【最新】华师大版七年级数学下册第七章《解一元一次不等式(1)》导学案

合集下载

《一元一次不等式组的解法 》 教案精品 2022年数学

《一元一次不等式组的解法 》 教案精品 2022年数学

9.3 一元一次不等式组第1课时 一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念; 2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示一元一次不等式组的解集.(难点)一、情境导入你能列出上面的不等式并将其解集在数轴上表示出来吗? 二、合作探究探究点一:在数轴上表示不等式组的解集不等式组⎩⎪⎨⎪⎧x <3,x ≥1的解集在数轴上表示为( )解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共局部是1≤x <3.应选C.方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共局部在数轴上方应当是有两根横线穿过.探究点二:解一元一次不等式组解以下不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2x -3≥1,x +2<2x ; (2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,x 4≥x -13.解析:先求出不等式组中每一个不等式的解集,再求它们的公共局部.解:(1)⎩⎪⎨⎪⎧2x -3≥1,①x +2<2x .②解不等式①,得x ≥2,解不等式②,得x >2.所以这个不等式组的解集为x >2.将不等式组的解集在数轴上表示如下:(2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,①x 4≥x -13.②解不等式①,得x >1,解不等式②,得x ≤4. 所以这个不等式组的解集是1<x ≤4. 将不等式组的解集在数轴上表示如下:方法总结:解一元一次不等式组的一般步骤:先分别求出不等式组中每一个不等式的解集,并把它们的解集在数轴上表示出来,然后利用数轴确定这几个不等式解集的公共局部.也可利用口诀确定不等式组的解集:大大取较大,小小取较小,大小小大中间找,大大小小无处找.探究点三:求不等式组的特殊解求不等式组⎩⎪⎨⎪⎧2-x ≥0,x -12-2x -13<13的整数解.解析:分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数值即可.解:⎩⎪⎨⎪⎧2-x ≥0,①x -12-2x -13<13.②解不等式①,得x ≤2,解不等式②,得x >-3.故此不等式组的解集为-3<x ≤2,x 的整数解为-2,-1,0,1,2.方法总结:求不等式组的特殊解时,先解每一个不等式,求出不等式组的解集,然后根据题目要求确定特殊解.确定特殊解时也可以借助数轴.探究点四:根据不等式组的解集求字母的取值范围假设不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,那么实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-1解析:解第一个不等式得x ≥-a ,解第二个不等式得x <1.因为不等式组无解,所以-a ≥1,解得a ≤-1.应选D.方法总结:根据不等式组的解集求字母的取值范围,可按以下步骤进行:①解每一个不等式,把解集用数字或字母表示;②根据条件即不等式组的解集情况,列出新的不等式.这时一定要注意是否包括边界点,可以进行检验,看有无边界点是否满足题意;③解这个不等式,求出字母的取值范围.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的根底之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共局部.教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证15.1.2 分式的根本性质1.通过类比分数的根本性质,说出分式的根本性质,并能用字母表示.(重点) 2.理解并掌握分式的根本性质和符号法那么.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点) 4.能正确、熟练地运用分式的根本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分〞的记载,如?九章算术?中就曾记载“约分术〞,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的根本性质.二、合作探究探究点一:分式的根本性质【类型一】 利用分式的根本性质对分式进行变形以下式子从左到右的变形一定正确的选项是( )A.a +3b +3=a b B.a b =acbcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的根本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的根本性质,故D 错误;应选C.方法总结:考查分式的根本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+x C.2x +1020+5x D.2x +12+x解析:利用分式的根本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x .应选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的根本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法那么不改变分式的值,使以下分式的分子和分母都不含“-〞号. (1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b 2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式以下分式是最简分式的是( ) A.2a 2+a ab B.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,那么它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,那么它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),那么它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.应选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的根本性质把公因式约去. 解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3〔-a 2〕5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x 〔x -2y 〕x 〔x -2y 〕2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分: (1)b 3a 2c 2,c -2ab ,a5cb 3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c30a 2b 3c2;(2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a 〔a +2〕〔a -2〕,aa +2=a 3-2a 2a 〔a +2〕〔a -2〕,1a 2-4=aa 〔a +2〕〔a -2〕.方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的根本性质1.分式的根本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法那么:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;假设只改变其中一个的符号或三个全变号,那么分式的值变成原分式值的相反数.本节课的流程比拟顺畅,先探究分式的根本性质,然后顺势探究分式变号法那么.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。

2024年华师大版七年级下册数学全册教案设计

2024年华师大版七年级下册数学全册教案设计

2024年华师大版七年级下册数学全册教案设计一、教学内容详细内容包括:1. 第一章整式的乘除:单项式乘以单项式,单项式乘以多项式,多项式乘以多项式,除法的基本概念与运算法则。

2. 第二章等式与不等式:一元一次方程的解法,一元一次不等式组的解法,不等式的性质与运用。

3. 第三章函数的初步认识:函数的定义,函数的表示方法,函数的性质,实际应用问题。

4. 第四章角的度量与三角形:角的度量,三角形的基本概念,三角形的性质,全等三角形的判定与性质。

5. 第五章数据的收集与处理:数据的收集与整理,数据的表示方法,概率的基本概念。

二、教学目标1. 理解并掌握整式的乘除法则,能够熟练地进行整式的乘除运算。

2. 学会解一元一次方程和不等式,理解不等式在实际问题中的应用。

3. 理解函数的基本概念,掌握函数的表示方法,能够解决简单的函数问题。

4. 掌握角度的度量,理解三角形的基本性质,学会全等三角形的判定与性质。

5. 能够收集、整理和分析数据,了解概率的基本概念。

三、教学难点与重点1. 教学难点:整式的乘除法则,一元一次方程和不等式的解法,函数的概念与性质,全等三角形的判定与性质。

2. 教学重点:整式的运算,一元一次方程和不等式的应用,函数的表示与性质,角度的度量,数据的收集与处理。

四、教具与学具准备1. 教具:多媒体课件,黑板,粉笔,几何模型。

2. 学具:数学教材,练习本,文具。

五、教学过程1. 实践情景引入:通过生活实例,引出整式的乘除运算,激发学生学习兴趣。

a. 讲解实例,引导学生观察、思考。

2. 例题讲解:a. 选取典型例题,讲解整式的乘除法则。

b. 演示解题过程,强调关键步骤。

3. 随堂练习:a. 学生独立完成练习题,巩固所学知识。

b. 教师巡回指导,解答学生疑问。

4. 知识点讲解与巩固:a. 讲解一元一次方程和不等式的解法,进行巩固练习。

b. 引导学生探究函数的概念、表示方法及性质,通过实例加深理解。

c. 学习角度的度量,掌握三角形的基本性质,学习全等三角形的判定与性质。

华师大版数学七年级(下册)说教材

华师大版数学七年级(下册)说教材

1、通过列出一次方程组解决有多个未知数的实际问题, 理解一次方程组及其解的基本概念,进一步体会方程和 方程组是刻画现实世界数量关系的有效模型. 2、掌握代入消元法和加减消元法,能解二元一次方程组. 3、能解简单的三元一次方程组.(选学) 4、通过探求一次方程组的解法,经历从二元一次方程 组到一元一次方程转化的过程,体会“消元”和“化归” 的数学思想方法。 5、会根据实际问题中的数量关系列出一次方程组并求 解,能检验所得结果是否符合题意。
如图,长青化工厂与A、B两地有公路、铁路相连。 这家化工厂从A地购买一批每吨1000元的原料运回工厂, 制成每吨8000元的产品运到B地 ,已知公路运价为1.5 元/(吨· 千米),铁路运价为1.2元/(吨· 千米),且这 两次运输共支出公路运费15000元,铁路运费97200元, 这批产品的销售款比原料费与运费的和多多少元 ?
总体建议: 概念——淡化形式,注重理解 解法——抓住方程的基本变形 应用——突出数学建模思想
具体建议:
§6.1 从实际问题到方程
本节课是方程的引入部分,课本以学生熟悉的实际问题入手, 展开方程的学习,通过“计算租用客车数”、“计算老师年龄” 两个实际问题,引入一元一次方程,激发学生的兴趣。 对于问题1,极有可能不少同学立即报出结果,此时可创设两 种情景:①64人已经上车,剩下的人需44座客车多少辆。②校车 与租用客车的座位之和与师生总人数有何关系。便于引导学生初 步比较算术解法与列方程解在分析数量关系上的区别。问题2的设 计富有层次感,吻合学生的认知实际和心理规律,不要急于给出 方程,甚至可设问“过多少年,老师年龄是学生年龄的两倍还要 多两岁?”,在类比对照中体会方程所带来的直接明了的优点。 在试验得出方程解的过程中,与学生一起领悟,检验一个数是不 是方程的解的方法。利用思考题和P3习题可充分增强学生对下一 堂课学习的兴趣与愿望。习题2是一道开放题,再一次实实在在地 让学生参与到学习中来。

【最新】华师大版七年级数学下册第六章《解一元一次方程(1)》导学案

【最新】华师大版七年级数学下册第六章《解一元一次方程(1)》导学案

新华师大版七年级数学下册第六章《解一元一次方程(1)》导学案【学情分析】学生已学会利用方程的变形规则解一些简单的方程,本节继续学习解含有括号的一元一次方程,正确去括号是本节课的一个重点和易错点。

【学习内容分析】本节课是前一节课的特殊化及提升,先介绍一元一次方程的概念,然后解含括号的一元一次方程。

【学习目标】1、了解一元一次方程的概念,掌握含括号的一元一次方程的解法。

2.能用去括号、移项,化系数为一来解一元一次方程。

3、通过解方程,培养观察、分析、概括和转化的能力,提高运算能力。

【重难点预测】重点:一元一次方程的概念和含括号的一元一次方程的解法。

难点:利用分配律去括号时的符号变化。

【学习过程】一、课前展示:(3分钟)上节课典型错题展示二、知识链接(3分钟)1、去括号法则:⑴+(2a-3b+c) =___________;⑵-(4a+3b-4c) =___________;2、去带有系数的括号的依据:乘法分配律⑴2(x+2y-2) =___________;⑵-3(x-y-1) =___________;提示:解题时要注意:①要看清括号前的系数②注意括号前是“+”号还是“-”号;三、明确目标、自学指导【学习目标】(1分钟)1、了解一元一次方程的概念,掌握含括号的一元一次方程的解法。

2.能用去括号、移项,化系数为一来解一元一次方程。

3、通过解方程,培养观察、分析、概括和转化的能力,提高运算能力。

【自学指导】认真看P9~10练习前的内容,思考:1、一元一次方程中的“一元”指______________,“一次”指__________________;2、解带有括号的一元一次方程时,第一个步骤一般是__________;4分钟后,比谁能正确地做出相关习题。

四、自主学习,检测练习。

(12分钟)1、学生看书,教师巡视,确保人人紧张看书。

2、检测练习:p10 练习1(1)、(2)、2五、组间展示、点评,达成共识(10分钟)1、个人独立自学后,小组内个人展示、交流。

华师大版数学七年级下册整册教学课件

华师大版数学七年级下册整册教学课件

华师大版数学七年级下册整册教学课件教学内容:一、教材章节与内容1. 第一章:平面图形1.1 平面图形的认识1.2 线段的性质1.3 角的概念1.4 相交线与平行线2. 第二章:几何变换2.1 轴对称变换2.2 平移变换2.3 旋转变换3. 第三章:三角形3.1 三角形的性质3.2 三角形的分类3.3 三角形的内角和3.4 三角形的外角4. 第四章:解一元一次方程4.1 解一元一次方程的概念4.2 解一元一次方程的步骤4.3 方程的解与解方程5. 第五章:不等式与不等式组5.1 不等式的概念5.2 不等式的性质5.3 解一元一次不等式5.4 不等式组的解法教学目标:1. 学生能够掌握平面图形的性质和分类,理解线段、角的概念,以及相交线与平行线的关系。

2. 学生能够理解并应用几何变换的原理,包括轴对称变换、平移变换和旋转变换。

3. 学生能够掌握三角形的性质、分类、内角和外角的概念,以及解三角形的相关知识。

4. 学生能够理解一元一次方程的概念,掌握解方程的步骤,以及解方程的方法。

5. 学生能够理解不等式的概念和性质,掌握解一元一次不等式的步骤,以及解不等式组的方法。

教学难点与重点:难点:1. 几何变换的原理和应用。

2. 三角形的内角和外角的性质和计算。

3. 一元一次方程的解法和应用。

4. 不等式的性质和解法。

重点:1. 平面图形的性质和分类。

2. 几何变换的类型和解题方法。

3. 三角形的性质和分类。

4. 一元一次方程的解法和应用。

5. 不等式的性质和解法。

教具与学具准备:1. 教具:黑板、粉笔、直尺、圆规、剪刀、彩笔等。

2. 学具:学生用书、练习本、铅笔、橡皮、尺子、彩笔等。

教学过程:一、实践情景引入(5分钟)教师通过展示实际生活中的几何问题,引导学生观察和思考,引发学生对平面图形的兴趣。

二、教材内容讲解(15分钟)教师按照教材的章节顺序,逐章讲解每个章节的内容,包括平面图形的性质和分类、几何变换的原理、三角形的性质和分类、一元一次方程的解法、不等式的性质和解法。

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。

2、能够根据具体问题中的大小关系了解不等式的意义。

3、掌握不等式的基本性质。

4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。

其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。

1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。

观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。

华师大版七下数学8.2《解一元一次不等式(2)》教学设计

华师大版七下数学8.2《解一元一次不等式(2)》教学设计

华师大版七下数学8.2《解一元一次不等式(2)》教学设计一. 教材分析《解一元一次不等式(2)》是华师大版七下数学的一个重要内容。

这部分内容是在学生已经掌握了不等式的概念、性质以及解一元一次不等式的基础上进行学习的。

本节课的主要内容是让学生进一步掌握解一元一次不等式的方法,并能灵活运用。

二. 学情分析学生在学习本节课之前,已经掌握了不等式的基本概念和性质,也学习了解一元一次不等式。

但是,对于解一元一次不等式的具体方法,部分学生可能还不是很清晰,需要通过本节课的学习来进一步巩固。

三. 教学目标1.让学生掌握解一元一次不等式的基本方法。

2.培养学生解决实际问题的能力。

3.提高学生的数学思维能力。

四. 教学重难点1.教学重点:解一元一次不等式的方法。

2.教学难点:如何将实际问题转化为不等式,并灵活运用解不等式的方法解决问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。

通过设置问题,引导学生思考,通过案例分析,让学生掌握解不等式的方法,通过小组合作,培养学生的团队协作能力。

六. 教学准备1.准备相关的教学案例和问题。

2.准备PPT,用于辅助教学。

七. 教学过程1.导入(5分钟)通过一个实际问题引入本节课的主题,让学生思考如何将实际问题转化为不等式,激发学生的学习兴趣。

2.呈现(15分钟)通过PPT,展示和解说解一元一次不等式的基本方法,让学生理解和掌握。

3.操练(20分钟)让学生通过PPT上的练习题进行自主学习和练习,教师进行个别辅导,帮助学生巩固所学知识。

4.巩固(10分钟)通过一些实际问题,让学生运用所学知识解决问题,巩固解不等式的方法。

5.拓展(10分钟)让学生通过小组合作,解决一些综合性的问题,提高学生的数学思维能力。

6.小结(5分钟)对本节课的内容进行小结,让学生明确所学知识。

7.家庭作业(5分钟)布置一些相关的家庭作业,让学生进行巩固练习。

8.板书(5分钟)板书本节课的主要知识点和解题方法,方便学生复习。

2024年新华师大版七年级数学下册全册教案

2024年新华师大版七年级数学下册全册教案

2024年新华师大版七年级数学下册全册教案一、教学内容1. 第五章:概率初步5.1 随机事件5.2 概率的计算5.3 概率的性质2. 第六章:平面几何6.1 直线、射线和线段6.2 角6.3 多边形6.4 平行线与相交线3. 第七章:一元一次不等式与方程7.1 不等式及其解集7.2 不等式的性质7.3 一元一次方程的解法7.4 实际问题与一元一次方程二、教学目标1. 理解并掌握概率的基本概念和性质,能够运用概率知识解决实际问题。

2. 掌握平面几何的基本概念,能够正确绘制图形,并解决简单的几何问题。

3. 学会解一元一次不等式与方程,能够将实际问题转化为数学模型并求解。

三、教学难点与重点1. 教学难点:概率的计算与应用平行线与相交线的性质一元一次不等式与方程的解法2. 教学重点:概率的基本概念与性质平面几何图形的认识与绘制实际问题与一元一次不等式、方程的转化四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规、三角板等。

2. 学具:学生用书、练习本、铅笔、直尺、圆规、三角板等。

五、教学过程1. 实践情景引入:通过抛硬币、抽签等游戏,引导学生理解随机事件和概率的概念。

通过观察生活中常见的几何图形,引入平面几何的学习。

以实际生活中的问题为例,引出一元一次不等式与方程的学习。

2. 例题讲解:选取典型例题,讲解概率的计算方法。

选取平面几何的典型图形,讲解图形的性质和绘制方法。

选取实际问题,讲解一元一次不等式与方程的解法。

3. 随堂练习:设计相关练习题,巩固概率的计算和应用。

设计几何图形绘制题,巩固平面几何的知识。

设计实际问题求解题,巩固一元一次不等式与方程的解法。

4. 课堂小结:六、板书设计1. 概率初步:随机事件、概率的计算和性质2. 平面几何:直线、射线、线段、角、多边形、平行线与相交线3. 一元一次不等式与方程:不等式及其解集、不等式的性质、一元一次方程的解法七、作业设计1. 作业题目:计算:抛硬币5次,求出现正面朝上的概率。

一元一次方程[下学期]--华师大版-

一元一次方程[下学期]--华师大版-

教学方法、教学手段的选择
让学生参与知识的形成过程,改变了传统教
材“给出法则,让学生模仿练习”的框架, 在解方程的教学上打破常规,在学生理解方 程的简单变形及合理性的基础上,鼓励学生 自行探索、掌握解一元一次方程的一般步骤。 在几个阶段性小结中,让学生进行归纳、综 合,体现课程标准所提出的“注重知识间的 联系,重视学生学习能力培养”的要求。 整节课采取精讲多练、讲练结合的方法来落 实知识点。
关于新课引入
预备知识:一队师生共328人,乘车外出旅游,已有校车
可乘64人,如果租用客车,每辆可乘44人,那么还要租多少 辆客车?
概念:前面遇到过的一些方程,例如 : 44x+64=328 13+x=3(45+x)等等,有一个 共同特点,它都只含有一个未知数,并且 含有未知数的式子都是整式,未知数的次 数是1,这样的方程叫做一元一次方程。
练习: …… ……
…… …… …… …… …… …… ……
; 978电影网 https:/// 978电影网

现在一心向道,其余一切都皆尘土!"夜剑受到众人の夸赞和奉承,脸上神情却没有一丝改变,依旧一副淡淡の温和神情,一副得道高人の模样. "父亲,父亲!你呀可要给孩儿做主啊,白重炙他…" 夜轻狂一件夜剑宛如王者一样,强势归来.脸上神情顿时激动万分起来,等待夜剑和众长老寒暄完 毕,连忙ha话上来,想着借着夜剑王者归来の势头,彻底把这事给了了. "啪!" 回应他の是一些响亮の巴掌,夜剑神情还是没有变,一本巴掌将夜轻狂の嘴直接封住了,这才轻飘飘の收回手掌,淡淡の转过头看着白重炙说道:"少族长,轻狂给俺宠坏了,你呀别在意!夜泉,还不把这个蠢货给俺带 回去?还嫌丢人没丢够?" 当前 第叁肆叁章 夜刀の枪能拐弯? 夜剑の一些毫无烟火气の响亮巴掌,将众人震得一愣,也将夜轻狂和白重炙震傻了,直到夜泉直接将夜轻狂两兄弟以及萧炎拉出了刑堂,众人才清醒过来,神情复杂の暗自思量起来.看书 这…夜剑唱の是那出啊? "大伯,不必如此,此 事轻寒也有错!" 白重炙微微一笑说道,不过他眼睛却是再次眯了起来,他感觉到了一丝危险! 夜剑这几年在罪过崖看来不仅实力大进,一举捅破圣人境,成为大陆顶级の强者.并且…这心智也变得更加狠辣了啊.变得让他都感觉到非常危险了,伪君子往往比真不咋大的人更难对付! 夜剑实 力大进,本该意气风发,但是却平淡如水.今日和夜轻狂之间の纷争,想必他也知道了,但他非但没有借势发飙,反而一副对白重炙服软,间接低头の态度.白重炙不相信,他们两人の仇恨夜剑会真正の忘记,一心向道.所以他本能の感觉今日の夜剑,非常の危险. …… 夜剑当然了解了事情の全部 经过,昨夜他终于成功突破了最后一步,迈入了圣人境.早上去后山请了罪,夜天龙很是欣慰,鼓励几句让他先回来休息,以后再封赏. 他回到了阔别六年の西园不咋大的院,见到了他の九个姨太太.六年ji渴,本欲一同搞搞群战,一起喝喝早茶.不料却再次接到了下人の通道,夜轻狂和白重炙去了 刑堂,击鼓鸣冤. 他没有直接过来,而是让人打探了全部事情经过,这才匆匆赶来. 夜轻狂能实力暴涨,他虽然很疑惑,但是却很是欣慰.只是当他老远就听到夜轻狂在刑堂愤怒の狂叫の时候,他无比失落! 都是一枪一炮干出来の子弟,差距怎么就那么大?夜刀の枪莫非就能拐弯吗? …… 将几 个蠢货儿子直接一巴掌拍了回去,夜剑含笑打量起,眼前这位生猛の让他都嫉妒の青年.他奋斗一身都没得到の少族长位置,竟然被这当年被世家视为废物の青年轻松拿下了,并且还是永不更改の? "少族长,今天这事给俺个面子算了如何?俺会回去好好教育下,你呀几个不成器の兄长の!" 夜 剑温和の开口了,满脸慈祥の笑容很像一些可亲の长辈.这话说得很有艺术,既给了白重炙很大の面子,又点名了兄长二字,意思都是一家人,没有必要搞那么绝? 夜剑一开口,众人将目光投向了白重炙.毕竟白重炙如果要闹の话,最后将事情闹到后山去,夜轻狂可能又要去边陲不咋大的城吹海风 了. "大伯说笑了,本就没什么大事,俺和两位兄长闹着玩哪!"白重炙の眼睛更加眯了,满脸笑容,宛如一些无害の亲和青年. "嗯,那就好!诸位有时候去俺园子喝杯酒吧,俺就先回去了!"夜剑很满意の点了点头,朝众人点了点头,准备离去. "等等!" 而这时,白重炙再次开口了,将场中原本 轻松下来の气氛,又变得紧张起来. "嗯?少族长,还有什么吩咐?"夜剑停住脚步,面色不变,很是尊敬の说道.他很懂规矩,虽然他已经达到了圣人境,但是一日没有被赐予太上长老の位置,那么白重炙の地位永远比他高. "咳!" "咳!" 这时夜枪和夜天青,却同时假装咳嗽起来,两人纷纷朝白重 炙递过去一些眼神,意思很明显,事情到达现在の地步,已经非常天阶了,不咋大的祖宗,你呀别闹了行不? "嗯,还有件事情,俺想征询一下大伯の意见!" 白重炙却宛如没有看到两人の眼神,微微一笑,指着旁边の夜无边说道:"俺想请求长老堂开个会,解除夜无边和萧炎の婚事.萧炎の品行不 是非常好,无边嫁给他有些可惜了.而萧炎毕竟是大伯你呀の亲外甥,俺想和你呀打个招呼,这事没有针对你呀の意思,只是…" "嗯!" 夜剑点了点头,直接挥手制止了白重炙の解释,反而很认真の说道:"少族长不用解释了,俺懂了!这长老堂会议也不用开了,这婚事…就此作罢.萧家俺会去打 招呼の,不咋大的事一件,以后有这种事情,没有必要闹到长老堂去,直接和俺说说就行!都是一家人,没有什么说不清楚の,不是?" "多谢大伯成全,无边还不拜谢?"白重炙呵呵一笑,眼中意味却是更加浓重了,转头对着夜无边说道. "嗯?" 夜无边还傻乎乎の站着,正不敢相信の想着,自己苦恼 了几年の婚事,为何在白重炙和夜剑两人轻飘飘の几句话就解除了? 旁边の夜无双倒是清醒の快,连忙拉着夜无边重重跪下,磕头起来:"多谢夜剑长老成全,无双兄妹一辈子感激你呀,多谢少族长,嗯,俺…啥也不说了!" 夜剑温和一笑,转身离去,步法依旧稳健有力,背影很是高大. …… 事情 闹完了,本来一场轰轰烈烈の官司,在夜剑出场之后,被他毫无烟火气の一巴掌,和几句轻飘飘の话就轻松解除了.没热闹可看了,众长老纷纷离去.而白重炙没有停留,客气寒暄几句带着夜轻舞和夜轻语离开了. 回到寒心阁,白重炙让夜轻舞和夜轻语上去休息,毕竟闹了大半天,两人也很是疲惫. 而他却是独自一人坐在大厅,望着门外の一排排风景树沉默起来. 今日之事让他明白一些东西,但是又产生了更多疑惑,让他了解了一些暗地の危险,但是却发现更多の危险却悄悄接近. "少族长!" 就在这时外面翠花带着几人走了进来,赫然正是夜天行和夜无双兄妹.夜天行不是不想解除这 婚事,而是他无力解除,今日白重炙算是帮了他们祖孙三人一些大忙,刚才不好当面说,现在肯定要来登门感谢一下. "少族长,你呀要不咋大的心夜剑!他很危险…" 一番感谢,一番客气,一番寒暄.夜天行留下一句传音,带人飘然离去. 白重炙送别几人,再次对着门外の一拍风景树沉思起来,无 须夜天行提醒.他知道,此时の夜剑很危险,几多の危险,比他以往遇到の任何一些敌人,都要危险! 当前 第叁肆肆章 老子当年怎么没把你呀射墙上? 文章阅读 夜剑回到了自己居住の园子,拒绝了九姨太要和他喝茶の邀请,直接去了书房.请大家检索(品#书……网)看最全!更新最快の书 房内,夜泉在一样恭敬の站着,而夜轻狂和白重炙则在地上低着头跪着,没有说话.显然是受到了夜泉の提醒,想通了某些事情,在这等着夜剑训斥哪. 夜剑没有说话,直接坐下了,朝夜泉挥了挥手,示意让他出去.待夜泉出去,他才慢条斯文端起一杯茶,慢慢の喝了起来. "懂了?" 半晌之后,夜剑 才把茶杯放下,淡淡说道. "孩儿明白了,是孩儿愚昧!"夜轻狂见夜剑终于开口了,松了一口气,连忙和白重炙一起说道. "懂了就好!"夜剑温和一笑,把目光定在白重炙身体上,开口了:"轻闲,你呀直接去练功房,什么时候修炼到诸侯境,什么时候出来吧!" 夜剑笑容很温和,语气很清淡.但是 白重炙の脸却瞬间变成了紫色.本还指望,他父亲强势归来了,他又可以成为名正言顺の二公子了,可以整日流连在十三长街上了,没想到却被直接禁闭了.诸侯境!他现在才元帅境一重,这…这是要bi死他啊,他这修炼速度没十年想必是不能出来了. 十年!难道要他,十年内靠…撸管解决生理 问题? "父,父亲大人,俺能再外面修炼吗?俺,俺保证努力修炼…"白重炙想到十年内天天只能撸管度日,不禁面若死灰.沉吟许久,终于鼓起极大の勇气,勇敢开口了. "两条路,要么按刚才俺说の.要么你呀现在就去收拾东西,直接去边陲不咋大的城吧,这辈子就待那,终身别回白家堡,两条路… 随便你呀选!"夜剑端起茶水,看都的 概念,有过解方程的实际体验,只是 没有纳入完整的数学学习体系;这个 年纪的学生思维活跃,但容易粗枝大 叶,需要贯彻步步有依据的理念;这 个年龄阶段的学生非常需要别人的肯 定,学好方程必定会对培养学习数学 的兴趣有很大的帮助。

华师大版数学七年级下册全册教案

华师大版数学七年级下册全册教案
四、教学目标
1、知识与技能:①了解方程、一元一次方程、二元一次方程组以及方程(组)的解等基本概念,了解方程的基本变形及其在解方程(组)中的作用。会解一元一次方程、二元一次方程组,并经历和体会解方程中转化的过程与思想,了解解方程(组)解法的一般步骤,并能灵活运用。②了解三角形的内角、外角及其主要线段(中线、高线、角平分线)等概念,会画出任意三角形的中线、高线和角平分线,了解三角形的稳定性,了解几种特殊三角形与多边形的特征,并能加以简单的识别,探索并掌握三角形的外角性质与外角和,理解并掌握三角形三边关系,探索、归纳多边形的内角和秘外角和公式。③通过具体实例认识轴对称探索线段、角和圆等图形的轴对称性,了解线段中垂线的性质和角平分线的性质,会画轴对称图形并探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分的性质,能利用轴对称进行图案设计,了解等腰三角形的概念掌握其性质和其识别方法。④让学生知道普查和抽样调查的区别,感受抽样调查的必要性和现实性,体会选取有代表性的样本对正确估计总体是十分重要的,会求平均数、中位数、众数并了解它们各自适用范围,体验随机事件在每一次实验中是否发生是不可预言的,但在大数次反复实验后是有规律的。
本章难点:正确理解三角形的高、中线及角平分线的性质并能作图,及三角形内角和的证明与多边形内角和的探究。
第十章:轴对称图形是通过观察与操作,让学生感知确认最为简单的变换——轴对称中隐含着的数学不变量关系,同时辅以数学说理,给学生一定的理性训练与图形变换的思想。
本章重点:轴对称中隐含着的数学不变量关系,同时辅以数学说理
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
我们再来看下面一个例子:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?

七年级数学下册解一元一次不等式3解一元一次不等式第1课时一元一次不等式及其解法习题课件新版华东师大版

七年级数学下册解一元一次不等式3解一元一次不等式第1课时一元一次不等式及其解法习题课件新版华东师大版

解,则a可取的最小正整数为( D )
A.2 B.3 C.4
D.5
8.【中考·荆门】已知关于x的不等式3x-m+1>0的最小
整数解为2,则m的取值范围是( A )
A.4≤m<7
B.4<m<7
C.4≤m≤7
D.4<m≤7
*9.【中考·天水】若关于x的不等式3x+a≤2只有2个正整数 解,则a的取值范围为( ) A.-7<a<-4 B.-7≤a≤-4 C.-7≤a<-4 D.-7<a≤-4
4.【中考·嘉兴】不等式3(1-x)>2-4x的解集在数轴上 表示正确的是( A )
*5.【中考·呼和浩特】若不等式2x+ 3 5-1≤2-x 的解集中 x 的每一个值,都能使关 x 的不等式 3(x-1)+5>5x+
2(m+x)成立,则 m 的取值范围是( )
A.m>-35 C.m<-35
B.m<-15 D.m>-15
(3)解决问题: ①|x-4|+|x+2|的最小值是____6____; ②如图②,利用上述思想方法解不等式:|x+3|+|x- 1|>4; 解:如图,可知不等式|x+3|+|x-1|>4的解集为x< -3或x>1.
③当a为何值时,式子|x+a|+|x-3|的最小值是2. 解:当a为-1或-5时, 式子|x+a|+|x-3|的最小值是2.
【点拨】去分母时不要漏乘项,不等式两边同乘(或 除以)负数时,不等号改变方向.
解:错误的是①②⑤. 正确解法:去分母,得3(1+x)-2(2x+1)≤6. 去括号,得3+3x-4x-2≤6. 移项,得3x-4x≤6-3+2. 合并同类项,得-x≤5. 两边都除以-1,得x≥-5.
12.【中考·淮安】解不等式 2x-1>3x-2 1. 解:去分母,得 2(2x-1)>3x-1.

七年级下册《9.2 一元一次不等式》教案、导学案、同步练习

七年级下册《9.2 一元一次不等式》教案、导学案、同步练习

《9.2 一元一次不等式》教案一第1课时 一元一次不等式的解法【教学目标】1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;2、对比一元一次不等式的解法与一元一次方程的解法,让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。

【教学重点】:熟练并准确地解一元一次不等式。

【教学难点】:熟练并准确地解一元一次不等式。

【教学过程】(师生活动)提出问题:某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s ,导火索的长x(m)应满足怎样的关系式?你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.探究新知1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.2、例题.解下列不等式,并在数轴上表示解集:(1)32x ≤50 (2)-4x<3 (3)7-3x ≤10(4)2x-3<3x +1分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同? 让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。

巩固新知1、解下列不等式,并在数轴上表示解集:(1)7671 x (2)-8x<102、用不等式表示下列语句并写出解集:(1)x 的3倍大于或等于1;(2)y 的41的差不大于-2.解决问题测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m 的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?总结归纳:围绕以下几个问题:1、这节课的主要内容是什么?2、通过学习,我取得了哪些收获?3、还有哪些问题需要注意?让学生自己归纳,教师仅做必要的补充和点拨.布置作业:教科书第120页 习题9.1第6题9.2实际问题与一元一次不等式(一)【教学目标】1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。

华东师大版七年级下册数学:8.3一元一次不等式(组)的应用学案(2)(无答案)

华东师大版七年级下册数学:8.3一元一次不等式(组)的应用学案(2)(无答案)

一元一次不等式(组)的应用(2)一、学习目标:1、会分析应用题中各个量之间的关系。

2、会根据题意列出不等式组,并进行解答。

二、重点:会根据题意列出不等式组三、学习和探究:例题1:在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽树种,如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得道的树苗少于5棵(但至少分得一棵)。

(1)设初三(1)班有x名同学,则这批树苗有多少棵?(用含x的代数式表示)。

(2)初三(1)至少有多少名同学?最多有多少名?解:(1)(2)不等关系:变式:1、幼儿园把新购进的一批玩具分给小朋友,若每人3件,那么还剩59件,若每人5件,那么最后一个小朋友分到玩具,但不足4件。

这批玩具共有多少件?2、某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。

如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本。

设该校买了m x x本课外读物,有名学生获奖。

请解答下列问题:(1)用含的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数。

3、见教材53页练习第4题。

种产品共80件,生产一件A产品需要甲种原料5千克,乙种原料1.5千克,生产成本是120元,生产一件B产品,需要甲种原料2.5千克,乙种原料3.5千克,生产成本为200元。

(1)该化工厂现有的原料能否保证生产,若能的话,有几种生产方案,请设计出来。

(2)设生产A、B两种产品的总成本为y元,其中一种的件数为x,试用含x的代数式表示y,并说明(1)中哪种生产方案总成本最低,最低成本为多少?解:(1)不等关系:、(2)变式:1、某县为筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需要甲种花卉50盆、乙种花卉90盆。

数学华东师大版七年级下册解一元一次不等式

数学华东师大版七年级下册解一元一次不等式

一元一次不等式教学设计一、简介:本节课的主题:通过学生的亲身参与以及自主学习,使学生能自己总结出一元一次不等式的定义及解法,并在练习中得以巩固。

在师生互动和共同发展的过程中,将学生推到学习的前沿,充分发挥学生的自主研究问题的能力和主观能动性。

关键信息:1、依据《数学课程标准》,有效的教学一定要从学生已经知道了什么开始,本节教学过程中,始终将一元一次方程与一元一次不等式的教学进行类比贯穿其中。

意在使学生体会知识之间的内在联系,整体上把握知识,发展学生的辩证思维。

2、通过探究学习,教师与学生共同努力营造宽松、愉悦的课堂氛围,最大限度的调动学生参与思考的积极性。

培养学生主动学习的能力。

二、学习者分析:1、学生的年龄特点和认知特点:初中七年级下的学生,已经有了一些解决问题的能力。

他们有着强烈的自我发展,自主学习的要求,已不满足于老师的满堂灌,而是有着自己探究新知的渴望。

这使得我们在学习活动的安排上,除了关注学生掌握数学知识之外,更应该注重学生动手实践、探索新知的过程。

虽然不同基础的学生对知识的理解程度不同,但只要全体学生共同参与进来,这本身就是学生体验数学的重要过程。

2.在学习本课之前应具备的基本知识和技能:知道自然界中存在着大量的不等关系,知道不等式的定义,熟练应用不等式的基本性质,会在数轴上将不等式的解集表示出来,会解一元一次方程。

3、学习者对即将学习的内容已经具备的水平:1)了解一元一次不等式中的元及次的意义,知道一元一次方程解法的推导过程。

2)具有较强的自我解决问题的意识,愿意在教师的引导和相互交流中发表自己的见解,有强烈的合作意识。

三、教学学习目标及其对应课程标准:1.知道什么是一元一次不等式.2.能解数字系数的一元一次不等式,并能在数轴上表示出解集.3.类比一元一次方程的解法学习一元一次不等式的解法,体会“类比思想”的应用.重点:能解数字系数的一元一次不等式,并能在数轴上表示出解集.四、教育理念和教学方式:1、在教学中创设一种师生交往的互动的教学关系,引导学生经历“做数学”的过程,并在这个过程中与学生平等的交流和给于恰当的点拨,不断创设将学生置于问题情境之中的机会,营造一个激励探索的氛围。

【最新】华师大版七年级数学下册第八章《一元一次不等式复习一》导学案

【最新】华师大版七年级数学下册第八章《一元一次不等式复习一》导学案

【一】预习交流。 1.不等式 做不等式. 常见的不等号有五种: 2.不等式的解与解集 不等式的解: 不等式的解集: . . .
x a x b
x a x b
x a x b
b
a
(同小取小)
b
a
(大大小小中间找)
b
a
(大小小大找不了)
9.解一元一次不等式组的步骤 (1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些解集的公共部分,即这个不等式组的解集. 【二】明确目标。 【三】分组合作 【四】展现提升。
说明:不等式的解与一元一次 方程的解是有区别的,不等式 的解是不确定的,是一个范 围,而一元一次方程的解则是 一个具体的数值. 说明:常见不等式所表示的基 本语言与含义还有: ①若 a-b>0,则 a 大于 b ; ②若 a-b<0,则 a 小于 b ; ③若 a-b≥0, 则 a 不小于 b ; ④若 a-b≤0, 则 a 不大于 b ; ⑤若 ab>0 或 a 0 ,则 a、b b 同号; ⑥若 ab<0 或 a 0 , 则 b a、b 异号。 任意两个实数 a、b 的大小 关 系 : ①a-b>O a>b ; ②a-b=O a=b; ③a-b<O a<b. 不等号具有方向性,其左右两 边不能随意交换:但 a<b 可 转换为 b>a, c≥d 可转换为 d ≤c。 说明:解一元一次不等式和解 一元一次方程类似.不同的 是:一元一次不等式两边同乘 以(或除以)同一个负数时,不 等号的方向必须改变,这是解 不等式时最容易出错的地方 说明:判断一个不等式组是一 元一次不等式组需满足两个 条件:①组成不等式组的每一 个不等式必须是一元一次不 等式,且未知数相同;②不等 式组中不等式的个数至少是 2 个,也就是说,可以是 2 个、 3 个、4 个或更多.

《一元一次不等式》精品导学案 人教版七年级数学下册导学案

《一元一次不等式》精品导学案 人教版七年级数学下册导学案

9.2 一元一次不等式【总结解题方法 提升解题能力】 【知识点梳理】一、一元一次不等式的概念只含有一个未知数, 未知数的次数是一次的不等式, 叫做一元一次不等式, 例如,2503x >是一个一元一次不等式. 二、一元一次不等式的解法1、解不等式:求不等式解的过程叫做解不等式.2、一元一次不等式的解法:与一元一次方程的解法类似, 其根据是不等式的根本性质, 将不等式逐步化为:a x <〔或a x >〕的形式, 解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >〔或ax b <〕的形式〔其中0a ≠〕;(5)两边同除以未知数的系数, 得到不等式的解集.3、不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来, 能形象地说明不等式有无限多个解, 它对以后正确确定一元一次不等式组的解集有很大帮助.三、常见的一些等量关系1、行程问题:路程=速度×时间2、工程问题:工作量=工作效率×工作时间, 各局部劳动量之和=总量3、利润问题:商品利润=商品售价-商品进价,4、和差倍分问题:增长量=原有量×增长率5、银行存贷款问题:本息和=本金+利息, 利息=本金×利率6、数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.四、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似, 通常也需要经过以下几个步骤:(1)审:认真审题, 分清量、未知量及其关系, 找出题中不等关系要抓住题中的关键字眼, 如“大于〞、“小于〞、“不大于〞、“至少〞、“不超过〞、“超过〞等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系, 列出不等式;(4)解:解所列的不等式;(5)答:写出答案, 并检验是否符合题意.一、一元一次不等式的概念 1、以下式子中, 是一元一次不等式的是〔 〕.A 、x 2<1B 、y –3>0C 、a +b =1D 、3x =22、以下式子中, 是一元一次不等式的有哪些?〔1〕3x+5=0 〔2〕2x+3>5 〔3〕384x < 〔4〕1x≥2 〔5〕2x+y ≤8 3、以下式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?〔1〕0x > 〔2〕1x1-> 〔3〕2x 2> 〔4〕3y x ->+ 〔5〕1x -= 二、一元一次不等式的解法1、不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).2、关于x 的不等式2x-a ≤-1的解集为x ≤-1, 那么a 的值是_________.3、如果关于x 的不等式(a+1)x <a+1的解集是x >l, 那么a 的取值范围是________.4、解不等式2〔x+1〕﹣1≥3x+2, 并把它的解集在数轴上表示出来.5、解不等式:≤﹣1, 并把解集表示在数轴上. 6、假设3511+-=x y ,14522--=x y ,问x 取何值时, 21y y >. 7、关于x 的方程2233x m x x ---=的解是非负数, m 是正整数, 求m 的值. 8、关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >, 求p 的取值范围. 三、列不等式解决实际问题1、爆破施工时, 导火索燃烧的速度是0.8cm/s, 人跑开的速度是5m/s, 为了使点火的战士在施工时能跑到100m 以外〔包括100m 〕的平安地区, 导火索至少需要多长?2、某人方案20天内至少加工400个零件, 前5天平均每天加工了33个零件, 此后, 该工人平均每天至少需加工多少个零件, 才能在规定的时间内完成任务?3、水果店进了某种水果1t, 进价是7元/kg .售价定为10元/kg, 销售一半以后, 为了尽快售完, 准备打折出售.如果要使总利润不低于2000元, 那么余下的水果至少可以按原定价的几折出售?4、某体育用品专卖店销售7个篮球和9个排球的总利润为355元, 销售10个篮球和20个排球的总利润为650元. 〔1〕求每个篮球和每个排球的销售利润;〔2〕每个篮球的进价为200元, 每个排球的进价为160元, 假设该专卖店方案用不超过17400元购进篮球和排球共100个, 且要求篮球数量不少于排球数量的一半, 请你为专卖店设计符合要求的进货方案.5、响应“家电下乡〞的惠农政策, 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台, 其中甲种电冰箱的台数是乙种电冰箱台数的2倍, 购置三种电冰箱的总金额不超过132000元.甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.〔1〕至少购进乙种电冰箱多少台?〔2〕假设要求甲种电冰箱的台数不超过丙种电冰箱的台数, 那么有哪些购置方案?【稳固练习】一、选择题.1、以下各式中, 是一元一次不等式的是〔 〕.A 、5+4>8B 、2x -1C 、2x ≤5D 、1x-3x ≥0 2、不等式3x ≤2〔x ﹣1〕的解集为〔 〕.A 、x ≤﹣1B 、x ≥﹣1C 、x ≤﹣2D 、x ≥﹣2 3、不等式6x 2x 34-≥-的非负整数解有〔 〕.A 、 1个B 、2个C 、3个D 、4个4、不等式475x a x ->+的解集是1x <-, 那么a 为〔 〕.A 、-2B 、2C 、8D 、55、关于x 的不等式2a x 2≥+-的解集如下图, 那么a 的值是〔 〕.A 、0B 、2C 、 -2D 、-46、小明用100元钱去购置三角板和圆规共30件, 三角板每副2元, 每个圆规5元, 那么小明最多能买圆规〔 〕.A 、12个B 、13个C 、14个D 、15个7、某商品进价为800元, 售价为1200元, 由于受市场供求关系的影响, 现准备打折销售, 但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%, 那么至少可打( ). A 、六折 B 、七折 C 、八折 D 、九折8、某风景区招待所有一两层客房, 底层比二层少5间, 一旅行团共有48人, 假设全部安排住底层, 每间住4人, 房间不够;而每间住5人, 有的房间未住满;假设全部安排住二层, 每间住3人, 房间也不够;每间住4人, 有的房间未住满.这家招待所的底层共有房间 ( ) .A 、9间B 、10间C 、11间D 、12间9、一个两位数, 某个位数字比十位数字大2, 这个两位数不小于20, 不大于40, 那么这个两位数是多少?为了解决这个问题, 我们可设个位数字为x, 那么可列不等式〔 〕.A 、20≤10〔x-2〕+x ≤40B 、20<10〔x-2〕+x <40C 、20≤x-2+x ≤40D 、20≤10x+x-2≤4010、张红家离学校1600米, 一天早晨由于有事耽误, 结果吃完饭时只差15分钟就上课, 忙中出错, 出门时又忘了带书包, 结果回到家又取书包共用3分钟, 只好坐小汽车去上学, 小汽车的速度是36千米/时, 小汽车行驶了1分30秒时又发生堵车, 她等了半分钟后, 路还没有畅通, 于是下车又开始步行, 问:张红步行速度至少是( )时, 才不至于迟到.A 、60米/分B 、70米/分C 、80米/分D 、90米/分二、填空题.1、不等式>x ﹣1的解集是. 2、12(x –m )>3–32m 的解集为x >3, 那么m 的值为________. 3、假设关于x 的不等式30x a -≤只有六个正整数解, 那么a 应满足________.4、某种肥皂零售价每块2元, 对于购置两块以上(含两块), 商场推出两种优惠销售方法:第一种为一块按原价, 其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购置相同数量的情况下, 要使第一种方法比第二种方法得到的优惠多, 最少需要购置肥皂______块.5、一艘轮船上午6:00从长江上游的A 地出发, 匀速驶往下游的B 地, 于11:00到达B 地, 方案下午13:00从B 地匀速返回, 如果这段江水流速为3km/h, 且轮船在静水中的往返速度不变, 那么该船至少以 km/h 的速度返回, 才能不晚于19:00到达A 地.三、解答题.1、解不等式:3x >1–36x -. 2、解以下不等式:2x –5≤232x ⎛⎫-⎪⎝⎭. 3、解不等式2x –3<13x +, 并把解集在数轴上表示出来. 四、应用题.1、某工人方案在15天里加工408个零件, 前三天每天加工24个, 问以后每天至少加工多少个零件才能在规定时间内超额完成任务?2、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品, 准备买6本影集和假设干支钢笔.影集每本15元, 钢笔每支8元, 问他至少买多少支钢笔才能打折?3、某村为解决村民出行难的问题, 村委会决定将一条长为1200m 的村级公路硬化, 并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工, 假设甲、乙两队做需12天完成此项工程;假设甲队先做了8天后, 剩下的由乙队单独做还需18天才能完工.〔1〕问甲、乙两队单独完成此项工程各需多少天?〔2〕又甲队每施工一天需要费用2万元, 乙队每施工一天需要费用1万元, 要使完成该工程所需费用不超过35万元, 那么乙工程队至少要施工多少天?4、今年3月12日植树节期间, 学校预购进A , B 两种树苗.假设购进A 种树苗3棵, B 种树苗5棵, 需2100元;假设购进A种树苗4棵, B种树苗10棵, 需3800元.〔1〕求购进A, B两种树苗的单价;〔2〕假设该学校准备用不多于8000元的钱购进这两种树苗共30棵, 求A种树苗至少需购进多少棵.5、某冷饮店用200元购进A, B两种水果共20kg, 进价分别为7元/kg和12元/kg.〔1〕这两种水果各购进多少千克?〔2〕该冷饮店将所购进的水果全部混合制成50杯果汁, 要使售完后所获利润不低于进货款的50%, 那么每杯果汁的售价至少为多少元?6、青年志愿者爱心小分队赴山村送温暖, 准备为困难村民购置一些米面.购置1袋大米、4袋面粉, 共需240元;购置2袋大米、1袋面粉, 共需165元.〔1〕求每袋大米和面粉各多少元;〔2〕如果爱心小分队方案购置这些米面共40袋, 总费用不超过2140元, 那么至少购置多少袋面粉?7、某公司为了扩大经营, 决定购进6台机器用于生产某种活塞, 现有甲、乙两种机器供选择, 其中每种机器的价格和每台机器日生产活塞的数量如下表所示, 经过预算, 本次购置机器耗资不能超过34万元.(1)按该公司要求可以有几种购置方案?(2)假设该公司购进的6台机器的日生产能力不低于380个, 那么为了节约资金应选择哪种方案?8、沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器, 下表是两天的销售情况:〔进价、售价均保持不变, 利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电器的销售单价;〔2〕假设超市准备用不多于8200元的金额再采购这两种型号的电器共30台, 求A种型号的电器最多能采购多少台?〔3〕在〔2〕的条件下, 超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;假设不能, 请说明理由.参考答案一、一元一次不等式的概念1、以下式子中, 是一元一次不等式的是〔〕.A、x2<1B、y–3>0C、a+b=1D、3x=2【答案】B【解析】A 、未知数次数是2, 属于一元二次不等式, 故本选项错误;B 、符合一元一次不等式的定义, 故本选项正确;C 、含有2个未知数, 属于二元一次方程, 故本选项错误;D 、含有1个未知数, 是一元一次方程, 故本选项错误; 应选B .2、以下式子中, 是一元一次不等式的有哪些?〔1〕3x+5=0 〔2〕2x+3>5 〔3〕384x < 〔4〕1x ≥2 〔5〕2x+y ≤8【解析】解:(2)、(3)是一元一次不等式.3、以下式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?〔1〕0x > 〔2〕1x 1-> 〔3〕2x 2> 〔4〕3y x ->+ 〔5〕1x -=【解析】解:(1)是一元一次不等式.〔2〕〔3〕(4)(5)不是一元一次不等式, 因为:〔2〕中分母中含有字母, 〔3〕未知量的最高次项不是1次, 〔4〕不等式左边含有两个未知量, 〔5〕不是不等式, 是一元一次方程.二、一元一次不等式的解法1、不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).【答案】C2、关于x 的不等式2x-a ≤-1的解集为x ≤-1, 那么a 的值是_________.【答案】-1【解析】由得:12a x -≤, 由112a -=-, 得1a =-.3、如果关于x 的不等式(a+1)x <a+1的解集是x >l, 那么a 的取值范围是________.【答案】1a -<4、解不等式2〔x+1〕﹣1≥3x+2, 并把它的解集在数轴上表示出来.【解析】解:去括号, 得2x+2﹣1≥3x+2,移项, 得2x ﹣3x ≥2﹣2+1,合并同类项, 得﹣x ≥1,系数化为1, 得x ≤﹣1,这个不等式的解集在数轴上表示为:5、解不等式:≤﹣1, 并把解集表示在数轴上.【解析】解:去分母得, 4〔2x ﹣1〕≤3〔3x+2〕﹣12,去括号得, 8x ﹣4≤9x+6﹣12,移项得, 8x ﹣9x ≤6﹣12+4,合并同类项得, ﹣x ≤﹣2,把x 的系数化为1得, x ≥2.在数轴上表示为:.6、假设3511+-=x y ,14522--=x y ,问x 取何值时, 21y y >. 【解析】解:∵3511+-=x y ,14522--=x y , 假设21y y >,那么有1452351-->+-x x 即 6101<x ∴当6101<x 时, 21y y >. 7、关于x 的方程2233x m x x ---=的解是非负数, m 是正整数, 求m 的值. 【解析】解:由2233x m x x ---=, 得x =22m -, 因为x 为非负数, 所以22m -≥0, 即m ≤2, 又m 是正整数, 所以m 的值为1或2.8、关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >, 求p 的取值范围. 【解析】解:由⎩⎨⎧-=++=+1p y 3x 41p y 2x 3, 解得:⎩⎨⎧--=+=7p y 5p x ∵y x >∴7p 5p -->+解得6p ->; ∴p 的取值范围为6p ->.三、列不等式解决实际问题1、爆破施工时, 导火索燃烧的速度是0.8cm/s, 人跑开的速度是5m/s, 为了使点火的战士在施工时能跑到100m 以外〔包括100m 〕的平安地区, 导火索至少需要多长?【解析】解:设导火索要xcm 长, 根据题意得:解得:16x ≥答:导火索至少要16cm 长.2、某人方案20天内至少加工400个零件, 前5天平均每天加工了33个零件, 此后, 该工人平均每天至少需加工多少个零件, 才能在规定的时间内完成任务?【解析】解:设以后平均每天加工x个零件,由题意的:5×33+〔20﹣5〕x≥400,解得:x≥2 153.∵x为正整数,∴x取16.答:该工人以后平均每天至少加工16个零件.3、水果店进了某种水果1t, 进价是7元/kg.售价定为10元/kg, 销售一半以后, 为了尽快售完, 准备打折出售.如果要使总利润不低于2000元, 那么余下的水果至少可以按原定价的几折出售?【解析】解:设余下的水果可以按原定价的x折出售,根据题意得:1t=1000kg解得:8x≥答:余下的水果至少可以按原定价的8折出售.4、某体育用品专卖店销售7个篮球和9个排球的总利润为355元, 销售10个篮球和20个排球的总利润为650元.〔1〕求每个篮球和每个排球的销售利润;〔2〕每个篮球的进价为200元, 每个排球的进价为160元, 假设该专卖店方案用不超过17400元购进篮球和排球共100个, 且要求篮球数量不少于排球数量的一半, 请你为专卖店设计符合要求的进货方案.【解析】解:〔1〕设每个篮球和每个排球的销售利润分别为x元, y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元, 20元;〔2〕设购进篮球m个, 排球〔100﹣m〕个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个, 或购进篮球35个排球65个两种购置方案.5、响应“家电下乡〞的惠农政策, 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台, 其中甲种电冰箱的台数是乙种电冰箱台数的2倍, 购置三种电冰箱的总金额不超过132000元.甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.〔1〕至少购进乙种电冰箱多少台?〔2〕假设要求甲种电冰箱的台数不超过丙种电冰箱的台数, 那么有哪些购置方案?【解析】解:〔1〕设购置乙种电冰箱x台, 那么购置甲种电冰箱2x台, 丙种电冰箱〔80-3x〕台, 根据题意得1200×2x+1600x+〔80-3x〕×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;〔2〕根据题意得2x≤80-3x解这个不等式得 x≤16由〔1〕知 x≥14∴14≤x≤16又∵x为正整数∴x=14, 15, 16.所以, 有三种购置方案方案一:甲种电冰箱为28台, 乙种电冰箱为14台, 丙种电冰箱为38台.方案二:甲种电冰箱为30台, 乙种电冰箱为15台, 丙种电冰箱为35台.方案三:甲种电冰箱为32台, 乙种电冰箱为16台, 丙种电冰箱为32台.【稳固练习】一、选择题.1、以下各式中, 是一元一次不等式的是〔〕.A、5+4>8B、2x-1C、2x≤5D、1x-3x≥0【答案】C;2、不等式3x≤2〔x﹣1〕的解集为〔〕.A、x≤﹣1B、x≥﹣1C、x≤﹣2D、x≥﹣2【答案】C ;【解析】去括号得, 3x ≤2x ﹣2, 移项、合并同类项得, x ≤﹣2, 应选:C .3、不等式6x 2x 34-≥-的非负整数解有〔 〕.A 、 1个B 、2个C 、3个D 、4个【答案】C ;【解析】先求得解集为2x ≤, 所以非负整数解为:0,1,2;4、不等式475x a x ->+的解集是1x <-, 那么a 为〔 〕.A 、-2B 、2C 、8D 、5【答案】A ;【解析】由475x a x ->+, 可得53a x +<-, 它与1x <-表示同一解集, 所以513a +-=-, 解得2a =-; 5、关于x 的不等式2a x 2≥+-的解集如下图, 那么a 的值是〔 〕. A 、0 B 、2 C 、 -2 D 、-4【答案】A ;【解析】因为不等式2a x 2≥+-的解集为22a x -≤, 再观察数轴上表示的解集为1x -≤, 因此122a -=-, 解得0a =6、小明用100元钱去购置三角板和圆规共30件, 三角板每副2元, 每个圆规5元, 那么小明最多能买圆规〔 〕.A 、12个B 、13个C 、14个D 、15个【答案】B ;【解析】设买圆规x 件, 由题意得:52(30)x x +-≤100, 得x ≤1133, 且x 为正整数, 所以x 最大取13.7、某商品进价为800元, 售价为1200元, 由于受市场供求关系的影响, 现准备打折销售, 但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%, 那么至少可打( ). A 、六折 B 、七折 C 、八折 D 、九折【答案】B ;【解析】解:设打x 折, 由题意得:1200800105%800x ⨯-≥, 解得x ≥7, 所以至少应打7折. 8、某风景区招待所有一两层客房, 底层比二层少5间, 一旅行团共有48人, 假设全部安排住底层, 每间住4人, 房间不够;而每间住5人, 有的房间未住满;假设全部安排住二层, 每间住3人, 房间也不够;每间住4人, 有的房间未住满.这家招待所的底层共有房间 ( ) .A 、9间B 、10间C 、11间D 、12间【答案】B ;【解析】设底层有房间x 间, 由题意得:4485483(5)484(5)48x x x x <⎧⎪>⎪⎨+<⎪⎪+>⎩得:39115x <<, 又x 为正整数, 所以10x =.9、一个两位数, 某个位数字比十位数字大2, 这个两位数不小于20, 不大于40, 那么这个两位数是多少?为了解决这个问题, 我们可设个位数字为x, 那么可列不等式〔 〕.A 、20≤10〔x-2〕+x ≤40B 、20<10〔x-2〕+x <40C 、20≤x-2+x ≤40D 、20≤10x+x-2≤40 【答案】A ;10、张红家离学校1600米, 一天早晨由于有事耽误, 结果吃完饭时只差15分钟就上课, 忙中出错, 出门时又忘了带书包, 结果回到家又取书包共用3分钟, 只好坐小汽车去上学, 小汽车的速度是36千米/时, 小汽车行驶了1分30秒时又发生堵车, 她等了半分钟后, 路还没有畅通, 于是下车又开始步行, 问:张红步行速度至少是( )时, 才不至于迟到.A 、60米/分B 、70米/分C 、80米/分D 、90米/分 【答案】B ;【解析】设张红步行速度x 米/分才不至于迟到, 由题意可列不等式引11[153(1)]22x --+≥1160060012-⨯,化简得10x ≥700, x ≥70, 应选B .二、填空题.1、不等式>x ﹣1的解集是.【答案】 x <4 ;【解析】去分母得1+2x >3x ﹣3, 移项得2x ﹣3x >﹣3﹣1, 合并得﹣x >﹣4, 系数化为1得x <4.2、12(x –m )>3–32m 的解集为x >3, 那么m 的值为________. 【答案】32【解析】去括号得:12x −12m >3−32m , 移项得:12x >3−32m +12m , 合并同类项得12x >3−m ,系数化为1得x >6–2m , ∵不等式的解集为x >3, ∴6–2m =3, 解得:m =32,故答案为:32.3、假设关于x 的不等式30x a -≤只有六个正整数解, 那么a 应满足________. 【答案】1821a ≤<; 【解析】由得:3a x ≤, 673a≤<, 即1821a ≤<. 4、某种肥皂零售价每块2元, 对于购置两块以上(含两块), 商场推出两种优惠销售方法:第一种为一块按原价, 其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购置相同数量的情况下, 要使第一种方法比第二种方法得到的优惠多, 最少需要购置肥皂______块. 【答案】4;••2x, 得:x >3.最少需要购置肥皂4块时, 第一种方法比第二种方法得到的优惠多.5、一艘轮船上午6:00从长江上游的A 地出发, 匀速驶往下游的B 地, 于11:00到达B 地, 方案下午13:00从B 地匀速返回, 如果这段江水流速为3km/h, 且轮船在静水中的往返速度不变, 那么该船至少以 km/h 的速度返回, 才能不晚于19:00到达A 地. 【答案】33;【解析】解:设船xkm/h 的速度返回, 根据题意得出:6〔x ﹣3〕≥5〔x+3〕 解得:x ≥33,∴该船至少以33km/h 的速度返回, 才能不晚于19:00到达A 地. 故答案为:33.三、解答题.1、解不等式:3x >1–36x -. 解:3136x x ->-,去分母, 得()263x x >--, 去括号, 得263x x >-+, 移项, 合并同类项, 得39x >, 系数化为1, 得3x >.2、解以下不等式:2x –5≤232x ⎛⎫-⎪⎝⎭. 解:去括号得2x –5≤x –6,移项得, 2x –x ≤–6+5,合并同类项, 系数化为1得x ≤–1.3、解不等式2x –3<13x +, 并把解集在数轴上表示出来. 解:3〔2x –3〕<x +1, 在数轴上表示为: 6x –9<x +1, 5x <10,x<2,∴原不等式的解集为x<2,四、应用题.1、某工人方案在15天里加工408个零件, 前三天每天加工24个, 问以后每天至少加工多少个零件才能在规定时间内超额完成任务?【解析】解:设三天后每天加工x个零件, 根据题意得:24×3+(15-3)x>408,解得 x>28.因为x为正整数,所以以后每天加工的零件数至少为29个.2、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和假设干支钢笔.影集每本15元, 钢笔每支8元, 问他至少买多少支钢笔才能打折?【解析】解:设该同学买x支钢笔, 根据题题意, 得:15×6+8x≥200,解得x≥3 134.故该同学至少要买14支钢笔才能打折.3、某村为解决村民出行难的问题, 村委会决定将一条长为1200m的村级公路硬化, 并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工, 假设甲、乙两队做需12天完成此项工程;假设甲队先做了8天后, 剩下的由乙队单独做还需18天才能完工.〔1〕问甲、乙两队单独完成此项工程各需多少天?〔2〕又甲队每施工一天需要费用2万元, 乙队每施工一天需要费用1万元, 要使完成该工程所需费用不超过35万元, 那么乙工程队至少要施工多少天?【解析】解:〔1〕设甲单独做需要用x天, 乙单独做需要y天, 根据题意可得:,解得:.答:甲单独做需要用20天, 乙单独做需要30天;〔2〕甲的工效:1200÷20=60, 乙的工效:1200÷30=40,∵2×20=40>35,∴设乙需要做a天, 由题意可得:2×+a≤35,解得:a≥15.答:乙工程队至少要施工15天.4、今年3月12日植树节期间, 学校预购进A, B两种树苗.假设购进A种树苗3棵, B种树苗5棵, 需2100元;假设购进A种树苗4棵, B种树苗10棵, 需3800元.〔1〕求购进A, B两种树苗的单价;〔2〕假设该学校准备用不多于8000元的钱购进这两种树苗共30棵, 求A种树苗至少需购进多少棵.【解析】〔1〕设A种树苗的单价为x元, 那么B种树苗的单价为y元,可得:3521004103800x yx y+=⎧⎨+=⎩, 解得:200300xy=⎧⎨=⎩.答:A种树苗的单价为200元, B种树苗的单价为300元.〔2〕设购置A种树苗a棵, 那么B种树苗为〔30–a〕棵,可得:200a+300〔30–a〕≤8000,解得:a≥10.答:A种树苗至少需购进10棵.5、某冷饮店用200元购进A, B两种水果共20kg, 进价分别为7元/kg和12元/kg.〔1〕这两种水果各购进多少千克?〔2〕该冷饮店将所购进的水果全部混合制成50杯果汁, 要使售完后所获利润不低于进货款的50%, 那么每杯果汁的售价至少为多少元?【解析】〔1〕设A种水果购进了x千克, 那么B种水果购进了〔20–x〕千克,根据题意得:7x+12〔20–x〕=200,解得:x=8,那么20–x=12.答:购进A种水果8千克, B种水果12千克;〔2〕设每杯果汁的售价至少为y元,根据题意得, 50y–200≥200×50%,解得y≥6.答:每杯果汁的售价至少为6元.6、青年志愿者爱心小分队赴山村送温暖, 准备为困难村民购置一些米面.购置1袋大米、4袋面粉, 共需240元;购置2袋大米、1袋面粉, 共需165元.〔1〕求每袋大米和面粉各多少元;〔2〕如果爱心小分队方案购置这些米面共40袋, 总费用不超过2140元, 那么至少购置多少袋面粉?【解析】〔1〕设每袋大米x元, 每袋面粉y元,7、某公司为了扩大经营, 决定购进6台机器用于生产某种活塞, 现有甲、乙两种机器供选择, 其中每种机器的价格和每台机器日生产活塞的数量如下表所示, 经过预算, 本次购置机器耗资不能超过34万元.(1)按该公司要求可以有几种购置方案?(2)假设该公司购进的6台机器的日生产能力不低于380个, 那么为了节约资金应选择哪种方案?【解析】解:(1)设购置甲种机器x台, 乙种机器〔6-x〕台.由题意, 得7x+5(6-x)≤34.解不等式, 得x≤2, 故x可以取0, l, 2三个值,所以, 该公司按要求可以有以下三种购置方案:方案一:不购置甲种机器, 购置乙种机器6台;方案二:购置甲种机器1台, 购置乙种机器5台;方案三:购置甲种机器2台, 购置乙种机器4台;(2)按方案一购置机器, 所耗资金为30万元, 日生产量6×60=360(个);按方案二购置, 所耗资金为1×7+5×5=32〔万元〕, 日生产量为1×100+5×60=400〔个〕, 按方案三购置, 所耗资金为2×7+4×5=34(万元);日生产量为2×100+4×60=440〔个〕.因此, 选择方案二既能到达生产能力不低于380〔个〕, 又比方案三节约2万元资金, 故应选择方案二.8、沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器, 下表是两天的销售情况:〔进价、售价均保持不变, 利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电器的销售单价;〔2〕假设超市准备用不多于8200元的金额再采购这两种型号的电器共30台, 求A种型号的电器最多能采购多少台?〔3〕在〔2〕的条件下, 超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;假设不能, 请说明理由.【解析】解:〔1〕设A、B两种型号电器的销售单价分别为x元和y元,由题意, 得:2x+3y=1700,3x+y=1500,解得x=400元, y=300元,∴A、B两种型号电器的销售单价分别为400元和300元;〔2〕设采购A种型号电器a台, 那么采购B种型号电器〔30﹣a〕台,依题意, 得320a+250〔30﹣a〕≤8200,解得a≤10, a取最大值为10,∴超市最多采购A种型号电器10台时, 采购金额不多于8200元;〔3〕依题意, 得〔400﹣320〕a+〔300﹣250〕〔30﹣a〕≥2100,解得 a≥20,∵a的最大值为10,∴在〔2〕的条件下超市不能实现利润至少为2100元的目标.第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( )9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7。

华师版七年级下册的数学教学计划

华师版七年级下册的数学教学计划

华师版七年级下册的数学教学计划根据自己的实际情况,比如工作职责,确定一下工作目标,这样就可以有针对性的明确自己的工作计划,可以先确定一个总的方向,在按时间分段完成。

这里给大家分享一些关于华师版七年级下册的数学教学计划,方便大家学习。

华师版七年级下册的数学教学计划1一、教材分析全期共有六章。

新授课程主要有一元一次不等式组、二元一次方程组、平面上直线的位置关系和度量关系、多项式的运算、轴对称图形、数据的分析与比较。

第一章一元一次不等式组本章主要使学生掌握一元一次不等式组的解法,以及怎样利用一元一次不等式组解决实际问题。

重点:一元一次不等式的解法及其简单应用.难点:了解一元一次不等式组的解集,准确利用不等式的基本性质.第二章二元一次方程组本章通过实例引入二元一次方程,二元一次方程组以及二元一次方程组的概念,培养学生对概念的理解和完整性和深刻性,使学生掌握好二元一次方程组的两种解法.重点:二元一次方程组的解法,列二元一次方程组解决实际问题.难点:二元一次方程组解决实际问题第三章平面上直线的位置关系和度量关系本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案.重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用.难点:探索平行线的条件和特征,平行线条件与特征的区别,运用平移性质探索图形之间的平移关系,以及进行图案设计.第四章多项式的运算本章主要要求了解多项式的的有关概念,能进行简单的多项式的加、减、乘运算,以及乘法公式。

注重联系实际,为将来学函数奠定基础让课堂内容生动、趣味化,从学生熟悉的背景引出概念。

重点:对于每个概念的正确理解,以及各项法则的正确、灵活的应用。

难点:探索各项法则的形成原因。

第五章轴对称图形本章主要体会对称之美,利用轴对称进行图案设计,认识和欣赏轴对称在现实中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新华师大版七年级数学下册第七章《解一元一次不等式(1)》导学

一、目标导学:
1.掌握不等式解集的定义,在数轴上表示不等式的解集。

2.重点、难点:不等式的解集在数轴上表示时的方向以及虚实点的区分。

二:自主学习
1、什么是不等式?数轴的三要素分别是什么?
2、给出下列各数:-2,-0.5,0,1,1.5,2.
(1)其中,是不等式x-1>0的解的有;
(2)其中,是不等式x-1<0的解的有;
(3)其中,是不等式x-1<0的负整数的解的有。

三:合作交流
内容,完成下列各题。

阅读教材P40
、41
1、请写出不等式x-2>3的解:。

你发现这个不等式有个解。

2、一个不等式的所有解,组成这个不等式的,简称为这个不等式的解集。

同一个不等式的解和解集相同吗?它们有什么关系?谈谈你的认识。

3、求不等式的的过程,叫做解不等式。

4、在数轴上表示不等式的解集时,要确定界点和方向。

比较课本图8.2.1与图8.2.2,它们有什么区别?因此,你发现了:。

5、请你把下面的不等式分别在数轴上表示出来:
①x>a
②x≥a
③x<a
④x≤a
四、探究展示
1、在数轴上画出表示数-3,-1,|-2|的点,并把这组数用“<”号从小到大连结起来:。

2、方程2x=4的解有个;不等式2x<4的解有个,其中正整数解有个。

3、不等式的解集可借助数轴直观地表示出来。

其要点是:“小于”向画,“大于”向画;无等号画,有等号画。

4、用不等式表示图中的解集,下列选项中正确的是()
A、x>2
B、x<2
C、x≥2
D、x≤2
五、巩固训练
1、使不等式x-5>4x-1成立的x的值中最大的整数是()
A、-2
B、-1
C、0
D、2
2、中学生的课余时间约为14小时,其中包括复习活动时间和睡眠时间,按身体发育的要求,睡眠时间不能少于8小时,则复习活动的时间应在什么范围内?若设复习活动的时间为t小时,则可以列式为()
A、a+1
B、-a+1
C、a-1
D、-a-1
3、实数a在数轴上的位置如图所示,化简|a+1|的结果是()
A、a+1
B、-a+1
C、a-1
D、-a-1
4、在数轴上表示下列不等式的解集:
(1)x>3;
(2)x≥-2;
(3)x≤4;
(4)x<-1/2。

六、拓展提升
1、不等式x-2<0的正整数解是()
A、1
B、0,1
C、1,2
D、0,1,2
2、若m满足|m|>m,则m一定是()
A、正数
B、负数
C、非负数
D、任意有理数
3、如图所示,用不等式表示数轴上所示的解集,下列选项中正确的是()
A、x<-1或x≥3
B、x≤-1或x>3
C、-1≤x<3
D、-1<x≤3
4、在数轴上与原点的距离小于8的点对应的x应满足()
A、-8<x<8
B、x<-8或x>8
C、x<8
D、x>8
学后反思。

相关文档
最新文档