相交线垂线习题精选
5.1.2 垂线 人教版七年级数学下册分层作业(含答案)
第五章相交线与平行线5.1.2 垂线分层作业1.如图,图中直角的个数有()A.个B.个C.个D.个【答案】D【分析】根据直角的定义进行求解即可.【详解】解:由题意得,图中的直角有一共五个,故选D.【点睛】本题主要考查了垂线的定义,熟知垂线的定义是解题的关键.2.如图,,,若,则的度数是()A.B.C.D.【答案】C【分析】先求出,即可求出.【详解】解:,,.,.故选:C.【点睛】本题主要考查直角的概念以及角度的计算,比较简单.3.如图,在纸片上有一直线l,点A在直线l上,过点A作直线l的垂线、嘉嘉使用了量角器,过90°刻度线的直线a即为所求;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【分析】根据垂直的定义即可解答.【详解】解:嘉嘉利用量角器画90°角,可以画垂线,方法正确;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.【点睛】本题主要考查了作图、垂线的定义,掌握垂直的定义是解答本题的关键.4.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】C【分析】根据垂直定义得到∠AOF+∠BOD=,求出∠AOF的度数,利用角平分线的定义求出∠EOF即可.【详解】解:∵∠DOF=,∴∠AOF+∠BOD=,∵∠BOD=,∴∠AOF=,∵OF平分∠AOE,∴∠EOF=∠AOF=,故选:C.【点睛】此题考查了垂直的定义,几何图形中角度的计算,正确理解图形中各角度的关系是解题的关键.5.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为( )A.35°B.45°C.55°D.65°【答案】C【分析】根据角平分线的定义,得出∠MOC=35°,再根据题意,得出∠MON=90°,然后再根据角的关系,计算即可得出∠CON的度数.【详解】解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C【点睛】本题主要考查了角平分线的定义和垂线的定义,解决本题的关键在正确找出角的关系.6.如图,为了解决村民饮水困难,需要在河边建立取水点,下面四个点中哪个最方便作为取水点()A.A点B.B点C.C点D.D点【答案】B【分析】根据“垂线段最短”可得结论.【详解】解:根据“垂线段最短”可知要在河边建立取水点,点B作为取水点最方便,故选:B【点睛】此题主要考查了垂线段最短,正确掌握垂线段的性质是解题关键.7.如图,,垂足是点,,,,点是线段上的一个动点包括端点,连接,那么的长为整数值的线段有()A.条B.条C.条D.条【答案】D【分析】根据垂线段最短解答即可.【详解】解:∵,,,,且点是线段上的一个动点包括端点,∴长的范围是,∴的长为整数值的线段有、、、,,共条,故选:D.【点睛】本题考查垂线段最短.理解和掌握垂线段最短是解题的关键.8.如图,直线AB,CD相交于点O,EO⊥CD,垂足为O,若∠1=50°,则∠2的度数为()A.B.C.D.【答案】B【分析】应用垂线性质可得∠EOD=90°,由∠1+∠BOD=90°,即可算出∠BOD的度数,再根据对顶角的性质即可得出答案.【详解】解:∵EO⊥CD,∴∠EOD=90°,∵∠1+∠BOD=90°,∴∠BOD=∠EOD-∠1=90°-50°=40°,∴∠2=∠BOD=40°.故选:B.【点睛】本题主要考查了垂线及对顶角,熟练掌握垂线及对顶角的性质进行求解是解决本题的关键.9.已知,与的度数之比为,则等于___.【答案】或【分析】根据垂直定义知,由,可求,根据与的位置关系,分类求解.【详解】解:,,,即∠AOB:90°=3:5,.分两种情况:①当OB在内时,如图,∴;②当OB在外时,如图,∴.故答案是:或.【点睛】本题考查垂直定义,角的和差运算,解题的关键是利用分类讨论的思想进行求解.10.如图,点,在直线上,且,的面积为.若是直线上任意一点,连接AP,则线段AP的最小长度为_____cm.【答案】8【分析】根据点到直线的垂线段最短,再由面积求出高,即为AP的最小值,由题知,过点A作BC的垂线,即为所求,此时,该垂线也是三角形的高.【详解】解:过点A作BC的垂线AP,根据点到直线的所有线段中,垂线段最短,∴垂线段即为AP的最小值,∵BC=5cm,ΔABC的面积为20,∴,∴AP=8,故答案为:8.【点睛】本题考查三角形的面积公式,垂线段最短的性质,属于基础题.11.已知的两边与的两边分别垂直,且比的倍少,则______【答案】80°或92°【分析】因为两个角的两边分别垂直,则这两个角相等或互补,又因∠A比∠B的倍少40°,设∠B是x 度,利用方程即可解决问题.【详解】解:设∠B是x度,根据题意,得①两个角相等时,如图1:∠B=∠A=x°,x=x-40,解得,x=80,故∠A=80°,②两个角互补时,如图2:x+x-40=180,所以x=88,×88°-40°=92°综上所述:∠A的度数为:80°或92°.故答案为:80°或92°.【点睛】本题考查垂线,本题需仔细分析题意,利用方程即可解决问题.关键是得到∠A与∠B的关系.12.如图,直线AB,CD相交于点O,若,且,则的度数是______.【答案】54°##54度【分析】设,则,可得,再由,可得,可求出x,即可求解.【详解】解:设,则,∴,∵,∴∠AOE=∠BOE=90°,∴,即,∴.故答案为:54°【点睛】本题主要考查了垂直的性质,对顶角的性质,熟练掌握垂直的性质,对顶角的性质进行求解是解决本题的关键.13.如图,直线与直线相交于点,,垂足为,,则的度数为______.【答案】60°##60度【分析】根据对顶角相等可得,由,可得,由,即可求解.【详解】解:∵,∴,∵,,,解得.故答案为:60°.【点睛】本题考查了垂直的定义,对顶角相等,几何图形角度的计算,数形结合是解题的关键.14.如图,点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,连接,若,则的长可能是___________(写出一个即可).【答案】4【分析】直接利用垂线段最短即可得出答案.【详解】解∶∵点P是直线l外一点,过点P作于点O,点A是直线l上任意一点,∴3≤AP,∴PA可以为4,故答案为4(答案不唯一).【点睛】此题主要考查了垂线段最短,正确得出A P的取值范围是解题的关键.15.如图,直线和相交于点,,,,求的度数.【答案】【分析】根据,得出,根据,可得,根据角的倍分关系,可得∠的度数,根据是邻补角,可得答案.【详解】解:∵,∴,∵,∴,∵,∴,∴,∵,∴.∴.【点睛】本题考查垂直的性质、角的和差、角的倍分关系、邻补角的性质等知识,是基础考点,掌握相关知识是解题关键.16.如图,是直线上一点,,平分(1)求的度数.(2)试猜想与的位置关系,并说明理由.【答案】(1)的度数为(2)OD⊥AB,理由见解析【分析】(1)设=x,根据题意得,再根据平角的定义进而求解即可;(2)根据角平分线的定义即可得到解答.【详解】(1)解:设=x,∵,∴,∵直线,∴x+3x=180°,解得,∴的度数为;(2)解:OD⊥AB,理由如下,∵OC平分∠AOD,∴∠COD=∠AOC=45°.∴∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.【点睛】此题考查了垂线,平角的定义以及角平分线的定义,对定义的熟练掌握是解题的关键.平角:等于180°的角叫做平角;角平分线:从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线.17.如图,两直线、相交于点,平分,如果::.(1)求;(2)若,,求.【答案】(1)145°(2)125°【分析】(1)根据邻补角的性质和已知求出和的度数,根据对顶角相等求出和的度数,根据角平分线的定义求出的度数,可以得到的度数;(2)根据垂直的定义得到,根据互余的性质求出的度数,计算得到答案.(1)解:,::,,,,,平分,,.(2)解:,,平分,,,.【点睛】本题考查的是邻补角的性质、对顶角的性质和角平分线的定义,掌握邻补角互补、对顶角相等和垂直的定义是解题的关键.18.如图,已知直线AB、CD相交于点O,OE⊥AB,点O为垂足,OF平分∠AOC.(1)若∠COE=54°,求∠DOF的度数;(2)若∠COE∶∠EOF=2∶1,求∠DOF的度数.【答案】(1)∠DOF=108°;(2)∠DOF=112.5°.【分析】(1)先由OE⊥AB得出∠AOE=∠BOE=90°,再根据角平分线定义求出∠COF=72°,然后由∠DOF=180°-∠COF即可求解;(2)设∠EOF=x°,则∠COE=2x°,则∠COF=3x°,再根据角平分线定义求出∠AOF=∠COF=3x°,所以∠AOE=4x°,由垂直的定义可知∠AOE=90°,则4x=90,解之,求出x即可.(1)解:∵OE⊥AB,∴∠AOE=90°;∵∠COE=54°,∴∠AOC=∠AOE+∠COE=144°,∵OF平分∠AOC,∴∠COF=∠AOC=72°,∴∠DOF=180°-∠COF=108°;(2)解:设∠EOF=x°,则∠COE=2x°,∴∠COF=3x°,∵OF平分∠AOC,∴∠AOF=∠COF=3x°,∴∠AOE=4x°,∵OE⊥AB,∴∠AOE=90°,∴4x=90,解得x=22.5,∴∠COF=3x°=67.5°,∴∠DOF=180°-∠COF=112.5°.【点睛】本题考查了角的计算,根据垂直的定义、角的和差关系列方程进行求解,即可计算出答案,难度适中.1.如图,直线AB,CD相交于点O,OE⊥CD,OF平分∠BOD,∠AOE=24°,∠COF的度数是()A.146°B.147°C.157°D.136°【答案】B【分析】欲求∠COF,需求∠DOF.由OE⊥CD,得∠EOD=90°,故求得∠BOD=66°.由OF平分∠BOD,故∠DOF==33°.【详解】解:∵OE⊥CD,∴∠EOD=90°.∴∠BOD=180°﹣∠AOE﹣∠DOE=66°.又∵OF平分∠BOD,∴∠DOF==33°.∴∠COF=180°﹣∠DOF=180°﹣33°=147°.故选:B.【点睛】本题主要考查垂直的定义、角平分线的定义以及邻补角的性质,熟练掌握垂直的定义、角平分线的定义以及邻补角的性质是解决本题的关键.2.如图,,,平分,则的度数为()A.45°B.46°C.50°D.60°【答案】A【分析】先根据垂直的定义得,由已知,相当于把四等分,可得的度数,根据角平分线可得,从而得结论.【详解】解:,,,,,平分,,.故选:.【点睛】本题考查了角平分线的定义,垂直的定义及有关角的计算,解题的关键是确定.3.如图所示,直线AB,CD相交于点O,于点O,OF平分,,则下列结论中不正确的是()A.B.C.与互为补角D.的余角等于【答案】D【分析】根据垂直的定义及角平分线的性质判断A,利用对顶角的性质判断B,利用邻补角的性质判断C,根据余角的定义判断D.【详解】∵于点O,∴∠AOE=,∵OF平分,∴∠2=,故A正确;∵直线AB,CD相交于点O,∴∠1与∠3是对顶角,∴∠1=∠3,故B正确,∵,∴与互为补角,故C正确;∵,∴的余角=,故D错误,故选:D.【点睛】此题考查垂直的定义,角平分线的性质,对顶角的性质,余角的定理,邻补角的性质,几何图形中角度的计算,熟记各定义及性质是解题的关键.4.已知点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离为()A.4 cm B.5 cm C.小于2 cm D.不大于2 cm【答案】D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥m时,PC是点P到直线m的距离,即点P到直线m的距离2cm,当PC不垂直直线m时,点P到直线m的距离小于PC的长,即点P到直线m的距离小于2cm,综上所述:点P到直线m的距离不大于2cm,故选D.【点睛】此题考查了点到直线的距离,利用了垂线段最短的性质.5.如图,若直线与相交于点,平分,且,则的度数为()A.B.C.D.【答案】C【分析】根据角平分线的定义得到,根据垂线的定义得到,利用邻补角的定义即可求解.【详解】解:∵,平分,∴,∵,∴,∴,故答案为:C.【点睛】本题考查邻补角的定义、角平分线的定义、垂直的定义等内容,运用几何知识进行角的和差运算是解题的关键.6.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠CON=55°,则∠AOM的度数为()A.35°B.45°C.55°D.25°【答案】A【分析】根据垂直得出∠NOM=90°,求出∠COM=35°,根据角平分线定义得出∠AOM=∠COM,即可得出答案.【详解】解:∵ON⊥OM,∴∠NOM=90°,∵∠CON=55°,∴∠COM=90°-55°=35°,∵射线OM平分∠AOC,∴∠AOM=∠COM=35°,故选:A.【点睛】本题考查了垂直定义,角平分线定义等知识点,解题的关键是能求出∠COM的度数和求出∠AOM=∠COM.7.已知,如图,直线,相交于点,⊥于点,∠=35°.则∠的度数为().A.35°B.55°C.65°D.70°【答案】B【分析】直接利用垂线的定义结合已知角得出∠COE的度数即可.【详解】∵OE⊥AB于点O(已知),∴∠AOE=90°(垂直定义).∵直线AB,CD相交于点O,∠BOD=35°(已知),∴∠AOC=35°(对顶角相等).∴∠COE=∠AOE−∠AOC=90°−35°=55°.∴∠COE=55°.故选B.【点睛】此题考查垂线的定义,对顶角,解题关键在于得出∠AOC=35°.8.如图,直线,相交于点,,平分,若,则的度数为()A.B.C.D.【答案】B【分析】由垂直得∠COE=90°,从而知∠AOC=64°,则∠BOD也得64°,由角平分线和平角定义得∠COF 的度数.【详解】∵OE⊥CD,∴∠COE=90°,∴∠AOC=∠COE-∠AOE=90°-26°=64°,∵∠AOC=∠BOD,∴∠BOD=64°,又∵OF平分∠BOD,∴∠DOF=∠BOD=×64°=32°,∴∠COF=180°-∠DOF=180°-32°=148°.故选B.【点睛】本题考查了垂线的定义、邻补角、对顶角定义、角平分线定义等知识点.本题属于基础题,推理过程的书写是关键,从垂直入手与已知相结合得出∠AOC的度数,使问题得以解决;同时要注意对顶角和平角性质的运用.9.如图,直线,,相交于点,,,射线,则的度数为___________.【答案】20°或160°【分析】先求出∠EOD=70°,再分射线OG在直线EF的两侧进行讨论求解即可.【详解】解:∵,,∠2=∠AOE,∴∠EOD=180°-50°-60°=70°,分两种情况:①如图,∵,∴∠EOG=90°,∴∠DOG=∠EOG-∠EOD=90°-70°=20°;②如图,∵∠EOG=90°,∠EOD=70°,∴∠DOG=∠EOD+∠EOG=70°+90°=160°,综上,的度数为20°或160°,故答案为:20°或160°.【点睛】本题考查邻补角、对顶角、垂线性质、角的运算,熟练掌握对顶角相等、邻补角互补,分情况讨论是解答的关键.10.如图,点C,O,D在一条直线上,,OE平分比大,的度数为________.【答案】##72.5度【分析】根据比大,和互补,即可求出,进而由垂直性质可求出,再由角平分线性质即可得出答案.【详解】解:∵比大,∴设,则,∵,∴,∴,∴,∵,∴,∴,∴,∵OE平分,∴.故答案为:.【点睛】本题考查了垂直的性质,角平分线的性质以及角的运算,掌握以上知识是解题的关键.11.如图,直线AB,CD交于点O,OC平分∠BOE,OE⊥OF,若∠DOF=15°,则∠EOA=_________.【答案】30°##30度【分析】根据垂直定义可得∠EOF=90°,从而利用平角定义求出∠COE=75°,然后利用角平分线的定义求出∠BOE=2∠COE=150°,最后利用平角定义求出∠EOA,即可解答.【详解】解:∵OE⊥OF,∴∠EOF=90°,∵∠DOF=15°,∴∠COE=180°﹣∠EOF﹣∠DOF=75°,∵OC平分∠BOE,∴∠BOE=2∠COE=150°,∴∠AOE=180°﹣∠∠BOE=30°,故答案为:30°.【点睛】本题考查了垂线,角平分线的定义,根据题目的已知条件并结合图形分析是解题的关键.12.如图,直线AB、CD相交于点O,,O为垂足,如果,则________°.【答案】57.5【分析】根据垂线的定义,可得,根据角的和差,可得的度数,根据邻补角的定义,可得答案.【详解】解:∵∴∴∵,∴,∴,∴,故答案为:.【点睛】本题考查了垂线的定义,邻补角的和等于180°,角与分的转化等知识.解题的关键在于领会由垂直得直角.13.如图,直线AB和CD交于O点,OD平分∠BOF,OE⊥CD于点O,∠AOC=40 ,则∠EOF=_______.【答案】130°【分析】根据对顶角性质可得∠BOD=∠AOC=40°.根据OD平分∠BOF,可得∠DOF=∠BOD=40°,根据OE ⊥CD,得出∠EOD=90°,利用两角和得出∠EOF=∠EOD+∠DOF=130°即可.【详解】解:∵AB、CD相交于点O,∴∠BOD=∠AOC=40°.∵OD平分∠BOF,∴∠DOF=∠BOD=40°,∵OE⊥CD,∴∠EOD=90°,∴∠EOF=∠EOD+∠DOF=130°.故答案为130°.【点睛】本题考查相交线对顶角性质,角平分线定义,垂直定义,掌握对顶角性质,角平分线定义,垂直定义是解题关键.14.如图所示,已知,若,,,则点到的距离是______,点到的距离是______.【答案】 4 2.4【分析】根据点到直线的距离概念可得点到的距离为垂线段AC的长,设点到的距离为,依据三角形面积,即可得到点到的距离.【详解】解:∵,∴,∴点到的距离为垂线段AC的长,又∵,∴点到的距离为4cm;设点到的距离为,,,,∵,,,,,故答案为:4;2.4.【点睛】本题考查了点到直线的距离,利用三角形的面积得出是解题关键.15.如图,直线,相交于点,平分.(1)若,,求的度数;(2)若平分,,求的度数.【答案】(1)70°(2)50°【分析】(1)根据角平分线的性质可得,根据垂线的定义以及已知条件求得,继而求得,根据对顶角相等即可求解;(2)根据角平分线的性质可得,,设,则,根据平角的定义建立方程,解方程即可求解.(1)解:平分,,,,,,∴;(2)平分,,,设,则,,解得:,故的度数为:.【点睛】本题考查了几何图形中角度的计算,角平分线的定义,垂线的定义,一元一次方程的应用,数形结合是解题的关键.16.如图,直线相交于点O,平分,求:(1)的度数;(2)写出图中互余的角;(3)的度数.【答案】(1)70°(2)∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余(3)55°【分析】(1)根据对顶角相等即可得到;(2)根据余角的定义求解即可;(3)先根据角平分线的定义求出∠DOE=35°,则∠EOF=∠DOF-∠DOE=55°.(1)解:由题意得;(2)解:∵∠COF=90°,∴∠DOF=180°-∠COF=90°,∴∠BOF+∠BOD=90°,∠EOF+∠EOD=90°,∵OE平分∠BOD,∴∠BOE=∠DOE,∴∠EOF+∠BOE=90°,∵∠AOC=∠BOD,∴∠BOF+∠AOC=90°,∴∠BOF与∠BOD互余,∠EOF与∠EOD互余,∠EOF与∠BOE互余,∠BOF与∠AOC互余;(3)解:∵∠BOD=70°,OE平分∠BOD,∴∠DOE=35°,∴∠EOF=∠DOF-∠DOE=55°.【点睛】本题主要考查了几何中角度的计算,角平分线的定义,对顶角相等,余角的定义,熟知相关知识是解题的关键.17.如图,已知,,是内三条射线,平分,平分.(1)若,,求的度数.(2)若,,求的度数.(3)若,,求的度数.【答案】(1)(2)(3)【分析】对于(1),由角平分线的定义求出和,再根据即可求解;对于(2),先求出,再根据角平分线的定义求出和,然后根据即可求解;对于(3),由角平分线的定义得,结合已知条件可得,,即,进而得出,可得答案.【详解】(1)∵平分,平分,∴,,∴;(2)∵,∴.∵,∴.∵平分,平分,∴,,∴;(3)∵平分,∴.∵,∴.∵,∴,∴,∴,∴.【点睛】本题主要考查了角的和差,关键是由角平分线定义得出相关等式.18.点O为直线l上一点,射线均与直线l重合,如图1所示,过点O作射线和射线,使得,,作的平分线.(1)求与的度数;(2)作射线,使得,请在图2中画出图形,并求出的度数;(3)如图3,将射线从图1位置开始,绕点O以每秒的速度逆时针旋转一周,作的平分线,当时,求旋转的时间.【答案】(1),(2)或(3)6秒或秒【分析】(1)根据,,即可得出的度数,根据角平分线的定义得出,然后根据得出的度数;(2)根据题意得出的度数,然后分两种情况进行讨论:①当射线在内部时;②当射线在外部时;分别进行计算即可;(3)根据平分得出,根据题意画出图形,计算的角度,然后计算时间即可.【详解】(1)解:由题意可知,,∵,∴,∵平分,∴,∴;(2)由(1)知,,∴,①当射线在内部时,如图2(1),;②当射线在外部时,如图2(2),,综上所述,的度数为或;(3)∵平分,∴,①如图3,,∵平分,∴,∴,∴旋转的时间(秒);②如图3(1),此时,,∵平分,∴,∴,∴,∴旋转的时间(秒);综上所述,旋转的时间为6秒或秒.【点睛】本题主要考查角度的计算,角平分线的定义等内容;第(2)问进行合适的分类讨论是解题的关键;第(3)问,搞清楚在射线旋转的过程中,和的相对位置在不断的变化,以此进行分类画图.1.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A.垂线段最短B.两点确定一条直线C.过一点有且只有一条直线与已知直线垂直D.过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A.【点睛】本题考查垂线段最短,熟知垂线段最短是解答的关键.2.(2022·河南·中考真题)如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°【答案】B【分析】根据垂直的定义可得,根据平角的定义即可求解.【详解】解:EO⊥CD,,,.故选:B .【点睛】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.3.(2021·北京·中考真题)如图,点在直线上,.若,则的大小为()A.B.C.D.【答案】A【分析】由题意易得,,进而问题可求解.【详解】解:∵点在直线上,,∴,,∵,∴,∴;故选A.【点睛】本题主要考查垂直的定义及邻补角的定义,熟练掌握垂直的定义及邻补角的定义是解题的关键.4.(2021·浙江杭州·中考真题)如图,设点是直线外一点,,垂足为点,点是直线上的一个动点,连接,则()A.B.C.D.【答案】C【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点是直线外一点,,垂足为点,是垂线段,即连接直线外的点与直线上各点的所有线段中距离最短,当点与点重合时有,综上所述:,故选:C.【点睛】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.5.(2020·湖北孝感·中考真题)如图,直线,相交于点,,垂足为点.若,则的度数为()A.B.C.D.【答案】B【分析】已知,,根据邻补角定义即可求出的度数.【详解】∵∴∵∴故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.6.(2020·河北·中考真题)如图,在平面内作已知直线的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【答案】D【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D.【点睛】此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.7.(2020·吉林·中考真题)如图,某单位要在河岸上建一个水泵房引水到处,他们的做法是:过点作于点,将水泵房建在了处.这样做最节省水管长度,其数学道理是_______.【答案】垂线段最短【分析】直线外一点与直线上各点连结的所有线段中,垂线段最短.【详解】通过比较发现:直线外一点与直线上各点连结的所有线段中,垂线段最短.故答案为:垂线段最短.【点睛】此题主要考查点到直线的距离,动手比较、发现结论是解题关键.。
(完整版)5.1相交线垂线习题精选
5.1相交线垂线习题精选一.解答题(共10小题)1.有一张地图,有A、B、C三地,但地图被墨迹污染,C地具体位置看不清楚了,但知道C地在A地的北偏东30°,在B地的东南方向,(1)试确定C地的位置;(2)画射线CA;(3)画出点C到AB的垂线段CD.2.如图,已知直线AB,OC⊥AB,OD⊥OE,若∠COE=∠BOD,则求∠COE,∠BOD,∠AOE的度数.3.如图,AO⊥OB,直线CD过点O,且∠BOD=130°,求∠AOD的大小.4.如图:AB,CD,EF相交于O点,AB⊥CD,OG平分∠AOE,∠FOD=30°,求∠BOE及∠AOG的度数.5.如图,AB、CD相交于O点,若∠EOD=40°,∠BOC=130°,猜想射线OE与直线AB的位置关系,并求证.6.如图,直线AB、CD相交于点O,OE⊥OF,OC平分∠AOE,且∠BOF=2∠BOE.请你求∠DOB的度数.7.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.8.如图,直线AB、CD相交于O点,∠AOC与∠AOD的度数比为4:5,OE⊥AB,OF平分∠DOB,求∠EOF 的度数.9.如图,小明将两块完全相同的直角三角形纸片的直角顶点C叠放在一起,若保持△BCD不动,将△ACE绕直角顶点C旋转.(1)如图1,如果CD平分∠ACE,那么CE是否平分∠BCD?答:_________(填写“是”或“否”);(2)如图1,若∠DCE=35°,则∠ACB=_________°;若∠ACB=140°,则∠DCE=_________°;(3)当△ACE绕直角顶点C旋转到如图1的位置时,猜想∠ACB与∠DCE的数量关系为_________;当△ACE 绕直角顶点C旋转到如图2的位置时,上述关系是否依然成立,请说明理由;(4)在图1中,若∠BCE=∠D,请你猜想CE与BD的位置关系,并说明理由.10.如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°)(1)当动点P落在第①部分时,有∠APB=∠PAC+∠PBD,请说明理由;(3分)(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?若不成立,试写出∠PAC、∠APB、∠PBD三个角的等量关系(无需说明理由);(2分)(3)当动点P在第③部分时,探究∠PAC、∠APB、∠PBD之间的关系,写出你发现的一个结论并加以说明.(3分)5.1相交线垂线习题精选参考答案与试题解析一.解答题(共10小题)1.有一张地图,有A、B、C三地,但地图被墨迹污染,C地具体位置看不清楚了,但知道C地在A地的北偏东30°,在B地的东南方向,(1)试确定C地的位置;(2)画射线CA;(3)画出点C到AB的垂线段CD.考点:方向角;垂线.分析:(1)先分别以A、B两点为原点画出坐标系,再画射线BC、AC,两条射线的交点即为C点;(2)以C为端点,做射线CA即可;(3)过点C作AB的垂线段CD即可求出答案.解答:解:(1)如图所示,线段BC与AC的交点即为C点;(2)由(1)确定出C点的位置,再做射线CA;(3)过点C作AB的垂线段CD.点评:本题考查的是方向角的概念,熟知方向角的表示方法并能画出图形是解答此题的关键.2.如图,已知直线AB,OC⊥AB,OD⊥OE,若∠COE=∠BOD,则求∠COE,∠BOD,∠AOE的度数.考点:角的计算;垂线.专题:计算题.分析:先根据同角的余角相等求出∠COE=∠AOD,再根据∠AOD与∠BOD是邻补角且∠COE=∠BOD求出∠BOD;∠AOE等于∠AOC与∠COE的和.解答:解:∵OC⊥AB,OD⊥OE,∴∠DOE=∠AOC=90°,∵∠COE+∠DOC=∠DOE=90°,∠AOD+∠DOC=∠AOC=90°,∴∠COE=∠AOD,∵∠BOD=180°﹣∠AOD,∵∠COE=∠BOD,∴∠COE=30°,∴∠BOD=180°﹣∠AOD=180°﹣∠COE=180°﹣30°=150°;∴∠AOE=∠AOC+∠COE=90°+30°=120°.点评:利用同角的余角相等求出∠COE=∠AOD是解题的关键.3.如图,AO⊥OB,直线CD过点O,且∠BOD=130°,求∠AOD的大小.考点:角的计算;垂线.分析:首先根据邻补角的关系求得∠BOC,再根据余角的关系求得∠AOC.最后根据邻补角的概念,进一步求得∠AOD.解答:解:∵∠BOD=130°,∴∠BOC=180°﹣130°=50°,又∵AO⊥OB,∴∠AOC=40°,∴∠AOD=180°﹣40°=140°.点评:根据图形结合已知条件找到互补的角和互余的角,结合角的运算求得结果.4.如图:AB,CD,EF相交于O点,AB⊥CD,OG平分∠AOE,∠FOD=30°,求∠BOE及∠AOG的度数.考点:角的计算;对顶角、邻补角;垂线.专题:计算题.分析:分析图形可得,∠COE与∠FOD是对顶角,又有∠BOC=90°,OG平分∠AOE,计算可得答案.解答:解:∵∠FOD=30°,∠COE与∠FOD是对顶角,∴∠EOC=30°;∵AB⊥CD,∴∠BOC=90°,∵∠AOE=90°+∠EOC=120°,且OG平分∠AOE,∴∠AOG=60°.点评:本题考查角的运算,注意角与角之间的倍数与垂直关系即可.5.如图,AB、CD相交于O点,若∠EOD=40°,∠BOC=130°,猜想射线OE与直线AB的位置关系,并求证.考点:垂线;对顶角、邻补角.专题:探究型.分析:观察图形,可猜想OE⊥AB,根据已知条件,证明∠AOE是直角即可.解答:解:OE⊥AB.理由如下:∵∠BOC=130°(已知),∴∠AOD=∠BOC=130°(对顶角相等),∴∠AOE=∠AOD﹣∠EOD=130°﹣40°=90°.∴OE⊥AB.点评:本题考查了垂线对顶角、邻补角.利用垂直的定义除了由垂直得直角外,还能由直角判定垂直,判断两直线的夹角是否为90°是判断两直线是否垂直的基本方法.6.如图,直线AB、CD相交于点O,OE⊥OF,OC平分∠AOE,且∠BOF=2∠BOE.请你求∠DOB的度数.考点:垂线;角平分线的定义;对顶角、邻补角.专题:计算题.分析:由已知条件和观察图形,根据垂直的定义、角平分线的定义和对顶角相等,利用这些关系可解此题.解答:解:∵OE⊥OF,∴∠EOF=90°,∵∠BOF=2∠BOE,∴3∠BOE=90°,∴∠BOE=30°,∴∠AOE=180°﹣∠BOE=150°,又∵OC平分∠AOE,∴∠AOC=∠AOE=75°,∴∠DOB=∠AOC=75°.点评:本题利用垂直的定义,角平分线的定义以及对顶角相等的性质计算,要注意领会由垂直得直角这一要点.7.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.考点:垂线;对顶角、邻补角.专题:计算题.分析:(1)由已知条件和观察图形可知∠1与∠AOC互余,再根据平角的定义求解;(2)利用已知的∠BOC=4∠1,结合图形以及对顶角的性质求∠AOC与∠MOD.解答:解:(1)因为OM⊥AB,所以∠1+∠AOC=90°.又∠1=∠2,所以∠2+∠AOC=90°,所以∠NOD=180°﹣(∠2+∠AOC)=180°﹣90°=90°.(2)由已知∠BOC=4∠1,即90°+∠1=4∠1,可得∠1=30°,所以∠AOC=90°﹣30°=60°,所以由对顶角相等得∠BOD=60°,故∠MOD=90°+∠BOD=150°.点评:本题利用垂直的定义,对顶角的性质和平角的定义计算,要注意领会由垂直得直角这一要点.8.如图,直线AB、CD相交于O点,∠AOC与∠AOD的度数比为4:5,OE⊥AB,OF平分∠DOB,求∠EOF 的度数.考点:垂线;角的计算;对顶角、邻补角.专题:计算题.分析:设∠AOC=4x,则∠AOD=5x,根据邻补角的定义得到∠AOC+∠AOD=180°,即4x+5x=180°,解得x=20°,则∠AOC=4x=80°,利用对顶角相等得∠BOD=80°,由OE⊥AB得到∠BOE=90°,则∠DOE=∠BOE﹣∠BOD=10°,再根据角平分线的定义得到∠DOF=∠BOD=40°,利用∠EOF=∠EOD+∠DOF即可得到∠EOF的度数.解答:解:设∠AOC=4x,则∠AOD=5x,∵∠AOC+∠AOD=180°,∴4x+5x=180°,解得x=20°,∴∠AOC=4x=80°,∴∠BOD=80°,∵OE⊥AB,∴∠BOE=90°,∴∠DOE=∠BOE﹣∠BOD=10°,又∵OF平分∠DOB,∴∠DOF=∠BOD=40°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.点评:本题考查了垂线的性质:两直线垂直,则它们相交所成的角为90°.也考查了对顶角相等以及邻补角的定义.9.如图,小明将两块完全相同的直角三角形纸片的直角顶点C叠放在一起,若保持△BCD不动,将△ACE绕直角顶点C旋转.(1)如图1,如果CD平分∠ACE,那么CE是否平分∠BCD?答:是(填写“是”或“否”);(2)如图1,若∠DCE=35°,则∠ACB=145°;若∠ACB=140°,则∠DCE=40°;(3)当△ACE绕直角顶点C旋转到如图1的位置时,猜想∠ACB与∠DCE的数量关系为∠ACB+∠DCE=180°;当△ACE绕直角顶点C旋转到如图2的位置时,上述关系是否依然成立,请说明理由;(4)在图1中,若∠BCE=∠D,请你猜想CE与BD的位置关系,并说明理由.考点:角的计算;角平分线的定义;余角和补角;垂线.专题:综合题.分析:(1)CD平分∠ACE,那么可得∠DCE=45°,进而求得∠BCF是45°,那么CE平分∠BCD;(2)由∠DCE=35°可先求出∠ACD=55°,再结合∠ACB=∠DCB+∠ACD,∠BCD=90°即可求解;同理,由∠ACB=140°,可先求出∠ACD从而求出∠DCE.(3)四个角组成一个周角,有2个角是90°,和为180°,那么,∠ACB+∠DCE=180°;(4)易知∠D和∠B互余,∠BCE=∠D那么∠DCE和∠D互余,CE与BD垂直.解答:解:(1)是;(2)145,40;∵∠DCE=35°,∴∠ACD=55°,∴∠ACB=∠DCB+∠ACD=90°+55°=145°;同理,∠ACB=140°,∠ACD=∠ACB﹣∠DCB=50°,∴∠DCE=∠ACE﹣∠ACD=40°;(3)∠ACB+∠DCE=180°;成立;∵∠ACE+∠DCB=180°,∴∠ACB+∠DCE=360°﹣(∠ACE+∠DCB)=180°;(4)CE⊥BD.∵∠BCE=∠D,∠BCE+∠ECD=90°,∴∠D+∠ECD=90°,∴∠CFD=90°,∴CE⊥BD.点评:注意直角三角形中直角的应用,以及隐含条件周角的度数为360°.10.如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°)(1)当动点P落在第①部分时,有∠APB=∠PAC+∠PBD,请说明理由;(3分)(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?若不成立,试写出∠PAC、∠APB、∠PBD三个角的等量关系(无需说明理由);(2分)(3)当动点P在第③部分时,探究∠PAC、∠APB、∠PBD之间的关系,写出你发现的一个结论并加以说明.(3分)考点:平行线的性质.专题:推理填空题.分析:(1)过点P向左作PQ∥AC,根据平行公理可得PQ∥BD,然后根据两直线平行,内错角相等可得∠APQ=∠PAC,∠BPQ=∠PBD,相加即可得解;(2)过点P向右作PQ∥AC,根据平行公理可得PQ∥BD,然后根据两直线平行,同旁内角互补可得∠APQ+∠PAC=180°,∠BPQ+∠PBD=180°,两式相加即可得解;(3)分点P在直线AB的左侧与右侧两种情况,分别过点P向右作PQ∥AC,根据平行公理可得PQ∥BD,然后根据两直线平行,同旁内角互补用∠PAC表示出∠APQ,用∠PBD表示出∠BPQ,然后结合图形整理即可得解.解答:解:(1)如图,过点P向左作PQ∥AC,则∠APQ=∠PAC,∵AC∥BD,∴PQ∥BD,∴∠BPQ=∠PBD,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠PAC+∠PBD;(2)不成立.∠APB+∠PAC+∠PBD=360°.理由如下:如图,过点P向右作PQ∥AC,则∠APQ+∠PAC=180°,∵AC∥BD,∴PQ∥BD,∴∠BPQ+∠PBD=180°,∴∠APQ+∠PAC+∠BPQ+∠PBD=180°×2=360°,∵∠APB=∠APQ+∠BPQ,∴∠APB+∠PAC+∠PBD=360°;(3)①若点P在直线AB左侧,过点P向右作PQ∥AC,则∠APQ=180°﹣∠PAC,∵AC∥BD,∴PQ∥BD,∴∠BPQ=180°﹣∠PBD,∵∠APB=∠BPQ﹣∠APQ=(180°﹣∠PBD)﹣(180°﹣∠PAC)=∠PAC﹣∠PBD,∴∠PAC=∠APB+∠PBD;②若点P在直线AB右侧,过点P向右作PQ∥AC,则∠APQ=180°﹣∠PAC,∵AC∥BD,∴PQ∥BD,∴∠BPQ=180°﹣∠PBD,∵∠APB=∠APQ﹣∠BPQ=(180°﹣∠PAC)﹣(180°﹣∠PBD)=∠PBD﹣∠PAC,∴∠PBD=∠APB+∠PAC.点评:本题考查了平行线的性质,读懂题目信息,过点P作出平行线,构造出内错角或同旁内角是解题的关键,(3)注意要分点P在直线AB的左、右两侧两种情况讨论求解.。
相交线、垂线练习(含答案)
1、回答下列问题:(1)三条直线EF CD AB 、、两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?()()对时,邻补角:当对时,对顶角:当121332361333=-⨯⨯==-⨯=n n(2)四条直线GH EF CD AB 、、、两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?()()对时,邻补角:当对时,对顶角:当2414424121444=-⨯⨯==-⨯=n n2、已知:如图,直线CD AB 、相交于点O ,OE 平分BOD ∠,OF 平分COB ∠,1:4:=∠∠DOE AOD .求AOF ∠的度数. (等式的性质)(角平分线的意义)(已知)平分(等式的性质)(邻补角的意义)(对顶角相等)(等式的性质),(等量代换)(平角的意义)(等式的性质)(已知)(角平分线的意义)(已知)平分0001206021120180606030180618041:4:21=∠+∠=∠∴=∠=∠∴∠=∠∴=∠+∠=∠=∠∴=∠=∠∴=∠∴=∠+∠+∠∠=∠∴=∠∠∠=∠=∠∴∠COF AOC AOF BOC COF BOC OF BOC BOC BOD BOD AOC BOD DOE DOE BOE DOE AOD DOE AOD DOE AOD BOD BOE DOE BOD OE3、已知:如图,三条直线EF CD AB 、、相交于O ,且EF CD ⊥,070=∠AOE ,若OG 平分BOF ∠.求DOG ∠.(等式的性质)(垂直的意义)(已知)(角平分线的意义)(已知)平分(对顶角相等)(已知)659035217070=∠∴∠+∠=∠=∠∴⊥=∠=∠∴∠=∠=∠∴=∠DOG FOG DOG DOF DOF EF CD BOF FOG BOF OG AOE BOF AOE 4、如图,已知AOB ∠及点P ,分别画出点P 到射线OB OA 、的垂线段PM 及PN .图a 图b 图c5、如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?()()()()()()()()对时,同旁内角:当对时,内错角:当对时,同位角:当对时,邻补角:当对时,对顶角:当62313336231333122313323121332361333=--⨯==--⨯==--⨯⨯==-⨯⨯==-⨯=n n n n n6、如图,直线CD AB 、与直线GH EF 、分别相交,图中的同旁内角共有( D )..A 4对 .B 8对 .C 12对.D 16对7、已知:如图,直线c b a 、、两两相交,∠1=2∠3,∠2=86°. 则∠4的度数为 043 .8、如图:x =_______;y =______⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧+=+=++00084321221802y x y x x y x x 解得9、如图,∠1和∠2是内错角,可看成是由直线( B )..A BC AB 、被AC 所截构成 .B CD AB 、被AC 所截构成 .C CD AB 、被AD 所截构成 .D CD AB 、被BC 所截构成10、如图所示,与α∠构成同位角的角的个数为( C )A. 1B. 2C. 3D. 4 11、同一平面内的三条直线,其交点个数可能是( D )A .0或3B .1或2或3C .0或1或2D .0或1或2或32xyx y +12°。
四年级下册垂线性质练习题
四年级下册垂线性质练习题垂线性质练习题是四年级下册数学学习的重要内容之一,通过掌握垂线的定义和性质,不仅可以加深对几何概念的理解,还能够培养学生的逻辑思维和几何推理能力。
下面我将为您提供一些垂线性质的练习题,请您具体参考。
练习题一:1. 在平面上,如何判断一条线段与给定的直线相垂直?2. 请画出两条分别与直线相垂直和平行的线段。
3. 若两条线段相垂直,它们之间的夹角是多少?请用图形表示。
4. 若两条线段相垂直,它们之间的夹角是否会受到线段长度的影响?请进行说明。
5. 给定一个直线和一个点,在不使用量角器的情况下,如何在该点上作一条与直线垂直的线段?练习题二:1. 在平面上给出一条直线AB和一点C,如何画出一条通过点C且垂直于直线AB的线段?2. 若一条直线与另一条直线相垂直,那么它们之间的夹角是多少?3. 若一条直线与一条平面相垂直,那么它在该平面上的投影线段是什么?4. 已知一条直线和一点,如何作出通过该点且垂直于给定直线的线段?5. 如何判断两条直线是否垂直?练习题三:1. 在长方形ABCD中,AE是BC的垂线,若BE的长度为8cm,BC的长度为12cm,求AE的长度。
2. 若矩形的长和宽分别为8cm和4cm,求其对角线的长度。
3. 若直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。
4. 若直角梯形的上底和下底分别为6cm和10cm,高为8cm,求斜边的长度。
5. 如何判断一个四边形是否为矩形?以上为四年级下册垂线性质的一些练习题,通过解答这些题目,可以提高学生对垂线性质的理解和运用能力。
希望对您有所帮助!。
人教版七年级下知识点试题精选-关于垂线的习题
七年级下册关于垂线的习题一.选择题(共20小题)1.已知:如图,OC⊥AB,DE平分∠AOC,那么∠AOE等于()A.135°B.50°C.45°D.155°2.一个角的两边分别与另一个角的两边垂直,则这两个角的大小关系为()A.相等B.互补C.相等或互补D.不能确定3.给出条件:①两条直线相交成直角;②两条直线互相垂直;②一条直线是另一直线的垂线,并且能否以上述任何一个为条件得出另外两个为内容的结论,正确的是()A.能B.不能C.有的能有的不能 D.无法确定4.下列说法正确个数为()①过一点有且只有一条直线与已知直线垂直;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③过直线l外一点有且只有一条直线与直线I垂直;④过直线l上一点有且只有一条直线与已知直线l垂直.A.1个 B.2个 C.3个 D.4个5.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两条直线相交,只有一个交点6.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角7.画一条线段的垂线,垂足在()A.线段上B.线段的端点C.线段的延长线上 D.线段上或线段的延长线上8.如图,AO⊥BO,CO⊥DO,∠AOC:∠BOC=1:5,则∠BOD=()A.105°B.112.5°C.135° D.157.5°9.如图,AB、CD交于点O,OE⊥AB,则∠1与∠2一定满足关系是()A.对顶角B.相等C.互补D.互余10.下列语句中,正确的个数是()①平面上,一条直线只有一条垂线;②过直线上一点,画已知直线的垂线只能画一条;③过直线外一点且垂直于这条直线的垂线有且只有一条;④过一点有且只有一条直线与已知直线垂直.A.1个 B.2个 C.3个 D.4个11.在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是()A.60°B.120°C.60°或90°D.60°或120°12.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=∠AOC,则∠BOC=()A.150°B.140°C.130° D.120°13.如图,AO⊥OB,若∠AOC=50°,则∠BOC的度数是()A.20°B.30°C.40°D.50°14.如图,直线AB与CD相交于点O,过点O作OE⊥AB,若∠1=35°,则∠2的度数是()A.45°B.55°C.65°D.75°15.如图,直线a与b相交于点O,MO⊥直线a,垂足为O,若∠2=35°,则∠1的度数为()A.75°B.65°C.60°D.55°16.如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36°B.44°C.50°D.54°17.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A.155°B.145°C.135° D.125°18.下列语句中,正确的是()A.相等的角一定是对顶角B.垂线最短C.过一点有且只有一条直线与已知直线垂直D.有一个公共顶点,且两边互为反向延长线的两个角是对顶角19.在如图所示的条件中,可以判断两条直线互相垂直的是()A.①②B.①③C.②③D.①②③20.如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠BOD=70°,则∠CON的度数为()A.35°B.45°C.55°D.65°二.填空题(共20小题)21.如图直线AB、CD相交于点O,OE⊥AB于O,∠AOC=55°,则∠DOE=.22.如图,CD⊥AB,垂足为C,EF过点C,若∠1=130°,则∠2=.23.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=32°,则∠AOC=.24.过一点有且只有一条直线与已知直线垂直,作一条线段或射线的垂线就是作它们的垂线.25.如图,∠ABD=90°,直线⊥直线,垂足为,过D点有且只有条直线与直线AC垂直.26.如图,已知FE⊥AB于E,CD是过E的直线,且∠AEC=120°,则∠DEF=度.27.如图,已知直线AB、CD交于点E,EF⊥CD,∠AEF=50°,那么∠BED=°.28.如图,已知AB⊥CD垂足为O,EF经过点O.如果∠1=40°,则∠2=°.29.如图,直线AB与CD相交于E点,EF⊥AB,垂足为E,∠1=110°,则∠2=度.30.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC=度,∠COB=度.31.直线AB与直线CD相交于点O,∠BOC:∠BOD=2:7,射线OE⊥CD,则∠BOE的度数为.32.若a∥b,c⊥a,则c与b的位置关系是.33.如图,直线AB、CD相交于点O,OE⊥CD,若∠1=60°,则∠2=.34.如图,直线AB、CD相交于点O,OE⊥AB,∠AOC=40°,那么∠EOD的大小是.35.已知:如图,CD⊥AB于D,∠1=30°,则∠FDB=,∠BDE=.36.如图,点O是直线AB上一点,OC是一条射线,且∠AOC=32°,若过点O作射线OD,使OD⊥OC,则∠BOD的度数为.37.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=35°时,∠BOD的度数为.38.如图,已知直线a,b,c相交于点O,且a⊥c,垂足为O,若∠1=50°,则∠2的度数为.39.直线AB与射线OC相交于点O,OC⊥OD于O,若∠AOC=60°,则∠BOD=度.40.如图,直线AB、CD相交于点O,OM⊥AB于点O,若∠MOD=43°,则∠COB=度.三.解答题(共10小题)41.如图,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度数.42.如图,直线AB⊥CD于点O,直线EF经过点O,∠1=35°.求∠2、∠3及∠EOB的度数.43.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=25°,求∠COE、∠AOE、∠AOG的度数.44.如图,O是直线AB上一点,OD是∠AOC的平分线,OE⊥OD.OE是∠BOC 的平分线吗?为什么?45.已知:如图所示,∠1=∠2,∠3=∠4,GF⊥AB于G点,那么CD与AB是否互相垂直?试判断并说明理由.46.如图,AB⊥CD,垂足为O,EF经过点O,∠1=29°.求∠2和∠3的度数.47.如图,直线AB、CD、EF都经过点O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度数.48.如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD的直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=25°,求∠AOB的度数.(2)若OA平分∠BOE,则∠DOF的度数是.(直接写出答案)49.如图所示,直线AB、CD、EF相交于点O,且AB⊥CD,OG平分∠AOE,若∠DOF=50°,求∠AOG的度数.50.如图所示,点O为直线BD上的一点,OC⊥OA,垂足为点O,∠COD=2∠BOC,求∠AOB的度数.七年级下册关于垂线的习题参考答案与试题解析一.选择题(共20小题)1.已知:如图,OC⊥AB,DE平分∠AOC,那么∠AOE等于()A.135°B.50°C.45°D.155°【分析】首先根据垂直的定义得到∠AOC=90°,再根据角平分线的定义求出∠AOD=45°,最后根据邻补角定义得到∠AOE+∠AOD=180°即可求解.【解答】解:∵OC⊥AB,∴∠AOC=90°,∵OD平分∠AOC,∴∠AOD=∠AOC=45°,∴∠AOE=180°﹣∠AOD=180°﹣45°=135°.故选:A.【点评】此题主要考查了垂线、角平分线、邻补角的定义,关键是理清角之间的关系,求出∠AOD的度数.2.一个角的两边分别与另一个角的两边垂直,则这两个角的大小关系为()A.相等B.互补C.相等或互补D.不能确定【分析】此题可以通过两个图形得出这两个角的关系相等或互补.【解答】解:如图:图1中,根据垂直的量相等的角都等于90°,对顶角相等,所以∠1=∠2,图2中,同样根据垂直的量相等的角都等于90°,根据四边形的内角和等于360°,所以∠1+∠2=360°﹣90°﹣90°=180°.所以如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是相等或互补,故选C.【点评】本题考查了垂线的定义.解题的关键是明确四边形的内角和等于360°,三角形的内角和等于180°,对顶角相等的性质.3.给出条件:①两条直线相交成直角;②两条直线互相垂直;②一条直线是另一直线的垂线,并且能否以上述任何一个为条件得出另外两个为内容的结论,正确的是()A.能B.不能C.有的能有的不能 D.无法确定【分析】分别用①、②、③作为条件,依据垂直的定义分别进行判断即可.【解答】解:①作为条件,②③为结论正确;②作为条件,①③为结论正确;③作为条件,①②为结论正确.故选A.【点评】本题主要考查垂直的定义,熟练掌握定义是解题的关键.4.下列说法正确个数为()①过一点有且只有一条直线与已知直线垂直;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③过直线l外一点有且只有一条直线与直线I垂直;④过直线l上一点有且只有一条直线与已知直线l垂直.A.1个 B.2个 C.3个 D.4个【分析】根据垂线的定义和垂线的性质对各小题分析判断即可得解.【解答】解:①应为在同一平面内,过一点有且只有一条直线与已知直线垂直,故本小题错误;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③应为在同一平面内,过直线l外一点有且只有一条直线与直线I垂直;④应为在同一平面内,过直线l上一点有且只有一条直线与已知直线l垂直.综上所述,说法正确的是②共1个.故选A.【点评】本题考查了垂线的定义与性质,是基础题,主要性质“在同一平面内”的条件限制.5.下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两条直线相交,只有一个交点【分析】运用直线,相交线,垂线的定义及角的概念可判定.【解答】解:根据直线,相交线,垂线的定义及角的概念可判定D正确.故选:D.【点评】本题主要考查了直线,相交线,垂线的定义及角的概念,解题的关键是熟记定义及角的概念.6.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.相等B.互余C.互补D.互为对顶角【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.【解答】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.【点评】本题考查了余角和垂线的定义以及对顶角相等的性质.7.画一条线段的垂线,垂足在()A.线段上B.线段的端点C.线段的延长线上 D.线段上或线段的延长线上【分析】画一条线段的垂线,是指画线段所在的直线的垂线.【解答】解:由垂线的定义可知,画一条线段的垂线,垂足可以在线段上,也可以在线段的延长线上.故选D.【点评】本题考查线段垂线的画法,知道画一条线段的垂线,是指画线段所在的直线的垂线是解题的关键.8.如图,AO⊥BO,CO⊥DO,∠AOC:∠BOC=1:5,则∠BOD=()A.105°B.112.5°C.135° D.157.5°【分析】AO⊥BO,∠AOC:∠BOC=1:5,可求得∠AOC,再根据周角的定义求得结果.【解答】解:设,∠AOC=x,∠BOC=5x,∴∠AOB=4x,∵AO⊥BO,∴4x=90°,∴x=22.5°,∴∠BOD=360°﹣90°﹣90°﹣22.5°=157.5°,故选D.【点评】本题主要考查了垂直的定义,周角的定义,熟记定义是解题的关键.9.如图,AB、CD交于点O,OE⊥AB,则∠1与∠2一定满足关系是()A.对顶角B.相等C.互补D.互余【分析】由垂直的定义可知∠EOA=90°,从而可知∠1+∠AOC=90°,由对顶角的性质可知:∠2=∠AOC,从而可知∠1+∠2=90°.【解答】解;∵OE⊥AB,∴∠EOA=90°.∴∠1+∠AOC=90°.∵∠2=∠AOC,∴∠1+∠2=90°.∴∠1与∠2互为余角.故选:D.【点评】本题主要考查的是余角的定义、垂直的定义、对顶角的性质,发现∠2=∠AOC是解题的关键.10.下列语句中,正确的个数是()①平面上,一条直线只有一条垂线;②过直线上一点,画已知直线的垂线只能画一条;③过直线外一点且垂直于这条直线的垂线有且只有一条;④过一点有且只有一条直线与已知直线垂直.A.1个 B.2个 C.3个 D.4个【分析】根据垂线的性质:在平面内,过一点有且只有一条直线与已知直线垂直进行分析即可.【解答】解:①平面上,一条直线只有一条垂线,说法正确;②过直线上一点,画已知直线的垂线只能画一条,说法错误;③过直线外一点且垂直于这条直线的垂线有且只有一条,说法错误;④过一点有且只有一条直线与已知直线垂直,说法错误.正确的说法只有1个,故选:A.【点评】此题主要考查了垂线的性质,在平面内,过一点有且只有一条直线与已知直线垂直,注意“在平面内”这几个字.11.在直线AB上任取一点O,过点O作射线OC,OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是()A.60°B.120°C.60°或90°D.60°或120°【分析】此题可分两种情况,即OC,OD在AB的一边时和在AB的两边,分别求解.【解答】解:①当OC、OD在AB的一旁时,∵OC⊥OD,∠COD=90°,∠AOC=30°,∴∠BOD=180°﹣∠COD﹣∠AOC=60°;②当OC、OD在AB的两旁时,∵OC⊥OD,∠AOC=30°,∴∠AOD=60°,∴∠BOD=180°﹣∠AOD=120°.故选D.【点评】此题主要考查了直角、平角的定义,注意分两种情况分析.12.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=∠AOC,则∠BOC=()A.150°B.140°C.130° D.120°【分析】根据平角、直角及角的和差关系可求出∠AOC+∠EOD=90°,再与已知∠EOD=∠AOC联立,求出∠AOC,利用互补关系求∠BOC.【解答】解:∵∠COD=180°,OE⊥AB,∴∠AOC+∠AOE+∠EOD=180°,∠AOE=90°,∴∠AOC+∠EOD=90°,①又∵∠EOD=∠AOC,②由①、②得,∠AOC=60°,∵∠BOC与∠AOC是邻补角,∴∠BOC=180°﹣∠AOC=120°.故选:D.【点评】此题主要考查了对顶角、余角、补角的关系.13.如图,AO⊥OB,若∠AOC=50°,则∠BOC的度数是()A.20°B.30°C.40°D.50°【分析】根据OA⊥OB,可知∠BOC和∠AOC互余,即可求出∠BOC的度数.【解答】解:∵AO⊥OB,∴∠AOB=90°.又∵∠AOC=50°,∴∠BOC=90°﹣∠AOC=40°.故选C.【点评】本题考查了垂线,余角的知识.要注意领会由垂直得直角这一要点.14.如图,直线AB与CD相交于点O,过点O作OE⊥AB,若∠1=35°,则∠2的度数是()A.45°B.55°C.65°D.75°【分析】由图和已知条件可以得到∠EOA的度数,∠EOA与∠1和∠2的关系,从而可以得到∠2的度数,本题得以解决.【解答】解:∵OE⊥AB,∴∠EOA=90°,又∵∠2+∠EOA+∠1=180°,∠1=35°,∴∠2=55°,【点评】本题考查垂线、平角,解题的关键是明确题意,利用数形结合的思想,找出所求问题需要的条件.15.如图,直线a与b相交于点O,MO⊥直线a,垂足为O,若∠2=35°,则∠1的度数为()A.75°B.65°C.60°D.55°【分析】根据对顶角和垂线的性质解答即可.【解答】解:∵∠2=35°,MO⊥直线a,∴∠1=90°﹣35°=55°.故选D.【点评】此题考查垂线的性质,关键是根据垂线的性质得出与∠1互余的度数.16.如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36°B.44°C.50°D.54°【分析】根据题意可以得到∠EOD的度数,由∠AOE=36°,∠AOE+∠EOD+∠BOD=180°,从而可以得到∠BOD的度数.【解答】解:∵EO⊥CD,∴∠EOD=90°,又∵∠AOE+∠EOD+∠BOD=180°,∠AOE=36°,∴∠BOD=54°,【点评】本题考查垂线、平角,解题的关键是明确题意,找出所求问题需要的条件.17.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A.155°B.145°C.135° D.125°【分析】由对顶角相等可求得∠BOD,根据垂直可求得∠EOB,再利用角的和差可求得答案.【解答】解:∵∠AOC=35°,∴∠BOD=35°,∵EO⊥AB,∴∠EOB=90°,∴∠EOD=∠EOB+∠BOD=90°+35°=125°,故选D.【点评】本题主要考查对项角相等和垂直的定义,掌握对顶角相等是解题的关键,注意由垂直可得到角为90°.18.下列语句中,正确的是()A.相等的角一定是对顶角B.垂线最短C.过一点有且只有一条直线与已知直线垂直D.有一个公共顶点,且两边互为反向延长线的两个角是对顶角【分析】分别利用垂线以及对顶角的定义分别分析得出答案.【解答】解:A、相等的角一定是对顶角,错误;B、垂线短最短,故此选项错误;C、在平面内,过一点有且只有一条直线与已知直线垂直,故此选项错误;D、有一个公共顶点,且两边互为反向延长线的两个角是对顶角,正确.故选:D.【点评】此题主要考查了垂线和对顶角的定义,正确把握定义是解题关键.19.在如图所示的条件中,可以判断两条直线互相垂直的是()A.①②B.①③C.②③D.①②③【分析】根据垂线的定义,可得答案.【解答】解:①两直线相交所成的四个角都是直角,②两条直线相交,对顶角互补,③两直线相交所成的四个角都相等,故选:D.【点评】本题考查了垂线,利用了垂线的定义.20.如图,直线AB、CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠BOD=70°,则∠CON的度数为()A.35°B.45°C.55°D.65°【分析】直接利用垂线的定义结合角平分线的定义得出答案.【解答】解:∵∠BOD=∠AOC=70°,射线OM平分∠AOC,∴∠AOM=∠MOC=35°,∵ON⊥OM,∴∠COM=90°﹣35°=55°.故选:C.【点评】此题主要考查了垂线以及角平分线的定义,正确得出∠AOM的度数是解题关键.二.填空题(共20小题)21.如图直线AB、CD相交于点O,OE⊥AB于O,∠AOC=55°,则∠DOE=35°.【分析】根据对顶角相等的性质求出∠BOD的度数,再利用余角的和等于90°求解即可.【解答】解:∵∠AOC=55°,∴∠BOD=∠AOC=55°,∵OE⊥AB于O,∴∠GOE=90°﹣55°=35°.故答案为:35°.【点评】本题考查了对顶角相等的性质以及余角的和等于90°的性质,需要熟练掌握.22.如图,CD⊥AB,垂足为C,EF过点C,若∠1=130°,则∠2=40°.【分析】首先利用互补关系求出∠BCE,再由CD⊥AB得出∠BCD=90°,即∠BCE+∠2=90°,从而求得∠2.【解答】解:由已知得:∠BCE=180°﹣∠1=180°﹣130°=50°,∵CD⊥AB,∴∠BCE+∠2=90°,∴∠2=90°﹣∠BCE=90°﹣50°=40°,故答案为:40°.【点评】本题考查了垂直的定义和补角定义,要注意领会由垂直得直角和互补角的关系.23.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=32°,则∠AOC=58°.【分析】由OE⊥AB,∠EOD=32°,利用互余关系求∠BOD,再利用对顶角相等求∠AOC.【解答】解:∵OE⊥AB,∠EOD=32°,∴∠BOD=90°﹣∠EOD=90°﹣32°=58°,∵∠BOD与∠AOC是对顶角,∴∠BOD=∠AOC=58°.故答案为:58°.【点评】此题考查的知识点是垂线,关键是利用垂直的定义及对顶角相等求解.24.过一点有且只有一条直线与已知直线垂直,作一条线段或射线的垂线就是作它们的所在直线的垂线.【分析】根据垂线的定义,可得答案.【解答】解:过一点有且只有一条直线与已知直线垂直,作一条线段或射线的垂线就是作它们的所在直线的垂线.故答案为:所在直线的.【点评】本题考查了垂线,注意作一条线段或射线的垂线就是作它们的所在直线的垂线.25.如图,∠ABD=90°,直线AC⊥直线BD,垂足为B,过D点有且只有1条直线DB与直线AC垂直.【分析】根据当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足,过一点有且只有一条直线与已知直线垂直解答.【解答】解:根据垂线的性质可知,直线AC⊥直线BD,垂足为B,过D点有且只有1条直线DB与直线AC垂直.依次填:AC,BD,B,1,DB.【点评】此题主要考查了垂线的定义及过一点有且只有一条直线与已知直线垂直的性质.26.如图,已知FE⊥AB于E,CD是过E的直线,且∠AEC=120°,则∠DEF=30度.【分析】本题利用邻补角的数量关系、互余关系,将已知角与所求角联系起来求解.【解答】解:∵∠AED与∠AEC是邻补角,∠AEC=120°,∴∠AED=180°﹣120°=60°,∵FE⊥AB,∴∠AEF=90°,∴∠DEF=90°﹣∠AED=30°.【点评】本题主要考查了邻补角的性质,以及垂直的定义.27.如图,已知直线AB、CD交于点E,EF⊥CD,∠AEF=50°,那么∠BED=40°.【分析】根据垂直的定义可得∠CEF=90°,然后求出∠AEC,再根据对顶角相等解答.【解答】解:∵EF⊥CD,∴∠CEF=90°,∴∠AEC=∠CEF﹣∠AEF=90°﹣50°=40°,∴∠BED=∠AEC=40°.故答案为:40.【点评】本题考查了垂线的定义,对顶角相等的性质,是基础题,准确识图是解题的关键.28.如图,已知AB⊥CD垂足为O,EF经过点O.如果∠1=40°,则∠2=50°.【分析】根据垂直的定义可得∠BOC=90°,然后求出∠3,再根据对顶角相等可得∠2=∠3.【解答】解:∵AB⊥CD,∴∠BOC=90°,∴∠3=∠BOC﹣∠1=90°﹣40°=50°,∴∠2=∠3=50°.故答案为:50.【点评】本题考查了垂线的定义,对顶角相等的性质,熟记概念和性质并准确识图是解题的关键.29.如图,直线AB与CD相交于E点,EF⊥AB,垂足为E,∠1=110°,则∠2= 20度.【分析】根据对顶角相等求出∠EOD,继而得出∠2,由∠BOE=∠BOD+∠EOD,计算∠BOE即可.【解答】解:∵∠AED与∠1互为对顶角,∴∠AED=∠1=110°,又∵AB⊥EF,∴∠AEF=90°,∴∠2=110°﹣∠AEF=20°,故答案为:20.【点评】本题考查了垂线的定义,用到的知识点为:对顶角相等,垂线产生直角.30.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠AOC=52度,∠COB=128度.【分析】由已知条件和观察图形可知∠EOD与∠DOB互余,∠DOB与∠AOC是对顶角,∠COB与∠AOC互补,利用这些关系可解此题.【解答】解:∵OE⊥AB,∴∠EOB=90°,又∠EOD=38°,∴∠DOB=90°﹣38°=52°,∵∠AOC=∠DOB,∴∠AOC=52°,∵∠COB与∠AOC互补,∴∠COB=180°﹣52°=128°.故答案为:52;128.【点评】本题利用垂直的定义,对顶角和互补的性质计算,要注意领会由垂直得直角这一要点.31.直线AB与直线CD相交于点O,∠BOC:∠BOD=2:7,射线OE⊥CD,则∠BOE的度数为50°.【分析】首先根据叙述作出图形,根据条件求得∠COB的度数,然后根据∠BOE=∠COE﹣∠COE即可求解.【解答】解:∵∠BOC=×180°=40°,又∵OE⊥CD,∴∠COE=90°,∴∠BOE=90°﹣40°=50°.故答案是:50°.【点评】本题考查了角度的计算,理解垂直的定理,根据条件正确作出图形是关键.32.若a∥b,c⊥a,则c与b的位置关系是垂直或异面.【分析】由于没有说明a,b,c在空间内的位置关系,因而需要分两种情况:在同一平面内,不在同一平面内,分别讨论.【解答】解:根据a,b,c在空间内的位置关系可知:1、当三条直线在同一平面内,根据两直线平行,一条直线与这两条中的一条垂直,则与另一条直线也垂直,故c与b的位置关系是:垂直;2、当三条直线不在同一平面内,c与b的位置关系是:异面.填:垂直或异面.【点评】由于没有说明a,b,c在空间内的关系,要注意分类讨论.33.如图,直线AB、CD相交于点O,OE⊥CD,若∠1=60°,则∠2=30°.【分析】根据垂线的定义,可得∠DOE的度数,根据余角的定义,可得∠BOD,根据对顶角的性质,可得答案.【解答】解:由OE⊥CD,得∠DOE=90°.由余角的定义,得∠BOD=90°﹣∠1=90°﹣60°=30°,由对顶角相等,得∠2=∠BOD=30°,故答案为:30°.【点评】本题考查了垂线,利用了垂线的定义,余角的定义,对顶角的性质.34.如图,直线AB、CD相交于点O,OE⊥AB,∠AOC=40°,那么∠EOD的大小是50°..【分析】依据垂线的定义可求得∠EOB=90°,然后依据对顶角的性质可求得∠BOD 的度数,最后依据∠EOD=∠EOB﹣∠DOB求解即可.【解答】解:∵OE⊥AB,∴∠EOB=90°.∵∠DOB=∠AOC=40°,∴∠EOD=∠EOB﹣∠DOB=90°﹣40°=50°.故答案为:50°.【点评】本题主要考查的是对顶角的性质和垂线的定义,掌握对顶角的性质和垂线的定义是解题的关键.35.已知:如图,CD⊥AB于D,∠1=30°,则∠FDB=60°,∠BDE=120°.【分析】由垂线的定义可知∠CDB=90°,从而可求得∠FDB=60°,然后根据∠FDB+∠BDE=180°可求得∠BDE=120°.【解答】解:∵CD⊥AB于D,∴∠CDB=90°.∴∠FDB=90°﹣30°=60°.∵∠FDB+∠BDE=180°,∴∠BDE=180°﹣60°=120°.故答案为:60°;120°.【点评】本题主要考查的是垂线的定义、邻补角的性质,掌握垂线的定义和邻补角的性质是解题的关键.36.如图,点O是直线AB上一点,OC是一条射线,且∠AOC=32°,若过点O作射线OD,使OD⊥OC,则∠BOD的度数为58°或122°.【分析】根据垂线定义可得∠COD=90°,然后再由条件∠AOC=32°可得∠AOD的度数.【解答】解:∵OD⊥OC,∴∠COD=90°,∵∠AOC=32°,∴∠AOD=90°﹣32°=58°,或∠AOD=32°+90°=122°,故答案为:58°或122°.【点评】此题主要考查了垂线定义,关键是正确画出图形,分类讨论.37.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=35°时,∠BOD的度数为55°或125°.【分析】此题可分两种情况,即OC,OD在AB的一边时和在AB的两边,分别求解.【解答】解:①当OC、OD在AB的一旁时,∵OC⊥OD,∴∠COD=90°,∵∠AOC=35°,∴∠BOD=180°﹣∠COD﹣∠AOC=55°;②当OC、OD在AB的两旁时,∵OC⊥OD,∠AOC=35°,∴∠AOD=55°,∴∠BOD=180°﹣∠AOD=125°.故答案为:55°或125°.【点评】此题主要考查了直角、平角的定义,注意分两种情况分析,理清图中的角之间的关系.38.如图,已知直线a,b,c相交于点O,且a⊥c,垂足为O,若∠1=50°,则∠2的度数为140°.【分析】先根据对顶角相等得出∠3的度数,进而可得出结论.【解答】解:∵a⊥c,垂足为O,∠1=50°,∴∠3=∠1=50°,∴∠2=90°+50°=140°.故答案为:140°.【点评】本题考查的是垂线,熟知垂直的定义是解答此题的关键.39.直线AB与射线OC相交于点O,OC⊥OD于O,若∠AOC=60°,则∠BOD=30或150度.【分析】根据题意画出图形,由OC⊥OD,∠AOC=60°,利用垂直的定义易得∠AOD,再利用补角的定义可得结果.【解答】解:根据题意画图如下,情况一:如图1,∵OC⊥OD,∠AOC=60°,∴∠AOD=∠COD﹣∠AOC=90﹣60°=30°,∴∠COD=180°﹣∠AOD=180°﹣30°=150°;情况二:如图2,∵OC⊥OD,∠AOC=60°,∴∠AOD=∠COD+∠AOC=90°+60°=150°,∴∠COD=180°﹣∠AOD=180°﹣150°=30°,故答案为:150或30.【点评】此题考查了角的计算,关键是根据题意画出图形,要注意分两种情况画图.40.如图,直线AB、CD相交于点O,OM⊥AB于点O,若∠MOD=43°,则∠COB= 133度.【分析】根据垂直定义可得∠AOM的度数,然后再根据角的和差关系可得∠AOD,再利用对顶角相等可得答案.【解答】解:∵OM⊥AB,∴∠AOM=90°,∵∠MOD=43°,∴∠AOD=90°+43°=133°,∴∠COB=133°,故答案为:133.【点评】此题主要考查了垂线,关键是掌握当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,掌握对顶角相等.三.解答题(共10小题)41.如图,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度数.【分析】首先根据垂直定义可得∠AOB=90°,再由∠AON=120°可得∠BON,再根据角平分线的性质可得∠MOB=∠NOB,进而得到答案.【解答】解:∵OA⊥OB,∴∠AOB=90°,∵∠AON=120°,∴∠BON=120°﹣90°=30°,∵OB平分∠MON,∴∠MOB=∠NOB=30°,∴∠AOM=90°﹣30°=60°.【点评】此题主要考查了垂线、角平分线的定义,关键是理清图中角的和差关系.42.如图,直线AB⊥CD于点O,直线EF经过点O,∠1=35°.求∠2、∠3及∠EOB的度数.【分析】根据对顶角相等可得∠3=∠1=35°,根据邻补角互补可得∠EOB=145°,再由垂直可得∠BOC=90°,根据∠2=90°﹣∠1即可算出度数.【解答】解:∵∠1=35°,∴∠3=35°(对顶角相等),∠EOB=180°﹣35°=145°,∵AB⊥CD,∴∠BOC=90°,∴∠2=90°﹣∠1=90°﹣35°=55°.【点评】此题主要考查了对顶角,邻补角,以及垂直的定义,题目比较简单,要注意领会由垂直得直角这一要点.43.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=25°,求∠COE、∠AOE、∠AOG的度数.【分析】先根据对顶角的性质求出∠COE的度数,再由垂线及定义得出∠AOE的度数,最后根据角平分线的定义求出∠AOG的度数.【解答】解:∵∠FOD=∠COE(对顶角相等),∠FOD=25°,∴∠COE=25°.∵AB⊥CD,∴∠AOC=90°(垂直定义),∴∠COE+∠AOC=115°,即∠AOE=115°.∵OG平分∠AOE,∴∠AOG=∠AOE(角平分线定义),即∠AOG=55.5°.【点评】本题考查的是对顶角的性质,垂线及角平分线的定义,熟知角平分线的定义是解答此题的关键.44.如图,O是直线AB上一点,OD是∠AOC的平分线,OE⊥OD.OE是∠BOC 的平分线吗?为什么?【分析】OE是∠BOC的平分线.由于∠AOB是平角,OD是∠AOC的平分线,∠DOE=90°,易求∠COE+∠AOC=∠BOE+∠AOD,即∠COE=∠BOE.【解答】解:OE是∠BOC的平分线,理由如下:∵OD是∠AOC的平分线,OE⊥OD,∴∠AOD=∠COD,∠DOE=90°,∴∠AOD+∠BOE=90°,∴∠COE+∠AOC=∠BOE+∠AOD,即∠COE=∠BOE.∴OE是∠BOC的平分线.【点评】本题考查了角的计算.解题的关键是理解角平分线的定义.45.已知:如图所示,∠1=∠2,∠3=∠4,GF⊥AB于G点,那么CD与AB是否互相垂直?试判断并说明理由.【分析】首先由GF⊥AB可得∠2+∠4=90°,又因为∠1=∠2,∠3=∠4,得到∠1+∠3=90°,由此即可得到CD与AB的位置关系.【解答】解:相互垂直.理由:∵GF⊥AB,∴∠2+∠4=90°,而∠1=∠2,∠3=∠4,∴∠1+∠3=90°,∴CD⊥AB.【点评】此题主要考查了垂直的性质与判定,并运用了等角的代换.46.如图,AB⊥CD,垂足为O,EF经过点O,∠1=29°.求∠2和∠3的度数.【分析】根据∠1与∠2是对顶角;∠2与∠3互为余角,即可解答.【解答】解:如图,由题意得:∠2=∠1=29°(对顶角相等),∵AB⊥CD(已知),∴∠BOD=90°(垂直的定义),∴∠3+∠2=90°,即29°+∠3=90°,∴∠3=61°.【点评】本题考查了垂线,对顶角、邻补角,解决本题的关键是由垂直得直角.47.如图,直线AB、CD、EF都经过点O,且AB⊥CD,∠COE=35°,求∠DOF、∠BOF的度数.【分析】根据对顶角相等得到∠DOF=∠COE,又∠BOF=∠BOD+∠DOF,代入数据计算即可.【解答】解:如图,∵∠COE=35°,∴∠DOF=∠COE=35°,∵AB⊥CD,∴∠BOD=90°,∴∠BOF=∠BOD+∠DOF,=90°+35°=125°.【点评】本题主要利用对顶角相等的性质及垂线的定义求解,准确识别图形也是解题的关键之一.48.如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD的直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=25°,求∠AOB的度数.(2)若OA平分∠BOE,则∠DOF的度数是30°.(直接写出答案)【分析】(1)利用角平分线的定义可得∠DOC=50°,由垂直的定义可得∠BOD=90°,易得∠BOC=40°,因为OA⊥OC,可得结果;(2)利用垂直的定义易得∠BOC+∠COD=90°,∠AOB+∠BOC=90°,可得∠COD=∠AOB,设∠DOF=∠COF=x,利用平分线的定义可得∠AOE=∠AOB=∠COD=2x,∠BOC=90°﹣2x,由平角的定义可得5x+90°﹣2x=180°,解得x,即得结果.【解答】解:(1)∵∠DOF=25°,OF平分∠COD,∴∠DOC=50°,∵OB⊥OD,∴∠BOC=90°﹣50°=40°,∵OA⊥OC,∴∠AOB=90°﹣∠BOC=50°;(2)∵∠BOC+∠COD=90°,∠AOB+∠BOC=90°,∴∠COD=∠AOB,设∠DOF=∠COF=x,∵OA平分∠BOE,∴∠AOE=∠AOB=∠COD=2x,∠BOC=90°﹣2x,。
练习题垂线
练习题垂线一、判断题1. 在平面几何中,过一点有且只有一条直线与已知直线垂直。
2. 如果两条直线相交成直角,则这两条直线一定垂直。
3. 两条平行线的垂线长度相等。
4. 从直线外一点到这条直线所作的垂线段是最短的。
5. 在直角坐标系中,x轴和y轴是互相垂直的。
二、选择题1. 下列关于垂线的说法,正确的是()A. 两条直线垂直,则它们的斜率相等B. 两条直线垂直,则它们的斜率互为倒数C. 两条直线垂直,则它们的斜率互为相反数D. 两条直线垂直,则它们的斜率互为负倒数2. 在直角坐标系中,点A(2,3)到x轴的垂线长度为()A. 2B. 3C. 5D. 133. 下列图形中,不是由垂线构成的是()A. 正方形B. 长方形C. 圆D. 等边三角形1. 过点P作直线AB的垂线,垂足为H,则线段______是直角三角形的一条边。
2. 在直角坐标系中,点(3,4)到x轴的垂线长度为______。
3. 两条平行线之间的距离是指这两条平行线上任意一点到另一直线的______。
四、作图题1. 在平面直角坐标系中,作出点A(2,3)到x轴的垂线。
2. 给定直线l和直线外一点P,作出过点P且垂直于直线l的直线。
五、解答题1. 已知直线y = 2x + 1,求过点(2,3)且垂直于该直线的直线方程。
2. 在平面直角坐标系中,求点A(3,4)到直线y = x + 1的垂线长度。
3. 证明:在同一平面内,过一点有且只有一条直线与已知直线垂直。
六、计算题1. 在直角坐标系中,直线l的方程为y = 3x + 5,点P的坐标为(4, 1)。
求点P到直线l的垂线长度。
2. 已知直线y = 4x 7和直线y = 1/4x + 3互相垂直,求这两条直线的交点坐标。
3. 在直角三角形ABC中,∠C = 90°,AC = 6cm,BC = 8cm,求斜边AB上的高CD的长度。
1. 在一块矩形菜地中,菜地的长为20米,宽为10米。
现要在菜地内修一条垂直于长边的小路,使得剩余部分的面积最大。
新人教版数学七年级下《5.1.2垂线》课时练习含答案解析
新人教版数学七年级下册第五章第一节相交线课时练习一、填空题(共15小题)1.下面说法中错误的是()A.两条直线相交,有一个角是直角,则这两条直线互相垂直B.若两对顶角之和为1800,则两条直线互相垂直C.两条直线相交,所构成的四个角中,若有两个角相等,则两条直线互相垂直D.两条直线相交,所构成的四个角中,若有三个角相等,则两条直线互相垂直答案:C知识点:垂线对顶角邻补角解析:解答:垂线的概念是:当两条直线相交,有一个角是直角时,即两条直线互相平行.依据此概念,我们可以判断,选项A正确.选项B中,两对顶角之和为180°,则说明两对顶角均为90°,选项B 也正确.在选项D中,两条直线相交,所构成的四个角中,若有三个角相等,根据对顶角的性质,说明四个角都相等,又因为四个角的度数和为360°,则说明四个角都是90°,选项D也正确.因为两条直线相交,形成两对对顶角,对顶角是相等的,但是不能说明该角一定是90°,所以选项C错误.分析:掌握相交线形成的对顶角知识,以及垂线的概念,就能轻松解答本题.本题考查垂线.2.如图所示,AB⊥CD,垂足为D,AC⊥BC,垂足为C,那么图中的直角一共有()A.2个B.3个C.4个D.1个答案:B知识点:垂线解析:解答:两条直线互相垂直,其所形成的夹角都是直角.根据题意,AB⊥CD,则∠ADC和∠BDC都是直角;同时,AC⊥BC,所以∠ACB也是直角.为此,图形中一共有3个直角.分析:掌握垂线的概念,就能轻松解答本题.本题考查垂线.3.如图所示,直线EO⊥CD,垂足为点O,AB平分∠EOD,则∠BOD的度数为()A.120°B.130°C.135°D.140°答案:C知识点:垂线角平分线解析:解答:两条直线互相垂直,其所形成的夹角都是直角.根据题意,EO⊥CD,则∠EOD和∠EOC都是直角;又因为AB平分∠EOD,所以∠AOD为45°.∠AOD与∠COB是对顶角,所以∠COB也是45°.因为∠COB与∠BOD互补,所以∠BOD=180°-45°=135°.分析:掌握垂线的概念,以及角平分线和对顶角的性质,就能轻松解答本题.本题考查垂线.4.点P为直线外一点,点A、B、C为直线上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线的距离为()A.4cm B.5cm C.小于2cm D.不大于2cm答案:D知识点:点到直线的距离垂线段最短解析:解答:点到直线的最短距离为过点作出的与已知直线的垂线段.在题干中,已知的最短距离为2cm,则选项A和选项B都是不正确的.又因为题干中没有明确告诉PC是否垂直于直线,当两线垂直时,则点P到直线的距离为2cm;若两直线不垂直,则点P到直线的距离为小于2cm.所以,只能选D.分析:点到直线的最短距离为过点作出的与已知直线的垂线段,是解答本题的关键.本题考查点垂线段最短.5.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.A.①②③B.①②④C.①③④D.②③④答案:C知识点:垂线解析:解答:由题意可知,OA⊥OC,所以∠AOC=90°,即∠AOB+∠BOC=90°.同时,OB⊥OD,所以∠BOD=90°,即∠COD+∠BOC=90°.依次,可以判定∠AOB=∠COD,所以①正确.又因为不能推断出∠AOB与∠COD的具体角度,所以②不正确.∠AOD=∠AOB+∠BOC+∠COD,所以∠BOC+∠AOD=∠BOC+∠AOB+∠BOC+∠COD=90°+90°=180°.因为∠AOB=∠COD,所以∠AOC-∠COD=∠AOC-∠AOB=∠BOC,所以④正确.为此,选C.分析:在掌握两直线相互垂直,夹角为直角的基础上,学会角度转换,就能轻松找到正确答案.本题考查垂线.6.如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是(•).A.26°B.64°C.54°D.以上答案都不对答案:B知识点:垂线对顶角解析:解答:由题意可知,AB⊥CD于点O,所以∠BOC=∠AOD=90°,同时,∠1与∠DOF是对顶角,∠1=26°,所以∠DOF=26°.∠AOD=∠AOF+∠DOF,所以∠AOF=∠AOD-∠DOF=90°-26°=64°.所以选B.分析:在掌握两直线相互垂直,夹角为直角的基础上,学会角度转换,就能轻松找到正确答案.本题考查垂线.7.在下列语句中,正确的是().A.在平面上,一条直线只有一条垂线;B.过直线上一点的直线只有一条;C.过直线上一点且垂直于这条直线的直线有且只有一条;D.垂线段就是点到直线的距离答案:D知识点:垂线解析:解答:概念理解型题.垂直于一条直线的垂线有无数条,所以选项A错误.两点之间才只有一条直线,过一点的直线有无数条,所以选项B错误.选项C是最容易出现混淆的地方.在概念中,同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条;但是,在该选项中,没有注明同一平面,所以选项C错.点到直线的距离就是垂线段,所以选项D正确.分析:概念理解型题,在解答时要注意对概念的正确理解,尤其是像选项C这种属于特别容易混淆的题目.本题考查垂线.8.如图所示,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数为().①AB⊥AC; ②AD与AC互相垂直; ③点C到AB的垂线段是线段AB; ④点D到BC的距离是线段AD的长度; ⑤线段AB的长度是点B到AC的距离; ⑥线段AB是点B到AC的距离;⑦AD>BD.A.2个B.4个C.7个D.0个答案:B知识点:垂线点到直线的距离解析:解答:根据题意,∠BAC=90,所以AB⊥AC,①正确.AD⊥BC于D,所以AD与AC不垂直,②不正确.点到直线的距离为垂线段,所以点C到AB的垂线段是线段AB,③正确.点D到BC 的距离应为过D点垂直于AC的垂线段,AD与AC不垂直,所以④错误.因为AB⊥AC,点B到AC的距离为AB,所以⑤⑥正确.AD与BD的具体长度无法推断,所以不能确定二者的大小关系,⑦错误.分析:概念理解型题,掌握垂直和点到直线的具体的概念,是解答本题的关键.本题考查垂线.9.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON 的度数为()A.35°B.45°C.55°D.65°答案:C知识点:垂线对顶角邻补角解析:解答:由射线OM平分∠AOC,∠AOM=35°,得出∠MOC=35°,由ON⊥OM,得出∠CON=∠MON ﹣∠MOC得出答案.解:∵射线OM平分∠AOC,∠AOM=35°,∴∠MOC=35°,∵ON⊥OM,∴∠MON=90°,∴∠CON=∠MON﹣∠MOC=90°﹣35°=55°.故选:C.分析:本题主要考查了垂线和角平分线,解决本题的关键是找准角的关系.10.已知在正方形网格中,每个小方格都是边长为1的正方形,A和B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C•为顶点的三角形的面积为1个平方单位,则C点的个数为().A.3个B.4个C.5个D.6个答案:B知识点:垂线解析:解答:已知每个小方格的边长为1,所以每个小方格的面积为1个平方单位.要使点C也在小方格的顶点上,且以A,B,C•为顶点的三角形的面积为1个平方单位,需要从两个方面来思考:一是以A为三角形的顶点,则A到BC是距离为1,BC的距离为2时才能使面积为1个平方单位,于是,这样的点有2个.同理,若以B为三角形的顶点,这样的点也同样有2个.所以,选B.分析:从点到直线的距离,以及三角形的面积计算方法入手,就能轻松解答.本题考查垂线.11.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.答案:A知识点:垂线;平行线解析:解答:根据题意画出图形即可.故选:C.分析:此题主要考查了垂线,关键是掌握垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.12.下列语句正确的是()A.两条直线相交成四个角,如果有两个角相等,那么这两条直线互相垂直B.两条直线相交成四个角,如果有两对角相等,那么这两条直线互相垂直C.两条直线相交成四个角,如果有三个角相等,那么这两条直线互相垂直D.两条直线相交成四个角,如果有两个角互补,那么这两条直线互相垂直答案:C知识点:垂线解析:解答:概念理解型题.两条直线相交,其中有一个夹角是直角,说明这两条直线互相垂直.同时,两条直线相交,形成四个角,分为两对对顶角,对顶角是相等的.但是,两条直线垂直必须相交,两条直线相交未必垂直,所以,可以推断出选项A、选项B都错误.在选项D中,两条直线任意相交,都能满足有两个角互补,所以D错误.在选项C中,有三个角相等,可以推导出这四个角都相等,并且都是直角,所以选项C正确.分析:概念理解型题,掌握垂直的概念,是解答本题的关键.本题考查垂线.13.过线段外一点画这条线段的垂线,垂足一定在()A.线段上B.线段的端点上C.线段的延长线上D.以上情况都有可能答案:D知识点:垂线解析:解答:由于线段有两个端点,所线段的长度是固定的.由于点的位置不确定,所以过线段外一点画这条线段的垂线,垂足有可能在线段上、线段的端点上和线段的延长线上.这个知识点可以从三角形的高的画法上得到验证.所以,选D.分析:概念理解型题,掌握垂直的作法,是解答本题的关键.本题考查垂线.14.如图,直线AD⊥BD,垂足为D,则点B到线段AC的距离是()A.线段AC的长B.线段AD的长C.线段BC的长D.线段BD的长答案:D知识点:点到直线的距离解析:解答:点到直线的距离为垂线段,因为直线AD⊥BD,垂足为D,所以点B到线段AC的距离是线段BD的长,所以选D.分析:概念理解型题,掌握到直线的距离为垂线段,是解答本题的关键.本题考查点到直线的距离.15.如图,OM⊥NP,ON⊥NP,所以OM和ON重合,理由是()A.两点确定一条直线B.经过一点有且只有一条直线和已知直线垂直C.过一点只能作一条垂线D.垂线段最短答案:B知识点:垂线解析:解答:概念理解型题.经过一点有且只有一条直线与已知直线垂直.因为OM⊥NP,ON⊥NP,两条经过O点的直线都垂直于NP,所以选B.分析:概念理解型题,掌握经过一点有且只有一条直线与已知直线垂直,是解答本题的关键.本题考查垂线.二、填空题(共5小题)1.当两条直线相交所成的四个角中_________,叫做这两条直线互相垂直,其中的一条直线叫_________,它们的交点叫_________.答案:有一个直角另一条直线的垂线垂足知识点:垂线解析:解答:概念理解型题.两条直线相交,所形成的夹角中,有一个角为直角,说明这两条直线互相垂直.相互垂直的两条直线,其中一条直线叫另一条直线的垂线.两条直线互相垂直,它们的交点叫垂足.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.2.过直线上或直线外一点,_________与已知直线垂直.答案:有且只有一条直线知识点:垂线解析:解答:概念理解型题.过直线外一点,有且只有一条直线与已知直线垂直.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.3.如图所示,若AB⊥CD于O,则∠AOD=_______;若∠BOD=90°,则AB____CD.答案:90°⊥知识点:垂线解析:解答:概念理解型题.两条直线互相垂直,所形成的夹角为直角,也就是90°.如果两条直线相交,所形成的夹角中,有一个角为90°,则这两条直线互相垂直.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.4.如图所示,已知AO⊥BC于O,那么∠1与∠2________.答案:互余知识点:垂线;余角解析:解答:概念理解型题.两条直线互相垂直,所形成的夹角为直角,也就是90°.因为AO⊥BC于O,所以∠AOC=90°.因为∠1+∠2=∠AOC.所以,∠1与∠2互余.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.5.如果CD⊥AB于D,自CD上任一点向AB作垂线,那么所画垂线均与CD重合,这是因为__________________________________.答案:在同一平面内,过一点有且只有一条直线与已知直线垂直知识点:垂线解析:解答:概念理解型题.过直线外一点有且只有一条直线与已知直线垂直.因为CD⊥AB于D,所以自CD上任一点向AB作垂线,那么所画垂线均与CD重合.分析:概念理解型题,掌握垂线的概念,是解答本题的关键.本题考查垂线.三、解答题(共5小题)1.如图,已知A,O,E三点在一条直线上,OB平分∠AOC,∠AOB+∠DOE=90°,试问:∠COD 与∠DOE之间有怎样的关系?说明理由.答案:相等理由:∠AOB+∠DOE=90°,且A、O、E三点共线,所以∠BOC+∠COD=90°.因为OB平分∠AOC,所以∠AOB=∠BOC,通过等量代换,可以得知∠COD与∠DOE相等.知识点:垂线解析:解答:由题意可知,∠AOB+∠DOE=90°,且A、O、E三点共线,所以∠BOC+∠COD=90°.因为OB平分∠AOC,所以∠AOB=∠BOC,通过等量代换,可以得知∠COD与∠DOE相等.分析:掌握相交线相关知识,是解答本题的关键.本题考查垂线.2.如图,∠1=30°,AB⊥CD,垂足为O,EF经过点O.求∠2、∠3的度数.答案:∠2=60°,∠3=30°知识点:垂线解析:解答:因为∠1与∠3是对顶角,所以∠1=∠3,因为∠1=30°,所以∠3=30°.因为AB⊥CD,所以∠BOD=90°,因为∠2+∠3=∠BOD,所以∠2=90°-∠3=60°.分析:掌握相交线相关知识,是解答本题的关键.本题考查垂线.3.如图,直线AB与CD相交于点O,OP是∠BOC的平分线,OE⊥AB,OF⊥CD,(1)图中除直角外,还有相等的角吗?请写出两对:①____________;②____________.(2)如果∠AOD=40°,则①∠BOC=_______;②OP是∠BOC的平分线,所以∠COP=______度;③求∠BOF的度数.答案:(1)∠AOD=∠BOC ∠BOP=∠COP(2)①40°②20°③50°知识点:垂线;相交线解析:解答:由题意可知,∠AOD与∠BOC是对顶角,所以二者相等.因为OP是∠BOC的角平分线,所以∠BOP=∠COP.由第一问得到的答案,)如果∠AOD=40°,所以∠BOC=40°.OP是∠BOC 的平分线,所以∠COP=20°.因为OF⊥CD,所以∠COF=90°,所以∠BOF=90°-40°=50°.分析:掌握相交线相关知识,是解答本题的关键.本题考查垂线.4.如图,已知∠AOB,OE平分∠AOC,OF平分∠BOC.(1)若∠AOB是直角,∠BOC=60°,求∠EOF的度数;(2)猜想∠EOF与∠AOB的数量关系;(3)若∠AOB+∠EOF=156°,则∠EOF是多少度?答案:(1)∠EOF =45°(2)∠EOF =∠AOB(3)∠EOF =52°知识点:垂线解析:解答:(1)∵∠AOC =∠AOB +∠BOC ,∴∠AOC =90°+60°=150°.∵OE 平分∠AOC ,∴∠EOC =150°÷2=75°.∵OF 平分∠BOC ,∴∠COF =60°÷2=30°.∵∠EOC =∠EOF +∠COF,∴∠EOF =75°-30°=45°. (2)∵OE 平分∠AOC ,OF 平分∠BOC .∴∠COE =∠AOC ,∠COF =∠BOC ∵∠AOB =∠AOC -∠BOC ∴∠EOF =∠COE -∠COF =∠AOC -∠BOC =(∠AOC -∠BOC )=∠AOB (3)∵OE 平分∠AOC ,OF 平分∠BOC ,∴∠COE =∠AOC ,∠COF =∠BOC , ∴∠EOF =∠AOC -∠BOC =(∠AOC -∠BOC )=∠AOB .又∵∠AOB +∠EOF =156°, ∴∠EOF =52°.分析:此题难度较大,要通过角度转换.本题考查相交线所形成的角度.5.直线AB 、CD 相交于点O.(1)OE 、OF 分别是∠AOC 、∠BOD 的平分线.画出这个图形.(2)射线OE 、OF 在同一条直线上吗?(直接写出结论)(3)画∠AOD 的平分线OG .OE 与OG 有什么位置关系?并说明理由.答案:(1)如图中红线所示(2)射线OE 、OF 在同一条直线上EFD O BCA G(3)OE⊥OG 理由:∵EF平分∠AOC和∠BOD,并且∠AOC=∠BOD,∴∠AOE=∠DOF.∵OG 平分∠AOD,∴∠AOG=∠DOG.∵∠AOE+∠DOF+∠AOG+∠DOG=180°,∴∠DOF+∠DOG =180°÷2=90°,∴OE⊥OG.知识点:垂线;角平分线解析:解答:(1)直接画图即可.(2)因为∠AOC与∠BOD是对顶角,所以两角的角平分线是在同一直线上.(3)∵EF平分∠AOC和∠BOD,并且∠AOC=∠BOD,∴∠AOE=∠DOF.∵OG平分∠AOD,∴∠AOG=∠DOG.∵∠AOE+∠DOF+∠AOG+∠DOG=180°,∴∠DOF+∠DOG=180°÷2=90°,∴OE⊥OG.分析:此题掌握了角平分的性质是解题的关键.本题考查垂线和角平分线.。
鲁教版六年级相交线与平行线-垂线练习50题及参考答案(难度系数0.64)
六年级相交线与平行线-垂线(难度系数0.64)一、单选题(共22题;共44分)1.下图中由∠1=∠2能得到AB∥CD的是()A. B. C. D.【答案】 D【考点】平行线的判定2.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.A. ①②③B. ①②④C. ①③④D. ②③④【答案】C【考点】垂线3.在下列语句中,正确的是().A. 在平面上,一条直线只有一条垂线;B. 过直线上一点的直线只有一条;C. 过直线上一点且垂直于这条直线的直线有且只有一条;D. 垂线段就是点到直线的距离【答案】D【考点】垂线4.如图,现要从村庄A修建一条连接公路PQ的最短小路,过点A作AH⊥PQ于点H,沿AH修建公路,则这样做的理由是( )A. 两点之间,线段最短B. 垂线段最短C. 过一点可以作无数条直线D. 两点确定一条直线【答案】B【考点】垂线段最短5.如图,已知AB⊥CD,垂足为O,EF为过点O的一条直线,且∠1=60°,则∠2=()A. 70°B. 30°C. 40°D. 120°【答案】B【考点】垂线6.如图所示,把河水引向水池M,要向水池M点向河岸AB画垂线,垂足为N,再沿垂线MN开一条渠道才能使渠道最短.其依据是()A. 垂线段最短B. 过一点确定一条直线与已知直线垂直C. 两点之间线段最短D. 以上说法都不对【答案】A【考点】垂线段最短7.如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A. B. C. D.【答案】C【考点】垂线段最短8.如图,在△ABC 中,AE 是和AF 分别是BC 边上的中线和高线,AD 是∠BAC 的平分线.则下列线段中最短的是()A. AEB. ADC. AFD. AC【答案】C【考点】垂线段最短9.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C路线,用几何知识解释其道理正确的是()A. 两点确定一条直线B. 垂直线段最短C. 两点之间线段最短D. 三角形两边之和大于第三边【答案】B【考点】垂线段最短10.如图,△ABC中,∠C=90°,AC=3,BC=4,AB=5.点P在边BC上运动,则线段AP的长不可能是()A. 2.5B. 3.5C. 4D. 5【答案】A【考点】垂线段最短11.在如图所示的条件中,可以判断两条直线互相垂直的是()A. ①②B. ①③C. ②③D. ①②③【答案】D【考点】垂线12.如图,直线AB和CD相交于O,OE⊥AB,那么图中∠DOE与∠COA的关系是()A. 对顶角B. 相等C. 互余D. 互补【答案】C【考点】垂线13.下列语句正确的是()A. 两条直线相交成四个角,如果有两个角相等,那么这两条直线互相垂直B. 两条直线相交成四个角,如果有两对角相等,那么这两条直线互相垂直C. 两条直线相交成四个角,如果有三个角相等,那么这两条直线互相垂直D. 两条直线相交成四个角,如果有两个角互补,那么这两条直线互相垂直【答案】C【考点】垂线14.过线段外一点画这条线段的垂线,垂足一定在()A. 线段上B. 线段的端点上C. 线段的延长线上D. 以上情况都有可能【答案】D【考点】垂线15.已知在正方形网格中,每个小方格都是边长为1的正方形,A和B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C•为顶点的三角形的面积为1个平方单位,则C点的个数为().A. 3个B. 4个C. 5个D. 6个【答案】 D【考点】垂线16.已知OA⊥OB,∠AOB:∠AOC=3:4,则∠BOC的度数为()A. 30°B. 150°C. 30°或150°D. 不同于以上答案【答案】C【考点】垂线17.已知直线AB ,CB ,l在同一平面内,若AB⊥l ,垂足为B ,CB⊥l ,垂足也为B ,则符合题意的图形可以是()A. B. C. D.【答案】C【考点】垂线18.如图,OM⊥NP,ON⊥NP,所以OM和ON重合,理由是()A. 两点确定一条直线B. 经过一点有且只有一条直线和已知直线垂直C. 过一点只能作一条垂线D. 垂线段最短【答案】B【考点】垂线19.如图,已知AB⊥CD垂足为O,EF经过点O.如果∠1=30°,则∠2等于()A. 30°B. 45°C. 60°D. 90°【答案】C【考点】垂线20.同学们,你一定练过跳远吧!在测量跳远成绩时,从落地点拉向起跳线的皮尺,应当与起跳线()A. 平行B. 垂直C. 成45°D. 以上都不对【答案】B【考点】垂线21.如图,已知点O在直线AB上,CO⊥DO于点O,若∠1=145°,则∠3的度数为()A. 35°B. 45°C. 55°D. 65°【答案】C【考点】垂线22.下列说法中,正确的有()①过两点有且只有一条直线;②连接两点的线段叫做两点的距离;③两点之间,垂线最短;④若AB=BC,则点B是线段AC的中点.A. 1个B. 2个C. 3个D. 4个【答案】A【考点】垂线段最短二、填空题(共13题;共30分)23.如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.∵EF∥AD,(________)∴∠2=________.(两直线平行,同位角相等;)又∵∠1=∠2,(________)∴∠1=∠3.(________)∴AB∥DG.(________)∴∠BAC+________=180°(________)又∵∠BAC=70°,(________)∴∠AGD=________.【答案】已知;∠3;已知;等量代换;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;已知;110°.【考点】平行线的判定与性质24.如图,补充一个适当的条件________,使AE∥BC.(填一个即可)【答案】∠B=∠DAE或(∠C=∠CAE)【考点】平行线的判定25.如图,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.将三角尺OCD绕点O 按每秒30°的速度沿顺时针方向旋转一周,在旋转的过程中,当第________秒时,直线CD恰好与直线MN垂直.【答案】5.5或11.5 (七年级,三角形外角等于和它不相邻的两内角的和)【考点】垂线26.如图,要从小河引水到村庄A,最短路线是过A作垂直于河岸的垂线段AD(不考虑其他因素),理由是:________.【答案】在连接直线外一点与直线上各点的线段中,垂线段最短【考点】垂线段最短27.如图,在铁路旁边有一村庄,现要建一火车站,为了使该村人乘火车方便(即距离最短),请你在铁路旁选一点来建火车站(位置已选好),说明理由:________.【答案】垂线段最短【考点】垂线段最短28.如图所示,想在河堤两岸塔建一座桥,搭建方式最短的是________,理由________.【答案】PN;垂线段最短【考点】垂线段最短29.如图,计划在河边建一水厂,可过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是________.【答案】垂线段最短【考点】垂线段最短30.在数学课上,老师提出如下问题:如图1,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小军同学的作法如下:①连接AB;②过点A作AC⊥直线l于点C;则折线段B﹣A﹣C为所求.老师说:小军同学的方案是正确的.请回答:该方案最节省材料的依据是________.【答案】两点之间,线段最短;垂线段最短【考点】垂线段最短31.如图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是PB,理由________.【答案】垂线段最短【考点】垂线段最短32.如图,AB与CD交于点O,OE⊥AB,OF⊥CD,若∠EOD=2∠BOD,求∠EOF的度数.解:∵OE⊥AB,∴∠EOB=________,∴∠EOD+________=________,又∵∠EOD=2∠BOD,∴∠BOD=________,∠EOD=________,∵OF⊥CD,∴∠FOD=________,∴∠EOF=________﹣________ =________.【答案】90°;∠BOD;90°;30°;60°;90°;90°;60°;30°【考点】垂线33.如图,在铁路旁边有一李庄,现要建一火车站,为了使李庄人乘火车距离最近,请你在铁路旁选一点来建火车站(位置已选好),说明理由:________.【答案】垂线段最短【考点】垂线段最短34.已知∠ABC的两边分别与∠DEF的两边垂直,且∠ABC=35°,则∠DEF的度数为________.【答案】35°或145°【考点】垂线35.已知:OA⊥OC,∠AOB:∠AOC=2:3.则∠BOC的度数为________.【答案】30°或150°【考点】垂线三、解答题(共9题;共45分)36.如图,已知直线AB与CD相交于点O ,OE平分∠AOC ,射线OF⊥CD于点O ,且∠BOF=32°,求∠COE的度数.【答案】解:∵∠COF是直角,∠BOF=32°,∴∠COB=90°﹣32°=58°,∴∠AOC=180°﹣58°=122°又∵OE平分∠AOC ,∴∠AOE=∠COE=61°【考点】垂线37.如图,已知A,O,E三点在一条直线上,OB平分∠AOC,∠AOB+∠DOE=90°,试问:∠COD与∠DOE之间有怎样的关系?说明理由.-com【答案】相等,理由:∠AOB+∠DOE=90°,且A、O、E三点共线,所以∠BOC+∠COD=90°.因为OB 平分∠AOC,所以∠AOB=∠BOC,通过等量代换,可以得知∠COD与∠DOE相等.【考点】垂线38.如图所示,已知AO⊥BC于O,DO⊥OE,∠1=65°,求∠2的度数.【答案】解:∵AO⊥BC于O,∴∠AOC=90°,又∠1=65°,∴∠AOE=90°﹣65°=25°.∵DO⊥OE,∴∠DOE=90°,∴∠2=∠DOE﹣∠AOE=90°﹣25°=65°【考点】垂线39.如图,OA⊥OB,OC⊥OD,∠BOC﹣∠AOD=40°,求∠BOC与∠AOD的大小.【答案】解:∠AOD+∠BOC=360°﹣(∠BOC﹣∠AOD)=360°﹣90°﹣90°=180°,又∵∠BOC﹣∠AOD=40°,∴∠BOC=110°,∠AOD=70°【考点】垂线40.如图所示,射线OM与直线交于点O,OM平分∠AOB,求∠AOM度数,并用符号表示OM与AB的位置关系.【答案】解:∵∠AOB=180°,OM平分∠AOB,∴∠AOM= ∠AOB= ×180°=90°,∴OM⊥AB.【考点】垂线41.如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)理由是:▲.【答案】解:垂线段最短。
垂线的专项练习30题有答案ok
垂线专项练习30题(有答案)1.如图,①过点Q作QD⊥AB,垂足为D,②过点P作PE⊥AB,垂足为E,③过点Q作QF⊥AC,垂足为F,④连P、Q两点,⑤P、Q两点间的距离是线段_________的长度,⑥点Q到直线AB的距离是线段_________的长度,⑦点Q到直线AC的距离是线段_________的长度,⑧点P到直线AB的距离是线段_________的长度.2.如图,点P是∠AOB的边OB上的一点过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到_________的距离,_________是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是_________(用“<”号连接)3.(1)画出表示点B到直线CD的距离的线段,结论:_________(2)A、C两点之间的距离为线段_________的长;(3)画出表示两条平行线AD、BC之间的距离的线段,结论:_________.4.如图,DE∥BC,AF⊥DE于G,DH⊥BC于H,且AG=4cm,DH=4cm,试求点A到BC的距离.5.如图,过点A作BC的垂线,并指出那条线的长度是表示点A到BC的距离?6.如图,∠C=90°,AB=5,AC=4,BC=3,则点A到直线BC的距离为_________,点B到直线AC的距离为_________,A、B间的距离为_________,AC+BC>AB,其依据是_________,AB>AC,其依据是_________.7.如图所示,村庄A、村庄B分别要从河流L引水入庄,各需修筑一水渠,请你画出修筑水渠的路线图.8.如图,要把水渠中的水引到C点,在渠岸AB的什么地方开沟,才能使沟最短?画出图形,并说明理由.9.如图,王林和李明同学骑自行车同时从各自的家中出发去学校.如果他们的骑车速度相同,那么谁先到达学校?为什么?10.如图,是一条河,C是河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)11.如图所示,火车站、码头分别位于A,B两点,直线a和b分别表示铁路与河流.(1)从火车站到码头怎样走最近,画图并说明理由;(2)从码头到铁路怎样走最近,画图并说明理由;(3)从火车站到河流怎样走最近,画图并说明理由.12.如图,计划在河边建一水厂,可过C点引CD⊥AB于D,在D点建水厂,可使水厂到村庄C的路程最短,这种设计的依据是_________.13.如图,点P处有一个工厂,现拟修一条通往大路口a的公路,应如何修才能使所修之路最短,试说明理由.14.如图,直线AD和BE相交于点O,∠COD=90°,∠COE=60°,求∠AOB的度数.15.如图,OF平分∠AOC,OE⊥OF,AB与CD相交于O,∠BOD=130°,求∠EOB的度数.16.如图所示,已知∠AOB=∠COD=90°,(1)若∠BOC=45°,求∠AOC与∠BOD的度数;(2)若∠BOC=25°,求∠AOC与∠BOD的度数;(3)由(1)、(2)你能得出什么结论?说说其中的道理.17.如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=20°,求∠AOM的度数.18.如图,直线AB与CD相交于点O,OP是∠AOD的平分线,OF⊥CD,如果∠BOD=30°.求:(1)∠AOF的度数;(2)∠POF的度数.19.如图所示,OA丄OB,OC丄OD,OE为∠BOD的平分线,∠BOE=15°,求∠BOD和∠AOC的度数.20.已知:如图,直线AB、CD、EF相交于点0,∠1=20°,∠BOC=90°.求∠2的度数.21.说出日常生活现象中的数学原理:日常生活现象相应数学原理有人和你打招呼,你笔直向他走过去两点之间直线段最短要用两个钉子把毛巾架安装在墙上桥建造的方向通常是垂直于河两岸人去河边打水总是垂直于河边方向走22.如图所示,修一条路将A,B两村庄与公路MN连起来,怎样修才能使所修的公路最短?画出线路图,并说明理由.23.如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH的长度是点P到_________的距离,线段_________是点C到直线OB的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC、PH、OC这三条线段大小关系是_________(用“<”号连接)24.已知:如图所示,∠1=∠2,∠3=∠4,GF⊥AB于G点,那么CD与AB是否互相垂直?试判断并说明理由.25.如图,已知OA⊥OB,∠1与∠2互补,求证:OC⊥OD.26.你能用折纸的方法过一点作已知直线的垂线吗?27.先拿一张长方形的白纸,按如图所示的方式将∠A、∠E折叠,使A′B与BE′重合,则BC与BD有什么关系?说明理由.28.分别过点P作线段MN的垂线.29.如图,∠AOE与∠BOF互余,那么AO与BO是否垂直?试说明理由.30.对于平面上垂直的两条直线a和b,称(a,b)为一个“垂直对”,而a和b都是属于这个“垂直对”的直线.那么当平面上有二十条直线时最多可组成多少个“垂直对”?参考答案:1.①②③④作图如图所示:⑤根据两点之间距离即可得出P、Q两点间的距离是线段PQ的长度,⑥根据点到直线的距离可得出点Q到直线AB的距离是线段QD的长度,⑦根据点到直线的距离可得出点Q到直线AC的距离是线段QF的长度,⑧根据点到直线的距离可得出点P到直线AB的距离是线段PE的长度,故答案为PQ,QD,QF,PE.2.(1)如图:(2)线段PH的长度是点P到直线OA的距离,线段CP的长度是点C到直线OB的距离,根据垂线段最短可得:PH<PC<OC,故答案为:OA,线段CP,PH<PC<OC3.(1)过B点作DC的垂线,交CD的延长线于E点,如,则线段BE的长为点B到直线CD的距离;所以过直线外一点作直线的垂线,垂线段长就是这个点到直线的距离;(2)A、C两点之间的距离为线段AC的长;(3)过C点作AD的垂线,垂足为F点,如图,则线段CF的长即为两条平行线AD、BC之间的距离.故答案为过直线外一点作直线的垂线,垂线段的长就是这个点到直线的距离;AC;两条平行线之间的距离就是一条直线上任意一点到另一条直线的距离.4.∵AF⊥DE,DE∥BC,∴AF⊥BC,∵DE∥BC,∴四边形DHFG是平行四边形,∴DH=GF=4cm,∴AF=AG+GF=4cm+4cm=8cm,即点A到BC的距离是8cm.5.过点A作BC的垂线,交CB的延长线于E,根据点到直线的距离的定义:从直线外一点到这条直线的垂线段长度,叫点到直线的距离.可得AE的长度即为点A到BC的距离.答:AE的长度即为点A到BC的距离.6.∵∠C=90°,AB=5,AC=4,BC=3,∴点A到直线BC的距离为4,点B到直线AC的距离为3,A、B间的距离为5,AC+BC>AB,其依据是三角形任意两边之和大于第三边长度,AB>AC,其依据是直角三角形中斜边长度大于直角边长度.7.如图所示,AE、BF就是村庄A、村庄B修筑水渠的路线图.8.如图,过C作CD⊥AB,垂足为D,在D处开沟,则沟最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.9.根据垂线段定理,可知王林先到达学校.因为从他家到学校是垂线段,路程最短.10.如图:(1)过点C画一平行线平行于AB.(2)过点C作CD垂直于AB交AB于点D.然后用尺子量CD的长度,再按1:2000的比例求得实际距离即可.11.如图所示(1)沿AB走,两点之间线段最短;(2)沿BD走,垂线段最短;(3)沿AC走,垂线段最短.12.∵CD⊥AB,∴线段CD的长度就是点C到直线AB的最短距离.故答案为:垂线段最短.13.如图,过点P作PD⊥a于D,则由点P沿着PD修路,能使所修之路最短.14.∵已知∠COD=90°,∠COE=60°,∴∠DOE=90°﹣60°=30°,又∵∠AOB与∠DOE是对顶角,∴∠AOB=∠DOE=30°.15.∵∠AOC=∠BOD,∠BOD=130°,∴∠AOC=130°.∵OF平分∠AOC,∴∠AOF=∠FOC=65°.∵OE⊥OF,∴∠EOF=90°.∴∠BOE=180°﹣∠AOF﹣∠EOF=180°﹣65°﹣90°=25°16.(1)∵∠AOB=∠COD=90°,且∠BOC=45°,∴∠AOC=∠AOB﹣∠BOC=45°,∠BOD=∠COD﹣∠BOC=45°;(2)∵∠AOB=∠COD=90°,且∠BOC=25°,∴∠AOC=∠AOB﹣∠BOC=65°,∠BOD=∠COD﹣∠BOC=65°;(3)∠AOC=∠BOD,等角的余角相等.17.∵OE平分∠BON,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∴∠AOM=90°﹣∠COM=90°﹣40°=50°.18.(1)∵∠AOC=∠BOD=30°,OF⊥CD,∴∠AOF=90°﹣30°=60°;(2)∵OP是∠AOD的平分线,∴∠AOP=∠AOP=(180°﹣∠BOD)=(180°﹣30°)=75°,∴∠POF=∠AOP﹣∠AOF=75°﹣60°=15°19.∵OE为∠BOD的平分线,∴∠BOE=∠BOC,即∠BOD=2∠BOE=2×15°=30°;∵OA丄OB,OC丄OD,∴∠AOB=∠COD=90°,∴∠AOC=360°﹣90°﹣90°﹣30°=150°.20.∵∠1=20°,∠BOC=90°,∴∠BOE=∠BOC﹣∠1=90°﹣20°=70°,∴∠2=∠BOE=70°.21.这几种实际问题用数学原理解释分别是:两点确定一条直线;夹在两平行线间的线段中,垂线段最短;连接直线外一点与直线上各点的所有线段中,垂线段最短.22.连接AB,作BC⊥MN,C是垂足,线段AB和BC 就是符合题意的线路图.因为从A到B,线段AB最短,从B到MN,垂线段BC最短,所以AB+BC最短.23.(1)如图(2)如图,(3)直线0A、PC的长.(4)PH<PC<OC.24.相互垂直.理由:∵GF⊥AB,∴∠2+∠4=90°,而∠1=∠2,∠3=∠4,∴∠1+∠3=90°,∴∠1+∠2=180°,∵OA⊥OB,∴∠AOB=90°,∴∠COD=360°﹣(∠1+∠2)﹣∠AOB=360°﹣180°﹣90°=90°,∴OC⊥OD26.先沿已知直线折一下,再在已知点处对折即可.27.垂直;根据题意可得∠ABC=∠A′BC,∠FBE=∠FBE′,∵∠ABC+∠A′BC+∠E′BF+∠FBE=180°,∴∠A′BC+∠E′BF=90°,∴BC⊥FB28.①延长NM,过点P作NM所在直线的垂线.②延长NM,过点P作NM所在直线的垂线.③过点P作NM所在直线的垂线.④延长NM,过点P作NM所在直线的垂线.29.AO与BO垂直.理由如下:∵∠AOE与∠BOF互余,∴∠AOE+∠BOF=90°,又∵∠AOE+∠AOB+∠BOF=180°,∴∠AOB=90°,∴AO⊥BO,即AO与BO垂直30.当二十条直线有10条互相平行;另10条不仅互相平行而且与前10条垂直时垂直对最多.答案是100对.。
人教版初一数学7年级下册 第5章(相交线与平行线)垂线 课后练习(含解析)
垂线课后练习一、选择题1.如图所示,下列说法不正确的是( )A. 线段BD是点B到AD的垂线段B. 线段AD是点D到BC的垂线段C. 点C到AB的垂线段是线段ACD. 点B到AC的垂线段是线段AB2.如图,把河AB中的水引到C,拟修水渠中最短的是( )A. CMB. CNC. CPD. CQ3.如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=( )A. 10°B. 20°C. 30°D. 40°4.如图,直线AB、CD相交于点O,EO⊥CD.下列说法错误的是( )A. ∠AOD=∠BOCB. ∠AOE+∠BOD=90°C. ∠AOC=∠AOED. ∠AOD+∠BOD=180°5.点P为直线l外一点,点A,B在直线l上,若PA=5 cm,PB=7 cm,则点P到直线l的距离( )A. 等于5 cmB. 小于5 cmC. 不大于5 cmD. 等于6 cm6.如下图,在平面内过点P作已知直线m的垂线,可作垂线的条数有( )A. 0条B. 1条C. 2条D. 无数条7.如图,∠1=15°,AO⊥OC,点B,O,D在同一直线上,则∠2的度数为()A. 75°B. 15°C. 105°D. 165°8.点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=6 cm,则点P到直线m的距离()A. 等于5 cmB. 等于4 cmC. 小于4 cmD. 不大于4 cm9.如图,OA⊥OB,若∠1=55°,则∠2的度数是()A. 35°B. 40°C. 45°D. 60°10.下列各图中,过直线l外一点P画l的垂线CD,三角板操作正确的是()A. B.C. D.11.如图,射线OC⊥直线AB于点O,∠1=∠2,则图中互为余角的共有( )A. 2对B. 3对C. 4对D. 5对12.如图,过点C作CD⊥AB,垂足为D,则点C到直线AB的距离是( )A. 线段CA的长B. 线段CD的长C. 线段AD的长D. 线段AB的长二、填空题13.如图,直线AB、CD相交于点O,OE⊥AB,垂足为点O,∠COE:∠BOD=2:3,则∠AOD=______.14.如下图,∠AOE=30°,OB⊥OA,OE⊥直线CD于O点,∠BOD的度数为________,∠BOC的度数为________.15.如图,直线AB,CD相交于点O,OE⊥CD,垂足为O.若∠BOE=40°,则∠AOC的度数为.16.如图,A,B,C三点在一条直线上.若CD⊥CE,∠1=23°,则∠2的度数是.三、解答题17.如下图,直线AB与CD交于点O,OE在∠AOD内,∠AOE:∠COB=2:7,OD平分∠EOB.(1)求∠AOC的度数;(2)过点O作OF⊥OE,求∠BOF的度数.18.如图,两直线AB,CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.19.如下图,直线AB,CD相交于点O,∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系,并说明理由;(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.答案和解析1.【答案】B【解答】解:A 、线段BD 是点B 到AD 的垂线段,故A 正确;B 、线段AD 是点A 到BC 的垂线段,故B 错误;C 、点C 到AB 的垂线段是线段AC ,故C 正确;D 、点B 到AC 的垂线段是线段AB ,故D 正确;2.【答案】C【解析】解:如图,CP ⊥AB ,垂足为P ,在P 处开水渠,则水渠最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.3.【答案】B【解析】解:∵∠FEA =40°,GE ⊥EF ,∴∠CEF =180°−∠FEA =180°−40°=140°,∠CEG =180°−∠AEF−∠GEF =180°−40°−90°=50°,∵射线EB 平分∠CEF ,∴∠CEB =12∠CEF =12×140°=70°,∴∠GEB =∠CEB−∠CEG =70°−50°=20°,4.【答案】C【解答】解:A 、∠AOD 与∠BOC 是对顶角,所以∠AOD =∠BOC ,此选项正确;B 、由EO ⊥CD 知∠DOE =90°,所以∠AOE +∠BOD =90°,此选项正确;C 、由已知条件,不能得到∠AOC 与∠AOE 相等,此选项错误;D 、∠AOD 与∠BOD 是邻补角,所以∠AOD +∠BOD =180°,此选项正确.5.【答案】C【解答】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∵PA <PB ,∴点P 到直线l 的距离≤PA ,即点P 到直线l 的距离不大于5cm .6.【答案】B【解答】解:在平面内,过一点画已知直线的垂线,可画垂线的条数是1.故选B.7.【答案】C8.【答案】D9.【答案】A【解答】解:∵OA⊥OB,∴∠AOB=90°,即∠2+∠1=90°,又∠1=55°,∴∠2=35°,10.【答案】D11.【答案】C12.【答案】B13.【答案】126°【解析】解:∵OE⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠COE:∠BOD=2:3,∴∠BOD=54°,∴∠AOD=126°.14.【答案】30°;150°【解析】解:由OB⊥OA,OE⊥CD得:∠AOE+∠BDE=90°,∠BOD+∠BOE=90°,∴∠BOD=∠AOE=30°;∵CD是直线,即∠COD=180°,∴∠BOC=180°−∠BOD,即∠BOC=180°−30°=150°15.【答案】50°16.【答案】67°【解答】解:∵CD⊥CE,∴∠ECD=90°,∵∠ACB=180°,∴∠2+∠1=90°,∵∠1=23°,∴∠2=90°−23°=67°,故答案为67°.17.【答案】解:(1)设∠AOE=2x,则∠AOD=∠BOC=7x,∴∠DOE=5x.∵OD平分∠EOB,∴∠DOB=∠DOE=5x,∠AOB=2x+5x+5x=180°,∴x=15°,∴∠AOC=∠DOB=5x=75°;(2)当OF在直线OE的下方时,如图所示:∵OF⊥OE,∴∠EOF=90°,∵∠AOE=2x=30°,∴∠AOF=∠EOF−∠AOE=90°−30°=60°,∠BOF=180°−∠AOF=120°;当OF在直线OE的上方时,如图所示:∵OF ⊥OE ,∴∠EOF =90°,∵∠EOB =10x =150°,∴∠BOF =∠EOB−∠EOF =150°−90°=60°.故∠BOF =120°或60°.18.【答案】解:(1)∵∠AOC :∠AOD =7:11,∠AOC +∠AOD =180°,∴∠AOC =718×180°=70°,∴∠DOB =∠AOC =70°,又∵OE 平分∠BOD ,∴∠DOE =12∠DOB =12×70°=35°,∴∠COE =180°−∠DOE =180°−35°=145°,(2)∵OF ⊥OE ,∴∠EOF =90°,∴∠FOD =90°−∠DOE =90°−35°=55°,∴∠COF =180°−∠FOD =180°−55°=125°.19.【答案】解:(1)OF 与OD 的位置关系:互相垂直;理由:∵OF 平分∠AOE ,∴∠AOF =∠FOE ,∵∠DOE =∠BOD ,∴∠AOF +∠BOD =∠FOE +∠DOE =12×180°=90°,∴OF 与OD 的位置关系:互相垂直;(2)∵∠AOC :∠AOD =1:5,∴∠AOC =16×180°=30°,∴∠EOD =∠BOD =∠AOC =30°,∴∠AOE =120°,∴∠EOF =12∠AOE =60°.。
5.1.2 垂线100题(含解析)
绝密★启用前一、单选题1.如图,能表示点到直线的距离的线段共有()A.2条B.3条C.4条D.5条【答案】D【解析】根据点到直线的距离定义,可判断:AB表示点A到直线BC的距离;AD表示点A到直线BD的距离;BD表示点B到直线AC的距离;CB表示点C到直线AB的距离;CD表示点C到直线BD的距离.共5条.故选D.2.体育课上,老师测量跳远成绩的依据是()A.垂直的定义B.两点之间线段最短C.垂线段最短D.两点确定一条直线【答案】C【解析】【分析】根据垂线段最短的性质解答.【详解】老师测量跳远成绩的依据是:垂线段最短.故选:C.【点睛】本题考查了垂线段最短在实际生活中的应用,是基础题.3.如图,OA⊥OB,∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.70°【答案】C【解析】试题分析:∵OA⊥OB,∴∠AOB=90°,所以∠2+∠1=90°,∵∠1=35°,∴∠2=55°,故选C.考点:1.余角和补角;2.垂线.4.如图,OA⊥OB,若∠1=55°,则∠2的度数是( )A.35°B.40°C.45°D.60°【答案】A【解析】试题分析:∵OA⊥OB,∴∠AO∠=90°,即∠2+∠1=90°.∵∠1=55°,∴∠2=35°.故选A.考点:1.垂直的性质;2.数形结合思想的应用.5.如图,体育课上测量跳远成绩的依据是()A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线【答案】C【分析】根据垂线段最短即可得.【详解】体育课上测量跳远成绩是:落地时脚跟所在点到起跳线的距离,依据的是垂线段最短故选:C.【点睛】本题考查了垂线段最短的应用,掌握体育常识和垂线段公理是解题关键.6.如图,在线段PA、PB、PC、PD中,长度最小的是()A.线段PA B.线段PB C.线段PC D.线段PD【答案】B【分析】由垂线段最短可解.【详解】由直线外一点到直线上所有点的连线中,垂线段最短,可知答案为B.故选B.【点睛】本题考查的是直线外一点到直线上所有点的连线中,垂线段最短,这属于基本的性质定理,属于简单题.7.下列生活实例中,数学原理解释错误的一项是( )A.从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B.两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C.把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D.从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短【答案】A【分析】根据垂线段最短、直线和线段的性质即可得到结论.【详解】解:A、从一条河向一个村庄引一条最短的水渠,其中数学原理是:垂线段最短,故原命题错误;B、两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短,正确;C、一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线,正确;D、从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短,正确.故选A .【点睛】考查了垂线段最短,直线和线段的性质,熟练掌握各性质是解题的关键.8.如图,直线AB 与直线CD 相交于点O ,E 是∠AOD 内一点,已知OE ⊥AB ,∠BOD =45°,则∠COE 的度数是( )A .125°B .135°C .145°D .155° 【答案】B【解析】试题解析:,OE AB ⊥90,AOE ∴∠=又45,BOD ∠=︒45,AOC ∠=︒∴4590135.COE AOC AOE ∴∠=∠+∠=︒+︒=︒故选B.9.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短【答案】D【分析】根据垂线段的性质:垂线段最短进行解答.【详解】 要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是:垂线段最短,故选D.【点睛】本题考查垂线段的性质:垂线段最短.10.如图,直线AD,BE 相交于点O,CO⊥AD 于点O,OF 平分∠BOC.若∠AOB=32°,则∠AOF 的度数为A.29°B.30°C.31°D.32°【答案】A【分析】由CO⊥AD 于点O,得∠AOC=90︒,由已知∠AOB=32︒可求出∠BOC的度数,利用OF 平分∠BOC可得∠BOF=1BOC2∠,即可得∠AOF 的度数.【详解】∵CO⊥AD 于点O,∴∠AOC=90︒,∵∠AOB=32︒,∴∠BOC=122︒,∵OF 平分∠BOC,∴∠BOF=1BOC612∠=︒,∴∠AOF=∠BOF-∠AOB=61︒-3229︒=︒.故选A.【点睛】本题考查垂线,角平分线的定义.11.如图,在A、B 两地之间要修一条笔直的公路,从A地测得公路走向是北偏东48°,A,B两地同时开工,若干天后公路准确接通,若公路AB长8千米,另一条公路BC 长是6千米,且BC的走向是北偏西42°,则A地到公路BC的距离是()A.6千米B.8千米C.10千米D.14千米【答案】B【解析】【分析】根据方位角的定义,结合平行线,可得∠ABG=48°再结合∠CBE=42°,可得∠ABC=90°;再根据点到直线的距离,可以得到线段AB的长度就是点A到BC的距离,由此可以确定选项.【详解】由分析可得∵∠ABG=48°,∠CBE=42°∴∠ABC=180°-48°-42°=90°∴A到BC的距离就是线段AB的长度.∴AB=8千米【点睛】本题主要考查方位角的知识和平行线的性质以及点到直线的距离,熟练掌握该知识点是本题解题的关键.12.如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条【答案】D【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.【详解】在同一平面内,画已知直线的垂线,可以画无数条;故选:D.此题主要考查在同一平面内,垂直于平行的特征,解题的关键是熟知垂直的定义.13.如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36°B.44°C.50°D.54°【答案】D【解析】试题分析:∵EO⊥CD,∴∠EOD=90°,又∵∠AOE+∠EOD+∠BOD=180°,∠AOE=36°,∴∠BOD=54°,故选D.考点:垂线.14.如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP长不可能是( )A.2.5 B.3 C.4 D.5【答案】A【解析】已知,在△ABC中,∠C=90°,AC=3,根据垂线段最短,可知AP的长不可小于3,当P和C重合时,AP=3,故选A.15.在△ABC中,BC=6,AC=3,过点C作CP⊥AB,垂足为P,则CP长的最大值为()A.5 B.4 C.3 D.2【答案】C【分析】根据垂线段最短得出结论.【详解】根据垂线段最短可知:PC≤3,∴CP长的最大值为3.故选C.本题考查了垂线段最短的性质,正确理解此性质,垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短;本题是指点C到直线AB连接的所有线段中,CP是垂线段,所以最短;在实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.16.如图,三条直线相交于点O.若CO⊥AB,∠1=56°,则∠2等于( )A.30°B.34°C.45°D.56°【答案】B【解析】试题分析:根据垂线的定义求出∠3,然后利用对顶角相等解答.解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选B.考点:垂线.17.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=30°,则∠BOC=()A.150°B.140°C.130°D.120°【答案】D【分析】运用垂线,邻补角的定义计算。
垂线的专项练习30题有答案ok
垂线在平面几何中的应用
第六章
垂线在三角形中的应用
定义:垂线是指与给定直线垂直的直线 性质:垂线与给定直线相交于一点,这一点称为垂足 判定:在同一平面内,过一点与给直线垂直的直线有且仅有一条 应用:在三角形中,垂线可以用于证明角平分线、高线、中线等性质
垂线在四边形中的应用
垂线在矩形中的应用:利用垂线性质证明矩形的性质和定理。 垂线在菱形中的应用:利用垂线性质证明菱形的性质和定理。 垂线在正方形中的应用:利用垂线性质证明正方形的性质和定理。 垂线在等腰梯形中的应用:利用垂线性质证明等腰梯形的性质和定理。
● 答案:$\frac{y-1}{x-1} = \frac{0-1}{2-1} \Rightarrow y = -x + 2$
● 题目:已知直线$l$经过点$A(3,0)$和点$B(4,5)$,则直线$l$的方程为多少? 答案:$\frac{y0}{x-3} = \frac{5-0}{4-3} \Rightarrow y = 5x - 15$
感谢您的观看
汇报人:XX
● A.$\left(\frac{3}{5},\frac{4}{5}\right)$ B.$\left(-\frac{4}{5},-\frac{3}{5}\right)$ C.$\left(\frac{4}{5},\frac{3}{5}\right)$ D.$\left(-3,-4\right)$
相交线、垂线习题及解析
一、选择题1. 在一个平面内,任意四条直线相交,交点的个数最多有()A.7个B.6个C.5个D.4个2. 已知点A、B、C是直线a上有三点,P是直线a外的一点,且PA=6,PB=7,PC=8,则点P到直线a 的距离是()A.6B.7C.8D.不大于63. 下列说法中正确的个数有()(1)直线外一点与直线上各点连接的所有线段中,垂线段最短.(2)画一条直线的垂线段可以画无数条.(3)在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.(4)从直线外一点到这条直线的垂线段叫做点到直线的距离.A.1个B.2个C.3个D.4个4. 如图,OA⊥OB,OC⊥OD,O是垂足,∠AOD=120∘,那么∠COB的度数为()A.80∘B.70∘C.60∘D.50∘5. 点到直线的距离是指这点到这条直线的()的长度.A.垂线B.垂线段C.线段D.垂段6. 如图,直线AB、CD、EF交于点O,则图中与∠AOC互为对顶角的是()A.∠BOEB.∠BODC.∠DOED.∠BOC6题图 8题图 9题图 10题图7. 直线l外有一点A,点A到l的距离是5cm,点P是直线l上任意一点,则()A.AP>5cmB.AP≥5cmC.AP=5cmD.AP<5cm8. 春节过后,某村计划挖一条水渠将不远处的河水引到农田(记作点O),以便对农田的小麦进行灌溉,现设计了四条路段OA,OB,OC,OD,如图所示,其中最短的一条路线是()A.OAB.OBC.OCD.OD9. 如图,直线AB、CD交于点O,OE平分∠BOC,若∠1=36∘,则∠DOE等于()A.73∘B.90∘C.107∘D.108∘10. 如图,直线AB、CD相交于点O,OF⊥CO,∠AOF与∠BOD的度数之比为3:2,则∠AOC的度数是()A.18∘B.45∘C.36∘D.30∘11. 下列几何语言描述正确的是()A.直线mn与直线ab相交于点DB.点A在直线M上C.点A在直线AB上D.延长直线AB12. 如图,在△ABC中,∠C=90∘,D是边BC上一点,且∠ADC=60∘,那么下列说法中错误的是()A.直线AD与直线BC的夹角为60∘B.直线AC与直线BC的夹角为90∘C.线段CD的长是点D到直线AC的距离D.线段AB的长是点B到直线AD的距离13. 如图是小明同学在体育课上跳远后留下的脚印,则表示他的跳远成绩是()A.线段AC的长B.线段BC的长C.线段AD的长D.线段BD的长二、填空题14. 如图,直线AB、CD相交于点O,EO⊥CD,∠AOD=4∠BOD,则∠AOE=________∘.14题图 15题图 16题图 17题图15. 如图,直线AB、CD相交于O,且∠AOD=50∘,则∠BOC的度数为________.16. 如图,AC⊥BC,D在AB上,∠CDA=90∘,则线段________的长度是点C到直线AB的距离,线段BC的长度是点B到直线________的距离.17. 如图点B到直线a的距离是线段________的长度.18. 如图,要从小河引水到村庄A,请设计并作出一最佳路线,理由是________.19. 如图,直线AB⊥CD,垂足为O,射线OP在∠AOD的内部,且∠POA=4∠POD,则∠COP与∠BOP的比为________.20. 在直角三角形ABC中,∠B=90∘,则它的三条边AB,AC,BC中,最长的边是________.21. 已知,∠α=50∘,且∠α的两边与∠β的两边互相垂直,则∠β=________.22. 如图,AC⊥BC于点C,CD⊥AB于点D,DE⊥BC于点E,能表示点到直线(或线段)的距离的线段有________条.三、解答题23. 已知:如图直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90∘,∠1=30∘.求∠2和∠3的度数.24. 如图,在△ABC中,AC⊥BC,CD⊥AB垂足为D.(1)AB,AC,CD之间的大小关系为________(用“<”号连接起来).(2)若AC=4,BC=3,AB=5,求点C到直线AB的距离.25. 如图,直线EF、BC相交于点O,∠AOC是直角,∠AOE=115∘,求∠COF的度数.26. 直线AB,CD,EF相交于点O,且∠AOD=100∘,∠1=30∘,求∠2的度数.27. 如图,直线AB与CD相交于点O,∠AOC:∠AOD=2:3,求∠BOD的度数.参考答案与试题解析一、选择题(本题共计 13 小题,每题 3 分,共计39分)1.【解答】故选B.2.【解答】故选D.3.【解答】故选C.4.【解答】故选C.5.【解答】故选B.6.【解答】故选B.7.【解答】故选B.8.【解答】故选:B.9.【解答】故选:D.10.【解答】故选:C.11.【解答】故选C.12.【解答】故选D.13.【解答】故选:D.二、填空题14.【解答】故答案为:54∘15.【解答】故答案为:50∘.16.【解答】故答案为:CD,AC.17.【解答】故答案为:BC.18.【解答】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴过点A作河岸的垂线段,理由是垂线段最短.19.【解答】故答案为:3:2.20.【解答】解:如图,最长的边是AC.故答案为:AC.21.【解答】解:①如图1,∵∠a+∠β=180∘−90∘−90∘=180∘,∠α=50∘,∴∠β=140∘,②如图2,若∠a的两边分别与∠β的两边在同一条直线上,∴∠a=∠β=50∘,综上所述,∠β=140∘或50∘.故答案是:140∘或50∘.22.【解答】故答案为:9.三、解答题(本题共计 5 小题,每题 10 分,共计50分)23.【解答】解:∵∠AOB=180∘,∴∠1+∠3+∠COF=180∘,∵∠FOC=90∘,∠1=30∘,∴∠3=60∘,∠BOC=120∘,∴∠AOD=120∘,∵OE平分∠AOD,∴∠2=12∠AOD=60∘.24.【解答】解:(1)∵AC⊥BC,∴AC<AB,∵CD⊥AB,∴CD<AC,∴CD<AC<AB.故答案为:CD<AC<AB.(2)∵S△ACB=12ACCB=12ABCD,∴ACCB=ABCD,∵AC=4,BC=3,AB=5,∴12=5CD,∴CD=125.∴点C到直线AB的距离是125.25.【解答】解:由角的和差,得∠BOE=∠AOE−∠AOB=115∘−90∘=25∘,由对顶角相等得∠COF=∠BOE=25∘.26.【解答】解:根据对顶角相等,得∠DOF=∠1=30∘.又∵∠AOD+∠DOF+∠2=180∘,∠AOD=100∘,∴∠2=180∘−∠AOD−∠DOF=180∘−100∘−30∘=50∘.27.【解答】解:由邻补角的性质,得∠AOC+∠AOD=180∘,∠AOC:∠AOD=2:3,得∠AOD=32∠AOC,∠AOC+32∠AOC=180∘,∠AOC=72,由对顶角相等,得∠BOD=∠AOC=72∘.。
七年级下册数学人教版相交线与平行线(平行线、垂线)练习题 含答案
相交线与平行线相交线练习题学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.1.填空题(1)如果两个角有一条______边,并且它们的另一边互为___________,那么具有这种关系的两个角叫做互为邻补角.(2)如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________,那么具有这种位置关系的两个角叫做对顶角.(3)对顶角的重要性质是________________。
(4)如图,直线AB、CD相交于O点,∠AOE=90°,①∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为______角;∠1和∠3互为______角;∠2和∠4互为______角.②若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______;∠4=∠______-∠1=______°-______°=______.(5)如图,直线AB与CD相交于O点,且∠COE=90°,则①与∠BOD互补的角有__________________________________________________;②与∠BOD互余的角有__________________________________________________;③与∠EOA互余的角有__________________________________________________;④若∠BOD=42°17′,则∠AOD=______;∠EOD=_____;∠AOE=_____.2.选择题(1)图中是对顶角的是( )(2)如图,∠1的邻补角是( ).(A)∠BOC(B)∠BOC和∠AOF(C)∠AOF(D)∠BOE和∠AOF(3)如图,直线AB与CD相交于O,若∠AOC+∠BOC+∠DOB=242°,则∠AOC的度数为( ).(A)62°(B)118°(C)72°(D)59°(4)如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°;(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°3.判断正误(1)如果两个角相等,那么这两个角是对顶角.( ).(2)如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ).(3)有一条公共边的两个角是邻补角.( ).(4)如果两个角是邻补角,那么它们一定互为补角.( ).(5)对顶角的角平分线在同一直线上.( ).(6)有一条公共边和公共顶点,且互为补角的两个角是邻补角.( ).(二)综合运用诊断4.如图所示,AB,CD,EF交于点0,∠1=20°,∠BOC=80°,求:∠2的度数.5.已知:如图,直线a、b、c两两相交,∠1=2∠3,∠2=86°,求:∠4的度数.6.已知,如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1,求∠AOF的度数.7.如图,有两堵围墙,有人想测量地面上所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?(三)拓广、探究、思考8.已知:如图,O是直线CD上一点,射线OA、OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.9.回答下列问题:(1)三条直线AB、CD、EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB、CD、EF、GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1、a2、a3,……,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?垂线练习题学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.1.填空题(1)当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做____________.(2)垂线的性质性质1:平面内,过一点__________________与已知直线垂直.性质2:连结直线外一点与直线上各点的______中,______最短.(3)直线外一点到这条直线的__________________叫做点到直线的距离.(4)如图,直线AB、CD互相垂直,记作______;直线AB、CD互相垂直,垂足为O点,记作______;线段PO的长度是点______到直线______的距离;点M到直线AB的距离是____________.2.按要求画图(1)如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.(图a) (图b) (图c)(2)如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.(图a) (图b) (图c)(3)如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.(图a) (图b) (图c)(4)如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.(二)综合运用诊断3.判断下列语句是否正确?(正确的画“√”,错误的画“×”)(1)两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ).(2)若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ).(3)一条直线的垂线只能画一条.( ).(4)平面内,过线段AB外一点有且只有一条直线与AB垂直.( ).(5)度量直线l 外一点到直线l 的距离. ( ).(6)点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ).(7)画出点A 到直线l 的距离. ( ).(8)在三角形ABC 中,若∠B =90°,则AC >AB . ( ).4.选择题(1)若AO ⊥CO ,BO ⊥DO ,且∠BOC =,则∠AOD 等于( ).(A)180°-2(B)180°- (C)α2190+ (D)2-90°(2)如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为PA =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm(C)不大于3cm (D)以上结论都不对(3)如图,BC ⊥AC ,AD ⊥CD ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m(B)AC >n (C)n ≤AC ≤m (D)n <AC <m(4)若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ).(A)0 (B)1 (C)2 (D)3(5)如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( )条.(A)3 (B)4(C)7 (D)85.自钝角∠AOB 的顶点O 作射线OC ⊥OB ,若射线OC 把∠AOB 分成的两个角∠AOC ∶∠COB =2∶3,求∠AOB 的度数.6.已知:如图,三条直线AB、CD、EF相交于O,且CD⊥EF,∠AOE=70°,若OG平分∠BOF,求∠DOG.(三)拓广、探究、思考7.已知平面内有一条直线m及直线外三点A、B、C.分别过这三个点作直线m的垂线,想一想有几个不同的垂足?画图说明.8.已知点M,试在平面内作出四条直线l1,l2,l3,l4,使它们分别到点M的距离是1.5cm.9.从点O引出四条射线OA、OB、OC、OD,且AO⊥BO,CO⊥DO,试探索∠AOC与∠BOD的数量关系.5 10.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成73直角,则此锐角与钝角的和等于直角的多少倍?直角,与钝角的另一边构成7参考答案第五章相交线与平行线相交线练习题1.(1)公共、反向延长线.(2)公共,反向延长线.(3)对顶角相等.(4)略.(5)①∠BOC,∠AOD;②∠AOE;③∠AOC,∠BOD;④137°43',90°,47°43'.2.(1)A,(2)D,(3)A,(4)D3.(1)×,(2)×,(3)×,(4)√,(5)√,(6)×4.∠2=60°.5.∠4=43°.6.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF =4x=120°.7.只要延长BO(或AO)至C,测出∠AOB的邻补角的大小后,就可知道∠AOB的度数.8.∠AOC与∠BOD是对顶角,说理提示:只要说明A、O、B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,∴∠AOB是平角,从而A、O、B三点共线.∴∠AOC与∠BOD是对顶角.9.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.(3)有(m-1)对对顶角,2m(m-1)对邻补角.垂线练习题答案1.(1)互相垂直,垂,垂足.(2)有且只有一条直线,所有线段,垂线段.(3)垂线段的长度.(4)AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.2.略.3.(1)√,(2)√,(3)×,(4)√,(5)√,(6)√,(7)×,(8)√.4.(1)B (2)B (3)D (4)C (5)D5.150° 6.55°7.不同的垂足为三个或两个或一个.这是因为:(1)当A、B、C三点中任何两点的连线都不与直线m垂直时,则分别过A、B、C三点作直线m的垂线时,有三个不同的垂足.(2)当A、B、C三点中有且只有两点的连线与直线m垂直时,则分别过A、B、C三点作直线m的垂线时,有两个不同的垂足.(3)当A、B、C三点共线,且该线与直线m垂直时,则只有一个垂足.8.以点M为圆心,以R=1.5cm长为半径画圆M,在圆M上任取四点A、B、C、D,依次连结AM、BM、CM、DM,再分别过A、B、C、D点作半径AM、BM、CM、DM的垂线l、l2、l3、l4,1则这四条直线为所求.9.相等或互补.10.提示:如图,o 9075⨯=∠AOF , 9073⨯=∠FOC , ∴o 9072⨯=∠AOB ,︒⨯=∠90710BOC . ∴ 90712⨯=∠+∠BOC AOB . ∴是712倍.。
垂线(巩固篇)(专项练习)-七年级数学下册基础知识专项讲练(人教版)
专题5.6垂线(巩固篇)(专项练习)一、单选题1.两条直线相交所成的四个角中,下列条件中能判定两条直线垂直的是().A.有两个角相等B.有两对角相等C.有三个角相等D.有四对邻补角2.如图,经过直线l外一点A作l的垂线,能画出()A.4条B.3条C.2条D.1条3.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,正确的是()A.B.C.D.4.如图,点A在直线l1上,点B,C在直线l2上,AB⊥l2,AC⊥l1,AB=4,BC=3,则下列说法正确的是()A.点A到直线l2的距离等于4B.点C到直线l1的距离等于4C.点C到AB的距离等于4D.点B到AC的距离等于35.如图,在△ABC中,∠C=90︒,D是边BC上一点,且∠ADC=60︒,那么下列说法中错误的是()A.直线AD与直线BC的夹角为60︒B.直线AC与直线BC的夹角为90︒C .线段CD 的长是点D 到直线AC 的距离D .线段AB 的长是点B 到直线AD 的距离6.如图,已知直线AB l ⊥,BC l ⊥,则直线AB 与BC 重合,理由是()A .垂线段最短B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .直线外一点到这条直线的垂线段的长度,叫做点到直线的距离D .在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于另一条7.如图, ,, 5, 3AD BD BC CD AB BC ⊥⊥==,则BD 的长度可能是()A .3B .5C .3或5D .4.58.如图所示,点A 到BC 所在的直线的距离是指图中线段()的长度.A .ACB .AFC .BD D .CE9.直线AB ,CD 相交于点O .OE ,OF ,OG 分别平分AOC ∠,BOC ∠,AOD ∠.下列说法正确的是()A .OE ,OF 在同一直线上B .OE ,OG 在同一直线上C .OG OF⊥D .OE OF ⊥10.如图,直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足,如果∠EOD =38°,下列结论不正确的是()A .∠EOB =90°B .∠DOB 是∠AOE 的补角C .∠AOC =52°D .∠AOC 与∠EOD 互为余角二、填空题11.如果∠α,∠β两边分别垂直,其中∠α比∠β的2倍少30°,那么∠α=_____.12.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,垂足为O ,∠AOC :∠COE =2:3,则∠AOD =______.13.如图,直线AB 、CD 相交于点O ,OE 平分BOC ∠,OF OE ⊥于点O .若80AOD ∠=︒,则AOF ∠等于____________.14.点O 为线段AB 上一点,不与点A 、B 重合,OC ⊥OD 于点O ,若∠AOC =35°,则∠BOD 的度数为___.15.如图,点C ,O ,D 在一条直线上,OA OB ⊥,OE 平分AOC BOC ∠∠,比BOD ∠大70︒,COE ∠的度数为________.16.已知点O 是直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90BOE ∠=︒,请写出下列正确结论的序号_____________①130BOC ∠=︒②25AOD ∠=︒③155BOD ∠=︒④45COE ∠=︒17.如图,直线AB ,CD 相交于点O ,OE CD ⊥,垂足为点O .当直线AB 绕着点O 在DOE ∠内部转动,OF 是AOC ∠的角平分线,若BOE α∠=,则AOF β∠=,则β关于α的函数关系式为______.18.100条直线两两相交于一点,则共有对顶角(不含平角)_______对,邻补角________对.三、解答题19.如图,A 、B 、C 是平面内三点.(1)按要求作图:①作射线BC ,过点B 作直线l ,使A 、C 两点在直线l 两旁;②点P 为直线l 上任意一点,点Q 为直线BC 上任意一点,连接线段AP 、PQ ;(2)在(1)所作图形中,若点A 到直线l 的距离为2,点A 到直线BC 的距离为5,点A 、B 之间的距离为8,点A 、C 之间的距离为6,则AP +PQ 的最小值为__________,依据是__________20.如图,直线AB 、CD 相交于点O ,OD 平分AOF ∠,EO OD ⊥,55EOA ∠=︒,求BOF ∠的度数.21.如图,已知OB ,OC ,OD 是AOE ∠内三条射线,OB 平分AOE ∠,OD 平分COE ∠.(1)若70AOB ∠=︒,20DOE ∠=︒,求BOC ∠的度数.(2)若136AOE ∠=︒,AO CO ⊥,求BOD ∠的度数.(3)若20DOE ∠=︒,220AOE BOD ∠+∠=︒,求BOD ∠的度数.22.如图,O 为直线AB 上一点,F 为射线OC 上一点,OE ⊥AB .(1)用量角器和直角三角尺画∠AOC 的平分线OD ,画FG ⊥OC ,FG 交AB 于点G ;(2)在(1)的条件下,比较OF 与OG 的大小,并说明理由;(3)在(1)的条件下,若∠BOC =40°,求∠AOD 与∠DOE 的度数.23.如图,用三张卡片拼成如下图①,图②所示的两个四边形,其周长分别为1C 、2C .(1)请你根据所学知识解释:在直角三角形卡片中,“n m <”的理由是_________.(填写正确选项的字母)A .两点之间线段最短;B .过一点有且只有一条直线与已知直线垂直;C .垂线段最短;D .两点确定一条直线.(2)分别计算1C 、2C (用含m 、n 的代数式表示);(3)比较112C 与212C 的大小,并说明理由.24.点O 为直线l 上一点,射线OA OB 、均与直线l 重合,如图1所示,过点O 作射线OC 和射线OD ,使得100BOC ∠=︒,90COD ∠=︒,作AOC ∠的平分线OM .(1)求AOC ∠与MOD ∠的度数;(2)作射线OP ,使得90BOP AOM ∠+∠=︒,请在图2中画出图形,并求出COP ∠的度数;(3)如图3,将射线OB 从图1位置开始,绕点O 以每秒5︒的速度逆时针旋转一周,作COD ∠的平分线ON ,当20MON ∠=︒时,求旋转的时间.参考答案1.C【分析】两直线相交所成的四个角中,有一个角为90°,则这两条直线互相垂直,根据的定义判断即可.【详解】解:A、两条直线相交成四个角,如果有两个角相等,是两个对顶角相等,那么这两条直线不一定垂直,故本选项错误;B、两条直线相交成四个角,如果有两对角相等,是两对对顶角相等,那么这两条直线不一定垂直,故本选项错误;C、两条直线相交成四个角,则这四个角中有2对对顶角.如果三个角相等,则这四个角相等,都是直角,所以这两条直线垂直.故正确;D、两条直线相交成四个角,如果有四对邻补角,是四对普通的邻补角,那么这两条直线不一定垂直,故本选项错误;故选:C.【点拨】本题主要考查了垂线的定义,对顶角的定义,邻补角的定义,是基础题,熟记概念是解题的关键.2.D【分析】平面内经过一点有且只有一条直线垂直于已知直线,据此可得.【详解】解:经过直线l外一点画l的垂线,能画出1条垂线,故选D.【点拨】本题主要考查垂线,解题的关键是掌握在平面内,过一点有且只有一条直线与已知直线垂直.3.A【分析】满足两个条件:①经过点B.②垂直AC;由此即可判断.【详解】解:根据垂线段的定义可知,图①线段BE,是点B作线段AC所在直线的垂线段,故选A.【点拨】本题考查作图-复制作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.A【分析】根据点到直线的距离的定义:直线外一点到这条直线的垂线段的长度,即可得到答案.【详解】解:点A到直线l2的距离为AB的长,等于4,故A正确;点C到直线l1的距离为AC的长,大于4,故B错误;点C到AB的距离为BC的长,等于3,故C错误;同理,点B 到AC 的距离也不是3,故D 错误,故选:A【点拨】本题考查点到直线的距离,掌握定义是解题的关键.5.D【分析】根据已知角即可判断A 、B ;根据点到直线的距离的定义即可判断C 、D .【详解】解:A 、∵∠CDA =60︒,∴直线AD 与直线BC 的夹角是60︒,正确,故不符合题意;B 、∵∠ACD =90︒,∴直线AC 与直线BC 的夹角是90︒,正确,故不符合题意;C 、∵∠ACD =90︒,∴DC ⊥AC ,∴线段CD 的长是点D 到直线AC 的距离,正确,故不符合题意;D 、∵BD 和AD 不垂直,∴线段AB 的长不是点B 到直线AD 的距离,错误,故本选项符合题意;故选:D .【点拨】本题考查了点到直线的距离,以及直线与直线的夹角,注意:点到直线的距离是指该点到直线的垂线段的长.6.B【分析】直接利用垂线的性质进而分析得到答案.【详解】∵AB l ⊥,BC l ⊥,垂足为B ,∴AB 和BC 重合,理由是:在同一平面内,过一点有且只有一条直线与已知直线垂直.故选:B .【点拨】本题考查了同一平面内直线的垂直关系及垂线段的知识点,解题的关键是熟悉对垂线段定义的理解.7.D【分析】根据垂线段最短可得3<BD <5.【详解】解:∵AD ⊥BD ,BC ⊥CD ,AB=5,BC=3,∴BC <BD <AB ,即3<BD <5.故选:D .【点拨】此题主要考查了垂线段的性质,关键是掌握垂线段最短.8.B【分析】根据点到直线的距离是垂线段的长度,可得答案.【详解】点A 到线段BC 所在直线的距离是线段AF 的长度,故选B .【点拨】本题考查了点到直线的距离,利用点到直线的距离的定义是解题关键.9.D【分析】根据角平分线的性质得到12COE AOC ∠=∠,12COF BOC ∠=∠,又因为AOC ∠与BOC ∠是互为补角,所以90COE COF ∠+∠=︒,所以OE OF ⊥,所以A 错误,D 正确;因为12AOG AOD Ð=Ð,且AOD ∠与BOC ∠互为对顶角,所以AOG BOF ∠=∠,所以OF 与OG 共线,所以OE OG ⊥,所以B ,C 均错误.【详解】解:如图,∵OE ,OF 分别是AOC ∠,BOC ∠的平分线,∴12COE AOE AOC ∠=∠=∠,12COF BOF BOC Ð=Ð=Ð,∵OG 是AOD ∠的平分线,∴12AOG DOG AOD Ð=Ð=Ð,∴1180902COE COFAOF BOF ����窗=,∴90EOF ∠=︒,∵AOC BOD ∠=∠,∴AOG BOF ∠=∠,∴90EOG AOG AOE Ð=Ð+Ð=°,∴180EOG EOF ∠+∠=︒,∴OF 与OG 共线,∴射线OE ,OF 互相垂直,故D 正确,A 错误;射线OF 与OG 互相垂直,故BC 错误.故选:D .【点拨】本题考查了垂线,对顶角,角平分线的定义,正确的识别图形是解题的关键.10.B【分析】根据垂直的定义可知90EOB ∠=︒,故A 正确;根据互补定义,由图知DOB ∠和AOD ∠互补,故B 错误;根据OE ⊥AB ,∠EOD =38°,结合对顶角定义,可得52AOC BOD ∠=∠=︒,故C 正确;根据互余定义和对顶角定义可知AOC BOD ∠=∠,90BOD EOD ∠+∠=︒即可得到∠AOC 与∠EOD 互为余角,故D 正确,从而得到结论.【详解】解:A 、由于OE ⊥AB ,则90EOB ∠=︒,故该选项不符合题意;B 、由于A O B 、、三点共线,则180AOD BOD ∠+∠=︒,即∠DOB 是∠AOE 的补角错误,故该选项符合题意;C 、由于OE ⊥AB ,则90EOB ∠=︒,再结合∠EOD =38°,根据对顶角相等可知52AOC BOD ∠=∠=︒,故该选项不符合题意;D 、由于OE ⊥AB ,则90EOB ∠=︒,从而90BOD EOD ∠+∠=︒,根据对顶角相等AOC BOD ∠=∠可得90AOC EOD ∠+∠=︒,∠AOC 与∠EOD 互为余角,故该选项不符合题意;故选:B .【点拨】本题考查垂线的定义、互余的定义、互补的定义和对顶角相等的性质等知识点,熟记概念,准确识图并找到各个相关角度之间的数量关系是解决问题的关键.11.30︒或110︒【分析】分两种情况,当αβ∠=∠时,当180αβ∠+∠=︒,然后进行计算即可解答,【详解】解:设∠β为x ︒,则()230x α∠=-︒,分两种情况:当αβ∠=∠时,如图:230x x ∴-=,解得:30x =,30α∴∠=︒,当180αβ∠+∠=︒,如图:230180x x ∴-+=,解得:70x =,110α∴∠=︒综上所述:30α∠=︒或110α∠=︒.故答案为:30︒或110︒.【点拨】本题考查了垂线,角的计算,根据题意画出图形,分两种情况讨论是解题的关键.12.144°【分析】直接利用垂直的定义得出∠AOE =90°,进而利用∠AOC :∠COE =2:3,得出∠AOC 的度数,进而得出答案.【详解】解:∵EO ⊥AB ,∴∠AOE =90°,∵∠AOC :∠COE =2:3,∴设∠AOC =2x ,∠COE =3x ,则3x +2x =90°,解得:x =18°,故∠AOC =36°,则∠AOD =180°-36°=144°.故答案为:144°.【点拨】此题主要考查了垂直的定义以及邻补角,正确得出∠AOC 度数是解题关键.13.50︒##50度【分析】根据对顶角相等可得80BOC AOD =∠=︒∠,再根据角平分线的性质得1402BOE BOC ==︒∠∠,最后根据平角的性质求解即可.【详解】解:∵80AOD ∠=︒,∴80BOC AOD =∠=︒∠.∵OE 平分∠BOC ,∴1402BOE BOC ==︒∠∠.∵OF ⊥OE ,∴90EOF ∠=︒,∴180180409050AOF BOE EOF =︒--=︒-︒-︒=︒∠∠∠.故答案为:50︒.【点拨】本题考查了角的度数问题、垂直定义以及角平分线的定义,掌握对顶角相等、平角的定义是解题的关键.14.55°或125°【分析】分OC ,OD 在AB 的同侧和异侧两种情况求解.【详解】当OC 和OD 在AB 同一侧时,如图:∵OC ⊥OD ,∴∠COD =90°,∴∠AOC +∠BOD =90°,∵∠AOC =35°,∴∠BOD =90°﹣∠AOC =90°﹣35°=55°,当OC 和OD 在AB 同异侧时,如图:∵OC ⊥OD ,∴∠COD =90°,∵∠AOC =35°,∴∠AOD =55°,∴∠BOD =180°﹣∠AOD =180°﹣55°=125°.∴∠BOD 的度数为55°或125°.故答案为:55°或125°.【点拨】本题考查了垂直的定义即两直线相交,交成的四个角中有一个是直角,理解定义,学会分类是解题的关键.15.72.5︒##72.5度【分析】根据BOC ∠比BOD ∠大70︒,BOC ∠和BOD ∠互补,即可求出55BOD ∠=︒,进而由垂直性质可求出35AOD ∠=︒,再由角平分线性质即可得出答案.【详解】解:∵BOC ∠比BOD ∠70︒,∴设BOD x ∠=,则70BOC x ∠=+︒,∵BOC ∠+180BOD ∠=︒,∴()70180x x ++︒=︒,∴55x =︒,∴55BOD ∠=︒,∵OA OB ⊥,∴90AOB ∠=︒,∴9035AOD BOD ∠=︒-∠=︒,∴180145AOC AOD ∠=︒-∠=︒,∵OE 平分AOC ∠,∴172.52COE AOC ∠=∠=︒.故答案为:72.5︒.【点拨】本题考查了垂直的性质,角平分线的性质以及角的运算,掌握以上知识是解题的关键.16.①②③【分析】根据图形的特点及角平分线的概念依次求出各角度即可解答.【详解】解:∵50AOC ∠=︒,∴∠BOC =180°-AOC ∠=130°,则①正确∵OD 平分AOC ∠,∴∠AOD =1252AOC ∠=︒,则②正确∴∠BOD =180°-∠AOD =155°,则③正确∵90BOE ∠=︒∴∠COE =90︒-AOC ∠=40°,则④错误.故答案为:①②③.【点拨】本题主要考查角平分线、垂直、邻补角的定义以及角的和差等知识点,熟知邻补角的定义及角平分线的定义成为解答本题的关键.17.()1450902β=-α+︒︒<α<︒【分析】先由角平分线定义得:22AOC AOF ∠=∠=β,由垂直定义和角的和差90BOC ∠=︒+α,再根据180AOC BOC ∠+∠=︒,得到α与β的关系,进而得解.【详解】∵OF 是AOC ∠的角平分线,AOF β∠=,∴22AOC AOF ∠=∠=β.∵OE CD ⊥,∴90COE ∠=︒,∵BOE α∠=,∴90BOC COE BOE ∠=∠+∠=︒+α.∵180AOC BOC ∠+∠=︒,∴290180β+︒+α=︒,∴()1450902β=-α+︒︒<α<︒,故答案是()1450902β=-α+︒︒<α<︒.【点拨】本题主要考查垂直的定义,角平分线的定义,补角的定义,由180AOC BOC ∠+∠=︒,90BOC ∠=︒+α,推导出β关于α的函数关系式是解本题的关键.18.990019800【详解】100条直线两两相交,最多有100(1001)49502-=个交点,每个交点处有两组对顶角,4对邻补角,故100条直线两两相交于一点共有4950×2=9900(对)对顶角,有4950×4=19800(对)邻补角,故答案为9900,19800.19.(1)①见解析;②见解析(2)5,垂线段最短【分析】(1)根据题意作出图形即可;(2)根据线段的性质即可得到结论.(1)解:①如图1所示,射线BC ,直线l 即为所求;②如图1所示,线段AP ,PQ 即为所求;;(2)解:过A 作AQ ⊥BC 交直线l 于P ,则此时,AP +PQ 的值最小,∵点A 到直线BC 的距离为5,∴AP +PQ 的最小值为5,依据是垂线段最短,故答案为:5,垂线段最短.【点拨】本题考查了点到直线的距离,直线,射线,线段的定义,正确的作出图形是解题的关键.20.110BOF ∠=︒【分析】依据EO OD ⊥,55EOA ∠=︒,可得905535AOD ∠=︒-︒=︒,再根据OD 平分AOF ∠,即可得出270AOF AOD ∠=∠=︒,依据平角定义得到BOF ∠.【详解】解:∵EO OD ⊥,∴90EOD ∠=︒.∵55EOA ∠=︒.∴1905535EOD EOA ∠=∠-∠=︒-︒=︒.∵OD 平分AOF ∠.∴11352AOF ∠=∠=︒.∴70AOF ∠=︒.∵180BOA BOF AOF ∠=∠+∠=︒∴180********BOF AOF ∠=︒-∠=︒-︒=︒.【点拨】本题主要考查了垂线的意义,角平分线的定义以及余角的综合运用,正确的识别图形是解题的关键.21.(1)30︒(2)45︒(3)60︒【分析】对于(1),由角平分线的定义求出∠BOE 和COE ∠,再根据=BOC BOE COE ∠∠-∠即可求解;对于(2),先求出COE ∠,再根据角平分线的定义求出DOE ∠和∠BOE ,然后根据=-BOD BOE DOE ∠∠∠即可求解;对于(3),由角平分线的定义得2AOE BOE ∠=∠,结合已知条件可得2220BOE BOD ∠+∠=︒,20BOE BOD ∠-∠=︒,即2240BOE BOD ∠-∠=︒,进而得出3180∠=︒BOD ,可得答案.【详解】(1)∵OB 平分AOE ∠,OD 平分COE ∠,∴70BOE AOB ∠=∠=︒,240COE DOE ∠=∠=︒,∴=704030BOC BOE COE ∠∠-∠=︒-︒=︒;(2)∵AO CO ⊥,∴=90AOC ∠︒.∵136AOE ∠=︒,∴1369046COE AOE AOC ∠=∠-∠=︒-︒=︒.∵OB 平分AOE ∠,OD 平分COE ∠,∴1682BOE AOE ∠=∠=︒,1232COE ∠=∠=︒,∴=-682345BOD BOE DOE ∠∠∠=︒-︒=︒;(3)∵OB 平分AOE ∠,∴2AOE BOE ∠=∠.∵220AOE BOD ∠+∠=︒,∴2220BOE BOD ∠+∠=︒.∵BOE BOD DOE ∠-∠=∠,∴20BOE BOD ∠-∠=︒,∴2240BOE BOD ∠-∠=︒,∴3180∠=︒BOD ,∴60BOD ∠=︒.【点拨】本题主要考查了角的和差,关键是由角平分线定义得出相关等式.22.(1)见解析;(2)OF <OG ;理由见解析;(3)∠AOD =70°,∠DOE =20°.【分析】(1)使用量角器量出AOC ∠的度数,再用直角三角尺画它的平分线,使用直角三角尺画FG OC ⊥于G ;(2)根据垂线段最短即可确定OF 和OG 的大小;(3)先利用邻补角计算出180140AOC BOC ∠=︒-∠=︒,再根据角平分线定义得70AOD ∠=°,然后利用角互余计算DOE ∠的度数.【详解】(1)先使用量角器量出AOC ∠的度数,再用直角三角尺画它的平分线;使用直角三角尺画FG OC ⊥于G ,如下图所示,OD 、FG 即为所画(2)OF OG <.理由如下:FG OC⊥ OF ∴是点O 到FG 的距离由直线外一点与直线上各点的连线中,垂线段最短可知,OF OG <;(3)40BOC ︒∠= 180140AOC BOC ∴∠=︒-∠=︒∵OD 是AOC ∠的平分线∴1702AOD AOC ∠=∠=︒∵OE AB⊥∴90AOE ∠=︒∴20DOE AOE AOD ∠=∠-∠=︒故AOD ∠的度数为70︒,DOE ∠的度数为20︒.【点拨】本题考查了角平分线和垂线的画法、垂线段最短、角互余等知识点,掌握角平分线的定义是解题关键.23.(1)C(2)124C m n =+,242C m n =+(3)121122C C <,理由见解析【分析】(1)根据垂线段最短解答;(2)根据周长公式计算即可;(3)利用作差法比较大小.(1)解:“n m <”的理由是垂线段最短,故选:C ;(2)解:1224,42C m n C m n =+=+;(3)解:()()12111124422222C C m n m n n m -=+-+=-;∵n <m ,∴n-m <0,∴1211022C C -<,∴121122C C <.【点拨】此题考查了垂线的性质,计算图形的周长,利用作差法比较两个式子的大小,整式加减的应用,正确掌握垂线的性质及作差法比较大小的方法是解题的关键.24.(1)80AOC ∠=︒,50MOD ∠=︒(2)50︒或150︒(3)6秒或62秒【分析】(1)根据180AOB ∠=︒,100BOC ∠=︒,即可得出AOC ∠的度数,根据角平分线的定义得出1402COM AOC ∠=∠=︒,然后根据90COD ∠=︒得出MOD ∠的度数;(2)根据题意得出BOP ∠的度数,然后分两种情况进行讨论:①当射线OP 在BOC ∠内部时;②当射线OP 在BOC ∠外部时;分别进行计算即可;(3)根据ON 平分COD ∠得出45CON ∠=︒,根据题意画出图形,计算∠BOE 的角度,然后计算时间即可.【详解】(1)解:由题意可知,180AOB ∠=︒,∵100BOC ∠=︒,∴80AOC AOB BOC ∠=-∠=︒,∵OM 平分AOC ∠,∴1402COM AOC ∠=∠=︒,∴50MOD COD COM ∠=∠-∠=︒;(2)由(1)知,40AOM AOC COM ∠=∠-∠=︒,∴9050BOP AOM ∠=︒-∠=︒,①当射线OP 在BOC ∠内部时,如图2(1),50COP BOC BOP ∠=∠-∠=︒;②当射线OP 在BOC ∠外部时,如图2(2),150COP BOC BOP ∠=∠+∠=︒,综上所述,COP ∠的度数为50︒或150︒;(3)∵ON 平分COD ∠,∴1452CON COD ∠=∠=︒,①如图3,25COM CON MON ∠=∠-∠=︒,∵OM 平分AOC ∠,∴250AOC COM ∠=∠=︒,∴18030BOE AOC BOC ∠=︒-∠-∠=︒,∴旋转的时间3056t =︒÷︒=(秒);②如图3(1),此时,65COM CON MON ∠=∠+∠︒,∵OM 平分AOC ∠,∴2130AOC COM ∠=∠=︒,∴18013050COE ∠=︒-︒=︒,∴1005050BOE ∠=︒-︒=︒,∴旋转的时间(36050)562=︒-︒÷︒=(秒);综上所述,旋转的时间为6秒或62秒.【点拨】本题主要考查角度的计算,角平分线的定义等内容;第(2)问进行合适的分类讨论是解题的关键;第(3)问,搞清楚在射线OB 旋转的过程中,OM 和ON 的相对位置在不断的变化,以此进行分类画图.。
垂线练习题
认识垂线练习1、填空(1)两条直线相交成()个角。
两条直线相交,其中一个角是直角,另外三个角一定是()。
(2)两条直线相交成()角时,这两条直线(),其中一条直线是另一条直线(),这两条直线的交点叫()。
(3)一条直线有()条垂线,有()个垂足。
(4)从直线外一点到这条直线所画的()最短,它的长度叫做这点到直线的()。
(5)点到直线的距离是点到直线的()的长度。
(6)平行线间垂直线段的长度就是平行线间的(),平行线间的距离()。
(7)长方形对边(),相邻的两条边互相()。
长方形和正方形分别有()组垂(8)黑版面相邻的两条边互相(),上下两条边互相()。
(9)过直线外一点画一条直线的垂线有()条。
(10)课桌相邻的两条边(),相对的两条边()。
2、精挑细选(1)互相垂直的两条直线可以相交成四个()A、锐角B、直角C、钝角(2)下列说法正确的是()A、两条直线相交,这两条直线一定互相垂直。
B、直线a和直线b互相垂直,那么直线a和直线b都是垂线。
C、过直线外一点,只能画一条与它垂直的直线。
(3)下面图形中,邻边都互相垂直的有()A、2个B、1个C、0个(4)过直线外一点画一条直线的垂线有()A、1条B、2条C、无数条(5)一张长方形纸对折两次后展开,折痕()A、互相平行B、互相垂直C、不能确定(6)同一平面内如果两条直线都垂直于同一条直线,那么这两条直线()A、相交B、互相垂直C、互相平行(7)直线外一点到这条直线的距离,是指这一点到这条直线的()A、线段的长B、射线的长C、直线的长D、垂直线段的长3、小法官判对错(对的打√,错的打×)(1)不相交的两条直线一定互相平行。
()(2)在同一平面内,过直线上一点只能画一条已知直线的垂线。
()(3)两条直线相交于一点,这一点叫做垂足。
()(4)连结直线外一点和已知直线上的任一点的线段,就是这个点到这条直线的距离。
()(5)平行线间的距离处处相等。
()(6)3时整,分针和时针互相垂直。
初三数学同步练习:相交线,垂线专练试题
初三数学同步练习:相交线,垂线专练试题一、选择题1.如图所示,1和2是对顶角的图形共有( )A.0个B.1个C.2个D.3个2.以下四个叙述中,正确的有( )①相等的角是对顶角;②互补的角是邻补角;③两条直线相交,可构成2对对顶角;④对顶角、邻补角都有一个共同特点:两个角有公共的顶点.A.4个B.3个C.2个D.1个3.(湖南邵阳)如图所示,已知O是直线AB上一点,1=40,OD平分BOC,则2的度数是( )A.20B.25C.30D.704.如图所示,点A到BD的距离是指( )A.线段AB 的长度B.线段AD的长度C.线段AED.线段AE 的长度5.在平面上,过直线上一点可以画这条直线的垂线的条数为( )A.1B.2C.3D.46.如图,ABCD于点O,直线EF经过点O,若1=26,则2的度数是( )A.26B.64C.54D.以上答案都不对二、填空题7.两条直线相交得到________个角,其中有一个公共顶点,没有公共边的两个角叫做________;而不仅有一个公共顶点,还有一条________的两个角叫做________.8.如图,直线a,b相交,1=60,则2=________,3=________,4=________.9.如图所示,直线AB,CD,EF相交于点O,CDAB,若COE=30,则AOE=_____,AOF=______.10.如图,直线AB与CD的位置关系是________,记作________于点________,此时AOD=______=______=______=90.11.如图,AOB=90,则AB BO;若OA=3 cm,OB=2 cm,则A 点到OB的距离是________cm,点B到OA的距离是________cm;O点到AB上各点连结的所有线段中________最短.12.如图所示,已知直线AB、C D相交于点O,OA平分EOC,EOC=100,则BOD的度数是.三、解答题13.如图,三条直线AB、CD和EF相交于一点O,COE+DOF=50,BOE=70,求AOD和BOD.14.如图,OAOB,OCOD,OE是OD的反向延长线.(1) AOC等于BOD吗?请说明理由;(2)若BOD=32,求AOE的度数.15.如图所示,小明家在A处,他要去在同一条路上的小丽家或小红家或小华家或小刚家问作业,则最少要走多少米可以问到作业?【答案与解析】一、选择题1. 【答案】B【解析】只有(3)中的1与2是对顶角.2.【答案】C【解析】③④正确.3. 【答案】D【解析】1=40,BOC=140,2= BOC=70.4. 【答案】D5. 【答案】A6. 【答案】B【解析】BOE=901=64,又AOF=BOE=64.二、填空题7.【答案】4 ,对顶角,公共边,邻补角.8. 【答案】120,60,120.9. 【答案】60,120【解析】AOE=90COE=60,AOF=AOD+DOF=90EOC=90+30=120.10.【答案】垂直,ABCD,O,BOD,BOC,AOC.【解析】垂直的定义.11.【答案】,3,2,垂线段.【解析】点到直线的距离的定义12.【答案】50【解析】由题意知:BOD=AOC= EOC=50.三、解答题13.【解析】解:∵COE=DOF(对顶角相等),COE+DOF=50(已知),COE= .∵BOE=70,BOC=BOE-COE=70-25= 45.∵AOD=BOC(对顶角相等).AOD=45.BOD=180AOD=180-45=135.14.【解析】解:(1)AOC=BOD.理由:∵ OAOB,OCOD (已知).AOB=90,COD=90.即AOC+BOC=90,BOD+BOC=90 ,AOC=BOD(同角的余角相等).(2)∵AOB=90,BOD=32,AOE=180AOB-BOD=180-90-32=58.观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。
【名师部编版】初中人教版七年级数学相交线,垂线(基础)巩固练习
相交线,垂线(基础)巩固练习【巩固练习】一、选择题1.如图所示,∠1和∠2是对顶角的图形共有()A.0个B.1个C.2个D.3个2.以下四个叙述中,正确的有()①相等的角是对顶角;②互补的角是邻补角;③两条直线相交,可构成2对对顶角;④对顶角、邻补角都有一个共同特点:两个角有公共的顶点.A.4个B.3个C.2个D.1个3.(湖南邵阳)如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C.30°D.70°4.如图所示,点A到BD的距离是指( )A.线段AB的长度B.线段AD的长度C.线段AE D.线段AE的长度5.在平面上,过直线上一点可以画这条直线的垂线的条数为()A.1 B.2 C.3 D.46.如图,AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是()A.26°B.64°C.54°D.以上答案都不对二、填空题7.两条直线相交得到________个角,其中有一个公共顶点,没有公共边的两个角叫做________;而不仅有一个公共顶点,还有一条________的两个角叫做________.8.如图,直线a,b相交,∠1=60°,则∠2=________,∠3=________,∠4=________.9.如图所示,直线AB,CD,EF相交于点O,CD⊥AB,若∠COE=30°,则∠AOE=_____,∠AOF=______.10.如图,直线AB与CD的位置关系是________,记作________于点________,此时∠AOD =______=______=______=90°.11.如图,∠AOB=90°,则ABBO;若OA=3 cm,OB=2 cm,则A点到OB的距离是________cm,点B到OA的距离是________cm;O点到AB上各点连结的所有线段中________最短.12.如图所示,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=100°,则∠BOD 的度数是.三、解答题13.如图,三条直线AB、CD和EF相交于一点O,∠COE+∠DOF=50°,∠BOE=70°,求∠AOD和∠BOD.14.如图,OA⊥OB,OC⊥OD,OE是OD的反向延长线.(1)∠AOC等于∠BOD吗?请说明理由;(2)若∠BOD=32°,求∠AOE的度数.15.如图所示,小明家在A处,他要去在同一条路上的小丽家或小红家或小华家或小刚家问作业,则最少要走多少米可以问到作业?【答案与解析】一、选择题1. 【答案】B【解析】只有(3)中的∠1与∠2是对顶角.2.【答案】C【解析】③④正确.3. 【答案】D【解析】∠1=40°,∠BOC=140°,∠2=∠BOC=70°.4.【答案】D5. 【答案】A6. 【答案】B【解析】∠BOE=90°-∠1=64°,又∠AOF=∠BOE=64°.二、填空题7.【答案】4,对顶角,公共边,邻补角.8.【答案】120°,60°,120°.9. 【答案】60°,120°【解析】∠AOE=90°-∠COE=60°,∠AOF=∠AOD+∠DOF=90°+∠EOC=90°+30°=120°.10.【答案】垂直,AB⊥CD,O,∠BOD,∠BOC,∠AOC.【解析】垂直的定义.11.【答案】>,3,2,垂线段.【解析】点到直线的距离的定义12.【答案】50°【解析】由题意知:∠BOD=∠AOC=∠EOC=50°.三、解答题13.【解析】解:∵∠COE=∠DOF(对顶角相等),∠COE+∠DOF=50°(已知),∴∠COE=.∵∠BOE=70°,∴∠BOC=∠BOE-∠COE=70°-25°=45°.∵∠AOD=∠BOC(对顶角相等).∴∠AOD=45°.∴∠BOD=180°-∠AOD=180°-45°=135°.14.【解析】解: (1)∠AOC=∠BOD.理由:∵OA⊥OB,OC⊥OD(已知).∴∠AOB=90°,∠COD=90°.即∠AOC+∠BOC=90°,∠BOD+∠BOC=90°,∴∠AOC=∠BOD(同角的余角相等).(2)∵∠AOB=90°,∠BOD=32°,∴∠AOE=180°-∠AOB-∠BOD=180°-90°-32°=58°.15.【解析】解:小明到小红家问作业最近,所以小明至少要走15米.。
七年级下册垂线的认识课后练习题(附答案)
七年级下册垂线的认识课后练习题(附答案)一、填空题1. 平面内,过一点____一条直线与已知直线垂直.2. 填空:如图所示,∠COB=90∘(1)直线____与直线____相交于点D:(2)直线____⊥直线____,垂足为____;(3)过点C有且只有____直线与直线AB垂直;3. 如图,OA⊥OC,∠1=∠3,则OB与OD的位置关系是____.4. 垂线的性质性质1:平面内,过一点____与已知直线垂直.性质2:连接直线外一点与直线上各点的____中,____最短.5. 如图,直线AB与CD相交于点O,且∠AOC=90∘,则AB____CD,图中直角共有____个.6. 若直线AB,CD相交于点O,若∠BOD=90∘,则称直线AB与CD____,直线AB是直线CD的____.7. 当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线____,其中的一条直线叫做另一条直线的____线,它们的交点叫做____.8. 点A在直线a外,直线AB⊥a,直线AC⊥a,那么直线AB,AC的关系是____.二、单选题9. 如图,经过直线l外一点画l的垂线,能画出( )A. 1条B. 2条C. 3条D. 4条10. 如图,OA⊥OB,CO⊥OD,则下列叙述正确的是( )A. ∠AOC=∠AODB. ∠AOD=∠BODC. ∠AOC=∠BODD. 以上都不对11. 如图,经过直线l外一点A画l的垂线,能画出( )A. 1条B. 2条C. 3条D. 4条12. 过一条线段外一点,作这条线段的垂线,垂足在( )A. 这条线段上(不包含端点)B. 这条线段的端点处C. 这条线段的延长线上D. 以上都有可能13. 如图,直线AB,CD相交于点O,EO⊥CD,下列说法错误的是( ).A. ∠AOD=∠BOCB. ∠AOC=∠AOEC. ∠AOE+∠BOD=90∘D. ∠AOD+∠BOD=180∘14. 如图,如果直线AB垂直于直线CD,垂足为点O,那么图中的直角有( ).A. 1个B. 2个C. 3个D. 4个15. 如图,过点P作直线l的垂线和斜线,下列叙述正确的是( )A. 都能作且只能作一条B. 垂线能作且只能作一条,斜线可作无数条C. 垂线能作两条,斜线可作无数条D. 均可作无数条七年级下册垂线的认识课后练习题(附答案)答案和解析1. 【答案】有且只有2. 【答案】(1)AB CD(2)CE AB O(3)一条【解析】通过复习斜交、垂直的意义,测量CD与CO的长度,比较它们的大小,可以由此引入点到直线的距离,其实,CO即为点C到直线AB的距离.3. 【答案】OB⊥OD4. 【答案】有且只有一条直线所有线段垂线段5. 【答案】⊥46. 【答案】互相垂直垂线7. 【答案】互相垂直垂垂足8. 【答案】重合【解析】由于过一点有且只有一条直线与已知直线垂直,所以直线AB,AC重合.9. 【答案】A【解析】平面内经过一点有且只有一条直线垂直于已知直线,据此可得.解:经过直线l外一点画l的垂线,能画出1条垂线,故选:A.10. 【答案】C11. 【答案】A【解析】在同一平面内,过一点有且只有一条直线垂直于已知直线.12. 【答案】D【解析】作一条线段的垂线,实际上是作线段所在直线的垂线,垂足可能在这条线段上(包含端点),也可能在线段的延长线上.13. 【答案】B14. 【答案】D15. 【答案】B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.相交线垂线习题精选————————————————————————————————作者:————————————————————————————————日期:25.1相交线垂线习题精选一.解答题(共10小题)1.有一张地图,有A、B、C三地,但地图被墨迹污染,C地具体位置看不清楚了,但知道C地在A地的北偏东30°,在B地的东南方向,(1)试确定C地的位置;(2)画射线CA;(3)画出点C到AB的垂线段CD.2.如图,已知直线AB,OC⊥AB,OD⊥OE,若∠COE=∠BOD,则求∠COE,∠BOD,∠AOE的度数.3.如图,AO⊥OB,直线CD过点O,且∠BOD=130°,求∠AOD的大小.4.如图:AB,CD,EF相交于O点,AB⊥CD,OG平分∠AOE,∠FOD=30°,求∠BOE及∠AOG的度数.5.如图,AB、CD相交于O点,若∠EOD=40°,∠BOC=130°,猜想射线OE与直线AB的位置关系,并求证.6.如图,直线AB、CD相交于点O,OE⊥OF,OC平分∠AOE,且∠BOF=2∠BOE.请你求∠DOB的度数.7.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.8.如图,直线AB、CD相交于O点,∠AOC与∠AOD的度数比为4:5,OE⊥AB,OF平分∠DOB,求∠EOF 的度数.9.如图,小明将两块完全相同的直角三角形纸片的直角顶点C叠放在一起,若保持△BCD不动,将△ACE绕直角顶点C旋转.(1)如图1,如果CD平分∠ACE,那么CE是否平分∠BCD?答:_________(填写“是”或“否”);(2)如图1,若∠DCE=35°,则∠ACB=_________°;若∠ACB=140°,则∠DCE=_________°;(3)当△ACE绕直角顶点C旋转到如图1的位置时,猜想∠ACB与∠DCE的数量关系为_________;当△ACE 绕直角顶点C旋转到如图2的位置时,上述关系是否依然成立,请说明理由;(4)在图1中,若∠BCE=∠D,请你猜想CE与BD的位置关系,并说明理由.10.如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°)(1)当动点P落在第①部分时,有∠APB=∠PAC+∠PBD,请说明理由;(3分)(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?若不成立,试写出∠PAC、∠APB、∠PBD三个角的等量关系(无需说明理由);(2分)(3)当动点P在第③部分时,探究∠PAC、∠APB、∠PBD之间的关系,写出你发现的一个结论并加以说明.(3分)5.1相交线垂线习题精选参考答案与试题解析一.解答题(共10小题)1.有一张地图,有A、B、C三地,但地图被墨迹污染,C地具体位置看不清楚了,但知道C地在A地的北偏东30°,在B地的东南方向,(1)试确定C地的位置;(2)画射线CA;(3)画出点C到AB的垂线段CD.考点:方向角;垂线.分析:(1)先分别以A、B两点为原点画出坐标系,再画射线BC、AC,两条射线的交点即为C点;(2)以C为端点,做射线CA即可;(3)过点C作AB的垂线段CD即可求出答案.解答:解:(1)如图所示,线段BC与AC的交点即为C点;(2)由(1)确定出C点的位置,再做射线CA;(3)过点C作AB的垂线段CD.点评:本题考查的是方向角的概念,熟知方向角的表示方法并能画出图形是解答此题的关键.2.如图,已知直线AB,OC⊥AB,OD⊥OE,若∠COE=∠BOD,则求∠COE,∠BOD,∠AOE的度数.考点:角的计算;垂线.专题:计算题.分析:先根据同角的余角相等求出∠COE=∠AOD,再根据∠AOD与∠BOD是邻补角且∠COE=∠BOD求出∠BOD;∠AOE等于∠AOC与∠COE的和.解答:解:∵OC⊥AB,OD⊥OE,∴∠DOE=∠AOC=90°,∵∠COE+∠DOC=∠DOE=90°,∠AOD+∠DOC=∠AOC=90°,∴∠COE=∠AOD,∵∠BOD=180°﹣∠AOD,∵∠COE=∠BOD,∴∠COE=30°,∴∠BOD=180°﹣∠AOD=180°﹣∠COE=180°﹣30°=150°;∴∠AOE=∠AOC+∠COE=90°+30°=120°.点评:利用同角的余角相等求出∠COE=∠AOD是解题的关键.3.如图,AO⊥OB,直线CD过点O,且∠BOD=130°,求∠AOD的大小.考点:角的计算;垂线.分析:首先根据邻补角的关系求得∠BOC,再根据余角的关系求得∠AOC.最后根据邻补角的概念,进一步求得∠AOD.解答:解:∵∠BOD=130°,∴∠BOC=180°﹣130°=50°,又∵AO⊥OB,∴∠AOC=40°,∴∠AOD=180°﹣40°=140°.点评:根据图形结合已知条件找到互补的角和互余的角,结合角的运算求得结果.4.如图:AB,CD,EF相交于O点,AB⊥CD,OG平分∠AOE,∠FOD=30°,求∠BOE及∠AOG的度数.考点:角的计算;对顶角、邻补角;垂线.专题:计算题.分析:分析图形可得,∠COE与∠FOD是对顶角,又有∠BOC=90°,OG平分∠AOE,计算可得答案.解答:解:∵∠FOD=30°,∠COE与∠FOD是对顶角,∴∠EOC=30°;∵AB⊥CD,∴∠BOC=90°,∵∠AOE=90°+∠EOC=120°,且OG平分∠AOE,∴∠AOG=60°.点评:本题考查角的运算,注意角与角之间的倍数与垂直关系即可.5.如图,AB、CD相交于O点,若∠EOD=40°,∠BOC=130°,猜想射线OE与直线AB的位置关系,并求证.考点:垂线;对顶角、邻补角.专题:探究型.分析:观察图形,可猜想OE⊥AB,根据已知条件,证明∠AOE是直角即可.解答:解:OE⊥AB.理由如下:∵∠BOC=130°(已知),∴∠AOD=∠BOC=130°(对顶角相等),∴∠AOE=∠AOD﹣∠EOD=130°﹣40°=90°.∴OE⊥AB.点评:本题考查了垂线对顶角、邻补角.利用垂直的定义除了由垂直得直角外,还能由直角判定垂直,判断两直线的夹角是否为90°是判断两直线是否垂直的基本方法.6.如图,直线AB、CD相交于点O,OE⊥OF,OC平分∠AOE,且∠BOF=2∠BOE.请你求∠DOB的度数.考点:垂线;角平分线的定义;对顶角、邻补角.专题:计算题.分析:由已知条件和观察图形,根据垂直的定义、角平分线的定义和对顶角相等,利用这些关系可解此题.解答:解:∵OE⊥OF,∴∠EOF=90°,∵∠BOF=2∠BOE,∴3∠BOE=90°,∴∠BOE=30°,∴∠AOE=180°﹣∠BOE=150°,又∵OC平分∠AOE,∴∠AOC=∠AOE=75°,∴∠DOB=∠AOC=75°.点评:本题利用垂直的定义,角平分线的定义以及对顶角相等的性质计算,要注意领会由垂直得直角这一要点.7.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.考点:垂线;对顶角、邻补角.专题:计算题.分析:(1)由已知条件和观察图形可知∠1与∠AOC互余,再根据平角的定义求解;(2)利用已知的∠BOC=4∠1,结合图形以及对顶角的性质求∠AOC与∠MOD.解答:解:(1)因为OM⊥AB,所以∠1+∠AOC=90°.又∠1=∠2,所以∠2+∠AOC=90°,所以∠NOD=180°﹣(∠2+∠AOC)=180°﹣90°=90°.(2)由已知∠BOC=4∠1,即90°+∠1=4∠1,可得∠1=30°,所以∠AOC=90°﹣30°=60°,所以由对顶角相等得∠BOD=60°,故∠MOD=90°+∠BOD=150°.点评:本题利用垂直的定义,对顶角的性质和平角的定义计算,要注意领会由垂直得直角这一要点.8.如图,直线AB、CD相交于O点,∠AOC与∠AOD的度数比为4:5,OE⊥AB,OF平分∠DOB,求∠EOF 的度数.考点:垂线;角的计算;对顶角、邻补角.专题:计算题.分析:设∠AOC=4x,则∠AOD=5x,根据邻补角的定义得到∠AOC+∠AOD=180°,即4x+5x=180°,解得x=20°,则∠AOC=4x=80°,利用对顶角相等得∠BOD=80°,由OE⊥AB得到∠BOE=90°,则∠DOE=∠BOE﹣∠BOD=10°,再根据角平分线的定义得到∠DOF=∠BOD=40°,利用∠EOF=∠EOD+∠DOF即可得到∠EOF的度数.解答:解:设∠AOC=4x,则∠AOD=5x,∵∠AOC+∠AOD=180°,∴4x+5x=180°,解得x=20°,∴∠AOC=4x=80°,∴∠BOD=80°,∵OE⊥AB,∴∠BOE=90°,∴∠DOE=∠BOE﹣∠BOD=10°,又∵OF平分∠DOB,∴∠DOF=∠BOD=40°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.点评:本题考查了垂线的性质:两直线垂直,则它们相交所成的角为90°.也考查了对顶角相等以及邻补角的定义.9.如图,小明将两块完全相同的直角三角形纸片的直角顶点C叠放在一起,若保持△BCD不动,将△ACE绕直角顶点C旋转.(1)如图1,如果CD平分∠ACE,那么CE是否平分∠BCD?答:是(填写“是”或“否”);(2)如图1,若∠DCE=35°,则∠ACB=145°;若∠ACB=140°,则∠DCE=40°;(3)当△ACE绕直角顶点C旋转到如图1的位置时,猜想∠ACB与∠DCE的数量关系为∠ACB+∠DCE=180°;当△ACE绕直角顶点C旋转到如图2的位置时,上述关系是否依然成立,请说明理由;(4)在图1中,若∠BCE=∠D,请你猜想CE与BD的位置关系,并说明理由.考点:角的计算;角平分线的定义;余角和补角;垂线.专题:综合题.分析:(1)CD平分∠ACE,那么可得∠DCE=45°,进而求得∠BCF是45°,那么CE平分∠BCD;(2)由∠DCE=35°可先求出∠ACD=55°,再结合∠ACB=∠DCB+∠ACD,∠BCD=90°即可求解;同理,由∠ACB=140°,可先求出∠ACD从而求出∠DCE.(3)四个角组成一个周角,有2个角是90°,和为180°,那么,∠ACB+∠DCE=180°;(4)易知∠D和∠B互余,∠BCE=∠D那么∠DCE和∠D互余,CE与BD垂直.解答:解:(1)是;(2)145,40;∵∠DCE=35°,∴∠ACD=55°,∴∠ACB=∠DCB+∠ACD=90°+55°=145°;同理,∠ACB=140°,∠ACD=∠ACB﹣∠DCB=50°,∴∠DCE=∠ACE﹣∠ACD=40°;(3)∠ACB+∠DCE=180°;成立;∵∠ACE+∠DCB=180°,∴∠ACB+∠DCE=360°﹣(∠ACE+∠DCB)=180°;(4)CE⊥BD.∵∠BCE=∠D,∠BCE+∠ECD=90°,∴∠D+∠ECD=90°,∴∠CFD=90°,∴CE⊥BD.点评:注意直角三角形中直角的应用,以及隐含条件周角的度数为360°.10.如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA、PB,构成∠PAC、∠APB、∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°)(1)当动点P落在第①部分时,有∠APB=∠PAC+∠PBD,请说明理由;(3分)(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?若不成立,试写出∠PAC、∠APB、∠PBD三个角的等量关系(无需说明理由);(2分)(3)当动点P在第③部分时,探究∠PAC、∠APB、∠PBD之间的关系,写出你发现的一个结论并加以说明.(3分)考点:平行线的性质.专题:推理填空题.分析:(1)过点P向左作PQ∥AC,根据平行公理可得PQ∥BD,然后根据两直线平行,内错角相等可得∠APQ=∠PAC,∠BPQ=∠PBD,相加即可得解;(2)过点P向右作PQ∥AC,根据平行公理可得PQ∥BD,然后根据两直线平行,同旁内角互补可得∠APQ+∠PAC=180°,∠BPQ+∠PBD=180°,两式相加即可得解;(3)分点P在直线AB的左侧与右侧两种情况,分别过点P向右作PQ∥AC,根据平行公理可得PQ∥BD,然后根据两直线平行,同旁内角互补用∠PAC表示出∠APQ,用∠PBD表示出∠BPQ,然后结合图形整理即可得解.解答:解:(1)如图,过点P向左作PQ∥AC,则∠APQ=∠PAC,∵AC∥BD,∴PQ∥BD,∴∠BPQ=∠PBD,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠PAC+∠PBD;(2)不成立.∠APB+∠PAC+∠PBD=360°.理由如下:如图,过点P向右作PQ∥AC,则∠APQ+∠PAC=180°,∵AC∥BD,∴PQ∥BD,∴∠BPQ+∠PBD=180°,∴∠APQ+∠PAC+∠BPQ+∠PBD=180°×2=360°,∵∠APB=∠APQ+∠BPQ,∴∠APB+∠PAC+∠PBD=360°;(3)①若点P在直线AB左侧,过点P向右作PQ∥AC,则∠APQ=180°﹣∠PAC,∵AC∥BD,∴PQ∥BD,∴∠BPQ=180°﹣∠PBD,∵∠APB=∠BPQ﹣∠APQ=(180°﹣∠PBD)﹣(180°﹣∠PAC)=∠PAC﹣∠PBD,∴∠PAC=∠APB+∠PBD;②若点P在直线AB右侧,过点P向右作PQ∥AC,则∠APQ=180°﹣∠PAC,∵AC∥BD,∴PQ∥BD,∴∠BPQ=180°﹣∠PBD,∵∠APB=∠APQ﹣∠BPQ=(180°﹣∠PAC)﹣(180°﹣∠PBD)=∠PBD﹣∠PAC,∴∠PBD=∠APB+∠PAC.点评:本题考查了平行线的性质,读懂题目信息,过点P作出平行线,构造出内错角或同旁内角是解题的关键,(3)注意要分点P在直线AB的左、右两侧两种情况讨论求解.。