2013年广西河池市中考数学试卷及答案(word解析版)
广西河池市中考数学试卷(含答案、解析版)
2017年广西河池市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数中,为无理数的是()A.﹣2 B.C.2 D.4【考点】26:无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣2是整数,是有理数,选项不符合题意;B、是无理数,选项符合题意;C、2是整数,是有理数,选项不符合题意;D、4是整数,是有理数,选项不符合题意.故选B.2.如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A.60°B.90°C.120°D.150°【考点】IF:角的概念.【分析】根据点O在直线AB上,∠BOC=60°,即可得出∠AOC的度数.【解答】解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=60°,∴∠AOC=120°,故选:C.3.若函数y=有意义,则()A.x>1 B.x<1 C.x=1 D.x≠1【考点】E4:函数自变量的取值范围.【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.4.如图是一个由三个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从正面看得到的视图解答.【解答】解:从正面看,从左向右共有2列,第一列是1个正方形,第二列是1个正方形,且下齐.故选D.5.下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6D.a6÷a3=a2【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】依据合并同类项法则、同底数幂的乘法法则、幂的乘方、同底数幂的除法法则进行判断即可.【解答】解:A.a3与a2不是同类项不能合并,故A错误;B.a3•a2=a5,故B错误;C.(a2)3=a6,故C正确;D.a6÷a3=a2,故D错误.故选:C.6.点P(﹣3,1)在双曲线y=上,则k的值是()A.﹣3 B.3 C.D.【考点】G6:反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k可得答案.【解答】解:∵点P(﹣3,1)在双曲线y=上,∴k=﹣3×1=﹣3,故选:A.7.在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94 B.94,95 C.93,95 D.93,96【考点】W5:众数;W4:中位数.【分析】先将数据重新排列,再根据中位数、众数的定义就可以求解.【解答】解:这组数据重新排列为:88、92、93、94、95、95、96,∴这组数据的中位数为94,众数为95,故选:B.8.如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°【考点】M5:圆周角定理;M2:垂径定理.【分析】根据垂径定理推出=,推出∠CAB=∠BAD=36°,再由∠BCD=∠BAD即可解决问题.【解答】解:∵AB是直径,AB⊥CD,∴=,∴∠CAB=∠BAD=36°,∵∠BCD=∠BAD,∴∠BCD=36°,故选B.9.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【考点】K3:三角形的面积;K2:三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.10.若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1 B.1 C.﹣4 D.4【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式可得出关于a的一元一次方程,解方程即可得出结论.【解答】解:∵方程x2+2x﹣a=0有两个相等的实数根,∴△=22﹣4×1×(﹣a)=4+4a=0,解得:a=﹣1.故选A.11.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.12.已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.9【考点】KK:等边三角形的性质;KO:含30度角的直角三角形.【分析】设AD=x,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠ADF=∠DEB=∠EFC=90°,解直角三角形即可得到结论.【解答】解:设AD=x,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,∴∠ADF=∠DEB=∠EFC=90°,∴AF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴BE=12﹣CE=4x﹣12,∴BD=2BE=8x﹣24,∵AD+BD=AB,∴x+8x﹣24=12,∴x=4,∴AD=4.故选B.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.分解因式:x2﹣25=(x+5)(x﹣5).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解即可.【解答】解:x2﹣25=(x+5)(x﹣5).故答案为:(x+5)(x﹣5).14.点A(2,1)与点B关于原点对称,则点B的坐标是(﹣2,﹣1).【考点】R6:关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵点A(2,1)与点B关于原点对称,∴点B的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).15.在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是90.【考点】W1:算术平均数.【分析】根据算术平均数的计算公式,把这5个分数加起来,再除以5,即可得出答案.【解答】解:这位参赛选手在这次比赛中获得的平均分为:(92+93+88+87+90)÷5=90(分);故答案为:90.16.如图,直线y=ax与双曲线y=(x>0)交于点A(1,2),则不等式ax>的解集是x>1.【考点】G8:反比例函数与一次函数的交点问题.【分析】根据函数的图象即可得到结论.【解答】解:∵直线y=ax与双曲线y=(x>0)交于点A(1,2),∴不等式ax>的解集是x>1,故答案为:x>1.17.圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是10.【考点】MP:圆锥的计算.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设该半圆的半径长为x,根据题意得:2πx÷2=2π×5,解得x=10.故答案为:10.18.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.【考点】LB:矩形的性质.【分析】根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∴,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.计算:|﹣1|﹣2sin45°+﹣20.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣1|﹣2sin45°+﹣20=1﹣2×+2﹣1=20.解不等式组:.【考点】CB:解一元一次不等式组.【分析】先求出每个不等式的解集,再找出不等式组的解集即可.【解答】解:∵解不等式①得:x>0.5,解不等式②得:x<2,∴不等式组的解集为0.5<x<2.21.直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是y=﹣2x+6.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan∠CAD=.【考点】F9:一次函数图象与几何变换;F3:一次函数的图象.【分析】(1)分别令x=0求得y、令y=0求得x,即可得出A、B的坐标,从而得出直线l的解析式;(2)将直线向上平移4个单位可得直线l1,根据“上加下减”的原则求解即可得出其解析式;(3)由旋转得出其函数图象及点B的对应点坐标,待定系数法求得直线l2的解析式,继而求得其与y轴的交点,根据tan∠CAD=tan∠EAO=可得答案.【解答】解:(1)当y=0时,﹣2x+2=0,解得:x=1,即点A(1,0),当x=0时,y=2,即点B(0,2),如图,直线AB即为所求;(2)如图,直线l1即为所求,直线l1的解析式为y=﹣2x+2+4=﹣2x+6,故答案为:y=﹣2x+6;(3)如图,直线l2即为所求,∵直线l绕点A顺时针旋转90°得到l2,∴由图可知,点B(0,2)的对应点坐标为(3,1),设直线l2解析式为y=kx+b,将点A(1,0)、(3,1)代入,得:,解得:,∴直线l2的解析式为y=x﹣,当x=0时,y=﹣,∴直线l2与y轴的交点E(0,﹣),∴tan∠CAD=tan∠EAO===,故答案为:.22.(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AB=BC,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AB=BC.23.九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.频数分布表分数段频数(人数)60≤x<70a70≤x<801680≤x<902490≤x<100b请解答下列问题:(1)完成频数分布表,a=4,b=4.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图.【分析】(1)将余下的8位同学按60≤x<70、90≤x<100分组可得a、b的值;(2)根据(1)中所得结果补全即可得;(3)将样本中成绩90≤x<100范围内的学生所占比例乘以总人数600可得答案;(4)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)由题意知,60≤x<70的有60、63、67、68这4个数,90≤x<100的有90、99、99、99这4个,即a=4、b=4,故答案为:4,4;(2)补全频数分布直方图如下:(3)600×=50(人),故答案为:估计该校成绩90≤x<100范围内的学生有50人.(4)画树状图得:∵共有6种等可能的结果,甲、乙被选中的有2种情况,∴甲、乙被选中的概率为=.24.某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?【考点】B7:分式方程的应用;95:二元一次方程的应用.【分析】(1)设排球单价是x元,则足球单价是(x+30)元,根据题意可得等量关系:500元购得的排球数量=800元购得的足球数量,由等量关系可得方程,再求解即可;(2)设恰好用完1200元,可购买排球m个和购买足球n个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解即可得出答案.【解答】解:设排球单价为x元,则足球单价为(x+30)元,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+30=80.答:排球单价是50元,则足球单价是80元;(2)设设恰好用完1200元,可购买排球m个和购买足球n个,由题意得:50m+80n=1200,整理得:m=24﹣n,∵m、n都是正整数,∴①n=5时,m=16,②n=10时,m=8;∴有两种方案:①购买排球5个,购买足球16个;②购买排球10个,购买足球8个.25.如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO 的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理.【分析】(1)利用切线长定理得到OC平分∠BCE,即∠ECO=∠BCO,利用切线的性质得OB⊥BC,则∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;(2)连接OD,如图,利用切线长定理和切线的性质得到CD=CB=6,OD⊥CE,则CE=10,利用勾股定理可计算出BE=8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,根据勾股定理得r2+42=(8﹣r)2,解得r=3,所以OE=5,OC=3,然后证明△OEF∽△OCB,利用相似比可计算出EF的长.【解答】(1)证明:∵CB,CD分别切⊙O于点B,D,∴OC平分∠BCE,即∠ECO=∠BCO,OB⊥BC,∴∠BCO+∠COB=90°,∵EF⊥OG,∴∠FEB+∠FOE=90°,而∠COB=∠FOE,∴∠FEB=∠ECF;(2)解:连接OD,如图,∵CB,CD分别切⊙O于点B,D,∴CD=CB=6,OD⊥CE,∴CE=CD+DE=6+4=10,在Rt△BCE中,BE==8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,r2+42=(8﹣r)2,解得r=3,∴OE=8﹣3=5,在Rt△OBC中,OC==3,∵∠COB=∠FOE,∴△OEF∽△OCB,∴=,即=,∴EF=2.26.抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.【考点】HF:二次函数综合题.【分析】(1)由抛物线解析式可求得B、C的坐标,利用待定系数法可求得直线BC的解析式;(2)由直线BC解析式可知∠APB=∠ABC=45°,设抛物线对称轴交直线BC于点D,交x轴于点E,结合二次函数的对称性可求得PD=BD,在Rt△BDE中可求得BD,则可求得PE的长,可求得P点坐标;(3)设Q(x,﹣x2+2x+3),当∠OCQ=∠OCA时,利用两角的正切值相等可得到关于x的方程,可求得Q点的横坐标,再结合图形可比较两角的大小.【解答】解:(1)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,令x=0可得y=3,∴B(3,0),C(0,3),∴可设直线BC的解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BC解析式为y=﹣x+3;(2)∵OB=OC,∴∠ABC=45°,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为x=1,设抛物线对称轴交直线BC于点D,交x轴于点E,当点P在x轴上方时,如图1,∵∠APB=∠ABC=45°,且PA=PB,∴∠PBA==67.5°,∠DPB=∠APB=22.5°,∴∠PBD=67.5°﹣45°=22.5°,∴∠DPB=∠DBP,∴DP=DB,在Rt△BDE中,BE=DE=2,由勾股定理可求得BD=2,∴PE=2+2,∴P(1,2+2);当点P在x轴下方时,由对称性可知P点坐标为(1,﹣2﹣2);综上可知P点坐标为(1,2+2)或(1,﹣2﹣2);(3)设Q(x,﹣x2+2x+3),当点Q在x轴下方时,如图2,过Q作QF⊥y轴于点F,当∠OCA=∠OCQ时,则△QEC∽△AOC,∴==,即=,解得x=0(舍去)或x=5,∴当Q点横坐标为5时,∠OCA=∠OCQ;当Q点横坐标大于5时,则∠OCQ逐渐变小,故∠OCA>∠OCQ;当Q点横坐标小于5且大于0时,则∠OCQ逐渐变大,故∠OCA<∠OCQ.。
【2013年】广西南宁市中考数学试卷及答案(word解析)
广西南宁市中考2013年数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请考上用2B铅笔在答题卡上将选定答案标号涂黑.1.(3分)(2013•南宁)在﹣2,1,5,0这四个数中,最大的数是()A.﹣3B.1C.5D.0考点:有理数大小比较.分析:根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.解答:解:在﹣2,1,5,0这四个数中,大小顺序为:﹣2<0<1<5,所以最大的数是5.故选C.点评:本题主要考查了有理数的大小的比较,解题的关键利用熟练掌握有理数的大小比较法则,属于基础题.2.(3分)(2013•南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.B.C.D.考点:点、线、面、体.分析:根据半圆绕它的直径旋转一周形成球即可得出答案.解答:解:半圆绕它的直径旋转一周形成球体.故选:A.点评:本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.3.(3分)(2013•南宁)2013年6月11日,神舟十号飞船发射成功,神舟十号飞船身高9米,重约8吨,飞行速度约每秒7900米,将数7900用科学记数法表示,表示正确的是()A.0.79×104B.7.9×104C.7.9×103D.0.79×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将7900用科学记数法表示为:7.9×103.故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2013•南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.正方形考点:平行投影.分析:根据平行投影的性质分别分析得出即可即可.解答:解:将矩形木框立起与地面垂直放置时,形成的影子为线段;将矩形木框与地面平行放置时,形成的影子为矩形;将木框倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且矩形对边相等,故得到的投影不可能是三角形.故选:A.点评:本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.5.(3分)(2013•南宁)甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.C.D.考点:概率公式.分析:由设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案.解答:解:∵设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,∵甲抽到1号跑道的概率是:.故选D.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.(3分)(2013•南宁)若分式的值为0,则x的值为()A.﹣1B.0C.2D.﹣1或2考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣2=0,再解方程即可.解答:解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故选:C.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.7.(3分)(2013•南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.600πcm2D.150πcm2考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.解答:解:烟囱帽所需要的铁皮面积=×20×2π×15=300π(cm2).故选B.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.8.(3分)(2013•南宁)下列各式计算正确的是()A.3a3+2a2=5a6B.C.a4•a2=a8D.(ab2)3=ab6考点:二次根式的加减法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:分别根据合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则对各选项进行逐一判断即可.解答:解:A、3a3与2a2不是同类项,不能合并,故本选项错误;B、2+=3,故本选项正确;C、a4•a2=a6,故本选项错误;D、(ab2)3=a3b6,故本选项错误.故选B.点评:本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.9.(3分)(2013•南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.15考点:二元一次方程组的应用.分析:要求出第三束气球的价格,先求出笑脸形和爱心形的气球的单价就可以求出结论.解答:解:设笑脸形的气球x元一个,爱心形的气球y元一个,由题意,得,解得:2x+2y=16.故选C.点评:本题考查了学生观察能力和识图能力,列二元一次方程组解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.10.(3分)(2013•南宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c(a≠0)的两个根D.当x<1时,y随x的增大而增大考点:二次函数的性质.分析:根据对称轴及抛物线与x轴交点情况,结合二次函数的性质,即可对所得结论进行判断.解答:解:A、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确,故本选项不符合题意;B、观察图象,可知抛物线的顶点坐标为(1,﹣4),又抛物线开口向上,所以函数ax2+bx+c(a≠0)的最小值是﹣4,正确,故本选项不符合题意;C、由图象可知抛物线与x轴的一个交点为(﹣1,0),而对称轴为直线x=1,所以抛物线与x轴的另外一个交点为(3,0),则﹣1和3是方程ax2+bx+c(a≠0)的两个根,正确,故本选项不符合题意;D、由抛物线的对称轴为x=1,所以当xx<1时,y随x的增大而减小,错误,故本选项符合题意.故选D.点评:此题考查了二次函数的性质和图象,解题的关键是利用数形结合思想解题.11.(3分)(2013•南宁)如图,AB是∵O的直径,弦CD交AB于点E,且AE=CD=8,∵BAC=∵BOD,则∵O的半径为()A.4B.5C.4D.3考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据∵BAC=∵BOD可得出=,故可得出AB∵CD,由垂径定理即可求出DE 的长,再根据勾股定理即可得出结论.解答:解:∵∵BAC=∵BOD,∵=,∵AB∵CD,∵AE=CD=8,∵DE=CD=4,设OD=r,则OE=AE﹣r=8﹣r,在RtODE中,OD=r,DE=4,OE=8﹣r,∵OD2=DE2+OE2,即r2=42+(8﹣r)2,解得r=5.故选B.点评:本题考查的是垂径定理及圆周角定理,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.12.(3分)(2013•南宁)如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3B.6C.D.考点:反比例函数综合题.专题:探究型.分析:先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD∵x 轴,BE∵x轴,CF∵BE于点F,再设A(3x,x),由于OA=3BC,故可得出B (x,x+4),再根据反比例函数中k=xy为定值求出x解答:解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∵平移后直线的解析式为y=x+4,分别过点A、B作AD∵x轴,BE∵x轴,CF∵BE于点F,设A(3x,x),∵OA=3BC,BC∵OA,CF∵x轴,∵CF=OD,∵点B在直线y=x+4上,∵B(x,x+4),∵点A、B在双曲线y=上,∵3x•x=x•(x+4),解得x=1,∵k=3×1××1=.故选D.点评:本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy的特点求出k的值即可.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2013•南宁)若二次根式有意义,则x的取值范围是x≥2.考点:二次根式有意义的条件.分析:根据二次根式有意义的条件,可得x﹣2≥0,解不等式求范围.解答:解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为x≥2.点评:本题考查二次根式的意义,只需使被开方数大于或等于0即可.14.(3分)(2013•南宁)一副三角板如图所示放置,则∵AOB=105°.考点:角的计算.分析:根据三角板的度数可得:∵1=45°,∵2=60°,再根据角的和差关系可得∵AOB=∵1+∵2,进而算出角度.解答:解:根据三角板的度数可得:∵1=45°,∵2=60°,∵AOB=∵1+∵2=45°+60°=105°,故答案为:105.点评:此题主要考查了角的计算,关键是掌握角之间的关系.15.(3分)(2013•南宁)分解因式:x2﹣25=(x+5)(x﹣5).考点:因式分解-运用公式法.分析:直接利用平方差公式分解即可.解答:解:x2﹣25=(x+5)(x﹣5).故答案为:(x+5)(x﹣5).点评:本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.16.(3分)(2013•南宁)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是86分.考点:加权平均数.分析:利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.解答:解:小海这学期的体育综合成绩=(80×40%+90×60%)=86(分).故答案为86.点评:本题考查的是加权平均数的求法.本题易出现的错误是求80、90这两个数的平均数,对平均数的理解不正确.17.(3分)(2013•南宁)有这样一组数据a1,a2,a3,…a n,满足以下规律:,(n≥2且n为正整数),则a2013的值为﹣1(结果用数字表示).考点:规律型:数字的变化类.专题:规律型.分析:求出前几个数便不难发现,每三个数为一个循环组依次循环,用过2013除以3,根据商和余数的情况确定答案即可.解答:解:a1=,a2==2,a3==﹣1,a4==,…,依此类推,每三个数为一个循环组依次循环,∵2013÷3=671,∵a2013为第671循环组的最后一个数,与a3相同,为﹣1.故答案为:﹣1.点评:本题是对数字变化规律的考查,根据计算得到每三个数为一个循环组依次循环是解题的关键.18.(3分)(2013•南宁)如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为﹣π.考点:三角形的内切圆与内心.分析:连接OB,以及∵O与BC的切点,在构造的直角三角形中,通过解直角三角形易求得∵O的半径,然后作∵O与小圆的公切线EF,易知∵BEF也是等边三角形,那么小圆的圆心也是等边∵BEF的重心;由此可求得小圆的半径,即可得到四个圆的面积,从而由等边三角形的面积减去四个圆的面积和所得的差即为阴影部分的面积.解答:解:如图,连接OB、OD;设小圆的圆心为P,∵P与∵O的切点为G;过G作两圆的公切线EF,交AB于E,交BC于F,则∵BEF=∵BFE=90°﹣30°=60°,所以∵BEF是等边三角形.在Rt∵OBD中,∵OBD=30°,则OD=BD•tan30°=1×=,OB=2OD=,BG=OB﹣OG=;由于∵P是等边∵BEF的内切圆,所以点P是∵BEF的内心,也是重心,故PG=BG=;∵S∵O=π×()2=π,S∵P=π×()2=π;∵S阴影=S∵ABC﹣S∵O﹣3S∵P=﹣π﹣π=﹣π.故答案为﹣π.点评:此题主要考查了等边三角形的性质、相切两圆的性质以及图形面积的计算方法,难度适中.三、(本大题共2小题,每小题6分,共12分)19.(6分)(2013•南宁)计算:20130﹣+2cos60°+(﹣2)考点:实数的运算;零指数幂;特殊角的三角函数值.分析:分别进行零指数幂、二次根式的化简,然后代入特殊角的三角函数值合并即可得出答案.解答:解:原式=1﹣3+2×﹣2=﹣3.点评:本题考查了实数的运算,属于基础题,关键是掌握零指数幂的运算法则及一些特殊角的三角函数值.20.(6分)(2013•南宁)先化简,再求值:,其中x=﹣2.考点:分式的化简求值.专题:计算题.分析:先算括号里面的,再把除式的分母分解因式,并把除法转化为乘法,然后进行约分,最后把x的值代入进行计算即可得解.解答:解:(+)÷=÷=•=x﹣1,当x=﹣2时,原式=﹣2﹣1=﹣3.点评:本题考查了分式的化简求值,分子、分母能因式分解的先因式分解;除法要统一为乘法运算.四、本大题共2小题,每小题8分,共16分21.(8分)(2013•南宁)如图,∵ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C (﹣3,2).(1)请画出∵ABC关于y轴对称的∵A1B1C1;(2)以原点O为位似中心,将∵A1B1C1放大为原来的2倍,得到∵A2B2C2,请在第三象限内画出∵A2B2C2,并求出S∵A1B1C1:S∵A2B2C2的值.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.解答:解:(1)∵A1B1C1如图所示;(2)∵A2B2C2如图所示,∵∵A1B1C1放大为原来的2倍得到∵A2B2C2,∵∵A1B1C1∵∵A2B2C2,且相似比为,∵S∵A1B1C1:S∵A2B2C2=()2=.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键,还利用了相似三角形面积的比等于相似比的平方的性质.22.(8分)(2013•南宁)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.考点:折线统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.解答:解:(1)90÷30%=300(名),故,一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:×360°=48°;(4)1800×=480(名).答:1800名学生中估计最喜爱科普类书籍的学生人数为480.点评:本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.五、(本大题满分8分)23.(8分)(2013•南宁)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:∵ABE∵∵CDF;(2)若∵B=60°,AB=4,求线段AE的长.考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)首先根据菱形的性质,得到AB=BC=AD=CD,∵B=∵D,结合点E、F分别是边BC、AD的中点,即可证明出∵ABE∵∵CDF;(2)首先证明出∵ABC是等边三角形,结合题干条件在Rt∵AEB中,∵B=60°,AB=4,即可求出AE的长.解答:解:(1)∵四边形ABCD是菱形,∵AB=BC=AD=CD,∵B=∵D,∵点E、F分别是边BC、AD的中点,∵BE=DF,在∵ABE和∵CDF中,∵,∵∵ABE∵∵CDF(SAS);(2)∵∵B=60°,∵∵ABC是等边三角形,∵点E是边BC的中点,∵AE∵BC,在Rt∵AEB中,∵B=60°,AB=4,sin60°==,解得AE=2.点评:本题主要考查菱形的性质等知识点,解答本题的关键是熟练掌握菱形的性质、全等三角形的证明以及等边三角形的性质,此题难度不大,是一道比较好的中考试题.六、(本大题满分10分)24.(10分)(2013•南宁)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B 地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地直接的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.考点:一次函数的应用.分析:(1)x=0时甲的y值即为A、B两地的距离;(2)根据图象求出甲、乙两人的速度,再利用相遇问题求出相遇时间,然后求出乙的路程即可得到点M的坐标以及实际意义;(3)分相遇前和相遇后两种情况求出x的值,再求出最后两人都到达B地前两人相距3千米的时间,然后写出两个取值范围即可.解答:解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=,×30=20千米,所以,点M的坐标为(,20),表示小时后两车相遇,此时距离B地20千米;(3)设x小时时,甲、乙两人相距3km,①若是相遇前,则15x+30x=30﹣3,解得x=,②若是相遇后,则15x+30x=30+3,解得x=,③若是到达B地前,则15x﹣30(x﹣1)=3,解得x=,所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,难点在于(3)要分情况讨论.七、(本大题满分10分)25.(10分)(2013•南宁)如图,在∵ABC中,∵BAC=90°,AB=AC,AB是∵O的直径,∵O交BC于点D,DE∵AC于点E,BE交∵O于点F,连接AF,AF的延长线交DE于点P.(1)求证:DE是∵O的切线;(2)求tan∵ABE的值;(3)若OA=2,求线段AP的长.考点:切线的判定;圆周角定理;解直角三角形.专题:证明题.分析:(1)连结AD、OD,根据圆周角定理得∵ADB=90°,由AB=AC,根据等腰三角形的直线得DC=DB,所以OD为∵BAC的中位线,则OD∵AC,然后利用DE∵AC得到OD∵DE,这样根据切线的判定定理即可得到结论;(2)易得四边形OAED为正方形,然后根据正切的定义计算tan∵ABE的值;(3)由AB是∵O的直径得∵AFB=90°,再根据等角的余角相等得∵EAP=∵ABF,则tan∵EAP=tan∵ABE=,在Rt∵EAP中,利用正切的定义可计算出EP,然后利用勾股定理可计算出AP.解答:(1)证明:连结AD、OD,如图,∵AB是∵O的直径,∵∵ADB=90°,∵AB=AC,∵AD垂直平分BC,即DC=DB,∵OD为∵BAC的中位线,∵OD∵AC,而DE∵AC,∵OD∵DE,∵DE是∵O的切线;(2)解:∵OD∵DE,DE∵AC,∵四边形OAED为矩形,而OD=OA,∵四边形OAED为正方形,∵AE=AO,∵tan∵ABE==;(3)解:∵AB是∵O的直径,∵∵AFB=90°,∵∵ABF+∵FAB=90°,而∵EAP+∵FAB=90°,∵∵EAP=∵ABF,∵tan∵EAP=tan∵ABE=,在Rt∵EAP中,AE=2,∵tan∵EAP==,∵EP=1,∵AP==.点评:本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理和解直角三角形.八、(本大题满分10分)26.(10分)(2013•南宁)如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.考点:二次函数综合题.专题:代数几何综合题.分析:(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解;(2)根据抛物线解析式设出点A的坐标,然后求出AO、AM的长,即可得证;(3)①k=0时,求出AM、BN的长,然后代入+计算即可得解;②设点A(x1,x12﹣1),B(x2,x22﹣1),然后表示出+,再联立抛物线与直线解析式,消掉未知数y得到关于x的一元二次方程,利用根与系数的关系表示出x1+x2,x1•2,并求出x12+x22,x12•x22,然后代入进行计算即可得解.解答:(1)解:∵抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1),∵,解得,所以,抛物线的解析式为y=x2﹣1;(2)证明:设点A的坐标为(m,m2﹣1),则AO==m2+1,∵直线l过点E(0,﹣2)且平行于x轴,∵点M的纵坐标为﹣2,∵AM=m2﹣1﹣(﹣2)=m2+1,∵AO=AM;(3)解:①k=0时,直线y=kx与x轴重合,点A、B在x轴上,∵AM=BN=0﹣(﹣2)=2,∵+=+=1;②k取任何值时,设点A(x1,x12﹣1),B(x2,x22﹣1),则+=+==,联立,消掉y得,x2﹣4kx﹣4=0,由根与系数的关系得,x1+x2=4k,x1•x2=﹣4,所以,x12+x22=(x1+x2)2﹣2x1•x2=16k2+8,x12•x22=16,∵+===1,∵无论k取何值,+的值都等于同一个常数1.点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,勾股定理以及点到直线的距离,根与系数的关系,根据抛物线上点的坐标特征设出点A、B的坐标,然后用含有k的式子表示出+是解题的关键,也是本题的难点,计算量较大,要认真仔细.。
历年广西河池市中考数学试卷(含答案)
2017年广西河池市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列实数中,为无理数的是()A.﹣2 B.C.2 D.42.(3分)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A.60°B.90°C.120° D.150°3.(3分)若函数y=有意义,则()A.x>1 B.x<1 C.x=1 D.x≠14.(3分)如图是一个由三个相同正方体组成的立体图形,它的主视图是()A.B.C.D.5.(3分)下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6D.a6÷a3=a26.(3分)点P(﹣3,1)在双曲线y=上,则k的值是()A.﹣3 B.3 C.D.7.(3分)在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94 B.94,95 C.93,95 D.93,968.(3分)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°9.(3分)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线10.(3分)若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1 B.1 C.﹣4 D.411.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.1212.(3分)已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.9二、填空题(每题3分,满分18分,将答案填在答题纸上)13.(3分)分解因式:x2﹣25=.14.(3分)点A(2,1)与点B关于原点对称,则点B的坐标是.15.(3分)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是.16.(3分)如图,直线y=ax与双曲线y=(x>0)交于点A(1,2),则不等式ax>的解集是.17.(3分)圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是.18.(3分)如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|﹣1|﹣2sin45°+﹣20.20.(6分)解不等式组:.21.(8分)直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan ∠CAD=.22.(8分)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF 于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.23.(8分)九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.频数分布表分数段频数(人数)60≤x<70a70≤x<801680≤x<902490≤x<100b请解答下列问题:(1)完成频数分布表,a=,b=.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.24.(8分)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?25.(10分)如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA 的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.26.(12分)抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.2017年广西河池市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•河池)下列实数中,为无理数的是()A.﹣2 B.C.2 D.4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣2是整数,是有理数,选项不符合题意;B、是无理数,选项符合题意;C、2是整数,是有理数,选项不符合题意;D、4是整数,是有理数,选项不符合题意.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2017•河池)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A.60°B.90°C.120° D.150°【分析】根据点O在直线AB上,∠BOC=60°,即可得出∠AOC的度数.【解答】解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=60°,∴∠AOC=120°,故选:C.【点评】本题主要考查了角的概念以及平角的定义的运用,解题时注意:平角等于180°.3.(3分)(2017•河池)若函数y=有意义,则()A.x>1 B.x<1 C.x=1 D.x≠1【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.【点评】本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.4.(3分)(2017•河池)如图是一个由三个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据主视图是从正面看得到的视图解答.【解答】解:从正面看,从左向右共有2列,第一列是1个正方形,第二列是1个正方形,且下齐.故选D.【点评】本题考查了三视图,主视图是从正面看得到的视图,要注意分清所看到的正方形的排列的列数与每一列的正方形的排列情况.5.(3分)(2017•河池)下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6D.a6÷a3=a2【分析】依据合并同类项法则、同底数幂的乘法法则、幂的乘方、同底数幂的除法法则进行判断即可.【解答】解:A.a3与a2不是同类项不能合并,故A错误;B.a3•a2=a5,故B错误;C.(a2)3=a6,故C正确;D.a6÷a3=a2,故D错误.故选:C.【点评】本题主要考查的是幂的运算性质,熟练掌握合并同类项法则、同底数幂的乘法法则、幂的乘方、同底数幂的除法法则是解题的关键.6.(3分)(2017•河池)点P(﹣3,1)在双曲线y=上,则k的值是()A.﹣3 B.3 C.D.【分析】根据反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k 可得答案.【解答】解:∵点P(﹣3,1)在双曲线y=上,∴k=﹣3×1=﹣3,故选:A.【点评】此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数y=图象上的点,横纵坐标的积是定值k.7.(3分)(2017•河池)在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94 B.94,95 C.93,95 D.93,96【分析】先将数据重新排列,再根据中位数、众数的定义就可以求解.【解答】解:这组数据重新排列为:88、92、93、94、95、95、96,∴这组数据的中位数为94,众数为95,故选:B.【点评】本题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数,难度适中.8.(3分)(2017•河池)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°【分析】根据垂径定理推出=,推出∠CAB=∠BAD=36°,再由∠BCD=∠BAD 即可解决问题.【解答】解:∵AB是直径,AB⊥CD,∴=,∴∠CAB=∠BAD=36°,∵∠BCD=∠BAD,∴∠BCD=36°,故选B.【点评】本题考查垂径定理、圆周角定理等知识,解题的关键是熟练掌握垂径定理、圆周角定理,属于中考常考题型.9.(3分)(2017•河池)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【分析】根据等底等高的三角形的面积相等解答.【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.【点评】本题考查了三角形的面积,主要利用了“三角形的中线把三角形分成两个等底同高的三角形”的知识,本知识点是中学阶段解三角形的面积经常使用,一定要熟练掌握并灵活应用.10.(3分)(2017•河池)若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1 B.1 C.﹣4 D.4【分析】根据方程的系数结合根的判别式可得出关于a的一元一次方程,解方程即可得出结论.【解答】解:∵方程x2+2x﹣a=0有两个相等的实数根,∴△=22﹣4×1×(﹣a)=4+4a=0,解得:a=﹣1.故选A.【点评】本题考查了根的判别式以及解一元一次方程,根据根的判别式找出关于a的一元一次方程是解题的关键.11.(3分)(2017•河池)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.12.(3分)(2017•河池)已知等边△ABC的边长为12,D是AB上的动点,过D 作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.9【分析】设BD=x,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠BDF=∠DEA=∠EFC=90°,解直角三角形即可得到结论.【解答】解:如图,设BD=x,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,∴∠BDF=∠DEA=∠EFC=90°,∴BF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴AE=12﹣CE=4x﹣12,∴AD=2AE=8x﹣24,∵AD+BD=AB,∴8x﹣24+x=12,∴x=4,∴AD=8x﹣24=32﹣24=8.故选C.【点评】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.(3分)(2017•河池)分解因式:x2﹣25=(x+5)(x﹣5).【分析】直接利用平方差公式分解即可.【解答】解:x2﹣25=(x+5)(x﹣5).故答案为:(x+5)(x﹣5).【点评】本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.14.(3分)(2017•河池)点A(2,1)与点B关于原点对称,则点B的坐标是(﹣2,﹣1).【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵点A(2,1)与点B关于原点对称,∴点B的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.15.(3分)(2017•河池)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是90.【分析】根据算术平均数的计算公式,把这5个分数加起来,再除以5,即可得出答案.【解答】解:这位参赛选手在这次比赛中获得的平均分为:(92+93+88+87+90)÷5=90(分);故答案为:90.【点评】此题考查了平均数的求法,平均数是指在一组数据中所有数据之和再除以数据的个数,熟记平均数的公式是解决本题的关键.16.(3分)(2017•河池)如图,直线y=ax与双曲线y=(x>0)交于点A(1,2),则不等式ax>的解集是x>1.【分析】根据函数的图象即可得到结论.【解答】解:∵直线y=ax与双曲线y=(x>0)交于点A(1,2),∴不等式ax>的解集是x>1,故答案为:x>1.【点评】本题考查了一次函数与反比例函数的交点问题,正确的识别图象是解题的关键.17.(3分)(2017•河池)圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是10.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设该半圆的半径长为x,根据题意得:2πx÷2=2π×5,解得x=10.故答案为:10.【点评】本题考查了圆锥的计算,关键是明白侧面展开后得到一个半圆就是底面圆的周长.18.(3分)(2017•河池)如图,在矩形ABCD中,AB=,E是BC的中点,AE ⊥BD于点F,则CF的长是.【分析】根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∴,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.【点评】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)(2017•河池)计算:|﹣1|﹣2sin45°+﹣20.【分析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣1|﹣2sin45°+﹣20=1﹣2×+2﹣1=【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(6分)(2017•河池)解不等式组:.【分析】先求出每个不等式的解集,再找出不等式组的解集即可.【解答】解:∵解不等式①得:x>0.5,解不等式②得:x<2,∴不等式组的解集为0.5<x<2.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.21.(8分)(2017•河池)直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是y=﹣2x+6.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan ∠CAD=.【分析】(1)分别令x=0求得y、令y=0求得x,即可得出A、B的坐标,从而得出直线l的解析式;(2)将直线向上平移4个单位可得直线l1,根据“上加下减”的原则求解即可得出其解析式;(3)由旋转得出其函数图象及点B的对应点坐标,待定系数法求得直线l2的解析式,继而求得其与y轴的交点,根据tan∠CAD=tan∠EAO=可得答案.【解答】解:(1)当y=0时,﹣2x+2=0,解得:x=1,即点A(1,0),当x=0时,y=2,即点B(0,2),如图,直线AB即为所求;(2)如图,直线l1即为所求,直线l1的解析式为y=﹣2x+2+4=﹣2x+6,故答案为:y=﹣2x+6;(3)如图,直线l2即为所求,方法一、∵直线l绕点A顺时针旋转90°得到l2,∴∠BAD=90°,∴∠CAD+∠OAB=90°,又∵∠OAB+∠ABO=90°,∴∠CAD=∠ABO,∴tan∠CAD=tan∠ABO==;方法二:∵直线l绕点A顺时针旋转90°得到l2,∴由图可知,点B(0,2)的对应点坐标为(3,1),设直线l2解析式为y=kx+b,将点A(1,0)、(3,1)代入,得:,解得:,∴直线l2的解析式为y=x﹣,当x=0时,y=﹣,∴直线l2与y轴的交点E(0,﹣),∴tan∠CAD=tan∠EAO===,故答案为:.【点评】本题主要考查一次函数图象与几何变换及一次函数图象,熟练掌握平移变换和旋转变换的性质及待定系数法求函数解析式是解题的关键.22.(8分)(2017•河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM 与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AE=BF,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AE=BF.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.23.(8分)(2017•河池)九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.频数分布表分数段频数(人数)60≤x<70a70≤x<801680≤x<902490≤x<100b请解答下列问题:(1)完成频数分布表,a=4,b=4.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.【分析】(1)将余下的8位同学按60≤x<70、90≤x<100分组可得a、b的值;(2)根据(1)中所得结果补全即可得;(3)将样本中成绩90≤x<100范围内的学生所占比例乘以总人数600可得答案;(4)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)由题意知,60≤x<70的有60、63、67、68这4个数,90≤x <100的有90、99、99、99这4个,即a=4、b=4,故答案为:4,4;(2)补全频数分布直方图如下:(3)600×=50(人),故答案为:估计该校成绩90≤x<100范围内的学生有50人.(4)画树状图得:∵共有6种等可能的结果,甲、乙被选中的有2种情况,∴甲、乙被选中的概率为=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力及.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.24.(8分)(2017•河池)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?【分析】(1)设排球单价是x元,则足球单价是(x+30)元,根据题意可得等量关系:500元购得的排球数量=800元购得的足球数量,由等量关系可得方程,再求解即可;(2)设恰好用完1200元,可购买排球m个和购买足球n个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解即可得出答案.【解答】解:设排球单价为x元,则足球单价为(x+30)元,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+30=80.答:排球单价是50元,则足球单价是80元;(2)设设恰好用完1200元,可购买排球m个和购买足球n个,由题意得:50m+80n=1200,整理得:m=24﹣n,∵m、n都是正整数,∴①n=5时,m=16,②n=10时,m=8;∴有两种方案:①购买排球5个,购买足球16个;②购买排球10个,购买足球8个.【点评】此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.25.(10分)(2017•河池)如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.【分析】(1)利用切线长定理得到OC平分∠BCE,即∠ECO=∠BCO,利用切线的性质得OB⊥BC,则∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;(2)连接OD,如图,利用切线长定理和切线的性质得到CD=CB=6,OD⊥CE,则CE=10,利用勾股定理可计算出BE=8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,根据勾股定理得r2+42=(8﹣r)2,解得r=3,所以OE=5,OC=3,然后证明△OEF∽△OCB,利用相似比可计算出EF的长.【解答】(1)证明:∵CB,CD分别切⊙O于点B,D,∴OC平分∠BCE,即∠ECO=∠BCO,OB⊥BC,∴∠BCO+∠COB=90°,∵EF⊥OG,∴∠FEB+∠FOE=90°,而∠COB=∠FOE,∴∠FEB=∠ECF;(2)解:连接OD,如图,∵CB,CD分别切⊙O于点B,D,∴CD=CB=6,OD⊥CE,∴CE=CD+DE=6+4=10,在Rt△BCE中,BE==8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,r2+42=(8﹣r)2,解得r=3,∴OE=8﹣3=5,在Rt△OBC中,OC==3,∵∠COB=∠FOE,∴△OEF∽△OCB,∴=,即=,∴EF=2.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了勾股定理和相似三角形的判定与性质.26.(12分)(2017•河池)抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.【分析】(1)由抛物线解析式可求得B、C的坐标,利用待定系数法可求得直线BC的解析式;(2)由直线BC解析式可知∠APB=∠ABC=45°,设抛物线对称轴交直线BC于点D,交x轴于点E,结合二次函数的对称性可求得PD=BD,在Rt△BDE中可求得BD,则可求得PE的长,可求得P点坐标;(3)设Q(x,﹣x2+2x+3),当∠OCQ=∠OCA时,利用两角的正切值相等可得到关于x的方程,可求得Q点的横坐标,再结合图形可比较两角的大小.【解答】解:(1)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,令x=0可得y=3,∴B(3,0),C(0,3),∴可设直线BC的解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BC解析式为y=﹣x+3;(2)∵OB=OC,∴∠ABC=45°,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为x=1,设抛物线对称轴交直线BC于点D,交x轴于点E,当点P在x轴上方时,如图1,∵∠APB=∠ABC=45°,且PA=PB,∴∠PBA==67.5°,∠DPB=∠APB=22.5°,∴∠PBD=67.5°﹣45°=22.5°,∴∠DPB=∠DBP,∴DP=DB,在Rt△BDE中,BE=DE=2,由勾股定理可求得BD=2,∴PE=2+2,∴P(1,2+2);当点P在x轴下方时,由对称性可知P点坐标为(1,﹣2﹣2);综上可知P点坐标为(1,2+2)或(1,﹣2﹣2);(3)设Q(x,﹣x2+2x+3),当点Q在x轴下方时,如图2,过Q作QF⊥y轴于点F,当∠OCA=∠OCQ时,则△QEC∽△AOC,∴==,即=,解得x=0(舍去)或x=5,∴当Q点横坐标为5时,∠OCA=∠OCQ;当Q点横坐标大于5时,则∠OCQ逐渐变小,故∠OCA>∠OCQ;当Q点横坐标小于5且大于0时,则∠OCQ逐渐变大,故∠OCA<∠OCQ.【点评】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的判定和性质、勾股定理、相似三角形的判定和性质、方程思想和分类讨论思想等知识.在(1)中求得B、C坐标是解题的关键,在(2)中构造等腰三角形求得P到x轴的距离是解题的关键,在(3)中确定出两角相等时Q点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2013年广西中考数学真题卷含答案解析
2013年南宁市初中毕业升学考试试卷数学试题(含答案全解全析)(满分120分时间120分钟)第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A、B、C、D四个结论,其中只有一个是正确的.1.在-2,1,5,0这四个数中,最大的数是()A.-2B.1C.5D.02.如图所示,将平面图形绕轴旋转一周,得到的几何体是()3.2013年6月11日,神舟十号飞船发射成功.神舟十号飞船身高约9米,重约8吨,飞行速度约每秒7900米.将数7900用科学记数法表示,正确的是()A.0.79×104B.7.9×104C.7.9×103D.79×1024.小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能...出现的投影是()A.三角形B.线段C.矩形D.正方形5.甲、乙、丙、丁四名选手将参加100米决赛.赛场共设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道.若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.12C.13D.146.若分式x-2x+1的值为0,则x的值为()A.-1B.0C.2D.-1或27.如图,圆锥形的烟囱帽底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.600πcm2D.150cm28.下列各式计算正确的是()A.3a3+2a3=5a6B.2√a+√a=3√aC.a4·a2=a8D.(ab2)3=ab69.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种.两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19B.18C.16D.15的是()10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误..A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是-4C.-1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大11.如图,AB 是☉O 的直径,弦CD 交AB 于点E,且AE=CD=8,∠BAC=12∠BOD,则☉O 的半径为( )A.4√2B.5C.4D.312.如图,直线y=12x 与双曲线y=k x (k>0,x>0)交于点A,将直线y=12x 向上平移4个单位长度后,与y 轴交于点C,与双曲线y=kx (k>0,x>0)交于点B.若OA=3BC,则k 的值为( )A.3B.6C.94D.92第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分) 13.要使二次根式√x -2有意义,则x 的取值范围是 . 14.一副三角板如图所示放置,则∠AOB= °.15.因式分解:x 2-25= .16.某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末体育成绩(百分制)分别是80分,90分,则小海这个学期的体育综合成绩是 分.17.有这样一组数据a1,a2,a3,…,a n,满足以下规律:a1=12,a2=11-a1,a3=11-a2,…,a n=11-a n-1(n≥2且n为正整数),则a2013的值为.(结果用数字作答)18.如图,在边长为2的正三角形中,将其内切圆和三个角切圆...(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为.三、(本大题共2小题,每小题满分6分,共12分)19.计算:20130-√27+2cos60°+(-2).20.先化简,再求值:(x x-1+1x-1)÷x+1x2-2x+1,其中x=-2.四、(本大题共2小题,每小题满分8分,共16分)21.如图,△ABC三个顶点坐标分别为A(-1,3),B(-1,1),C(-3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2.请在第三象限内画出△A2B2C2,并求出S△A1B1C1∶S△A2B2C2的值.22.2013年6月,某中学结合广西中小学生阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②所提供的信息,解答下列问题:(1)在这次抽样调查中,一共抽查了多少名学生?(2)请把折线统计图(图①)补充完整;(3)求出扇形统计图(图②)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.五、(本大题满分8分)23.如图,在菱形ABCD中,AC是对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.六、(本大题满分10分)24.在一条笔直的公路上有A、B两地.甲骑自行车从A地到B地;乙骑摩托车从B地到A地,到达A地后立即按原路返回.如图是甲、乙两人离.B.地的距离....y(km)与行驶时间x(h)之间的函数图象.根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;甲、乙两人能(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,请直接写出....够用无线对讲机保持联系时x的取值范围.七、(本大题满分10分)25.如图,在△ABC中,∠BAC=90°,AB=AC,AB是☉O的直径,☉O交BC于点D,DE⊥AC于点E,BE交☉O于点F,连结AF,AF的延长线交DE于点P.(1)求证:DE是☉O的切线;(2)求tan∠ABE的值;(3)若OA=2,求线段AP的长.八、(本大题满分10分)26.如图,抛物线y=ax2+c(a≠0)经过C(2,0)、D(0,-1)两点,并与直线y=kx交于A、B两点,直线l 过点E(0,-2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM; (3)探究:①当k=0时,直线y=kx 与x 轴重合,求出此时1AM +1BN 的值;②试说明无论k 取何值,1AM +1BN 的值都等于同一个常数.答案全解全析:1.C 因为-2<0<1<5,所以最大的数为5,故选C.2.A 半圆绕直径所在的直线旋转一周所得的几何体为球,故选A.3.C 7 900=7.9×103,故选C.4.A 在平行光线下,矩形的投影可能是线段或矩形或正方形,矩形的平行投影不可能是三角形,故选A.5.D 甲抽到每个跑道的可能性相等,共4个跑道,则甲抽到每个跑道的可能性都是14,抽到1号道的概率为14,故选D.6.C 由x -2x+1=0解得x=2,当x=2时,x+1≠0,故x=2是原分式方程的解,故选C. 7.B S 圆锥侧=πrl=15×20π=300π cm 2,故选B.8.B 因为3a 3+2a 3=5a 3,a 4·a 2=a 6,(ab 2)3=a 3b 6,所以选项A 、C 、D 错误,故选B. 9.C 设笑脸气球x 元/个,爱心气球y 元/个. 则{3x +y =14,①x +3y =18,②由①+②得2(x+y)=16,故选C.评析 本题考查二元一次方程组的应用,确定等量关系列方程组是关键,应根据题意灵活解方程组.10.D 由题中图象可知抛物线的对称轴为x=1,顶点坐标为(1,-4),开口向上,点(-1,0)关于直线x=1的对称点为(3,0),故选项A 、B 、C 正确,故选D.11.B 连结AD,则∠BAD =12∠BOD=∠BAC,∴BC ⏜=BD ⏜,又AB 为直径,∴CD⊥AB,DE=12CD=4,设☉O 的半径为r,则OE=8-r,在Rt△DEO 中,OE 2+DE 2=OD 2,(8-r)2+42=r 2,解得r=5,故选B. 12.D 作AE⊥y 轴于点E,BF⊥y 轴于点F,易证△BFC∽△AEO,所以BF AE =BC AO =13,设x B =m,则x A =3m,所以有B (m ,12m +4),A (3m ,32m).因点A,B 在y=kx 上,所以k=m (12m +4)=3m·32m,解得m=0(舍去)或m=1.所以k=92,故选D.评析 本题考查一次函数、反比例函数、图形的相似等知识,关键是根据相似比确定A 、B 两点的坐标,求出k 值.属中等难度题. 13.答案 x≥2解析 x-2≥0时二次根式有意义,∴x≥2. 14.答案 105解析 由题意得∠AOB=45°+60°=105°. 15.答案 (x+5)(x-5)解析 由平方差公式得x 2-25=(x+5)(x-5). 16.答案 86解析 设综合成绩为x ,则x =80×40%+90×60%=86(分). 17.答案 -1 解析 a 1=12,a 2=11-a 1=11-12=2,a 3=11-a 2=11-2=-1,a 4=11-a 3=11-(-1)=12,…,即每3个循环一次,而2 013÷3=671,所以a 2 013=-1.18.答案 √3-4π9解析 设内切圆的半径为R,角切圆的半径为r,可求得R=√33,r=√39,S 阴影=√34×22-πR 2-3πr 2=√3-π3-π9=√3-4π9.19.解析 原式=1-3√3+2×12-2(4分)=1-3√3+1-2(5分) =-3√3.(6分) 20.解析 原式=x+1x -1÷x+1(x -1)2(2分)=x+1x -1·(x -1)2x+1(3分)=x-1.(4分)当x=-2时,原式=-2-1(5分) =-3.(6分)21.解析 (1)轴对称图形如图所示.(3分) (2)位似图形如图所示.(6分)∵△A 1B 1C 1∽△A 2B 2C 2,A 1B 1A 2B 2=12,(7分)∴S △A 1B 1C 1∶S △A 2B 2C 2=(12)2=14.(8分) 22.解析 (1)90÷30%=300(名).(2分) (2)如图所示. (4分)×360°=48°.(6分)(3)40300×1 800=480(名).(8分)(4)8030023.解析(1)证明:在菱形ABCD中,AB=BC=CD=DA,(1分)∠B=∠D.(2分)∵点E、F分别是边BC、AD的中点,∴BE=DF,(3分)∴△ABE≌△CDF.(4分)(2)解法一:∵AB=BC,∠B=60°,∴△ABC是等边三角形.(5分) ∵点E是BC边的中点,∴AE⊥BC.(6分)在Rt△ABE中,sin∠B=AE,(7分)AB=2√3.(8分)∴AE=AB·sin∠B=4×√32解法二:∵AB=BC,∠B=60°,∴△ABC是等边三角形.(5分)∵点E是BC边的中点,∴AE⊥BC.(6分)∴∠BAE=30°.AB=2,(7分)在Rt△ABE中,BE=12∴AE=√AB2-BE2=√42-22=2√3.(8分)评析 本题考查菱形的性质、三角形全等的判定、等边三角形的性质、勾股定理等知识,属基础题.24.解析 (1)30千米.(2分)(2)解法一:当0≤x≤2时,设y甲=kx+b,将点(0,30),(2,0)代入得{b =30,2k +b =0,解得{k =-15,b =30,∴y 甲=-15x+30(0≤x≤2).(3分)当0≤x≤1时,设y 乙=mx,将点(1,30)代入得m=30,∴y 乙=30x(0≤x≤1),(4分)当y 甲=y 乙时,-15x+30=30x,(5分)解得x=23,此时y 甲=y 乙=20,∴点M 的坐标为(23,20).(6分) 该点坐标所表示的实际意义:甲、乙两人行驶23小时后第一次相遇,此时两人离B 地的距离均为20千米.(7分)解法二:由题图可知,甲的速度为15千米/时,(3分)乙的速度为30千米/时.(4分)设经过x 小时后甲、乙两人第一次相遇,则15x+30x=30,(5分)解得x=23,∴30x=20,∴点M 的坐标为(23,20).(6分) 该点坐标所表示的实际意义:甲、乙两人行驶23小时后第一次相遇,此时两人离B 地的距离均为20千米.(7分)(3)35≤x≤23(8分)或23<x≤1115(9分)或95≤x≤2.(10分)评析本题是以行程问题为背景的一次函数应用型问题,考查了待定系数法求函数解析式,一次函数图象及其性质,数形结合是常用的解题方法.25.解析(1)证法一:连结OD.∵∠BAC=90°,AB=AC,∴∠C=∠ABC=45°.∵DE⊥AC,∴∠CDE=45°.(1分)∵OB=OD,∴∠ODB=∠ABC=45°.(2分)∵∠CDE+∠ODE+∠ODB=180°,∴∠ODE=90°,∴DE是☉O的切线.(3分)证法二:连结OD.∵∠BAC=90°,AB=AC,∴∠ABC=45°.∵OB=OD,∴∠ODB=∠ABC=45°,(1分)∴∠DOB=90°.(2分)∵DE⊥AC,BA⊥AC,∴DE∥BA,∴∠ODE=∠DOB=90°,∴DE是☉O的切线.(3分)(2)∵∠BAC=∠DEA=∠ODE=90°,OA=OD,∴四边形AODE是正方形.(4分)∴AE=OA=12AB,(5分)∴tan∠ABE=AEAB =12.(6分)(3)∵AB是☉O的直径, ∴∠AFB=90°.(7分)∵∠EAP+∠PAB=90°,∠PAB+∠ABE=90°,∴∠EAP=∠ABE,(8分)∴tan∠ABE=tan∠EAP=PE AE =12.∵AE=OA=2,∴PE=1.(9分)在Rt△AEP 中,AP=√AE 2+PE 2=√5.(10分)评析 本题考查圆的性质、切线的判定、平行四边形的性质以及解直角三角形,构造相应的直角三角形是解题关键.26.解析 (1)将点C(2,0),D(0,-1)代入y=ax 2+c得{c =-1,4a +c =0,(1分) 解得{a =14,c =-1,∴此抛物线的解析式为y=14x 2-1.(2分) (2)证明:过点A 作AG 垂直于y 轴,垂足为点G.设点A 的坐标为(x 1,14x 12-1),则AO 2=AG 2+GO 2 =x 12+(14x 12-1)2=116x 14+12x 12+1.(3分)AM 2=(14x 12-1+2)2 =116x 14+12x 12+1.(4分) ∴AO 2=AM 2.∵AO、AM 的值均为正数,∴AO=AM.(5分)(3)①当k=0时,直线AB 与x 轴重合,且AB∥MN,则AM=2,BN=2,∴1AM +1BN =1.(6分) ②当k>0时,延长AG,交BN 于点H,由(2)可知AO=AM,同理可证:BO=BN.(7分)设AO=AM=m,BN=BO=n.易知BN∥OE,∴△AGO∽△AHB,∴AOOG =ABBH,即m2-m=m+nn-m,(8分)整理得m+n=mn.∵m≠0,n≠0,∴两边同除以mn得1m +1n=1,即1AM +1BN=1.(9分)当k<0时,同理可证:1AM +1BN=1,综上所述,无论k取何值,1AM +1BN的值都等于同一个常数.(10分)评析本题属二次函数的综合题,考查了待定系数法求函数解析式、勾股定理、三角形相似的判定与性质,本题难点在相似三角形的构造,依据条件作垂线是构造相似三角形的途径.本题对学生的计算能力要求较高,属难题.。
广西河池市中考数学真题试题(含解析)
广西河池市中考数学试卷一、选择题(本大题共12小题,共36.0分)1.计算3-4,结果是()A. B. C. 1 D. 72.如图,∠ = 20°,要使a∥b,则∠2的大小是()A. 0B. 0C. 00D. 203.下列式子中,为最简二次根式的是()A.2B. 2C.D. 24.某几何体的三视图如图所示,该几何体是()A. 圆锥B. 圆柱C. 三棱锥D. 球5.不等式组22的解集是()A. 2B.C. 2D. 26.某同学在体育备考训练期间,参加了七次测试,成绩依次为(单位:分)51,53,56,53,56,58,56,这组数据的众数、中位数分别是()A. 53,53B. 53,56C. 56,53D. 56,567.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是()A. ∠ ∠B. ∠ ∠C.D.8.函数y=x-2的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图,在正方形ABCD中,点E,F分别在BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是()A. 1B. 2C. 3D. 410.如图,在正六边形ABCDEF中,AC=2,则它的边长是()A. 1B. 2C.D. 211.如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误的是()A. 0B. 20C. 2 0D. 012.如图,△ABC为等边三角形,点P从A出发,沿A→B→C→A作匀速运动,则线段AP的长度y与运动时间x之间的函数关系大致是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)的解为______.13.分式方程214.如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则=______.15.掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是______.16.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB= °,则∠P=______°.17.如图,在平面直角坐标系中,A(2,0),B(0,1),AC由AB绕点A顺时针旋转90°而得,则AC所在直线的解析式是______.18.a1,a2,a3,a4,a5,a6,…,是一列数,已知第1个数a1=4,第5个数a5=5,且任意三个相邻的数之和为15,则第2019个数a2019的值是______.三、计算题(本大题共1小题,共6.0分)19.计算:30+-()-2+|-3|.2四、解答题(本大题共7小题,共60.0分)20.分解因式:(x-1)2+2(x-5).21.如图,AB为⊙O的直径,点C在⊙O上.(1)尺规作图:作∠BAC的平分线,与⊙O交于点D;连接OD,交BC于点E(不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.22.如图,在河对岸有一棵大树A,在河岸B点测得A在北偏东 0°方向上,向东前进120m到达C点,测得A在北偏东 0°方向上,求河的宽度(精确到0.1m).参考数据:2≈ . ,≈ . 2.23.某校计划开设美术、书法、体育、音乐兴趣班,为了解学生报名的意向,随机调查了部分学生,要求被调查的学生必选且只选一项,根据调查结果绘制出如下不完整根据统计图表的信息,解答下列问题:(1)直接写出本次调查的样本容量和表中a,b,c的值;(2)将折线图补充完整;(3)该校现有2000名学生,估计该校参加音乐兴趣班的学生有多少人?24.在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1800元,该店的商品按原价的几折销售?25.如图,五边形ABCDE内接于⊙O,CF与⊙O相切于点C,交AB延长线于点F.(1)若AE=DC,∠E=∠BCD,求证:DE=BC;(2)若OB=2,AB=BD=DA,∠F= 5°,求CF的长.26.在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=2与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.答案和解析1.【答案】A【解析】解:3-4=-1.故选:A.有理数减法法则:减去一个数,等于加上这个数的相反数.依此即可求解.考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).2.【答案】D【解析】解:如果∠2=∠ = 20°,那么a∥b.所以要使a∥b,则∠2的大小是 20°.故选:D.根据同位角相等,两直线平行即可求解.本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.3.【答案】B【解析】解:A、原式=,不符合题意;B、是最简二次根式,符合题意;C、原式=2,不符合题意;D、原式=2,不符合题意;故选:B.利用最简二次根式定义判断即可.此题考查了最简二次根式,熟练掌握最简二次根式是解本题的关键.4.【答案】A【解析】解:由已知三视图得到几何体是以圆锥;故选:A.由已知三视图得到几何体是圆锥.本题考查了几何体的三视图;熟记常见几何体的三视图是解答的关键.5.【答案】D【解析】解:,解①得:x≤2,解②得:x>1.则不等式组的解集是:1<x≤2.故选:D.首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.【答案】D【解析】解:将数据重新排列为51,53,53,56,56,56,58,所以这组数据的中位数为56,众数为56,故选:D.根据众数和中位数的定义求解可得.本题主要考查众数和中位数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.【答案】B【解析】解:∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE AC.A、根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B、根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C、根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D、根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选:B.利用三角形中位线定理得到DE AC,结合平行四边形的判定定理进行选择.本题三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.8.【答案】B【解析】解:一次函数y=x-2,∵k=1>0,∴函数图象经过第一三象限,∵b=-2<0,∴函数图象与y轴负半轴相交,∴函数图象经过第一三四象限,不经过第二象限.故选:B.根据k>0确定一次函数经过第一三象限,根据b<0确定与y轴负半轴相交,从而判断得解.本题考查了一次函数的性质,对于一次函数y=kx+b,k>0,函数经过第一、三象限,k <0,函数经过第二、四象限.9.【答案】B【解析】证明:∵四边形ABCD是正方形,∴AB∥BC,AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BFC=∠AEB,∴∠BFC=∠ABF,故图中与∠AEB相等的角的个数是2.故选:B.根据正方形的性质,利用SAS即可证明△ABE≌△BCF,再根据全等三角形的性质可得∠BFC=∠AEB,进一步得到∠BFC=∠ABF,从而求解.本题考查正方形的性质、全等三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】D【解析】解:如图,过点B作BG⊥AC于点G.正六边形ABCDEF中,每个内角为(6-2)× 0°÷ = 20°,∴∠ABC= 20°,∠BAC=∠BCA= 0°,∴AG=AC=,∴GB=1,AB=2,即边长为2.故选:D.过点B作BG⊥AC于点G.,正六边形ABCDEF中,每个内角为(6-2)× 0°÷ = 20°,即∠ABC= 20°,∠BAC=∠BCA= 0°,于是AG=AC=,AB=2,本题考查了正多边形,熟练运用正多边形的内角和公式是解题的关键.11.【答案】C【解析】解:A、由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上,可得c>0,因此ac<0,故本选项正确,不符合题意;B、由抛物线与x轴有两个交点,可得b2-4ac>0,故本选项正确,不符合题意;C、由对称轴为x=-=1,得2a=-b,即2a+b=0,故本选项错误,符合题意;D、由对称轴为x=1及抛物线过(3,0),可得抛物线与x轴的另外一个交点是(-1,0),所以a-b+c=0,故本选项正确,不符合题意.故选:C.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.12.【答案】B【解析】解:根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选:B.根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B 符合题意,选项A不合题意.本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.13.【答案】x=3【解析】解:去分母得:x-2=1,解得:x=3,经检验x=3是分式方程的解.故答案为:x=3.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.【答案】25【解析】解:∵以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,∴===.故答案为:.直接利用位似图形的性质进而分析得出答案.此题主要考查了位似变换,正确得出对应边的比值是解题关键.15.【答案】2【解析】解:掷一枚质地均匀的骰子,向上一面的点数为奇数的概率是=,故答案为:.利用随机事件A的概率P(A)=事件A可能出现的结果数:所有可能出现的结果数进行计算即可.此题主要考查了概率公式,关键是掌握概率的计算方法.16.【答案】76【解析】解:∵PA,PB是⊙O的切线,∴PA=PB,PA⊥OA,∴∠PAB=∠PBA,∠OAP=90°,∴∠PBA=∠PAB=90°-∠OAB=90°- °=52°,∴∠P= 0°-52°-52°= °;故答案为:76.由切线的性质得出PA=PB,PA⊥OA,得出∠PAB=∠PBA,∠OAP=90°,由已知得出∠PBA=∠PAB=90°-∠OAB=52°,再由三角形内角和定理即可得出结果.本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形内角和定理;利用切线的性质来解答问题时,解此类问题的一般思路是利用直角来解决问题.17.【答案】y=2x-4【解析】解:∵A(2,0),B(0,1)∴OA=2,OB=1过点C作CD⊥x轴于点D,则易知△ACD≌△BAO(AAS)∴AD=OB=1,CD=OA=2∴C(3,2)设直线AC的解析式为y=kx+b,将点A,点C坐标代入得∴∴直线AC的解析式为y=2x-4.故答案为:y=2x-4.过点C作CD⊥x轴于点D,易知△ACD≌△BAO(AAS),已知A(2,0),B(0,1),从而求得点C坐标,设直线AC的解析式为y=kx+b,将点A,点C坐标代入求得k和b,从而得解.本题是几何图形旋转与待定系数法求一次函数解析式的综合题,难度中等.18.【答案】6【解析】解:由任意三个相邻数之和都是15可知:a1+a2+a3=15,a2+a3+a4=15,a3+a4+a5=15,…a n+a n+1+a n+2=15,可以推出:a1=a4=a7=…=a3n+1,a2=a5=a8=…=a3n+2,a3=a6=a9=…=a3n,所以a5=a2=5,则4+5+a3=15,解得a3=6,∵20 9÷ = ,因此a2017=a3=6.故答案为:6.由任意三个相邻数之和都是15,可知a1、a4、a7、…a3n+1相等,a2、a5、a8、…a3n+2相等,a3、a6、a9、…a3n相等,可以得出a5=a2=5,根据a1+a2+a3=15得4+5+a3=15,求得a3,进而按循环规律求得结果.此题主要考查了规律型:数字的变化类,关键是找出第1、4、 …个数之间的关系,第2、5、 …个数之间的关系,第3、6、9…个数之间的关系.问题就会迎刃而解.19.【答案】解:原式=1+22-4+3=22【解析】直接利用零指数幂的性质、负指数幂的性质以及绝对值的性质、二次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.20.【答案】解:原式=x2-2x+1+2x-10=x2-9=(x+3)(x-3).【解析】直接利用完全平方公式化简,进而利用平方差公式分解因式即可.此题主要考查了公式法分解因式,正确运用公式是解题关键.21.【答案】解:(1)如图所示;AC.(2)OE∥AC,OE=2理由如下:∵AD平分∠BAC,∠BAC,∴∠BAD=2∠BOD,∵∠BAD=2∴∠BOD=∠BAC,∴OE∥AC,∵OA=OB,∴OE为△ABC的中位线,AC.∴OE∥AC,OE=2【解析】(1)利用基本作图作AD平分∠BAC,然后连接OD得到点E;(2)由AD平分∠BAC得到∠BAD=∠BAC,由圆周角定理得到∠BAD=∠BOD,则∠BOD=∠BAC,再证明OE为△ABC的中位线,从而得到OE∥AC,OE=AC.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了圆周角定理.22.【答案】解:过点A作AD⊥直线BC,垂足为点D,如图所示.在Rt△ABD中,tan∠BAD=,∴BD=AD•tan 0°=AD;在Rt△ACD中,tan∠CAD=,∴CD=AD•tan 0°=AD.∴BC =BD -CD =2AD =120, ∴AD =103.9.∴河的宽度为103.9米.【解析】过点A 作AD ⊥直线BC ,垂足为点D ,在Rt △ABD 和Rt △ACD 中,通过解直角三角形可求出BD ,CD 的长,结合BC=BD-CD=120,即可求出AD 的长.本题考查了解直角三角形的应用-方向角问题,利用解直角三角形结合BC=BD-CD=120,找出关于AD 的长的一元一次方程是解题的关键.23.【答案】解:(1)本次调查的样本容量 0÷ 0%= 00(人),b =100-10-30-20=40(人),a = 0÷ 00= 0%,c =20÷ 00=20%;(2)折线图补充如下:(3)估计该校参加音乐兴趣班的学生2000×20%= 00(人)答:估计该校参加音乐兴趣班的学生400人.【解析】(1)本次调查的样本容量 0÷ 0%= 00(人),b=100-10-30-20=40(人),a= 0÷ 00= 0%,c=20÷ 00=20%;(2)根据(1)补充折线图;(3)估计该校参加音乐兴趣班的学生2000×20%= 00(人).本题考查统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.24.【答案】解:(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,可得:0 0 20 0 50 0, 解得:, 答:跳绳的单价为16元/条,毽子的单件为5元/个;(2)设该店的商品按原价的x 折销售,可得:( 00× + 00× )× 0=1800, 解得:x =9,答:该店的商品按原价的9折销售.【解析】(1)设跳绳的单价为x 元/条,毽子的单件为y 元/个,根据:购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个毽子共用360元,列方程组求解即可;(2)设该店的商品按原价的x折销售,根据:购买100根跳绳和100个毽子只需1800元,列出方程求解可得.本题主要考查二元一次方程组及一元一次方程的应用,理解题意找到相等关系是解题关键.25.【答案】(1)证明:∵AE=DC,∴,∴∠ADE=∠DBC,在△ADE和△DBC中,∠ ∠∠ ∠ ,∴△ADE≌△DBC(AAS),∴DE=BC;(2)解:连接CO并延长交AB于G,作OH⊥AB于H,如图所示:则∠OHG=∠OHB=90°,∵CF与⊙O相切于点C,∴∠FCG=90°,∵∠F= 5°,∴△CFG、△OGH是等腰直角三角形,∴CF=CG,OG=2OH,∵AB=BD=DA,∴△ABD是等边三角形,∴∠ABD= 0°,∴∠OBH= 0°,∴OH=2OB=1,∴OG=2,∴CF=CG=OC+OG=2+2.【解析】(1)由圆心角、弧、弦之间的关系得出,由圆周角定理得出∠ADE=∠DBC,证明△ADE≌△DBC,即可得出结论;(2)连接CO并延长交AB于G,作OH⊥AB于H,则∠OHG=∠OHB=90°,由切线的性质得出∠FCG=90°,得出△CFG、△OGH是等腰直角三角形,得出CF=CG,OG=OH,由等边三角形的性质得出∠OBH= 0°,由直角三角形的性质得出OH=OB=1,OG=,即可得出答案.本题考查了切线的性质,圆周角定理,圆心角、弧、弦之间的关系,全等三角形的判定与性质、等腰直角三角形的判定与性质、直角三角形的性质;熟练掌握切线的性质和圆周角定理是解题的关键.26.【答案】解:(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y= 2.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=-x+8,∵C,C′关于BD对称,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,2).∴C′(0,2(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.综上所述,满足条件的m的值为3或12.【解析】(1)利用中点坐标公式求出点E坐标即可.(2)由点M,N在反比例函数的图象上,推出DN•AD=BM•AB,因为BC=AD,AB=CD,推出DN•BC=BM•CD,推出=,可得MN∥BD,由此即可解决问题.(3)分两种情形:①当AP=AE时.②当EP=AE时,分别构建方程求解即可.本题属于反比例函数综合题,考查了中点坐标公式,待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.。
广西壮族自治区来宾市2013年广西中考数学试卷及参考答案
20. 某校九年级为建立学习兴趣小组,对语文、数学、英语、物理、化学、思想品德、历史、综合共八个科目的喜欢情
况进行问卷调查(每人只选一项),下表是随机抽取部分学生的问卷进行统计的结果:
科目
语文
数学
英语
物理
化学
思想品德
历史
综合
人数
6
10
11
12
10
9
8
14
根据表中信息,解答下列问题:
(1)
本次随机抽查的学生共有人;
三、解答题:
18.
(1)
计算:
(2)
解方程:
.
19. 如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).
①把△ABC向右平移2个单位得△A1B1C1 , 请画出△A1B1C1 , 并写出点A1的坐标; ②把△ABC绕原点O旋转180°得到△A2B2C2 , 请画出△A2B2C2 .
6.
7.
8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.
19.
20.
21. 22.
23. 24.
A . 1个 B . 2个 C . 3个 D . 4个 7. 已知反比例函数的图象经过点(2,﹣1),则它的解析式是( )
A . y=﹣2x B . y=2x C .
D.
8. 已知关于x的一元二次方程x2﹣x+k=0的一个根是2,则k的值是( )
A . ﹣2 B . 2 C . 1 D . ﹣1 9. 已知数据:10,17,13,8,11,13.这组数据的中位数和极差分别是( )
降价前商场每月销售该商品的利润是多少元?
2013年广西河池市中考数学试卷及答案(word解析版)
河池市中考试题数学友情提示:一、认真对待每一次复习及考试。
.二、遇到不懂的题目或者知识点就是并解决它就是进步的机会。
三、试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效.四、请仔细审题,细心答题,相信你一定会有出色的表现!(满分120分,考试时间120分钟)第一部分(选择题共30分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都代号为A、B、C、D的四个结论,其中只有一个是正确的.1.(2013广西河池,1,3分)在-2,-1,1,2这四个数中,最小的是()A.-2 B.-1 C.1 D.2【答案】A2.(2013广西河池,2,3分)如图1,直线a∥b,直线c与a,b相交,∠1=70°,则∠2的大小是()A.20°B.50°C.70°D.110°【答案】C3.(2013广西河池,3,3分)如图2所示的几何体,其主视图是()【答案】C4.(2013广西河池,4,3分)河池市初中毕业升学考试的考生人数约为3.2万名,从中抽取300名考生的数学成绩进行分析,在本次调查中,样本指的是()A.300名考生的数学成绩B.300C.3.2万名考生的数学成绩D.300名考生【答案】A5.(2013广西河池,5,3分)把不等式组1010xx+⎧⎨-⎩>≤的解集表示在数轴上,正确的是()图2图1A.B.C.D.【答案】B6.(2013广西河池,6,3分)一个三角形的周长是36cm,则以这个三角形各边中点为顶点的三角形的周长是()A.6cm B.12cm C.18cm D.36cm【答案】C7.(2013广西河池,7,3分)下列运算正确的是()A.x2+x3=x5B.23()x=x8C.x6÷x2=x3D.x4·x2=x6【答案】D8.(2013广西河池,8,3分)如图3(1),已知两个全等直角三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′C′B′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD,AC于点F,G,则在图3(2)中,全等三角形共有()A.5对B.4对C.3对D.2对【答案】B9.(2013广西河池,9,3分)如图4,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=33cm,则弦AB的长为()A.9cm B.33cm C.92cm D.33cm【答案】A10.(2013广西河池,10,3分)如图5,AB为⊙O的直径,C为⊙O外一点,过C作⊙O的切线,切点为B,连接AC交⊙O于D,∠C=38°.点E在AB右侧的半圆周上运动(不与A,B重合),则∠AED的大小是()A.19°B.38°C.52°D.76°AO CBD图4A.B.C.D.(1)(2)图3【答案】B11.(2013广西河池,11,3分)如图6,在直角梯形ABCD中,AB=2,BC=4,AD=6,M是CD 的中点,点P在直角梯形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示是()【答案】D12.(2013广西河池,12,3分)已知二次函数y=-x2+3x-35,当自变量x取m时对应的函数值大于0,设自变量x分别取m-3,m+3时对应的函数值为y1,y2,则()A.y1>0,y2>0 B.y1>0,y2<0C.y1<0,y2>0 D.y1<0,y2<0【答案】D第二部分(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分)请把答案填在答案卷指定的位置上.13.(2013广西河池,13,3分)若分式21x有意义,则x的取值范围是_____________.【答案】x≠114.(2013广西河池,14,3分)分解因式:ax2-4a=______________.【答案】a(x+2)(x-2)15.(2013广西河池,15,3分)袋子中装有4个黑球2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,这个球为白球的概率是_____________.【答案】1316.(2013广西河池,16,3分)如图7,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是_____________.A.B.C.D.图5AODE图6AMCBDP【答案】56°17.(2013广西河池,17,3分)如图8,在△ABC 中,AC =6,BC =5,sin A =23,则tan B =___________.【答案】4318.(2013广西河池,18,3分)如图9,正方形ABCD 的边长为4,E ,F 分别是BC ,CD 上的两个动点,且AE ⊥EF .则AF 的最小值是____________.【答案】5三、解答题(本大题共8小题,共66分)请在答案卷指定的位置上写出解答过程. 19.(2013广西河池,19,6分)计算:22cos309(3)3︒-+--- (说明:本题不允许...使用计算器.) 【答案】解:原式=32393⨯-+- =3393-+-=6.20.(2013广西河池,20,6分)先化简,再求值: 2(2)(1)(1)x x x +-+-,其中x = 1. 【答案】解:2(2)(1)(1)x x x +-+-=2244(1)x x x ++-- =22441x x x ++-+图7ACB 图8图9A F C BDE=45x +. 当x = 1时,原式=415⨯+=9.21.(2013广西河池,21,8分)请在图10中补全坐标系及缺失的部分,并在横线上填写恰当的内容.图中各点坐标如下:A (1,0),B (6,0),C (1,3),D (6,2).线段AB 上有一点M ,使△ACM ∽△BDM 且相似比不等于1.求出点M 的坐标并证明你的结论.证明:∵CA ⊥AB ,DB ⊥AB , ∴∠CAM =∠DBM =_________度. ∵CA =AM =3, DB =BM =2,∴∠ACM =∠AMC (________________________). ∠BDM =∠BMD (同理).∴∠ACM =12(180°-________________)=45°. ∠BDM =45°(同理). ∴∠ACM =∠BDM . 在△ACM 与△BDM 中,______________CAM DBM ∠=∠⎧⎨⎩,∴△ACM ∽△BDM (如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似). 【答案】解:4,0,90,等边对等角,∠CAM ,∠ACM =∠BDM 22.(2013广西河池,22,8分)为相应“美丽河池 清洁乡村 美化校园”的号召,红水河中学计划在学校公共场所安装温馨提示牌和垃圾箱.已知,安装5个温馨提示牌和6个垃圾箱需730元,安装7个温馨提示牌和12个垃圾箱需1310元.答图1图10(1)安装1个温馨提示牌和1个垃圾箱各需多少元? (2)安装8个温馨提示牌和15个垃圾箱共需多少元? 【答案】解:(1)设安装1个温馨提示牌需x 元,安装1个垃圾箱需y 元,依题意得567307121310x y x y +=⎧⎨+=⎩,. 解这个方程组,得5080x y =⎧⎨=⎩,.答:安装1个温馨提示牌和1个垃圾箱分别需50元、80元.(2)8x +15y =8×50+15×80=1600(元).答:安装8个温馨提示牌和15个垃圾箱共需1600元. 23.(2013广西河池,23,8分)瑶寨中学食堂为学生提供了四种价格的午餐供其选择,这四种价格分别是:A .3元,B .4元,C .5元,D .6元.为了解学社对四种午餐的购买情况,学校随机抽样调查了甲、乙两班学生某天购买四种午餐的情况,依据统计数据制成如下的统计图表:(1)求乙班学生人数;(2)求乙班购买午餐费用的中位数;(3)已知甲、乙两班购买午餐费用的平均数均为4.44元,从平均数和众数的角度分析,哪个班购买的午餐价格较高;(4)从这次接受调查的学生中,随机抽查一人,恰好是购买C 种午餐的学生的概率是多少? 【答案】解:(1)13÷26%=50(人);(2)乙班购买A 种午餐的人数为50×18%=9(人), 中位数是5元;(3)甲、乙两班购买午餐费用的平均数相同,甲班购买午餐费用的众数是4元,乙班购买午餐费用的众数是5元,从平均数与众数可以看出乙班购买的午餐的价格较高; (4)16+25=41. 24.(2013广西河池,24,8分)华联超市预购进A ,B 两种品牌的书包共400个.已知两种书包的进价如下表所示.设购进A 种书包x 个,且所购进的两种书包能全部卖出,获得的总利润为w (2)如果购进两种书包的总费用不超过18000元,那么商场如何进货才能获利最大?并求出最大利润.(提示:利润=售价-进价) 【答案】解:(1)由题意得:w 关于x 的函数关系式是:w =(65-47)x +(50-37)(400-x ) =5x +5200,即w =5x +5200(0≤x ≤400);(2)由题意,得47x +37(400-x )≤18000, 解这个不等式,得x ≤320. ∴当x =320时,w 最大值=5×320+5200=6800(元),∴该商场购进A ,B 两种书包分别为320个,80个时,能获得最大利润6800元. 25.(2013广西河池,25,10分)如图(1),在Rt △ABC 中,∠ACB =90°,分别以AB ,BC 为一边向外作正方形ABFG ,BCED ,连接AD ,CF ,AD 与CF 交于点M . (1)求证:△ABD ≌△FBC ; (2)如图(2),已知AD =6,求四边形AFDC 的面积;(3)在△ABC 中,设BC =a ,AC =b ,AB =c ,当∠ACB ≠90°时,c 2≠a 2+b 2.在任意△ABC 中,c 2=a 2+b 2+k .就a =3,b =2的情形,探究k 的取值范围(只需写出你得到的结论即可).【答案】解:(1)证明:∵四边形ABFG ,BCED 都是正方形,∴AB =FB ,BC =BD ,∠ABF =∠CBD =90°, ∴∠ABF +∠ABC =∠CBD +∠ABC , 即∠CBF =∠ABD .∴△ABD ≌△FBC (SAS );(2)由(1)知△ABD ≌△FBC , ∴CF =AD =6,∠DAB =∠CFB , 设CF 交AB 于点N , ∵∠ABF =90°,∴∠CFB+∠BNF =90°,又∵∠DAB =∠CFB ,∠BNF =∠ANM , ∴∠DAB +∠ANM =90°, ∴AD ⊥CF ,∴四边形AFDC 的面积=12×AD ×CF =12×6×6=18; (3)12 <k <12。
2013中考数学试题及答案(word完整版)(1)
二O 一三年高中阶段教育学校统一招生考试(含初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( )(A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C)32-=6 (D)0)(-=020136.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为()(A)1.3×51010(B)13×4(C)0.13×51010(D)0.13×67.如图,将矩形ABCD沿对角线BD折叠,使点C和点'C重合,若AB=2,则'C D 的长为()(A)1(B)2(C)3(D)48.在平面直角坐标系中,下列函数的图像经过原点的是()5(A)y=-x+3 (B)y=x(C)y=x2(D)y=7x22--x+9.一元二次方程x2+x-2=0的根的情况是()(A)有两个不相等的实数根(B)有两个相等的实数根(C)只有一个实数根(D)没有实数根10.如图,点A,B,C在⊙O上,∠A=50°,则∠BOC的度数为()(A)40°(B)50°(C)80°(D)100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式3x的解集为_______________.-12>12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD, 则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+-(2)解方程组⎩⎨⎧=-=+521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°(1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:(1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分)如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=o ,BD BE ⊥,AD BC =.(1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a =-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当k =时,2BP BO BA =⋅;○4PAB ∆面积的最小值为其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系:当4n =时,p =_______;当12n =时,p =_______.(参考数据:sin15cos75==o o ,cos15sin 754==o o ) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上)26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ; (2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由:(2)若3t a n 4A D B ∠=,PA AH =,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.二O 一三年高中阶段教育学校统一招生考试数学答案 A 卷1~5:BCADB 6~10: ABCAD11、 x >2 12、10 13、60° 14、100 15.(1)4; (2)⎩⎨⎧-==12y x 16. a17.(1)略 (2)π18.(1)4, 0.7 (2)树状图(或列表)略,P=61122= 19.(1)A(1,2) ,xy 2=(2)当0<x<1时,21y y <; 当x=1时,21y y =; 当x>1时,21y y >;20.(1)证△ABD ≌△CEB →AB=CE ;(2)如图,过Q 作QH ⊥BC 于点H ,则△AD P ∽△HPQ ,△BHQ ∽△BCE , ∴QHAPPH AD =, EC QH BC BH =;设AP=x ,QH=y ,则有53yBH = ∴BH=53y ,PH=53y+5x - ∴yxx y=-+5533,即0)53)(5(=--x y x 又∵P 不与A 、B 重合,∴ ,5≠x 即05≠-x , ∴053=-x y 即x y 53=∴53==y x PQ DP(3)3342 B 卷21.31- 22.117 23.3 24.③④ 25.c b ±2, c b 21322-+或c b --226 26. (1)42-=t v ;(2)S=⎩⎨⎧≤<-≤≤)73(42)30(22t t t t t , 6秒 27.(1)如图,连接DO 并延长交圆于点E ,连接AE∵DE 是直径,∴∠DAE=90°,∴∠E +∠ADE=90°∵∠PDA =∠ADB =∠E∴∠PDA +∠ADE=90°即PD ⊥DO∴PD 与圆O 相切于点D(2) ∵tan ∠ADB=43∴可设AH=3k,则DH=4k∵PA AH =∴PA=k )334(-∴PH=k 34∴∠P=30°,∠PDH=60°∴∠BDE=30°连接BE ,则∠DBE=90°,DE=2r=50∴BD=D E ·cos30°=325(3)由(2)知,BH=325-4k ,∴HC=34(325-4k) 又∵PC PA PD ⨯=2 ∴)]4325(3434[)334()8(2k k k k -+⨯-= 解得k=334-∴AC=7324)4325(343+=-+k k ∴S=23175900)7324(3252121+=+⨯⨯=∙AC BD 28.(1)12212-+-=x x y (2)M 的坐标是(1-5,-5-2)、(1+5,5-2)、(4,-1)、(2,-3)、(-2,-7)(3)PQ NP BQ +的最大值是510。
广西河池市中考数学试题含答案
广西河池市中考数学试题一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的,请用2B 铅笔在答题卷将选定的答案代号涂黑.1.(3分)﹣3的绝对值是( )A .﹣3B .13-C .13D .3 2.(3分)如图,AB ∥CD ,CB ⊥DB ,∠D =65°,则∠ABC 的大小是( )A .25°B .35°C .50°D .65°3.(3分)下列计算,正确的是( )A .3412x x x ⋅=B .336()x x =C .22(3)9x x = D .22x x x ÷=4.(3分)一个几何体的三视图如图所示,这个几何体是( )A .棱柱B .圆柱C .圆锥D .球5.(3分)下列事件是必然事件的为( ) A .明天太阳从西方升起B .掷一枚硬币,正面朝上C .打开电视机,正在播放 “河池新闻”D .任意一个三角形,它的内角和等于180°6.(3分)不等式组21521x x +≤⎧⎨+>⎩的解集是( ) A .﹣1<x <2 B .1<x ≤2 C .﹣1<x ≤2 D .﹣1<x ≤37.(3分)下列方程有两个相等的实数根的是( )A .2+10x x +=B .24210x x ++=C .212360x x ++=D .220x x +-=8.(3分)将抛物线2y x =向右平移2个单位,再向上平移3个单位后,抛物线的解析式为( )A .2(2)3y x =++B .2(2)3y x =-+C .2(2)3y x =+-D .2(2)3y x =--9.(3分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,∠BOD =48°,则∠BAC 的大小是( )A .60°B .48°C .30°D .24°10.(3分)如图,用一张半径为24cm 的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm ,那么这张扇形纸板的面积是( )A .240πcm 2B .480πcm 2C .1200πcm 2D .2400πcm 211.(3分)反比例函数1m y x=(0x >)的图象与一次函数2y x b =-+的图象交于A ,B 两点,其中A (1,2),当21y y >时,x 的取值范围是( )A .x <1B .1<x <2C .x >2D .x <1或x >212.(3分)我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :43y kx =+与x 轴、y 轴分别交于A 、B ,∠OAB =30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A.6 B.8 C.10 D.12二、填空题(本大题共6小题,每小题3分,满分18分)请把答案填在答题卷指定的位置上.13.(3分)计算:1273⨯= .14.(3分)如图,在△ABC中,D.E分别是AB、AC的中点,若BC=10,则DE= .15.(3分)方程233x x=-的解是.16.(3分)某学校计划开设A,B,C,D四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门,为了了解学生的选修意向,现随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图,已知该校学生人数为2000人,由此估计选修A课程的学生有人.17.(3分)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A ′的坐标是.18.(3分)如图,菱形ABCD的边长为1,直线l过点C,交AB的延长线于M,交AD的延长线于N,则11AM AN+= .三、解答题(本大题共8小题,满分66分)请在答题卷指定的位置上写出解答过程.19.(6分)计算:1292cos60--++-.20.(6分)先化简,再求值:2(3)(3)(1)x x x -+++,其中2x =.21.(8分)如图,在△ABC 中,∠ACB =90°,AC =BC =AD .(1)作∠A 的平分线交CD 于E ;(2)过B 作CD 的垂线,垂足为F ;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.22.(8分)联华商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,进货量减少了10台.(1)这两次各购进电风扇多少台?(2)商场以250元/台的售价卖完这两批电风扇,商场获利多少元?23.(8分)某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1表2(1)在表2中,a = ,b = ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.24.(8分)丽君花卉基地出售两种盆栽花卉:太阳花6元/盆,绣球花10元/盆.若一次购买的绣球花超过20盆时,超过20盆部分的绣球花价格打8折.(1)分别写出两种花卉的付款金额y (元)关于购买量x (盆)的函数解析式;(2)为了美化环境,花园小区计划到该基地购买这两种花卉共90盆,其中太阳花数量不超过绣球花数量的一半.两种花卉各买多少盆时,总费用最少,最少费用是多少元?25.(10分)如图,AB 为⊙O 的直径,CO ⊥AB 于O ,D 在⊙O 上,连接BD ,CD ,延长CD 与AB 的延长线交于E ,F 在BE 上,且FD =FE .(1)求证:FD 是⊙O 的切线;(2)若AF =8,tan ∠BDF =14,求EF 的长.26.(12分)如图1,抛物线223y x x =-++与x 轴交于A ,B ,与y 轴交于C ,抛物线的顶点为D ,直线l 过C 交x 轴于E (4,0).(1)写出D 的坐标和直线l 的解析式;(2)P (x ,y )是线段BD 上的动点(不与B ,D 重合),PF ⊥x 轴于F ,设四边形OFPC 的面积为S ,求S 与x 之间的函数关系式,并求S 的最大值;(3)点Q 在x 轴的正半轴上运动,过Q 作y 轴的平行线,交直线l 于M ,交抛物线于N ,连接CN ,将△CMN 沿CN 翻转,M 的对应点为M ′.在图2中探究:是否存在点Q ,使得M ′恰好落在y 轴上?若存在,请求出Q 的坐标;若不存在,请说明理由.河池数学中考试题答案第Ⅰ卷(选择题,共36分)一、选择题(本题共12小题,每小题3分,共36分)1. D2. A3. C4. B5. D6. C7. C8. B 9. D 10. A 11. B 12. A二.填空题(本大题共6小题,每小题3分,共18分) 13. 3 . 14. 5 .15. 9 .16. 800 .17. (5,2) .18. 1 .三.解答题(本大题共8小题,满分66分)19. 解:原式=2+3+12-12=5 20.解:原式=9-x 2+1+2x+x 2=2x+10当x=2时,原式=2×2+10=1421.解:(1)(2)作图如下(3)△ACE ≌△ADE,△ACE ≌△CFB证明:△ACE ≌△ADE∵AE 是∠A 的平分线,∴∠CAE=∠DAE,又AC=AD,AE 为公共边,∴△ACE≌△ADE(SAS).22·解:(1)设第一次购进电风扇x台,则第二次购进x-10台,由题意可得:150x=180(x-10),解得x=60,所以第一次购进电风扇60台,则第二次购进50台.(2)商场获利为:(250-150)·60+(250-180)·50=9500(元)所以当商场以250元/台的售价卖完这两批电风扇,商场获利9500元.23.解:(1)众数是一组数据中出现最多的数,所以a=8;b=10+6+6+9+10+4+5+7+10+810=7.5.(2)①一班的平均分比二班高,所以一班成绩比二班号;②一班学生得分的方差比二班小,说明一班成绩比二班好.(3)1男1女两位同学的概率P=36=12.24.解:(1)太阳花:y=6x;10x(0≤x≤20)绣球花:y= ;200+8(x-20)(20<x)(2)设购买绣球花x盆,则购买太阳花90-x盆.根据题意可得:90-x≤x2,解得60≤x≤90,结合(1)中的结果,y总=6·(90-x)+200+8(x-20),得y总=2x+580,当x=60时,即购买绣球花60盆,购买太阳花30盆时,费用最小,最小费用为700元.答: 购买绣球花60盆,购买太阳花30盆时,费用最小,最小费用为700元.25. (1)证明:连接OD,∵CO⊥AB,∴∠E+∠C=90°,∵∠DFO为△EFD的外角,且FD=FE,∠ODC为△EOD的外角,且OD=OC,∴∠DFO=∠E+∠EDF=2∠E,∠DOF+∠E=∠ODC=∠C,得∠DOF+∠E+∠DFO=∠C+2∠E,即∠DOF+∠DFO=∠C+∠E=90°,∴FD是⊙O的切线.(2)解:连接AD,如图,∵AB 为⊙O 的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵OB=OD,∴∠OBD=∠ODB,∴∠A+∠ODB=90°,∵∠BDF+∠ODB=90°,∴∠A=∠BDF,而∠DFB=∠AFD,∴△FBD ∽△FDA, ∴DF AF =BD AD , 在Rt △ABD 中,tan ∠A=tan ∠BDF=BD AD =14,∴DF 8=14,∴DF=2,∴EF=2.26、【答案】(1)D (1,4),334y x =-+;(2)S =292x x -+(13x ≤≤),S 最大值为8116;(3)Q 的坐标为(32,0)或(4,0).考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.分类讨论;5.存在型;6.压轴题.。
2013年中考数学真题
2013年中考数学真题(方程、不等式和函数)一元二次方程1.(2013宁夏) 一元二次方程x x x -=-2)2(的根是( ) A. 1- B. 0 C.1和2 D. 1-和22.(2013•乌鲁木齐)若关于x 的方程式x 2﹣x+a=0有实根,则a 的值可以是( ) A . 2 B . 1 C . 0.5 D . 0.25 3.(2013•新疆)如果关于x 的一元二次方程x 2﹣4x+k=0有实数根,那么k 的取值范围是 .4.(2013•鞍山)已知b <0,关于x 的一元二次方程(x ﹣1)2=b 的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 没有实数根 D . 有两个实数根 5、(2013•滨州)一元二次方程2x 2﹣3x+1=0的解为 6.(2013甘肃白银)一元二次方程x 2+x ﹣2=0根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根 C . 无实数根 D . 无法确定 7.(2013•呼和浩特)(非课改)已知α,β是关于x 的一元二次方程x 2+(2m+3)x+m 2=0的两个不相等的实数根,且满足+=﹣1,则m 的值是( )A . 3或﹣1B . 3C . 1D . ﹣3或18、(2013杭州)当x 满足条件⎪⎩⎪⎨⎧-<--<+)4(31)4(21331x x x x 时,求出方程0422=--x x 的根 9.(4分)(2013•天水)一个三角形的两边长分别为3和6,第三边的边长是方程(x ﹣2)(x ﹣4)=0的根,则这个三角形的周长是( ) A . 11 B . 11或13 C . 13 D . 以上选项都不正确 10.(2013•天水)从一块正方形的木板上锯掉2m 宽的长方形木条,剩下的面积是48m 2,则原来这块木板的面积是( ) A . 100m 2 B . 64m 2 C . 121m 2 D . 144m 2 11、(2013昆明)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为X 米,则可列方程为( )A.100×80-100X -80X=7644B.(100-X)(80-X)+X 2=7644C.(100-X)(80-X)=7644D.100X +80X=35612.(2013•乐山)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+k=0. (1)求证:方程有两个不相等的实数根; (2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根.第三边BC 的长为5,当△ABC是等腰三角形时,求k 的值. 13、(2013青岛)某企业2010年底缴税40万元,2012年底缴税48.4万元,设这两年该企业缴税的年平均增长率为x ,根据题意,可得方程 . 14.(2013•新疆)2009年国家扶贫开发工作重点县农村居民人均纯收入为2027元,2011年增长到3985元.若设年平均增长率为x ,则根据题意可列方程为 . 15.(2013•白银)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x ,则可列方程为( ) A . 48(1﹣x )2=36 B . 48(1+x )2=36 C . 36(1﹣x )2=48 D . 36(1+x )2=48 16.(2013哈尔滨)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 . 17.(2013兰州)据调查,2011年5月兰州市的房价均价为7600元/m 2,2013年同期将达到8200元/m 2,假设这两年兰州市房价的平均增长率为x ,根据题意,所列方程为 A .8200%)1(76002=+x B .8200%)1(76002=-xC .8200)1(76002=+xD .8200)1(76002=-x18.(2013•巴中)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.19(2013年广东).雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款? 20.(2013•贵阳)2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.(1)求2010年底至2012年底该市汽车拥有量的年平均增长率; (2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.21.(2013绵阳)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。
广西壮族自治区南宁市2013年广西中考数学试卷及参考答案
A . 19 B . 18 C . 16 D . 15 9. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是( )
2
2
A . 图象关于直线x=1对称 B . 函数y=ax2+bx+c(a≠0)的最小值是﹣4 C . ﹣1和3是方程ax2+bx+c=0(a≠0)的两个根 D . 当x< 1时,y随x的增大而增大
A.3B.6C. D.
二、填空题.
12. 若二次根式
有意义,则x的取值范围是________.
13. 一副三角板如图所示放置,则∠AOB=________°.
14. 分解因式:x2﹣25=________.
15. 某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这
(2) 求出点M的坐标,并解释该点坐标所表示的实际意义; (3) 若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机 保持联系时x的取值范围. 24. 如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点 F,连接AF,AF的延长线交DE于点P.
科学记数法表示,表示正确的是( )
A . 0.79×104 B . 7.9×104 C . 7.9×103 D . 0.79×103 4. 小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投 影是( ) A . 三角形 B . 线段 C . 矩形 D . 平行四边形 5. 甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道 ,若甲首先抽签,则甲抽到1号跑道的概率是( ) A.1B. C. D. 6. 若分式 的值为0,则x的值为( ) A . ﹣1 B . 0 C . 2 D . ﹣1或2 7. 如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是( )
广西南宁市中考2013年数学试卷(含解析)
广西南宁市中考2013年数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请考上用2B铅笔在答题卡上将选定答案标号涂黑.1.(3分)(2013•南宁)在﹣2,1,5,0这四个数中,最大的数是()A.﹣3 B.1C.5D.0考点:有理数大小比较.分析:根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数进行比较即可.解答:解:在﹣2,1,5,0这四个数中,大小顺序为:﹣2<0<1<5,所以最大的数是5.故选C.点评:本题主要考查了有理数的大小的比较,解题的关键利用熟练掌握有理数的大小比较法则,属于基础题.2.(3分)(2013•南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.B.C.D.考点:点、线、面、体.分析:根据半圆绕它的直径旋转一周形成球即可得出答案.解答:解:半圆绕它的直径旋转一周形成球体.故选:A.点评:本题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.3.(3分)(2013•南宁)2013年6月11日,神舟十号飞船发射成功,神舟十号飞船身高9米,重约8吨,飞行速度约每秒7900米,将数7900用科学记数法表示,表示正确的是()A.0.79×104B.7.9×104C.7.9×103D.0.79×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将7900用科学记数法表示为:7.9×103.故选:C.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2013•南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.正方形考点:平行投影.分析:根据平行投影的性质分别分析得出即可即可.解答:解:将矩形木框立起与地面垂直放置时,形成的影子为线段;将矩形木框与地面平行放置时,形成的影子为矩形;将木框倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且矩形对边相等,故得到的投影不可能是三角形.故选:A.点评:本题考查了投影与视图的有关知识,是一道与实际生活密切相关的热点试题,灵活运用平行投影的性质是解题的关键.5.(3分)(2013•南宁)甲、乙、丙、丁四名选手参加100米决赛,赛场只设1、2、3、4四个跑道,选手以随机抽签的方式决定各自的跑道,若甲首先抽签,则甲抽到1号跑道的概率是()A.1B.12C.34D.14考点:概率公式.分析:由设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,直接利用概率公式求解即可求得答案.解答:解:∵设1、2、3、4四个跑道,甲抽到1号跑道的只有1种情况,∴甲抽到1号跑道的概率是:14.故选D.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.6.(3分)(2013•南宁)若分式的值为0,则x的值为()A.﹣1 B.0C.2D.﹣1或2考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣2=0,再解方程即可.解答:解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故选:C.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.7.(3分)(2013•南宁)如图,圆锥形的烟囱底面半径为15cm,母线长为20cm,制作这样一个烟囱帽所需要的铁皮面积至少是()A.150πcm2B.300πcm2C.600πcm2D.150πcm2考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.解答:解:烟囱帽所需要的铁皮面积=×20×2π×15=300π(cm2).故选B.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.8.(3分)(2013•南宁)下列各式计算正确的是()A.3a3+2a2=5a6B.C.a4•a2=a8D.(ab2)3=ab6考点:二次根式的加减法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:分别根据合并同类项、同底数幂的乘法法则及幂的乘方与积的乘方法则对各选项进行逐一判断即可.解答:解:A、3a3与2a2不是同类项,不能合并,故本选项错误;B、2+=3,故本选项正确;C、a4•a2=a6,故本选项错误;D、(ab2)3=a3b6,故本选项错误.故选B.点评:本题考查的是二次根式的加减法,即二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.9.(3分)(2013•南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15考点:二元一次方程组的应用.分析:要求出第三束气球的价格,先求出笑脸形和爱心形的气球的单价就可以求出结论.解答:解:设笑脸形的气球x元一个,爱心形的气球y元一个,由题意,得,解得:2x+2y=16.故选C.点评:本题考查了学生观察能力和识图能力,列二元一次方程组解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.10.(3分)(2013•南宁)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数ax2+bx+c(a≠0)的最小值是﹣4C.﹣1和3是方程ax2+bx+c(a≠0)的两个根D.当x<1时,y随x的增大而增大考点:二次函数的性质.分析:根据对称轴及抛物线与x轴交点情况,结合二次函数的性质,即可对所得结论进行判断.解答:解:A、观察图象,可知抛物线的对称轴为直线x=1,则图象关于直线x=1对称,正确,故本选项不符合题意;B、观察图象,可知抛物线的顶点坐标为(1,﹣4),又抛物线开口向上,所以函数ax2+bx+c(a≠0)的最小值是﹣4,正确,故本选项不符合题意;C、由图象可知抛物线与x轴的一个交点为(﹣1,0),而对称轴为直线x=1,所以抛物线与x轴的另外一个交点为(3,0),则﹣1和3是方程ax2+bx+c(a≠0)的两个根,正确,故本选项不符合题意;D、由抛物线的对称轴为x=1,所以当xx<1时,y随x的增大而减小,错误,故本选项符合题意.故选D.点评:此题考查了二次函数的性质和图象,解题的关键是利用数形结合思想解题.11.(3分)(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()A.4B.5C.4D.3考点:垂径定理;勾股定理;圆周角定理.专题:探究型.分析:先根据∠BAC=∠BOD可得出=,故可得出AB⊥CD,由垂径定理即可求出DE的长,再根据勾股定理即可得出结论.解答:解:∵∠BAC=∠BOD,∴=,∴AB⊥CD,∵AE=CD=8,∴DE=CD=4,设OD=r,则OE=AE﹣r=8﹣r,在RtODE中,OD=r,DE=4,OE=8﹣r,∵OD2=DE2+OE2,即r2=42+(8﹣r)2,解得r=5.故选B.点评:本题考查的是垂径定理及圆周角定理,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.12.(3分)(2013•南宁)如图,直线y=与双曲线y=(k>0,x>0)交于点A,将直线y=向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3B.6C.D.考点:反比例函数综合题.专题:探究型.分析:先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x 轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x解答:解:∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=x+4,分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴CF=OD,∵点B在直线y=x+4上,∴B(x,x+4),∵点A、B在双曲线y=上,∴3x•x=x•(x+4),解得x=1,∴k=3×1××1=.故选D.点评:本题考查的是反比例函数综合题,根据题意作出辅助线,设出A、B两点的坐标,再根据k=xy 的特点求出k的值即可.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2013•南宁)若二次根式有意义,则x的取值范围是x≥2.考点:二次根式有意义的条件.分析:根据二次根式有意义的条件,可得x﹣2≥0,解不等式求范围.解答:解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为x≥2.点评:本题考查二次根式的意义,只需使被开方数大于或等于0即可.14.(3分)(2013•南宁)一副三角板如图所示放置,则∠AOB=105°.考点:角的计算.分析:根据三角板的度数可得:∠1=45°,∠2=60°,再根据角的和差关系可得∠AOB=∠1+∠2,进而算出角度.解答:解:根据三角板的度数可得:∠1=45°,∠2=60°,∠AOB=∠1+∠2=45°+60°=105°,故答案为:105.点评:此题主要考查了角的计算,关键是掌握角之间的关系.15.(3分)(2013•南宁)分解因式:x2﹣25=(x+5)(x﹣5).考点:因式分解-运用公式法.分析:直接利用平方差公式分解即可.解答:解:x2﹣25=(x+5)(x﹣5).故答案为:(x+5)(x﹣5).点评:本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.16.(3分)(2013•南宁)某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是86分.考点:加权平均数.分析:利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.解答:解:小海这学期的体育综合成绩=(80×40%+90×60%)=86(分).故答案为86.点评:本题考查的是加权平均数的求法.本题易出现的错误是求80、90这两个数的平均数,对平均数的理解不正确.17.(3分)(2013•南宁)有这样一组数据a1,a2,a3,…a n,满足以下规律:,(n≥2且n为正整数),则a2013的值为﹣1(结果用数字表示).考点:规律型:数字的变化类.专题:规律型.分析:求出前几个数便不难发现,每三个数为一个循环组依次循环,用过2013除以3,根据商和余数的情况确定答案即可.解答:解:a1=,a2==2,a3==﹣1,a4==12,…,依此类推,每三个数为一个循环组依次循环,∵2013÷3=671,∴a2013为第671循环组的最后一个数,与a3相同,为﹣1.故答案为:﹣1.点评:本题是对数字变化规律的考查,根据计算得到每三个数为一个循环组依次循环是解题的关键.18.(3分)(2013•南宁)如图,在边长为2的正三角形中,将其内切圆和三个角切圆(与角两边及三角形内切圆都相切的圆)的内部挖去,则此三角形剩下部分(阴影部分)的面积为﹣π.考点:三角形的内切圆与内心.分析:连接OB,以及⊙O与BC的切点,在构造的直角三角形中,通过解直角三角形易求得⊙O的半径,然后作⊙O与小圆的公切线EF,易知△BEF也是等边三角形,那么小圆的圆心也是等边△BEF的重心;由此可求得小圆的半径,即可得到四个圆的面积,从而由等边三角形的面积减去四个圆的面积和所得的差即为阴影部分的面积.解答:解:如图,连接OB、OD;设小圆的圆心为P,⊙P与⊙O的切点为G;过G作两圆的公切线EF,交AB于E,交BC 于F,则∠BEF=∠BFE=90°﹣30°=60°,所以△BEF是等边三角形.在Rt△OBD中,∠OBD=30°,则OD=BD•tan30°=1×=,OB=2OD=,BG=OB﹣OG=;由于⊙P是等边△BEF的内切圆,所以点P是△BEF的内心,也是重心,故PG=BG=;∴S⊙O=π×()2=π,S⊙P=π×()2=π;∴S阴影=S△ABC﹣S⊙O﹣3S⊙P=﹣π﹣π=﹣π.故答案为﹣π.点评:此题主要考查了等边三角形的性质、相切两圆的性质以及图形面积的计算方法,难度适中.三、(本大题共2小题,每小题6分,共12分)19.(6分)(2013•南宁)计算:20130﹣+2cos60°+(﹣2)考点:实数的运算;零指数幂;特殊角的三角函数值.分析:分别进行零指数幂、二次根式的化简,然后代入特殊角的三角函数值合并即可得出答案.解答:解:原式=1﹣3+2×﹣2=﹣3.点评:本题考查了实数的运算,属于基础题,关键是掌握零指数幂的运算法则及一些特殊角的三角函数值.20.(6分)(2013•南宁)先化简,再求值:,其中x=﹣2.考点:分式的化简求值.专题:计算题.分析:先算括号里面的,再把除式的分母分解因式,并把除法转化为乘法,然后进行约分,最后把x的值代入进行计算即可得解.解答:解:(+)÷=÷=•=x﹣1,当x=﹣2时,原式=﹣2﹣1=﹣3.点评:本题考查了分式的化简求值,分子、分母能因式分解的先因式分解;除法要统一为乘法运算.四、本大题共2小题,每小题8分,共16分21.(8分)(2013•南宁)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示,∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为,∴S△A1B1C1:S△A2B2C2=()2=.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键,还利用了相似三角形面积的比等于相似比的平方的性质.22.(8分)(2013•南宁)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图1)补充完整;(3)求出扇形统计图(图2)中,体育部分所对应的圆心角的度数;(4)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.考点:折线统计图;用样本估计总体;扇形统计图.专题:图表型.分析:(1)用文学的人数除以所占的百分比计算即可得解;(2)根据所占的百分比求出艺术和其它的人数,然后补全折线图即可;(3)用体育所占的百分比乘以360°,计算即可得解;(4)用总人数乘以科普所占的百分比,计算即可得解.解答:解:(1)90÷30%=300(名),故,一共调查了300名学生;(2)艺术的人数:300×20%=60名,其它的人数:300×10%=30名;补全折线图如图;(3)体育部分所对应的圆心角的度数为:×360°=48°;(4)1800×=480(名).答:1800名学生中估计最喜爱科普类书籍的学生人数为480.点评:本题考查的是折线统计图和扇形统计图的综合运用,折线统计图表示的是事物的变化情况,扇形统计图中每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.五、(本大题满分8分)23.(8分)(2013•南宁)如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)首先根据菱形的性质,得到AB=BC=AD=CD,∠B=∠D,结合点E、F分别是边BC、AD的中点,即可证明出△ABE≌△CDF;(2)首先证明出△ABC是等边三角形,结合题干条件在Rt△AEB中,∠B=60°,AB=4,即可求出AE的长.解答:解:(1)∵四边形ABCD是菱形,∴AB=BC=AD=CD,∠B=∠D,∵点E、F分别是边BC、AD的中点,∴BE=DF,在△ABE和△CDF中,∵,∴△ABE≌△CDF(SAS);(2)∵∠B=60°,∴△ABC是等边三角形,∵点E是边BC的中点,∴AE⊥BC,在Rt△AEB中,∠B=60°,AB=4,sin60°==,解得AE=2.点评:本题主要考查菱形的性质等知识点,解答本题的关键是熟练掌握菱形的性质、全等三角形的证明以及等边三角形的性质,此题难度不大,是一道比较好的中考试题.六、(本大题满分10分)24.(10分)(2013•南宁)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人离B地的距离y(km)与行驶时x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地直接的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.考点:一次函数的应用.分析:(1)x=0时甲的y值即为A、B两地的距离;(2)根据图象求出甲、乙两人的速度,再利用相遇问题求出相遇时间,然后求出乙的路程即可得到点M的坐标以及实际意义;(3)分相遇前和相遇后两种情况求出x的值,再求出最后两人都到达B地前两人相距3千米的时间,然后写出两个取值范围即可.解答:解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=23,23×30=20千米,所以,点M的坐标为(23,20),表示小时后两车相遇,此时距离B地20千米;(3)设x小时时,甲、乙两人相距3km,①若是相遇前,则15x+30x=30﹣3,解得x=35,②若是相遇后,则15x+30x=30+3,解得x=,③若是到达B地前,则15x﹣30(x﹣1)=3,解得x=95,所以,当35≤x≤或95≤x≤2时,甲、乙两人能够用无线对讲机保持联系.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,难点在于(3)要分情况讨论.七、(本大题满分10分)25.(10分)(2013•南宁)如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.(1)求证:DE是⊙O的切线;(2)求tan∠ABE的值;(3)若OA=2,求线段AP的长.考点:切线的判定;圆周角定理;解直角三角形.专题:证明题.分析:(1)连结AD、OD,根据圆周角定理得∠ADB=90°,由AB=AC,根据等腰三角形的直线得DC=DB,所以OD为△BAC的中位线,则OD∥AC,然后利用DE⊥AC得到OD⊥DE,这样根据切线的判定定理即可得到结论;(2)易得四边形OAED为正方形,然后根据正切的定义计算tan∠ABE的值;(3)由AB是⊙O的直径得∠AFB=90°,再根据等角的余角相等得∠EAP=∠ABF,则tan∠EAP=tan∠ABE=,在Rt△EAP中,利用正切的定义可计算出EP,然后利用勾股定理可计算出AP.解答:(1)证明:连结AD、OD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴AD垂直平分BC,即DC=DB,∴OD为△BAC的中位线,∴OD∥AC,而DE⊥AC,∴OD⊥DE,∴DE是⊙O的切线;(2)解:∵OD⊥DE,DE⊥AC,∴四边形OAED为矩形,而OD=OA,∴四边形OAED为正方形,∴AE=AO,∴tan∠ABE==;(3)解:∵AB是⊙O的直径,∴∠AFB=90°,∴∠ABF+∠FAB=90°,而∠EAP+∠FAB=90°,∴∠EAP=∠ABF,∴tan∠EAP=tan∠ABE=,在Rt△EAP中,AE=2,∵tan∠EAP==,∴EP=1,∴AP==.点评:本题考查了圆的切线的判定:过半径的外端点与半径垂直的直线为圆的切线.也考查了圆周角定理和解直角三角形.八、(本大题满分10分)26.(10分)(2013•南宁)如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.考点:二次函数综合题.专题:代数几何综合题.分析:(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解;(2)根据抛物线解析式设出点A的坐标,然后求出AO、AM的长,即可得证;(3)①k=0时,求出AM、BN的长,然后代入+计算即可得解;②设点A(x1,x12﹣1),B(x2,x22﹣1),然后表示出+,再联立抛物线与直线解析式,消掉未知数y得到关于x的一元二次方程,利用根与系数的关系表示出x1+x2,x1•2,并求出x12+x22,x12•x22,然后代入进行计算即可得解.解答:(1)解:∵抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1),∴,解得,所以,抛物线的解析式为y=x2﹣1;(2)证明:设点A的坐标为(m,m2﹣1),则AO==m2+1,∵直线l过点E(0,﹣2)且平行于x轴,∴点M的纵坐标为﹣2,∴AM=m2﹣1﹣(﹣2)=m2+1,∴AO=AM;(3)解:①k=0时,直线y=kx与x轴重合,点A、B在x轴上,∴AM=BN=0﹣(﹣2)=2,∴+=+=1;②k取任何值时,设点A(x1,x12﹣1),B(x2,x22﹣1),则+=+==,联立,消掉y得,x2﹣4kx﹣4=0,由根与系数的关系得,x1+x2=4k,x1•x2=﹣4,所以,x12+x22=(x1+x2)2﹣2x1•x2=16k2+8,x12•x22=16,∴+===1,∴无论k取何值,+的值都等于同一个常数1.点评:本题是二次函数综合题型,主要考查了待定系数法求二次函数解析式,勾股定理以及点到直线的距离,根与系数的关系,根据抛物线上点的坐标特征设出点A、B的坐标,然后用含有k的式子表示出+是解题的关键,也是本题的难点,计算量较大,要认真仔细.。
2013年广西柳州中考数学试卷及答案(word解析版)
2013年柳州市初中毕业升学考试试卷数 学(考试时间共120分钟,全卷满分120分)一、选择题(本大题共12小题,每小题3分,满分36分.在每个小题给出的四个选项中,只有一项是正确的,每个小题选对3分,选错、不选或多选均得0分) 1.(2013广西柳州,1,3分)如某几何体的三视图如图所示,则该几何体是A .正方体B .长方体C .三棱柱D .三棱锥【答案】CA .B .C .D . 2.(2013广西柳州,2,3分)计算-10-8所得的结果是A .-2B .2C .18D .-18 【答案】D3.(2013广西柳州,3,3分)在-3,0,4,6这四个数中,最大的数是A .-3B .0C . 4.D .6 【答案】C 4.(2013广西柳州,4,3分)右图是经过轴对称变换后所得到的图形,与原图形相比 A .形状没有改变,大小没有改变 B .形状没有改变,大小有改变 C .形状有改变,大小没有改变D .形状有改变,大小有改变【答案】A 5.(2013广西柳州,5,3分)下列计算正确的是A .3a ·2a =5aB .3 a ·2a =5a 2C .3a ·2a =6aD .3a ·2a =6 a 2 【答案】D(第4题图) 主视图 左视图 俯视图(第1题图)6.(2013广西柳州,6,3分)在下列所给出的坐标的点中,在第二象限的是 A .(2,3) B .(-2,3) C .(-2,-3) D .(2,-3) 【答案】B 7.(2013广西柳州,7,3分)学校舞蹈队买了8双舞蹈鞋,鞋的尺码分别为:36,35,36,37,38,35,36,36,这组数据的众数是A . 35B . 36C .37D .38 【答案】B8.(2013广西柳州,8,3分)下列四个图中,∠x 是圆周角的是【答案】C 9.(2013广西柳州,9,3分)下列式子是因式分解的是A .x (x -1)=x 2 -1B .x 2 -x = x (x +1)C .x 2+x =x (x +1)D .x 2-x =(x +1)(x -1) 【答案】C10.小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如图),然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为A .10米B .12米C .15米D .22.5米【答案】D11.(2013广西柳州,11,3分)如图,P 点(a ,a )是反比例函数xy 16=在第一象限内的图象上的一个点,以点P 为端点作等边△P AB ,使A 、B 落在x 轴上,则△POA 的面积是A . 3B . 4C .33412- D .33824- OyB xAP(第11题图)ABC(第12题图)O OO Ox x xxABD(第8题图)【答案】D 12.(2013广西柳州,12,3分)在△ABC 中,∠BAC =90°,AB =3,AC =4,AD 平分∠BAC 交BC 于D ,则BD 的长为A .715 B .512 C .720 D .512【答案】A二、填空题(本大题共6小题,每小题3分,满分18分,请你将答案直接写在大题卡中相应的横线上,在草稿...纸上、试卷上答题无效..........) 13.(2013广西柳州,13,3分)不等式4x >8的解集是____________ 【答案】x >214.(2013广西柳州,14,3分)若分式23-+x x 有意义,则x ≠________ 【答案】x ≠2 15.(2013广西柳州,15,3分)一个袋子中有3个红球和若干个白球,这些球除颜色外,形状、大小、质地完全相同,在看不到的条件下,随机摸出一个红球的概率是103,则袋中有________个白球. 【答案】7 16.(2013广西柳州,16,3分)学校组织“我的中国梦”演讲比赛,每位选手的最后得分为去掉以个最低分、一个最高分后的平均分.7位评委给小红打的分数是:9.3,9.6,9.4,9.8,9.5,9.1,9.7,则小红同学的最后得分是_______ 【答案】9.5 17.(2013广西柳州,17,3分)如图△ABC ≌△DEF ,请根据图中提供的信息,写出x =_____【答案】2018.(2013广西柳州,18,3分)有下列4个命题:①方程06)32(2=++-x x 的根是2和3.②在△ABC 中,∠ACB =,90°,CD ⊥AB 于D .若AD =4,BD =49,则CD =3. ABC D FE1850°60° 70°20x(第17题图)AB DC(第12题图)③点P (x ,y )的坐标x ,y 满足022222=+-++y x y x ,若点P 也在xky =的图象上,则k =-1. ④若实数b 、c 满足1+b +c >0,1-b +c <0,则关于x 的方程02=++c bx x 一定有两个不相等的实数根,且较大的实数根,满足-1<x 0<1.上述4个命题中,真命题的序号是____________ 【答案】①②③④三、解答题(本大题共8小题,满分66分.解答时应写出必要的文字说明、演算步骤或推理过程,请将解答写在答题卡中相应的区域内,画图或作辅助线时使用铅笔画出,确定后必需使用黑色字迹的签字笔描黑,在草稿纸、.....试卷上答题无效.......) 19.(2013广西柳州,19,6分)(本题满分6分)计算:02)3()2(--【答案】解:原式=4-1=3 20.(2013广西柳州,20,6分)(本题满分6分) 解方程:3(x +4)=x【答案】解:x x =+123 123-=-x x 122-=x 6-=x 21.(2013广西柳州,21,6分)(本题满分6分)韦玲和覃静两人玩“剪刀、石头、布”的游戏,游戏规则为:剪刀胜布,布胜石头,石头胜剪刀. (1) 请用列表法或树状图表示所有可能出现的游戏结果: (2) 求韦玲胜出的概率.【答案】 (1)(2)31P 22.(2013广西柳州,22,8分)(本题满分8分)如图,将小旗ACDB 放于平面直角坐标系 ,得到各顶点的坐标为A (-6,12),B (-6,0),C (0,6),D (-6,6).以点..B.为旋转中心.....,在平面直角坐标系内将小旗顺时针...旋转90°. (1)画出旋转后的小旗A ′C ′D ′B ′; (2)写出A ′,C ′,D ′的坐标;(3)求出线段BA 旋转到B ′A ′时所扫过的扇形的面积.【答案】 (1)A DBCO xy(第22题图)剪刀石头布韦玲剪刀 剪刀剪刀石头 石头 石头 布 布 布覃静(2)A ′(6,0),C ′(0,-6),D ′(0,0)(3)ππ3636012902=⨯⨯=S 23.(2013广西柳州,23,8分)(本题满分8分)某游泳池有水4000m 3,现放水清洗池子.同时,工作人员记录放水的时间x (单位:分钟)与池内水量y (单位:m 3)的对应变化的情况, 如下表: 时间x (分钟) … 10 20 30 40 … 水量y (m 3)…3750350032503000…(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m 3? (2)请你用函数解析式表示y 与x 的关系,并写出自变量x 的取值范围. 【答案】(1)4000-25×80=2000( m 3) (2)y =-25x +4000(0≤x ≤160)(本题:一采用待定系数法,二利用解应用题的思路求解) 24.(2013广西柳州,24,10分)(本题满分10分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,连结AC 、BD .在平面内将△DBC 沿BC 翻折得到△EBC . (1) 四边形ABEC 一定是什么四边形? (2) 证明你在(1)中所得出的结论.【答案】(1) 平行四边形(2) ∵四边形ABCD 为等腰梯形,∴AB =CD ,AC =BD .∵△DBC 沿BC 翻折得到△EBC ,BECDA (第17题图)A ′xyC ′B ′D ′O∴DC =CE ,BD =BE . ∴AB =CE ,AC =BE .∴四边形ABEC 是四平行边形. 25.(2013广西柳州,25,10分)(本题满分10分)如图,⊙O 的直径AB =6,AD 、BC 是⊙O 的两条切线,AD =2,BC =29. (1)求OD 、OC 的长;(2)求证:△DOC ∽△OBC ; (3)求证:CD 是⊙O 的切线.【答案】(1) 解:∵AD 、BC 是⊙O 的两条切线, ∴∠A =90°,∠B =90°. 根据勾股定理:13232222=+=+=OA AD OD1323)29(32222=+=+=BC OB OC(2)过点D 做DH ⊥BC ,则213)229(622=-+=DC ,B AOC D(第25题图)HB A OC D(第25题图)∵313===OC DC BC OC OB DO ∴△DOC ∽△OBC. (3)过点G 做OG ⊥DC 于点G ,∵△DOC ∽△OBC , ∴∠OCB =∠OCG .∴O C 为∠BCD 的角平分线. ∵OG ⊥DC ,OB ⊥BC , ∴OB =OG .∴CD 是⊙O 的切线 26.(2013广西柳州,26,12分)(本题满分12分) 已知二次函数y =ax 2+bx +c (a ≠0)的图象经过点(1,0),(5,0),(3,-4). (1)求该二次函数的解析式;(2)当y >-3时,写出x 的取值范围;(3)A 、B 为直线y =-2x -6上两动点,且距离为2,点C 为二次函数图象上的动点,当点C 运动到何处时△ABC 的面积最小?求出此时点C 的坐标及△ABC 面积的最小值.B A OCD(第25题图)G【答案】(1) 设y =a (x -1)(x -5),把(3,-4)代入得a =1, y =x 2-6x +5 (2) x <2,或x >4. (3)设直线l′的解析式b x y +-=2,当直线l′与抛物线相切时,点C 距离直线y =-2x -6最近.5622+-=+-x x b x , 0542=-+-b x x0)5(14)4(422=-⨯⨯--=-=∆b ac byxO(第26题图)D F CEG A Bl ′MyxO(第26题图)1=b⎩⎨⎧+-=+-=56122x x y x y 解得:⎩⎨⎧-==32y x∴点C (2,-3). 容易求出点D (-3,0),E (21,0),M (0,-6), 易证△DFE ∽△DOM , OM EF DM DE =,6535.3EF =,557=EF ,557557221=⨯⨯=∆ABC S .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年河池市中考试题数 学(满分120分,考试时间120分钟)第一部分(选择题 共30分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都代号为A 、B 、C 、D的四个结论,其中只有一个是正确的.1.(2013广西河池,1,3分)在-2,-1,1,2这四个数中,最小的是( )A .-2B .-1C .1D .2 【答案】A2.(2013广西河池,2,3分)如图1,直线a ∥b ,直线c 与a ,b 相交,∠1=70°,则∠2的大小是( ) A .20° B .50° C .70° D .110° 【答案】C3.(2013广西河池,3,3分)如图2所示的几何体,其主视图是( )【答案】C4.(2013广西河池,4,3分)2013年河池市初中毕业升学考试的考生人数约为3.2万名,从中抽取300名考生的数学成绩进行分析,在本次调查中,样本指的是( ) A .300名考生的数学成绩 B .300 C .3.2万名考生的数学成绩 D .300名考生 【答案】A5.(2013广西河池,5,3分)把不等式组1010x x +⎧⎨-⎩>≤的解集表示在数轴上,正确的是( )【答案】B6.(2013广西河池,6,3分)一个三角形的周长是36cm,则以这个三角形各边中点为图2图1A .B .C .D .A .B .C .D .顶点的三角形的周长是( ) A .6cm B .12cm C .18cm D .36cm 【答案】C7.(2013广西河池,7,3分)下列运算正确的是( )A .x 2+x 3=x 5B .23()x =x 8C .x 6÷x 2=x 3D .x 4·x 2=x 6 【答案】D8.(2013广西河池,8,3分)如图3(1),已知两个全等直角三角形的直角顶点及一条直角边重合.将△ACB 绕点C 按顺时针方向旋转到△A ′C ′B ′ 的位置,其中A ′C 交直线AD 于点E ,A ′B ′分别交直线AD ,AC 于点F ,G ,则在图3(2)中,全等三角形共有( ) A .5对 B .4对 C .3对 D .2对【答案】B9.(2013广西河池,9,3分)如图4,⊙O 的弦AB 垂直半径OC 于点D ,∠CBA =30°,OC,则弦AB 的长为( ) A .9cmB .cmC .92cm Dcm【答案】A10.(2013广西河池,10,3分)如图5,AB 为⊙O 的直径,C 为⊙O 外一点,过C 作⊙O 的切线,切点为B ,连接AC 交⊙O 于D ,∠C =38°.点E 在AB 右侧的半圆周上运动(不与A ,B 重合),则∠AED 的大小是( ) A .19° B .38° C .52° D .76°A OCB D图4(1)(2)图3【答案】B11.(2013广西河池,11,3分)如图6,在直角梯形ABCD 中,AB =2,BC =4,AD =6,M 是CD 的中点,点P 在直角梯形的边上沿A →B →C →M 运动,则△APM 的面积y 与点P 经过的路程x 之间的函数关系用图象表示是( )【答案】D12.(2013广西河池,12,3分)已知二次函数y =-x 2+3x -35,当自变量x 取m 时对应的函数值大于0,设自变量x 分别取m -3,m +3时对应的函数值为y 1,y 2,则( )A . y 1>0,y 2>0B .y 1>0,y 2<0C . y 1<0,y 2>0D . y 1<0,y 2<0 【答案】D第二部分(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分)请把答案填在答案卷指定的位置上.13.(2013广西河池,13,3分)若分式21x 有意义,则x 的取值范围是_____________.【答案】x ≠114.(2013广西河池,14,3分)分解因式:ax 2-4a =______________.【答案】a (x +2)(x -2)15.(2013广西河池,15,3分)袋子中装有4个黑球2个白球,这些球的形状、大小、质地等完全相同.在看不到球的条件下,随机地从这个袋子中摸出一个球,这个球为白球的概率是_____________.A .B .C .D .图5图6 AMCB D P【答案】1316.(2013广西河池,16,3分)如图7,点O 是△ABC 的两条角平分线的交点,若∠BOC =118°,则∠A 的大小是_____________.【答案】56°17.(2013广西河池,17,3分)如图8,在△ABC 中,AC =6,BC =5,sin A =23,则tan B =___________.【答案】4318.(2013广西河池,18,3分)如图9,正方形ABCD 的边长为4,E ,F 分别是BC ,CD 上的两个动点,且AE ⊥EF .则AF 的最小值是____________.【答案】5三、解答题(本大题共8小题,共66分)请在答案卷指定的位置上写出解答过程. 19.(2013广西河池,19,6分)计算:22cos30(3)︒-- (说明:本题不允许...使用计算器.) 【答案】解:原式=239+39+=6.20.(2013广西河池,20,6分)先化简,再求值:2(2)(1)(1)x xx +-+-,其中x = 1.图7ACB 图8图9AF C BDE【答案】解:2(2)(1)(1)x x x +-+-=2244(1)x x x ++--=22441x x x ++-+ =45x +. 当x = 1时,原式=415⨯+=9.21.(2013广西河池,21,8分)请在图10中补全坐标系及缺失的部分,并在横线上填写恰当的内容.图中各点坐标如下:A (1,0),B (6,0),C (1,3),D (6,2).线段AB 上有一点M ,使△ACM ∽△BDM 且相似比不等于1.求出点M 的坐标并证明你的结论.解:M (____,_____).证明:∵CA ⊥AB ,DB ⊥AB , ∴∠CAM =∠DBM =_________度. ∵CA =AM =3, DB =BM =2,∴∠ACM =∠AMC (________________________). ∠BDM =∠BMD (同理).∴∠ACM =12(180°-________________)=45°. ∠BDM =45°(同理). ∴∠ACM =∠BDM . 在△ACM 与△BDM 中,______________CAM DBM ∠=∠⎧⎨⎩,∴△ACM ∽△BDM (如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似). 【答案】解:图104,0,90,等边对等角,∠CAM ,∠ACM =∠BDM22.(2013广西河池,22,8分)为相应“美丽河池 清洁乡村 美化校园”的号召,红水河中学计划在学校公共场所安装温馨提示牌和垃圾箱.已知,安装5个温馨提示牌和6个垃圾箱需730元,安装7个温馨提示牌和12个垃圾箱需1310元. (1)安装1个温馨提示牌和1个垃圾箱各需多少元? (2)安装8个温馨提示牌和15个垃圾箱共需多少元?【答案】解:(1)设安装1个温馨提示牌需x 元,安装1个垃圾箱需y 元,依题意得567307121310x y x y +=⎧⎨+=⎩,. 解这个方程组,得5080x y =⎧⎨=⎩,.答:安装1个温馨提示牌和1个垃圾箱分别需50元、80元.(2)8x +15y =8×50+15×80=1600(元).答:安装8个温馨提示牌和15个垃圾箱共需1600元.23.(2013广西河池,23,8分)瑶寨中学食堂为学生提供了四种价格的午餐供其选择,这四种价格分别是:A .3元,B .4元,C .5元,D .6元.为了解学社对四种午餐的购买情况,学校随机抽样调查了甲、乙两班学生某天购买四种午餐的情况,依据统计数据制成如下的统计图表:(1)求乙班学生人数;(2)求乙班购买午餐费用的中位数;(3)已知甲、乙两班购买午餐费用的平均数均为 4.44元,从平均数和众数的角度分析,哪个班购买的午餐价格较高;(4)从这次接受调查的学生中,随机抽查一人,恰好是购买C 种午餐的学生的概率是多少?【答案】解:(1)13÷26%=50(人); (2)乙班购买A 种午餐的人数为50×18%=9(人), 中位数是5元;答图1(3)甲、乙两班购买午餐费用的平均数相同,甲班购买午餐费用的众数是4元,乙班购买午餐费用的众数是5元,从平均数与众数可以看出乙班购买的午餐的价格较高; (4)16+25=41. 24.(2013广西河池,24,8分)华联超市预购进A ,B 两种品牌的书包共400个.已知两种书包的进价如下表所示.设购进A 种书包x 个,且所购进的两种书包能全部卖出,获得的总利润为w 元.(1)求w 关于x 的函数关系式;(2)如果购进两种书包的总费用不超过18000元,那么商场如何进货才能获利最大?并求出最大利润.(提示:利润=售价-进价) 【答案】解:(1)由题意得:w 关于x 的函数关系式是:w =(65-47)x +(50-37)(400-x ) =5x +5200,即w =5x +5200(0≤x ≤400);(2)由题意,得47x +37(400-x )≤18000, 解这个不等式,得x ≤320. ∴当x =320时,w 最大值=5×320+5200=6800(元),∴该商场购进A ,B 两种书包分别为320个,80个时,能获得最大利润6800元. 25.(2013广西河池,25,10分)如图(1),在Rt △ABC 中,∠ACB =90°,分别以AB ,BC 为一边向外作正方形ABFG ,BCED ,连接AD ,CF ,AD 与CF 交于点M . (1)求证:△ABD ≌△FBC ;(2)如图(2),已知AD =6,求四边形AFDC 的面积;(3)在△ABC 中,设BC =a ,AC =b ,AB =c ,当∠ACB ≠90°时,c 2≠a 2+b 2.在任意△ABC 中,c 2=a 2+b 2+k .就a =3,b =2的情形,探究k 的取值范围(只需写出你得到的结论即可).【答案】解:(1)证明:∵四边形ABFG ,BCED 都是正方形,∴AB =FB ,BC =BD ,∠ABF =∠CBD =90°, ∴∠ABF +∠ABC =∠CBD +∠ABC , 即∠CBF =∠ABD .∴△ABD ≌△FBC (SAS );(1)AFC BDE GM(2)A FC B DEGM N(2)由(1)知△ABD≌△FBC,∴CF=AD=6,∠DAB=∠CFB,设CF交AB于点N,∵∠ABF =90°,∴∠CFB+∠BNF =90°,又∵∠DAB=∠CFB,∠BNF =∠ANM,∴∠DAB +∠ANM =90°,∴AD⊥CF,∴四边形AFDC的面积=12×AD×CF=12×6×6=18;(3)12-<k<12。