六年级分数应用题的解题方法
六年级分数应用题解题方法
六年级分数应用题解题方法分数(百分数)应用题的典型解法有数形结合思想和对应思想。
数形结合是将抽象的数量关系用线段图直观表示,从而降低解题难度的基本方法。
对应思想则是通过具体数量与抽象分率之间的对应关系来分析和解决问题的思想。
例如,在求一桶油原来有多少千克的问题中,我们可以画出线段图,清楚地看出油的千克数乘以(1-1/5)等于20+22,从而得出油的千克数为70.同样地,在求一堆煤原来有多少千克的问题中,我们可以根据煤的使用情况和剩余量的关系,得出煤的千克数乘以(1-20%-50%)等于290+10,从而得出煤的千克数为1000.对应思想同样适用于解决问题。
例如,在求缝纫机厂女职工人数的问题中,我们可以通过线段图找到与具体数量144人相对应的分率,从而得出女职工占厂职工人数的7/20,男职工占的比例为13/20.再根据女职工比男职工少144人的关系,得出全厂人数为480人。
在转化思想方面,例如在求一批大白菜的千克数的问题中,我们可以通过将题目中的信息转化为对应分率的形式,再用线段图进行分析。
根据第一天卖出后余下的240千克大白菜,可以得出对应分率为1-1/3,从而得出第一天卖出后余下的大白菜千克数为400.再根据剩余240千克的对应分率为1-3/5,可以得出这批大白菜的千克数为600.化简得:甲:乙=15:28,即甲是乙的18/43.五(2)班男生人数:女生人数=4:5.男生人数×(1-75%)=女生人数×(1-80%)。
代入得男生人数:女生人数=4:5,女生人数=30人,男生人数=24人。
有软糖和硬糖两种糖,软糖占总数的4/9.加入16块硬糖后,软糖占总数的20/29.设软糖块数为单位“1”,原来硬糖块数是软糖块数的5/9,加入16块硬糖后,硬糖块数是软糖块数的2倍。
解得软糖块数为9块。
小明看一本课外读物,已读的页数和剩下页数之比为1:6.后来又读了20页,已读的页数和剩下页数之比为3:4.设总页数为单位“1”,原来已读页数占总页数的1/7,后来已读页数占总页数的4/7.解得总页数为630页。
(完整)简单分数应用题的解题方法和步骤
简单分数应用题的解题方法和步骤及练习题一、解题步骤1、找准单位“1”的量。
2、判断单位“1”的量是否是已知条件,如果是,用乘法计算,如果不是,用除法计算。
3、列式计算;4、检验:顺着题目的意思在计算一遍;5、作答.二、单位“1”的判断方法“的”字在前,“比”、“是”在后,意思是在一般情况下,“的”字前面所对应的量和“比"、“是"字后面所对应的量就是单位“1”的量。
一般单位“1”的量都是带单位的。
三、练习(一)、填空1、一个数的是25,单位“1"是(),已知还是未知(),量是( ),分率是( ),用( )计算,列式为( )。
2、米的是多少?单位“1”是( ),已知还是未知( ),量是(),分率是(),用( )计算,列式为().3、一段路长450米,每天修,单位“1"是( ),已知还是未知( ),量是( ),分率是( ),用()计算,列式为()。
4、我们班男生比女生多,男生有30人。
单位“1"是(),已知还是未知( ),量是( ),分率是(),用()计算,列式为( )。
5、我们班男生比女生多,女生有30人。
单位“1”是(),已知还是未知( ),量是(),分率是( ),用( )计算,列式为()。
(二)、解决问题。
1、在一次“献爱心”活动中,都会小学的学生共捐款4000元。
①、一年级捐的是总数的,一年级捐了多少元?②、一年级捐的是二年级的,二年级捐了多少元?③、二年级捐的是三年级的,三年级捐了多少元?④、二年级捐的是四年级的,四年级捐了多少元?⑤、五年级捐的是二年级的,五年级捐了多少元?⑥、五年级捐的是六年级的,六年级捐了多少元?2、按思路分析下题,并列式解答。
小芳读一本小说,5天读了125页,占这本书的,读完这本书要多少天?分析:①、单位“1”是(),单位“1"是( ),已知还是未知(),量是(),分率是( ),用()计算,计算总页数列式为( )。
六年级数学上册分数除法应用题归纳方法
六年级数学上册分数除法应用题归纳方法全文共四篇示例,供读者参考第一篇示例:在六年级数学上册中,分数除法是一个重要的知识点,对学生来说可能会有一定的难度。
为了帮助学生更好地掌握分数除法的应用,下面将介绍一种归纳方法,帮助学生理解和掌握分数除法的应用题。
一、初步理解分数除法在学习分数除法之前,学生首先要理解分数是什么,分数的基本概念和运算规律。
分数是一个整体被等分为若干份的表示方法,分子代表等分中的份数,分母代表总份数。
分数的除法可以理解为“一部分被分成几份”的运算,就像我们将一个整数分成若干份一样。
二、常见的分数除法应用题1. 分数除以整数求分数5/6 ÷ 2的结果。
这道题目可以通过将分数5/6看作一个整体,分成6份,然后再将这6份平均分给2个人,每人分到的为5/6 ÷ 2 = 5/12。
3. 分数除法与整数乘法的关系有时候,分数的除法可以通过整数的乘法来解决。
求分数4/5 ÷ 3的结果,可以转化为4/5 × 1/3,最终得到4/15。
三、归纳方法1. 熟练掌握分数的基本运算规律,包括分数的加减乘除。
2. 将分数的除法问题转化为分数的乘法问题,帮助理解和解决问题。
3. 多做练习,尝试不同类型的分数除法应用题,提高解决问题的能力。
4. 总结归纳,将解题方法进行归类整理,形成思维导图或表格,帮助记忆和复习。
通过以上方法,学生可以更好地理解和掌握分数除法的应用题,提高解题的效率和准确性。
希望同学们在学习数学的过程中能够充分利用这些方法,提升自己的数学能力,取得更好的成绩。
【2000字以上】第二篇示例:六年级数学上册的学习内容中,分数除法是一个相对复杂的概念,需要通过多种方法和步骤来掌握。
在解决分数除法应用题时,同学们往往会感到困惑和难以理解。
为了帮助同学们更好地掌握分数除法应用题的解题方法,我将在下面归纳出一些常见的解题步骤和技巧。
对于分数除法应用题,同学们需要先将题目中的分数转化为最简形式。
小学六年级数学分数应用题解题技巧及练习
【解题步骤】一、正确的找单位“1”是解决分数应用题的前提。
不管什么样的分数应用题,题中必有单位“1”。
正确的找到单位“1”是解答分数应用题的前提和首要任务。
分数应用题中的单位“1”分两种形式出现:1、有明显标志的:(1)男生人数占全班人数的4/7 (2)杨树棵数是柳树的3/5(3)小明的体重相当于爸爸的1/2 (4)苹果树比梨树多1/5条件中“占”“是”“相当于”“比”后面,分率前面的量是本题中的单位“1”。
2、无明显标志的:(1)一条路修了200米,还剩2/3没修。
这条路全长多少千米?(2)有200张纸,第一次用去1/4,第二次用去1/5。
两次共用去多少张?(3)打字员打一部5000字的书稿,打了3/10,还剩多少字没打?这3道题中的单位“1”没有明显标志,要根据问题和条件综合判断。
(1)中应把“一条路的总长”看作单位“1”(2)题中应把“200张纸”看作单位“1”(3)题中应把“5000个字”看作单位“1”。
二、正确的找对应关系是解分数应用题的关键。
每道分数应用题都有数量和分率的对应关系,正确的找到所求数量(或分率)和哪个分率(或数量)对应是解分数应用题的关键。
1、画线段图找对应关系。
(1)池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?(2)池塘里有12只鸭,鹅的只数是鸭的1/3。
池塘里有多少只鹅?(3)池塘里有4只鹅,正好是鸭的只数的1/3。
池塘里有多少只鸭?用线段图表示一下这3道题的关系。
从画的图可以看出,画线段图是正确找对应关系的有效手段。
通过画线段图可以帮助学生理解数量关系,同时也可得出如下数量关系式:分率对应量÷单位“1”的量=分率单位“1”的量×分率=分率对应量分率对应量÷分率=单位“1”的量2、从题里的条件中找对应关系一桶水用去1/4后正好是10克。
这桶水重多少千克?水的3/4 = 10三、根据数量关系式解答分数应用题“三步法”掌握以上关系和数量关系式,解分数应用题可以按以下三步进行:1、找准单位“1”的量;2、找准对应关系3根据数量关系式列式解答四、有效练习,建立模型,提升解分数应用题的能力。
六年级数学上册分数应用题转化单位1的五种解题方法
六年级数学上册分数应用题转化单位1的五种解题方法一、“倒数法”转换单位1例题:新东门小学六年级开展捐款活动,共收到各班的捐款950元,其中六(1)班捐款金额是六(2)班的5/6,六(2)班捐款金额是六(3)班的3/4,求三个班各捐款多少元。
根据“对应的数量和÷对应的分率和=单位1的对应数量”的规律,就可求出六(2)班的捐款金额:950÷(1+5/6+4/3)=300元六(1)班的捐款金额为:300×5/6=250元六(3)班的捐款金额为:300×4/3=400元二、用分数乘法转换单位1依据分数乘法的意义转换单位1。
例题:梨园养殖场里,鸡占养殖总数的1/4,鹅是鸡的只数的1/5,鸭的只数比鹅多25%,已知鸭的只数比鸡少3750只。
鸡、鹅、鸭各养了多少只?以养殖总数为单位1,依据分数乘法的意义,鹅占养殖总数的1/4×1/5=1/20,鸭占养殖总数的1/20×(1+25%)=1/16。
鸡、鹅、鸭的分率如下图:这样,鸡与鸭就统一单位1了,都是以养殖总数为单位1的,用鸡与鸭的数量差与分率差相除,就能求出养殖总数了:3750÷(1/4-1/16)=20000只。
鸡的只数:20000×1/4=5000只鹅的只数:20000×1/20=1000只鸭的只数:20000×1/16=1250只三、用份数法转换单位1例题:乌江泥厂有甲、乙、丙、丁四个车间,甲车间人数是其他三个车间的1/4,乙车间人数是其他三个车间的4/11,丙车间人数是其他三个车间的1/2,已知丁车间有60人,该厂有职工多少人?我们可以用全厂职工总数为单位1,用份数法,分别求出甲、乙、丙三车间人数各占全厂职工总数的几分之几,然后,再求出丁车间人数占全厂职工总数的几分之几。
三个车间的分率转换如下:甲车间人数是全厂职工的1÷(1+4)=1/5,乙车间人数占全厂职工的4÷(4+11)=4/15丙车间人数占全厂职工的1÷(1+2)=1/3.现在,本题的数量关系已简化成下图:看图可知,60人的对应分率为1-1/5-4/15-1/3。
六年级数学专题讲义:分数应用题
— 1 —六年级数学专题加以:分数应用题巧解分数应用题(一)巧点睛一 方法和技巧(1)求一个数的几分之几是多少(用乘法解); (2)求一个数是另一个数的几分之几(用除法解)(3)已知一个数的几分之几是多少,求这个数(用除法或列方程解)。
一、从不同的角度找对应分率例1リ甲数比乙数多31,同:乙数比甲数少几分之几?二、巧用最小公倍数解题【例2】张阳拿了50元钱买回四本书(书定价的最小单位是角),回家一算,《数学奥林匹克解题辞典恰好占用去钱的一半,其余一半里有103用去买(现代汉语小词典),用去买(学生英汉词典》。
他最后剩下了多少钱?买第四本书花了多少钱?— 2 —做一做2:某小学一至六年级共有780名学生。
在参加数学兴趣小组学习的学生中,恰有178是六年级的学生,有要239是五年级的学生。
那么,该校没有参加数学兴趣小组的学生有多少人?【例3】某粮库上午运走全部存粮的31又2000袋,下午又运进粮食6000袋,现在粮库中的存粮比原来少61。
若原来粮库的存粮共有n 袋,那么n 等于多少?做一做3:一个书店原有若干书,第一天运来原有书的51多500本,第二天运走原有书的31,这时还有书1800本,问原有书多少本?— 3 —【例4】某班女生人数是男生人数的54,后又转来1名女生,结果女生人数是男生人数的65。
求现在全班学生的人数。
做一做4:五(一)班原计划抽51的人参加大扫除,临时又有2人主动参加,使实际参加大扫除的人是余下人数的31。
原计划要抽出多少人参加大扫除?【例5】小莉和小刚分別有一些玻璃球,如果小莉给小刚24个,则小莉的玻璃球比小刚少73;如果小刚给小莉24个,则小刚的玻璃比小莉少85。
则小莉和小刚原来共有玻璃球多少个?做一做5:六年级一班召开班会。
一个男生上台向老师报告说:“台下男生人数是女生的54”男生下台后,一位女生上台说:“台下男生人数只有女生的87,求六年级一班共有多少人?— 4 —例6:某车间三个小组共做一批零件,第一小组做了总数的72,第二小组做了1600个零件,第三小组做的零件是前两个小组总和的一半。
人教版小学六年级数学上册 分数应用题解题技巧方法及练习题
人教版小学六年级数学上册分数应用题解题技巧方法及练习题方法一:将一个数的几分之几的几分之几转化为这个数的几分之几。
例如,假设读了一本故事书,第一天读了全书的5分之1,第二天读了余下的4分之1.那么第二天读了全书的13分之1,全书还剩87分之1.方法二:甲数是乙数的几分之几,转化为乙数是甲数的几分之几。
例如,如果甲数是乙数的4分之9,那么乙数就是甲数的9分之4.方法三:甲数比乙数多(少)几分之几转化为乙数比甲数少(多)几分之几。
例如,如果四年级人数比五年级人数少4分之1,那么五年级人数比四年级人数多3分之1.方法四:甲数的几分之几等于乙数的几分之几转化为甲数是乙数的几分之几(或乙数是甲数的几分之几)。
例如,如果甲数的23分之34等于乙数的23分之34,那么甲数是乙数的23分之34,乙数是甲数的23分之34.方法五:甲数是乙数的几分之几转化为甲数是甲乙两数和的几分之几。
例如,如果甲数是乙数的1分之2,那么甲数是甲乙两数和的1分之3.方法六:假设在解题中的妙用:有些应用题数量关系比较复杂隐蔽,按一般的方法,难以找到数量间的关系及内在联系。
但是通过假定某个条件或现象成立,往往可以找到解答的途径。
例如,如果有两筐苹果共重220千克,从甲筐取出,从乙筐取出共重50千克。
那么甲筐原来有130千克苹果,乙筐原来有90千克苹果。
方法七:找已知量对应的分率,用已知量除以它所对应的分率就可以得到单位“1”的量。
例如,“一批煤用去了24吨。
这批煤共有多少吨?”在这个问题中,“24吨”与“”表示的同一个数量,都是用去的煤的数量。
一个是具体的量,一个是分数量,这里把“”叫做“24吨”所对应的分率,解题时用“24÷”得到的就是单位“1”的量,在本题中也就是煤的总量。
工程问题:基本数量关系式:工作总量是单位“1”;工作效率=工作总量÷工作时间;工作量÷工作效率=工作时间。
例如,___单独完成需要10天,乙队单独完成需要15天。
分数乘除法应用题解题方法总结汇总(全面完整)
(4)如果白兔有 48 只,灰兔比白兔多 3 ,灰兔比白兔多多少只? 4
2
3、求比一个数多几分之几是多少。
几 单位“1”的量×(1+ 几 )(分率)=是多少(分率对应的量)。
4 (1)人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳 75 次,婴儿每分钟心跳的次数比青少年多5 。婴
几 5、求比一个数少几分之几是多少。单位“1”的量×(1- 几 )(分率)=是多少(分率对应的量)。
(1)学校有 20 个足球,篮球比足球少
1 5
,篮球有多少个?
2 (2)一种服装原价 105 元,现在降价7 ,现在售价多少元?
(3)某校计划每月用水 120 吨,实际比计划节约 1 ,实际每月用水多少吨? 6
3、已知一个数比另一个数多几分之几是多少,求这个数。 几
是多少(分率对应的量)÷(1+几 )(分率)=单位“1”的量。 1
例 1:学校有 20 个足球,足球比篮球多 4 ,篮球有多少个?
4、已知一个数比另一个数少几分之几少多少,求这个数。 几
少多少(分率对应的量)÷几 (分率)=单位“1”的量。 例 1:某工程队修筑一条公路。第一天修了 38 米,第二天了 42 米。第一天比第二天少修的是这条公路全长的 1 28 。这条公路全长多少米?
。小新储蓄多少钱?
2、求比一个数多几分之几多多少。
几 单位“1”的量×几 (分率)=多多少(分率对应的量)。
(1)人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳 75 次,婴儿每分钟心跳的次数比青少年多45 。婴
儿每分钟心跳比青少年多多少次?
(2)学校有足球 20 个,篮球比足球多 1 ,篮球比足球多多少个? 2
六年级单位1分数应用题解法
1.小明的钱包里有10元,他想去买2支价格相同的铅笔,每支铅笔
3/5元,他还能买什么东西?
解法:小明买两支铅笔共花费3/5×2=6/5元,他的钱包里还剩下
10-6/5=44/5元。
那么他还能买44/5÷1=8支价格相同的橡皮。
2.小明的体重是40千克,小红的体重是45千克,他们两个体重的总
和是多少?
解法:小明和小红的体重总和是40+45=85千克。
3.小明有15张贺卡,他想把它们平均分给3个好朋友,每个朋友可
以获得多少张贺卡?
解法:小明把15张贺卡平均分给3个好朋友,每个朋友可以获得
15/3=5张贺卡。
4.一瓶果汁容量是1/2升,小明喝了1/4瓶,还剩下多少升果汁?
解法:小明喝掉了1/4瓶果汁,也就是1/4×1/2=1/8升果汁。
那么
还剩下1/2-1/8=3/8升果汁。
5.一条绳子长6/7米,小明要从中剪下1/3的长度,剩下还有多少米?
解法:小明从6/7米的绳子中剪下了1/3×6/7=2/7米的长度。
那么
剩下的长度就是6/7-2/7=4/7米。
六年级分数乘法应用题分析十法(最新整理)
1 吨,这堆煤多少吨?
2
分析:用去总数减去第二次用去
7对应。
六法:单位 1 判断法。(每道题可以用两种方法)
读题先找单位 1,判断已知与未知。
(画图)(比谁先画谁,再画谁比谁。
多长短少画,已知未知全。)
1、天源电脑城 5 月份计划销售电脑 3500 台,实际比原计
1
2
划多销售5,5 月份实际销售电脑多少台?
2、某厂两天共生产月饼 6 吨,第一天生产的占5,第二天
生产多少吨?
分析:第一天生产
第二天生产多少吨(没对应,要
转换。)
11、某学校四年级有学生 150 人,五年级学生人数是四年
2
4
级的3,五年级学生人数相当于六年级的5,六年级有多少
人?
2
(想:文字换数法:五年级学生人数是 150 人的3;文字等
4
1
13、有一个牧场,养了 56 头牛,牛的数量比羊少5,养羊 多少只? 分析:养羊的数量是单位 1,单位 1 是未知的用除法计算。
3
14、张大爷养了 200 只鹅,鹅的只数比鸭少 5。养了多少
7
只鸭? 分析:鸭的数量是单位 1,单位 1 是未知的用除法计算。
2
15、学校图书馆科技书有 1080 册,文艺书比科技书多9。 文艺书有多少册? 分析:科技书的数量是单位 1,单位 1 是已知的用乘法计 算。
2、打字员打一本书稿,第一天打了 12 页,第二天打了 13
5
页。两天打的页数占这本书稿的12。这本书稿有多少页? (思考:求这本书稿是求整体还是求部分?)
四法:文字等式分析法。
反复读题找等量,借助等量仔细想。 (用方程和算术两种方法) 必须熟记分数除法的意义:已知两个因数的积与其中的一
六年级分数应用题解题方法
分数(百分数)应用题典型解法一、数形结合思想数形结合是研究数学问题的重要思想,画线段图能将题目中抽象的数量关系,直观形象地表示出来,进行分析、推理和计算,从而降低解题难度。
画线段图常常与其它解题方法结合使用,可以说,它是学生弄清分数(百分数)应用题题意、分析其数量关系的基本方法。
【例1】一桶油第一次用去51,第二次比第一次多用去20千克,还剩下22千克。
原来这桶油有多少千克?[分析与解]从图中可以清楚地看出:这桶油的千克数×(1-51-51)=20+22,则这桶油的千克数为:(20+22)÷(1-51-51)=70(千克)【例2】一堆煤,第一次用去这堆煤的20%,第二次用去290千克,这时剩下的煤比原来这堆煤的一半还多10千克,求原来这堆煤共有多少千克?[分析与解]显然,这堆煤的千克数×(1-20%-50%)=290+10,则这堆煤的千克数为: (290+10)÷(1-20%-50%)=1000(千克) 二、对应思想量率对应是解答分数应用题的根本思想,量率对应是通过题中具体数量与抽象分率之间的对应关系来分析问题和解决问题的思想。
(量率对应常常和画线段图结合使用,效果极佳。
)【例3】缝纫机厂女职工占全厂职工人数的207,比男职工少144人,缝纫机厂共有职工多少人?[分析与解]解题的关键是找到与具体数量144人的相对应的分率。
从线段图上可以清楚地看出女职工占207,男职工占1-207=2013,女职工比男职工少占全厂职工人数的2013-207=103,也就是144人与全厂人数的103相对应。
全厂的人数为: 144÷(1-207-207)=480(人) 【例4】菜农张大伯卖一批大白菜,第一天卖出这批大白菜的31,第二天卖出余下的52,这时还剩下240千克大白菜未卖,这批大白菜共有多少千克?[分析与解]从线段图上可以清楚地看出240千克的对应分率是第一天卖出31后余下的(1-52)。
六年级数学应用题解题技巧思路
六年级数学应用题解题技巧思路小学教育时期在义务教育阶段当中占据着十分重要的地位,在这个时期学生进行多种数学方式方法的学习,并且能够利用数学方法去解决各种问题。
下面是小编为大家整理的关于六年级数学应用题解题技巧,希望对您有所帮助!小学六年级数学分数应用题解题技巧一、正确的找单位“1”是解决分数应用题的前提。
不管什么样的分数应用题,题中必有单位“1”。
正确的找到单位“1”是解答分数应用题的前提和首要任务。
分数应用题中的单位“1”分两种形式出现:1、有明显标志的:(1)男生人数占全班人数的4/7(2)杨树棵数是柳树的3/5(3)小明的体重相当于爸爸的1/2(4苹果树比梨树多1/5条件中“占”“是”“相当于”“比”后面,分率前面的量是本题中的单位“1”。
2、无明显标志的:(1)一条路修了200米,还剩2/3没修。
这条路全长多少千米?(2)有200张纸,第一次用去1/4,第二次用去1/5。
两次共用去多少张?(3)打字员打一部5000字的书稿,打了3/10,还剩多少字没打?这3道题中的单位“1”没有明显标志,要根据问题和条件综合判断。
(1)中应把“一条路的总长”看作单位“1”(2)题中应把“200张纸”看作单位“1”(3)题中应把“5000个字”看作单位“1”。
二、正确的找对应关系是解分数应用题的关键。
每道分数应用题都有数量和分率的对应关系,正确的找到所求数量(或分率)和哪个分率(或数量)对应是解分数应用题的关键。
1、画线段图找对应关系。
(1)池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?(2)池塘里有12只鸭,鹅的只数是鸭的1/3。
池塘里有多少只鹅?(3)池塘里有4只鹅,正好是鸭的只数的1/3。
池塘里有多少只鸭?用线段图表示一下这3道题的关系。
从画的图可以看出,画线段图是正确找对应关系的有效手段。
通过画线段图可以帮助学生理解数量关系,同时也可得出如下数量关系式:分率对应量÷单位“1”的量=分率单位“1”的量×分率=分率对应量分率对应量÷分率=单位“1”的量2、从题里的条件中找对应关系一桶水用去1/4后正好是10克。
六年级分数乘除法应用题类型总结
分数应用题类型总结分数应用题解题口诀:找出关键句,判断单位“1”。
已知单位“1”,直接用乘法。
不知单位“1”,用除法第一类、求一个数的几分之几。
已知单位“1”,用乘法。
“是”“比”“占”后面是单位1,已知单位“1”,用乘法。
例1: 已知甲数是乙数的53,乙数是25,求甲数是多少?甲数 乙数 ×53 即25×53=15 1.(1)某校有男生240人,女生是男生的 65,女生有多少人?第二类、已知一个数的几分之几,求这个数?未知单位“1”,用除法。
“是”“比”“占”后面是单位1,未知单位“1”,用除法。
例: 甲数是乙数的53,甲数是15,求乙是多少?甲 = 乙 × 53 即:15÷53=25 1、果园里有桃树120棵,桃树的棵数是梨树的41,果园里有梨树多少棵?第三类、两步乘除此类型的题是第一第二类题目综合运用,一般要经过两步才能得到答案。
1、A 、小明有图书48本,小芳的图书是小明的65,小利的图书是小芳的43,小利有图书多少本?分析:这种类型的题目要倒着分析,从问题开始分析。
思路:a 看问题求小利有图书多少本;b 小利的图书是小芳的3/4;C 小芳的图书是小明的5/6;如果知道小明的图书本数即可求出小芳的图书本数,小明的图书是单位‘1’,小芳图书=小明图书×5/6,随之可求出小利的图书本数;“小明有图书48本”有了这个条件,根据c 可求出小芳的图书本数,根据b 可求出小利图书本数。
1、小利有图书45本,小芳的图书是小明的65,小利的图书是小芳的43,小明有图书多少本?2、A 、果园里有桃树80棵,梨树的棵树是桃树的169,又是苹果树的3215,果园里有多少棵苹果树?B 、果园里有桃树45棵,桃树的棵数是梨树的169,苹果树的棵数是梨树的2017,果园里有多少棵苹果树?第四类、比单位“1”多或者少,已知单位“1”.甲比乙多几分之几,已知乙,求甲。
六年级分数应用题的解题方法
六年级分数应用题的解题方法六年级分数应用题的解题方法,及典型例题举例
一、解题步骤:
1.读题,理解题意。
2.找出关键句。
(通常含有分数的句子是关键句)
3.找准单位“1”。
(通常“的几分之几”前面的量是单位“1”;“多或少几分之几”前面的量是单位“1”)
4.判断单位“1是已知的还是未知的,如果单位“1”是已知的就用乘法来解
答,如果单位“1”是未知的就用除法来解答。
5.判断它是一步应用题还是稍复杂的应用题。
(如果“几分之几”前面是“的”,那么它就是一步应用题;如果“几分之几”前面是“多或少”,那么它就是稍复杂的应用题;)
6.列式解答。
二、常考例题举例:。
六年级数学应用题解题技巧
六年级数学运用题解题技能小学教育时期在义务教育阶段当中占据着十分重要的地位,在这个时期学生进行多种数学方式方法的学习,并且能够利用数学方法去解决各种问题。
下面是作者为大家整理的关于六年级数学运用题解题技能,期望对您有所帮助!小学六年级数学分数运用题解题技能一、正确的找单位“1”是解决分数运用题的条件。
不管什么样的分数运用题,题中必有单位“1”。
正确的找到单位“1”是解答分数运用题的条件和重要任务。
分数运用题中的单位“1”分两种情势显现:1、有明显标志的:(1)男生人数占全班人数的4/7(2)杨树棵数是柳树的3/5(3)小明的体重相当于爸爸的1/2(4苹果树比梨树多1/5条件中“占”“是”“相当于”“比”后面,分率前面的量是本题中的单位“1”。
2、无明显标志的:(1)一条路修了200米,还剩2/3没修。
这条路全长多少千米?(2)有200张纸,第一次用去1/4,第二次用去1/5。
两次共用去多少张?(3)打字员打一部5000字的书稿,打了3/10,还剩多少字没打?这3道题中的单位“1”没有明显标志,要根据问题和条件综合判定。
(1)中应把“一条路的总长”看作单位“1”(2)题中应把“200张纸”看作单位“1”(3)题中应把“5000个字”看作单位“1”。
二、正确的找对应关系是解分数运用题的关键。
每道分数运用题都有数量和分率的对应关系,正确的找到所求数量(或分率)和哪个分率(或数量)对应是解分数运用题的关键。
1、画线段图找对应关系。
(1)池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?(2)池塘里有12只鸭,鹅的只数是鸭的1/3。
池塘里有多少只鹅?(3)池塘里有4只鹅,正好是鸭的只数的1/3。
池塘里有多少只鸭?用线段图表示一下这3道题的关系。
从画的图可以看出,画线段图是正确找对应关系的有效手段。
通过画线段图可以帮助学生知道数量关系,同时也可得出以下数量关系式:分率对应量÷单位“1”的量=分率单位“1”的量×分率=分率对应量分率对应量÷分率=单位“1”的量2、从题里的条件中找对应关系一桶水用去1/4后正好是10克。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级分数应用题的解题方法,及典型例题举例
一、解题步骤:
1. 读题,理解题意。
2. 找出关键句。
(通常含有分数的句子是关键句)
3. 找准单位“ 1”。
(通常“的几分之几”前面的量是单位“ 1”;“多或少几分之几”前面的量是单位“ 1”)
4. 判断单位“ 1”是已知的还是未知的,如果单位“ 1”是已知的就用乘法来解答,如果单一位…“一亠1”是未知的就用除法来解答。
…….
5. 判断它是一步应用题还是稍复杂的应用题。
(如果…几分之几”前面是…的”, 那么它就是一步应用题;如果…几分之几”前面是…多或少”,那么它就是稍复杂的应用题;)
6. 列式解答
二、常考例题举例:
1、海豚每小时可游70 千米,比蓝鲸的速度快1/6 。
蓝鲸每小时可游多少千米
2、某食堂四月份烧煤60 吨,五月份比四月份节约1/6 。
五月份烧煤多少吨
3、一种手机现在的售价是770 元,比原来降价了4/15 。
原来的价钱是多少
4、一盒药共24 片,每次吃半片,每天吃三次。
这盒药可以吃多少天
5、实验小学低年级有学生144 人,中年级学生人数是低年级的7/8 ,中年级学生人数正好是全校总人数的? ,实验小学共有多少学生
6、一袋大米,吃了2/5 ,还剩30千克,这袋大米共有多少千克
7、电视机厂今年生产电视机3600台,相当于去年产量的1/4 ,去年生产多少台
8、电视机厂今年生产电视机3600 台,比去年少生产1/4 ,去年生产多少台
9、电视机厂今年生产电视机3600 台,比去年多生产1/4 ,去年生产多少台
10、电视机厂今年生产电视机3600 台,去年产量是今年的1/4 ,去年生产多少
11、电视机厂今年生产电视机3600台,去年产量比今年少1/4 ,去年生产多少台
12、电视机厂今年生产电视机3600台,去年产量比今年多1/4 ,去年生产多少台
13、修路队修一条公路,上午修了180m,下午修了150m,这时正好占这段公路的3/5 ,这段公路长多少米
14、梨树48棵,桃树的棵树是梨树的5/6 ,又是苹果树的1/4 ,苹果树有几棵
15、一个超市用塑料袋包装75 千克水果糖,每袋装? 千克。
售出165 袋后,还剩多少袋
16、小红从家到学校,走了全程的3/8 ,离学校还有450 米。
小红家离学校有多少米。