、无线marker套装以及系统控制软件等组成。
它们共同工作,实现对物体六自由度运动的精确测量。
2. 测量范围与精度:这类系统的测量范围可以从1.5米至6.0米不等,而测量精度则依赖于系统的配置和工作环境。
例如,有系统的RMS精度在2米范围内,x和y方向可达0.1mm,z方向为0.15mm;而在4米范围内,x和y方向的精度也可达到0.1mm。
3. 应用领域:六自由度测量系统广泛应用于多个领域,如海洋船模研究、运动分析、游戏娱乐和工业测试等。
在海洋船模研究中,通过对船模的运动学指标进行数据分析,可以提升船模的航行稳定性和平滑性。
此外,这种系统还可用于分析交通运输工程领域中的动态过程。
4. 设备功能:除了基本的六自由度运动测量,一些系统还能提供非接触式振动和冲击全场应变及高速测量,具有极高的时空分辨率,最大时间分辨率可达1微秒。
5. 便携易用:TRITOP系统是一个典型的例子,它采用非接触测量技术,可以快速捕捉物体位移和变形,且由于无需在测量物上安装任何设备,使得使用更加方便灵活。
非接触式三维形态测量技术研究
非接触式三维形态测量技术研究在工业领域中,精准的测量技术能够节省时间和成本,提高生产效率。
而随着技术的不断发展,非接触式三维形态测量技术也越来越受到人们的重视。
非接触式三维形态测量技术是采用光学、激光等手段获取被测对象表面的三维坐标数据的一种方法。
与传统的接触式测量相比,这种技术不需要接触被测物体,能够实现快速、高精度的三维形态测量。
目前,非接触式三维形态测量技术已经被广泛应用于汽车、航空、机器人等领域。
在汽车工业中,非接触式三维形态测量技术能够实现车身、发动机、底盘等部件的测量和检测,并且能够实时跟踪物体的变化。
在航空工业中,该技术能够对飞机电子设备、机翼等部件进行快速准确的测量,提高了飞行安全性。
在机器人领域,非接触式三维形态测量技术能够实现机器人的姿态控制和路径规划,提高机器人的自主性和智能化程度。
非接触式三维形态测量技术的实现主要依靠三维扫描仪。
三维扫描仪包括光学扫描仪、激光扫描仪、多光源三角测量仪等多种类型,其中激光扫描仪在工业应用中占据了重要地位。
激光扫描仪是一种能够通过激光束扫描物体表面,生成三维坐标点云数据的设备。
其原理是利用光学干涉测量的方法,通过光栅衍射将激光束分成多条光束,通过对物体表面不同位置激光束反射时间的测量,确定被测物体表面点的位置,进而重构三维模型。
在实际应用中,非接触式三维形态测量技术面临着一些挑战。
首先是测量精度问题。
由于光束在穿过空气、透过物体表面等因素影响下,可能会发生漂移、散射等问题,导致测量结果产生偏差。
其次是数据处理问题。
三维扫描仪采集到的数据量非常庞大,需要进行大量的数据处理和分析,才能得出具体的测量结果和原始数据。
同时,在复杂的几何形状、光线干扰等情况下,数据处理的难度也会增加。
还有就是设备的成本、环境适应性等问题也需要亟待解决。
近几年,针对非接触式三维形态测量技术面临的问题,国内外学者琢磨出了一些解决办法。
例如,在硬件方面,人们正在研究开发新型的激光扫描仪、多传感器集成式测量仪等设备,提升测量精度和速度。
非接触式光学测量
系统特点: ² 属于非接触测量方法,图像处理自动化 ² 准确测量参考点的三维坐标 ² 三维显示各个变形状态参考点的坐标和位置信息 ² 测量幅面可调,大幅面高精度测量,幅面可定制 ² 可以得到全局的位移场 ² 采用自主研制的工业近景三维摄影测量核心关键技术进
(7) 各种分析功能
软件各窗口区域的主要功能
工程区:显示变形测量工程得所有状态以及各采集的时间、图
片数,控制摄像机的开关;
3D 视图区:显示选定状态计算获取的参考点三维坐标和位移色
谱图;
模具与先进成形技术研究所,陕西省西安市咸宁西路 28 号 西安交通大学机械工程学院 邮编:710049 电话:029- 82664583,82669103、82668607、82664366
转 807 电子邮件: xjtuom@ 网站: 传真:029-82669103
非接触式光学测量
曲线视图区:显示选定参考点的位移曲线; 图像区:显示选定状态的二维图像以及识别的标志点信息。
软件计算结果 试验结果显示飞机尾翼上标志点振动规律基本一致;且距 离振源最近的标志点 1 的振幅约 0.5mm,和振源振幅一致。
非接触式光学测量
应用范围: ² 实时测量物体变形、运动和振动的三维信息 ² 验证理论研究和数字仿真的结果 ² 动力学测量,结构震动频率可达 250Hz ² 载荷实验、蠕变实验和疲劳实验(复杂机构和弹性零件) ² 用于汽车噪声、震动和颠簸条件的测试 ² 汽车引擎和车身振动、发电站大型涡轮的振动、冰箱和空
行相机标定 ² 能准确测量标志点在不同状态下的三维坐标,并计算其位
移,测量数据可视化输出 ² 采集频率:15Hz~5000Hz,可根据负载情况自行控制图
非接触式测量
非接触式测量非接触式测量的定义非接触测量是一种基于光电、电磁等技术,在不接触被测物体表面的情况下获取物体表面参数信息的测量方法。
典型的非接触测量方法,如激光三角测量、涡流测量、超声波测量、机器视觉测量等。
概况V-STARS(视频模拟三角测量和响应系统)是GSI公司开发的工业数字近景摄影测量坐标测量系统。
该系统主要具有三维测量精度高(相对精度高达1/200000)、测量速度快、自动化程度高、工作环境恶劣(如热真空)等优点。
它是世界上最成熟的商业工业数字摄影测量产品。
该系统是基于数字摄影的大尺寸三坐标测量系统,也称为工业摄影测量系统(industrialphotogrammetrysystem)、数字近景摄影测量系统、数字近景摄影视觉测量系统、数字摄影三维测量系统、三维光学图像测量系统(3dindustrialmeasurementsystem)。
它通过V-STARS软件(如图3所示)处理收集的照片,以获得待测点的三维坐标。
这些照片是通过使用高精度专业相机(如美国GSI公司的inca3相机)在不同位置和方向拍摄同一物体而获得的。
V-STARS软件会自动处理这些照片,通过图像匹配等处理和相关数学计算,得到被测点的精确三维坐标。
一旦被处理,被测物体的三维数据将进入坐标系,就像之前被测量或处理过一样。
如有必要,V-STARS软件还内置了分析工具,可以输出三维数据。
这些被测物体通常提前手动粘贴回光反射标记,或通过投影仪投射到点上,或投射到检测杆上。
技术特点(1)高精度:单摄像机系统的测量精度在10米以内可达0.08mm,双摄像机系统的测量精度可达0.17mm;(2)非接触测量:光学摄影的测量方式,无需接触工件;(3)测量速度快:单台摄像机可在几分钟内完成大量点云测量,双摄像机可实时测量;(4)可在不稳定环境(温度、振动)下测量:测量时间短,温度影响小。
双摄像机系统可以在不稳定的环境中进行测量;(5)特别适合狭小空间的测量:只要0.5m空间即可拍照、测量;(6)数据率高,便于获取大量数据:图像点由计算机软件自动提取和测量,测量1000个点的速度几乎与10个点的速度相同;(7)适应性好:被测物尺寸从0.5m到100m均可用一套系统进行测量;(8)便携性好:单相机系统1人即可携带到现场或外地开展测量工作。
非接触式三次元测量仪原理
非接触式三次元测量仪原理非接触式三次元测量仪是一种用于测量固体物体表面三维形状的设备。
它采用非接触式测量技术,通过光学、激光或其他传感器获取物体表面的几何信息,然后将这些信息转化为数字坐标,并生成三维模型。
该测量方法不需要物体接触式触探测量,不会对物体造成破坏,能够实现高精度、快速测量,已广泛应用于机械加工、汽车制造、航空航天、医疗器械、消费电子、艺术品等领域。
非接触式三次元测量仪的工作原理是通过光学传感器、激光传感器等设备对待测物体进行扫描,获取其表面形貌的分布数据,然后通过数字处理和三维重构算法获取物体表面的三维坐标。
下面将从光学传感器和激光传感器两个方面来介绍非接触式三次元测量仪的工作原理。
一、光学传感器的工作原理光学传感器是一种能够测量目标物体表面形状的设备,它通过光学成像原理将物体表面的图像传送到相机中,进而获取物体表面的坐标数据。
具体来说,光学传感器中包括光源、透镜、成像器等组成部分。
光源发射出光束照射在待测物体表面,经过透镜进行聚焦形成物体表面的图片,成像器将这个图片转换成数字化的数据。
在光学传感器中,主要有白光、相机、镜头等设备组成。
在测量中,光学传感器会发射一束光束(通常是白光),照射在待测物体表面上,然后将物体表面反射回来的光通过镜头透过接收回来,形成一个二维图像。
由于光照射到物体表面上所反射回来的光的方向和原来的照射方向是不同的,因此通过这个光学成像原理可以推导出物体表面的三维坐标。
根据相机的内部参数,可以将输入的二维图像转换成物体表面的三维坐标信息,并生成三维模型。
二、激光传感器的工作原理激光传感器是一种光电传感器,通过激光进行光测量,能测量非常精细的物体表面结构。
激光传感器通常包括激光光源、光电探测器、干涉仪等部件。
在测量中,激光光源会向待测物体表面发射一束激光光束,光电探测器接收反射回来的激光信号,并通过干涉仪对接收到的激光信号进行干涉,得到波形数据。
根据激光光束在物体表面上反射和散射后的返回信息,可以获得物体表面的形态信息和精度。
光学非接触三维形貌测量技术新进展
文章编号l004-924X (2002)05-0528-05光学非接触三维形貌测量技术新进展陈晓荣,蔡萍,施文康(上海交通大学电子信息学院,上海200030)摘要:三维物体表面轮廓测量是获取物体形态特征的一种重要手段,在机器视觉、自动加工、工业检测、产品质量控制领域具有重要意义和广阔的应用前景。
光学非接触测量由于其高分辨率、无破坏、数据获取速度快等优点而被认为是最有前途的三维形貌测量方法。
介绍了光学非接触测量方法中的光切法、基于调制度测量的原理及优缺点,重点介绍了光栅投射法的测量原理,并分析了其研究热点与发展方向。
关键词:非接触检测;形貌测量;3D 中图分类号:TB92文献标识码:A!引言三维曲面或三维轮廓测量技术广泛应用于工业、科研、国防等领域。
汽车车身、飞机机身、轮船船体、汽轮机叶片等加工制造中的在线检测,特别是大型工件的曲面检测一直是生产中的关键技术难题。
该类工件在车间条件下一般采用靠模法测量,但可测截面少,测量精度低;在计量室条件下采用三坐标测量机测量虽然精度较高,但数据采集速度低,测量成本高,且难于实现在线测量。
鉴于接触式测量方法的局限性,用非接触光学方法来测量物体表面轮廓形状,例如激光三角法、莫尔投影法、工业视觉测量法等具有灵敏度高、速度快、获取数据多等特点,在三维测量中正日益受到重视和广泛应用。
"测量原理从技术上看,光学非接触测量法可分为两类:一类称为被动法,利用图像明暗、纹理、光流等信息求出三维信息,常用于对三维目标的识别、理解以及位置形态的分析;另一类称为主动法,采用结构照明方式,由三维面形对结构光场的空间或时间调制,观察光场中携带了三维面形的信息,对观察光场进行解调,可以得到三维面形数据。
由于后一种方法具有较高的测量精度,因此大多数以三维面形测量为目的的三维传感系统都采用主动三维传感方式。
下面简要介绍光切法、调制度轮廓术,重点介绍光栅投射法。
".!光切法光切法LSM (li g ht-section method )是近年来在激光逐点扫描法基础上发展起来的一种非接触测量方法。
无接触测量ppt课件
厚度的装置。本实验的研究基于几何光学中的折射与反射原理。分别用光功率计与工业相机
作为接收器。用光功率计作为接收器时属于透射式测量方法,精度可达1mm。用工业相机作
为接收器时属于反射式测量方法,精度可达2μm。
• 本实验的目的是利用光学方面的非接触测量方法来测量玻璃的厚度及折射率,包括激光三角
点的散射光,并会在接收器4(此处使用工业
相机)敏感面处成像。除了只有一个精确对
焦的地方,其他位置都处于不同程度的离焦
状态,是由于激光器发出的光线与被测物体
表面正交。
2
非接触测量原理
The principle of non-contact measurement
为了提高测量精度,像平面、透镜平面、物平面必须相交于同一条直线,即tan 1 = βtan 2 ,
定的平面内
概括2
折射线和入射线分居在法线两侧
概括3
sin 1
= 21
sin 2
入射角的正弦和折射角的正弦的比值对
折射率一定的两种媒质来说是一个常数
2
非接触测量原理
The principle of non-contact measurement
全反射与临界角
在从光密介质射入到光疏介质时,要离开法
方法用于面积大的玻璃
探头的光功率计来接收反射
8mm,超过了这个数值空气
璃表面是平整的就可以测量。
光线来观察消光。这个方法
薄层就可忽略,对结果影响也
但是要求玻璃可以放在刻度盘
适用于仪器选择上比较丰富
就可以忽略
上,如果温度过于高的玻璃可
的时候做,在仪器匮乏的状
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学非接触式三维测量技术_图文光学三维测量技术及应用摘要:随着现代科学技术的发展,光学三维测量已经在越来越广泛的领域起到了重要作用。
本文主要对接触式三维测量和非接触式三维测量进行了介绍。
着重介绍了光学三维测量技术的各种实现方法及原理。
最后对目前光学三维测量的应用进行了简单介绍。
随着科学技术和工业的发展,三维测量技术在自动化生产、质量控制、机器人视觉、反求工程、CAD/CAM以及生物医学工程等方面的应用日益重要。
传统的接触式测量技术存在测量时间长、需进行测头半径的补偿、不能测量弹性或脆性材料等局限性,因而不能满足现代工业发展的需要。
光学测量是光电技术与机械测量结合的高科技。
光学测量主要应用在现代工业检测。
借用计算机技术,可以实现快速,准确的测量。
方便记录,存储,打印,查询等等功能。
光学三维测量技术是集光、机、电和计算机技术于一体的智能化、可视化的高新技术,主要用于对物体空间外形和结构进行扫描,以得到物体的三维轮廓,获得物体表面点的三维空间坐标。
随着现代检测技术的进步,特别是随着激光技术、计算机技术以及图像处理技术等高新技术的发展,三维测量技术逐步成为人们的研究重点。
光学三维测量技术由于非接触、快速测量、精度高的优点在机械、汽车、航空航天等制造工业及服装、玩具、制鞋等民用工业得到广泛的应用。
2 三维测量技术方法及分类三维测量技术是获取物体表面各点空间坐标的技术,主要包括接触式和非接触式测量两大类。
如图1所示。
图1 三维测量技术分类2.1 接触式测量物体三维接触式测量的典型代表是坐标测量机(CMM,Coordinate Measuring Machine)。
CMM是一种大型精密的三坐标测量仪器[1],它以精密机械为基础,综合应用电子、计算机、光学和数控等先进技术,能对三维复杂工件的尺寸、形状和相对位置进行高精度的测量。
三坐标测量机作为现代大型精密、综合测量仪器,有其显著的优点,包括:(1)灵活性强,可实现空间坐标点测量,方便地测量各种零件的三维轮廓尺寸及位置参数;(2)测量精度高且可靠;(3)可方便地进行数字运算与程序控制,有很高的智能化程度。
早期的坐标测量机大多使用固定刚性测头,它最为简单,缺点也很多[2]。
主要为(1)测量时操作人员凭手的感觉来保证测头与工件的接触压力,这往往因人而异且与读数之间很难定量描述;(2)刚性测头为非反馈型测头,不能用于数控坐标测量机上;(3)必须对测头半径进行三维补偿才能得到真实的实物表面数据。
针对上述缺陷,人们陆续开发出各种电感式、电容式反馈型微位移测头,解决了数控坐标测量机自动测量的难题,但测量时测头与被测物之间仍存在一定的接触压力,对柔软物体的测量必然导致测量误差。
另外测头半径三维补偿问题依然存在。
三维测头的出现可以相对容易地解决测头半径三维补偿的难题,但三维测头仍存在接触压力,对不可触及的表面(如软表面,精密的光滑表面等)无法测量,而且测头的扫描速度受到机械限制,测量效率很低,不适合大范围测量。
2.2 非接触式测量非接触式测量技术是随着近年来光学和电子元件的广泛应用而发展起来的,其测量基于光学原理,具有高效率、无破坏性、工作距离大等特点,可以对物体进行静态或动态的测量。
此类技术应用在产品质量检测和工艺控制中,可大大节约生产成本,缩短产品的研制周期,大大提高产品的质量,因而倍受人们的青睐。
随着各种高性能器件如半导体激光器LD、电荷耦合器件CCD、CMOS图像传感器和位置敏感传感器PSD等的出现,新型三维传感器不断出现,其性能也大幅度提高,光学非接触测量技术得到迅猛的发展。
非接触式三维测量不需要与待测物体接触,可以远距离非破坏性地对待测物体进行测量。
其中,光学非接触式测量是非接触式测量中主要采用的方法。
3 光学非接触式三维测量的概述光学非接触式三维测量技术根据获取三维信息的基本方法可分为两大类:被动式与主动式。
如图2所示[3]。
主动式是利用特殊的受控光源(称为主动光源)照射被测物,根据主动光源的已知结构信息(几何的、物体的、光学的)获取景物的三维信息。
被动式是在自然光(包括室内可控照明光)条件下,通过摄像机等光学传感器摄取的二维灰度图像获取物体的三维信息。
图2 光学三维测量方法分类3.1 光学被动式三维测量由于被动式没有受控的主动光源,无需复杂的设备,并且与人类的视觉习惯比较接近。
被动式测量技术主要用于受环境约束不能使用激光或特殊照明光的场合,或者由于保密需要的军事场合。
一般是从一个或多个摄像系统获取的二维图像中确定距离信息,形成三维面形数据,即单目、多目视觉。
当从一个摄像系统获取的二维图像中确定信息时,人们必须依赖对于物体形态、光照条件等的先验知识。
如果这些知识不完整,对深度的计算可能产生错误。
从两个或多个摄像系统获取的不同视觉方向的二维图像中,通过相关或匹配等运算可以重建物体的三维面形。
当被测目标的结构信息过分简单或过分复杂,以及被测目标上各点反射率没有明显差异时,这种计算变得更加复杂。
以两个摄像机为例,双摄像机的系统又称为双目视觉系统,双目视觉系统的几何关系是非常简单明确的,但由于遮掩或阴影的影响,被测物体某些部分有可能只出现在立体点对的一个观察点上。
有时CCD图像传感器由于能量被物体表面大量吸收而得不到足够的、由物体反射回来的能量,满足对应点匹配计算的候选点有可能出现假对应。
因此,被动三维传感的方法常常用于对三维目标的识别、理解以及用于位置、形态分析,这种方法的系统结构比较简单,目前在机器视觉领域应用广泛。
立体视觉的基本几何模型如图3[4]所示。
双目立体视觉(Stereo Vision)根据同一空间点在不同位置的两个相机拍摄的图像中的视差,以及摄像机之间位置的空间几何关系来获取该点的三维坐标值。
测量原理如图4[5]所示。
一个完整的立体视觉系统通常可分为六大部分,包括:(1)图像采集。
即通过图像传感器如数码相机等获得图像并将其数字化。
(2)摄像机标定。
就是通过实验和计算得到摄像机内外等参数。
(3)特征提取。
它是指从立体图像对中提取对应的图像特征,以进行后面的处理。
(4)图像匹配。
它将同一空间点在不同图像中的映像点对应起来,由此得到视差图像。
(5)三维信息恢复:由相机标定参数和两幅图像像点的视差关系,求出场景点的深度信息,把不同的深度信息量化为不同的灰度值来表示,进而恢复景物的三维信息。
(6)后处理:因恢复的三维信息有不连续性,所以要对恢复出的三维信息进行后处理。
图3 立体视觉的基本几何模型图4 双目立体视觉三维测量原理立体视觉法广泛应用于航空测量、机器人的视觉系统中,双目、多目以及多帧图像序列等立体视觉问题已经成为国际学术研究的重点和热点。
3.2 光学主动式三维测量目前,主动式光学三维测量测量技术已广泛用于工业检测、反求工程、生物医学、机器视觉等领域。
例如,复杂的叶轮和叶片的面形检测,汽车车身的检测,人类口腔牙型测量,整形外科效果评价,用于制鞋CAD的鞋楦三维数据采集,各种实物模型的三维信息记录与仿形等。
三维高速度、高精度测量技术将随着测量方法的完善和信息获取与处理技术的改进而进一步发展,在新的更加广阔的研究和应用领域中发挥重要作用。
主动式光学非接触测量技术大体上可分为飞行时间法、主动三角法、莫尔轮廓术、投影结构光法、自动聚焦法、离焦法、全息干涉测量法、相移测量法等。
以下对几种主要的方法进行以下简单介绍。
3.2.1 飞行时间法飞行时间法是基于三维面形对结构光束产生的时间调制,一般采用激光,通过测量光波的飞行时间来获得距离信息,结合附加的扫描装置使光脉冲扫描整个待测对象就可以得到三维数据。
飞行时间法以对信号检测的时间分辨率来换取距离测量精度,要得到高的测量精度,测量系统必须要有极高的时间分辨率,常用于大尺度远距离的测量。
3.2.2 干涉法干涉测量是将一束相干光通过分光系统分成测量光和参考光,利用测量光波与参考光波的相干叠加来确定两束光之间的相位差,从而获得物体表面的深度信息。
这种方法测量精度高,但测量范围受到光波波长的限制,只能测量微观表面的形貌和微小位移,不适于大尺度物体的检测。
3.2.3 主动三角法编码、彩色编码、相位编码以及混合编码等。
结构光法的优点是测量分辨率高、速度快,能够实现全场测量,图像传感器和投射器不需要遵守严格的几何位置关系;通过编码和解码确定出射点与成像点之间的对应关系可以很好的解决特征匹配问题。
图5 投影结构光三维测量系统原理图结构光一般分为云纹法和投影结构光法,投影结构光法(如图5[3])是一类面结构光三维测量技术,它采用光学投射器将光栅投影于被测物体表面,被表面形状所调制的光栅条纹由另一位置的相机拍摄,从而获得二维变形条纹图像。
条纹的变形程度取决于投射器与摄像机之间的相对位置和物体表面的高度,条纹在法线方向的位移(或偏移)与物体表面高度成比例。
当光学投射器与摄像机之间的相对位置一定时,由变形的条纹图像便可以重现物体表面形廓,即可以进行三维表面形貌测量。
投影条纹法因具有测量速度快、易自动化、柔性好和全场测量的特点,成为国内外三维形貌测量技术研究发展的重点。
常见的投影结构光法有傅立叶变化轮廓术和位相测量轮廓术。
3.2.5.1傅里叶变化轮廓术傅里叶变化轮廓术(FTP)相当于在把对空间信息的处理转化为对频率的处理。
其基本原理是投影条纹于物体表面,摄像机摄取变形的条纹图,对条纹图进行傅里叶变换、滤波、逆傅里叶变换的步骤提取条纹相位信息。
条纹的相位信息中包含了物体的形貌信息。
流程图如图6[11]所示。
傅里叶变化轮廓术具有全场、快速的特点,且能自动判定物体的凸凹,无需指定条纹级次和采用插值运算就能获得物体的高度分布,在实时和动态三维面形测量领域具有广泛的应用前景。
但是目前FTP的测量精度精度还不够高,在实际应用中还存在若干图6 FTP测量流程图困难,比如不完善相位图无法展开的问题,频谱混叠的影响等。
未来的研究重点是进一步提高FTP的测量精度,克服频谱混叠,不断优化频域滤波和相位展开算法,尽量减少测量过程中外界各种因素的干扰,以满足相关领域对三维面形数据快速、自动、实时获取的要求。
实际上,傅里叶变换光学可借鉴通信原理中的调制与解调的概念加以理解,故FTP的工作原理大致可描述为:(1)投影在被测物体三维面形(调制信号)表面的光栅结构光场(载波信号)受到调制得到连续分布的变形结构光场(已调信号),光栅结构光场的相位因此也受到物体三维面形高度分布的调制;(2)对连续分布的变形结构光场(己调信号)进行摄取(抽样),获得离散信息送计算机处理,经过离散傅里叶变换、频域滤波、逆傅里叶变换,计算出变形结构光场的相位信息;(3)根据相位与高度分布之间的映射关系,重建被测物体的三维面形。
3.2.5.2 相位测量轮廓术相位测量轮廓术(PMP)是以测量投影到物体上的变形条纹像的相位为基础,通过相位与高度的映射关系得到被测物体的三维形貌。