Method of Recovering the Fibrous Fraction
FactSage_热力学计算在耐火材料抗渣侵蚀性中的应用
第43卷第3期2024年3月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.3March,2024FactSage 热力学计算在耐火材料抗渣侵蚀性中的应用郭伟杰1,2,朱天彬1,2,李亚伟1,2,廖㊀宁1,2,桑绍柏1,2,徐义彪1,2,鄢㊀文1,2(1.武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉㊀430081;2.武汉科技大学高温材料与炉衬技术国家地方联合工程研究中心,武汉㊀430081)摘要:商用热力学计算软件FactSage 在耐火材料抗渣侵蚀性研究中起到重要作用,因此在耐火材料研究中应用越来越广泛㊂本文总结了近15年来热力学计算在耐火材料抗渣侵蚀性研究中的应用,重点介绍了耐火材料抗渣侵蚀研究中常用的热力学计算模型,分析了各种模型的原理㊁特点㊁适用情景㊁精确度与局限性,并给出了详细的运用实例㊂此外,本文介绍了热力学计算与其他方法相结合运用的实例,包含ANSYS㊁动力学分析㊁分子动力学模拟等方法,规避热力学计算的局限性,更加全面地分析熔渣对耐火材料的侵蚀行为㊂最后,本文对热力学计算存在的问题进行了归纳,并基于现有研究现状对其发展前景与方向进行了展望㊂关键词:耐火材料;热力学计算;抗渣侵蚀性;FactSage;热力学模型中图分类号:TQ175㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)03-1110-13Application of FactSage Thermodynamic Calculation on Slag Corrosion Resistance of RefractoriesGUO Weijie 1,2,ZHU Tianbin 1,2,LI Yawei 1,2,LIAO Ning 1,2,SANG Shaobai 1,2,XU Yibiao 1,2,YAN Wen 1,2(1.The State Key Laboratory of Refractories and Metallurgy,Wuhan University of Science and Technology,Wuhan 430081,China;2.National-Provincial Joint Engineering Research Center of High Temperature Materials and Lining Technology,Wuhan University of Science and Technology,Wuhan 430081,China)Abstract :Commercial thermodynamic calculation software FactSage plays an important role in the analysis of slag corrosion process,therefore it has been widely used in the research of refractories.Application of thermodynamic calculation on slag corrosion resistance of refractories and thermodynamic calculation models which are commonly used in the slag corrosionresistance of refractories were introduced.The mechanisms,characteristics,applicable situations,accuracy and limitations of every model were discussed,and the detailed examples were given.Furthermore,the application examples of FactSage combined with other methods including ANSYS,kinetic analysis and MD simulation were given,aiming to avoid the limitations of thermodynamic calculation and comprehensively analyze the slag corrosion stly,the common problems of thermodynamic calculation were summarized,and the direction of further development was proposed.Key words :refractory;thermodynamic calculation;slag corrosion resistance;FactSage;thermodynamic model 收稿日期:2023-09-27;修订日期:2023-12-06基金项目:国家自然科学基金联合基金重点项目(U21A2058,U1908227,52272071);湖北省自然科学基金项目(2022CFB024)作者简介:郭伟杰(1998 ),男,硕士研究生㊂主要从事耐火材料抗渣性能的研究㊂E-mail:1099255596@通信作者:朱天彬,博士,副教授㊂E-mail:zhutianbin@ 0㊀引㊀言随着计算机技术的高速发展,集成了大量热力学数据的商用热力学计算软件成为研究者的重要工具㊂FactSage [1]最早于1976年提出,2001年加拿大蒙特利尔综合工业大学的FACT-win 软件与德国GTT 公司的ChemSage 软件整合为FactSage,这是目前应用最为广泛的热力学计算软件之一㊂该软件集成了大量热力学数据库,包括溶液㊁化合物㊁纯物质㊁熔盐㊁合金的数据,并整合了以多元相平衡计算为代表的多种功能,是一㊀第3期郭伟杰等:FactSage热力学计算在耐火材料抗渣侵蚀性中的应用1111个综合性集成热力学计算软件[2-3],已在全球800多所大学㊁实验室和企业中应用[4]㊂在耐火材料领域,FactSage热力学计算同样占据着重要地位,已被应用于相图绘制㊁熔渣侵蚀分析㊁液相含量分析㊁黏度计算㊁复杂条件下多元多相体系平衡㊁体系热力学函数计算等诸多方面[5-8]㊂其中,热力学计算能够较好地分析耐火材料抗渣侵蚀性,在熔渣性质㊁热力学平衡相㊁液相组成等方面提供重要参考㊂因此,本文综述了近15年来FactSage热力学计算在耐火材料抗渣侵蚀研究进展,给出了基于热力学计算的抗渣侵蚀性研究案例,以期为相关科研工作者使用热力学计算分析耐火材料抗渣侵蚀机理提供参考和借鉴㊂同时,基于近年来的研究现状,总结FactSage热力学计算在耐火材料抗渣侵蚀性的发展趋势,并对其发展前景进行了展望㊂1㊀耐火材料抗渣侵蚀研究中的热力学计算模型热力学计算中,FactSage的Equilib模块是模拟熔渣与耐火材料反应过程的最常用工具㊂该模块通过原ChemSage的算法,基于吉布斯自由能最低原理[9-10],能够较好地预测熔渣对耐火材料侵蚀过程中的热力学平衡相与液相组成变化㊂使用该模块进行耐火材料抗渣侵蚀性研究的常用过程如图1所示㊂图1㊀使用FactSage的Equilib模块对熔渣-耐火材料侵蚀过程进行分析的主要步骤Fig.1㊀Main steps during the analysis of slag corrosion resistance of refractories using Equilib module of FactSage选择合适的热力学计算模型是获取准确的热力学计算结果的前提㊂不同的热力学计算模型具有不同的侧重点,应当基于当前研究体系的特点,选取合适的模型以达到较好的模拟效果㊂目前,经过国内外研究者的长期研究,以界面反应模型为代表的热力学计算模型被广泛开发,并经过了大量实验验证,具有较高的准确度与可信度㊂下面对常用的热力学计算模型分别进行介绍㊂1.1㊀物相-温度模型图2为物相-温度模型的示意图㊂物相-温度模型是一种常用的计算模型,能够较好地反映物相随温度的变化情况㊂物相-温度模型的示意图如图2(a)所示,熔渣与耐火材料的质量恒定(常设定为100gʒ100g),在该模型中温度是唯一的变量,通过计算得到物相-温度曲线(见图2(b)),从而反映物相随温度的变化过程㊂该模型常用于分析温度对耐火材料抗渣侵蚀性的影响以及高熔点相在耐火材料内的生成温度等情况㊂此外,该模型变量较少㊁上手门槛较低,适用于大多数耐火材料抗渣侵蚀性分析㊂图2㊀物相-温度模型的示意图Fig.2㊀Schematic diagram of phase-temperature thermodynamic model在Gehre等[11]关于含硫渣对尖晶石耐火材料的侵蚀行为的研究中,通过设定30g熔渣与10g耐火材料在强还原气氛下进行反应,得到了尖晶石㊁CaMg2Al16O27相在800~1450ħ的变化趋势(见图3),较好地描述了固相随温度降低逐渐析出的过程㊂类似地,在刚玉尖晶石浇注料体系中,Ramult等[12]在1112㊀耐火材料硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷图3㊀矿物相与熔渣含量与温度的函数关系[11]Fig.3㊀Functional relationship between mineral phase,slag content and temperature [11]1200~1700ħ设定50%(文中均为质量分数)耐火材料与50%钢渣反应,比较了三种不同碱度的熔渣对浇筑料侵蚀后的产物区别㊂该方法同样在铜工业用无铬耐火材料中运用,Jastrzębska 等[13]通过将50g 的不同种类铜渣与50g 的Al 2O 3-MgAl 2O 4耐火材料进行计算,发现尖晶石能够在较大温度范围内稳定存在,证实了该种耐火材料对铜渣具有较好的抵抗能力㊂而在炉渣的固相分数分析中,Anton 等[14]则使用该模型计算了熔渣的完全融化温度,发现碱度不随固体析出而变化㊂物相-温度模型对熔渣-耐火材料体系内固相的析出温度具有良好的精确度,并能够准确判断固相在高温下的稳定情况,且可以确定产生液相的温度点㊂此外,这种热力学模型以温度作为变量,适合于描述较大温度范围内的熔渣侵蚀情况,能够提供从升温到降温的全过程熔渣侵蚀产物分析㊂然而,该种模型具有明显的局限性㊂众所周知,熔渣侵蚀耐火材料的过程中,熔渣含量变化导致系统物相组成不断变化,熔渣侵蚀耐火材料的过程是一个渐进的过程㊂使用温度-物相模型时,由于熔渣与耐火材料组分未引入变量,采用了固定值进行计算,导致其计算结果是对熔渣侵蚀最终结果的预测,而无法渐进㊁全面地展现熔渣对耐火材料的侵蚀过程㊂侵蚀过程描述的缺失使得中间相的产生机理无法较好地被描述(如浇注料体系中二铝酸钙(CA 2)与六铝酸钙(CA 6)相的含量变化),导致复杂体系的精确度较差㊂1.2㊀溶解模型图4为溶解模型示意图,图5为不同气氛下镁铬耐火材料-冰铜渣系统的热力学平衡相㊂溶解模型也是耐火材料抗渣侵蚀研究中一种常用的模型,如图4(a)所示,该模型设定耐火材料的质量恒定不变,熔渣质量线性增加㊂在该模型中,定义质量比A =m S /m R (m S 为熔渣质量,m R 为耐火材料质量),对系统内各组分使用表达式<m R +m S ˑA >进行描述,即随着A 值的增加,在耐火材料质量不变的情况下,熔渣质量从0开始不断线性增加,从而模拟熔渣量从少到多的侵蚀过程㊂如图4(b)所示,该模型较好地反映了组分在熔渣内的溶解速率情况与稳定程度,通过物相质量-A 曲线的斜率定性反映溶解速率,通过曲线归零时所需A 的绝对值反映该物相在熔渣内的稳定程度㊂图4㊀溶解模型示意图Fig.4㊀Schematic diagrams of dissolution model 溶解模型由于具有较好的普适性而被广泛运用于耐火材料抗渣侵蚀研究中㊂在Liu 等[15]㊁王恭一等[16]和程艳俏等[17]针对镁铬质耐火材料抗渣侵蚀性的研究中,根据如图5所示的热力学计算,发现镁铬尖晶石㊁镁铁尖晶石以及镁橄榄石在系统内可以稳定存在;而在还原气氛下(见图5(b)),镁橄榄石的含量明显下㊀第3期郭伟杰等:FactSage热力学计算在耐火材料抗渣侵蚀性中的应用1113降,且生成了Pb(g),从而解释了还原气氛下耐火材料抗渣侵蚀性下降的原因㊂在评价耐火骨料抗渣侵蚀性的研究中,金胜利等[18]分别计算了高炉钛渣对棕刚玉㊁电熔刚玉㊁亚白刚玉㊁镁铝尖晶石以及特级矾土的侵蚀,通过比较刚玉相完全消失时的A值分析了五种常见骨料的抗侵蚀能力㊂桑绍柏等[19]通过热力学计算发现SiC能够与含Ti熔渣反应生成稳定的FeSi与TiC相,且SiC在A=4.5时才完全消耗,证明了SiC在该体系内具有良好的稳定性㊂吕晓东等[20]通过该模型计算发现SiC㊁钛尖晶石在钛渣中具有较好的稳定性,这与静态坩埚法得到的结果一致㊂马三宝等[21]也计算了钢包渣对轻质方镁石-尖晶石耐火材料的侵蚀,得出尖晶石的溶解速率大于方镁石㊂而李真真等[22]使用该模型研究了氧化钛对镁砂抗渣渗透性能的影响,发现生成的CaTiO3在熔渣内比镁砂更加稳定㊂图5㊀不同气氛下镁铬耐火材料-冰铜渣系统的热力学平衡相[15]Fig.5㊀Equilibrium phases of magnesia chromite refractories-matte slag system under different atmospheres[15]该模型对高熔点物相在熔渣体系内的稳定度预测展现出较为良好的精确度㊂由于该模型中引入了变量A=m S/m R,特定物相消失时的A值反映了该物相在熔渣内的稳定程度,因此该模型能够较好地发现特定熔渣体系内的高熔点相(如尖晶石相㊁CaTiO3相与方镁石相),为针对性地开发具有优异抗渣侵蚀性的耐火材料提供依据㊂并且,该种模型能够有效地对比不同耐火材料体系在特定熔渣下的稳定程度,从而针对酸性渣㊁碱性渣㊁富钛渣㊁富锰渣等不同熔渣体系挑选对应的耐火材料,满足特定条件的需求㊂然而,该种模型仍具有一定局限性,虽然能够良好地预测高熔点㊁高稳定相的生成,却缺乏定性地描述这些物相在侵蚀区域相对位置的能力,例如其能够精确地预测刚玉骨料外侧生成CA2与CA6相,但难以定性地描述两相在骨料外侧的位置㊂因此,使用该种模型时需结合SEM㊁EDS等表征手段进行深入分析㊂此外,在真实的熔渣侵蚀过程中,由于耐火材料组分向熔渣中逐渐溶解,熔渣的组分受到耐火材料的影响而不断改变,因此熔渣组分处于 不断更新 的状态㊂而该模型中熔渣组分恒定不变,即恒定保持初始化学组分㊁仅逐步提升熔渣的质量,无法精确地描述熔渣与耐火材料之间的组分交换㊂因此,该种模型适合对静态坩埚抗渣法等熔渣组分变化不大的情景进行分析,对感应炉抗渣㊁回转窑抗渣㊁钢包渣线抗渣等组分交换剧烈㊁熔渣处于动态情景的模拟精确度较低㊂1.3㊀界面反应模型界面反应模型能够有效地模拟熔渣-耐火材料界面处的相互作用过程,被广泛应用于多种耐火材料体系中,其计算结果经过了广泛验证,是目前常用㊁可信的模型之一㊂该模型最早由Berjonneau等[23]于2009年提出,最初用于模拟恒定温度㊁压力条件下二次冶金钢包渣对Al2O3-MgO耐火材料的侵蚀㊂界面反应模型的示意图如图6所示,在该模型中定义了反应度B=w R/(w S+w R),并满足w R+w S=1,其中w R为耐火材料质量分数,w S为熔渣的质量分数,对系统内的组分采用表达式<m S-(m S-m R)ˑB>进行描述㊂B反映了耐火材料-熔渣界面的反应程度,当B接近0时,系统中熔渣比例较高,反应程度较低,反之B接近1时,系统中耐火材料占比较高,反应程度越高㊂如图6(b)所示,反应度B可以近似为熔渣-耐火材料接触的界面层的相对位置,B趋近于1时,生成的物相越接近耐火材料表层,而其趋近于0时物相靠近熔渣侧㊂这一特性使得该模型能较好地反映了侵蚀过程中固相的相对位置与生成量,因此尤其适合模拟保护层的生成情况㊂1114㊀耐火材料硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷图6㊀界面反应模型的示意图[21]Fig.6㊀Schematic diagrams of interlayer reaction model[21]溶解模型在耐火材料抗渣领域得到了广泛应用,并被大量实验证明具有良好的精确度㊂Berjonneau 等[23]通过实验验证了该模型的精确度,计算结果与实际侵蚀区域的微观结构呈良好的对应关系(见图7(a)),并得出了CA2和CA6相的形成机理(图7(b))㊂Tang等[24]使用该模型对Al2O3坩埚的侵蚀行为进行了分析和实验验证,发现热力学计算预测的熔渣㊁CA2㊁CA6㊁尖晶石以及刚玉骨料的位置与实际实验结果一致㊂在蒋旭勇等[25]的研究中,通过该模型计算了铝镁质浇注料对不同Al2O3含量的CaO-SiO2-Al2O3渣的物相生成量,发现高Al2O3含量的熔渣能够促进形成更厚的隔离层㊂在高纯度镁质耐火材料对富铁渣的抗渣侵蚀性研究中,Betsis等[26]利用该模型发现,富铁渣将方镁石转化为MgO-Fe x O,且发现液相中FeO含量上升㊂类似地,Oh等[6]也观测到了MgO-Fe x O层,且MgO㊁FeO相对含量与显微结构观察一致㊂李艳华等[27]使用该模型对LF渣对ρ-Al2O3结合铝镁质浇注料的侵蚀行为进行了分析,通过FactSage软件得到了尖晶石的组成,结果显示生成的尖晶石中含有一定量的MnAl2O4和FeAl2O4,即熔渣中的Mn2+㊁Fe2+生成了复合尖晶石㊂Guo等[28]使用该模型计算了熔渣侵蚀钙镁铝酸盐(CMA)骨料产生的热力学平衡相,发现CMA骨料内的一铝酸钙(CA)㊁CA2相在高温下转化为液相,提高了熔渣的Al2O3含量㊂图7㊀熔渣对刚玉骨料的侵蚀的热力学计算结果[21]Fig.7㊀Thermodynamic calculation results of corrosion of slag to corundum aggregate[21]㊀第3期郭伟杰等:FactSage热力学计算在耐火材料抗渣侵蚀性中的应用1115溶解模型不仅可以预测物相组成的变化,还常用于预测熔渣侵蚀过程中液相组成的变化与黏度变化[29]㊂Wang等[30]使用该模型对ZrO2耐火材料对高碱度精炼渣的侵蚀行为进行了研究,图8为ZrO2耐火材料的侵蚀过程的热力学计算结果㊂EDS线扫描中ZrO2含量从耐火材料到过渡层逐渐降低,CaO含量随着渣层到过渡层逐渐降低,其趋势与热力学计算结果一致㊂鄢文等[31]研究了熔渣对刚玉尖晶石浇注料侵蚀的热力学模型,结果显示,侵蚀层到耐火材料内部SiO2㊁CaO含量逐渐降低,而SiO2的含量则先降低后增加,这与A值介于0.66至0.84之间的曲线相吻合㊂此外,Peng等[32]计算了轻质方镁石-尖晶石浇注料与熔渣反应过程中的液相黏度变化,证明了该种耐火材料优秀的抗渣渗透性能㊂图8㊀ZrO2耐火材料侵蚀过程的热力学计算结果[27]Fig.8㊀Thermodynamic calculation results of corrosion process of ZrO2refractories[27]作为最常用的抗渣模型之一,界面反应模型最大的优势为能够生动地描述物相的生成机理㊁生成位置㊂由于变量B=w R/(w S+w R)的引入,界面反应模型能够细致地描述熔渣对耐火材料侵蚀的全过程,详细地展现各热力学平衡相的含量变化,其良好的精确度与泛用性使得其被广大研究者所使用,助力了许多研究成果的产出,并得到了广泛的实验验证㊂然而,该模型同样具有一定的局限性㊂如前文所述,熔渣对耐火材料侵蚀是一个动态的过程,渣组分会随侵蚀程度的改变不断变化,Zhang等[33]指出,该模型忽略了耐火材料溶解对熔渣化学组分变化,使得其对动态渣蚀的模拟存在一定的误差㊂在真实熔渣侵蚀过程中,耐火材料的损毁常是由溶解㊁化学反应与渗透共同导致的㊂该模型虽然能够较好地描述熔渣-耐火材料界面上的化学反应,却不能很好地胜任熔渣渗透过程的模拟㊂此外,受制于热力学计算的局限性,界面反应模型无法展现耐火材料表面形貌㊁扩散速率㊁熔体冲刷等因素对抗渣侵蚀性的影响㊂1.4㊀逐步迭代模型在实际侵蚀过程中,熔渣化学组分会随着熔渣与耐火材料的反应而发生变化,从而影响熔渣的侵蚀能力,而溶解模型与界面反应模型忽略了这一变化,且两者均不能较好地模拟熔渣的渗透过程㊂针对以上问题,Luz等[34]设计了一个新的模型,迭代模型的示意图如图9所示㊂该模型具有一个迭代程序,其原理如图9(a)所示,设定第一反应阶段初始耐火材料质量与熔渣质量均为100g(S为熔渣,R为耐火材料),将反应后将得到的改性渣(S1)再次与相同质量的耐火材料进行二次迭代计算得到新的改性渣(S2),不断重复该过程直至熔渣量归零或达到饱和,通过该迭代程序,每一次循环后熔渣组分都会改变㊂该模型同样可以用于描述熔渣对耐火材料的渗透过程(图9(b)),即更大的迭代计算次数对应更长的熔渣渗透距离[31]㊂Calvo等[35]在钢包用铝碳质耐火材料的用后分析中使用该模型分析了熔渣对耐火材料的渗透,其热力学计算结果与用后耐火材料的显微结构如图10所示(MA为镁铝尖晶石)㊂热力学计算结果显示,随着熔渣渗透深度的增加,尖晶石和六铝酸钙将会依次生成㊂从侵蚀区图像中可以看出,从工作面到耐火材料内部依次为镁铝尖晶石㊁二铝酸钙和六铝酸钙,基本与热力学计算一致㊂类似地,在Muñoz等[36]对铝镁碳耐火材料抗渣侵蚀性研究中,该模型计算结果与熔渣渗透区的显微结构吻合程度较高㊂此外,该模型仍可以较为精确1116㊀耐火材料硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷地预测物相的生成情况,并非专用于描述熔渣对耐火材料的渗透情况㊂在Luz等[37]针对尖晶石浇注料的熔渣侵蚀研究中,该模型预测了CA2和CA6相的存在,并通过显微结构验证了热力学计算的准确性㊂Han 等[38]使用该模型计算得到了MgO-Fe x O层,这与侵蚀后试样的显微结构一致㊂在Luz等[39]对镁碳质耐火材料的抗渣侵蚀的研究中,通过该模型计算发现MgO溶解量随着熔渣碱度降低而增加,证明了低碱度渣对镁碳质耐火材料的侵蚀更加强烈㊂图9㊀迭代模型的示意图[31]Fig.9㊀Schematic diagram of the iterative corrosion model[31]图10㊀用后铝碳质耐火材料的热力学计算结果[32]Fig.10㊀Thermodynamic calculation results of spent Al2O3-C refractories[32]与溶解模型㊁界面反应模型相比,迭代模型能够模拟耐火材料组分对熔渣侵蚀能力的影响㊂每次迭代时,熔渣组分都会被耐火材料所改变,改性渣再次与新的耐火材料反应,这个过程模拟熔渣组分更新,因此该模型对动态渣蚀具有更加良好的模拟精确度㊂此外,该种模型能够定性地描述渗透过程,反映熔渣渗透过程中熔渣组分的变化与物相的变化,从而为耐火材料用后分析㊁熔渣渗透行为分析提供重要的参考㊂在真实的熔渣渗透过程中,熔渣的渗透行为除了受到熔渣的组分和黏度的影响外,还会受到接触角㊁气孔孔径㊁晶界渗透㊁渗透时间等诸多因素的影响,而该模型仅能从热力学的角度预测熔渣组分变化㊁黏度变化和物相变化,对物理过程缺乏描述的能力㊂因此将该模型用于描述熔渣渗透过程时,迭代次数仅能够定性地反映渗透深度,不能够精确地给出渗透距离㊂此外,随着熔渣深入耐火材料内部,耐火材料工作面与内部之间的温度梯度也会影响熔渣的渗透行为,而该种模型设定耐火材料内外温度恒定,导致对耐火材料深处的物相的预测存在一定的偏差㊂并且,该种模型中引入了迭代程序,使得计算量大幅增加,部分体系中甚至需要十几次以上的循环计算才能使熔渣完全耗尽或达到饱和,对模型使用者造成了较重的负担㊂这些因素制约了该模型的普及与发展,因此较少研究使用该种模型进行热力学模拟㊂1.5㊀其他热力学计算模型除上述四种最常用的热力学计算模型外,国内外研究者针对不同熔渣侵蚀过程的特点,针对性地开发了新的热力学计算模型,从而更加精确地预测耐火材料侵蚀过程㊂㊀第3期郭伟杰等:FactSage热力学计算在耐火材料抗渣侵蚀性中的应用1117针对迭代模型的局限性,Sagadin等[40]使用FactSage与SimuSage[41]开发了一种新型耐火材料侵蚀模型,用于模拟镍铁渣对镁质耐火材料的侵蚀,并对气孔率和温度梯度的影响进行了模拟,具体如图11所示㊂如图11(a)所示,该模型将耐火材料分为了十个区域,温度从外到内线性递减,每个区域均含有定量的耐火材料与气孔㊂图11(b)为该模型单个区域的运算流程,耐火材料与熔渣首先进行计算,产物被 物相分离器 分离为固体与熔体㊂由于耐火材料的气孔仅能允许一部分熔渣向深处渗透,因此研究者使用SimuSage设计了 熔体分离器 ,将熔体分离为可以进入下一区域的熔体A与被阻碍在该区域的熔体B㊂熔体B与固体氧化物组成混合体并在该区域内再次计算,而熔体A则进入下一区域㊂该模型不仅能够描述熔渣化学组分的变化,还考虑了耐火材料气孔率对熔渣渗透的影响[42]㊂并且,由于温度梯度的存在,橄榄石等能够在材料深处的低温区域稳定存在,这在恒定温度的模型中是无法实现的㊂图11㊀基于FactSage与SimuSage的耐火材料侵蚀模型[37]Fig.11㊀Corrosion model based on FactSage and SimuSage[37]在感应炉抗渣法中,熔渣由于电磁场的作用剧烈地冲刷耐火材料,熔渣的组分由于耐火材料的损毁和熔渣的对流运动而不断混合和改变,并且耐火材料基质与骨料的侵蚀速率不同,导致两者对熔渣组分的改变能力不同,因此需要新的热力学计算模型描述动态条件下的熔渣侵蚀过程㊂在轻量化MgO-Al2O3浇注料的抗渣侵蚀性研究中,邹阳[43]提出了一种新的热力学计算模型,这种模型中熔渣组分受到耐火材料侵蚀的影响,并可以反映骨料与基质的侵蚀速率差别㊂该模型将熔渣侵蚀过程分为了n个相等的时间段,在每个Δt内,熔渣分别与骨料㊁基质进行计算,得到新的液相加和,即为 更新 后的熔渣组分㊂图12为动态熔渣侵蚀下的热力学计算模型㊂相较于其他模型,该模型能够形象地显示骨料㊁基质抗侵蚀能力的差异,且由于受到了骨料㊁基质的共同影响而不断 更新 ,其具有更高的精确度,更加符合动态熔渣条件下熔渣受到对流而不断混合的实际情况㊂图12㊀动态熔渣侵蚀下的热力学计算模型[40]Fig.12㊀Thermodynamic calculation model of dynamic slag corrosion condition[40]综合来看,以上模型在现有的经典模型基础上进行了一定程度的改进,使之能够更好地描述熔渣侵蚀过程,展现熔渣侵蚀模型的改进潜力㊂然而,这些改进模型计算方式复杂,或需要使用其他软件,导致其难以掌握㊂同时,这些模型提出较晚,未在大量研究中被广泛使用,缺乏实验数据的验证㊂受制于热力学计算本身的局限性,这些模型还是仅能从热力学角度描述化学反应过程㊁物相变化,对湍流㊁扩散等现象造成的影响无法给出预测㊂。
BIIN
statistical mechanics Surface tension Bismuth Indium Alloys
abstract
The mixing behaviour of liquid Bi–In alloys has been described in terms of energetics and structure through the study of their thermodynamic, surface and structural properties by using the Complex Formation Model (CFM) in the weak interaction approximation and by postulating BiIn-chemical complexes as energetically favoured. The new Bi, In and Bi–In surface tension experimental data set, obtained by the large drop method in the temperature range 553–873 K, has been analysed in the framework of the CFM and compared with the calculated values as well as with corresponding literature data. The structural characteristics of Bi–In melts are described by the two microscopic functions, i.e. the concentration fluctuations in the long-wavelength limit and the Warren–Cowley short-range order parameter.
吉西他滨及顺铂经动脉、静脉注射后血浆、组织药物浓度的变化
吉西他滨及顺铂经动脉、静脉注射后血浆、组织药物浓度的变化目的分析不同化療药物通过动脉及静脉途径注射后血浆及组织内药物浓度的变化情况。
方法40只带瘤裸大鼠,随机分为8组,其中4组为动脉组,另4组为静脉组,带瘤裸大鼠分别经动脉及静脉注射吉西他滨及顺铂。
于注射后5、10、20、40、80、120、360、720 min采血液标本,注射后10、40、120、720 min取组织标本,以高效液相色谱法测定血浆及肿瘤组织中吉西他滨浓度,ICP-MS法测定血浆及肿瘤组织中的铂含量,计算药代动力学参数。
结果经动脉及静脉注射两种药物后,血浆及肿瘤组织中的药物浓度出现规律性变化,其变化过程均可用两室模型来描述。
动脉注射两组药物的药代动力学参数与静脉注射的药代动力学参数不同,动脉组注射药物后,血浆药物峰浓度[吉西他滨:(20.84±10.11)μg/mL,顺铂:(15.13±7.12)μg/mL]均低于静脉组[吉西他滨:(28.96±7.02)μg/mL,顺铂:(21.64±9.72)μg/mL],靶组织内药物峰浓度[吉西他滨:(20.18±9.43)μg/mL,顺铂:(6.98±0.31)μg/mL]均高于静脉组[吉西他滨:(18.19±10.30)μg/mL,顺铂:(3.04±0.11)μg/mL],靶组织内药物曲线下面积[吉西他滨:(2641±411)μg/(min·mL),顺铂:(6025±870)μg/(min·mL)]均明显高于静脉组[吉西他滨:(1663±568)μg/(min·mL),顺铂:(1780±883)μg/(min·mL)],差异均有统计学意义(P < 0.05或P < 0.01)。
结论动脉注射吉西他滨和顺铂较静脉注射有不同程度的优势,这种优势与药物的药理特性有关。
物理化学基本概念
物理化学概念及术语A B C D E F G H I J K L M N O P Q R S T U V W X Y Z概念及术语 (16)BET公式BET formula (16)DLVO理论 DLVO theory (16)HLB法hydrophile-lipophile balance method (16)pVT性质 pVT property (16)ζ电势 zeta potential (16)阿伏加德罗常数 Avogadro’number (16)阿伏加德罗定律 Avogadro law (16)阿累尼乌斯电离理论Arrhenius ionization theory (16)阿累尼乌斯方程Arrhenius equation (17)阿累尼乌斯活化能 Arrhenius activation energy (17)阿马格定律 Amagat law (17)艾林方程 Erying equation (17)爱因斯坦光化当量定律 Einstein’s law of photochemical equivalence (17)爱因斯坦-斯托克斯方程 Einstein-Stokes equation (17)安托万常数 Antoine constant (17)安托万方程 Antoine equation (17)盎萨格电导理论Onsager’s theory of conductance (17)半电池half cell (17)半衰期half time period (18)饱和液体 saturated liquids (18)饱和蒸气 saturated vapor (18)饱和吸附量 saturated extent of adsorption (18)饱和蒸气压 saturated vapor pressure (18)爆炸界限 explosion limits (18)比表面功 specific surface work (18)比表面吉布斯函数 specific surface Gibbs function (18)比浓粘度 reduced viscosity (18)标准电动势 standard electromotive force (18)标准电极电势 standard electrode potential (18)标准摩尔反应焓 standard molar reaction enthalpy (18)标准摩尔反应吉布斯函数 standard Gibbs function of molar reaction (18)标准摩尔反应熵 standard molar reaction entropy (19)标准摩尔焓函数 standard molar enthalpy function (19)标准摩尔吉布斯自由能函数 standard molar Gibbs free energy function (19)标准摩尔燃烧焓 standard molar combustion enthalpy (19)标准摩尔熵 standard molar entropy (19)标准摩尔生成焓 standard molar formation enthalpy (19)标准摩尔生成吉布斯函数 standard molar formation Gibbs function (19)标准平衡常数 standard equilibrium constant (19)标准氢电极 standard hydrogen electrode (19)标准态 standard state (19)标准熵 standard entropy (20)标准压力 standard pressure (20)标准状况 standard condition (20)表观活化能apparent activation energy (20)表观摩尔质量 apparent molecular weight (20)表观迁移数apparent transference number (20)表面 surfaces (20)表面过程控制 surface process control (20)表面活性剂surfactants (21)表面吸附量 surface excess (21)表面张力 surface tension (21)表面质量作用定律 surface mass action law (21)波义尔定律 Boyle law (21)波义尔温度 Boyle temperature (21)波义尔点 Boyle point (21)玻尔兹曼常数 Boltzmann constant (22)玻尔兹曼分布 Boltzmann distribution (22)玻尔兹曼公式 Boltzmann formula (22)玻尔兹曼熵定理 Boltzmann entropy theorem (22)泊Poise (22)不可逆过程 irreversible process (22)不可逆过程热力学thermodynamics of irreversible processes (22)不可逆相变化 irreversible phase change (22)布朗运动 brownian movement (22)查理定律 Charle’s law (22)产率 yield (23)敞开系统 open system (23)超电势 over potential (23)沉降 sedimentation (23)沉降电势 sedimentation potential (23)沉降平衡 sedimentation equilibrium (23)触变 thixotropy (23)粗分散系统 thick disperse system (23)催化剂 catalyst (23)单分子层吸附理论 mono molecule layer adsorption (23)单分子反应 unimolecular reaction (23)单链反应 straight chain reactions (24)弹式量热计 bomb calorimeter (24)道尔顿定律 Dalton law (24)道尔顿分压定律 Dalton partial pressure law (24)德拜和法尔肯哈根效应Debye and Falkenhagen effect (24)德拜立方公式 Debye cubic formula (24)德拜-休克尔极限公式 Debye-Huckel’s limiting equation (24)等焓过程 isenthalpic process (24)等焓线isenthalpic line (24)等几率定理 theorem of equal probability (24)等温等容位Helmholtz free energy (25)等温等压位Gibbs free energy (25)等温方程 equation at constant temperature (25)低共熔点 eutectic point (25)低共熔混合物 eutectic mixture (25)低会溶点 lower consolute point (25)低熔冰盐合晶 cryohydric (26)第二类永动机 perpetual machine of the second kind (26)第三定律熵 Third-Law entropy (26)第一类永动机 perpetual machine of the first kind (26)缔合化学吸附 association chemical adsorption (26)电池常数 cell constant (26)电池电动势 electromotive force of cells (26)电池反应 cell reaction (27)电导 conductance (27)电导率 conductivity (27)电动势的温度系数 temperature coefficient of electromotive force (27)电动电势 zeta potential (27)电功electric work (27)电化学 electrochemistry (27)电化学极化 electrochemical polarization (27)电极电势 electrode potential (27)电极反应 reactions on the electrode (27)电极种类 type of electrodes (27)电解池 electrolytic cell (28)电量计 coulometer (28)电流效率current efficiency (28)电迁移 electro migration (28)电迁移率 electromobility (28)电渗 electroosmosis (28)电渗析 electrodialysis (28)电泳 electrophoresis (28)丁达尔效应 Dyndall effect (28)定容摩尔热容 molar heat capacity under constant volume (28)定容温度计 Constant voIume thermometer (28)定压摩尔热容 molar heat capacity under constant pressure (29)定压温度计 constant pressure thermometer (29)定域子系统 localized particle system (29)动力学方程kinetic equations (29)动力学控制 kinetics control (29)独立子系统 independent particle system (29)对比摩尔体积 reduced mole volume (29)对比体积 reduced volume (29)对比温度 reduced temperature (29)对比压力 reduced pressure (29)对称数 symmetry number (29)对行反应reversible reactions (29)对应状态原理 principle of corresponding state (29)多方过程polytropic process (30)多分子层吸附理论 adsorption theory of multi-molecular layers (30)二级反应second order reaction (30)二级相变second order phase change (30)法拉第常数 faraday constant (31)法拉第定律 Faraday’s law (31)反电动势back E.M.F. (31)反渗透 reverse osmosis (31)反应分子数 molecularity (31)反应级数 reaction orders (31)反应进度 extent of reaction (32)反应热heat of reaction (32)反应速率rate of reaction (32)反应速率常数 constant of reaction rate (32)范德华常数 van der Waals constant (32)范德华方程 van der Waals equation (32)范德华力 van der Waals force (32)范德华气体 van der Waals gases (32)范特霍夫方程 van’t Hoff equation (32)范特霍夫规则 van’t Hoff rule (33)范特霍夫渗透压公式 van’t Hoff equation of osmotic pressure (33)非基元反应 non-elementary reactions (33)非体积功 non-volume work (33)非依时计量学反应 time independent stoichiometric reactions (33)菲克扩散第一定律 Fick’s first law of diffusion (33)沸点 boiling point (33)沸点升高 elevation of boiling point (33)费米-狄拉克统计Fermi-Dirac statistics (33)分布 distribution (33)分布数 distribution numbers (34)分解电压 decomposition voltage (34)分配定律 distribution law (34)分散系统 disperse system (34)分散相 dispersion phase (34)分体积 partial volume (34)分体积定律 partial volume law (34)分压 partial pressure (34)分压定律 partial pressure law (34)分子反应力学 mechanics of molecular reactions (34)分子间力 intermolecular force (34)分子蒸馏molecular distillation (35)封闭系统 closed system (35)附加压力 excess pressure (35)弗罗因德利希吸附经验式 Freundlich empirical formula of adsorption (35)负极 negative pole (35)负吸附 negative adsorption (35)复合反应composite reaction (35)盖.吕萨克定律 Gay-Lussac law (35)盖斯定律 Hess law (35)甘汞电极 calomel electrode (35)感胶离子序 lyotropic series (35)杠杆规则 lever rule (35)高分子溶液 macromolecular solution (36)高会溶点 upper consolute point (36)隔离法the isolation method (36)格罗塞斯-德雷珀定律 Grotthus-Draoer’s law (36)隔离系统 isolated system (37)根均方速率 root-mean-square speed (37)功 work (37)功函work content (37)共轭溶液 conjugate solution (37)共沸温度 azeotropic temperature (37)构型熵configurational entropy (37)孤立系统 isolated system (37)固溶胶 solid sol (37)固态混合物 solid solution (38)固相线 solid phase line (38)光反应 photoreaction (38)光化学第二定律 the second law of actinochemistry (38)光化学第一定律 the first law of actinochemistry (38)光敏反应 photosensitized reactions (38)光谱熵 spectrum entropy (38)广度性质 extensive property (38)广延量 extensive quantity (38)广延性质 extensive property (38)规定熵 stipulated entropy (38)过饱和溶液 oversaturated solution (38)过饱和蒸气 oversaturated vapor (38)过程 process (39)过渡状态理论 transition state theory (39)过冷水 super-cooled water (39)过冷液体 overcooled liquid (39)过热液体 overheated liquid (39)亥姆霍兹函数 Helmholtz function (39)亥姆霍兹函数判据 Helmholtz function criterion (39)亥姆霍兹自由能 Helmholtz free energy (39)亥氏函数 Helmholtz function (39)焓 enthalpy (39)亨利常数 Henry constant (39)亨利定律 Henry law (39)恒沸混合物 constant boiling mixture (40)恒容摩尔热容 molar heat capacity at constant volume (40)恒容热 heat at constant volume (40)恒外压 constant external pressure (40)恒压摩尔热容 molar heat capacity at constant pressure (40)恒压热 heat at constant pressure (40)化学动力学chemical kinetics (40)化学反应计量式 stoichiometric equation of chemical reaction (40)化学反应计量系数 stoichiometric coefficient of chemical reaction (40)化学反应进度 extent of chemical reaction (41)化学亲合势 chemical affinity (41)化学热力学chemical thermodynamics (41)化学势 chemical potential (41)化学势判据 chemical potential criterion (41)化学吸附 chemisorptions (41)环境 environment (41)环境熵变 entropy change in environment (41)挥发度volatility (41)混合熵 entropy of mixing (42)混合物 mixture (42)活度 activity (42)活化控制 activation control (42)活化络合物理论 activated complex theory (42)活化能activation energy (43)霍根-华森图 Hougen-Watson Chart (43)基态能级 energy level at ground state (43)基希霍夫公式 Kirchhoff formula (43)基元反应elementary reactions (43)积分溶解热 integration heat of dissolution (43)吉布斯-杜亥姆方程 Gibbs-Duhem equation (43)吉布斯-亥姆霍兹方程 Gibbs-Helmhotz equation (43)吉布斯函数 Gibbs function (43)吉布斯函数判据 Gibbs function criterion (44)吉布斯吸附公式Gibbs adsorption formula (44)吉布斯自由能 Gibbs free energy (44)吉氏函数 Gibbs function (44)极化电极电势 polarization potential of electrode (44)极化曲线 polarization curves (44)极化作用 polarization (44)极限摩尔电导率 limiting molar conductivity (44)几率因子 steric factor (44)计量式 stoichiometric equation (44)计量系数 stoichiometric coefficient (45)价数规则 rule of valence (45)简并度 degeneracy (45)键焓bond enthalpy (45)胶冻 broth jelly (45)胶核 colloidal nucleus (45)胶凝作用 demulsification (45)胶束micelle (45)胶体 colloid (45)胶体分散系统 dispersion system of colloid (45)胶体化学 collochemistry (45)胶体粒子 colloidal particles (45)胶团 micelle (45)焦耳Joule (45)焦耳-汤姆生实验 Joule-Thomson experiment (46)焦耳-汤姆生系数 Joule-Thomson coefficient (46)焦耳-汤姆生效应 Joule-Thomson effect (46)焦耳定律 Joule's law (46)接触电势contact potential (46)接触角 contact angle (46)节流过程 throttling process (46)节流膨胀 throttling expansion (46)节流膨胀系数 coefficient of throttling expansion (46)结线 tie line (46)结晶热heat of crystallization (47)解离化学吸附 dissociation chemical adsorption (47)界面 interfaces (47)界面张力 surface tension (47)浸湿 immersion wetting (47)浸湿功 immersion wetting work (47)精馏 rectify (47)聚(合)电解质polyelectrolyte (47)聚沉 coagulation (47)聚沉值 coagulation value (47)绝对反应速率理论 absolute reaction rate theory (47)绝对熵 absolute entropy (47)绝对温标absolute temperature scale (48)绝热过程 adiabatic process (48)绝热量热计adiabatic calorimeter (48)绝热指数 adiabatic index (48)卡诺定理 Carnot theorem (48)卡诺循环 Carnot cycle (48)开尔文公式 Kelvin formula (48)柯诺瓦洛夫-吉布斯定律 Konovalov-Gibbs law (48)科尔劳施离子独立运动定律 Kohlrausch’s Law of Independent Migration of Ions (48)可能的电解质potential electrolyte (49)可逆电池 reversible cell (49)可逆过程 reversible process (49)可逆过程方程 reversible process equation (49)可逆体积功 reversible volume work (49)可逆相变 reversible phase change (49)克拉佩龙方程 Clapeyron equation (49)克劳修斯不等式 Clausius inequality (49)克劳修斯-克拉佩龙方程 Clausius-Clapeyron equation (49)控制步骤 control step (50)库仑计 coulometer (50)扩散控制 diffusion controlled (50)拉普拉斯方程 Laplace’s equation (50)拉乌尔定律 Raoult law (50)兰格缪尔-欣谢尔伍德机理 Langmuir-Hinshelwood mechanism (50)雷利公式 Rayleigh equation (50)兰格缪尔吸附等温式 Langmuir adsorption isotherm formula (50)冷冻系数coefficient of refrigeration (50)冷却曲线 cooling curve (51)离解热heat of dissociation (51)离解压力dissociation pressure (51)离域子系统 non-localized particle systems (51)离子的标准摩尔生成焓 standard molar formation of ion (51)离子的电迁移率 mobility of ions (51)离子的迁移数 transport number of ions (51)离子独立运动定律 law of the independent migration of ions (51)离子氛 ionic atmosphere (51)离子强度 ionic strength (51)理想混合物 perfect mixture (52)理想气体 ideal gas (52)理想气体的绝热指数 adiabatic index of ideal gases (52)理想气体的微观模型 micro-model of ideal gas (52)理想气体反应的等温方程 isothermal equation of ideal gaseous reactions (52)理想气体绝热可逆过程方程 adiabatic reversible process equation of ideal gases (52)理想气体状态方程 state equation of ideal gas (52)理想稀溶液 ideal dilute solution (52)理想液态混合物 perfect liquid mixture (52)粒子 particles (52)粒子的配分函数 partition function of particles (53)连串反应consecutive reactions (53)链的传递物 chain carrier (53)链反应 chain reactions (53)量热熵 calorimetric entropy (53)量子统计quantum statistics (53)量子效率 quantum yield (53)临界参数 critical parameter (53)临界常数 critical constant (53)临界点 critical point (53)临界胶束浓度critical micelle concentration (53)临界摩尔体积 critical molar volume (54)临界温度 critical temperature (54)临界压力 critical pressure (54)临界状态 critical state (54)零级反应zero order reaction (54)流动电势 streaming potential (54)流动功 flow work (54)笼罩效应 cage effect (54)路易斯-兰德尔逸度规则 Lewis-Randall rule of fugacity (54)露点 dew point (54)露点线 dew point line (54)麦克斯韦关系式 Maxwell relations (55)麦克斯韦速率分布 Maxwell distribution of speeds (55)麦克斯韦能量分布 MaxwelIdistribution of energy (55)毛细管凝结 condensation in capillary (55)毛细现象 capillary phenomena (55)米凯利斯常数 Michaelis constant (55)摩尔电导率 molar conductivity (56)摩尔反应焓 molar reaction enthalpy (56)摩尔混合熵 mole entropy of mixing (56)摩尔气体常数 molar gas constant (56)摩尔热容 molar heat capacity (56)摩尔溶解焓 mole dissolution enthalpy (56)摩尔稀释焓 mole dilution enthalpy (56)内扩散控制 internal diffusions control (56)内能 internal energy (56)内压力 internal pressure (56)能级 energy levels (56)能级分布 energy level distribution (57)能量均分原理 principle of the equipartition of energy (57)能斯特方程 Nernst equation (57)能斯特热定理 Nernst heat theorem (57)凝固点 freezing point (57)凝固点降低 lowering of freezing point (57)凝固点曲线 freezing point curve (58)凝胶 gelatin (58)凝聚态 condensed state (58)凝聚相 condensed phase (58)浓差超电势 concentration over-potential (58)浓差极化 concentration polarization (58)浓差电池 concentration cells (58)帕斯卡pascal (58)泡点 bubble point (58)泡点线 bubble point line (58)配分函数 partition function (58)配分函数的析因子性质 property that partition function to be expressed as a product of the separate partition functions for each kind of state (58)碰撞截面 collision cross section (59)碰撞数 the number of collisions (59)偏摩尔量 partial mole quantities (59)平衡常数(理想气体反应) equilibrium constants for reactions of ideal gases (59)平动配分函数 partition function of translation (59)平衡分布 equilibrium distribution (59)平衡态 equilibrium state (60)平衡态近似法 equilibrium state approximation (60)平衡状态图 equilibrium state diagram (60)平均活度 mean activity (60)平均活度系统 mean activity coefficient (60)平均摩尔热容 mean molar heat capacity (60)平均质量摩尔浓度 mean mass molarity (60)平均自由程mean free path (60)平行反应parallel reactions (61)破乳 demulsification (61)铺展 spreading (61)普遍化范德华方程 universal van der Waals equation (61)其它功 the other work (61)气化热heat of vaporization (61)气溶胶 aerosol (61)气体常数 gas constant (61)气体分子运动论 kinetic theory of gases (61)气体分子运动论的基本方程 foundamental equation of kinetic theory of gases (62)气溶胶 aerosol (62)气相线 vapor line (62)迁移数 transport number (62)潜热latent heat (62)强度量 intensive quantity (62)强度性质 intensive property (62)亲液溶胶 hydrophilic sol (62)氢电极 hydrogen electrodes (62)区域熔化zone melting (62)热 heat (62)热爆炸 heat explosion (62)热泵 heat pump (63)热功当量mechanical equivalent of heat (63)热函heat content (63)热化学thermochemistry (63)热化学方程thermochemical equation (63)热机 heat engine (63)热机效率 efficiency of heat engine (63)热力学 thermodynamics (63)热力学第二定律 the second law of thermodynamics (63)热力学第三定律 the third law of thermodynamics (63)热力学第一定律 the first law of thermodynamics (63)热力学基本方程 fundamental equation of thermodynamics (64)热力学几率 thermodynamic probability (64)热力学能 thermodynamic energy (64)热力学特性函数characteristic thermodynamic function (64)热力学温标thermodynamic scale of temperature (64)热力学温度thermodynamic temperature (64)热熵thermal entropy (64)热效应heat effect (64)熔点曲线 melting point curve (64)熔化热heat of fusion (64)溶胶 colloidal sol (65)溶解焓 dissolution enthalpy (65)溶液 solution (65)溶胀 swelling (65)乳化剂 emulsifier (65)乳状液 emulsion (65)润湿 wetting (65)润湿角 wetting angle (65)萨克尔-泰特洛德方程 Sackur-Tetrode equation (66)三相点 triple point (66)三相平衡线 triple-phase line (66)熵 entropy (66)熵判据 entropy criterion (66)熵增原理 principle of entropy increase (66)渗透压 osmotic pressure (66)渗析法 dialytic process (67)生成反应 formation reaction (67)升华热heat of sublimation (67)实际气体 real gas (67)舒尔采-哈迪规则 Schulze-Hardy rule (67)松驰力relaxation force (67)松驰时间time of relaxation (67)速度常数reaction rate constant (67)速率方程rate equations (67)速率控制步骤rate determining step (68)塔费尔公式 Tafel equation (68)态-态反应 state-state reactions (68)唐南平衡 Donnan equilibrium (68)淌度 mobility (68)特鲁顿规则 Trouton rule (68)特性粘度 intrinsic viscosity (68)体积功 volume work (68)统计权重 statistical weight (68)统计热力学 statistic thermodynamics (68)统计熵 statistic entropy (68)途径 path (68)途径函数 path function (69)外扩散控制 external diffusion control (69)完美晶体 perfect crystalline (69)完全气体 perfect gas (69)微观状态 microstate (69)微态 microstate (69)韦斯顿标准电池 Weston standard battery (69)维恩效应Wien effect (69)维里方程 virial equation (69)维里系数 virial coefficient (69)稳流过程 steady flow process (69)稳态近似法 stationary state approximation (69)无热溶液athermal solution (70)无限稀溶液 solutions in the limit of extreme dilution (70)物理化学 Physical Chemistry (70)物理吸附 physisorptions (70)吸附 adsorption (70)吸附等量线 adsorption isostere (70)吸附等温线 adsorption isotherm (70)吸附等压线 adsorption isobar (70)吸附剂 adsorbent (70)吸附量 extent of adsorption (70)吸附热 heat of adsorption (70)吸附质 adsorbate (70)析出电势 evolution or deposition potential (71)稀溶液的依数性 colligative properties of dilute solutions (71)稀释焓 dilution enthalpy (71)系统 system (71)系统点 system point (71)系统的环境 environment of system (71)相 phase (71)相变 phase change (71)相变焓 enthalpy of phase change (71)相变化 phase change (71)相变热 heat of phase change (71)相点 phase point (71)相对挥发度relative volatility (72)相对粘度 relative viscosity (72)相律 phase rule (72)相平衡热容heat capacity in phase equilibrium (72)相图 phase diagram (72)相倚子系统 system of dependent particles (72)悬浮液 suspension (72)循环过程 cyclic process (72)压力商 pressure quotient (72)压缩因子 compressibility factor (73)压缩因子图 diagram of compressibility factor (73)亚稳状态 metastable state (73)盐桥 salt bridge (73)盐析 salting out (73)阳极 anode (73)杨氏方程 Young’s equation (73)液体接界电势 liquid junction potential (73)液相线 liquid phase lines (73)一级反应first order reaction (73)一级相变first order phase change (74)依时计量学反应 time dependent stoichiometric reactions (74)逸度 fugacity (74)逸度系数 coefficient of fugacity (74)阴极 cathode (75)荧光 fluorescence (75)永动机 perpetual motion machine (75)永久气体 Permanent gas (75)有效能 available energy (75)原电池 primary cell (75)原盐效应 salt effect (75)增比粘度 specific viscosity (75)憎液溶胶 lyophobic sol (75)沾湿 adhesional wetting (75)沾湿功 the work of adhesional wetting (75)真溶液 true solution (76)真实电解质real electrolyte (76)真实气体 real gas (76)真实迁移数true transference number (76)振动配分函数 partition function of vibration (76)振动特征温度 characteristic temperature of vibration (76)蒸气压下降 depression of vapor pressure (76)正常沸点 normal point (76)正吸附 positive adsorption (76)支链反应 branched chain reactions (76)直链反应 straight chain reactions (77)指前因子 pre-exponential factor (77)质量作用定律mass action law (77)制冷系数coefficient of refrigeration (77)中和热heat of neutralization (77)轴功 shaft work (77)转动配分函数 partition function of rotation (77)转动特征温度 characteristic temperature of vibration (78)转化率 convert ratio (78)转化温度conversion temperature (78)状态 state (78)状态方程 state equation (78)状态分布 state distribution (78)状态函数 state function (78)准静态过程quasi-static process (78)准一级反应 pseudo first order reaction (78)自动催化作用 auto-catalysis (78)自由度 degree of freedom (78)自由度数 number of degree of freedom (79)自由焓free enthalpy (79)自由能free energy (79)自由膨胀free expansion (79)组分数 component number (79)最低恒沸点 lower azeotropic point (79)最高恒沸点 upper azeotropic point (79)最佳反应温度 optimal reaction temperature (79)最可几分布 most probable distribution (80)最可几速率 most propable speed (80)概念及术语BET公式BET formula1938年布鲁瑙尔(Brunauer)、埃米特(Emmett)和特勒(Teller)三人在兰格缪尔单分子层吸附理论的基础上提出多分子层吸附理论。
铅酸蓄电池常用专业词汇
High rate of charge for a short period (usually less than an hour) intended to restore sufficient ampere hour capacity of the battery for completing the day's work or replacing losses due to storage. The volume of electrolyte solution immediately adjacent to the electrode surface in which concentration changes occur due to the effects of the electrode process (also see HOURLY RATE) Discharge or charge current, in amperes, expressed in multiples of the rated capacity. For example, the C/20 discharge current for a battery rated at the 5-h discharge rate is: C5/20(Ah) = current (A). As a cell's capacity is not the same at all discharge rates and usually increases with decreasing rate, a discharge at the C5/20 rate will run longer than 20 h. A stick of cadmium covered by a porous sheet and kept immersed in sulfuric acid of the same strength as used in the battery, for use as a reference electrode. EMF of the cell formed between the positive or negative plate group and the cadmium reference electrode A reference electrode of mercury in contract with a paste of mercury and mercurous chloride in potassium, chloride solution of specified concentration. The actual number of ampere hours a battery can deliver at a specified current to a specified end voltage The stated number of ampere hours or watt-hours that can be obtained from the battery at a specified current, to some specified final voltage. The fraction of the full capacity available from a battery under specified conditions of discharge after it has been stored for a period of time. The comparative ability of a metal to fill a mould of intricate shape reproducing the fine contours of a battery grid. Method of obtaining the desired shape of a metal (or alloy) by solidifying the molten metal (or alloy) in a suitable mould Particle, in the electrolyte, carrying a positive charge and moving toward the cathode during operation of the cell. The basic electrochemical unit used to generate or store electrical energy A cone shaped porous ceramic device fixed to the top of the battery, which allows escape of gases evolved during charging, but presents flashback. (Safety vent/flash arrestor) Process of sending current through the cell during which electrical energy is converted to chemical energy and the active materials of the plates are restored.
第三章1x射线衍射分析
3
1. 劳埃法(The Laue Method)
• 劳埃的设想:倘若晶体是由对x射线 起散射中心作用的原子呈周期排列 所构成,而x射线是波长约等于晶体 原子间距的电磁波时,就可能利用 晶体来衍射x射线。
• 劳埃在1912年利用连续x射线垂直 射入一不动的硫酸铜单晶体,并安 放一张底片,以探测衍射光束是否 存在,在首次实验中即成功地拍出 了世界上第一张晶体衍射照片。
第三章 X射线衍射分析
第一节 X射线衍射图像的形成
1
衍射仪工作原理
2dsin
2
2dsin
• 根据布拉格方程,并不是在任何情况下,晶体都能产生衍 射的,产生衍射的必要条件是入射x射线的波长入和它与 反射面的布拉格角θ必须符合布拉格方程的要求。
• 因此,·实现衍射的各种方法都是在实验中设法连续地变化 波长入.或θ角,来满足衍射几何的要求,以达到产生衍 射的目的。
法等方法; 比较适合确定体系,有目的检索; 缺点:所检索出的卡片多数时候不对。一
张复杂的衍射谱有时候需要花几天的时间。
28
2.search match
一个专门的物相检索程序,属于第三代检索软件, 采用图形界面,根据图谱实体来对谱,直观性好;
可以实现和原始实验数据的直接对接,可以自动 或手动标定衍射峰的位置,对于一般的图都能很 好的应付;
每种晶体物质都有特定的 参数
➢ 点阵类型 ➢ 晶胞参数 ➢ 晶胞种原子数目
每种物质都具有自己的参 数
二、粉末衍射卡片及索 引
Hanawalt检索法(1938 年)
PDF卡:1941年由ASTM 出版
JCPD卡:1969年出版 JCPDS/ICDD:1978年出
民族药理学作者须知
JOURNAL OF ETHNOPHARMACOLOGYAn Interdisciplinary Journal Devoted to Indigenous DrugsAUTHOR INFORMATION PACK TABLE OF CONTENTS• Description• Audience• Impact Factor• Abstracting and Indexing • Editorial Board• Guide for Authors p.1p.2p.2p.2p.2p.4ISSN: 0378-8741DESCRIPTIONThe Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people's use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.In recent years the preservation of local knowledge, the promotion of indigenous medical systems in primary health care, and the conservation of biodiversity have become even more of a concern to all scientists working at the interface of social and natural sciences but especially to ethnopharmacologists. Recognizing the sovereign rights of States over their natural resources, ethnopharmacologists are particularly concerned with local people's rights to further use and develop their autochthonous resources.Accordingly, today's ethnopharmacological research embraces the multidisciplinary effort in the:• documentation of indigenous medical knowledge,• scientific study of indigenous medicines in order to contribute in the long-run to improved health care in the regions of study, as well as• search for pharmacologically unique principles from existing indigenous remedies.The Journal of Ethnopharmacology publishes original articles concerned with the observation and experimental investigation of the biological activities of plant and animal substances used in the traditional medicine of past and present cultures. The journal will particularly welcome interdisciplinary papers with an ethnopharmacological, an ethnobotanical or an ethnochemical approach to the study of indigenous drugs. Reports of anthropological and ethnobotanical field studies fall within the journal's scope. Studies involving pharmacological and toxicological mechanisms of action are especially welcome. Clinical studies on efficacy will be considered if contributing to the understanding of specific ethnopharmacological problems. The journal welcomes review articles in the above mentioned fields especially those highlighting the multi-disciplinary nature of ethnopharmacology. Commentaries are by invitation only.AUDIENCEEthnopharmacologists, Medicinal Chemists, Pharmacologists, Toxicologists, Anthropologists, Pharmacognosists, Ethnobotanists, Economic Botanists, EthnobiologistsIMPACT FACTOR2014: 2.998 © Thomson Reuters Journal Citation Reports 2015ABSTRACTING AND INDEXINGAGRICOLABIOSISCambridge Scientific AbstractsChemical AbstractsCurrent Contents/Life SciencesMEDLINE®International Pharmaceutical AbstractsEMBASENAPRALERT (Natural Products Alert)Science Citation IndexCAB AbstractsScopusEMBiologyEDITORIAL BOARDEditor-in-Chief:R. Verpoorte, Gorlaeus Lab., Universiteit Leiden, Einsteinweg 55, 2333 CC, Leiden, NetherlandsDeputy Editor-in-ChiefA.M. Viljoen, Tshwane University of Technology, Pretoria, South AfricaAssociate Editor:D. Guo, Chinese Academy of Sciences (CAS), Shanghai, ChinaA.K. Jäger, University of Copenhagen, Copenhagen O, DenmarkG. Lin, Chinese University of Hong Kong, Hong Kong, Hong KongP.K. Mukherjee, Jadavpur University, Kolkata, IndiaG. Schmeda Hirschmann, Universidad de Talca, Talca, ChileA. Shikov, Saint Petersburg Institute of Pharmacy, Kuzmolovo P 245, Russian FederationE. Yesilada, Yeditepe University, Erenkoy-Istanbul, TurkeyReviews Editor (including Commentaries and Book Reviews):M. Heinrich, The School of Pharmacy, University of London, 29-39 Brunswick Square, London, WC1N 1AX, UK If you want to suggest a review, please provide a structured abstract and include an annotated table of contents and a short CV of the lead author(s).Managing Editor:B. Pomahacova, Leiden University, Leiden, NetherlandsI. Vermaak, Tshwane University of Technology, Pretoria, South AfricaM. Sandasi, Tshwane University of Technology, Pretoria, South AfricaL.J. McGaw, University of Pretoria, Pretoria, South AfricaEditorial Board:S. Alban, Kiel, GermanyM.J. Balick, Bronx, New York, USAR. BauerG. Bourdy, Cayenne, French GuianaJ.B. Calixto, Florianópolis, BrazilC-T. Che, Hong Kong, Hong KongG.A. Cordell, Evanston, Illinois, USAV.S. da Silva Bolzani, Araraquara, BrazilJ. Ding, Shanghai, ChinaV.M. Dirsch, Vienna, AustriaE. Elisabetsky, Porto Alegre, BrazilJ. Fleurentin, Metz, FranceB.L. Furman, Glasgow, UKM.P. Germano, Messina, ItalyJ. Gertsch, Bern, SwitzerlandA.H. Gilani, Karachi, PakistanM.P. Gupta, Panama City, PanamaA. Hensel, Münster, GermanyP.J. Houghton, London, UKZ. Ismail, Penang, MalaysiaW. Jia, Kannapolis, North Carolina, USAT. Johns, Ste. Anne de Bellevue, Quebec, Canada A.K. Jäger, Copenhagen O, DenmarkG. Kavalali, Istanbul, TurkeyH-S. Kim, Cheongju, South KoreaJ. Kim, Seoul, South KoreaY. Kimura, Ehime, JapanM.A. Lacaille-Dubois, Dijon, FranceM. Leonti, Cagliari, ItalyE. Matteucci, Pisa, ItalyI. Merfort, Freiburg, GermanyJ.J.M. Meyer, Pretoria, South AfricaD.E. MoermanD.A. Mulholland, Guildford, England, UKA. Panthong, Chiang Mai, ThailandX. Peigen, Beijing, ChinaA. Pieroni, Pollenzo/Bra, ItalyD.D. Soejarto, Chicago, Illinois, USAE. Speroni, Bologna, ItalyA.J. Vlietinck, Antwerpen, BelgiumH. Wagner, München, GermanyC.S. Weckerle, Zurich, SwitzerlandC.W. Wright, Bradford, UKS. Zacchino, Rosario, ArgentinaFounding Editors:J.G. BruhnL. Rivier, Lausanne, SwitzerlandGUIDE FOR AUTHORSINTRODUCTIONThe Journal of Ethnopharmacology is dedicated to the exchange of information and understandings about people's use of plants, fungi, animals, microorganisms and minerals and their biological and pharmacological effects based on the principles established through international conventions. Early people, confronted with illness and disease, discovered a wealth of useful therapeutic agents in the plant and animal kingdoms. The empirical knowledge of these medicinal substances and their toxic potential was passed on by oral tradition and sometimes recorded in herbals and other texts on materia medica. Many valuable drugs of today (e.g., atropine, ephedrine, tubocurarine, digoxin, reserpine) came into use through the study of indigenous remedies. Chemists continue to use plant-derived drugs (e.g., morphine, taxol, physostigmine, quinidine, emetine) as prototypes in their attempts to develop more effective and less toxic medicinals.Please note that figures and tables should be embedded in the text as close as possible to where they are initially cited. It is also mandatory to upload separate graphic and table files as these will be required if your manuscript is accepted for publication.Classification of your paperPlease note that upon submitting your article you will have to select at least one classification and at least three of the given keywords. You can preview the list of classifications and keywords (here). This information is needed by the Editors to more quickly process your article. In addition to this, you can submit free keywords as described below under "Keywords".The "rules of 5"The Editors and Editorial Board have developed the "Rules of 5" for publishing in JEP. We have produced five clear criteria that each author needs to think about before submitting a manuscript and setting the whole process of editing and reviewing at work. Click here.For more details on how to write a world class paper, please visit our Pharmacology Author Resources page.Authors are encouraged to submit video material or animation sequences to support and enhance your scientific research. For more information please see the paragraph on video data below. Types of paperThe Journal of Ethnopharmacology will accept the following contributions:1. Original research articles - whose length is not limited and should include Title, Abstract, Methods and Materials, Results, Discussion, Conclusions, Acknowledgements and References. As a guideline, a full length paper normally occupies no more than 10 printed pages of the journal, including tables and illustrations.2. Short Communications - whose average length is not more than 4 pages in print (approx. 2000-2300 words, including abstract and references). A maximum of 2 illustrations (figures or tables) is allowed. See paragraph below for description and format.3. Letters to the Editors.4. Reviews - Authors intending to write review articles should consult and send an outline to the Reviews Editor (see inside front cover for contact information) before preparing their manuscripts. The organization and subdivision of review articles can be arranged at the author's discretion. Authors should keep in mind that a good review sets the trend and direction of future research on the subject matter being reviewed. Tables, figures and references are to be arranged in the same way as research articles in the journal. Reviews on topics that address cutting-edge problems are particularly welcome. Outlines for potential reviews need to include: A detailed abstract using the structure provided in the guidelines An annotated table of contents A short CV of the lead author5. Book reviews - Books for review should be sent to the Reviews Editor.6. Commentaries - invited, peer-reviewed, critical discussion about crucial aspects of the field but most importantly methodological and conceptual-theoretical developments in the field and should also provide a standard, for example, for pharmacological methods to be used in papers in the Journal of Ethnopharmacology. The scientific dialogue differs greatly in the social / cultural and natural sciences, the discussions about the common foundations of the field are ongoing and thepapers published should contribute to a transdisciplinary and multidisciplinary discussion. The length should be a maximum of 2-3 printed pages or 2500 words. Please contact the Reviews Editor j.ethnopharmacol@ with an outline.7. Conference announcements and news.BEFORE YOU BEGINEthics in publishingFor information on Ethics in publishing and Ethical guidelines for journal publication see /publishingethics and /journal-authors/ethics. Policy and ethicsIn the covering letter, the author must also declare that the study was performed according to the international, national and institutional rules considering animal experiments, clinical studies and biodiversity rights. See below for further information. The ethnopharmacological importance of the study must also be explained in the cover letter.Animal and clinical studies - Investigations using experimental animals must state in the Methods section that the research was conducted in accordance with the internationally accepted principles for laboratory animal use and care as found in for example the European Community guidelines (EEC Directive of 1986; 86/609/EEC) or the US guidelines (NIH publication #85-23, revised in 1985). Investigations with human subjects must state in the Methods section that the research followed guidelines of the Declaration of Helsinki and Tokyo for humans, and was approved by the institutional human experimentation committee or equivalent, and that informed consent was obtained. The Editors will reject papers if there is any doubt about the suitability of the animal or human procedures used.Biodiversity rights - Each country has its own rights on its biodiversity. Consequently for studying plants one needs to follow the international, national and institutional rules concerning the biodiversity rights.Author contributionsFor each author the contribution to the publication should be mentioned.Conflict of interestAll authors are requested to disclose any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations within three years of beginning the submitted work that could inappropriately influence, or be perceived to influence, their work. See also /conflictsofinterest. Further information and an example of a Conflict of Interest form can be found at: /app/answers/detail/a_id/286/supporthub/publishing.Submission declaration and verificationSubmission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see /sharingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. To verify originality, your article may be checked by the originality detection service CrossCheck /editors/plagdetect.Changes to authorshipAuthors are expected to consider carefully the list and order of authors before submitting their manuscript and provide the definitive list of authors at the time of the original submission. Any addition, deletion or rearrangement of author names in the authorship list should be made only before the manuscript has been accepted and only if approved by the journal Editor. To request such a change, the Editor must receive the following from the corresponding author: (a) the reason for the change in author list and (b) written confirmation (e-mail, letter) from all authors that they agree with the addition, removal or rearrangement. In the case of addition or removal of authors, this includes confirmation from the author being added or removed.Only in exceptional circumstances will the Editor consider the addition, deletion or rearrangement of authors after the manuscript has been accepted. While the Editor considers the request, publication of the manuscript will be suspended. If the manuscript has already been published in an online issue, any requests approved by the Editor will result in a corrigendum.Article transfer serviceThis journal is part of our Article Transfer Service. This means that if the Editor feels your article is more suitable in one of our other participating journals, then you may be asked to consider transferring the article to one of those. If you agree, your article will be transferred automatically on your behalf with no need to reformat. Please note that your article will be reviewed again by the new journal. More information about this can be found here: /authors/article-transfer-service. CopyrightUpon acceptance of an article, authors will be asked to complete a 'Journal Publishing Agreement' (for more information on this and copyright, see /copyright). An e-mail will be sent to the corresponding author confirming receipt of the manuscript together with a 'Journal Publishing Agreement' form or a link to the online version of this agreement.Subscribers may reproduce tables of contents or prepare lists of articles including abstracts for internal circulation within their institutions. Permission of the Publisher is required for resale or distribution outside the institution and for all other derivative works, including compilations and translations (please consult /permissions). If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article. Elsevier has preprinted forms for use by authors in these cases: please consult /permissions.For open access articles: Upon acceptance of an article, authors will be asked to complete an 'Exclusive License Agreement' (for more information see /OAauthoragreement). Permitted third party reuse of open access articles is determined by the author's choice of user license (see /openaccesslicenses).Author rightsAs an author you (or your employer or institution) have certain rights to reuse your work. For more information see /copyright.Role of the funding sourceYou are requested to identify who provided financial support for the conduct of the research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. If the funding source(s) had no such involvement then this should be stated.Funding body agreements and policiesElsevier has established a number of agreements with funding bodies which allow authors to comply with their funder's open access policies. Some authors may also be reimbursed for associated publication fees. To learn more about existing agreements please visit /fundingbodies.Open accessThis journal offers authors a choice in publishing their research:Open access• Articles are freely available to both subscribers and the wider public with permitted reuse• An open access publication fee is payable by authors or on their behalf e.g. by their research funder or institutionSubscription• Articles are made available to subscribers as well as developing countries and patient groups through our universal access programs (/access).• No open access publication fee payable by authors.Regardless of how you choose to publish your article, the journal will apply the same peer review criteria and acceptance standards.For open access articles, permitted third party (re)use is defined by the following Creative Commons user licenses:Creative Commons Attribution (CC BY)Lets others distribute and copy the article, create extracts, abstracts, and other revised versions, adaptations or derivative works of or from an article (such as a translation), include in a collective work (such as an anthology), text or data mine the article, even for commercial purposes, as long as they credit the author(s), do not represent the author as endorsing their adaptation of the article, and do not modify the article in such a way as to damage the author's honor or reputation. Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)For non-commercial purposes, lets others distribute and copy the article, and to include in a collective work (such as an anthology), as long as they credit the author(s) and provided they do not alter or modify the article.The open access publication fee for this journal is USD 3250, excluding taxes. Learn more about Elsevier's pricing policy: /openaccesspricing.Green open accessAuthors can share their research in a variety of different ways and Elsevier has a number of green open access options available. We recommend authors see our green open access page for further information (/greenopenaccess). Authors can also self-archive their manuscripts immediately and enable public access from their institution's repository after an embargo period. This is the version that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and in editor-author communications. Embargo period: For subscription articles, an appropriate amount of time is needed for journals to deliver value to subscribing customers before an article becomes freely available to the public. This is the embargo period and it begins from the date the article is formally published online in its final and fully citable form.This journal has an embargo period of 12 months.Language (usage and editing services)Please write your text in good English (American or British usage is accepted, but not a mixture of these). Authors who feel their English language manuscript may require editing to eliminate possible grammatical or spelling errors and to conform to correct scientific English may wish to use the English Language Editing service available from Elsevier's WebShop (/languageediting/) or visit our customer support site () for more information.SubmissionOur online submission system guides you stepwise through the process of entering your article details and uploading your files. The system converts your article files to a single PDF file used in the peer-review process. Editable files (e.g., Word, LaTeX) are required to typeset your article for final publication. All correspondence, including notification of the Editor's decision and requests for revision, is sent by e-mail.Additional informationAuthors who want to submit a manuscript should consult and peruse carefully recent issues of the journal for format and style. Authors must include the following contact details on the title page of their submitted manuscript: full postal address; fax; e-mail. All manuscripts submitted are subject to peer review. The minimum requirements for a manuscript to qualify for peer review are that it has been prepared by strictly following the format and style of the journal as mentioned, that it is written in good English, and that it is complete. Manuscripts that have not fulfilled these requirements will be returned to the author(s).In addition, you are recommended to adhere to the research standards described in the following articles:Cos P., Vlietinck A.J., Berghe D.V., et al. (2006) Anti-infective potential of natural products: how to develop a stronger in vitro 'proof-of-concept'. Journal of Ethnopharmacology, 106: 290-302.Matteucci, E., Giampietro, O. (2008) Proposal open for discussion: defining agreed diagnostic procedures in experimental diabetes research. Journal of Ethnopharmacology,115: 163-172.Froede, T.SA. and Y.S. Medeiros, Y.S. (2008) Animal models to test drugs with potential antidiabetic activity. Journal of Ethnopharmacology 115: 173-183. Gertsch J. (2009) How scientific is the science in ethnopharmacology? Historical perspectives and epistemological problems. Journal of Ethnopharmacology, 122: 177-183.Chan K., et al. (2012) Good practice in reviewing and publishing studies on herbal medicine, with special emphasis on traditional Chinese medicine and Chinese Materia Medica. Journal of Ethnopharmacology 140: 469-475.Heinrich, M., Edwards. S., Moerman. D.E.. and Leonti. M. (2009), Ethnopharmacological field studies: a critical assessment of their conceptual basis and methods. J. Ethnopharmacol, 124: 1-17. PREPARATIONUse of word processing softwareIt is important that the file be saved in the native format of the word processor used. The text should be in single-column format. Keep the layout of the text as simple as possible. Most formatting codes will be removed and replaced on processing the article. In particular, do not use the word processor's options to justify text or to hyphenate words. However, do use bold face, italics, subscripts, superscripts etc. When preparing tables, if you are using a table grid, use only one grid for each individual table and not a grid for each row. If no grid is used, use tabs, not spaces, to align columns. The electronic text should be prepared in a way very similar to that of conventional manuscripts (see also the Guide to Publishing with Elsevier: /guidepublication). Note that source files of figures, tables and text graphics will be required whether or not you embed your figures in the text. See also the section on Electronic artwork.To avoid unnecessary errors you are strongly advised to use the 'spell-check' and 'grammar-check' functions of your word processor.Article structureSubdivision - numbered sectionsDivide your article into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. (the abstract is not included in section numbering). Use this numbering also for internal cross-referencing: do not just refer to 'the text'. Any subsection may be given a brief heading. Each heading should appear on its own separate line.IntroductionState the objectives of the work and provide an adequate background, avoiding a detailed literature survey or a summary of the results.Material and methodsProvide sufficient detail to allow the work to be reproduced. Methods already published should be indicated by a reference: only relevant modifications should be described.Theory/calculationA Theory section should extend, not repeat, the background to the article already dealt with in the Introduction and lay the foundation for further work. In contrast, a Calculation section represents a practical development from a theoretical basis.ResultsResults should be clear and concise.DiscussionThis should explore the significance of the results of the work, not repeat them. A combined Results and Discussion section is often appropriate. Avoid extensive citations and discussion of published literature.ConclusionsThe main conclusions of the study may be presented in a short Conclusions section, which may stand alone or form a subsection of a Discussion or Results and Discussion section.GlossaryPlease supply, as a separate list, the definitions of field-specific terms used in your article.AppendicesIf there is more than one appendix, they should be identified as A, B, etc. Formulae and equations in appendices should be given separate numbering: Eq. (A.1), Eq. (A.2), etc.; in a subsequent appendix, Eq. (B.1) and so on. Similarly for tables and figures: Table A.1; Fig. A.1, etc.Essential title page information• Title.Concise and informative. Titles are often used in information-retrieval systems. Avoid abbreviations and formulae where possible.• Author names and affiliations. Please clearly indicate the given name(s) and family name(s) of each author and check that all names are accurately spelled. Present the authors' affiliation addresses (where the actual work was done) below the names. Indicate all affiliations with a lower-case superscript letter immediately after the author's name and in front of the appropriate address. Provide the full postal address of each affiliation, including the country name and, if available, the e-mail address of each author.• Corresponding author. Clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Ensure that the e-mail address is given and that contact details are kept up to date by the corresponding author.• Present/permanent address. If an author has moved since the work described in the article was done, or was visiting at the time, a 'Present address' (or 'Permanent address') may be indicated as a footnote to that author's name. The address at which the author actually did the work must be retained as the main, affiliation address. Superscript Arabic numerals are used for such footnotes. AbstractA concise and factual abstract is required. The abstract should state briefly the purpose of the research, the principal results and major conclusions. An abstract is often presented separately from the article, so it must be able to stand alone. For this reason, References should be avoided, but if essential, then cite the author(s) and year(s). Also, non-standard or uncommon abbreviations should be avoided, but if essential they must be defined at their first mention in the abstract itself.The author should divide the abstract with the headings Ethnopharmacological relevance, Aim of the study , Materials and Methods, Results, and Conclusions.Click here to see an example.Graphical abstractA Graphical abstract is mandatory for this journal. It should summarize the contents of the article in a concise, pictorial form designed to capture the attention of a wide readership online. Authors must provide images that clearly represent the work described in the article. Graphical abstracts should be submitted as a separate file in the online submission system. Image size: please provide an image with a minimum of 531 × 1328 pixels (h × w) or proportionally more. The image should be readable at a size of 5 × 13 cm using a regular screen resolution of 96 dpi. Preferred file types: TIFF, EPS, PDF or MS Office files. See /graphicalabstracts for examples.Authors can make use of Elsevier's Illustration and Enhancement service to ensure the best presentation of their images also in accordance with all technical requirements: Illustration Service. KeywordsAfter having selected a classification in the submission system, authors must in the same step select 5 keywords. These keywords will help the Editors to categorize your article accurately and process it more quickly. A list of the classifications and set keywords can be found here.In addition, you can provide a maximum of 6 specific keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, "and", "of"). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.Chemical compoundsYou can enrich your article by providing a list of chemical compounds studied in the article. The list of compounds will be used to extract relevant information from the NCBI PubChem Compound database and display it next to the online version of the article on ScienceDirect. You can include up to 10 names of chemical compounds in the article. For each compound, please provide the PubChem CID of the most relevant record as in the following example: Glutamic acid (PubChem CID:611). The PubChem CIDs can be found via /pccompound. Please position the list of compounds immediately below the 'Keywords' section. It is strongly recommended to follow the exact text formatting as in the example below:。
liquid–liquid phase separation
Biophysical Chemistry 109(2004)105–1120301-4622/04/$-see front matter ᮊ2003Elsevier B.V .All rights reserved.doi:10.1016/j.bpc.2003.10.021Cloud-point temperature and liquid–liquid phase separation ofsupersaturated lysozyme solutionJie Lu *,Keith Carpenter ,Rui-Jiang Li ,Xiu-Juan Wang ,Chi-Bun Ching a ,a a b bInstitute of Chemical and Engineering Sciences,Ayer Rajah Crescent 28,࠻02-08,Singapore 139959,Singapore aChemical and Process Engineering Center,National University of Singapore,Singapore 117576,SingaporebReceived 31July 2003;received in revised form 8October 2003;accepted 16October 2003AbstractThe detailed understanding of the structure of biological macromolecules reveals their functions,and is thus important in the design of new medicines and for engineering molecules with improved properties for industrial applications.Although techniques used for protein crystallization have been progressing greatly,protein crystallization may still be considered an art rather than a science,and successful crystallization remains largely empirical and operator-dependent.In this work,a microcalorimetric technique has been utilized to investigate liquid–liquid phase separation through measuring cloud-point temperature T for supersaturated lysozyme solution.The effects of cloud ionic strength and glycerol on the cloud-point temperature are studied in detail.Over the entire range of salt concentrations studied,the cloud-point temperature increases monotonically with the concentration of sodium chloride.When glycerol is added as additive,the solubility of lysozyme is increased,whereas the cloud-point temperature is decreased.ᮊ2003Elsevier B.V .All rights reserved.Keywords:Biocrystallization;Microcalorimetry;Cloud-point temperature;Liquid–liquid phase separation1.IntroductionKnowledge of detailed protein structure is essen-tial for protein engineering and the design of pharmaceuticals.Production of high-quality pro-tein crystals is required for molecular structure determination by X-ray crystallography.Although considerable effort has been made in recent years,obtaining such crystals is still difficult in general,and predicting the solution conditions where pro-*Corresponding author.Tel.:q 65-6874-4218;fax:q 65-6873-4805.E-mail address:lujie@.sg (J.Lu ).teins successfully crystallize remains a significant obstacle in the advancement of structural molecu-lar biology w 1x .The parameters affecting protein crystallization are typically reagent concentration,pH,tempera-ture,additive,etc.A phase diagram can provide the method for quantifying the influence of solu-tion parameters on the production of crystals w 2,3x .To characterize protein crystallization,it is neces-sary to first obtain detailed information on protein solution phase behavior and phase diagram.Recently physics shows that there is a direct relationship between colloidal interaction energy106J.Lu et al./Biophysical Chemistry109(2004)105–112and phase diagram.Gast and Lekkerkerker w4,5x have indicated that the range of attraction between colloid particles has a significant effect on the qualitative features of phase diagram.A similar relationship should hold for biomacromolecules, i.e.the corresponding interaction potentials govern the macromolecular distribution in solution,the shape of the phase diagram and the crystallization process w6x.Many macromolecular crystallizations appear to be driven by the strength of the attractive interactions,and occur in,or close to,attractive regimes w7,8x.Recent intensive investigation has revealed that protein or colloidal solution possesses a peculiar phase diagram,i.e.liquid–liquid phase separation and sol–gel transition exists in general in addition to crystallization w9,10x.The potential responsible for the liquid–liquid phase separation is a rather short range,possibly van der Waals,attractive potential w11,12x.The measurement of cloud-point temperature T can provide useful informationcloudon the net attractive interaction between protein molecules,namely,the higher the cloud-point tem-perature,the greater the net attractive interaction. Herein Taratuta et al.w13x studied the effects of salts and pH on the cloud-point temperature of lysozyme.Broide et al.w14x subsequently meas-ured the cloud-point temperature and crystalliza-tion temperature for lysozyme as a function of salt type and concentration.From these works the cloud-point temperature was found to be typically 15–458C below the crystallization temperature. Furthermore,Muschol and Rosenberger w15x deter-mined the metastable coexistence curves for lyso-zyme through cloud-point measurements,and suggested a systematic approach to promote pro-tein crystallization.In general,an effective way to determine the strength of protein interactions is to study temperature-induced phase transitions that occur in concentrated protein solutions.Liquid–liquid phase separation can be divided into two stages w11x:(1)the local separation stage at which the separation proceeds in small regions and local equilibrium is achieved rapidly;and(2) the coarsening stage at which condensation of these small domains proceeds slowly to reduce the loss of interface free energy w16x.The coexisting liquid phases both remain supersaturated but differ widely in protein concentration.The effect of a metastable liquid–liquid phase separation on crystallization remains ambiguous w17x.Molecular dynamics simulations and analyt-ical theory predict that the phase separation will affect the kinetics and the mechanisms of protein crystal nucleation w18x.tenWolde and Frenkel w19x have demonstrated that the free energy barrier for crystal nucleation is remarkably reduced at the critical point of liquid–liquid phase separation, thus in general,after liquid–liquid phase separa-tion,crystallization occurs much more rapidly than in the initial solution,which is typically too rapid for the growth of single crystal with low defect densities w15x.The determination of the location of liquid–liquid phase separation curve is thus crucial for efficiently identifying the optimum solution conditions for growing protein crystals. Microcalorimetry has the potential to be a useful tool for determining:(1)the metastable-labile zone boundary;(2)the temperature-dependence of pro-tein solubility in a given solvent;and(3)the crystal-growth rates as a function of supersatura-tion w20x.Microcalorimeters can detect a power signal as low as a few microwatts whereas standard calorimeters detect signals in the milliwatt range. Because of this greater sensitivity,samples with small heat effects can be analyzed.In addition, microcalorimetry has the advantage of being fast, non-destructive to the protein and requiring a relatively small amount of material.The present work is concerned with the analysis of the transient heat signal from microcalorimeter to yield liquid–liquid phase separation information for lysozyme solutions at pH4.8.To further examine the role of salt and additive on interprotein interactions, cloud-point temperature T has been determinedcloudexperimentally as a function of the concentrations of salt,protein and glycerol.2.Materials and methods2.1.MaterialsSix times crystallized lysozyme was purchased from Seikagaku Kogyo,and used without further107J.Lu et al./Biophysical Chemistry 109(2004)105–112purification.All other chemicals used were of reagent grade,from Sigma Chemical Co.2.2.Preparation of solutionsSodium acetate buffer (0.1M )at pH 4.8was prepared with ultrafiltered,deionized water.Sodi-um azide,at a concentration of 0.05%(w y v ),was added to the buffer solution as an antimicrobial agent.Protein stock solution was prepared by dissolving protein powder into buffer.To remove undissolved particles,the solution was centrifuged in a Sigma centrifuge at 12000rev.y min for 5–10min,then filtered through 0.22-m m filters (Mil-lex-VV )into a clean sample vial and stored at 48C for further experiments.The concentration of protein solution was determined by measuring the absorbance at 280nm of UV spectroscopy (Shi-madzu UV-2550),with an extinction coefficient of 2.64ml y (mg cm )w 21x .Precipitant stock solution was prepared by dissolving the required amount of sodium chloride together with additive glycerol into buffer.The pH of solutions was measured by a digital pH meter (Mettler Toledo 320)and adjusted by the addition of small volumes of NaOH or HAc solution.2.3.Measurement of solubilitySolubility of lysozyme at various temperatures and precipitant y additive concentrations was meas-ured at pH 4.8in 0.1M acetate buffer.Solid–liquid equilibrium was approached through both crystallization and dissolution.Dissolving lasted 3days,while the period of crystallization was over 2weeks.The supernatant in equilibrium with a macroscopically observable solid was then filtered through 0.1-m m filters (Millex-VV ).The concen-tration of diluted supernatant was determined spec-troscopically and verified by refractive meter(Kruss)until refractive index remained unchanged ¨at equilibrium state.Solubility of each sample was measured in duplicate.2.4.Differential scanning microcalorimetry Calorimetric experiments were performed with a micro-differential scanning calorimeter with anultra sensitivity,micro-DSC III,from Setaram SA,France.The micro-DSC recorded heat flow in microwatts vs.temperature,thus can detect the heat associated with phase transition during a temperature scan.The sample made up of equal volumes of protein solution and precipitant solu-tion was filtered through 0.1-m m filters to remove dust particles further.To remove the dissolved air,the sample was placed under vacuum for 3min while stirring at 500rev.y min by a magnetic stirrer.The degassed sample was placed into the sample cell of 1.0ml,and a same concentration NaCl solution was placed into the reference cell.The solutions in the micro-DSC were then cooled at the rate of 0.28C y min.After every run,the cells were cleaned by sonicating for 10–15min in several solutions in the following order:deionized water,methanol,ethanol,acetone,1M KOH and finally copious amounts of deionized water.This protocol ensured that lysozyme was completely removed from the cells.The cells were then placed in a drying oven for several hours.The rubber gaskets were cleaned in a similar manner except acetone and 1M KOH were omitted and they were allowed to dry at low temperature.3.Results and discussionA typical micro-DSC scanning experiment is shown in Fig.1.The onset of the clouding phe-nomenon is very dramatic and easily detected.The sharp increase in the heat flow is indicative of a liquid–liquid phase separation process producing a latent heat.This is much consistent with many recent investigations of the liquid–liquid phase separation of lysozyme from solution w 22,23x .In fact,such a liquid–liquid phase separation is a phase transition with an associated latent heat of demixing.In this work,the cloud-point tempera-tures at a variety of lysozyme,NaCl and glycerol concentrations are determined by the micro-DSC at the scan rate of 128C y h.3.1.Effect of protein concentrationIn semilogarithmic Fig.2we plot the solid–liquid and liquid–liquid phase boundaries for lyso-108J.Lu et al./Biophysical Chemistry 109(2004)105–112Fig.1.Heat flow of a typical micro-DSC scan of lysozyme solution,50mg y ml,0.1M acetate buffer,pH 4.8,3%NaCl.The scan rate 128C y h is chosen referenced to the experimental results of Darcy and Wiencek w 23x .Note the large deflection in the curve at approximately 4.38C indicating a latent heat resulting from demixing (i.e.liquid–liquid phase separation )process.Fig.2.Cloud-point temperature and solubility determination for lysozyme in 0.1M acetate buffer,pH 4.8:solubility (5%NaCl )(s );T (5%NaCl,this work )(d );T (5%cloud cloud NaCl,the work of Darcy and Wiencek w 23x )(*);solubility (3%NaCl )(h );T (3%NaCl )(j ).cloud Fig.3.Cloud-point temperature determination for lysozyme as a function of the concentration of sodium chloride,50mg y ml,0.1M acetate buffer,pH 4.8.zyme in 0.1M acetate buffer,pH 4.8,for a range of protein concentrations.It is worth noting that,at 5%NaCl,our experimental data of T from cloud micro-DSC are quite consistent with those from laser light scattering and DSC by Darcy and Wiencek w 23x ,with difference averaging at approx-imately 0.88C.This figure demonstrates that liquid–liquid phase boundary is far below solid–liquid phase boundary,which implies that the liquid–liquid phase separation normally takes place in a highly metastable solution.In addition,cloud-point temperature T increases with the cloud concentration of protein.3.2.Effect of salt concentrationFig.3shows how cloud-point temperature changes as the concentration of NaCl is varied from 2.5to 7%(w y v ).The buffer is 0.1M acetate (pH 4.8);the protein concentration is fixed at 50mg y ml.Over the entire range of salt concentrations studied,the cloud-point temperature strongly depends on the ionic strength and increases monotonically with the concentration of NaCl.Crystallization is driven by the difference in chemical potential of the solute in solution and in the crystal.The driving force can be simplified as w 24xf sy Dm s kT ln C y C (1)Ž.eq109J.Lu et al./Biophysical Chemistry 109(2004)105–112Fig.4.The driving force required by liquid–liquid phase sep-aration as a function of the concentration of sodium chloride,50mg y ml lysozyme solution,0.1M acetate buffer,pH 4.8.In the same way,we plot the driving force,f ,required by liquid–liquid phase separation as a function of the concentration of sodium chloride in Fig.4.At the moderate concentration of sodium chloride,the driving force required by liquid–liquid phase separation is higher than that at low or high salt concentration.As shown in Fig.3,with NaCl concentration increasing,the cloud-point temperature increases,which is in accord with the results of Broide et al.w 14x and Grigsby et al.w 25x .It is known that protein interaction is the sum of different potentials like electrostatic,van der Waals,hydrophobic,hydration,etc.The liquid–liquid phase separation is driven by a net attraction between protein molecules,and the stronger the attraction,the higher the cloud-point temperature.Ionic strength is found to have an effect on the intermolecular forces:attractions increase with ionic strength,solubility decreases with ionic strength,resulting in the cloud-point temperature increases with ionic strength.It is worth noting that,the effect of ionic strength on cloud-point temperature depends strongly on the specific nature of the ions w 13x .Kosmotropic ions bind adjacent water molecules more strongly than water binds itself.When akosmotropic ion is introduced into water,the entro-py of the system decreases due to increased water structuring around the ion.In contrast,chaotropes bind adjacent water molecules less strongly than water binds itself.When a chaotrope is introduced into water,the entropy of the system increases because the water structuring around the ion is less than that in salt-free water.This classification is related to the size and charge of the ion.At high salt concentration ()0.3M ),the specific nature of the ions is much more important w 25x .The charges on a protein are due to discrete positively and negatively charged surface groups.In lysozyme,the average distance between thesecharges is approximately 10Aw 26x .As to the salt ˚NaCl used as precipitant,Na is weakly kosmo-q tropic and Cl is weakly chaotropic w 27x .At low y NaCl concentrations,as the concentration of NaCl increases,the repulsive electrostatic charge–charge interactions between protein molecules decrease because of screening,resulting in the increase of cloud-point temperature.While at high NaCl con-centrations,protein molecules experience an attrac-tion,in which differences can be attributed to repulsive hydration forces w 14,25x .That is,as the ionic strength increases,repulsive electrostatic or hydration forces decrease,protein molecules appear more and more attractive,leading to higher cloud-point temperature.At various salt concentra-tions,the predominant potentials reflecting the driving force for liquid–liquid phase separation are different.Fig.4shows that the driving force,f ,is parabolic with ionic strength,while Grigsby et al.w 25x have reported that f y kT is linear with ionic strength for monovalent salts.The possible reasons for that difference include,their model is based on a fixed protein concentration of 87mg y ml,which is higher than that used in our study,yet f y kT is probably dependent on protein concentration,besides the solutions at high protein and salt concentrations are far from ideal solutions.3.3.Effect of glycerolFig.5compares cloud-point temperature data for 50mg y ml lysozyme solutions in absence of glycerol and in presence of 5%glycerol,respec-110J.Lu et al./Biophysical Chemistry109(2004)105–112parison of cloud-point temperatures for lysozyme at different glycerol concentrations as a function of the con-centration of sodium chloride,50mg y ml,0.1M acetate buffer, pH4.8:0%glycerol(s);5%glycerol(j).Fig.6.Cloud-point temperatures for lysozyme at different glycerol concentrations,50mg y ml lysozyme,5%NaCl,0.1M acetate buffer,pH4.8.Fig.7.Cloud-point temperature and solubility determination for lysozyme at different concentrations of glycerol in0.1M acetate buffer,5%NaCl,pH4.8:solubility(0%glycerol)(s); T(0%glycerol)(d);solubility(5%glycerol)(h);cloudT(5%glycerol)(j).cloudtively.Fig.6shows the cloud-point temperature as a function of the concentration of glycerol.The cloud-point temperature is decreased as the addi-tion of glycerol.In semilogarithmic Fig.7we plot the solid–liquid and liquid–liquid phase boundaries at dif-ferent glycerol concentrations for lysozyme in0.1 M acetate buffer,5%NaCl,pH4.8,for a range of protein concentration.This figure demonstrates that liquid–liquid and solid–liquid phase bounda-ries in the presence of glycerol are below those in absence of glycerol,and the region for growing crystals is narrowed when glycerol is added. Glycerol has the property of stabilizing protein structure.As a result,if crystallization occurs over a long period of time,glycerol is a useful candidate to be part of the crystallization solvent and is often included for this purpose w28x.In addition,glycerol is found to have an effect on the intermolecular forces:repulsions increase with glycerol concentra-tion w29x.Our experiment results of solubility and cloud-point temperature can also confirm the finding.The increased repulsions induced by glycerol can be explained by a number of possible mecha-nisms,all of which require small changes in the protein or the solvent in its immediate vicinity.The addition of glycerol decreases the volume of protein core w30x,increases hydration and the size of hydration layer at the particle surface w31,32x. In this work,we confirm that glycerol shifts the solid–liquid and liquid–liquid phase boundaries. The effect of glycerol on the phase diagram strong-111 J.Lu et al./Biophysical Chemistry109(2004)105–112ly depends on its concentration and this canprovide opportunities for further tuning of nuclea-tion rates.4.ConclusionsGrowing evidence suggests protein crystalliza-tion can be understood in terms of an order ydisorder phase transition between weakly attractiveparticles.Control of these attractions is thus keyto growing crystals.The study of phase transitionsin concentrated protein solutions provides one witha simple means of assessing the effect of solutionconditions on the strength of protein interactions.The cloud-point temperature and solubility datapresented in this paper demonstrate that salt andglycerol have remarkable effects on phase transi-tions.The solid–liquid and liquid–liquid bounda-ries can be shifted to higher or lower temperaturesby varying ionic strength or adding additives.Ourinvestigation provides further information upon therole of glycerol used in protein crystallization.Glycerol can increase the solubility,and decreasethe cloud-point temperature,which is of benefit totuning nucleation and crystal growth.In continuingstudies,we will explore the effects of other kindsof additives like nonionic polymers on phasetransitions and nucleation rates.Much more theo-retical work will be done to fully interpret ourexperimental results.AcknowledgmentsThis work is supported by the grant from theNational Natural Science Foundation of China(No.20106010).The authors also thank Professor J.M.Wiencek(The University of Iowa)for kinddiscussion with us about the thermal phenomenaof liquid–liquid phase separation.Referencesw1x A.McPherson,Current approaches to macromolecular crystallization,Eur.J.Biochem.189(1990)1–23.w2x A.M.Kulkarni, C.F.Zukoski,Nanoparticle crystal nucleation:influence of solution conditions,Langmuir18(2002)3090–3099.w3x E.E.G.Saridakis,P.D.S.Stewart,L.F.Lloyd,et al., Phase diagram and dilution experiments in the crystal-lization of carboxypeptidase G2,Acta Cryst.D50(1994)293–297.w4x A.P.Gast, C.K.Hall,W.B.Russel,Polymer-induced phase separations in non-aqueous colloidal suspensions,J.Colloid Interf.Sci.96(1983)251–267.w5x H.N.W.Lekkerkerker,W.C.K.Poon,P.N.Pusey,et al., Phase-behavior of colloid plus polymer mixtures,Euro-phys.Lett.20(1992)559–564.w6x A.Tardieu,S.Finet,F.Bonnete,Structure of the´macromolecular solutions that generate crystals,J.Cryst.Growth232(2001)1–9.w7x D.Rosenbaum,C.F.Zukoski,Protein interactions and crystallization,J.Cryst.Growth169(1996)752–758.w8x A.George,W.W.Wilson,Predicting protein crystalli-zation from a dilute solution property,Acta Cryst.D50(1994)361–365.w9x D.Rosenbaum,P.C.Zamora, C.F.Zukoski,Phase-behavior of small attractive colloidal particles,Phys.Rev.Lett.76(1996)150–153.w10x V.J.Anderson,H.N.W.Lekkerkerker,Insights into phase transition kinetics from colloid science,Nature416(2002)811–815.w11x S.Tanaka,K.Ito,R.Hayakawa,Size and number density of precrystalline aggregates in lysozyme crys-tallization process,J.Chem.Phys.111(1999)10330–10337.w12x D.W.Liu,A.Lomakin,G.M.Thurston,et al.,Phase-separation in multicomponent aqueous-protein solutions,J.Phys.Chem.99(1995)454–461.w13x V.G.Taratuta,A.Holschbach,G.M.Thurston,et al., Liquid–liquid phase separation of aqueous lysozymesolutions:effects of pH and salt identity,J.Phys.Chem.94(1990)2140–2144.w14x M.L.Broide,T.M.Tominc,M.D.Saxowsky,Using phase transitions to investigate the effect of salts onprotein interactions,Phys.Rev.E53(1996)6325–6335. w15x M.Muschol,F.Rosenberger,Liquid–liquid phase sep-aration in supersaturated lysozyme solutions and asso-ciated precipitate formation y crystallization,J.Chem.Phys.107(1997)1953–1962.w16x C.Domb,J.H.Lebowitz,Phase Separation and Critical Phenomena,Academic,London,1983.w17x D.F.Rosenbaum,A.Kulkarni,S.Ramakrishnan,C.F.Zukoski,Protein interactions and phase behavior:sen-sitivity to the form of the pair potential,J.Chem.Phys.111(1999)9882–9890.w18x O.Galkin,P.G.Vekilov,Nucleation of protein crystals: critical nuclei,phase behavior and control pathways,J.Cryst.Growth232(2001)63–76.w19x P.R.tenWolde, D.Frenkel,Enhancement of protein crystal nucleation by critical density fluctuations,Sci-ence277(1997)1975–1978.w20x P.A.Darcy,J.M.Wiencek,Estimating lysozyme crystal-lization growth rates and solubility from isothermalmicrocalorimetry,Acta Cryst.D54(1998)1387–1394.112J.Lu et al./Biophysical Chemistry109(2004)105–112w21x A.J.Sophianopoulos,C.K.Rhodes,D.N.Holcomb,K.E.vanHolde,Physical studies of lysozyme.I.Characteri-zation,J.Biol.Chem.237(1962)1107–1112.w22x Y.Georgalis,P.Umbach, A.Zielenkiewicz,et al., Microcalorimetric and small-angle light scattering stud-ies on nucleating lysozyme solutions,J.Am.Chem.Soc.119(1997)11959–11965.w23x P.A.Darcy,J.M.Wiencek,Identifying nucleation tem-peratures for lysozyme via differential scanning calorim-etry,J.Cryst.Growth196(1999)243–249.w24x M.L.Grant,Effects of thermodynamics nonideality in protein crystal growth,J.Cryst.Growth209(2000)130–137.w25x J.J.Grigsby,H.W.Blanch,J.M.Prausnitz,Cloud-point temperatures for lysozyme in electrolyte solutions:effectof salt type,salt concentration and pH,Biophys.Chem.91(2001)231–243.w26x D.Voet,J.Voet,Biochemistry,Wiley,New Y ork,1990. w27x K.D.Collins,Charge density-dependent strength of hydration and biological structure,Biophys.J.72(1997)65–76.w28x R.Sousa,Use of glycerol and other protein structure stabilizing agents in protein crystallization,Acta Cryst.D51(1995)271–277.w29x M.Farnum, C.F.Zukoski,Effect of glycerol on the interactions and solubility of bovine pancreatic trypsininhibitor,Biophys.J.76(1999)2716–2726.w30x A.Priev,A.Almagor,S.Yedgar,B.Gavish,Glycerol decreases the volume and compressibility of proteininterior,Biochemistry35(1996)2061–2066.w31x S.N.Timasheff,T.Arakawa,Mechanism of protein precipitation and stabilization by co-solvents,J.Cryst.Growth90(1988)39–46.w32x C.S.Miner,N.N.Dalton,Glycerol,Reinhold Publishing, New Y ork,1953.。
基于“核心病机观”从脾胃浊毒辨治干燥综合征
ʌ临证验案ɔ基于 核心病机观 从脾胃浊毒辨治干燥综合征❋郝新宇1,王彦刚2ә,刘㊀宇1,周平平1,姜㊀茜2(1.河北中医学院,石家庄㊀050200;2.河北中医学院附属医院,石家庄㊀050011)㊀㊀摘要:介绍王彦刚教授运用化浊解毒法从脾胃辨治干燥综合征的临证经验,王彦刚教授从 核心病机观 出发,认为干燥综合征与脾胃关系密切,浊毒侵犯中焦脾胃,气机升降失常,津液输布失司,机体失养是干燥综合征的核心病机,贯穿疾病始末㊂在治疗上以化浊解毒为基本大法,遵循疾病发展之规律,抓住每一阶段主要病机,不忘核心病机,以虚实为纲,着眼于脾胃,佐以解毒㊁行气㊁祛湿㊁清热㊁祛瘀㊁滋阴等法,病证结合,辨证施治,治疗效果显著㊂文末以典型案例佐证,供同道参考借鉴㊂㊀㊀关键词:干燥综合征;核心病机观;脾胃;浊毒;王彦刚㊀㊀中图分类号:R442.8㊀㊀文献标识码:A㊀㊀文章编号:1006-3250(2021)01-0158-03Pattern Differentiation and Treatment of Sjogren's Syndrome According to Turbid Toxin of The Spleen and Stomach Based on The Theory of "Core Pathogenesis"HAO Xin-yu 1,WANG Yan-gang 2ә,LIU Yu 1,ZHOU Ping-ping 1,JIANG Qian 2(1.Hebei University of Chinese Medicine,Shijiazhuang 050200,China;2.Affiliated Hospital of Hebei University of Chinese Medicine,Shijiazhuang 050011,China)㊀㊀Abstract :The article introduces professor WANG Yan-gang's clinical experience of treating Sjogren s syndrome by using resolving turbid and eliminating toxin method of spleen and stomach.My tutor starts from the view of "core pathogenesis"and thinks that Sjogren's syndrome is closely related to the spleen and stomach ,and turbid toxin violating on the spleen and stomach ,leading to the disorder of Qi ,the body fluid ,and the nourishment is the core pathogenesis of Sjogren's syndrome which runs through the whole course of the disease.In the treatment ,my tutor uses resolving turbid and eliminating toxin method as the basic way ,follows the regular of disease development ,grasps the main pathogenesis of each stage and keeps the core pathogenesis in mind ,takes the deficiency and excess as the outline ,focuses on spleen and stomach ,uses methods of eliminating toxin ,moving Qi ,dispelling dampness ,clearing heat ,dispelling stasis and nourishing Yin ,combines the disease and syndrome ,uses the method of syndrome differentiation ,the treatment effect is remarkable.At the end of the article ,typical case is used for reference.㊀㊀Key words :Sjogren's syndrome ;Core pathogenesis ;Spleen and stomach ;Turbid toxin theory ;WANG Yan-gang❋基金项目:河北省临床医学优秀人才培养和基础课题研究项目(361025)-基于浊毒理论对慢性萎缩性胃炎癌变预警及其机制研究作者简介:郝新宇(1990-),女,河北石家庄人,在读博士研究生,从事中西医结合临床与基础研究㊂ә通讯作者:王彦刚(1967-),男,教授,主任医师,博士研究生,从事中西医结合临床与基础研究,Tel :*************,E-mail :piwei001@ ㊂㊀㊀干燥综合征(sjogren s syndrome ,SS )是一种主要累及外分泌腺功能的慢性炎症性自身免疫病,以唾液腺和泪腺受损㊁功能下降而出现的口干㊁眼干为主要表现,同时可累及其他组织器官,表现出皮肤干燥㊁关节疼痛㊁乏力㊁低热等全身症状㊂西医学主要采用糖皮质激素和免疫调节剂治疗[1],但其不良反应较大且疗效未得到普遍认可㊂中医学根据证候将此病归为 燥证 虚劳 渴证 等病证范畴,且在治疗本病能显著改善症状,控制延缓病情进展,提高患者的生活质量,存在一定优势[2-3]㊂王彦刚教授在治疗疑难杂症方面积累了丰富的临床经验㊂同时总结前人经验,结合临床实践,在各种病机理论基础上系统总结,提出 核心病机观 理论,其认为干燥综合征的核心病机为浊毒阻滞中焦,致机体失调诸症由生,治疗上从 浊毒 立论进行辨治,疗效显著㊂现笔者将王彦刚治疗干燥综合征经验总结如下㊂1㊀诸症丛生,责之脾胃,浊毒致病,核心病机王彦刚通过多年的临床实践,在各种病机理论基础上,将哲学理论与中医学理论相结合,提出 核心病机观 理论,认为在疾病的发生㊁发展㊁演变过程中,必定存在一种贯穿疾病始末㊁起决定作用的 基本矛盾 ,是疾病的本质所在,即 核心病机 ㊂而在疾病发展各阶段,常出现不同于核心病机的其他病机,是疾病某一阶段的 主要矛盾 ,即疾病当前所处阶段的主要病机,因此核心病机是推动整个疾病发生发展的内在因素,主要病机则决定了疾病各阶段的表现㊂故在治疗上需抓住疾病某一阶段的主要病机,同时不忘顾及疾病的本质原因,标本兼顾,辨证施治㊂王彦刚在浊毒理论[4]的基础上进行发挥,认为 浊毒 为滞㊁湿㊁热㊁瘀㊁毒[5]等诸邪胶结不解而成,故其认为SS 核心病机为浊毒侵犯中焦脾胃,气机升降失常,津液输布失司,机体失养以致病,851中国中医基础医学杂志Journal of Basic Chinese Medicine㊀㊀㊀㊀㊀㊀2021年1月第27卷第1期January 2021Vol.27.No.1同时气机不畅㊁气血津液阻滞或运行无力,不能将代谢产物及时排出,蕴积体内以致浊毒内生,浊毒日久,灼伤阴液,从而出现SS典型症状,如眼干㊁口干㊁鼻干,以及全身症状如身痒㊁乏力㊁肢体麻木㊁肌肉疼痛等症状㊂1.1㊀眼㊁口㊁鼻㊁唇干燥脾在窍为口,其华在唇㊂‘灵枢㊃五阅五使“曰: 口唇者,脾之官也 ,同时脾在液为涎, 涎出于脾而溢于胃 ,故若浊毒侵袭中焦,脾胃失健,津液乏源,化生不足,或浊毒日久,多从热化,伤气耗血,灼伤阴液,致阴液亏虚,则见口干㊁唇干㊁舌燥;脾主升清,输布水谷精微与津液濡养全身,若脾主升清功能异常,津液不得上承,则目鼻失养,见眼干㊁鼻干㊂1.2㊀周身乏力㊁肌肤干涩㊁身痒脾胃为气机升降之枢纽,脾主运化,胃主受纳,二者密切合作,维持饮食物的消化及精微㊁津液的传输,机体得以滋养㊂若浊毒外袭或机体失调,浊毒内生,损伤脾胃,脾失健运,胃失和降,气血津液生化乏源,输布失常,机体营养不足则见周身乏力;气血津液不足,一则不能濡养滋润肌肤,二则津伤化燥,燥盛则干,故见肌肤干涩㊁身痒等㊂1.3㊀肌肉疼痛㊁肢体麻木脾在体合肉主四肢,全身肌肉的壮实丰满,有赖于脾胃运化的水谷精微及津液的滋养濡润㊂正如‘素问㊃五脏生成篇“所云: 脾主运化水谷之精,以生养肌肉,故主肉㊂ 若浊毒阻滞中焦气机,脾胃升降失常,水谷精微的生成与输布障碍,肌肉失于营养滋润,不荣不通则痛,可见肌肉软弱无力㊁疼痛㊂四肢同样需要脾胃运化的水谷精微和津液滋养,以维持正常的生理功能㊂‘素问㊃太阴阳明论篇“云: 四肢皆禀气于胃,而不得至经,必因于脾,乃得禀也㊂ 故若脾失健运,不能为胃行其津液,四肢不得水谷之气濡养,则脉道不利,肢体麻木㊂2 浊毒立论,辨证施治基于核心病机观理论㊁SS的临床表现及与脾胃的生理病理关系,王彦刚认为SS的治疗应以化浊解毒为基本大法,遵循疾病发展之规律,抓住主要病机,不忘核心病机,以虚实为纲,着眼于脾胃,以解毒㊁行气㊁祛湿㊁清热㊁祛瘀㊁滋阴等法辨证施治㊂2.1㊀化浊解毒以清胃腑2.1.1㊀清热祛湿以截浊毒之源㊀浊毒因水湿代谢失常凝而成浊,蕴结日久化热而成[6],故当以清热祛湿治法,截断浊毒生成之源泉㊂王彦刚常用黄芩㊁黄连以清热燥湿㊁泻火解毒,用于清中焦湿热;当SS患者出现身痒时,常用苦参㊁白鲜皮㊁地肤子同用,既可清热燥湿㊁除脾胃之湿热,又可止痒以对症治疗;若湿浊较重,症见肢体困重,常用藿香㊁佩兰㊁苍术以燥湿健脾,用于湿阻中焦之证;砂仁为 醒脾调胃之要药 ,既可化湿醒脾又可行气,故王彦刚常用此药治疗脾胃气滞及湿阻中焦证,症见胃脘胀痛㊁大便黏腻不爽等,同时湿和痰常兼夹出现,若患者因胃气上逆出现恶心呕吐㊁头目眩晕等,常用半夏㊁旋覆花燥湿化痰㊁降逆止呕,若因胃热呕吐则当用竹茹清热化痰止呕㊂2.1.2㊀行气导滞以通浊毒之路㊀浊毒之邪易于阻滞气机,亦可随气机升降遍布全身㊂而脾胃为气机升降之枢纽,故当脾胃受邪㊁清阳不升㊁浊阴不降,以致气机升降失调,邪无以出路,积聚体内而致病,故需用行气导滞之药通胃腑㊁畅气机,给邪以出路㊂王彦刚常用陈皮㊁青皮以行气导滞㊁健脾和中,用于偏中焦寒湿之气滞;香橼㊁佛手气香醒脾,辛行苦泄,入脾胃以行气宽中,常用于SS患者出现脘腹胀痛之症状;枳实㊁厚朴同用,二者皆入脾胃经,辛行苦降,既能燥湿消痰又可下气除满,常用于食积气滞;SS患者除典型症状外,常表现出抑郁㊁胁痛㊁不思饮食等症状,故王彦刚常用甘松以芳香行气㊁开郁醒脾㊂‘本草纲目“记载: 甘松,芳香,能开脾郁,少加入脾胃药中,甚醒脾气㊂2.1.3㊀解毒消瘀以化浊毒之物㊀浊毒停滞体内,阻碍气机运行,气不行血则血液瘀滞致血瘀,故浊毒致病常形成瘀血之病理产物㊂‘血证论“中曰: 有瘀血,则气为血阻,不得上升,水津因不得随气上升 ,故当瘀血内停㊁气机受阻,以致津液不能正常输布,除出现SS典型症状眼干㊁口舌干燥㊁口渴等症状外,还常常伴有胃脘部疼痛不适及肌肤甲错㊁面色晦暗㊁舌有瘀点瘀斑等症状,故王彦刚采用活血祛瘀之药,如川芎㊁姜黄㊁郁金㊁延胡索等,既能活血祛瘀又能行气止痛,且延胡索能行血中气滞,气中血滞,专治一身上下诸痛,为活血化气第一要药,诸药合用旨在祛瘀血㊁畅气机㊁通津液㊁养机体;若热毒较深,SS患者可见紫癜㊁荨麻疹㊁结节红斑等血管病变[7],则常用板蓝根㊁青黛以凉血消斑,蒲公英㊁败酱草清热解毒㊁泄降滞气,同时对于解毒除湿效果显著㊂2.2㊀滋阴益气以健脾胃浊毒日久,灼伤阴液,深入脏腑,耗气伤津,导致阴液亏虚㊁正气亏损,以致SS疾病后期病性由实转虚或虚实夹杂㊂在诊治过程中需结合八纲辨证及脏腑辨证,根据证候表现综合考量㊂阴虚津伤是SS后期的主要病机,表现为眼干无泪㊁口唇干燥㊁皮肤干枯㊁舌有裂纹等,故治疗当滋阴生津为主,并着眼于脏腑,既要滋补脾胃之阴以复津液生化之源,又要顾及久病伤肝肾之阴,故王彦刚常选用北沙参㊁麦冬㊁石斛㊁玉竹以养阴益胃生津,此药皆入胃经,可养胃阴㊁清胃热,对于胃阴虚有热之口干多饮㊁大便干结㊁舌红少津效果尤甚㊂同时不忘滋肝肾之阴以护先天之气,故常选用入肝肾经之药枸杞子㊁女贞子㊁旱莲草㊁桑葚以滋补肝肾㊁生津润燥㊂病久则耗气,正气9512021年1月第27卷第1期January2021Vol.27.No.1㊀㊀㊀㊀㊀㊀中国中医基础医学杂志Journal of Basic Chinese Medicine虚弱,邪气可干,故亦当调护脏腑之气,尤重护脾胃之气㊂若SS患者兼见气短懒言㊁神疲倦怠㊁嗳气㊁面色萎黄㊁食少等,当以黄芪㊁白术㊁山药益气健脾㊂‘医学衷中参西录“记载: 黄芪能补气,兼能升气 ,白术为 脾脏补气健脾第一要药 ㊂‘神农本草经“云: 山药,补中,益气力,长肌肉 ㊂故此三者配伍使用,旨在调护后天之气,使水谷精微生化有源,气血津液输布畅达㊂3 典型病案王某,女,70岁,2017年1月21日初诊:主诉口眼干燥㊁皮肤瘙痒伴肢体麻木6个月,加重1个月㊂患者半年前感到口眼干燥,皮肤瘙痒,口渴欲饮,伴有肢体麻木㊁肌肉疼痛等症状㊂曾于某医院查抗核抗体谱抗SSA㊁抗dsDNA抗体阳性,行腮腺造影㊁唇腺活检等,确诊为干燥综合征㊂电子胃镜示慢性萎缩性胃炎㊂间断服用药物治疗病情改善不明显,后因症状加重就诊于本院㊂刻见口眼干燥,舌干辣,皮肤瘙痒,烧心,反酸,夜间肢体麻木,肌肉疼痛,脐上及下肢发凉,大便干燥,小便尚可,舌紫暗,苔黄腻,脉弦㊂中医诊断燥痹,治宜化浊解毒㊁养阴生津㊂处方:茵陈15g,黄芩12g,黄连12g,栀子12g,知母15g,生石膏30g,生大黄9g,玉竹10g,玄参20g,地肤子15g,白鲜皮15g,石斛9g,赤芍15g,蒲公英30g,海螵蛸15g,枳实15g,厚朴15g,瓦楞粉30 g,元明粉3g,焦槟榔15g,每日1剂,水煎服,分早晚2次温服㊂服药半个月后复诊,口眼干燥,舌干辣症状较前缓解,身痒不明显,肢体麻木较前改善,偶烧心,遂守原方,随症加减,继服6个月,口眼干燥㊁身痒㊁肢体麻木疼痛等症状基本消除,随访半年病情稳定㊂按语:患者以口眼干燥㊁皮肤瘙痒伴肢体麻木为主诉就诊,根据症状㊁舌脉及西医诊断,辨证属浊毒内蕴证㊂浊毒侵犯中焦脾胃,脾胃气机升降失常,气血生化乏源,水谷精微及津液输布障碍,机体失于濡养,出现口眼干燥㊁舌干㊁身痒㊁四肢麻木㊁肌肉疼痛等症状㊂同时浊毒侵犯,胃腑受损,胃失滋养,胃液减少,腺体萎缩,故SS患者常呈现慢性萎缩性胃炎及相关症状㊂浊毒内蕴日久,胃络瘀阻,阳气不能随血液输布于下肢及胃部,故见脐上及双下肢发凉,以黄芩㊁黄连㊁蒲公英化浊解毒共为君药;茵陈㊁栀子清利湿热;石膏㊁知母清热泻火,且知母清润兼备,能滋阴润燥;枳实㊁厚朴㊁焦槟榔行气消积,通降胃腑之气共为臣药;佐以玉竹㊁玄参㊁石斛养阴益胃生津滋养机体,同时防苦寒之药伤及脾胃;生大黄㊁元明粉通腑泄浊,给邪以出路;赤芍清热散瘀;地肤子㊁白鲜皮清热燥湿止痒;海螵蛸㊁瓦楞粉抑酸以对症治疗㊂全方攻补兼施,清润并用,气阴兼顾,补中有通,临床疗效显著㊂参考文献:[1]㊀赵福涛,周曾同,沈雪敏,等.原发性干燥综合征多学科诊治建议[J].老年医学与保健,2019,25(1):7-10.[2]㊀黄钰婷,汲泓.从中医五脏理论论治干燥综合征[J].现代医学与健康研究电子杂志,2018,2(16):132-134.[3]㊀姜兆荣,于静,金明秀.金明秀教授从 燥毒瘀血津枯 辨治干燥综合征的经验[J].时珍国医国药,2015,26(3):716-717. [4]㊀王彦刚,吕静静,董环,等.慢性糜烂性胃炎HGF㊁c-Met相关性研究[J].中国中西医结合杂志,2017,37(4):410-413. [5]㊀王彦刚,刘宇,李佃贵.化浊解毒法治疗慢性萎缩性胃炎疗效的Meta分析[J].中医杂志,2015,56(23):2017-2020. [6]㊀王彦刚,田雪娇,李佃贵,等.李佃贵治疗慢性萎缩性胃炎用药规律研究[J].中国中医基础医学杂志,2017,23(5):702-705.[7]㊀L.HERETIU,D.PREDEEANU.Sicca to Lymphoma:SjogrenSyndrome[J].Open Journal of Rheumatology and AutoimmuneDiseases,2013,3(1):26-30.收稿日期:2020-05-16(上接第123页)说“: 尝见一医方开小草,市人不知为远志之苗,而用甘草之细小者㊂又有一医方开蜀漆,市人不知为常山之苗,而另加干漆者㊂凡此之类,如写玉竹为萎蕤,乳香为薰陆,天麻为独摇草,人乳为蟠桃酒,鸽粪为左蟠龙,灶心土为伏龙肝者,不胜枚举㊂ 现代许多医生也常用此法处方保密,古今一致㊂保密 都会留下一些线索㊂裴松之借‘华佗别传“透露: 青黏者,一名地节,一名黄芝,主理五脏,益精气 ㊂据此才有 青蓁 凡蔽之草 凡薮之草 青菾 等线索,先贤洞悉青黏玄机,但看破未说破;叶天士破解漆叶为豺漆,使人知其然;李维贤的考证又点明因何名豺漆,使人知其所以然,都为考证提供了线索与证据㊂参考文献:[1]㊀刘自忠.华佗所传漆叶青黏散考辨[J].浙江中医杂志,1999,34(12):531-532.[2]㊀李永海,熊昌栋.漆叶青黏散治疗慢性腹泻200例[J].湖北中医杂志,1994,16(1):26.[3]㊀程从容,郭泉.古方漆叶青黏散中的青黏之考证[J].基层中药杂志,2001,15(1):48.[4]㊀江苏新医学院.中药大辞典[M].上海:上海科技出版社,1986.[5]㊀王明.新编诸子集成㊃抱朴子内篇校释[M].北京:中华书局,1980.[6]㊀吴征镒,王锦秀,汤彦承.胡麻是亚麻非脂麻辨 兼论中草药名称混乱的根源和‘神农本草经“的成书年代及作者[M].植物分类学报,2007,45(4):458-472.[7]㊀李维贤,曹先兰.古代药用五加品种的探讨[J].新中医,1984(4):55-57.[8]㊀李维贤,曹先兰.古代药用五加品种的探讨(一)[J].自然资源研究,1983(2):31-34.[9]㊀祝之友.青蘘临床注意事项[J].中国中医药现代远程教育,2019,17(6):62.收稿日期:2020-05-23061中国中医基础医学杂志Journal of Basic Chinese Medicine㊀㊀㊀㊀㊀㊀2021年1月第27卷第1期January2021Vol.27.No.1。
The fibrin plate method for estimating fibrinolytic activity
Fibrinogen
The method of Astrup and Darling (4) was modified as follows: Ox blood is collected in 0.1 vol. of potassium oxalate [2.5y0 solution of (COOK)2.H20] and immediately centrifuged. One liter of oxalated plasma is stirred for 26 min. with 60 g. tricalcium phosphate (of a light grade). After centrifugation (10 min.) the adsorbed plasma is diluted with cold distilled water to 2096 ml. and precipitated by slow addition of cold saturated ammonium sulfate (896 ml.) through a funnel and a glass tube with its tip below the surface of the solution (mechanical stirring). After a short centrifugation (5 min.) the precipitate is dissolved in 509 ml. cold 0.9% NaCl and diluted with 1966 ml. cold water. After reprecipitation with 606 ml. cold saturated ammonium sulfate and centrifugation (5 min.), the centrifuge beakers and the sediment are washed gently with distilled water to remove excess ammonium sulfate solution. The fibrinogen is then dissolved in 409 ml. diethyl barbiturate buffer of ionic strength 0.05 and pH 7.8. If the solution contains insoluble matter it is filtered through cotton wool, centrifugation being avoided at this point because of the heating of the solution. When stored in the icebox this fibrinogen stock solution is stable for about 2 weeks. 1 This work was aided by a grant from the National Rheumatic Diseases. 346 Danish Society against
血流储备分数(FFR)在冠脉弥漫性病变介入治疗中的应用价值
血流储备分数(FFR)在冠脉弥漫性病变介入治疗中的应用价值摘要:目的:探讨血流储备分数(FFR)指导冠心病患者冠状动脉弥漫性病变治疗策略的应用价值。
方法:选择51位冠脉造影(CAG)提示冠状动脉弥漫病变患者,对照组35例,常规行PCI术植入药物涂层支架(DES),实验组16例均行FFR检测,指导支架植入策略。
所有病人均行最优化药物治疗。
临床终点是一年后主要心脏不良事件发生率(MACE),定义为死亡、心肌梗死、血运重建在内的复合事件。
次级终点包括住院时间,支架使用数量以及住院费用等。
结果:FFR组和常规治疗相比,平均支架植入分别为0.1205±0.3416枚和1.9714±0.5137枚,平均住院费用分别为41341.75±19445.26元和78680.2±26352.46元,住院时间分别为11.8125±3.08天和11.8857±5.94天,因心血管事件再入院率分别为11.25%和8.75%。
FFR组在支架植入的数量及住院的费用较对照组明显降低,但两组患者在住院时间及随访1年间的MACE发生的差异无明显统计学意义。
结论:1、冠脉血流储备分数(FFR)引导的PCI术是冠状动脉弥漫病变介入治疗中的一个安全、可靠、有效的策略。
2、冠脉造影并不能全部真正反映心肌缺血情况。
3、通过FFR指导PCI治疗冠脉弥漫性病变较常规PCI治疗对中期预后没有影响。
关键词:冠心病;冠脉血流储备分数;弥漫病变;经皮冠状动脉介入治疗The value of Fractional Flow Reserve-Guided Percutaneous coronary Intervention in Patients With diffused coronary lesionsAbstractObjective:This study is to make into the value of fractional flow reserve-guided percutaneous coronary intervention in patients with diffused coronary lesions.Methods:Assigned 51 patients with diffused coronary lesions to undergo PCIwith implantation of drug—eluting stents guided by angiography alone(conventional group)or guided by FFR measurements in addition to angiography(FFRgroup).Lesions requiring PCI were identified on the basis of their angiographic appearance。
水化磷脂层中蛋白质和多肽的高分辨固体核磁共振波谱学_英文_(2)
波谱学杂志第26卷第4期2009年12月 Chinese Journal of M agnetic Resonance Vo l.26No.4 Dec.2009Article:1000-4556(2009)04-0437-20High-Resolution Solid-State NMR Spectroscopy ofMembrane Bound Proteins and Peptides Alignedin Hydrated LipidsFU R i-q iang(Center for Interdisciplinary M agnetic Res onance,National Hig h M agnetic Field Lab oratory,1800East Paul Dirac Drive,Tallahassee,Florida,32310,USA)A bstract:Solid-sta te nuclear mag netic r eso nance(N M R)o f alig ned samples has been rapidlyeme rged a s a successful and impor tant spect roscopic appro ach for hig h-resolution str uctural char acte rizatio n o f membrane-bo und pro teins and pe ptides in their“na tive-like”hydra ted lipid bilaye rs.Because the structure s,dynamics,and functions of membrane-bo und pro teins and peptides are highly asso ciated w ith he te rog eneo us native environments,proteins and pe ptides are prepared for so lid-state N M R measurements in the presence o f either bilay ers that are me-chanically alig ned on glass pla te s o r mag netically aligned bicelles.O rienta tion de pendent aniso-tropic spin nuclear interactio ns fro m these aligned pro teins and peptides can be o btained.These orienta tional restr aints can be assembled into hig h-resolution three-dimensional structur es.Driven by sig nificant advances in sample preparation pro tocols as well as N M R probes and o the r metho do lo gy developments in the pa st decade,the alig ned sample N M R appr oach has been w ell developed and become an effective w ay for structural characteriza tion of membrane-bound pro-teins and peptides.T his r eview intr oduces hig h resolution so lid-state N M R spectr osco py o f alig ned samples and summa rizes rece nt methodolog y develo pments in this arena.Key words:so lid-state N M R,membr ane-bound pro tein,o rienta tional co nst raint,hy drated lip-idsC LC number:O482.53 Document co de:AReceived date:3Aug.2009Biography:Fu Ri-qiang(1966-),m ale,major in Nuclear M agnetic Resonance Spectroscopy,T el:+1-8506445044, E-mail:rfu@. *Corresponding au th or.438波 谱 学 杂 志 第26卷 IntroductionThe characterizatio n of membrane bound proteins and peptides is very challenging in structural biology,in part because their structures,dy namics and functions are hig hly related to their biolo gical heterog eneous membrane environments[1-3].As an example, integral m em brane protein structures are severely underrepresented in the Pro tein Data Bank(PDB)(w w w.rcsb.o rg/pdb/),composing as little as about0.5%of protein structures deposited in the PDB,altho ug h they represent as m uch as o ne third of the pro teins from most geno mes[4].These membrane pro teins are bio logically very impo r-tant,carrying out transpo rt and signaling functions o n the surface of cells and organ-elles.M any of these proteins are highly dy namic and inv olve multiple confo rm atio nal and functional sta tes that are sensitive to the pro teins'environment.On the o ther hand, membranes allow fo r the establishment of electric,chemical and m echanical po tentials, w hich can be modulated and conve rted into othe r fo rms o f energy through the action of membrane pro teins.While fo r many amphipa thic ca tionic antimicrobial peptides,the ac-tual m ode of action directly inv olves interactions w ith cell membranes[5-8].Therefo re,it is fundam entally im po rtant to cha racterize the structures of membrane bound pro teins and peptides in their w ell hydrated native membrane enviro nm ent in o rder to understand their structure-functio n relationships that pe rfo rm vital functio ns at cell membranes.In past decades,many spectroscopic me thods,such as X-ray[9,10],Infrared spec-tro scopy[11,12],mag netic resonance spectro sco py[13,14],have been used to characterize the structures of membrane bound pro teins and peptides.Am ong these structural ap-proaches,solid-state nuclear magnetic resonance(NM R)[15]has the inherent ability to detect single atomic sites and hence e xhibits m any advantages for o btaining high-resolu-tion structures of proteins and peptides in their membrane bound states,since they often invo lve multiple confo rm ational and functional states w ith a sig nificant degree of lo cal and do main dy namics.Biolo gical solid-state NM R techniques[16-20]have been rapidly developed in the past few years for structural characterization o f mem brane bound proteins and peptides.Cur-rently,there are tw o complimentary NM R technologies that are primarily used to g ain structural insights:the magic ang le spinning(M AS)and the aligned sample appro ach. Fo r M AS NM R,uno riented samples are spun around the axis tilted at54.7°from the applied external m ag netic field,yielding“so lution-like”hig h-reso lution so lid-state NM R spectra w ithout requiring an isotropic m otio n on a nano second tim escales[21].For the a-lig ned sam ple appro ach,samples that have a unique alig nment with respect to a single axis,such as the m ag netic field axis and the bilaye r no rmal,are prepared so that aniso-tro pic high-reso lution solid-state NM R spectra can be obtained.These orientatio nal de-pendent aniso tropic spin interactions provide bo th mechanisms fo r dispersing the reso-nances in solid-sta te NM R spectra and for providing structural restraints to assem ble hig h-reso lution three-dimensional structures.In the past few years,the alig ned sam pleapproach has been mo re developed for membrane bound pro teins and peptides o riented in hy drated “native -like ”lipid bilay ers ,leading to the depo sit o f ove r ten membrane pro -tein structures in the PDB (i .e .,1M AG ,1PJD ,1EQ8,1M P6,1NYJ ,2H 95,1M ZT ,1PI7,2GOF ,2GOH ,1H 3O )[22-32].This review focuses on recent me thodology devel -o pments in the biological solid -state NM R of alig ned samples .1 Structural constraints in aligned samplesThe primary to ols used fo r the NM R structural determination of alig ned mem brane -bo und pro teins and peptides that have a unique orientation w ith respect to the mag netic field axis of the NM R spectro meter are the measurement of orientatio nal constraints ,derived fro m o bservatio ns of a v ariety o f aniso tropic nuclear spin interactions ,such as chemical shifts ,hetero -nuclear interactions ,and quadrupolar inte ractio ns .Fig .1(a )show s an α-helical seg ment .The enlarged insert illustrates a peptide plane ,the building blo ck of an ideal α-helical structure .Any given alignment o f the α-helical segm ent in the e xternal magnetic field B 0co rrespo nds to a specific o rientation of aniso tropic nuclear spin interactio ns w ith respect to B 0.Fo r instance ,the NH vecto r o f a peptide plane is tilted from B 0by the ang le θ,as indicated in Fig .1(b ).When all of the α-helical seg -m ents are random ly alig ned in B 0,as tho ug h the ang le θfo r the same peptide plane is unifo rmly distributed all o ver the sphere ,the resulting15N -1H dipolar spectrum has a ty pical “Pake -pattern ”lineshape .Ho wever ,w hen all of the α-helical seg ments have the same alig nment in B 0,the o bse rved15N -1H dipolar splitting Δνfro m the sam e peptide plane equals to the m agnitude ν∥of the N -H dipo lar interaction multiplied by the o rien -tation dependence :Δν=ν∥(3co s 2θ-1),(1)as show n in Fig .1(b ).Since the N -H bond in the peptide plane is cov alent ,the magni -tude ν∥is know n ,based on the N -H bond leng th .Therefo re ,the o rientation depend -ent 15N -1H dipola r splitting directly corresponds to the orientatio n of the N -H vector with respect to B 0.Similarly ,fo r a g iven α-helical seg ment ,the amide 15N chemical shift aniso tropy of a peptide plane can be defined by th ree Euler angles θ11,θ22,and θ33,as show n in Fig .1(c ).When the alig nments of all α-helical segm ents are rando mly alig ned w ith respect to B 0,the resulting 15N chemical shift spectrum has a typical chemical shift pow de r pat -tern .Ho wever ,w hen all of the α-helical seg ments have the same alignment in B 0,the observed 15N chemical shift σobs depends o n the three principal elements ,σ11,σ22,and σ33,of the amide 15N chemical shift tensor and their o rientations with re spect to B 0:σob s =σ11cos 2θ11+σ22co s 2θ22+σ33cos 2θ33,(2)as illustrated in Fig .1(c ).A gain ,the three principal elements σ11,σ22,and σ33can be in -dependently obtained .It is w o rth no ting that ,fo r the peptide planes in an ideal α-helix ,439 第4期 F U Ri -qiang :High -Resolution Solid -State NM R Spectr osco py of M embr ane Bound P ro teins and P eptides A ligned in Hydr ated L ipidsthe variatio ns of the amide 15N chemical shift tenso r are very minimal .Co nsequently ,the orientation of the amide 15N chemical shift tenso r w ith respect to B 0can be deter -mined from the orientation dependent 15N chemical shift reso nance of the aligned sam -ples .It is w orth noting that the obse rved anisotropic 15N chemical shift resonance fro m the alig ned sample is dispersed over the entire w idth of the amide 15N chem ical shift ani -sotropy (~200),rather than the iso tro pic chemical shift rang e (<10)in the M AS NM R spectra .Therefo re ,the data from the o rientation dependent nuclear spin interac -tions co nstrain the orientation of a specific m olecular site w ith respect to B 0.By obtai -ning numerous restraints ,all with respect to the sam e alig nment axis ,high -reso lution three -dim ensio nal structure s can be achieved .Fo r example ,the very first hig h resolu -tion three -dimensional structure of the g ramicidin A (gA )aligned in lipid bilayers (the PDB #1M AG )w as characterized by solid -state NM R using 120precise o rientational re -straints from numerous specifically labeled sites [22,23].Fig .1 NM R spectra of anisotropic spin interactions from α-helical segm ents under differen t alignmen ts .(a )A α-heli -cal segment .For an ideal α-helical structure ,the buildin g block is a peptide plane ,as illustrated in the enlarged insert ;(b )The orientation of the15N -1H vector w ith respect to the m agnetic field B 0,as defined by the angle θ,and the 15N -1H dipolar spectra at differen t alignment conditions ;(c )Orientation of the amide15N ch emical shift anisotropy w ith respect to B 0,as defined by three Euler angles θ11,θ22,and θ33,and the15N chemical shift spectra at differentalign men t conditions .Since the orientatio nal restraints result fro m aniso tropic nuclear spin interactions with respect to the same alig nment axis (e .g .,B 0),they are abso lute and independent with each other ,meaning that the er rors associated w ith individual restraints do not sum w hen multiple restraints are used for defining helical structures .Ho wever ,the o rien -taional restraints can no t be used to define the relative position between helices ,w hich can only be o btained by distance restraints ,ano ther type of structural constraints based on the spatial distances betw een tw o nuclei .Distances repre sent relative constraints in that they restrict the position of one mo lecule site relative to ano ther .Thus ,precise dis -tance restraints a re an impor tant com plement to orientational restraints fo r defining ter -tiary and quarte rnary pro tein structure [15].For instance ,g A mo nom eric structure in phospholipids bilayers is know n to have very hig h re solutio n through the extensive use 440波 谱 学 杂 志 第26卷 of o rientational restraints [22,23],but the dimme r interface can o nly be modeled in a lipid enviro nment throug h sym metric and absolute nature of the o rientational restraints .Fig .2(a )show s the positions o f the specifically labeled 13C -Val 1,15N -Ala 5gA in hy drated dimy ristoy lphosphatidy lcho line (DMPC )bilay ers and the 13C cross polarized MAS (CP -M AS )spectrum .Fo r these labels ,the distance betw een the intramo nom er13C and 15N sites is 0.82nm ,based on the hig h resolutio n gA m onomeric structure ,too lo ng to y ield any detectable dipolar co upling .On the o ther hand ,the intermo nome r 13C and 15N sitesacro ss the dimmer interface appear to be much closer .Fig .2(b )show s that the sig nal intensities at δC 171.0and 172.6,the tw o resonances from the peptide13C label ,are clearly dephased by the simultaneous frequency and amplitude m odulatio n (SFAM )[33]irradiatio ns on the 15N channel ,as indicated by ho rizontal dashed lines .When co nsider -ing the fast mo tio n around the channel ax is ,the dephasing ra te yields a motionally aver -aged distance of 0.43±0.01nm betw een these 13C and 15N sites acro ss the monome r -monomer junction ,w hich provides a direct evidence of the m onomer -m onomer g eo metry in the g A channel structure [34].A sy nergic use o f the aligned sam ple approach and the MAS measurements has been w idely used as a pow erful tool to cha racterize helical bund -ling and channel gating mechanism [27,35-39].Fig .2 (a )Position s of th e specifically labeled 13C -Val 1and 15N -Ala 5gramicidin A (gA )in hyd rated dimyristoylph os -ph atidylcholine (DM PC )bilayers and the corresponding13C CPM AS NM R spectrum .(b )A set of 13C CPM AS spectra at different dephasing times w ith (righ t )and w ithou t (left )the simultaneou s frequency and amp l itude modulation (S FAM )irradiation on the 15N ch annel .T he spectra w ere recorded at 315K (above th e phase transition temperature of DM PC ).T he peak at δC 174results from the carb onyl group of the lipids and is not affected by dephasing ,w hile the tw o res onances at δC 172.6and 171.0are deph ased by the S FAM irradiations on th e 15N spin .441 第4期 F U Ri -qiang :High -Resolution Solid -State NM R Spectr osco py of M embr ane Bound P ro teins and P eptides A ligned in Hydr ated L ipids442波 谱 学 杂 志 第26卷 2 Solid-state NMR of align ed samplesSince the earliest demo nstration[40]that high-re solutio n structural constraints could be o btained by solid-state NM R o f pro teins and peptides in hydrated but anisotropic en-vironm ents,the biolog ical solid-state NM R of aligned sample s has been rapidly emer-g ing as a successful and important technique fo r structural and dynamic characterization of membrane bo und pro teins and peptides in“native-like”hy drated lam ellar phase lipid enviro nments[14,26,29,30,41-46];this is driven by sig nificant advances in sam ple prepara-tions as well as N M R probe and methodo logy developments.2.1 Sample alignmentsMechanical and m ag netic alig nm ents are the tw o prim ary approaches fo r the uni-fo rm alig nment of mem brane bound proteins and peptides,bo th of w hich use a lipid bi-laye r enviro nment above the phase transition tem perature.Fig.3(a)outlines the sche-m atics fo r aligned sample preparation in a hydrated lipid environment.Once the labeled pro tein/peptide is incorporated into lipids,the lipo some is spread onto thin g lass slides. S uch slides are then stacked in a glass tube,hy drated and sealed.Several thousand hy-drated lipid bilayers can thus be alig ned mechanically betw een a pair o f g lass surfaces.A stack o f~50such slides alig ned with the bilayer no rm al pa rallel to B0makes fo r a high sensitivity sam ple using5~10mg of pro tein.Fig.3(b)show s the31P spectrum of an alig ned protein in hy drated DPM C bilay ers contained in a g lass tube.The31P sig nals re-sult from the head g roup of the lipids.The narrow resonance peak at the left side indi-cates that the majority of the lipids are w ell aligned betw een glass slides,w hile the w eak resonance at the right side implies that a small portion o f the lipids is still uno riented, w hich could be par tly from tho se at the edge of the glass slides.Recently,anodic aluminum oxide(AAO)substrates w ith flow-throug h nanopo res have been used to provide m acro sco pically aligned peptide-co ntaining lipid bilayers[47]. The mo st striking advantage with these flow-through lipid nano tube arrays is that high hy dration levels as w ell as pH and desirable ion and/o r drug concentrations co uld be eas-ily maintained and modified in a series of expe riments w ith the same sam ple w itho ut lo s-ing the lipid alig nm ent o r bilay ers fro m the nanopo res,avoiding any uncertainty during the sample preparation at those various conditions.The mag netic alig nment takes advantag e of bicelles,discoidal lipid ag gregates that are edge stabilized by sho rt chain lipids.So lutions o f these bicelles can be prepared in such a w ay that they are unifo rmly alig ned with the bilay er no rmal perpendicular or par-allel to B0,w itho ut the aid of g lass slides.In recent years,magnetically aligned bicelles have also become an im po rtant bilayer preparatio n fo r bio logical solid-state NM R of alig ned sam ples[48-51].Since any dispersio n o f m olecular o rientations w ith respect to B0will broaden the observed resonance s,much effo rt has gone into the improvement of sample alig nment. This includes:i)choices o f lipids;ii)improved protoco ls fo r aligned sam ple prepara-tions ;and iii )the availability of higher mag netic fields .Early on in the development of solid -sta te NM R structural biology ,mo st of the alig ned samples w ere prepared with DM PC .No w aday s ,a range o f diffe rent lipids and mix tures o f lipids have been used ,in -cluding saturated and unsaturated fatty acids as w ell as charged and zwitterionic lipids .Altho ug h so lid state NM R bilayer sam ples are far less co mplex than nativ e mem branes (e .g .,typically m ore than 100lipids of even a bacterial membrane ),they represents themost native -like membrane environm ents in many aspects [1-3](e .g .,by providing a het -erog eneous environment ,dielectric gradient from the lipid interfacial regio n to the low dielectric lipid interior ,and so on ).Sam ple preparatio n pro to cols have been g reatly im -proved over years with different types of lipids and lipids mix ture and will co ntinue to be improving .It has been sho w n very recently that high reso lution MAS spectra of m em -brane pro teins can be achieved with the use o f viral lipids [38,52].Furthermo re ,it is also evident that hig h B 0improves sample alignment [53,54],in part because it enlarges the an -isotropy of the diam ag netic o r paramag netic susceptibility [55-57],w hich either aids uni -fo rm alig nment of lipid bilayers o r minimizes the defects of lipid bilaye rs due to their flu -idity nature.Fig .3 (a )S chematics of sample p reparation for an al igned p rotein /pep tide in a hydrated lipid environment .(b )31P NM R spectrum of a p rotein sam ple oriented in hydrated DM PC bilayers .2.2 NMR probe developmentT raditionally ,solid -state NM R probes used a m ultiply turned solenoid coil as a sample coil ,tuned to different frequencies simultaneously (kno w n as sing le -coil double -resonances circuits fo r H -X probes )[58,59].H ow ev er ,this ty pe of probe desig ns is no longer efficient fo r biological so lid -state NM R ,especially at hig h fields .Biolog ical sam -ples are ty pically hy drated so that the heating associated w ith the electric fields genera -ted during high pow er 1H decoupling is sig nificant ,par ticularly at hig h fields ,resulting in sample dehydratio n or even destruction of the samples [60].The electric fields are pro -duced by the hig h voltage across the sam ple coil .A lthough the use of a balanced circuit 443 第4期 F U Ri -qiang :High -Resolution Solid -State NM R Spectr osco py of M embr ane Bound P ro teins and P eptides A ligned in Hydr ated L ipids444波 谱 学 杂 志 第26卷 moves the g rounding point fro m o ne end of the so lenoid coil to the center of the solenoid leading to a bette r B1homo geneity[61,62],it does not reduce the v oltage across the sole-noid,thus it has limited effects to prevent sample heating.Several clever desig ns have been propo sed to reduce sample heating by moving the large electric field aw ay from the sample.In the“scro ll”coil desig n[63],the electric field of the scroll is largely confined between concentric turns of foil,so it g reatly reduces sample heating.The scro ll's low inductance tends to reduce the1H drive vo ltag e,yet it presents a challenge[64]to the ef-ficient tuning and m atching of a low frequency channel such as15N.A slo tted Faraday shield betw een the coil and the sample can also reduce the electric fields[65].The fundamental problem invo lves using the same sample coil for both the hig h fre-quency(1H)and m uch lowe r frequency(e.g.,15N).It is very hard to have the same sample coil w orking efficiently at tw o very diffe rent frequencies.Fo r instance,sensitivi-ty at the low frequency larg ely depends on having relatively m ore turns.H owever,more turns lead to a large inductance fo r hig he r frequency thus leading to hig h voltages across the sample coil,w hich require the use o f hig h-voltage capacito rs in the circuitry and re-sult in a large electric field fo r sample heating.In addition,a1H frequency trap is re-quired for the lo w frequency channel,w hich furthe r reduces sensitivity.For aligned samples,due to the presence of g lass tube,glass slides and a significant po rtion of lipids and hy dration,the pro tein sample s being investig ated are limited,resulting in low sensi-tivity.Therefo re,it is desirable to have a bigg er sample coil so that m ore samples can be av ailable for detectio n in orde r to im pro ve the sensitivity.Again,a la rg e sample coil po-ses significant problem s asso ciated w ith the w aveleng th effects.Recently,the cro ssed-coil design[66]has been very successful in term s of reducing e-lectric fields and improving sensitivity on both hig h and low frequency channels.A par-ticularly efficient design for large vo lume,hig h field,static applications is know n as low electric field coil,o r“low-E”coil[67].The low-E coil assembly co nsists of a low-frequen-cy coil(e.g.,15N)nested w ithin a1H lo op gap resonato r(LGR).The15N coil and1H LG R are oriented in such a w ay that they produce B1fields in o rthog onal directio ns. Therefo re,no additio n trap is needed in the circuitries to isolate the tw o channels.For each channel,a sing le-coil sing le reso nance circuitry is established,so that each channel can be independently optimized.The1H LG R's inherently low electric field is further re-duced by Fa raday screening by the inner coil.I t has been demo nstrated that this desig n dramatically decreases sam ple heating fo r hydrated biological sam ples[67].2.3 Polarization inversion spin exchange at the magic angle(PISEMA)In aligned samples that have unique o rientation with respect to B0,the data from o-rientation-dependent nuclear spin interactions within a peptide plane permit the charac-terization of this peptide plane orientatio n w ith respect to the alignment axis,as long as the relativ e orientatio n of tho se spin interactions in the m olecular frame becom es know n.In a peptide plane,the15N chemical shift tenso r has been w ell characterized in- Fig .4 Relative orientation of the 15N chem ical shift tensor and the 15N -1H dipolar in teraction in a peptide planedependently with respect to the 15N -1Hdipo lar interaction ,as show n in Fig .4.Therefo re ,traditional sepa rated -local -field(SLF )ex periments [68]can be used to cor -relate the o rienta tion -dependent ,aniso -tro pic 15N -1H dipolar coupling w ith 15Nchemical shift from a peptide plane ,thusto define the orientatio n of this peptideplane w ith respect to the alig nment axis .By obtaining the orientations o f all peptideplanes with respect to the sample alig n -m ent axis ,three -dimensional backbone conformation and to polo gy o f the alig ned samples can be achieved [69].Ho wever ,spec -tral resolution is the key to the success of using such S LF experiments.Fig .5 (a )Pu lse sequence for PIS EM A experim en ts ;(b )Tw o -dimensional PISEAM spectrum of 15N 1,3,5,7-labeled gramicidin A oriented in hydrated DM PC bilayers (at apep tide ∶lipid molar ratio of 1∶8)recorded on a 400M H z NM R spectrometer at 40℃.The first and mo st sig nificant ex peri -ment to im pro ve the S LF spectral resolu -tion w as polarizatio n inve rsion spin ex -chang e a t the m ag ic angle (PIS EM A )[70],as show n in Fig .5(a ).After cross polari -zatio n ,the pro to n magnetization is flippedto the magic ang le by a 35°pulse ,alongw hich the polarizatio n inversio n spin ex -chang e is established by applying a fre -quency switched Lee -Goldburg (FS LG )homo nuclear decoupling sequence [71]to theproton channel in sy nchronizatio n with180°phase alternation o f the spin -lockingfield applied to the 15N channel .The spinexchange takes place w hen the effective field in the proton channel and the applied15N spin -locking field fulfill the H artman -H ahn co nditio n .Fo r the traditional SLFexperiments ,the 15N sig nals a re evolved inthe x y plane during the indirect t 1dimension and thus affected no t o nly by the dipolar coupling s w ith directly bonded amide pro to ns but also by the dipolar inte ractio ns with other remote pro to ns .The latter leads to additio nal line broadening in the dipolar di -m ensio n .While fo r the PISEMA experim ents ,the dipolar flip -flo p te rm of the directly bo nded 15N -1H dipo lar co upling s are evo lved in the ro ta ting frame during the spin ex -change period w hile the couplings to o ther rem ote pro tons are effectively truncated [72].445 第4期 F U Ri -qiang :High -Resolution Solid -State NM R Spectr osco py of M embr ane Bound P ro teins and P eptides A ligned in Hydr ated L ipidsCo nsequently ,the spectral reso lution in the dipo lar dimension is improved dram atically ,as demonstrated in Fig .5(b ).Furtherm ore ,the 15N -1H dipolar coupling s are scaled by a large facto r (0.82)in the PIS EM A experim ents ,com pared to the traditional SLF exper -iments [71,73-75](0.57at mo st depending on hom onuclear deco upling sequences used in the indirect t 1dimensio n ).With the g reatly improved resolution ,the PISEMA ex peri -m ents have become a powe rful tool to obtain o rientational constraints fro m uniform ly la -beled pro teins and peptides .Since the building block of an ideal α-helical structure is a sing le peptide plane ,the PISEM A resonance patterns of a tilted helix ,as illustrated in Fig .6(a ),can be calculat -ed by sim ply rotating the peptide plane about its helical axis ,w hile calculating the 1H -15N dipolar coupling and 15N chemical shift observables .As show n in Fig .6(b ),the PISEM A resonances o f ideal α-helix clearly fo rm characte ristic w heels ,the so -called PI -SA w heels (polarity index slant ang le )[76,77],w hose size and po sitio n uniquely define the helical tilt with respect to B 0and the bilayer no rmal without reso nance assignments .The ro tation ρabo ut the helical axis h does no t affect the PISA w heel ,but does change the resonance positions of individual peptide planes on the w heels.Fig .6 (a )Definitions of helix tilt τand rotation ρaround the hel ical axis h in the laboratory frame .(b )Simu lated “w h eels ”rep resenting PISE M A resonance pattern of an ideal α-helix at differen t tilt angles τusing the 15N chemical shift tensors 'principal elements (σ11=31,σ22=54,σ33=202)and the relative orientation of th e dipolar and chemical shift tensors ,given by θ=17°,as sh own in Fig .4.For each tilt angle ,th ere are tw o symmetric w heels (b lack and g rey )mirrored along the zero frequency in the dipolar dimen sion .2.4 Other PISEMA type experimentsThe pe rfo rm ance o f the PISEM A ex periments largely depends o n the decoupling ef -ficiency of the FSLG o ff -resonance irradiatio n ,w hich is very sensitive to the setting of 1H carrier frequency .In the PISEM A spectra ,the 1H offse t effects include [78],1)the bro adening and thus attenuation of the dipolar oscillatio n peaks in the dipolar dimen -sion ;2)increase of unwanted artifacts at zero -frequency of the dipolar dimension ,and3)e xperimental 1H -15N dipolar coupling s la rg er than w hat they should be .S uch effects greatly co mpromise the reso lution of the PISEMA spectra ,especially at hig h fields ,446波 谱 学 杂 志 第26卷 。
扩散序谱(DOSY)实验中扩散系数维数字分辨率的影响
扩散序谱(DOSY)实验中扩散系数维数字分辨率的影响黄俊霖;余亦华【摘要】核磁共振二维扩散序谱(DOSY)实验测定溶液中分子自扩散系数时,扩散系数维的数据点及其数字分辨率直接影响了测定值的精度.在较系统地确定了DOSY 实验本身偏差范围的基础上,本文研究了扩散系数维不同的数字分辨率对测定值的影响,包括其引入偏差的来源以及形成偏差的大小.由于不同的溶液条件下分子扩散系数的改变可直接用于表征分子结构或状态的变化,本文提出的相对数字分辨率与扩散系数相对变化值的直接比较,可直观地表明数字分辨率对扩散系数测定值的影响.【期刊名称】《波谱学杂志》【年(卷),期】2018(035)003【总页数】7页(P287-293)【关键词】液体核磁共振(liquid-state NMR);数字分辨率;扩散序谱(DOSY);自扩散系数【作者】黄俊霖;余亦华【作者单位】华东师范大学物理与材料科学学院,上海市磁共振重点实验室,上海200062;华东师范大学物理与材料科学学院,上海市磁共振重点实验室,上海200062【正文语种】中文【中图分类】O482.53引言核磁共振扩散序谱(Diffusion Ordered Spectroscopy,DOSY)是目前测量液体样品的自扩散系数(D,简称扩散系数)的一个重要的方法,它通过脉冲梯度场(Pulsed Field Gradient,PFG)对溶液中分子的平移运动进行空间编码,在分子的扩散运动(扩散系数D)与梯度场强度g之间建立起明确的数学关系[1]:其中,I表示加上梯度场脉冲之后测得的信号强度;I0是未加梯度场脉冲时测得的信号强度;D为自扩散系数;γ为所观测核的磁旋比;g为梯度场强度;δ为梯度场脉冲宽度;Δ为脉冲序列中一对梯度场脉冲之间的时间,即扩散时间.将实验中不同梯度场强度下测得的谱峰强度 I代入(1)式,通过指数曲线的拟合便可求得D 值.一维谱中的谱峰产生于溶液中相同或不同的分子,通过谱峰积分面积随梯度场强变化拟合出的D值就是其对应的分子在该溶液体系中的扩散系数.与分别拟合出各个谱峰的D值不同,另一种呈现D拟合值的方式是二维DOSY谱[2].二维DOSY图谱中的其中一维是普通的化学位移轴,另一维则是扩散系数轴,相关峰所对应的扩散系数则是从该谱峰的最高点在扩散系数维的投影值(lgD)读出并换算而得,如图1所示.相关峰的产生首先是通过对其化学位移轴上相应数据点的峰强度变化拟合出,再对D值在一个预设的范围内进行反拉普拉斯变换后模拟生成的[2].虽然在一张DOSY谱上能够读取所有谱峰所对应的扩散系数,但是在DOSY图谱的数据处理时有2个人为设置的参数,即扩散系数的取值范围和数据点[3].扩散系数取值范围和数据点决定了该维读数的数字分辨率(数字分辨率 r=扩散系数的取值范围/数据点),而数字分辨率的大小直接影响到 DOSY实验中扩散系数读数的偏差. 图1 乙基苯样品的DOSY实验图谱(CDCl3)Fig. 1 DOSY spectrum of ethylbenzene (CDCl3)如图2所示,这是一张有关DOSY谱上扩散系数维的数据点及其数字分辨率r的示意图,纵坐标表示扩散系数维的取值,每一条虚线即代表该维的一个数据点,两条虚线间的间隔为该维的数字分辨率.当真实的谱峰最高点(lgD)出现在介于相邻的数据点之间时(如图 2中的椭圆形所示),由于数字分辨率的原因,图谱上实际的谱峰最高点会出现在其临近的数据点上(如图2上的矩形所示),因此图谱上扩散系数维设置的数字分辨率r(与扩散系数的取值范围和数据点相关)的设定影响了谱峰最高点读数的准确性,即为扩散系数维读数的最小偏差.当数字分辨率不够高时,有可能成为实验偏差的主要来源.图2 DOSY数字分辨率示意图Fig. 2 Diagram of digital resolution on F1 dimension (diffusional coefficient dimension) of DOSY spectrum从最初的自旋回波序列(Spin Echo,SE)序列[4]到后来的刺激回波(STimulated Echo,STE)序列[5]的衍变,以及纵向涡流延迟(Longitudinal Eddy current Delay,LED)技术[6]和偶极梯度场脉冲对(Bipolar Pulse Pairs,BPP)[7]技术的运用,大大提高了DOSY实验的可重复性和准确性,也大大拓展了DOSY实验的应用范围.DOSY谱中不同扩散速率分子产生的谱峰可以依据它们扩散的快慢沿着扩散系数维展开(谱峰不重叠的情况下),因此被广泛应用于复杂混合物的分析测试[8-10].更多的应用则是将溶液体系中扩散系数的变化用于表征分子间的相互作用[11,12],包括分子组装[13]、研究药物分子的包裹作用[14-17]以及聚合物分子量的测定等[18].在已发表的用扩散系数变化表征分子间相互作用的研究文献中,扩散系数的相对变化值通常在百分之几十~百分之十几之间[19-21],也有仅百分之几的变化[22],但提及扩散系数维的数据点数,以及考虑该维数字分辨率对研究结果的影响的研究并不多见.早期研究DOSY实验方法的文献曾经提及能观察到的扩散系数最小变化值在2%左右[20],而本文的研究结果表明如果数字分辨率运用得不合适,偏差会远大于 2%(见本文的研究结果与讨论),因此有必要对DOSY图谱扩散系数维数字分辨率的影响做一个较系统的研究,避免由此引起的实验偏差增加.数字分辨率的大小只是DOSY实验结果的偏差来源之一,它源于对实验数据的处理,而实验数据本身也会产生一个偏差范围.为了区分和比较两者的差别,本文首先研究了DOSY实验本身的重复性及偏差范围,继而分析研究了数字分辨率对扩散系数检测值的影响,阐述了实验偏差与数字分辨率的关系.1 实验部分1.1 仪器与测试样品测试仪器为Bruker公司的AvanceⅢ HD谱仪,配有BBFO 5 mm探头,1H核的共振频率为500.13 MHz.Z方向最大梯度场强度为53.5 Gauss/cm.测试样品为Bruker公司提供的标样,即0.1%乙基苯/氘代氯仿(EB/CDCl3)样品.1.2 NMR实验DOSY实验使用Bruker公司的标准脉冲序列stebpgp1s[4],谱宽为4 006.41 Hz,激发中心为2 250.59 Hz,H通道射频脉冲脉宽为10 μs,功率为21.8 W,弛豫延迟时间(D1)为2 s.累加次数为16,空采次数为16.脉冲序列中的扩散时间(Δ)为40 ms;梯度场脉冲宽度(δ)为1 800 μs,脉冲形状为梯形.每个DOSY实验中梯度场脉冲的强度(g)变化范围为5%~95%,采用线性方式在该范围中选取16个变化值.采样数据点为16 k,采样时间为2 s.1.3 数据处理所得的实验数据处理软件为Bruker公司提供的TopSpin 3.5pl7.通过其中的“DOSY”程序对实验得到的数据进行扩散系数拟合和反拉普拉斯变换,进而得到相应的DOSY图谱.处理过程中扩散系数维数据点为1 k,该维的取值范围(lgD)为-8 ~ -10,这两个处理参数其它的选值将在后面的讨论部分中加以具体说明.谱峰所对应的扩散系数值 D是由该峰的最高点在扩散系数维的投影值(lgD)读出并换算而得.2 结果与讨论2.1 DOSY实验偏差范围为了更准确地区分DOSY实验导致的偏差与数字分辨率引入的偏差,首先采用同样的样品与实验条件测试了6组DOSY实验以确定实验导致的偏差范围.每组实验连续测试5次,而1~6组实验依次之间的时间间隔为1天.图1为实验得到的DOSY图谱,其中以样品乙基苯中CH2峰(图中虚线所示位置)的数值代表乙基苯分子的扩散系数,共30个扩散系数值列于表1.表1 DOSY实验测得的乙基苯分子扩散系数Table 1 Self-diffusion coefficientsof ethylbenzene measured by DOSY experiments组别D/(×10-9 m2/s) 平均偏差d¯ 相对平均偏差d¯ r 1 1.611 1.618 1.611 1.611 1.625 0.0045 0.28%21.611 1.603 1.611 1.618 1.604 0.0047 0.29%3 1.596 1.604 1.618 1.611 1.5970.0074 0.46%4 1.582 1.575 1.575 1.582 1.582 0.0034 0.21%5 1.582 1.5751.582 1.582 1.589 0.0028 0.18%6 1.589 1.589 1.597 1.589 1.596 0.0036 0.23% 由于测试样品的溶剂为低粘度的氘代氯仿,有研究[23,24]表明这样的稀溶液在室温下只要存在控温的加热气流,就会产生沿NMR样品管方向的温度梯度,进而产生对流,影响扩散系数的测量.为避免此类现象对实验测量值造成偏差,上述所有实验都是在无温控和无温控气流的条件下进行的,实验室温度为(288±1)K.为了更好地呈现实验的偏差范围,采用了平均偏差()及相对平均偏差()的计算方法,其计算公式分别为:其中为扩散系数的平均值,n为计算所用的数据个数.表1中最后两列给出了每组5次连续实验的平均偏差()及相对平均偏差(),其相对平均偏差都在0.5%以下.将6组30个数值一起计算时,平均偏差为0.012 6;相对平均偏差为0.79%.数值都略大于同组内5个数据的偏差值,可能的原因可归于实验期间实验室温度的起伏以及仪器上不可预测的不稳定性.总体而言,实验本身的相对平均偏差约为 1%.为进一步确认此偏差范围,对上述30个实验中的CH2谱峰面积进行了积分,将积分值及其相应的实验参数代入(1)式进行D值的拟合(拟合程序为BRUKER公司提供的“T1/T2 measure”程序),拟合出的平均偏差为0.014 7,相对平均偏差为0.92%.与DOSY图谱中得到的数值偏差基本一致,即在控制了诸多的影响因素之后,得到的实验本身的相对偏差在1%左右. 2.2 关于DOSY数据处理中扩散维数字分辨率的问题上述DOSY图谱的处理中在扩散系数维的取值范围(lgD)在-8 ~ -10之间,该取值范围是有机化合物在溶液中常见范围[25],而该维所用的数据点是1 024,那么相邻两个数据点间lgD的差值为:[(- 8 )-(- 1 0)]/1024=0.00195,即数字分辨率(r)为0.001 95,对照表1可知其小于实验本身的平均偏差值,说明表1中DOSY实验数据偏差不完全是由数字分辨率的设置引入的.当扩散系数维是以对数形式(lgD)取值时,所有数据点间的间隔(即数字分辨率r)是相同的,而换算成 D值时,则数据点间隔是不等的.如图 2所示,x1数据点与相邻数据点间的间隔为(10 x 1 +r -10x1),而x2数据点与相邻数据点间的间隔则为( 1 0 x 2 + r -10x2),x1和x2分别为相应数据点对应的 lgD.由此可见直接用 D值表示时,数据点间隔与数据点所在位置对应的扩散系数值相关,相互之间是不等的.但是当引入相对数字分辨率(R=数据点间隔/数据点对应的D 值),则上述间隔值转换为: (1 0 x 1 + r -10x1)/10 x 1 = 1 0r -1,与x1、x2无关.这表明对于一个处理参数(取值范围和数据点)已确定的DOSY图谱,其相对数字分辨率( R = 1 0r -1)是一个恒定的值.正式发表的研究文献中通常都是直接用D值的变化大小,或以百分数表示其相对变化的大小,因此以相对数字分辨率R来表示其引入偏差的大小时更直观、更方便.根据上述所用的处理参数,图1中DOSY谱的数字分辨率r为0.001 95,相对数字分辨率R则为0.45%.为更明确地表明DOSY实验中数字分辨率的设置所引入的偏差,对表1中的第2组实验数据进行了不同数据点的处理,其结果列于表2.当取值范围(lgD)不变(-8 ~ -10),数据点为64和256时,它们所对应的相对数字分辨率R分别为7.46%和1.82%,表2中列出的5个数据之间只观察一个差值,其相对数据与相对数字分辨率基本一致,表明D值的偏差主要由数字分辨率不够高导致的.当数据点增加至1 024时,5个数据之间主要有2个差值(其中0.001的差值对于我们的研究没有意义,故舍去),其中一个的相对数据差值大于相对数字分辨率(约为2倍),说明此时的主要偏差不是来源于数字分辨率,因为数字分辨率引入的偏差只来源于相邻数据点的差别,不会大于相对数字分辨率本身.此外,由相对平均偏差的变化可知,随着数据点的增加,实验的精度也会逐渐提高.表2 不同数据点处理时扩散系数的偏差范围Table 2 Deviation range of self-diffusion coefficients when processing DOSY data with different data points*相对数据差=数据差值/数据点对应数值数据点D/(×10-9m2/s) 数据差值相对数据差* 相对数字分辨率相对平均偏差d¯r 64 1.778 1.655 1.778 1.778 1.778 0.123 7.43% 7.46% 3.94%256 1.625 1.625 1.625 1.655 1.655 0.030 1.85% 1.82% 1.44%1024 1.611 1.603 1.611 1.618 1.604 0.015 0.94% 0.45% 0.29%0.008 0.50%图3更直观地显示了数据点的多少对谱峰最高点(对应于扩散系数的读数)的影响,图中的谱峰来自于图1 DOSY图谱中虚线(通过CH2谱峰最高点)所在的化学位移位置(δ 2.67)对应的纵向一维谱.三角形、圆形和方形分别代表DOSY数据处理时所用数据点分别取128、512和1 024.从图中可以观察到当有足够多的数据点(如 1 024)时,这些数据点能较准确地描述出完整的峰型,包括谱峰的最高点;而数据点不足时不仅峰型描述得不够准确,更重要的是谱峰最高点的位置会随数据点移动,引起读数的偏差.图3 不同数据点处理时扩散系数维示意图Fig. 3 Sketch diagram of F1 dimension processed with different data points3 结论上述的研究结果表明DOSY图谱数据处理时如果设置的数据点不够多,导致数字分辨率不够高时,将会对实验所得的扩散系数测量值造成偏差,应当在设置相应的处理参数时予以充分考虑,并在成果发表时予以明确的陈述.当需要用扩散系数的变化值来表征分子结构或状态的变化时,相对数字分辨率应小于对应的相对变化值;当需要考虑扩散系数值的数据重复性时,建议相对数字分辨率R小于1%.从本文的研究结果中可知:扩散系数(lgD)取值范围为-8 ~ -10时,64、256和1 024个数据点对应的相对数字分辨率为7.46%、1.82%和0.45%.如果取值范围改变,则相对数字分辨率R= 1 0r -1(数字分辨率r=取值范围/数据点)也要做相应的调整.理论上如果相对数字分辨率为R,则由分辨率导致的读数偏差范围应该为(±R/2),由于数值范围上没有差别,为方便和容易理解,本文在所有的研究结果讨论中直接用R代替了±R/2.【相关文献】[1] JOHNSON C S. Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications[J]. ChemInform, 1999, 30(33):203-256.[2] LV J, SHAN L, TU G Z. The integrated DOSY acquisition/processing module for TopSpinNMR software[J]. Chinese J Magn Reson, 2008,25(1): 133-143.吕娟, 单璐, 涂光忠. TopSpin核磁共振软件中集成的DOSY采集/处理模块DOSYmTM[J]. 波谱学杂志, 2008, 25(1): 133-143.[3] ANTALEK B. Using pulsed gradient spin echo NMR for chemical mixture analysis: How to obtain optimum results[J]. Concept Magn Reson A,2010, 14(4): 225-258.[4] STEJSKAL E O, TANNER J E. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient[J]. J Chem Phys,1965, 42(1): 288-292.[5] TANNER J E. Use of the stimulated echo in NMR diffusion studies[J]. J Chem Phys, 1970, 52(5): 2523-2526.[6] WU D H, CHEN A, JOHNSON C S. Flow imaging by means of 1D pulsed-field-gradient NMR with application to electroosmotic flow[J]. J Magn Reson, 1995, 115(1): 123-126. [7] WIDER G, DOTSCH V, WUTHRICH K. Self-compensating pulsed magnetic-field gradients for short recovery times[J]. J Magn Reson, 1994,108(2): 255-258.[8] BARJAT H, MORRIS G A, SMART S, et al. High-resolution diffusion-ordered 2D spectroscopy (HR-DOSY)-a new tool for the analysis of complex mixtures[J]. J Magn Reson, 1995, 108(2): 170-172.[9] Ca2+ assisted DOSY NMR: An unexpected tool for anomeric identification for D-glucopyranose[J]. ChemistrySelect, 2018, 3, DOI:10.1002/slct.201800316[10] TOUMI I, CALDARELLI S, TORRÉSANI B. A review of blind source s eparation in NMR spectroscopy[J]. Prog Nucl Magn Reson Spectrosc,2014, 81(8): 37-64.[11] PASTOR A, MARTÍNEZ-VIVIENTE E. NMR spectroscopy in coordination supramolecular chemistry: A unique and powerful methodology[J].Coordin Chem Rev, 2008, 252(21,22): 2314-2345.[12] MA E Q, LI Y X, ZHAO R G, et al. Interactions between NP-10 and single/double chain quaternary ammonium salts studied by NMR spectroscopy[J]. Chinese J Magn Reson, 2017, 34(1): 16-24.马二倩, 李永肖, 赵瑞格, 等. NP-10与单链、双链季铵盐三种复配体系相互作用规律的NMR研究[J]. 波谱学杂志, 2017, 34(1): 16-24.[13] KHODOV I A, ALPER G A, MAMARDASHVILI G M, et al. Hybrid multi-porphyrin supramolecular assemblies: Synthesis andstructure elucidation by 2D DOSY NMRstudies[J]. J Mol Struct, 2015, 1099: 174-180.[14] WANG L M, QIU R C, HUANG S H. Quantitative analysis of active ingredients in compound acetylsalicylic acid tablets by DOSY[J]. Chinese J Magn Reson, 2016, 33(3): 415-421.王丽敏, 仇汝臣, 黄少华. 复方乙酰水杨酸片中有效成分的DOSY技术分析[J]. 波谱学杂志, 2016, 33(3): 415-421.[15] TREFI S, GILARD V M M, MARTINO R. Generic ciprofloxacin tablets contain the stated amount of drug and different impurity profiles: A 19F,1H and DOSY NMR analysis[J]. J Pharmaceut Biomed Anal, 2007, 44(3): 743-754.[16] 崔艳芳, 刘买利. 应用DOSY-NMR分析血浆脂蛋白扩散系数的分布[C]. 南京: 第十一届全国波谱学学术会议, 2000.[17] ZHOU Q J, XIANG J F, TANG Y L. Applications of nuclear magnetic resonance spectroscopy in drug discovery[J]. Chinese J Magn Reson,2010, 27(1): 68-79.周秋菊, 向俊锋, 唐亚林. 核磁共振波谱在药物发现中的应用[J]. 波谱学杂志, 2010, 27(1): 68-79.[18] MONAKHOVA Y B, DIEHL B, DO T X, et al. Novel method for the determination of average molecular weight of natural polymers based on 2D DOSY NMR and chemometrics: Example of heparin[J]. J Pharm Biomed Anal, 2017, 149: 128-132.[19] BEDNAREK E, SITKOWSKI J, BOCIAN W, et al. An assessment of polydispersed species in unfractionated and low molecular weight heparins by diffusion ordered nuclear magnetic resonance spectroscopy method[J]. J Pharm Biomed Anal, 2010, 53(3): 302-308.[20] ANTALEK B. Using pulsed gradient spin echo NMR for chemical mixture analysis: How to obtain optimum results[J]. Concept Magn Reson A,2010, 14(4): 225-258.[21] ZHAO B, LI Y L, LI M, et al. An NMR study of capsaicin/β-cyclodextrin complex[J]. Chinese J Magn Reson, 2013, 30(4): 576-584.赵兵, 李艺蕾, 李明, 等. 辣椒碱与β-环糊精包合物的核磁共振研究[J]. 波谱学杂志, 2013, 30(4): 576-584.[22] CHEN X J, HU R Q, FENG H J, et al. Intradiffusion, density, and viscosity studies in binary liquid systems of acetylacetone + alkanols at 303.15 K[J]. J Chem Eng Data, 2012, 57(9): 2401-2408.[23] LOENING N M, KEELER J. Measurement of convection and temperature profiles in liquid samples[J]. J Magn Reson, 1999, 139(2): 334-341.[24] LAPPA M. Thermal convection: patterns, evolution and stability[M]. Wiley, 2009.[25] ANTALEK B. Using pulsed gradient spin echo NMR for chemical mixture analysis: How to obtain optimum results[J]. Concept Magn Reson A,2010, 14(4): 225-258.。
电芬顿法英文
电芬顿法英文Electrochemical Fenton Process: A Promising Approach for Wastewater TreatmentThe rapid industrialization and urbanization have led to the generation of a vast array of pollutants, posing a significant threat to the environment and human health. Among the various pollutants, organic contaminants have become a major concern due to their persistence, toxicity, and potential for bioaccumulation. Conventional wastewater treatment methods often struggle to effectively remove these recalcitrant organic compounds, necessitating the development of more efficient and sustainable treatment technologies.One such promising approach is the electrochemical Fenton process, which combines the principles of electrochemistry and the Fenton reaction to achieve the degradation of organic pollutants. The Fenton reaction, named after its discoverer Henry John Horstman Fenton, involves the generation of highly reactive hydroxyl radicals (•OH) through the reaction between hydrogen peroxide (H2O2) and ferrous ions (Fe2+). These hydroxyl radicals are potent oxidizing agents capable of breaking down a wide range of organiccompounds into less harmful or even harmless substances.The electrochemical Fenton process takes the Fenton reaction a step further by integrating an electrochemical system. In this approach, the ferrous ions required for the Fenton reaction are generated in situ through the electrochemical oxidation of an iron or steel electrode. This eliminates the need for the external addition of ferrous salts, which can lead to the generation of unwanted sludge. Additionally, the electrochemical system allows for the in situ production of hydrogen peroxide, further enhancing the efficiency of the Fenton reaction.The electrochemical Fenton process offers several advantages over traditional wastewater treatment methods. Firstly, it is highly effective in the degradation of a wide range of organic pollutants, including dyes, pesticides, pharmaceuticals, and industrial chemicals. The hydroxyl radicals generated during the process are capable of breaking down complex organic molecules into simpler, less harmful compounds, ultimately leading to the mineralization of the pollutants.Secondly, the electrochemical Fenton process is a relatively simple and cost-effective technology. The in situ generation of the required reagents, such as ferrous ions and hydrogen peroxide, eliminates the need for the external addition of costly chemicals, reducing theoverall operational costs. Additionally, the process can be easily integrated into existing wastewater treatment systems, making it a versatile and adaptable solution.Furthermore, the electrochemical Fenton process is considered an environmentally friendly technology. Unlike some conventional treatment methods that may generate hazardous sludge or byproducts, the electrochemical Fenton process typically produces only innocuous end products, such as carbon dioxide and water, minimizing the environmental impact.The implementation of the electrochemical Fenton process in wastewater treatment has been the subject of extensive research and development. Numerous studies have demonstrated the effectiveness of this technology in treating a wide range of organic pollutants, including dyes, pesticides, pharmaceuticals, and industrial chemicals. The process has been successfully applied at both laboratory and pilot scales, showcasing its potential for large-scale industrial applications.One of the key factors in the successful implementation of the electrochemical Fenton process is the optimization of various operating parameters, such as pH, current density, and the concentration of reactants. Researchers have explored different electrode materials, reactor configurations, and processmodifications to enhance the efficiency and performance of the system.Additionally, the integration of the electrochemical Fenton process with other treatment technologies, such as adsorption, membrane filtration, or biological treatment, has been investigated to further improve the overall treatment efficiency and expand the range of pollutants that can be effectively removed.As the global demand for sustainable and efficient wastewater treatment solutions continues to grow, the electrochemical Fenton process emerges as a promising technology that can contribute to addressing the pressing environmental challenges. With its ability to effectively degrade a wide range of organic contaminants, its cost-effectiveness, and its environmental friendliness, the electrochemical Fenton process holds great potential for widespread adoption in the field of wastewater treatment.。
基于Hankel矩阵的复小波_奇异值分解法提取局部放电特征信息_唐炬
0 引言
[16-18]
1 二元树复小波变换与奇异值分解
1.1 1.1.1 二元树复小波变换 二元树复小波变换基本原理 DT-CWT 是基于实小波变换来实现复小波变 换的,通过两个并行的实数滤波器组,得到实部和 虚部滤波器系数。 图 1 所示为一维 DT-CWT 结构图。 图 1 中:x 为待分解的信号;树 a 为对应的复小波 系数实部;树 b 为对应的复小波系数虚部。 为了达到平移不变性,在奇偶滤波器的基础 上,Kingsbury 提出了 Q-shift 二元树复小波[17,22]。 Q-shift 二元树复小波使用两组滤波器,即在底层分 解时,两树使用奇数长度的滤波器,分别对信号的 奇数和偶数采样位置进行滤波,滤波是通过简单延 迟一个采样位置得到;在高层分解时,使用的是群
文章编号:0258-8013 (2015) 07-1808-10
基于 Hankel 矩阵的复小波–奇异值分解法提取 局部放电特征信息
唐炬,董玉林,樊雷,李莉苹
(输配电装备及系统安全与新技术国家重点实验室(重庆大学),ture Information Extraction of Partial Discharge Signal With Complex Wavelet Transform and Singular Value Decomposition Based on Hankel Matrix
同时采用小波svd进行uhfpd辨识的研究不多见文献21提到的采用离散小波svd对电缆pd信号进行辨识达到了比较好的效果但是该文献是将离散小波分解得到的各尺度下的系数极大值序列分别作为复合矩阵的行向量系数较少的层进行末尾补零处理以使每层系数长度相等依次排列构造复合矩阵并进行svd这样得到的奇异值是按大到小顺序排列的而实际中各层小波系数对应的奇异值并不是严格随着尺度从大到小排列的这就可能对各层系数的差异信息产生丢失同时忽略了各层小波系数的复杂度信息而对于不同的pd类型这两种信息都是有差异的
电阻率层析成像的二维改进粒子群优化算法反演
电阻率层析成像的二维改进粒子群优化算法反演张倩;王玲;江沸菠【摘要】Particle swarm optimization ( PSO) is a global random search algorithm put forward by simulating the flock foraging in the process of social behavior based on swarm intelligence. Researchers have proved that PSO algorithm is an effective geophysical inversion method, and it does not rely on the initial model. Because the conventional PSO is easy to be stuck in relative extremum, slow conver⁃gence speed in the late and the inversion accuracy is not high, this paper presented an improved fully chaotic oscillations particle swarm optimization algorithm based on same conventional PSO theory. It improved the formula of updating speed, made the particles getting the difference between the current global best position quickly, enhanced the learning ability of particles. The paper did a two⁃dimen⁃sional numerical test on ERT data in matlab2012b programming environment,the results show that this algorithm inversion is not de⁃pendent on the initial model, increases the search space,and have higher inversion in accuracy than the standard PSO, and the image quality is better than that of Levenberg⁃Marquardt method.%粒子群优化算法( PSO)是通过模拟鸟群觅食过程中的社会行为而提出的一种基于群体智能的全局随机搜索算法,已有研究学者证明PSO算法是一种有效的地球物理反演方法,不依赖初始模型。
轻敲模式下原子力显微镜的能量耗散
轻敲模式下原子力显微镜的能量耗散魏征;孙岩;王再冉;王克俭;许向红【摘要】There are many imaging modes in atomic force microscopy (AFM), in which the tapping mode is one of the most commonly used scanning methods. Tapping mode can provide height and phase topographies of the sample surface, in which phase topography reflects more valuable information of sample surface, such as surface energy, elasticity, hydrophilic hydrophobic properties and so on. According to the theory of vibration mechanics, the phase is related to the energy dissipation of the vibration system. The dissipation energy between the tip and sample in tapping mode of AFM is a very critical key to understanding the image mechanism. It is affected by sample properties and lab environment. The loading and unloading curves of tip and sample interaction are given based on the JKR model while the capillary force is not considered. The unstable position of jump out between the tip and sample is show,and then the energy dissipation in a complete contact and separate process is calculated. The effect of roughness of sample surfaces on energy dissipation is also discussed. It is provided that the extrusion effect is the dominant fact or in liquid bridge formation by characteristic time contrast when capillary force is considered in tapping mode AFM. The effects of relative humidity on energy dissipation are numerically calculated under isometric conditions. Finally, the relationship between phase image of AFM and sample surface energy, Young's modulus, surface roughness andrelative humidity is briefly explained by one-dimensional oscillator model. The analyses show that the difference of surface roughness and ambient humidity can cause phase change, and then they are considered as the cause of artifact images.%原子力显微镜有多种成像模式,其中轻敲模式是最为常用的扫描方式.轻敲模式能获取样品表面形貌的高度信息和相位信息,其中相位信息具有更多的价值,如能反映样品的表面能、弹性、亲疏水性等.依据振动力学理论,相位与振动系统的能量耗散有关.探针样品间的能量耗散对于理解轻敲模式下原子力显微镜的成像机理至关重要,样品特性和测量环境会影响能量耗散.本文在不考虑毛细力影响下,基于JKR接触模型,给出了探针样品相互作用下的加卸载曲线,结合原子力显微镜力曲线实验,给出了探针-样品分离失稳点的位置,从而计算一个完整接触分离过程的能量耗散,进而讨论考虑表面粗糙度对能量耗散的影响.在轻敲模式下考虑毛细力影响,通过特征时间对比,证明挤出效应是液桥生成的主导因素,在等容条件下,用数值方法计算了不同相对湿度对能量耗散的影响.通过一维振子模型,简要说明原子力显微镜相位像与样品表面能、杨氏模量、表面粗糙度、相对湿度之间的关系.分析表明,表面粗糙度和环境湿度均会引起相位的变化,进而认为它们是引起赝像的因素.【期刊名称】《力学学报》【年(卷),期】2017(049)006【总页数】11页(P1301-1311)【关键词】原子力显微镜;相位像;黏附;液桥;能量耗散;毛细力【作者】魏征;孙岩;王再冉;王克俭;许向红【作者单位】北京化工大学机电工程学院,北京 100029;北京化工大学机电工程学院,北京 100029;北京化工大学机电工程学院,北京 100029;北京化工大学机电工程学院,北京 100029;中国科学院力学研究所非线性力学国家重点实验室,北京100190【正文语种】中文【中图分类】TH742.91986年诺贝尔物理学奖授予了电子显微镜和扫描隧道显微镜(scanning tunneling microscope,STM)的发明者.随后一系列的扫描探针显微镜(scanning probe microscope,SPM)面世,这其中就包括原子力显微镜(atomicforcemicroscope,AFM)[1].不同于STM,AFM对扫描样品没有导电的要求,扩大了扫描样品范围,更本质的区别是相对于 STM测量的隧道电流,AFM 测量的是探针与样品间的作用力,因此在本源上 AFM比 STM更具有力学 (机械)本质[2].AFM的核心力学传感部件是一根微悬臂梁,在接触式扫描中,通过微悬臂梁的弯曲或扭转变形而得到样品的表面形貌和力学性质(模量、黏性、摩擦等).在非接触模式中(包括轻敲模式),主要通过微悬臂梁的振幅、相位和频移来反映样品的表面形貌和力学性质[3-4].接触式和轻敲式是AFM的两种最主要形貌成像方式,由于轻敲模式采用的是探针与样品间歇式接触方式,因此这种扫描方式对样品(特别是软物质,如生物组织)的损伤最小.另外通过微悬臂梁的相位变化能提供更多的样品信息,因此轻敲式扫描为最常用的扫描方式.尽管AFM技术取得了巨大的进步,但其仍然存在很严重的缺陷,即使对于非常熟练的操作者,发现扫描形貌中的干扰因素和赝像都是一件很困难的事情[5-6].赝像产生的原因很多,依据噪声来源,可分为探针因素[5]、扫描器因素[7]、样品因素以及探针与样品相互作用因素[8-10].尽管赝像问题非常普遍,但近二十年来仅有有限的文献论述了AFM的赝像问题.关于探针与样品之间作用力引起赝像的论述更少[10].在AFM的测量中,若要解释其成像机理,理解针尖和样品之间的黏附力是必不可少的.不得不强调的是,作为一种探针技术,对针尖样品间作用力的准确控制是获得高分辨率形貌的最为重要的因素.不同的样品表面和探针间距会引起不同的作用力,但针尖与样品之间的黏附力在本质上都是电磁作用.针尖与样品之间的黏附力主要由毛细力、静电力、短程斥力、范德华力等构成[11-16].毛细力会掩盖其他作用力,如在有毛细力存在的情况下,范德华力会降1∼2个量级[17].生物、有机材料或无机材料,由于其亲疏水特性的不同,在不同湿度下,往往会带来扫描图像中高度、相位的差别[12].这些差别都是由于在扫描过程中液桥的生成而非范德华力的作用.因此,在大气环境中,湿度影响液桥的生成、破碎,进而影响毛细力,研究湿度对AFM形貌测量的影响,从而合理地控制毛细力,是避免产生赝像获得高分辨率图像的关键所在.到目前为止,关于湿度对AFM扫描图像的影响的研究还是零星地分布于各文献中[6-7],没有较系统的研究,甚至还没有明确提出湿度会引起赝像的观点.AFM轻敲模式下所得相位图比高度形貌图更能反映样品的材料特性,如黏附、弹性以及黏弹性等,相位图反映的是AFM微悬臂梁响应与压电管激振之间的相差[12].按照Cleveland等的观点,相位差与系统的能量耗散有关,能量耗散存在于探针与样品的机械接触中[18].耗散反映了被测材料的黏弹性[19],利用该特性可以分辨不同种类物质在整个材料中的分布.但不同的作用力使得耗散能不同,从而使相位图像产生变化.探针与样品间的接触能量耗散是引起轻敲模式下相位变化的主要因素,本文拟将作者多年来对此种接触下各种因素引起的能量耗散进行分析、讨论,以期对成像机理和赝像有更一步的认识.对于微纳尺度下的接触,在理想情况下,分离两个接触表面所需要的功等于两个表面相接触时所获取的功.但在实际情况下,即使表面力的作用和接触物体的弹性变形是可逆的,将两个表面分离所需要的功仍大于表面相接触时黏着力所做的功,即接触与分离过程是不可逆的,存在能量耗散.这种现象称为黏着接触滞后[20].另外,黏着接触滞后还有一个表现,就是在接触分离过程中,其加载与卸载的路径不同,即卸载具有滞后性,这也是称之为接触滞后的原因,这种滞后在实际界面现象中非常常见.从能量的观点和加卸载路径的观点分析黏着接触滞后,是处理这类问题的两个基本方法.图1为AFM典型力曲线.当探针从远处向样品接近时,针尖与样品间的作用力很弱,微悬臂梁探针端挠度为0,这一阶段为图中线段ab所示.当探针接近样品一定位置时,探针样品间吸引力越来越大,探针加速撞向样品,此现象为接触突跳(jump in),为图中c点,为接触分离过程中的第一次失稳过程.探针继续向样品方向移动,探针样品间的作用力变为斥力,微悬臂梁向上弯曲,此过程为cd段.此后探针撤离样品,探针样品的斥力逐渐减小,当微悬臂梁的扰度为零时,继续向上抬离探针,由于探针样品间黏附力的存在,探针样品没有发生分离,这时悬臂梁向下弯曲,探针样品的吸引力随探针向上移动一直增加,如图de段所示.最后当黏附力不足对抗弯曲梁中的弹性力时,发生突跳分离(jump out),此为接触分离过程中的第二次失稳.下面将介绍第二次失稳发生的条件.将AFM探针样品作用简化为球、弹簧、样品系统,如图2所示.其接触分离过程中存在两个失稳点,即在针尖趋近基底的过程中,针尖与基底的相互吸引力会越来越强,最终吸引力的梯度大于AFM微悬臂刚度时,进入突跳接触失稳(jump in),当针尖脱离基底时,在某个位置上,同样存在黏着力的梯度大于微悬臂的刚度,进入分离失稳(jump out),图1给出了这两个失稳的位置.因此,这两个失稳都是发生在探针样品间作用力梯度等于或即将大于微悬臂梁刚度的位置,这种失稳属于“力学不稳定性”[20].显然这类力学失稳,会引起加卸载过程的不可逆,产生能量耗散,引起黏着接触滞后.因此,有必要进一步分析探针样品作用力,以期对AFM失稳特性和力曲线测量(或接触分离过程)中的能量耗散有更明确的认识. AFM探针尖端为椎球状,其球形部分半径一般在几纳米到几十纳米之间,因此探针与样品的接触分离为微纳尺度接触问题.经典微尺度黏着接触理论有Bradley理论、DMT理论、JKR理论和M-D理论等[11,13].Johnson和Greenwood利用Maugis理论绘制了弹性接触的黏着作用分布图,也称黏着图[21],如图3所示.图中各边界的意义在文献中有较详尽的表述.实际的接触适用于何种接触理论,由两个无量纲参数决定.一个是载荷参数为外载荷,R是两接触物体的等效半径,w是界面能;另外一个是弹性参数,它和Tabor数µ等价.从黏着图中看出,黏着力与整个载荷比值取0.05是经典弹性接触与黏着弹性接触的临界点,当比值小于0.05时,表明黏着力相对于整个载荷非常小,可以忽略黏着力的影响,而采用Hertz 接触模型.相反,当比值大于0.05时,就必须考虑黏着力的影响而采用黏着接触模型.黏着接触模型的选取由第二个无量纲数(弹性参数)控制.此弹性参数详细的论述可参考Johnson等[21]的文章.Tabor数µ的定义为其中,z0为原子间平衡间距.R=R1R2/(R1+R2)为两接触物体的等效半径,R1,R2为两接触物体的半径,对AFM来说,样品为无限大平面,故R就是AFM针尖半径.为接触区等效弹性模量,Ei,υi(i=1,2)分别为样品和探针的弹性模量和泊松比.AFM探针针尖一般为Si或Si3N4材料,其弹性模量分别为168GPa和310GPa,泊松比为[22]0.22.对于比较刚硬的样品,即弹性模量大于探针材料的,等效弹性模量接近于探针材料的弹性模量,对于比较软的材料,如生物材料、聚乙烯(PE)、聚二甲基硅氧烷(PDMS)等,弹性模量取值在500Pa∼50GPa之间,这时等效弹性模量取值接近样品材料.界面能一般取[20]1∼102mJ·m−2.对 Tabor数进行估计,E*在 103Pa∼102GPa之间取值,z0=0.5nm,R=50nm.这样µ在3.4×10−3∼ 1.6×104之间取值.因此,不同的样品和探针,其微尺度接触模型可取图3中所有理论.根据Greenwood等的研究[14,23],当µ>5时,JKR接触理论模拟微尺度接触时是非常合适的.对于上述各参数,在E*和w取上述变化范围时,给出了JKR适用区域,如图4所示.随着界面能量的增大,特别是样品变软时,JKR模型是合适的.因此下面的微尺度接触模型用JKR理论.相比较于Hertz理论,实际的弹性体接触界面间除了有相互的斥力外,在物理本质上还应当引入分子间的引力作用,如范德华力,其统计学上的表现就是表面能.表面能的引入,势必会增大接触面积,这样也要重新考虑压入量和储存的弹性能.对这个问题,Johnson等[24]提出了JKR接触模型.相应的方程如下其中,a是在外载F作用下的接触半径.当没有黏着力的影响,即w=0时,上述表达式退化为Hertz弹性接触理论.外载F作用下两弹性体的压缩或拉伸量为式(2)和式(3)中F,a和δ如图2(b)和图2(c)所示.外载F可取的最小值为该力为把探针从样品上拉离所需要的最大力,称为黏附力Fad另外如果把接触问题类比于裂纹扩展,则黏附力Fad对应于恒力加载模式下的裂纹失稳问题,同样对应于恒位移模式下的失稳,可得到此时两接触物体拉开的最大位移量为[25]对应的拉力为通过式(2)和式(3),并把外载和位移无量纲化,得到JKR理论加卸载曲线如图5所示[26].从图5可以看到,JKR理论同样存在两个失稳过程,第一个失稳为突跳接触失稳(jump in),如图OA段.第二个失稳为分离失稳(jump out),这个失稳相对复杂些.从图5可以看到两个极限位置C和D,C点力梯度为0,D点力梯度为无限大.由上面力学失稳分析知,当图2(b)中弹簧刚度kc趋近于无穷小时,失稳发生在图5的C点,当图2(b)中弹簧刚度kc趋近于无穷大时,失稳发生在图5的D点.实际AFM微悬臂梁具有确定的刚度,因此探针与样品分离位置处于图5曲线CD间.依据JKR理论,C点为分离时取最大力的位置,D点为分离取最小力的位置,随着图2中微悬臂梁刚度提高,分离力逐渐变小.因此,从图5可以看出,曲线CD是AFM探针与样品分离时的状态区间,探针样品分离点位于CD曲线上力梯度等于微悬臂梁刚度处.探针样品分离时分离力F的范围为AFM力曲线实验证明上述结论,图6是AFM力曲线,样品为疏水硅片和杨氏模量为200MPa的PDMS,悬臂梁刚度分别为 0.06N/m,0.12N/m,图6(a)是刚度为0.06N/m的探针在疏水硅片上的力曲线,其失稳点发生在最大拉力处.图6(b)和图6(c)所用样品为PDMS,微悬臂梁刚度分别为0.06N/m,0.12N/m,可以看出随着微悬臂梁刚度增大,分离时的力逐渐减小,证明了上面对分离失稳判据的分析.AFM轻敲模式下,探针样品间接触分离过程的能量耗散对高度像和相位像都有非常大的影响,特别是相位像直接与耗散能相关.下面用JKR理论讨论探针样品接触分离过程中的能量耗散.由图5可以看出,接触分离过程中的耗散能是指在接触分离一个周期中外力所做的功.如果微悬臂梁较软,分离失稳发生在C点,则外力功为式中A1为图5中的阴影面积.如果微悬臂梁较刚硬,分离失稳发生在D点,则外力功为式中A2为图5中的阴影面积.通过数值计算,A1=1.07,A2=0.47.定义一个参照能量∆E=Fadδc,由式(5)和式(6)得因此,基于JKR接触模型下的能量耗散Ets为(1.07∼1.54)∆E.下面估算耗散能的大小,假定耗散能为∆E.一般情况下,AFM探针半径为50nm,考虑毛细力影响,其黏附力约为4πRγ,值约为40nN(γ取为水的表面张力).在无毛细力作用下,黏附力要降低一个量级,为4nN.接触区域的等效杨氏模量从上述表达式可以看出接近两接触材料中最软材料的杨氏模量,等效弹性模量E*取值在103Pa∼102GPa之间,则耗散能∆Ets在(8×10−20∼ 1.6×10−14)J之间.真实的接触表面都不可能达到原子级光滑,因此有必要考虑粗糙度对AFM加卸载曲线和接触分离过程能量耗散的影响.如图2所示,将AFM探针样品接触简化为半球与半无限大平面的接触模型,如果再考虑球面和半无限大平面的粗糙度,会引起数学处理上的不方便,为方便处理,假定问题为两半无限大平面的接触,其中一个平面假定为光滑平面,另一个为粗糙平面,如图7所示.假设图7下平面粗糙峰高度符合高斯分布,即其中,z为高度,φ(z)为粗糙峰高度的概率密度函数,所有的粗糙峰都假设为半径为R的半球,同图2,σ为高度分布标准差.假设单峰与平面接触分离用JKR模型,其加卸载曲线为图5所示.假设失稳发生在D点,可以得到载荷变形关系的隐式表达[26]如图7所示,先考虑接触过程,当光滑平面压入到距离粗糙平面平均线为d时,如果假设整个粗糙平面有N个尖峰,则此时共有个尖峰与光滑平面接触.同时参照图5和式(12),可得加载方程其中,δ=z− d,∆= δ/σ,∆c= δc/σ,h=d/σ.同理,考虑卸载,当光滑平面与粗糙平面处于图7位置时,卸载方程为从图8可以看出,粗糙度对加卸载曲线的影响较大,随着粗糙比的变大,加卸载路径逐渐趋于重合,接触分离中的黏附性能消失.特别是对加卸载曲线围成的面积,即能量耗散,影响较大.定义能量耗散∆Ets通过对式(15)或图8进行数值积分,得到能量耗散与粗糙度的关系如图9所示.从图9可以看出,当粗糙度变大时,会降低接触分离的耗散能量,因此,在轻敲模式的扫描图象中,表面粗糙度对高度像和相位像都有一定的影响,并可能引起赝像.大气环境下,若样品是亲水的,AFM探针与样品之间的作用力中的主导力为毛细力,它比其他作用力(范德华力、静电力等)大1∼2个量级[17].因此,有必要考虑湿度对探针样品接触分离过程中能量耗散的影响.探针与样品间的毛细力是由探针与样品间的液桥提供的.作者对AFM中液桥的生成和破碎进行过较深入的研究,关于液桥的生成,我们提出了以下模型:挤出模型、毛细凝聚模型和液膜流动模型.下面简要介绍这3个模型[27-33].在大气环境中,亲水样品表面会吸附一层或多层水分子进而形成水膜,在探针接触样品时,探针和样品表面的水膜被挤出,这部分挤出的水形成液桥,由于这部分挤出水体积较小,按照热力学理论,此时的液桥还不是最终平衡态时的液桥,挤出模型形成液桥的特征时间等于探针样品的接触时间.在探针与样品接触后,探针与样品接触区域附近的狭缝区具有极强的吸附能力,这种强吸附势会使得狭缝区空气中的水分子产生凝聚,这个过程很快完成,狭缝区外围的水分子要通过扩散运动到狭缝区再行凝聚,扩散过程相对于凝聚过程需要更长时间,因此毛细凝聚形成液桥的特征时间实际上是由扩散过程控制的.另外,由于液桥中的负压和样品水膜中的分离压作用,液桥远处的水膜向液桥流动,这个流动模型的特征时间由流动过程控制.由热力学关系,水膜厚度h与相对湿度有如下关系[33]式中哈梅克常数AH= −8.7×1021J,水的摩尔体积Vm=1.8×10−5m3/mol,普适气体常数=8.31J/(K·mol),取绝对温度=293K,p为大气蒸汽压,ps为液体饱和蒸汽压.p/ps为相对湿度.在相对湿度为65%时,h=0.2nm.在AFM轻敲模式下,微悬臂梁以接近于自身一阶共振频率(10∼500kHz)的频率振动且每一周期内探针敲击样品一次,针尖与样品每次的接触时间为式中,A为微悬臂梁振幅,h为液膜厚度,T为微悬臂梁振动周期.悬臂梁振动频率取为100kHz,A=10nm,h=0.2nm(相对湿度为 65%).振动周期为10−5s,则得tcontact?0.2µs.文献[32]曾详尽计算了相对湿度为65%的各液桥生成模型对液桥的贡献,在轻敲模式下,由于探针样品接触时间在微秒量级以下,毛细凝聚的特征时间为毫秒量级,液膜流动的特征时间为102µs∼102s,因此毛细凝聚和液膜流动对液桥贡献较小,液膜挤出在轻敲模式下占主导地位.如图10所示,假设探针和样品表面吸附水膜厚度为h,忽略探针样品接触后的弹性变形,则挤出液体体积即液桥体积为式中h?R.则由式(16)和式(18)可得不同湿度下由挤出效应所形成液桥的体积.实验和理论证明,图10(b)液桥在拉断时的临界长度Dcr正比于液桥体积的立方根[33]. 由图10(b)可以看出,液桥毛细力由液桥表面张力和液桥内外的杨--拉普拉斯压力差组成式中,ra,rm为液桥的主曲率半径,则在轻敲模式下,由挤出效应形成的液桥,在极短时间内被拉断,这个过程为等容绝热过程,外力克服毛细力做功即有液桥引起的耗散能为式(19)和式(20)联合求解,就可得到不同湿度下耗散能.由于在轻敲模式下,液桥等容变化,其几何形态复杂,在求解过程中利用了圆弧近似,所求得的毛细力与实验比较吻合.详细求解可参考文献[31-33],其耗散能与相对湿度的关系见图11.从图11可以看出,湿度对探针半径为50nm的AFM来说,在轻敲模式下,耗散能随相对湿度升高而增大,液桥断裂能即耗散能大约在10−18∼8×10−17J量级. 对于图2和图10所示的简化模型,表明无论是否考虑毛细力的影响,在接触分离的过程中都会产生能量耗散.由于轻敲模式的AFM是在高频振动状态下工作,当考虑能量耗散影响后,相当于在振动系统中引入阻尼机制,现在我们知道在一个振动周期内,如果能量耗散为∆E,由于AFM为单频激励单频响应,故将探针样品系统简化为一维阻尼振子系统,如图12所示.弹簧刚度为探针样品间作用,在本文中它既可是式(12)中JKR黏附力也可以是式(19)中的毛细力,这里总弹簧刚度计及了探针样品作用力的贡献.按照阻尼能量等效原则,图12系统在一个周期内,阻尼器所耗散的功就是上述JKR模型或液桥所引起的耗散能.图12振子系统振动方程为其中,m为微悬臂梁的等效质量,因此,由耗散能所引起的相位差φ正切为[12]式中,E为系统总能量,s为激振频率与系统固有频率比,在轻敲模式下,s?1±ε,ε为一小量,因此式(22)简化为式(23)中有正负号是由于轻敲模式下激振频率选在微悬臂梁固有频率附近,依据不同样品和目的,激振频率可小可大,如果激振频率小于固有频率,相位在[0,π/2]区间,如果激振频率大于固有频率,相位在[π/2,π]区间.我们采用JKR模型对微纳尺度下接触分离过程能量耗散进行分析,得到能量耗散∆Ets为(1.07∼由式 (23)可以看出,对于疏水样品或干燥环境下的亲水样品,即不考虑毛细力影响时,轻敲模式下的相位图反映的是探针样品的界面能和样品的软硬程度,因此在样品表面,如果不同区域的物质构成不同,则其界面能和杨氏模量是不同的,在相位图上是能够分辨出来的.如果式(23)中s<1,则界面能越高,能量耗散越大,得到的相位也越大;同样,如果样品杨氏模量比较高,则能量耗散比较小,相位就比较小.从图9可以看出,表面粗糙度越大,针尖样品间的能量耗散越小.如果还是假设s<1,从式(23)可以看出,相位要变小,这种情况下,我们就不能判断这个区域相位变小是什么原因引起的.由上面分析,我们知道相位变小的原因也有可能是界面能变小或样品模量提高.但一般情况下,这种相位的变化,被认为是样品物理化学性质的变化引起的,而不会认为是样品形貌引起相位变化,进而引起扫描图像解读的误差,这也是赝像的一种表现形式.在大气环境下的亲水样品,从图11看出,随着相对湿度的升高,耗散能在升高,从式(23)可看到,当激振频率稍低于梁固有频率时,随湿度增高,相位增大,当激振频率稍高于固有频率时,随湿度增高,相位减小.因此,同一个样品,当我们在不同的实验室环境下扫描时,会得到不同的相位图,但不管相位随湿度怎么变化,真实的样品特性是固定的,因此,我们认为湿度干扰了我们对相位图的正确分析,带来了样品的赝像.在轻敲模式下,由于微悬臂梁的振动频率很高,在样品的一个扫描点,探针与样品接触分离大于103次,因此除了探针样品的第一次接触会在接触区产生塑性变形外,其他后续接触可以忽略塑性效应,因此可以认为在轻敲模式下,塑性变形对耗散没有影响.关于材料黏弹性对耗散的影响,由于探针速度约为2πAf,A为微悬臂梁振幅,取10nm,f为激振频率,取105Hz,则探针速度在10−2m/s量级,在这种低速冲击下,是否考虑黏性的影响,是一个可商榷的问题,留待以后讨论. AFM轻敲模式下相位成像是研究物质表界面特性的重要手段,其相位主要反映的是探针样品作用时的能量耗散.本文主要就两类接触进行了研究.一类是不考虑毛细力影响的微纳尺度接触能量耗散问题,一类是考虑毛细力下的接触能量耗散问题. 在不考虑毛细力存在的情况下,采用JKR接触模型,提出了AFM力曲线中分离失稳与JKR加卸载曲线中的对应位置关系,进而计算轻敲模式下的能量耗散.采用一维振子模型,探讨影响相位的样品因素.并进一步探讨了粗糙度对能量耗散的影响,并指出粗糙度是引起赝像的原因.通过对液桥生成机理分析,对比挤出、毛细凝聚和液膜流动在液桥生成过程所需平衡时间与探针样品接触时间,认为在轻敲模式下,只有挤出效应对液桥的生成有贡献.由于探针样品接触时间极短,因此在等容条件下,计算了不同湿度下的接触能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Method of Recovering the Fibrous Fractionof Glass/Epoxy CompositesL IU Y UYAN,*M ENG L INGHUI,H UANG Y UDONG AND L IU L IXUNDepartment of Applied ChemistryHarbin Institute of Technology,Harbin150001,P.R.ChinaABSTRACT:This study reports the method of recovery of glass fibers from glass/epoxy composites through the solvent method.It is possible to decompose epoxy resin with a yield of more than 99wt%soluble products in a nitric acid solution(8M)at90 C for5h.The decomposition rate of epoxy resin increases with an increase in temperature and concentration of acid solution.The glass fibers can be recovered with very little contamination and they have a tensile strength reduction of 3.5%under decomposition conditions of T¼70 C,t¼250h,C¼6M and ¼6g/100mL.These fibers can be used as reinforcement to prepare new composites.The interlaminar shear strength (ILSS)of recovered short fiber-reinforced composites produce strength reductions of only2.5% compared with pristine composites.KEY WORDS:composites,glass fiber,epoxy resin,recycling.INTRODUCTIONG LASS FIBER/EPOXY COMPOSITES are attractive materials for the automotive andaircraft industry,but one barrier to their increased use is the recycling difficulty.The epoxy resin in the cast-off cannot be melted down and remolded as is done in the thermoplastic industry.With the increasing landfill casts,there is an urgent need to develop recycling technologies for composite materials.The majority of work on composite recycling is concerned with grinding the composites into a suitable size to be used as fillers in new composite materials[1–3].Masatashi[4] found that using glass/epoxy composites as fillers for epoxy resin could yield products with better strength and thermal expansion properties when compared to those made with conventional fillers.Other recycling processes based on pyrolysis have also been considered[5,6].This process breaks polymeric waste into reusable fuel oils and hydrocarbon gasses in the absence of air.A sheet molding compound(SMC)of glass/ polyester composites was pyrolyzed by Torres et al.[7].The liquid obtained can be used as bustion with energy recovery is another means of recovering some value from scrap composites[8].In these processes,carbon-and aramid-reinforced composites destroy valuable materials and can be a source of pollution.A solvent recycling method in which valuable carbon fibers can be recovered has already been described[9].In this study,this method is further described,the recycling*Author to whom correspondence should be addressed.E-mail:liuyy@Figure6appears in color online:Journal of R EINFORCED P LASTICS AND C OMPOSITES,Vol.25,No.14/200615250731-6844/06/141525–9$10.00/0DOI:10.1177/0731684406066748ß2006SAGE Publicationsprocess conditions of glass/epoxy composites are examined,the properties of recovered glass fibers are presented,and the mechanical properties of composites prepared with recovered fibers are compared with those of virgin composites.EXPERIMENTALMaterialsThe epoxy composites with67wt%unidirectional glass fiber were prepared in a laboratory.The bisphenol A type epoxy resin(E-44)and curing agent(IPDA)were used as a matrix.The curing conditions were80 C for2h and150 C for4h.The composites were cast to200mmÂ6mmÂ2mm bar.Decomposition ConditionsEach composite specimen was put into a specially designed glass vessel(D¼100mm, L¼300mm)and then immersed in100mL nitric acid solution.The decomposition temperature was controlled in a water bath.The feedstock ratio is defined as the ratio of resin weight in composite to the volume of the nitric acid solution.The insoluble composites were separated from the solution at a specific decomposition time and washed with acetone.After drying at60 C,the composites were weighed.Preparation of New CompositesThe recovered glass fibers were incorporated into epoxy matrices to produce two different composites.The first sample was made of recovered unidirectional continuous glass fibers with E-44/IPDA at a content level of65%w/w.The next sample was4–5mm short glass fibers which were cut from recovered fibers with E-44/MeTHPA at a content level of20%w/w.These two types of composites were prepared again by utilizing‘virgin’glass fibers,for use as reference samples.Measurement MethodsThe decomposition rate of epoxy resin in composites was determined in each experiment by weighing the amount of solid residue.The decomposition rate is given byDecomposition rateð%Þ¼weight of compositesÀweight of solid residueweight of resin in compositesÂ100:The reclaimed fibers were subjected to visual scrutiny via optical and scanning electron microscopy(SEM)to determine the extent of contamination of the residual surface.The surface of the glass fiber was also observed and pictured by electron probe microscopy using a JEOL JCXA-733instrument.In order to verify the effect of the recycling process on fiber properties,the tensile strength of the single fiber was measured according to ASTM-D3379specification.The cross-head speed of the MTS materials testing system was10mm/min.The interlaminar 1526L.Y UYAN ET AL.Method of Recovering Fibrous Fraction of Glass/Epoxy Composites1527 shear strength(ILSS)testing of new composites was carried out using an Instron5569 machine with a cross-head speed of2mm/min.RESULTS AND DISCUSSIONDecomposition of CompositesFirst,the decomposition experiment of glass/epoxy composites was carried out in concentrated sulfuric acid.A flake of glass/epoxy composite,approximately 200mmÂ6mmÂ2mm in size,was put into a6M sulfuric acid solution.The solution was transparent even after20h of immersion at60–90 C and the composite appeared swollen and distorted.After removing from the sulfuric acid solution,the composite increased in mass.The fibers were fixed in the matrix and could not be separated.The results showed that concentrated sulfuric acid was not effective in decomposing glass/epoxy composites. The glass/epoxy composite was then immersed in a6M nitric acid solution at60–90 C. The composite started to decompose at an immersion time of about5h.The solution became yellow and a red-brown decomposed compound with a high viscosity could be observed in the bottom of the solution.The color of the solution became deep and the viscous red-brown solid products gradually decreased with the increase in the duration of immersion.When fibers in the composites separated from each other,the solution was cooled down and the insoluble residue was collected.After washing with acetone and drying at60 C,the recovered fibers were obtained.The weight of recovered fibers was about67wt%of the composites,which is close to the content of glass fibers in the composites.It appeared that epoxy resin was completely removed from the glass fibers. The stronger oxidation of nitric acid caused the C–N bond in the network to break and the benzene ring to be nitrated.In order to examine the effects of experimental parameters on the decomposition rate of the resin matrix,the following experiments were carried out.Effect of Reaction Conditions on the Decomposition Rate of the Resin Matrix TEMPERATUREThe decomposition curve for epoxy composites,in8M decomposition solution at 50–90 C for5h,with a2g/100mL feedstock ratio is shown in Figure1.The increase in temperature resulted in improvement of the decomposition rate of epoxy resin.The decomposition rate was about2.1,24.9,and96%,at50,70,and80 C respectively.There is a great increase in decomposition rate after70 C.The epoxy resin kept for6h completely disappeared at90 C.CONCENTRATION OF THE DECOMPOSITION SOLUTIONThe effect of concentration of the decomposition solution on the degree of decompo-sition of the resin matrix at90 C for5h with a2g/100mL feedstock ratio is shown in Figure2.The rate of decomposition increased rapidly with the increase in concentration of the decomposition solution.The resin was entirely decomposed in8M decomposition solutions kept for5h.This could be attributed to the stronger causticity of the decomposition solution,which can open the thermosetting network of the epoxy resin quickly with the increase in concentration of decomposition solution.FEEDSTOCK RATIOThe effect of feedstock ratio on the decomposition rate of the resin matrix in composites under a set of experimental parameters (T ¼90 C,C ¼8M,t ¼5h)is presented in Figure 3.The decomposition rate of the resin decreased slowly as the feedstock ratio increased.It could be seen that the temperature and concentration of the decomposition solution was much more effective than the feedstock ratio in increasing the decomposition rate of the resin matrix.The feedstock ratio can be increased in theory to improve reclaim efficiency.However,because the increase of feedstock ratio results in a decrease in acid solution volume,the composites cannot be soaked and decomposed.Glass Fiber CharacterizationFIBER PROPERTIESTable 1shows the orthogonal experimental results of the decomposition of epoxy composites in which the loss of fiber strength can be calculated by dividing the amount of decrease of single fiber tensile strength of the recovered fiber by the tensile strength of a020406080100D e c o m p o s i t i o n r a t e (%)Reaction temperature (°C)Figure 1.Resin decompositionrate vs reaction temperature.0246810020406080100D e c o m p o s i t i o n r a t e (%)Concentration (M)Figure 2.Resin decomposition rate vs decomposition solution concentration.1528L.Y UYAN ET AL .single fiber of the original fiber bundle.The sample under decomposition conditions of T ¼70 C,t ¼250h,C ¼6M,and ¼6g/100mL has a minimum fiber tensile strength loss of 3.5%,while runs at 80 C with 4M concentration for 240h produced a maximum strength reduction of 15.1%.These results are better than the results of the previous study of the effects of recycling process on the strength of the glass fibers.Pickering et al.[10]measured a 50%reduction in the strength of glass fibers after heating at 450 C in a fluidized-bed process.OBSERVATION OF RECOVERED FIBERSThe SEM was used to evaluate the fiber surfaces and the residual resin present on the composites.Two samples were studied based on their varying extent reaction.The first one was processed at 60 C for 5h with 8M concentration and 2g/100mL feedstock rge flakes of residual resin appeared among the fibers and some fibers were surrounded by a sheath of resin (Figure 4).The residual resin along the fibers could not be separated from the fiber surface.The sample under decomposition conditions of T ¼70 C,t ¼5h,C ¼8M,and ¼2g/100mL was evaluated with SEM (Figure 5).The resin can be removed from the composites in large chunks and some of the fiber bundles wereseparate.708090100D e c o m p o s i t i o n r a t e (%)Feedstock ratio (g/100ml)Figure 3.Resin decomposition rate vs feedstock ratio.Table 1.Orthogonal experiment of decomposition of epoxy composites.LevelResults No.Temperature ( C)Concentration (M)Feedstock ratio (g/100mL)Decomposition time (h)Strength loss (%)1908612 5.2290642210.3390428214.7480841710.4580629511.76804624015.177082459.187066250 3.59908671011.3Method of Recovering Fibrous Fraction of Glass/Epoxy Composites1529An optical graph of recovered glass fibers is given in Figure 6.The fibers are free from residues and arranged in an orderly manner.A careful recycling process could eliminate fiber damage and have a highly regular orientation.Figures 7and 8show the electron probe microscopic analysis of virgin fibers and recycled glass fibers after washing and drying separately.When compared with virgin fibers,the surface of the recycled fibers was smooth and showed little contamination.The glass fibers were recovered undamaged and were reusable.Reuse of Recovered FibersTo obtain a high performance of recovered fiber-reinforced composites,the selection of the decomposition process is necessary.Through orthogonal experimentation,the recycling conditions for retaining the fiber strength were T ¼70 C,C ¼8M,and ¼6g/100mL [11].But this process needed longer immersion time.In this study,the (a)(b)Figure 4.SEM micrographs of composites under T ¼60 C,t ¼5h,C ¼8M,and ¼2g/100mL (1000Â):(a)cross section and (b)side.(a) (b)Figure 5.SEM micrographs of composites under T ¼70 C,t ¼5h,C ¼8M,and ¼2g/100mL (1000Â):(a)cross section and (b)side.1530L.Y UYAN ET AL .recovered fibers available from all of the recycling processes (Table 1)were employed as reinforcement to prepare new composites.Table 2presents the ILSS of new composites.The composites were prepared by using recovered glass fibers as reinforcement or virgin fibers as reference.The recycled unidirectional continuous fiber-reinforced composites showed a reduction of 4.7%in ILSS and recycled short fiber-reinforced composites produced a strength reduction of only 2.5%.Knowing the wettability of fibers is useful to predict their adhesion potential to the matrices.The contact angle of the fiber can characterize its wettability by the contacting liquid in a given ing glycol as a contacting liquid,the contact angle of virgin fibers was 59.4 and that of recycled fibers was 56.1 .After oxidation of nitric acid in the recycling process,the contact angles of the fibers decrease and their adhesion to the matrices improves.It is likely that acid digestion increases surface roughness ofthe Figure 6.Optical graph of the recovered glassfibers.Figure 7.Electron probe micrographs of virgin glass fibers.Method of Recovering Fibrous Fraction of Glass/Epoxy Composites 1531fiber and improves interfacial bond strength,thus annulling the negative effects of loss in tensile strength of the single fiber.CONCLUSIONSRecycling of thermoset epoxy composite containing glass fibers was studied and the following results were obtained.1.Concentrated sulfuric acid was not effective for decomposing glass/epoxy composites.2.When the reaction temperature was 90 C,the concentration of the acid solution was 8M,the feedstock ratio was 2g/100mL,and the reaction time was 5h,the decomposition rate of epoxy resin reached 99%.3.The temperature and concentration of the decomposition solution were much more effective than the feedstock ratio in increasing the decomposition rate of the resin matrix.4.Glass fibers from reinforced epoxy composites can be recovered undamaged without any residue left.The recovered glass fibers have a tensile strength reduction of3.5–15.1%under a set of decomposition conditions considered in this study.5.Interlaminar shear strength (ILSS)of the recovered short fiber-reinforced composites produced a strength reduction of only 2.5%compared with pristinecomposites.Figure 8.Electron probe micrographs of recycled glass fibers.Table 2.Interlaminar shear strength of the new composites.Fiber typesILSS (MPa)Strength loss (%)Virgin fibers/epoxy composites Recycled fibers/epoxy composites Unidirectional continuous glass fibers58.5355.76 4.74mm short glass fibers 21.5020.96 2.51532L.Y UYAN ET AL .Method of Recovering Fibrous Fraction of Glass/Epoxy Composites1533ACKNOWLEDGMENTSThe authors gratefully acknowledge the financial support of the Study Abroad Returnee Foundation of Hei Longjiang Province under Project No.LC03C09.REFERENCES1.Ralph,J.,Graham, B.and David,W.(1991).Recycling SMC Scrap as a Reinforcement,PlasticsEngineering,47(5):13–14.2.Pannkoke,K.,Oethe,M.and Busse,J.(1998).Efficient Prepreg Recycling at Low Temperatures,Cryogenics(UK),38(1):155–159.3.Kouparitsas,C.E.,Kartalis,C.N.,Varelidis,P.C.,Tsenoglou,C.J.and Papaspyrides,C.D.(2002).Recycling of the Fibrous Fraction of Reinforced Thermoset Composites,Polymer Composites,23(4): 682–689.4.Masatashi,I.(1998).Recycling of Epoxy Resin Compounds for Moulding Electronic Components,Journalof Materials Science,33(1):45–53.5.Winter,H.,Mostert,H.A.M.,Smeets,P.J.H.M.and Paas,G.(1995).Recycling of Sheet-moldingCompounds by Chemical Routes,J.Appl.Polym.Sci.,57(11):1409–1417.hikoshi,K.,Komatsu,N.and Sugino,M.(1995).Recycling of CFRP by Pyrolysis Method,J.Soc.Mater.Sci.,Jpn.,44(4):428–431.7.Torres,A.,De Marco,I.,Caballero,B.M.,Laresgoiti,M.F.,Cabrero,M.A.and Chomon,M.J.(2001).GC-MS Analysis of the Liquid Products Obtained in the Pyrolysis of Fibre-glass Polyester Sheet Moulding Compound,Journal of Analytical and Applied Pyrolysis,58–59:189–203.8.Jutte,R.B.and Graham,W.D.(1991).Recycling SMC Scrap as a Reinforcement,Plastics Engineering,47(5):13–14.9.Liu,Y.Y.,Meng,L.H.,Huang,Y.D.and Du,J.J.(2004).Recycling of Carbon/Epoxy Composites,Journalof Applied Polymer Science,95:1912–1915.10.Pickering,S.J.,Kelly,R.M.,Kennerley,J.R.,Rudd,C.D.and Fenwick,N.J.(2000).Fluidized-bed Processfor the Recovery of Glass Fibres from Scrap Thermoset Composites,Composites Science and Technology, 60(4):509–523.11.Liu,Y.Y.,Meng,L.H.,Huang,Y.D.and Liu,L.X.(2005).Study on Recycling of Glass Fiber/EpoxyComposites through Solvent Method,Journal of Harbin Institute of Technology,37(4):470–472.。