正弦定理和余弦定理的应用举例1
正弦定理、余弦定理应用举例
h. l
坡度一般写成h:l的形式.如i=1:4,
即
i
1. 4
坡面与水平面所成的二面角α的度数叫做坡
角, 坡角与坡度之间有如下关系:
i h tan .
l
i
h l
h
l
题 型一
测量距离问题
【例 1】(2010·陕西)如图,A,B 是海面上位于东西方向相
距 5(3+ 3)海里的两个观测点,现位于 A 点北偏东 45°,B
(如a, C , b )
正弦定理
理求出小边所对的角;再由A+B +C=180°求出另一角.
三边 (a, b, c)
余弦定理
用余弦定理求出角A, B,再由A+B+C =180˚求出角C.
两边和其中 一边的对角
(a, b, A)
正弦定理 余弦定理
由正弦定理求出角B;由A+B+C= 180°,求出角C;再利用正弦定理或余 弦定理求c.可有两解,一解或无解
的水平角, 叫方向角. 目标方向线方向一般可用
“×偏×”多少度来表示,这里第一 个“×”号是“北”或“南”字,第 二个“×”号是“东”字或“西” 字OA. 的方向角为_北_偏_东_6_0°_;
OB的方向角为_北_偏_西_3_0° _;
OC的方向角为_西_南_方_向__;
OD的方向角为_南_偏_东_2_0°_.
要点梳理
(3) 方位角 从正北方向顺时针转到目标方向
线的水平角,如B点的方位角为α.
(4)水平距离、垂直距离、坡面距离
A
如图BC代表水平距离,
AC代表垂直距离, AB代表
坡面距离.
B
C
要点梳理
(5)坡度、坡角:
如图把坡面的铅直高度h和水平宽度为l 的
正弦定理余弦定理应用举例
正弦定理、余弦定理应用举例一、距离问题1.xkm 后,他向右转150,然后朝新方向走3km ,结果他离出发点某人向正东方向走恰好3km ,那么x 的值为【】A.3B.23C.23或3D.32.如图,为了测量某障碍物两侧A、 B 间的距离,给定下列四组数据,测量时应当用数据【】A., a, bB.,, aC.a,b,D.,, b两座灯塔A 与B与海洋观察站C的距离都等于 a km ,灯塔A在观察站C的北偏东3.20 ,灯塔B在观察站C的南偏东 40,则灯塔 A 与灯塔 B 的距离为【】A. a kmB.3a kmC. 2a kmD. 2a km4.海上有 A、B 两个小岛相距10海里,从A 岛望 C岛和 B岛成60的视角,从B岛望 C 岛和 A岛成75的视角,则B、 C 的距离是 __________________5.一船向正北航行,看见正西方向有相距10 海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西 60的方向上,另一灯塔在船的南偏西75 方向上,则这艘船的速度是每小时___________________6.如右图所示,设 A 、B 两点在河的两岸,一测量者在 A 所在的河岸边选定一点 C ,测出 AC 的距离为 50m ,ACB45 , CAB105后,就可以计算 A 、 B 两点间的距离为 ___________7.一船以 24 km / h的速度向正北方向航行,在点 A 处望见灯塔 S 在船的北偏东30 方向上,15min后到点B处望见灯塔在船的北偏东65 方向上,则船在点B时与灯塔S的距离是__________km.(精确到 0.1km )18.如图,我炮兵阵地位于地面 A 处,两观察所分别位于地面点 C 和 D 处,已知 CD=6000m.ACD 45,ADC75,B 处时测得BCD 30 , BDC 15目标出现于地面求炮兵阵地到目标的距离。
(结果保留根号)A45600075C D3015B2二、高度问题1.在一幢 20m 高的楼顶测得对面一塔吊的仰角为60 ,塔基的俯角为45 ,那么这座塔吊的高是【】3 )m B. 20(13) m C.10( 6 2 )m D. 20(6 2 )mA.20(132.在地面上点 D 处,测量某建筑物的高度,测得此建筑物顶端 A 与底部 B 的仰角分别为60 和 30 ,已知建筑物底部高出地面 D 点 20m,则建筑物高度为【】A.20mB.30mC. 40mD.60m3.如图所示,在山根 A 处测得山顶 B 的仰角CAB 45 ,沿倾斜角为 30 的山坡向山顶走1000 米到达 S 点又测得山顶仰角DSB 75 ,则山高BC为【】A.500 2mB. 200mC.1000 2mD. 1000m4.从某电视塔的正东方向的 A 处,测得塔顶仰角为60 ;从电视塔的西偏南30 的B处,测得塔顶仰角为45 ,A、B两点间的距离是35m,则此电视塔的高度是【】4900 m D.35mA. 5 21mB.10mC.135.j 江岸边有一炮台高30m,江中有两条船,由炮台顶部测得俯角分别为45 , 30 ,而且两条船与炮台底部连线成30 角,则两船相距【】A.10 3mB.100 3mC. 203mD.30m6.一船以每小时15km 的速度向东航行,船在 A 处看到一个灯塔M 在北偏东60方向,行驶4h 后,船到达 B 处,看到这个灯塔在北偏东15 方向,这时船与灯塔的距离为_____km37.甲、乙两楼相距20 米,从乙楼底望甲楼顶的仰角为60 ,从甲楼顶望乙楼顶的俯角为30 ,则甲、乙两楼的高分别是______________8.地平面上一旗杆设定为OP,为测得它的高度h,在地平线上取一基线AB, AB=200m ,在 A 处测得 P 点的仰角为OAP 30 ,在B处测得P点的仰角OBP 45 ,又测得AOB 60 ,求旗杆的高度h4。
余弦定理与正弦定理的应用
余弦定理与正弦定理的应用余弦定理和正弦定理是数学中的两个重要的三角函数定理,它们在解决各种几何和数学问题时具有广泛的应用。
本文将介绍余弦定理和正弦定理的公式及其应用,帮助读者更好地理解和运用这两个定理。
一、余弦定理的应用余弦定理是解决三角形中边和角之间关系的重要定理。
设三角形的三边分别为a、b、c,对应的角分别为A、B、C,那么根据余弦定理可以得出以下公式:a² = b² + c² - 2bc·cosAb² = a² + c² - 2ac·cosBc² = a² + b² - 2ab·cosC余弦定理可以用来求解未知边长或角度的问题。
下面通过几个实际问题来展示余弦定理的应用。
【例1】已知一个三角形的两边长度分别为5cm和6cm,夹角为60°,求第三边的长度。
解:根据余弦定理,可得c² = 5² + 6² - 2×5×6·cos60°c² = 25 + 36 - 60c² = 61c = √61因此,第三边的长度约为7.81cm。
【例2】已知一个三角形的两边长度分别为7cm和9cm,夹角为30°,求夹角的余弦值。
解:根据余弦定理,可得cosA = (7² + 9² - 2×7×9·cos30°) / (2×7×9)cosA = (49 + 81 - 63) / 126cosA = 67 / 126所以,夹角A的余弦值约为0.532。
二、正弦定理的应用正弦定理是另一个求解三角形边与角关系的重要定理。
与余弦定理类似,设三角形的三边分别为a、b、c,对应的角分别为A、B、C,那么根据正弦定理可以得出以下公式:a / sinA =b / sinB =c / sinC通过正弦定理可以求解未知边长或角度的问题。
余弦定理及正弦定理的应用
余弦定理及正弦定理的应用余弦定理和正弦定理是解决三角形相关问题的重要工具。
它们被广泛应用于测量、导航、工程等领域。
下面将分别介绍余弦定理和正弦定理,并说明它们在实际应用中的具体运用。
一、余弦定理余弦定理描述了一个三角形的边与夹角之间的关系。
对于任意一个三角形 ABC,其边长分别为 a、b、c,对应的夹角分别为 A、B、C。
根据余弦定理,可以得到以下等式:a² = b² + c² - 2bc * cosAb² = a² + c² - 2ac * cosBc² = a² + b² - 2ab * cosC余弦定理可以用于解决以下问题:1. 测量三角形边长:如果已知三角形的两个边长和它们之间的夹角,可以利用余弦定理计算出第三条边的长度。
2. 计算三角形的夹角:如果已知三角形的三条边长,可以利用余弦定理的逆运算求解三个夹角的大小。
3. 解决航海导航问题:根据已知的方位角和航程,可以利用余弦定理计算船只的坐标位置。
二、正弦定理正弦定理描述了三角形边与其对应角的正弦值之间的关系。
对于任意一个三角形 ABC,其边长分别为 a、b、c,对应的夹角分别为 A、B、C。
根据正弦定理,可以得到以下等式:a/sinA = b/sinB = c/sinC正弦定理可以用于解决以下问题:1. 求解三角形的面积:如果已知三角形的两边和它们之间的夹角,可以利用正弦定理求解三角形的面积。
2. 判定三角形类型:根据三边的长度和正弦定理,可以判断三角形是锐角三角形、直角三角形还是钝角三角形。
3. 解决建筑工程问题:在建筑测量中,需利用正弦定理计算高度、距离等未知量。
综上所述,余弦定理和正弦定理是解决三角形相关问题的重要工具。
通过运用这些定理,我们可以计算三角形的边长、夹角,求解三角形的面积,判断三角形的类型等。
在测量、导航、工程等领域,都离不开这两个定理的应用。
正弦定理余弦定理应用举例
。 三角形的面积公式
1 1 SABC 1 absinC bcsin A 2 2 2 acsin B
正弦定理和余弦定理在实际测量中有许 多应用 :
(1)测量距离. (2)测量高度. (3)测量角度.
实际应用问题中有关的名称、术语 1.仰角、俯角、视角。
(1)当视线在水平线上方时,视线与水平线所成角叫 仰角。 (2)当视线在水平线下方时,视线与水平线所成角叫 俯角。 (3)由一点出发的两条视线所夹的角叫视角。(一般 这两条视线过被观察物的两端点) 视线 仰角 俯角 视线 水平线
【变式练习3】 如图,甲船以每小时30 2海里的速度向正北方 向航行,乙船按固定方向匀速直线航行.当甲 船位于A1处时,乙船位于甲船的北偏西105方向 的B1处,此时两船相距20海里.当 甲船航行20分钟到达A2处时,乙船 航行到甲船的北偏西120方向的B2 处,此时两船相距10 2海里.问乙 船每小时航行多少海里?
答:A,B两点间的距离为 20 6米.
练习2.一货轮在海上由西向东航行,在A处望见灯塔C在货轮的东北 方向,半小时后在B处望见灯塔C在货轮的北偏东30°方向.若货 轮的速度为30 n mile/h,当货轮航行到D处望见灯塔C在货轮的 西北方向时,求A,D两处的距离.
[解] 如图8所示,在△ABC中,∠A=45° ,∠ABC= 90° +30° =120° ,∴∠ACB=180° -45° -120° =15° ,AB= 30×0.5=15(n AB , sin∠ACB AB· sin∠ABC 15×sin120° 3 2+ 6 ∴AC= = ×15(n sin15° = 2 sin∠ACB mile). 在△ACD中,∵∠A=∠D=45° , ∴△ACD是等腰直角三角形, ∴AD= 2AC=15(3+ 3)(n mile). ∴A,D两处的距离是15(3+ 3) n mile. mile).由正弦定理,得 AC sin∠ABC =
6.4.3余弦定理、正弦定理应用举例
B C
计算出AC和BC后,再在 ABC中,应用余弦定理计算出AB两点间的距离
AB AC2 BC2 2AC BC cos
a2 sin2 ( sin2(
) )
sin
a2 sin2 2(
)
2a2 sin(
sin(
)sin cos )sin(
)
思考:
在上述测量方案下,还有其他计算A,B距离的方 法吗?
测得CD=a,并且在C、D两点分别测得
∠BCA=α, ∠ACD=β, ∠CDB=γ, ∠BDA=δ.
在 ∆ADC和∆ BDC中,应用正弦定理得
AC
a sin( )
a sin( )
sin 180 ( )n D
sin 180 ( ) sin( )
遥不可及的月亮离我们地球究竟有多远呢?
题型一 测量距离问题
例9、如图,A、B两点都在河的对岸(不可到达),设 计一种测量两点间的距离的方法,并求出AB间的距离。
B A
例9、如图,A、B两点都在河的对岸(不可到达),设 计一种测量两点间的距离的方法,并求出AB间的距离。
B A
C
解:测量者可以在A、B对岸选定两点C、D, A
测角仪器的高是h. A
D
C
E
G
H
B
在 ACD 中,根据正弦定理可得
AC asin sin( )
AB AE h
ACsin h asin sin h
sin( )
在实际操作时,使H、G、B 三点共线不是一件容易的事, 你有什么替代方案吗?
题型三 测量角度问题
例14、位于某海域A处的甲船获悉,在其正东方向相距 20 n mile的B处有一艘渔船遇险后抛锚等待营救.甲船 立即前往救援,同时把消息告知位于甲船南偏3西00 ,且 与甲船相距7 n mile的C处的乙船.那么乙船前往营救 遇险渔船时目标方向线(由观测点看目标的视线)的方
正弦定理与余弦定理的应用
正弦定理与余弦定理的应用正弦定理和余弦定理是中学数学中重要的几何定理,它们在解决三角形相关问题时起着关键作用。
本文将以实际例子为基础,详细介绍正弦定理和余弦定理的应用。
一、正弦定理的应用正弦定理是解决三角形边长和角度之间关系的重要工具。
它的表达式为:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$,其中$a$、$b$、$c$分别为三角形的边长,$A$、$B$、$C$为对应的角度。
例子一:已知三角形$ABC$中,$AB=5$,$BC=8$,$\angle B=45^\circ$,求$\angle A$和$\angle C$的大小。
解析:根据正弦定理可得:$\frac{5}{\sin A}=\frac{8}{\sin 45^\circ}$。
通过求解可得$\sin A=\frac{5\sin 45^\circ}{8}$,进而得到$\angle A=\sin^{-1}\left(\frac{5\sin 45^\circ}{8}\right)$。
同理,可以求得$\angle C=180^\circ-\angle A-\angle B$。
通过计算可得$\angle A\approx 28.07^\circ$,$\angle C\approx106.93^\circ$。
例子二:已知三角形$ABC$中,$AB=6$,$BC=9$,$\angle A=30^\circ$,求$AC$的长度。
解析:根据正弦定理可得:$\frac{6}{\sin 30^\circ}=\frac{AC}{\sin C}$。
通过求解可得$\sin C=\frac{AC\sin 30^\circ}{6}$,进而得到$AC=\frac{6\sin C}{\sin30^\circ}$。
由于$\sin C=\sin (180^\circ-\angle A-\angle B)$,可以通过计算得到$AC\approx 10.39$。
正弦定理和余弦定理综合应用
BC
a sin
a sin
sin 180o ( ) sin( )
α
δ
β
γ
D
C
计算出AC和BC后,再在ABC中,应用余弦定理计
算出AB两点间的距离
AB AC2 BC2 2AC BC cos
测量垂直高度
1、底部可以到达的
测量出角C和BC的长度,解直 角三角形即可求出AB的长。
借助于余弦定理可以计算出A、B两点间的距离。
C
解:测量者可以在河岸边选定两点C、D,测得CD=a, 并且在C、D两点分别测得∠BCA=α, ∠ACD=β, ∠CDB=γ, ∠BDA=δ.
在 ∆ADC和∆ BDC中,应用正弦定理得
B
a sin( )
a sin( ) A
AC
sin 180o ( ) sin( )
故sin B AC sin A 5 3 B 38o
BC 14
故我舰航行的方向为北偏东 50o 38o 12o
变式训练1:若在河岸选取相距40米的C、D两
点,测得 BCA= 60, ACD=30,CDB= 45, BDA= 60 求A、B两点间距离 .
注:阅读教材P12,了解基线的概念
1.2.1 应用举例
公式、定理
正弦定理:a b c 2R sin A sinB sinC
余弦定理:
a2 b2 c2 2bc cos A b2 a2 c2 2ac cos B
c2 a2 b2 2abcosC
三角形边与角的关系:
cos A b2 c2 a2 , 2bc
cos B c2 a2 b2 , 2ca
即sin9A0C°-α=sinBαC-β,∴AC=sBinCαco-s βα=sihncαo-s αβ. 在Rt△ACD中,CD=ACsin∠CAD=ACsin β=hscionsαα-sinββ.
正弦定理与余弦定理的应用
正弦定理和余弦定理在三角学及相关领域中具有广泛的应用,通过这两个定理,我们可以解决许多与三角形相关的问题。
以下是关于正弦定理和余弦定理的应用的详细探讨。
一、正弦定理的应用正弦定理是三角学中的一个基本定理,它表达了三角形中任意一边与其对应的角的正弦值之间的关系。
正弦定理在实际应用中具有广泛的用途,以下是几个具体的应用示例:1. 航海与测量:在航海和大地测量中,正弦定理被用来计算地球上两点之间的距离。
由于地球表面可以近似为一个球体,因此可以通过测量两点的纬度和经度,利用正弦定理计算出两点之间的实际距离。
2. 电气工程:在电气工程中,正弦定理被用来分析交流电路中的电压、电流和电阻之间的关系。
通过正弦定理,我们可以推导出各种电气元件(如电阻、电容和电感)的等效电路模型,从而简化电路分析。
3. 通信与信号处理:在通信和信号处理领域,正弦定理被用来分析信号的频谱特性和传输特性。
通过正弦定理,我们可以将复杂的信号分解为一系列正弦波的组合,从而更容易地理解和处理信号。
二、余弦定理的应用余弦定理是另一个重要的三角定理,它表达了三角形中任意一边的平方等于其他两边平方之和减去这两边夹角的余弦值乘以这两边乘积的2倍。
余弦定理同样具有广泛的应用,以下是几个具体的应用示例:1. 几何学:在几何学中,余弦定理被用来解决与三角形边长和角度相关的问题。
例如,在已知三角形的两边及其夹角时,我们可以利用余弦定理求出第三边的长度。
此外,余弦定理还可以用于判断三角形的形状(如锐角三角形、直角三角形或钝角三角形)以及求解三角形的内角。
2. 物理学:在力学中,余弦定理被用来求解连接杆件的长度和角度问题。
例如,在机器人学和机械设计中,我们需要确定各个杆件之间的相对位置和角度,以便实现预期的运动轨迹。
余弦定理可以帮助我们解决这个问题。
此外,余弦定理还在许多其他领域中得到应用,如航空航天、土木工程、计算机图形学等。
在这些领域中,余弦定理通常被用来求解与空间几何和三维变换相关的问题。
正、余弦定理应用举例
在塔底C处测得A处的俯角 50 1 .
已知铁塔BC部分的高为27.3m, 求出山高CD(精确到 1m).
例5.如图,一辆汽车在一条水平的公路上向正西行驶, 到A处时测得公路北侧远处一山顶D在西偏北 15 的方 向上,行驶5km后到达B处,测得此山顶在西偏北 25 的 方向上,仰角为 8 ,求此山的高度CD.(精确到1m)
S ABC
1 1 6 2 2 sin 45 3 1 ac sin B 2 2
巩固训练
1.ABC中,a 4,b 2 5,c 2 3,则S ABC
2.ABC中,c 3,a b 9,C 45,则S ABC
3.ABC的三内角A、B、C所对边的长分别为a、b、c,
有关三角形的计算问题 1 1 1 S ab sin C ac sin B bc sin C 2 2 2
例7. ABC中,c 2,A 30 ,B 45,求ABC的面积. 解析:
a c sin A sin C
2
A
6 2
B
C
c sin A 2 sin 30 a sin C sin 105
2. 我舰在敌岛 A 南偏西 50°相距 12 海里的 B 处,发现敌 舰正由岛沿北偏西10°的方向以10海里/小时的速度航 行.问我舰需以多大速度、沿什么方向航行才能用2小 C 时追上敌舰?
解:如图,在△ABC中由余弦定理得:
10
BC 2 AC 2 AB 2 2 AB AC cos BAC 1 20 12 2 12 20 ( ) 2 784
应用三、测量角度
例6.如图, 一艘海轮从A出发, 沿北偏东750的方向 航行67.5nmile后到达海岛B, 然后从B出发, 沿北偏 东320的方向航行54.0nmile后到达海岛C.如果下次 航行直接从A出发到达C , 此船应该沿怎样的方向 航行, 需要航行多少距离(角度精确到0.10 , 距离精 确到0.01nmile ).
【人教版】中职数学(拓展模块):1.2《余弦定理、正弦定理》(3)
解决量的程一般要充分真理解意,正确做 出形,把里的条件和所求成三角形中的已知和未 知的、角,通建立数学模型来求解
知 运用
知 运用
例2.如, A、B两点都在河的岸(不可到达), 一种量 A、B两点距离的方法。
知 运用
知 运用
9
知 运用
A
10
堂
用余弦定理
用正弦定理
在△ACD中用正弦定理求AC 在△BCD中用正弦定理求BC 在△ABC中用余弦定理求AB
堂
先 用 正 弦 定 理 求 出 AC或 AD,再解直角三角形求出 AB
在△BCD中先用正弦定理求 出2 正弦定理、余弦定理应用举例 (一)
知 点小
1、正弦定理:
可以解决的有关解三角形: (1)已知两角和任一 ; (2)已知两和其中一的角 。
2、余弦定理: 推 :
a2=b2+c2-2bccosA b2=a2+c2-2accosB c2=a2+b2-2abcosC
可以解决的有关解三角形的: (1)已知三;( 2)已知两和他的角。
学了正、余弦定理后,上述所提的是能。有 由于条件所限,需要量像一个点与河面一点或船到礁石 不可到达点的距离,一般作法是在河或主航道上生一段位 移,从两个不同地点出到个不能到达点的角及段位移的 度,从而通算得出答案。从而将化一个数学: 已知一个三角形的两角及,要求个三角形的其中一,然 只要根据正弦定理,就可以达到目的。
:在日常生活和工生中,了达到某种目的, 常常想得一个点与另一个不可到达的点的距离或在 的两个物体之的距离,的想法能?如何呢 ?
正弦定理、余弦定理的应用
并且在C、D两点分别测得
ABC , ACD , CDB , BDA
在三角形ADC和BDC中,应用正弦定理得
AC
a sin( ) sin[180 (
)]
a sin( ) sin( )
a sin
a sin
65.7
答:A、B两点的距离为65.7米.
想一想
有其他解法?
实例讲解
想一想
如果对例1的题目进行修改:点A、B都在河的对岸
且不可到达,那又如何求A、B两点间的距离?请同
学们设计一种方法求A、B两点间的距离。(如图)
A
B
分析:象例1一样构造三角形,利
用解三角形求解。
D
C
实例讲解
解:测量者可以在河岸边选定两点C、D,测的CD=a
大速度,沿什么方向航行才能用2小时追上敌舰?
C
10 A
50
B
课堂小结
1、本节课通过举例说明了解斜三角形在实际中的一些应用。 掌握利用正弦定理及余弦定理解任意三角形的方法。
2、利用解三角形知识解应用题的一般步骤:
分析
建摸
求解
检验
实际问题 画图形
检验
实际问题的解
数学模型
解 三 角 形
数学模型的解
课后作业 课本第14页练习1、2
二、应 用: 求三角形中的某些元素
解三角形
实例讲解
例1、如下图,设A、B两点在河的两岸,要测量两点之间的距
离。测量者在A的同侧,BAC 51, ACB 75, 在所在的河岸
边选定一点C,测出AC的距离是55 m,求点A、B两点间的
正弦定理、余弦定理的应用(上课用)
五、几何问题
例4.如图,半圆O的直径为2,A为直径延长线上的一
点,OA=2,B为半圆上任意一点,以AB为一边作等
边三角形ABC.问:点B在什么位置时,四边形OACB
面积最大?
解:设 ∠AOB=α.在△AOB,由余弦定理,
得 AB2=12+22-2×1×2cosα=5-4cosα.
于是,四边形OACB的面积为
解:(1)所求距离即为AB, 在△OAB中, AB 2=OA2+OB 2-2OA·OBcos60°,
=32+12-2×3×1×=7,
所以 AB= 7(km).
(3)因为
PQ
2=48t2-24t+7=48(t-
1 4
)2+4,
所以当t=
1 4
时,PQ最短,且等于2,
即在15分钟末,两人的距离最近, 且为2km.
四、物理问题
例2.作用于同一点的三个力F1,F2,F3平衡.已知 F1=30N,F2=50N,F1与F2之间的夹角是60°,求 F3的大小与方向(精确到0.1°).
思考:你能用向量方法求解吗?
例3.如图,有两条相交成60°角的直路XX′,YY′,交 点是O,甲、乙分别在OX,OY 上,起初甲离 O点3km, 乙离O 点1 km.后来甲沿XX′的方向,乙沿Y′Y 的方向, 同时用4km/h的速度步行.(1)起初两人的距离是 多少?(2)th后两人的距离是多少?(3)什么时 候两人的距离最短?
问题:AB是底部不可到达的一个建筑物,A为 建筑物的最高点.设计一种测量建筑物高度AB 的办法
分析:
解直角三. 角t△ADE中,
E
列方程求解. 解斜角三角形:
斜△ADC求AC,Rt△ACE中,求AE.
例4.如图,在山顶铁塔上B处测得地面上一点的 俯角α,在塔底C处测得A处的俯角β.已知铁塔 BC部分的高为hm,求出山高CD.
正弦定理和余弦定理的应用举例
正弦定理和余弦定理的应用举例1.实际测量中的常见问题判断正误(正确的打“√”,错误的打“×”) (1)东北方向就是北偏东45°的方向.()(2)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( ) (3)俯角是铅垂线与视线所成的角,其范围为⎣⎡⎦⎤0,π2.( )(4)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( ) (5)方位角大小的范围是[0,2π),方向角大小的范围一般是[0,π2).( )答案:(1)√ (2)× (3)× (4)√ (5)√若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:选B.如图所示,∠ACB =90°,又AC =BC ,所以∠CBA =45°,而β=30°,所以α=90°-45°-30°=15°. 所以点A 在点B 的北偏西15°.(教材习题改编)如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.此船的航速是________n mile/h. 解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:32如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点间的距离为________.解析:由正弦定理得 AB =AC ·sin ∠ACB sin B =50×2212=502(m).答案:50 2 m如图所示,D ,C ,B 三点在地面的同一直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.解析:因为∠D =30°,∠ACB =60°, 则∠CAD =30°,所以CA =CD =a , 所以AB =a sin 60°=32a . 答案:32a测量距离[典例引领]如图所示,某旅游景点有一座风景秀丽的山峰,山上有一条笔直的山路BC 和一条索道AC ,小王和小李打算不坐索道,而是花2个小时的时间进行徒步攀登,已知∠ABC =120°,∠ADC =150°,BD =1 km ,AC =3 km.假设小王和小李徒步攀登的速度为每小时1 250米,请问:两位登山爱好者能否在2个小时内徒步登上山峰?(即从B 点出发到达C 点)【解】 在△ABD 中,由题意知,∠ADB =∠BAD =30°,所以AB =BD =1,因为∠ABD =120°,由正弦定理得AB sin ∠ADB =AD sin ∠ABD ,解得AD =3,在△ACD 中,由AC 2=AD 2+CD 2-2AD ·CD ·cos 150°, 得9=3+CD 2+23×32CD , 即CD 2+3CD -6=0,解得CD =33-32, BC =BD +CD =33-12, 2个小时小王和小李可徒步攀登1 250×2=2 500米,即2.5千米,而33-12<36-12=52=2.5,所以两位登山爱好者可以在2个小时内徒步登上山峰.若本例条件“BD =1 km ,AC =3 km ”变为“BD =200 m ,CD =300 m ”,其他条件不变,则这条索道AC 长为________.解析:在△ABD 中,BD =200,∠ABD =120°. 因为∠ADB =30°,所以∠DAB =30°. 由正弦定理,得BD sin ∠DAB =ADsin ∠ABD,所以200sin 30°=AD sin 120°.所以AD =200×sin 120°sin 30°=200 3(m).在△ADC 中,DC =300 m ,∠ADC =150°, 所以AC 2=AD 2+DC 2-2AD ×DC ×cos ∠ADC =(200 3)2+3002-2×2003×300×cos 150° =390 000,所以AC =10039. 故这条索道AC 长为10039 m. 答案:10039 m距离问题的类型及解法(1)测量距离问题分为三种类型:两点间不可达又不可视、两点间可视但不可达、两点都不可达.(2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.如图,隔河看两目标A 与B ,但不能到达,在岸边先选取相距 3 km 的C ,D 两点,同时,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解:在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°, 所以AC =CD = 3 km.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°. 所以BC =3sin 75°sin 60°=6+22.在△ABC 中,由余弦定理,得AB 2=(3)2+⎝ ⎛⎭⎪⎫6+222-2×3×6+22×cos 75° =3+2+3-3=5,所以AB = 5 km ,测量高度[典例引领]如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.【解析】 由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°,解得BC =300 2 m.在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m). 【答案】 1006求解高度问题的注意事项(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.(2018·湖北省七市(州)协作体联考)如图,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =________m.解析:由题意可知,设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,所以由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2·3h ·h 3·⎝⎛⎭⎫-12,解得h =1039,故塔的高度为1039 m. 答案:1039测量角度[典例引领]一艘海轮从A 出发,沿北偏东75°的方向航行(23-2)n mile 到达海岛B ,然后从B 出发,沿北偏东15°的方向航行4 n mile 到达海岛C .(1)求AC 的长;(2)如果下次航行直接从A 出发到达C ,求∠CAB 的大小. 【解】 (1)由题意,在△ABC 中,∠ABC =180°-75°+15°=120°,AB =23-2,BC =4, 根据余弦定理得AC 2=AB 2+BC 2-2AB ×BC ×cos ∠ABC =(23-2)2+42+(23-2)×4=24, 所以AC =2 6.(2)根据正弦定理得,sin ∠BAC =4×3226=22,所以∠CAB =45°.解决测量角度问题的注意事项(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.[通关练习]1.甲船在A 处观察乙船,乙船在它的北偏东60°的方向,相距a 海里的B 处,乙船正向北的方向前进.解析:设两船在C 处相遇,则由题意∠ABC =180°-60°=120°,且ACBC =3,由正弦定理得AC BC =sin 120°sin ∠BAC =3,所以sin ∠BAC =12.又因为0°<∠BAC <60°,所以∠BAC =30°. 所以甲船应沿北偏东30°方向前进. 答案:30°2.在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若红方侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇,若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解:如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20. 根据正弦定理得BC sin α=AC sin 120°,解得sin α=20sin 120°28=5314.利用解三角形解决实际问题时:(1)要理解题意,整合题目条件,画出示意图,建立一个三角形模型; (2)要理解仰角、俯角、方位角、方向角等概念;(3)三角函数模型中,要确定相应参数和自变量范围,最后还要检验问题的实际意义.易错防范(1)易混淆方位角与方向角概念:方位角是指正北方向与目标方向线(按顺时针)之间的夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.(2)解三角形时,为避免误差的积累,应尽可能用已知的数据(原始数据),少用间接求出的量.1.两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°解析:选D.由条件及题图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.2.一艘船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到达B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为( ) A .15 2 km B .30 2 km C .45 2 km D .60 2 km解析:选B.如图所示,依题意有AB =15×4=60,∠DAC =60°,∠CBM =15°, 所以∠MAB =30°,∠AMB =45°.在△AMB 中,由正弦定理,得60sin 45°=BM sin 30°,解得BM =302,故选B.3.如图,一条河的两岸平行,河的宽度d =0.6 km ,一艘客船从码头A 出发匀速驶往河对岸的码头B .已知AB =1 km ,水的流速为2 km/h ,若客船从码头A 驶到码头B 所用的最短时间为6 min ,则客船在静水中的速度为( )A .8 km/hB .6 2 km/hC .234 km/hD .10 km/h解析:选B.设AB 与河岸线所成的角为θ,客船在静水中的速度为v km/h ,由题意知,sin θ=0.61=35,从而cos θ=45,所以由余弦定理得⎝⎛⎭⎫110v 2=⎝⎛⎭⎫110×22+12-2×110×2×1×45,解得v =6 2.4.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为( )A .30°B .45°C .60°D .75°解析:选B.依题意可得AD =2010(m),AC =305(m),又CD =50(m), 所以在△ACD 中,由余弦定理得 cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010=6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°. 5.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15 km 后,看见灯塔在正西方向,则这时船与灯塔的距离是( ) A .5 km B .10 km C .5 3 kmD .5 2 km解析:选C.作出示意图(如图),全国名校高考数学复习优质学案汇编(理科,附详解)点A 为该船开始的位置,点B 为灯塔的位置,点C 为该船后来的位置,所以在△ABC 中,有∠BAC =60°-30°=30°,B =120°,AC =15,由正弦定理,得15sin 120°=BC sin 30°, 即BC =15×1232=53,即这时船与灯塔的距离是5 3 km. 6.海上有A ,B 两个小岛相距10 n mile ,从A 岛望C 岛和B 岛成60°的视角,从B 岛望C 岛和A 岛成75°的视角,那么B 岛和C 岛间的距离是________ n mile.解析:如图,在△ABC 中,AB =10,A =60°,B =75°,C =45°,由正弦定理,得AB sin C =BC sin A , 所以BC =AB ·sin A sin C =10×sin 60°sin 45°=56(n mile).答案:5 67.如图,为了测量河的宽度,在一岸边选定两点A 、B 望对岸的标记物C ,测得∠CAB =30°,∠CBA =75°,AB =120 m ,则这条河的宽度为________.解析:如图,在△ABC 中,过C 作CD ⊥AB 于D 点,则CD 为所求河的宽度.在△ABC 中,因为∠CAB =30°,∠CBA =75°,所以∠ACB =75°,所以AC =AB =120 m.在Rt △ACD 中,CD =AC sin ∠CAD。
正弦定理、余弦定理在生活中的应用
正弦定理、余弦定理在生活中的应用正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考.一、在不可到达物体高度测量中的应用例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .分析:本题是一个高度测量问题,在∆BCD 中,先求出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出塔高AB.解析:在BCD △中,CBD ∠=παβ--. 由正弦定理得sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD ∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠=tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高.二、在测量不可到达的两点间距离中的应用例2某工程队在修筑公路时,遇到一个小山包,需要打一条隧道,设山两侧隧道口分别为A 、B ,为了测得隧道的长度,在小山的一侧选取相距km 的C 、D 两点高,测得∠ACB=750,∠BCD=450,∠ADC=300,∠ADC=450(A 、B 、C 、D ),试求隧道的长度.分析:根据题意作出平面示意图,在四边形ABCD 中,需要由已知条件求出AB 的长,由图可知,在∆ACD 和∆BCD 中,利用正弦定理可求得AC 与BC ,然后再在∆ABC 中,由余弦定理求出AB.解析:在∆ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴在∆BCD 中,∠CBD=1800-450-750=600由正弦定理可得,在∆ABC 中,由余弦定理,可得2222AB AC BC AC BC COS ACB =+-∙∙∠,2220(27522AB COS =+-⨯⨯=5∴ 2.236km,即隧道长为2.236km.点评:本题涉及到解多个三角形问题,注意优化解题过程.如为求AB 的长,可以在∆ABD 中,应用余弦定理求解,但必须先求出AD 与BD 长,但求AD 不如求AC 容易,另外。
解三角形在现实生活中的应用——正,余弦定理
解三角形正,余弦定理在现实生活中的应用解三角形的正弦定理和余弦定理在现实生活中有广泛的应用。
例如,测量距离、测量高度、航海模型、物理问题等都与这些定理有关。
以下是一些例子:
1. 测量距离
利用正弦定理和余弦定理可以测量出无法直接测量的距离。
假设你想知道两个建筑物之间的距离,但你不能直接测量它们之间的直线距离。
你可以站在其中一个建筑物旁边,用一个工具测量你与另一个建筑物之间的角度和高度差,然后使用正弦定理或余弦定理计算出两个建筑物之间的直线距离。
2. 测量高度
同样可以利用正弦定理和余弦定理测量出无法直接测量的高度。
假设你想知道一个树的高度,但你只能在地面附近测量树的影子长度。
你可以使用正弦定理或余弦定理计算出树的高度。
3. 航海模型
在航海中,可以利用正弦定理和余弦定理计算船只的位置。
假设你知道船只在某个时间点的位置和朝向,以及它的速度和方向,你可以使用正弦定理和余弦定理计算出船只在任何其他时间点的位置和朝向。
这对于导航非常重要。
4. 物理问题
在物理学中,正弦定理和余弦定理也有很多应用,例如在振
动、波动等问题中。
例如,当一个弹簧上放置一个小球时,小球会以一定的频率来回摆动。
通过测量小球的振幅、周期等参数,可以使用正弦定理和余弦定理计算出小球的运动轨迹和速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2010· 江苏)某兴趣小组要测量电视塔
AE的高度H(单位:m)如图所示,垂
直放置的标杆BC的高度h= 4 m,仰角∠ABE=α,∠ADE=β. (1)该小组已测得一组α、β的值,算出了tan α=1.24,tan β=1.20,请据此算出H的值; (2)该小组分析若干测得的数据后,认为适当调整标杆到 电视塔的距离d(单位:m),使α与β之差较大,可以提高 测量精度.若电视塔的实际高度为125 m,试问d为多少 时,α-β最大?
解
设“大连号”用 t h 在 D 处追上
“敌舰”, 则有 CD=10 3t, BD=10t, 如图在△ABC 中,∵AB= 3-1,AC =2,∠BAC=120° , ∴由余弦定理,得 BC2=AB2+AC2-2AB· cos∠BAC AC· =( 3-1)2 +22 -2· 3-1)· cos 120° ( 2· =6
在△A1B2B1 中,由余弦定理得 B1B 2 =A1B 2 +A1B 2 - 2 1 2 2A1B1· 1B2· 45° A cos =202 +(10 2)2 -2×20×10 2× =200,∴B1B2=10 2. 10 2 因此,乙船的速度为 ×60=30 2(海里/时).(14 分) 20 2 2
20 分钟到达 A2 处时,乙船航行到甲船的北偏西 120° 方向的 B2 处,此时两船相距 10 2海里.问:乙船每小时航行多少海里?
[审题路线图] (1)分清已知条件和未知条件(待求). (2)将问题集中到一个三角形中.(3)利用正、余弦定理求 解. [解答示范] 如图,连接 A1B2,由已知
[点评] 三角形应用题常见的类型: ①实际问题经抽象概括后,已知量与未知量全部集中在一 个三角形中,可用正弦定理或余弦定理解之; ②实际问题经抽象概括后,已知量与未知量涉及两个三角 形,这时需按顺序逐步在两个三角形中求出问题的解; ③实际问题经抽象概括后,涉及的三角形不只有一个,可 由题目已知条件解此三角形需连续使用正弦定理或余弦定
答案 2 7
且与 B 点相距 20 3海里的 C 点的救援船立即前往营 救,其航行速度为 30 海里/时,该救援船达到 D 点需 要多长时间?
解
由题意知 AB=5(3+ 3)海里,∠DBA=90° -60° =
30° ,∠DAB=90° -45° =45° , 所以∠ADB=180° -(45° +30° )=105° , DB AB 在△ADB 中,由正弦定理得 = , sin∠DAB sin∠ADB AB· sin∠DAB 53+ 3· 45° sin 所以 DB= = sin 105° sin∠ADB 53+ 3· 45° sin = =10 3(海里), sin 45° 60° cos +cos 45° 60° sin
[方法总结] 用解三角形知识解决实际问题的步骤:
第一步:将实际问题转化为解三角形问题; 第二步:将有关条件和求解的结论归结到某一个或两个三 角形中. 第三步:用正弦定理和余弦定理解这个三角形.
第四步:将所得结果转化为实际问题的结果.
规范解答
如何运用解三角形知识解决实际问题
航海、测量问题利用的就是目标在不同时刻的位置数
AC 2 3 2 ∴BC= 6,且 sin∠ABC=BC· sin∠BAC= · = . 2 6 2 ∴∠ABC=45° , ∴BC 与正北方向垂直. ∴∠CBD=90° +30° =120° , 在△BCD 中,由正弦定理,得 BD· sin∠CBD 10tsin 120° 1 sin∠BCD= = = , CD 2 10 3t ∴∠BCD=30° . 即“大连号”沿东偏北 30° 方向能最快追上“敌舰”.
又∠DBC=∠DBA+∠ABC=30° +(90° -60° )=60° , BC=20 3(海里),在△DBC 中,由余弦定理得 CD2=BD2+BC2-2BD· cos∠DBC BC· 1 =300+1 200-2×10 3×20 3× =900, 2 30 所以 CD=30(海里),则需要的时间 t= =1(小时). 30 所以救援船到达 D 点需要 1 小时.
分析: 第一问通过三个直角三角形找出关系式,然后消参量求
解。
第二问用d表示 tan -),建立函数关系式求最值。 (
也可用 tan 或 tan 表示,体现函数思想的应用
【例 3】 我国海军在东海举行大规模演习.在海岸 A 处, 发现北偏东 45° 方向,距离 A( 3-1)km 的 B 处有一艘 “敌舰”.在 A 处北偏西 75° 的方向,距离 A 2 km 的 C 处的“大连号”驱逐舰奉命以 10 3 km/h 的速度追截 “敌舰”.此时,“敌舰”正以 10 km/h 的速度从 B 处 向北偏东 30° 方向逃窜,问“大连号”沿什么方向能最 快追上“敌舰”?
据,这些数据反映在坐标系中就构成了一些三角形,根据
这些三角形就可以确定目标在一定的时间内的运动距离, 因此解题的关键就是通过这些三角形中的已知数据把测量 目标归入到一个可解三角形中.
2013江苏高考
【示例】 (2012· 镇江调研)如图,甲船以每小 时 30 2海里的速度向正北方航行,乙船按 固定方向匀速直线航行.当甲船位于 A1 处 时,乙船位于甲船的北偏西 105° 方向的 B1 处,此时两船相距 20 海里,当甲船航行
20 A2B2=10 2,A1A2=30 2× =10 2, 60 ∴A1A2=A2B2.(3 分) 又∠A1A2B2 =180° -120° =60° ,∴△ A1A2B2 是等边三角形,∴A1B2 =A1A2 =10 2.由已知,A1B1 =20,∠B1A1B2 =105° -60° =45° ,(9 分)
理.
AB 3 BC 解析 由正弦定理知 = = , sin C sin 60° sin A ∴AB=2sin C,BC=2sin A. 又 A+C=120° ,∴AB+2BC=2sin C+4sin(120° -C)= 2(sin C+2sin 120° C-2cos 120° C) cos sin =2(sin C+ 3cos C+sin C)=2(2sin C+ 3cos C) 3 =2 7sin(C+α),其中 tan α= ,α 是第一象限角. 2 由于 0° <C<120° ,且 α 是第一象限角, 因此 AB+2BC 有最大值 2 7.