新高中数学《集合》专项测试 (155)

合集下载

高中集合测试题及答案

高中集合测试题及答案

高中集合测试题及答案一、选择题(每题2分,共20分)1. 集合A={1,2,3},B={2,3,4},求A∩B。

A. {1}B. {2,3}C. {4}D. {1,2,3,4}2. 集合A={x|x<5},B={x|x>3},求A∪B。

A. {x|x<5}B. {x|x>3}C. {x|x≤3}D. R(实数集)3. 集合A={1,2,3},求A的补集(设全集为R)。

A. {4,5,6}B. {-1,0}C. ∅(空集)D. R-{1,2,3}4. 若A={x|0<x<10},B={x|x>5},判断A⊆B是否正确。

A. 正确B. 错误5. 集合A={x|x^2-5x+6=0},求A中的元素。

A. {2,3}B. {1,6}C. {-1,-6}D. {2}二、填空题(每题2分,共10分)6. 若A={1,2,3},B={2,3,4},则A∪B=______。

7. 集合A={x|-3≤x≤3},B={x|x>0},则A∩B=______。

8. 已知集合A={x|x^2-4=0},求A的补集(设全集为R)。

9. 若A={x|-1<x<2},B={x|x≥1},则A∪B=______。

10. 集合A={x|0<x<5},B={x|x>3},判断A⊆B是否正确,答案为______。

三、解答题(每题10分,共20分)11. 已知A={x|-2≤x≤5},B={x|x>a},若A∩B≠∅,求a的取值范围。

12. 已知集合A={x|x^2-4=0},B={x|x^2-4x+3=0},求A∪B,A∩B,以及A-B。

四、证明题(每题15分,共30分)13. 证明:若A⊆B且B⊆C,则A⊆C。

14. 证明:若A∩B=A,则A⊆B。

五、结束语本测试题涵盖了高中集合的基本概念、运算和证明,旨在帮助学生巩固集合的知识点,提高解题能力。

希望同学们通过练习,能够更好地理解和掌握集合的相关概念。

高中数学集合测试题(卷)(含答案解析和解析)

高中数学集合测试题(卷)(含答案解析和解析)

集合测试题请认真审题,仔细作答,发挥出自己的真实水平!一、单项选择题 : 1.设集合{}()(){}5,730S x x T x x x =<=+-<,那么S T ⋂=〔〕A .{75}xx -<<-∣ B .{35}xx <<∣ C .{53}xx -<<∣D .{|75}x x -<<【答案】 C 【解析】考点:其他不等式的解法;交集及其运算.分析:由绝对值的意义解出集合S ,再解出集合T ,求交集即可. 解答:由{|55}S x x =-<<,{|73}T x x =-<<故{|53}S T x x =-<<,应选C 2.集合{}}{Z n n x x N x x M ∈+==<-=,12,042,那么集合N M ⋂等于〔〕A .{-1,1}B .{-1,0,1}C .{0,1}D .{-1,0}【答案】A3.假设集合{}{}260,10P x x x T x mx =+-==+=,且T P ⊆,那么实数m 的可取值组成的集合是〔〕A .11,32⎧⎫-⎨⎬⎩⎭B .13⎧⎫⎨⎬⎩⎭C .11,,032⎧⎫-⎨⎬⎩⎭ D .12⎧⎫-⎨⎬⎩⎭C4.假设{1,2}⊆A ⊆{1,2,3,4,5}那么满足条件的集合A 的个数是〔〕 A .6 B .7 C .8 D .9 【答案】 C5.设P={x|x ≤8},. A .a ⊆P B .a ∉P C .{a}∈P D .{a}⊂P 【答案】 D 6.集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A ==∈∈-∈,那么B 中所含元素的个数为〔〕A .3B .6C . 8D .10【答案】D【解析】考点:元素与集合关系的判断. 专题:计算题.分析:由题意,根据集合B 中的元素属性对x ,y 进行赋值得出B 中所有元素,即可得出B 中所含有的元素个数,得出正确选项 解答:解:由题意,x=5时,y=1,2,3,4, x=4时,y=1,2,3, x=3时,y=1,2,综上知,B中的元素个数为10个应选D点评:此题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数7.集合A={x|x2-x-2<0},B={x|-1<x<1},那么〔〕A.A B B.B A C.A=B D.A∩B=【答案】B【解析】考点:集合的包含关系判断及应用.专题:计算题.分析:先求出集合A,然后根据集合之间的关系可判断解答:解:由题意可得,A={x|-1<x<2} ∵B={x|-1<x<1}在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=3/2∴B⊊A应选B点评:此题主要考查了集合之间关系的判断,属于根底试题8.不等式﹣x2﹣5x+6≤0的解集为〔〕A.{x|x≥6或x≤﹣1} B.{x|﹣1≤x≤6}C.{x|﹣6≤x≤1}D.{x|x≤﹣6或x≥1}D【解析】考点:一元二次不等式的解法。

新高中数学《集合》专项测试 (1013)

新高中数学《集合》专项测试 (1013)

40.集合 A = x Z x 3 的非空真子集有
个.
29.已知集合 A = {(x, y) | y = −x2 − 2x}, B = {(x, y) | y = x + m}.若A B = ,则实数
m 的取值范围为
30.设集合
A
=
x
1 2
2x
2
,
B
=
x
x
+ x
1
0 , 则A
B
=
三、解答题
31.已知集合 A = {x | 3 x 7},B = {x | 2 x 10},C = {x | x a};求:
(A) {1,2,3} (B) {2} (C) {1,3,4} (D) {4}(2007)
14 . 已 知 全 集 U = R , 若 集 合 A = x x2 − x − 2 0 , x R ,
B = x | x +1| 2 , x R ,则 (CU A) B =

15.集合1,a + b,a =
① ;②
18.某班共 50 人,其中 25 人喜爱篮球运动,20 人喜爱兵乓球运动,18 人对这两项运动
都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_
.
19.已知 A={x|1≤x≤2},B={x|x2+2x+a≥0},A,B 的交集不是空集,则实数 a 的取值 范围是 ▲ .
20.已知集合 M = 0,1,2, N = x x = 2a, a M ,则集合 M N =
2.
(A)1, 4 (B)1,5 (C)2, 4 (D)2,5 (2010 全国卷 2 文数)
3.集合 A= {x∣ −1 x 2 },B={x∣x<1},则 A (ðR B) =

新高中数学《集合》专项测试 (220)

新高中数学《集合》专项测试 (220)

高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设集合P={1,2,3,4},Q={R x x x ∈≤,2},则P ∩Q 等于 ( )(A){1,2} (B) {3,4} (C) {1} (D) {-2,-1,0,1,2}(2004江苏)2.已知全集U =R ,集合2{|20}A x x x =−>,则U A ð等于A . {|02}x x 剟B {|02}x x <<C . {|02}x x x <>或D {|02}x x x或剟(2009福建理)3.若集合{}1213A x x =−≤+≤,20,x B x x −⎧⎫=≤⎨⎬⎩⎭则A B ⋂=( ) A.{}10x x −≤< B.{}01x x <≤ C. {}02x x ≤≤ D. {}01x x ≤≤(2011江西理2)4.设集合{}1,2,3,4,5,6,A ={}4,5,6,7,B =则满足S A ⊆且SB φ≠的集合S 的个数为(A )57 (B )56 (C )49 (D )8(2011安徽理)5.若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A (2006江苏)(7)二、填空题6.已知集合{}{}1,0,1,02A B x x =−=<<,则AB = ▲ .7.设集合A={m|关于x 的方程x 2-2x+m=0有实根,m ∈R}, B={m|关于x 的二次方程mx 2-x+1=0无实根,m ∈R},则A ∪B= .8.若log log (0,0,1,1,),x y y x x y x y x y =>>≠≠≠则xy = .9.已知全集R I =,集合}2{<=x x M ,}{a x x P >=并且I M C P Þ,那么a 的取值集合是 。

新高中数学《集合》专项测试 (1000)

新高中数学《集合》专项测试 (1000)

高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.已知全集U =R ,集合2{|20}A x x x =−>,则U A ð等于A . {|02}x x 剟B {|02}x x <<C . {|02}x x x <>或D {|02}x x x或剟(2009福建理)2.已知集合2{|1},{}P x x M a =≤=,若P M P =,则a 的取值范围是( )(A )(,1]−∞− (B )[1,)+∞ (C )[1,1]− (D )(,1][1,)−∞−+∞(2011北京理1)二、填空题3.设集合}3,1{=A ,集合}5,4,2,1{=B ,则集合=B A4.设集合|0{8}x x N U =∈<≤,{1,2,4,5}S =,{3,5,7}T =,则=)(T C S U {1,2,4}5.设全集U={}22,3,23a a +−,A={}2,b ,U A ð={}5,则a = ,b = 。

6.已知集体A={x|x ≤1},B={x |≥a},且A ∪B=R ,则实数a 的取值范围是__________________. .7.设A 是整数集的一个非空子集,对于k A ∈,如果1k A −∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 个.8.集合{}a A ,2,0=,{}2,1aB =,若{}16,4,2,1,0=B A ,则a 的值为 .9.若集合}012|{2=++=x ax x A 中只有一个元素,则a 的值是________;10. 已知集合{}(1)0P x x x =−≥,Q ={})1ln(|−=x y x ,则P Q = .11.设A 是整数集的一个非空子集,对于k A ∈,如果1k A −∉且1k A +∉,那么k 是A 的一个“孤立元”,给定{1,2,3,4,5,6,7,8,}S =,由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有 ▲ 个.12.已知A ={x |1≤x ≤2},B ={x |x 2+2x +a ≥0},A ,B 的交集不是空集,则实数a 的取值范围是 ▲ .13.已知集合{}{}20,3,21,3,A m B m =−=,若B A ⊆,则实数m =***;14.若集合A ={x ||x |≤1,x ∈R},B ={y |y =x 2,x ∈R},则A ∩B =________.15.已知集合{124}A =,,,{246}B =,,,则=⋂B A ▲ . 16.已知集合{}{}(,)2,(,)4M x y x y N x y x y =+==−=,那么集合=I M N {}(3,1)−17.若集合}012|{2=++=x ax x A 中只有一个元素,则a 的值是______ __18.设集合21{|2},{1}2A x x B x x =−<<=≤,则A B =_______________.19.设集合s={0,1,2,3,4},T={2,3,5,6},则S ∩T= {2,3} .(5分)20.已知集合A={x ∈R |3x+2>0﹜,B={x ∈ R |(x+1)(x-3)>0﹜则A∩B= ▲ .21. 已知集合(){}{}b a B a A ,,3log ,52=+=,若{}2=⋂B A ,则=⋃B A ▲ .22.投掷一枚正方体骰子(六个面上分别标有1,2,3,4,5,6),向上的面上的数字记为a ,又 ()n A 表示集合的元素个数,{}2||3|1,A x x ax x R =++=∈,则()4n A =的概率为23. 已知a 是实数,若集合{x |1=ax }是任何集合的子集,则a 的值是 ▲ .24. 集合}2,1{=A ,}3,2{=B ,则=B A ▲ .25.已知集合}{12A x x =−<<,集合}{31B x x =−<≤,则B A = {|11}x x −<≤ .26.设I ={1,2,3,4},A 与B 是I 的子集,若A ∩B ={1,2},则称(A ,B )为一个“理想配集”,规定(A ,B )和(B ,A )是两个不同的“理想配集”,那么符合此条件的“理想配集”的个数是________.27.已知集合{}{}1,3,1,2,A B m ==,若A B ⊆,则实数m = 3 .28.若集合U R =,{}20A x x =+>,{}1B x x =…,则U A B С= ;(2011年3月苏、锡、常、镇四市高三数学教学情况调查一) (2,1)−29.已知集合M ={x |x <3},N ={x |log 2x >1},则M ∩N =__________30. 设集合A ={x |-1≤x ≤2},B ={x |0≤x ≤4},则A ∪B = ▲ .三、解答题31.已知集合2{|60},{|09}A x x x B x x m =−−<=<−<(1)若AB B =,求实数m 的取值范围; (2)若A B =∅,求实数m 的取值范围。

高中数学 集合专项训练含答案

高中数学 集合专项训练含答案

高中数学 集合专项训练含答案一、单选题1.已知集合{}1,4,M x x =,{}21,N x =,若N M ⊆,则实数x 组成的集合为( )A .{}0B .{}2,2-C .2,0,2D .2,0,1,22.设全集{}1,2,3,4U =,{}1,3A =,{}4B =,则()U A B =( ) A .{}2,4B .{}4C .∅D .{}1,3,43.已知集合U =R ,{}2230A x x x =--<,则UA( )A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >4.已知集合{}22A x x =-≥,集合{2,3,4,5}B =,那么集合A B =( ) A .[2,5] B .(3,5] C .{4,5}D .{2,3,4,5}5.已知集合*{|15,N }A x x x =-<<∈,{|03}B x x =≤≤,则A B =( ) A .[0,3]B .[1,5)-C .{1,2,3,4}D .{}1,2,36.若集合{A y y ==,{}3log 2B x x =≤,则A B =( ) A .(]0,9B .[)4,9C .[]4,6D .[]0,97.{}1,2,3A =,{}28xB x =<,则A B =( )A .∅B .{}1C .{}1,2D .{}1,2,38.若全集为R ,集合{2x A x=≤∣,{ln(2)0}B x x =-<∣,则()A B =R ( ) A .3,2⎛⎤-∞ ⎥⎝⎦B .30,2⎛⎤⎥⎝⎦C .3,22⎛⎫ ⎪⎝⎭D .()2,+∞9.已知集合{}28xA x =≤,{}16B x x =-≤≤,则A B ⋃=( )A .(,6]-∞B .[1,6]-C .[1,3]-D .(0,6]10.集合{}2{}|5,8,3100x x A B x =--≤=,则A B ⋂=R( )A .{}5B .{}8C .{}2,5,8-D .{}5- 11.已知集合{}2{63},3100S x x T x x x =∈-<<=--<Z∣∣,则S T ( ) A .{23}x x -<<∣ B .{1,0,1,2}- C .{52}xx -<<∣ D .{2,1,0,1,2}--12.已知集合{}24A x x =≤,{}2,B y y x x ==∈R ,则A B =( )A .[0,2]B .[0,4]C .[2,2]-D .∅13.已知集合{}{}|2|21A x x B x x =≥-=-≤≤,,则下列关系正确的是( ) A .A B =B .A B ⊆C .B A ⊆D .A B =∅14.设全集2,1,0,1,2U ,{}2,1,2A =--,{}2,1,0,1B =--,则()U A B =( )A .{}2,1-B .{}0,1C .{}1,0,1-D .{}2,1,0,1--15.已知集合{}2450A x x x =--≤,{}5B y y =>,则A B ⋃=( )A .∅B .[)1,-+∞C .[)1,5-D .()5,+∞二、填空题16.集合{}14A x x =-<≤,{}1,1,3B =-,则A B 等于_________.17.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________.18.已知A ={x ∈R|2a ≤x ≤a +3},B ={x ∈R|x <-1或x >4},若A B ⊆,则实数a 的取值范围是________.19.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)20.已知集合{}2A x x =<,{}2,0,1,2B =-,则A B =_______. 21.满足{}1,2A ⊆的集合A 的个数是______________22.设集合(),5P =-∞,[),Q m =+∞,若P Q =∅,则实数m 的取值范围是______. 23.若实数2a =,集合{}|13B x x =-<<,则a 与B 的关系是______.24.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.25.已知集合2{|2}30A x x x =--<,{|0}B x x a =-<,且B A ⊆,则a 的取值范围为________.三、解答题26.已知全集U =R ,{}34A x x =->,108x B xx +⎧⎫=>⎨⎬-⎩⎭.求集合A B ,UA ,()UA B .27.对于任意的*n N ∈,记集合{1,2,3,,}n E n =,,n n n P x x a E b E b ⎧⎫==∈∈⎨⎬⎩⎭,若集合A 满足下列条件:①n A P ⊆;②12,x x A ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,则称A 具有性质Ω.如当2n =时,2{1,2}E =,222P ⎧=⎨⎩,112,x x P ∀∈,且12x x ≠,不存在*N k ∈,使212x x k +=,所以2P 具有性质Ω.(1)写出集合3P ,4P 中的元素个数,并判断3P 是否具有性质Ω. (2)证明:不存在A 、B 具有性质Ω,且A B =∅,使15E A B =⋃. (3)若存在A 、B 具有性质Ω,且A B =∅,使n P A B =⋃,求n 的最大值.28.如图所示阴影部分角的集合.29.著名的“康托尔三分集”是由德国数学家康托尔构造的,是人类理性思维的产物,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭记为第一次操作;再将剩下的两个闭区间10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷.每次操作后剩下的闭区间构成的集合即是“康托尔三分集”.例如第一次操作后的“康托尔三分集”为120,,,133⎧⎫⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭.(1)求第二次操作后的“康托尔三分集”;(2)定义[],s t 的区间长度为t s -,记第n 次操作后剩余的各区间长度和为()*n a n N ∈,求4a ; (3)记n 次操作后“康托尔三分集”的区间长度总和为n T ,若使n T 不大于原来的110,求n 的最小值.(参考数据:lg 20.3010=,lg30.4771=)30.设R a ∈,关于x 的二次不等式2220ax x a -->的解集为A ,集合{}12B x x =<<,满足A B ⋂≠∅,求实数a 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】若N M ⊆,所以2x x =或24x =,解出x 的值,将x 的值代入集合,检验集合的元素满足互异性. 【详解】因为N M ⊆,所以2x x =,解得0x =,1x =或24x =,解得2x =±, 当0x =时,{}1,4,0M =,{}1,0N =,N M ⊆,满足题意. 当1x =时,{}1,4,1M =,不满足集合的互异性. 当2x =时,{}1,4,2M =,1,4N ,若N M ⊆,满足题意. 当2x =-时,{}1,4,2M =-,1,4N ,若N M ⊆,满足题意.故选:C. 2.A 【解析】 【分析】根据补集的概念求出UA ,再根据并集运算即可求出结果.【详解】 由题意可知{}2,4UA =,又{}4B =,所以(){}2,4U A B =.故选:A. 3.C 【解析】 【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可.因为集合{}2230{|13}A x x x x x =--<=-<<,所以UA{1x x ≤-∣或3}x ≥.故选:C. 4.C【解析】 【分析】解出不等式22x -≥,然后根据集合的交集运算可得答案. 【详解】因为{}{}224A x x x x =-≥=≥,{2,3,4,5}B =, 所以{4,5}A B =, 故选:C 5.D 【解析】 【分析】根据集合的交集的概念可求出结果. 【详解】 {1,2,3,4}A =, {1,2,3}A B ⋂=.故选:D 6.A 【解析】 【分析】先解出集合A 、B,再求A B . 【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A . 7.C 【解析】 【分析】先求出集合B ,再按照交集的定义计算即可. 【详解】由题意知:{}3B x x =<,故A B ={}1,2. 故选:C. 8.C 【解析】先求出集合A ,B ,再根据补集交集的定义即可求出. 【详解】 因为32A x x ⎧⎫=≤⎨⎬⎩⎭∣,{}12B x x =<<,所以()322R A B xx ⎧⎫⋂=<<⎨⎬⎩⎭∣. 故选:C . 9.A 【解析】 【分析】先解出集合A ,再计算A B 即可. 【详解】{}{}283x A x x x =≤=≤,故A B ⋃=(,6]-∞.故选:A. 10.B 【解析】 【分析】先求出集合B ,进而求出集合B 的补集,根据集合的交集运算,即可求出A B ⋂R.【详解】因为{}()(){}{}2310052025x x x x x B x x x ===--≤-+≤-≤≤,所以{5B x x =>R 或}2x <-, 所以{}8A B =R故选:B. 11.B 【解析】 【分析】求解一元二次不等式解得集合T ,再求S T 即可. 【详解】因为{63}S x x =∈-<<Z∣{}5,4,3,2,1,0,1,2=-----, {}23100T x x x =--<∣()(){}|520{|25}x x x x x =-+<=-<<,故S T {}1,0,1,2=-. 故选:B. 12.A 【解析】 【分析】解不等式得集合A ,求二次函数值域得集合B ,然后由集合的交集运算可得. 【详解】由24x ≤解得22x -≤≤,即{}22A x x =-≤≤,易知20y x =≥,即{|0}B y y =≥ 则{|02}A B x x =≤≤. 故选:A 13.C 【解析】 【分析】由子集的定义即可求解. 【详解】解:因为集合{}{}|2|21A x x B x x =≥-=-≤≤,, 所以根据子集的定义可知B A ⊆, 故选:C. 14.B 【解析】 【分析】 先求UA ,再求()UA B ⋂即可. 【详解】UA ={0,1},()U A B ={0,1}.故选:B. 15.B 【解析】 【分析】先解一元二次不等式,在根据并集定义计算. 【详解】∵{}{}[]2450151,5A x x x x x =--≤=-≤≤=-,{}()55,B y y ∞=>=+,∴[)1,A B =-+∞. 故选:B.二、填空题16.{}1,3【解析】 【分析】由交集定义直接得到结果. 【详解】由交集定义知:{}1,3A B =. 故答案为:{}1,317.1,0,1,2【解析】 【分析】求出集合A ,利用并集的定义可求得结果. 【详解】{}{}{}2Z,4Z,221,0,1A x x x x x x =∈<=∈-<<=-,因此,{}1,0,1,2A B ⋃=-.故答案为:1,0,1,2.18.a <-4或a >2【解析】 【分析】按集合A 为空集和不是空集两种情况去讨论即可求得实数a 的取值范围. 【详解】①当a >3即2a >a +3时,A =∅,满足A B ⊆;. ②当a ≤3即2a ≤a +3时,若A B ⊆,则有233124a a a a ≤+⎧⎨+-⎩或,解得a <-4或2<a ≤3综上,实数a 的取值范围是a <-4或a >2. 故答案为:a <-4或a >219.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃20.{}0,1【解析】 【分析】先求出集合A ,然后根据交集的定义求得答案. 【详解】由题意,{}22A x x =-<<,所以{}0,1A B =. 故答案为:{}0,1. 21.4 【解析】 【分析】利用集合的子集个数公式求解即可. 【详解】 ∵{}1,2A ⊆,∴集合A 是集合{}1,2的子集, ∴集合A 的个数为22=4, 故答案为:4.22.5m ≥【解析】 【分析】由交集和空集的定义解之即可. 【详解】(),5P =-∞,[),Q m =+∞ 由P Q =∅可知,5m ≥ 故答案为:5m ≥23.a B ∈【解析】 【分析】根据元素与集合关系即可判断. 【详解】因为2a =,满足123-<<,所以a B ∈. 故答案为:a B ∈.24.13,2⎡⎫--⎪⎢⎣⎭【解析】 【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围. 【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩, 解得132a -<-.a ∴的取值范围为[3-,1)2-.故答案为:[3-,1)2-.25.1a ≤【解析】 【分析】解一元二次不等式得集合A ,化简集合B ,再借助集合的包含关系即可求解作答.【详解】解2320x x --<,即2320x x -+>,解得1x <或2x >,则{|1A x x =<或2}x >,{|}B x x a =<,而B A ⊆,于是得1a ≤,所以a 的取值范围是:1a ≤. 故答案为:1a ≤三、解答题26.{}8A B x x ⋂=>,{}7UA x x =≤,(){}17UA B x x ⋃=-≤≤【解析】 【分析】分别求出集合,A B ,再根据交集、并集和补集的定义即可得出答案. 【详解】解:{}{}347A x x x x =->=>,()(){}{1018088x B x x x x x x x ⎧⎫+=>=+->=>⎨⎬-⎩⎭或}1x <-, 所以{}8A B x x ⋂=>,{}7UA x x =≤,{7A B x x ⋃=>或}1x <-,所以(){}17UA B x x ⋃=-≤≤.27.(1)3P ,4P 中的元素个数分别为9,14,3P 不具有性质Ω. (2)证明见解析 (3)14 【解析】 【分析】(1)由已知条件能求出集合3P ,4P 中的元素个数,并判断出3P 不具有性质Ω. (2)假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15},从而1AB ∈,由此推导出与A 具有性质Ω矛盾.从而假设不成立,即不存在A ,B具有性质Ω,且A B =∅,使15E A B =.(3)当15n 时,不存在A ,B 具有性质Ω,且A B =∅,使n P A B =.14n =,根据1b =、4b =、9b =分类讨论,能求出n 的最大值为14.(1)解: 对于任意的*n N ∈,记集合{1n E =,2,3,⋯,}n ,,n n n P x x a E b E ⎧⎫=∈∈⎨⎬⎩⎭.当3n =时{}31,2,3E =,3P ⎧=⎨⎩;当4n =时{}41,2,3,4E =,413,22P ⎧⎫=⎨⎬⎩⎭,∴集合3P ,4P 中的元素个数分别为9,14,集合A 满足下列条件:①n A P ⊆;②1x ∀,2x A ∈,且12x x ≠,不存在*k N ∈,使212x x k +=,则称A 具有性质Ω,因为31P ∈,33P ∈,2132+=,*2∈N ,不符合题意,3P ∴不具有性质Ω.(2)证明:假设存在A ,B 具有性质Ω,且A B =∅,使15E A B =.其中15{1E =,2,3,⋯,15}.因为151E ∈,所以1A B ∈,不妨设1A ∈.因为2132+=,所以3A ∉,3B ∈.同理6A ∈,10B ∈,15A ∈.因为21154+=,这与A 具有性质Ω矛盾. 所以假设不成立,即不存在A ,B 具有性质Ω,且A B =∅,使15E A B =. (3)解:因为当15n 时,15n E P ⊆,由(2)知,不存在A ,B 具有性质Ω,且A B =∅,使n P AB =.若14n =,当1b =时,1414x x a E E ⎧⎫∈=⎨⎬⎩⎭, 取1{1A =,2,4,6,9,11,13},1{3B =,5,7,8,10,12,14}, 则1A ,1B 具有性质Ω,且11A B =∅,使1411E A B =.当4b =时,集合14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合为13513{,,,,}2222⋯, 令215911{,,,}2222A =,23713{,,}222B =, 则2A ,2B 具有性质Ω,且22A B =∅,使2213513{,,,,}2222A B ⋯=.当9b =时,集14x x a E ⎧⎫=∈⎨⎬⎩⎭中除整数外,其余的数组成集合12457810111314{,,,,,,,,,}3333333333, 令31451013{,,,,}33333A =,32781114{,,,,}33333B =. 则3A ,3B 具有性质Ω,且33A B =∅,使3312457*********{,,,,,,,,,}3333333333A B =.集合1414,,1,4,9C x x a E b E b ⎧⎫==∈∈≠⎨⎬⎩⎭中的数均为无理数, 它与14P 中的任何其他数之和都不是整数, 因此,令123A A A A C =,123B B B B =,则AB =∅,且14P AB =.综上,所求n 的最大值为14.28.{}45?18045?180,n n n Z αα-+≤≤+∈ 【解析】 【分析】观察图形, 按图索骥即可. 【详解】}{1|45?36045?360,S k k k Z αα︒︒︒︒=-+≤≤+∈, }{2|135?360225?360,S k k k Z αα︒︒︒︒=+≤≤+∈,{}12|452180452180S S S k k αα︒︒︒︒=+=-+≤≤+()(){}|45211804521180k k αα︒︒︒︒-++≤≤++()k ∈Z{}()|4518045180n n n Z αα︒︒︒︒=-+≤≤+∈ , 故答案为:{}()|4518045180n n n Z αα︒︒︒︒-+≤≤+∈.29.(1)1212780,,,,,,,1993399⎧⎫⎡⎤⎡⎤⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎩⎭(2)16()81t s - (3)6 【解析】 【分析】(1)根据“康托尔三分集”的定义,即可求得第二次操作后的“康托尔三分集”; (2)根据“康托尔三分集”的定义,分别求得前几次的剩余区间长度的和,求得其通项公式,即可求解;(3)由(2)可得第n 次操作剩余区间的长度和为23nn n b =,结合题意,得到21()310n ≤,利用对数的运算公式,即可求解. (1)解:根据“康托尔三分集”的定义可得:第一次操作后的“康托尔三分集”为120,,,133⎧⎫⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭,第二次操作后的“康托尔三分集”为1212780,,,,,,,1993399⎧⎫⎡⎤⎡⎤⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎩⎭;(2)解:将定义[],s t 的区间长度为t s -,根据“康托尔三分集”的定义可得: 每次去掉的区间长后组成的数为以1()3t s -为首项,13为公比的等比数列,第1次操作去掉的区间长为1()3t s -,剩余区间的长度和为2()3t s -,第2次操作去掉两个区间长为1()9t s -的区间,剩余区间的长度和为4()9t s -,第3次操作去掉四个区间长为的区间1()27t s -,剩余区间的长度和为8()27t s -, 第4次操作去掉8个区间长为1()81t s -,剩余区间的长度和为16()81t s -,第n 次操作去掉12n -个区间长为1()3n t s -,剩余区间的长度和为2()3nn t s -,所以第4次操作后剩余的各区间长度和为416()81t s a -=; (3)解:设定义区间为[]0,1,则区间长度为1,由(2)可得第n 次操作剩余区间的长度和为23nn n b =,要使得“康托三分集”的各区间的长度之和不大于110, 则满足21()310n ≤,即21lg lg 1031n ≤=-,即11 5.679lg3lg 20.47710.3010n ≥=≈--, 因为n 为整数,所以n 的最小值为6.30.()(),22,∞∞--⋃+【解析】 【分析】由题意0a ≠,求出方程2220ax x a --=的两根,讨论a 的正负,确定二次不等式的解集A 的形式,然后结合数轴列出不等式求解即可得答案. 【详解】解:由题意0a ≠,令2220ax x a --=,解得两根为1211x x aa ==可知120,0x x <>,当0a >时,解集{}{}12||A x x x x x x =<>,因为120,1x x <>,所以A B ⋂≠∅的充要条件是22x <,即12a +<,解得2a >;当0a <时,解集{}12|A x x x x =<<,因为120,2x x <<,所以A B ⋂≠∅的充要条件是21>x ,即11a+,解得2a <-;综上,实数a 的取值范围为()(),22,∞∞--⋃+.。

新高中数学《集合》专项测试 (123)

新高中数学《集合》专项测试 (123)

A.{-2,2} 湖北文)
B.{-2,2,-4,4} C.{-2,0,2}
D.{-2,2,0,-4,4}(2006
I 7.设集合 A={4,5,7,9},B={3,4,7,8,9},全集 U=A B,则集合 u (A B)
中的元素共有(A)
(A)3 个
(B)4 个
(C)5 个
(D)6 个 (2009 全国卷Ⅰ理)
13.用描述法表示下列集合: 由直线 y = x +1上所有点的坐标组成的集合;
14.设集合 A= x 1 x 2 ,B= x x a ,若 A B,则 a 的取值范围是
15.已知集合 A = 1,3, B = 1, 2, m,若 A B ,则实数 m = ▲ .
16. 已知全集U = (−, 3] ,集合 A = [−1, 2] ,则 CU A=___ (−, −1) (2,3] ____
17.设全集为 R ,
A
=
x
1 x
1 ,则 CR A =___________.
18.已知全集 U=R,集合 A= (−, 0) , B = −1, −3, a ,若 (CU A) B ,则实数 a
的取值范围是 。
19.设 S 为复数集 C 的非空子集.若对任意 x, y S ,都有 x + y,x − y,xy S ,则称 S 为 封闭集.下列命题:①集合 S = { a + bi | a,b 为整数, i 为虚数单位}为封闭集;②若 S 为封 闭集,则一定有 0 S ;③封闭集一定是无限集;④若 S 为封闭集,则满足 S T C 的 任意集合T 也是封闭集.其中真命题是 ▲ (写出所有真命题的序号).
34.设集合 A = {x | x2 − 2ax + a + 2 0} , A [1,4],则实数 a 的范围是________。

高中数学集合练习题及答案-百度文库

高中数学集合练习题及答案-百度文库

高中数学集合练习题及答案-百度文库一、单选题1.已知集合{}21A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}2,1,0,1--B .{}1,0,1-C .{}1,0-D .{}2,1,0--2.已知集合(){}ln 2M x y x ==-,{}e x N y y ==,则M N =( )A .()0,∞+B .()2,+∞C .()0,2D .[)2,+∞ 3.已知集合{}24A x x =≤,集合{}*1B x x N x A =∈-∈且,则B =( ) A .{}0,1 B .{}0,1,2 C .{}1,2,3 D .{}1,2,3,44.已知集合{}2450A x N x x =∈--≤,{}1,0,1,2B =-,则A B =( ) A .{}1,0,1,2 - B .∅ C .{}0,1,2 D .{}1,2,35.已知集合(){}2log 21M x y x ==-,103x N x x ⎧⎫+=≤⎨⎬-⎩⎭,则M N =( )A .1,2⎛⎫+∞ ⎪⎝⎭B .[)1,-+∞C .1,32⎛⎫ ⎪⎝⎭D .1,32⎛⎤ ⎥⎝⎦ 6.已知全集{}1,2,3,4,5U =,集合{}1,2,3A =,{}3,4B =,则集合{}4=( ) A .()U A B B .()()U U A B C .()U A B ⋂ D .()U A B 7.已知集合{}2,3,6,8U =,{}2,3A =,{}2,6,8B =,则()U A B =( ) A .{6,8} B .{2,3,6,8} C .{2} D .{2,6,8}8.若{}22,a a a ∈-,则a 的值为( ) A .0 B .2 C .0或2 D .2- 9.下列命题说法错误的是( )A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 10.已知集合{}22A x x =-≤<,{}13B x x =≤<,则A B =( )A .[)2,2-B .[)2,3-C .[)1,2D .[]1,211.已知集合{}{}{}21,2,20,1A B xx mx A B ==+-=⋂=∣,则B =( ) A .{}1,1- B .{}2,1- C .{}1,2 D .{}1,1,2- 12.若集合(){}ln 10A x x =-≤,{}2B x x =≥,则()R AB =( ) A .(2,2)- B .(1,2)C .[)1,2D .(1,2]13.已知集合{}21A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}2,1,0,1--B .{}1,0,1-C .{}1,0-D .{}2,1,0-- 14.设集合A实数 ,{}B =纯虚数,{}C =复数,若全集S C ,则下列结论正确的是( )A .ABC =B .A B =C .()S A B ⋂=∅D .S S A B C15.已知集合{4,3,2,1,0,1,2,3,4}A =----,2{|9}B x x =<,则A B =( ) A .{0,1,2,3,4} B .{3,2,1,0,1,2,3}---C .{2,1,0,1,2}--D .()3,3- 二、填空题16.已知全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,则U A ____________.17.某班有39名同学参加数学、物理、化学课外研究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参见数学和化学小组有多少人__________.18.方程组13x y x y -=⎧⎨+=⎩的解集..为_____. 19.若“x a >”是“39x >”的必要条件,则a 的取值范围是________.20.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.21.已知集合{}1,2A =,{}21,B x =-.若{}1A B ⋂=,则x =___________.22.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.23.已知全集{}1,2,3,4,5,6U =,集合{}{}1,2,2,3,4A B ==,则A B ⋃=___________ 24.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________.25.设P 、Q 为两个非空实数集合,定义集合{},,b P Q z z a a P b Q *==∈∈,若{}1,2P =,{}1,0,1Q =-,则集合P Q *中元素的个数为______个.三、解答题26.已知集合{}220A x x x =--<,{}2260B x x ax a =--<. (1)若1a =,求()A B R ;(2)若0a >,设命题p :x A ∈,命题q :x B ∈,已知命题p 是命题q 的充分不必要条件,求实数a 的取值范围.27.集合{}30?180120?180,Z A k k k αα︒︒=︒+<<+︒∈,集合{}45?360135?360,Z B k k k ββ=-+<<+∈. (1)求A B ;(2)若全集为U ,求U ()A B ⋂.28.如图所示阴影部分角的集合.29.设集合{}()(){}2|20,|30,0A x x x B x x a x a a =--<=--<>,语句:p x A ∈,语句:q x B ∈.(1)当1a =时,求集合A 与集合B 的交集;(2)若p 是q 的必要不充分条件,求正实数a 的取值范围.30.设集合{}22,3,42A a a =++,集合{}20,7,42,2B a a a =+--,这里a 是某个正数,且7A ∈,求集合B .【参考答案】一、单选题1.B【解析】【分析】根据交集的定义运算.【详解】 因为集合{}21A x x =-<≤,{}2,1,0,1B =--,由交集定义可知:A B ={}1,0,1-.故选:B.2.B【解析】【分析】首先根据指数函数、对数函数的性质求出集合N 、M ,再根据交集的定义计算可得;【详解】解:因为(){}{}ln 22M x y x x x ==-=>,{}{}e 0x N y y y y ===>, 所以{}|2M N x x ⋂=>;故选:B3.C【解析】【分析】化简集合A ,根据集合B 中元素的性质求出集合B.【详解】{}24[2,2]A x x =≤=-,{}*1B x x N x A =∈-∈且, {1,2,3}B ∴=,故选:C4.C【解析】【分析】根据集合的交集运算即可求解.【详解】解:{}{}{}2450150,1,2,3,4,5A x N x x x N x =∈--≤=∈-≤≤=, {}0,1,2A B =,故选:C.5.C【解析】【分析】根据对数型函数定义域解法求出集合M ,根据分式不等式解法求出集合N ,再根据集合交集概念即可求得结果.【详解】由题意知(){}21log 21,2M x y x ∞⎛⎫==-=+ ⎪⎝⎭,[)101,33x N x x ⎧⎫+=≤=-⎨⎬-⎩⎭, 所以1,32M N ⎛⎫⋂= ⎪⎝⎭. 故选:C .6.C【解析】【分析】利用交集,并集和补集运算法则进行计算,选出正确答案.【详解】{}1,2,3,4A B =,(){}5U A B ⋃=,A 错误;()(){}{}{}4,51,2,51,2,4,5U U A B ==,B 错误;(){}{}{}4,53,44UA B ⋂==,C 正确; (){}{}{}1,2,51,2,31,2U A B ==,D 错误.故选:C7.A【解析】【分析】由已知,先有集合U 和集合A 求解出U A ,再根据集合B 求解出()U A B ⋂即可. 【详解】因为{}2,3,6,8U =,{}2,3A =,所以{}6,8U A =,又因为{}2,6,8B =,所以(){}6,8U A B =.故选:A.8.A【解析】【分析】分别令2a =和2a a a =-,根据集合中元素的互异性可确定结果.【详解】若2a =,则22a a -=,不符合集合元素的互异性;若2a a a =-,则0a =或2a =(舍),此时{}{}22,2,0a a -=,符合题意; 综上所述:0a =.故选:A.9.C【解析】【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确;故选:C.10.C【解析】【分析】直接求解即可【详解】因为{}|22A x x =-≤<,{}|13B x x =≤<所以{}|12A B x x =≤<故选:C11.B【解析】【分析】根据交集性质求解即可.【详解】因为{}1A B ⋂=,所以1B ∈,所以120m +-=,解得1m =.所以{}{}2|202,1B x x x =+-==-,满足{}1A B ⋂=.12.B【解析】【分析】分别解出集合A 和B ,再根据集合补集和交集计算方法计算即可.【详解】(){}{}(]ln 10|0111,2A x x x x =-≤=<-≤=, {}(][)2,22,B xx ∞∞=≥=--⋃+,()2,2B =-R , ∴()R A B =(1,2).故选:B.13.B【解析】【分析】由交集定义可直接得到结果.【详解】由交集定义可知:{}1,0,1-.故选:B.14.D【解析】【分析】根据集合A ,B ,C 的关系求解即可.【详解】集合A ,B ,C 的关系如下图,由图可知只有S S A B C 正确.故选:D.15.C【解析】【分析】 求得集合{|33}B x x =-<<,结合集合交集的运算,即可求解.【详解】由题意,集合2{|9}{|33}B x x x x =<=-<<,又由集合{4,3,2,1,0,1,2,3,4}A =----,所以A B ={2,1,0,1,2}--.二、填空题16.{}2,4,6【解析】【分析】由补集的定义即可求解.【详解】解:因为全集{1,2,3,4,5,6,7}U =,集合{}1,3,5,7A =,所以{}2,4,6U A =.故答案为:{}2,4,6 17.5【解析】【分析】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,根据容斥原理可求出结果.【详解】设参加数学、物理、化学小组的同学组成的集合分别为A ,B 、C ,同时参加数学和化学小组的人数为x ,因为每名同学至多参加两个小组,所以同时参加三个小组的同学的人数为0,如图所示:由图可知:20654939x x x -+++++-=,解得5x =,所以同时参加数学和化学小组有5人.故答案为:5.18.{(2,1)}【解析】【分析】利用加减消元法求得方程组的解集.【详解】依题意13x y x y -=⎧⎨+=⎩, 两式相加得24,21x x y ==⇒=,所以方程组的解集为{(2,1)}.故答案为:{(2,1)}19.2a ≤【解析】【分析】根据题意39x >解得:2x >,得出()()2,,a +∞⊆+∞,由此可得出实数a 的取值范围.【详解】根据题意39x >解得:2x >,由于“x a >”是“39x >”的必要条件,则()()2,,a +∞⊆+∞,2a ∴≤.因此,实数a 的取值范围是:2a ≤.故答案为:2a ≤.20.5【解析】【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人.【详解】设第一、二题都没答对的有x 人,则()()206166635x -+-++= ,所以5x =故答案为:521.±1【解析】【分析】根据给定条件可得1B ∈,由此列式计算作答.【详解】因集合{}1,2A =,{}21,B x =-,且{}1A B ⋂=,于是得1B ∈,即21x =,解得1x =±,所以1x =±.故答案为:±122.102m -≤≤【解析】【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答.【详解】令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤, 所以实数m 的取值范围为102m -≤≤. 故答案为:102m -≤≤ 23.5,6##{}6,5【解析】【分析】先求出A B ,再进行补集运算及即可求解.【详解】因为集合{}{}1,2,2,3,4A B ==,所以{}1,2,3,4A B =, 因为{}1,2,3,4,5,6U =,所以{}5,6A B ⋃=,故答案为:5,6.24.{x |2<x <3}【解析】【分析】解二次不等式可得集合B ,再求交集即可.【详解】∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}.故答案为:{x |2<x <3}25.3【解析】【分析】分别对a 、b 进行赋值,求出z 的所有可能取值即可求解.【详解】由题意,得当1a =时,1b z a ==;当2a =且1b =-时,12b z a ==; 当2a =且0b =时,1b z a ==;当2a =且1b =时,2b z a ==;所以P Q *含有的元素有:1、2、12,即P Q *中元素个数为3个.故答案为:3. 三、解答题26.(1)(][)2,12,3--⋃(2)2,3⎡⎫+∞⎪⎢⎣⎭ 【解析】【分析】(1)先解出集合A 和B ,再计算R A ,最后计算()A B R 即可;(2)先解出集合B ,命题p 是命题q 的充分不必要条件得到A B ,进而求出a 的取值范围.(1)当1a =时,{}()2602,3B x x x =--<=-, 又由{}()2201,2A x x x =--<=-,所以(][)R ,12,A =-∞-⋃+∞,所以()(][)R 2,12,3A B ⋂=--⋃.(2)当0a >时,可得()2,3B a a =-.因为命题p 是命题q 的充分不必要条件,则A B ,可得21,23,a a -≤-⎧⎨≤⎩等号不能同时成立, 解得23a ≥,所以实数a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭. 27.(1){}30?360120?360,Z A B k k k αα⋂=+<<+∈ (2)U ()A B ⋂ {}210?360300?360,Z k k k αα=+<<+∈ 【解析】【分析】(1)先变形集合A ,再求交集;(2)先求补集,再求交集.(1) 解:因为{}30?180120?180,Z A k k k αα︒︒=+<<︒+︒∈ {}30?360120?360210?360300?360,Z k k k k k ααα︒︒︒=︒+︒<<︒+︒+<<+︒∈或所以 {}30?360120?360,Z A B k k k αα︒︒︒⋂=+︒<<+∈; (2)解:由(1),知U B {}135?360315?360,Z k k k γγ︒︒=+≤≤︒+︒∈ 故U ()A B ⋂{}210?360300?360,Z k k k αα=+<<+∈ 28.{}45?18045?180,n n n Z αα-+≤≤+∈ 【解析】【分析】观察图形, 按图索骥即可.【详解】}{1|45?36045?360,S k k k Z αα︒︒︒︒=-+≤≤+∈,}{2|135?360225?360,S k k k Z αα︒︒︒︒=+≤≤+∈,{}12|452180452180S S S k k αα︒︒︒︒=+=-+≤≤+ ()(){}|45211804521180k k αα︒︒︒︒-++≤≤++()k ∈Z{}()|4518045180n n n Z αα︒︒︒︒=-+≤≤+∈ ,故答案为:{}()|4518045180n n n Z αα︒︒︒︒-+≤≤+∈.29.(1){|12}x x <<; (2)20,3⎛⎤ ⎥⎝⎦. 【解析】【分析】(1)解一元二次不等式求集合A 、B ,应用集合的交运算求交集即可.(2)根据必要不充分关系有B A ≠⊂,即可求a 的范围. (1)由题设,{|12}A x x =-<<,当1a =时{|13}B x x =<<, 所以{|12}A B x x =<<;(2)由题设,{|3}B x a x a =<<,且{|12}A x x =-<<,若p 是q 的必要不充分条件,则B A ≠⊂,又a 为正实数,即320a a ≤⎧⎨>⎩,解得203a <≤, 故a 的取值范围为20,3⎛⎤ ⎥⎝⎦. 30.B ={0,7,3,1}.【解析】【分析】解方程2427a a ++=即得解.【详解】解:由题得2427a a ++=, 解得1a =或5a =-.因为0a >,所以1a =.当1a =时, B ={0,7,3,1}.故集合B ={0,7,3,1}.。

新高中数学《集合》专项测试 (101)

新高中数学《集合》专项测试 (101)

三、解答题
28.已知集合 A = {x | 3 x 7},B = {x | 2 x 10},C = {x | x a};求:
(1) A B ;(2) (CR A) B ;(3)若 A C ,求 a 的取值范围.
( ) 29.已知函数 y =
(2
+
1
x)(3

x)
的定.义.域.为集合
19.已知集合 A = {−1,0} ,集合 B = {0,1, x + 2} , 且 A B ,则实数 x 的值为
20.若 tan = 1 ,则 2sin2 −sin cos =
.
3
21. 若集合 A = {x | x2 −1 0},集合 B = {x | x 0},则 A B =
.
22.如图所示的 Venn 图中, A , B 是非空集合,定义集合 A # B 为阴影部分表示的集合.若 x, y R , A = (0, 2) , B = (1, +),则 A # B = .
(1)求如图阴影部分表示的集合;
(2)已知 C = x |x 2a且x a +1 ,若 C B ,求实数 a 的取值范围.(本小题满分
15 分)
U A
B
31.(1)解不等式:
log
2
x
+
1 x
+
6
3;
(2)已知集合 A = x | x2 − 3x + 2 = 0 , B = x | 0 ax +1 3.若 A B = B ,求实
分)
35.已知集合 A = x x2 − 2x − 3≤0, x R , B = x x2 − 2mx + m2 − 4≤0, x R,mR .

2020高中数学《集合》综合训练 (155).pdf

2020高中数学《集合》综合训练 (155).pdf

高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.若集合{|23}A x x =−≤≤,{|14}B x x x =<−>或,则集合A B 等于( ) A .{}|34x x x ≤>或 B .{}|13x x −<≤C .{}|34x x ≤<D .{}|21x x −≤−<(2008北京文)2.集合{1,2,3,4,5,6},U =}5,4,1{S =,{2,3,4},T =则()US T ð等于( ) (A)}6,5,4,1{ (B) {1,5} (C) {4} ( D) {1,2,3,4,5}(2011安徽文2)3.若全集U={x ∈R|x 2≤4} A={x ∈R||x+1|≤1}的补集CuA 为A |x ∈R |0<x <2|B |x ∈R |0≤x <2|C |x ∈R |0<x≤2|D |x ∈R |0≤x≤2|4.设集合S ={x |5<x },T ={x |0)3)(7(<−+x x }.则T S ⋂=A. {x |-7<x <-5 }B. {x | 3<x <5 }C. {x | -5 <x <3}D. {x | -7<x <5 }. (2009四川卷文5.已知集合{}30,31x M xN x x x ⎧+⎫=<=−⎨⎬−⎩⎭…,则集合{}1x x …为( ) A.M N B.MN C.()R M N ð D.()R M N ð (2008辽宁理) 6.设全集U =R ,}2|{>=x x M ,}21|{<=xx N ,那么下列关系中正确的是------------------( ) A .M N = B .M N ≠⊂ C .N M ≠⊂ D .φ=N M7.设全集是实数集R ,M x x =−≤≤{|}22,N x x =<{|}1,则N M C R )(等于( )A. {|}x x <−2B. {|}x x −<<21C. {|}x x <1D. {|}x x −≤<21(2004北京理1)8.设集合A ={3,5,6,8},集合B ={4,5, 7,8},则A ∩B 等于(A ){3,4,5,6,7,8} (B ){3,6} (C ) {4,7} (D ){5,8}(2010四川文数)(1)二、填空题9.设全集{,,,}U a b c d =,集合{,}A a b =,{,,}B b c d =,则B C A C U U ___________。

新高中数学《集合》专项测试 (105)

新高中数学《集合》专项测试 (105)

高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U A B =( B )(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5(2008四川理)2.已知集合M ={x|3x 0x 1≥(-)},N ={y|y =3x 2+1,x ∈R },则M ⋂N =( C ) A .∅ B. {x|x ≥1} C.{x|x >1} D. {x| x ≥1或x <0}(2006江西理)3.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则=)(B A C U {}1,4,54.已知集合2{|1},{}P x x M a =≤=,若P M P =,则a 的取值范围是( )(A )(,1]-∞- (B )[1,)+∞ (C )[1,1]- (D )(,1][1,)-∞-+∞(2011北京理1)5.若A 为全体正实数的集合,{}2,1,1,2B =--则下列结论正确的是( )A .}{2,1AB =-- B . ()(,0)RC A B =-∞ C .(0,)A B =+∞D . }{()2,1R C A B =--(2008安徽卷文1)6.集合{1,2,3,4,5,6},U =}5,4,1{S =,{2,3,4},T =则()U S T 等于( )(A)}6,5,4,1{ (B) {1,5} (C) {4} ( D) {1,2,3,4,5}(2011安徽文2)7.集合{}|25A x R x =∈-≤中最小整数位 .8.已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,49.集合{1,0,1}A =-,A 的子集中,含有元素0的子集共有( )(A )2个 (B )4个 (C )6个 (D )8个(2008四川延考理1)10.若A={}|10x x +>,B={}|30x x -<,则A B = (A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3)11.已知集合M ={ x ||x -1|≤2,x ∈R },P ={ x |5x +1≥1,x ∈Z },则M ∩P 等于( ).(A ){ x |0<x ≤3,x ∈Z }(B ){ x |0≤x ≤3,x ∈Z } (C ){ x |-1≤x ≤0,x ∈Z } (D ){ x |-1≤x <0,x ∈Z }12.设全集U=N M ={1,2,3,4,5},M U N ={2,4},则N=( )(A ).{1,2,3} (B ).{1,3,5} (C ).{1,4,5} (D ).{2,3,4}(2011湖南文1)13.设全集U=R ,集合M={x ∣x>l},P={x ∣x 2>l},则下列关系中正确的是(A)M=P (B) M P ⊂ (C) P M ⊂ (D) ∅=⋂P M C U (2005北京理) 二、填空题14.设集合}3,1{=A ,集合}5,4,2,1{=B ,则集合=B A 15.已知集合{}{}1,1,1A B x mx =-==,若A B A =,则实数m 的取值集合为 {}1,0,1- .16.下列各种对象的全体,可以构成集合的是(1) 某班身高超过1.8m 的女学生;(2)某班比较聪明的学生;(3)本书中的难题 (4)使232x x -+最小的x 的值17.设全集,U R =集合{}1M x x =>,{}21P x x =>,则______M P18.设,P Q 为两个非空实数集合,定义集合{},,P Q a b a P b Q +=+∈∈{}{}0,2,5,1,2,6P Q ==若,则P Q +中元素的个数是19.设集合{}(,)1A x y y ax ==+,{}(,)B x y y x b ==+,且{}(2,5)A B =,则__________,_________a b ==20.已知R 为实数集,2{|20},{|1}M x x x N x x =-<=≥,则=)(N C M R ▲.21.已知集合{}1||≤=x x A ,{}0≤-=a x x B ,若φ=B A ,则实数a 的取值范围是______________。

新高中数学《集合》专项测试 (1205)

新高中数学《集合》专项测试 (1205)
28. A = x | x2 + x − 6 = 0 , B = x | mx +1 = 0 ,且 A B = A ,则 m 的取值集合是
______ .
29.已知集合 A = 3,m2 , B = {−1,3,2m −1}, 若 A B ,则实数 m 的值为 ▲ .
30.已知全集U = 1,2,3,4,集合 P = 1, 2 , Q = 2,3,则 ðU (P Q) 等于 ▲ .

10.设全集 U=R,集合 M = {x | x = x2 − 2 , x R}, N = {x | x +1 2 , x R} 则 (CU M ) N 等于_______________ 11.若非空集合 A = {x 2a +1 x 3a − 5} , B = {x 3 x 2 2} ,则能使 A (A B) 成立的所有 a 的集合为_______________ 12 . 设 集 合 U ={x N | 0 x 8} , S ={1, 2, 4,5} , T ={3,5,7} , 则 S (CUT ) = {1, 2, 4}
2
(本题 14 分)
34.已知集合 A = {x | x2 − 3x + 2 = 0} , B = {x | x2 + 2(a +1)x + (a2 − 5) = 0}, (1)若 A B = {2},求实数 a 的值; (2)若 A B = A ,求实数 a 的取值范围;
35.已知集合 A = x 2 − a x 2 + a , B = x x2 − 5x + 4 0 ,
P = {x log 2 x 1}, Q = {x x − 2 1} ,那么 P − Q =
.

新高中数学《集合》专项测试 (55)

新高中数学《集合》专项测试 (55)

{}高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()UA B =( B )(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5(2008四川理)2.设集合{}12A =,,则满足{}123A B =,,的集合B 的个数是(C )A.1 B.3C.4D.8(2006辽宁文)3.设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()UN M ⋂=A.{}1,3B. {}1,5C. {}3,5D. {}4,5(2010全国卷1文数)(2)4.若集合{}3,2,1,0=A ,{}4,2,1=B 则集合=⋃B A A. {}4,3,2,1,0 B. {}4,3,2,1 C. {}2,1 D.5.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()UA B =( )(A ){}2,3 (B ){}1,4,5 (C ){}4,5 (D ){}1,5(2008四川理) 1.(文科1)6.已知全集{12345}U =,,,,,集合2{|320}A x x x =-+=,{|2}B x x a a A ==∈,,则集合()UA B 中元素的个数为( )A .1B .2C .3D .4(2008陕西理)2.7.第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员}。

集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是( )A .B A ⊆ B .C B ⊆ C .A C B =D .C B A = (2008广东文) 1.8.已知全集U R =,则正确表示集合{1,0,1}M =-和{}2|0N x x x =+=关系的韦恩(Venn )图是(2009年广东卷文)9.设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T= ( )A .[-4,+∞)B .(-2, +∞)C .[-4,1]D .(-2,1] (2013年高考浙江卷(文))10.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B ,则集合[()u AB 中的元素共有(A )(A )3个 (B )4个 (C )5个 (D )6个 (2009全国卷Ⅰ理)二、填空题11. 已知集合3{1,},{|1}4P m Q x x =-=-<<,若P Q φ≠,则整数m = .12.设22{|4},{|4}A y y x B x y x x ==-==-,则A B ⋂=________; 13.已知集合{})2lg(-==x y x A ,{}x y y B 2==,则=B A14.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人.15.已知集合A={(0,1), (1,1),(-1,2)},B={(x,y)|x+y -1=0,x,y ∈Z},则A ⋂B= 16.设,P Q 为两个非空实数集合,定义集合{},,P Q a b a P b Q +=+∈∈{}{}0,2,5,1,2,6P Q ==若,则P Q +中元素的个数是17.设全集{1,3,5,7,9}I =,集合A ={1,3,9},则I C A =___________18.设全集{}{}1,2,3,4,5,1,4I A ==,则______I C A =,它的子集个数是19.已知集合},1|{2R x x y y M ∈-==,}2|{2x y x N -==,则=N M▲ .20.已知全集为{4}U x x =>,{5}A x x =>,则U C A = 21.已知集合{}{}20,3,21,3,A m B m =-=,若B A ⊆, 则实数m =***;22.设T S ,是R 的两个非空子集,如果存在一个从S 到T 的函数)(x f y =满足; (i)}|)({S x x f T ∈=;(ii)对任意S x x ∈21,,当21x x <时,恒有)()(21x f x f <. 那么称这两个集合“保序同构”.现给出以下3对集合: ①*,N B N A ==;②}108|{},31|{≤≤-=≤≤-=x x B x x A ; ③R B x x A =<<=},10|{.其中,“保序同构”的集合对的序号是____________(写出所有“保序同构”的集合对的序号) (2013年高考福建卷(文))23.已知集合A={﹣1,2,4},B={﹣1,0,2} 则A ∩B= {﹣1,2} .(5分)24.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p ∨q 为真命题,p ∧q 为假命题,则a 的取值范围是________.(1,2] 25.若集合{1,0,1},{cos ,},A B y y x x A =-==∈|则A B = {}1 26. 已知集合22{|230},{1},1A x Z x xB x ZA B x =∈--<=∈>-则集合等于 27.已知全集U =R ,集合A ={x |x ≤-2,x ∈R},B ={x |x <1,x ∈R},则(∁U A )∩B =▲ . 答案: (-2,1)28.已知集合A={x|x=2n —l ,n ∈Z},B={x |x 2一4x<0},则A ∩B= .29.设集合(1,2),(,)A B a ==-∞,若AB ,则实数a 的取值集合为[2,)+∞ .30.已知集合⎭⎬⎫⎩⎨⎧∈==Z n n x x A ,6sinπ,则A 的非空真子集个数有 个。

高中数学集合练习题及答案-百度文库

高中数学集合练习题及答案-百度文库

高中数学集合练习题及答案-百度文库一、单选题1.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .MB .NC .u MD .u N2.设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是( )A .3B .6C .7D .83.设S 是整数集Z 的非空子集,如果任意的,a b S ∈,有ab S ∈,则称S 关于数的乘法是封闭的.若T 、V 是Z 的两个没有公共元素的非空子集,T V ⋃=Z .若任意的,,a b c T ∈,有abc T ∈,同时,任意的,,x y z V ∈,有xyz V ∈,则下列结论恒成立的是( ) A .T 、V 中至少有一个关于乘法是封闭的 B .T 、V 中至多有一个关于乘法是封闭的 C .T 、V 中有且只有一个关于乘法是封闭的 D .T 、V 中每一个关于乘法都是封闭的4.集合{|13}A x x =-<<,集合{}24B xx =<∣,则A B =( ) A .(-2,2)B .(-1,2)C .(-2,3)D .(-1,3)5.已知复数a 、b 满足0ab ≠,集合{}{}22,,a b a b =,则a b +的值为( )A .2B .1C .0D .-16.设{|1},{|12}P x x Q x x ==-<≤≤,那么P Q =( )A .{|11}x x -<<B .{|12}x x -≤<C .{|12}x x ≤<D .{|11}x x -≤≤7.已知0a >且1a ≠,若集合{}{}22,log ||a M x x x N x x x =<=<,且N M ⊆﹐则实数a 的取值范围是( ) A .()1e 0,11,e ⎛⎤ ⎥⎝⎦B .()1e0,1e ,⎡⎫+∞⎪⎢⎣⎭C .()12e 0,11,e ⎛⎤ ⎥⎝⎦D .()12e 0,1e ,⎡⎫+∞⎪⎢⎣⎭8.已知集合{}22A x x x =<,集合{}1B x x =<,则A B =( )A .(),2-∞B .(),1-∞C .()0,1D .()0,29.()Z M 表示集合M 中整数元素的个数,设{}24A x x =-<<,{}723B x x =-<<,则()Z A B =( )A .5B .4C .3D .210.设{}{}21,230A x x B x x x =>=--<,则()R A B ⋂=( )A .{}1x x >-B .{}11x x -<≤C .{}11x x -<<D .{}13x x <<11.已知集合{|3251}A x x =-<-<,2{|20}B x x x =-->,则A B =( ) A .{|23}x x <<B .{|13}x x -<<C .{|2}x x >D .{|1}x x >-12.设集合{}10A x x =-<,{}16B x x =-<<,则A B ⋃=( ) A .(),6-∞B .()6,1-C .()1,1-D .(),1-∞13.已知集合{2,1,0,1,2}A =--,{}220B x x x =--<,则A B =( )A .{2,1,0,1}--B .{1,0,1,2}-C .{0,1}D .{1,0}-14.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤15.已知集合1|2,[,4]2xA xB a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( )A .2B .1-C .2-D .5-二、填空题16.若{}}{1020x ax x x +=⊆-=,则=a __________.17.如图,设集合,A B 为全集U 的两个子集,则A B =____________.18.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.19.若集合{}{}1,2,3,4,|23A B x x ==≤≤﹐则A B =_________.20.设集合{}{}23,650A x x B x x x =≤=-+≤,则A B =________.21.已知函数()()()2sin 0,0g x x ωϕωϕπ=+><<的部分图象如图所示,将函数()g x 的图象向右平移6π个单位长度,得到函数()f x 的图象,若集合()3512A x y f x f π⎧⎫⎪⎪⎛⎫==-⎨⎬⎪⎝⎭⎪⎪⎩⎭,集合{}0,1,2B =,则A B =______.22.集合A =[1,6],B ={x |y x a -,若A ⊆B ,则实数a 的范围是________________. 23.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.24.已知集合{}22A x x =-≤≤,若集合{}B x x a =≤满足A B ⊆,则实数a 的取值范围____________.25.设集合{}1,2,3,,2021M =⋅⋅⋅,对M 的任一非空子集A ,令()A σ为集合A 中元素的最大值与最小值之和,则所有这样的()A σ的算术平均值为______.三、解答题26.已知集合{}2|3100A x x x =--<,{}|121B x m x m =+≤≤-.(1)当3m =时,求集合()U A B ;(2)若A B B =,求实数m 的取值范围.27.设全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤. (1)求A B ,A B ; (2)求()R B A .28.已知集合{}3A x a x a =≤≤+,{1B x x =<-或5}x >. (1)若A B =∅,求a 的取值范围; (2)若A B A =,求a 的取值范围.29.已知集合2{20}A x x x =+-<,{213}B x m x m =+≤≤+(m )R ∈.(1)当1m =-时,求A B ,A B ;(2)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围.30.已知集合2{|40}A x x =-≥,集合{|1}B x m x m =<<-. (1)求A .(2)求A B A ⋃=,求m 的取值范围.【参考答案】一、单选题 1.D 【解析】 【分析】利用()()()U U uM N M N ⋂=⋃,判断相互之间的关系.【详解】()()()UU uM N M N ⋂=⋃,M N N ⋃=,()u uM N N ⋃=.故选D. 2.D 【解析】 【分析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案. 【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z , 所以A ⋂Z 子集的个数是328=. 故选:D3.A 【解析】 【分析】本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z 拆分成两个互不相交的非空子集T 、V 的并集,如T 为奇数集,V 为偶数集,或T 为负整数集,V 为非负整数集进行分析排除即可. 【详解】若T 为奇数集,V 为偶数集,满足题意,此时T 与V 关于乘法都是封闭的,排除B 、C ; 若T 为负整数集,V 为非负整数集,也满足题意,此时只有V 关于乘法是封闭的,排除D ;从而可得T 、V 中至少有一个关于乘法是封闭的,A 正确. 故选:A . 4.B 【解析】 【分析】先求集合B ,进一步求出答案. 【详解】集合{}24B xx =<∣{22}x x =-<<∣,{13}A x x =-<<∣, ∴{12}A B xx ⋂=-<<∣. 故选:B. 5.D 【解析】 【分析】 由集合的性质可知a b ,22a a b b ⎧=⎨=⎩或22a b b a ⎧=⎨=⎩,且0ab ≠,进而求解即可. 【详解】由题意,22a a b b ⎧=⎨=⎩或22a b b a⎧=⎨=⎩,因为0ab ≠,解得1212a b ⎧=-⎪⎪⎨⎪=-⎪⎩或1212b a ⎧=-⎪⎪⎨⎪=-⎪⎩, 所以1a b +=-, 故选:D. 6.D 【解析】 【分析】直接根据集合交集运算求解即可. 【详解】解:因为{|1},{|12}P x x Q x x ==-<≤≤, 所以{|11}Q x x P -≤≤=. 故选:D 7.D 【解析】 【分析】求出集合M ,再由给定条件,对集合N 分类讨论,构造函数,利用导数探讨函数最小值求解作答. 【详解】依题意,{}(1)0|{|01}x M x x x x =<<=<-,{}2lo |g 0a N x x x =-<,令2(g )lo a f x x x -=,当01a <<时,函数()f x 在(0,)+∞上单调递增,而2(1)10,()10f f a a =>=-<,则0(,1)x a ∃∈,使得0()0f x =,当00x x <<时,()0f x <,当0x x >时,()0f x >,此时{}0|0N x x x M =<<⊆,因此,01a <<,当1a >时,若01x <≤,log 0a x ≤,则()0f x >恒成立,N =∅,满足N M ⊆, 于是当1a >时,N M ⊆,当且仅当N =∅,即不等式()0f x ≥对(0,)∀∈+∞x 成立,2n (l )1x f x x a '-=,由()0f x '=得x =,当0x <<()0f x '<,当x >()0f x '>,则函数()f x 在上单调递减,在)+∞上单调递增,min 1111ln(2ln )log ()222ln 2n ln 2l ln a a a a a af x f =-=+=,于是得1ln(2ln )220ln ln a a a +≥, 即1ln(2ln )0a +≥,变形得1ln 2ea ≥,解得12e e a ≥,从而得当12e e a ≥时,()0f x ≥恒成立,N =∅,满足N M ⊆,所以实数a 的取值范围是01a <<或12e e a ≥. 故选:D 【点睛】思路点睛:涉及函数不等式恒成立问题,可以利用导数探讨函数的最值,借助函数最值转化解决问题. 8.C 【解析】 【分析】解一元二次不等式,求得集合A ,根据集合的交集运算,求得答案. 【详解】{}22{|02}A x x x x x =<=<<,故{|01}A B x x =<<, 故选:C. 9.C 【解析】 【分析】首先求出集合B ,再根据交集的定义求出A B ,即可得解; 【详解】解:因为{}7372322B x x x x ⎧⎫=-<<=-<<⎨⎬⎩⎭,{}24A x x =-<<,所以3|22A B x x ⎧⎫=-<<⎨⎬⎩⎭,则()1A B -∈,()0A B ∈,()1A B ∈,所以()3Z A B =; 故选:C 10.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据补集、交集的定义计算可得; 【详解】解:由2230x x --<,即()()310x x -+<,解得13x ,所以{}{}2230|13B x x x x x =--<=-<<,又{}1A x x =>,所以{}R1A x x =≤,所以(){}R 11A B x x ⋂=-<≤;故选:B 11.A 【解析】 【分析】解不等式求出集合,A B ,从而求出交集. 【详解】3251x -<-<,解得:13x <<,故{13}A xx =<<∣,220x x -->,解得:2x >或1x <-,故{2B x x =>或}1x <-,所以{23}A B xx ⋂=<<∣. 故选:A 12.A 【解析】 【分析】解不等式10x -<,可化简集合{}1A x x =<,最后求A B 即可. 【详解】由101x x -<⇒<,所以{}1A x x =<, 所以(),6A B ⋃=-∞,故选:A 13.C 【解析】 【分析】根据交集概念求解即可. 【详解】{}{}220=12B x x x x x =--<-<<,则{}0,1A B =. 故选:C 14.A 【解析】 【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案. 【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误; 空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确; a 是{},,b c a 的元素,所以⑤正确. 故选:A. 15.C 【解析】 【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案. 【详解】解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+,又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-,故选:C.二、填空题16.0或12-##12-或0【解析】 【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可. 【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2,当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =, 故答案为:0或12-17.{}1,2,3,4,5【解析】 【分析】由题知{}{}1,2,3,4,3,4,5A B ==,进而求并集即可. 【详解】解:由题知{}{}1,2,3,4,3,4,5A B ==, 所以{}1,2,3,4,5A B =. 故答案为:{}1,2,3,4,5 18.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 19.{2,3}##{3,2} 【解析】 【分析】 由交集的运算求解 【详解】{}{}1,2,3,4,|23A B x x ==≤≤,则{2,3}A B =故答案为:{2,3}20.[1,3]【解析】 【分析】根据交集的定义求解即可. 【详解】解不等式2650x x -+≤ ,得()()150x x --≤ ,解得15x ≤≤ , 即[]1,5B = ,[]1,3A B ∴= ; 故答案为:[]1,3 .21.{}0【解析】 【分析】根据图像求出g (x )的解析式,再求出f (x )解析式,求出A 集合,根据集合交集运算法则计算即可. 【详解】由图可知()g x 周期52=1212T πππ⎛⎫=⨯+⎪⎝⎭,∴22T πω==.由212πg ⎛⎫-= ⎪⎝⎭得22122k ππϕπ⎛⎫⨯-+=+ ⎪⎝⎭,∴223k πϕπ=+,k ∈Z , ∵0ϕπ<<,∴k 取0,23ϕπ=, ∴()22sin 23g x x π⎛⎫=+⎪⎝⎭, ∴()22sin 22sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴35352sin 22sin 611212363f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∴()35150sin 22221232636f x f x k x k πππππππ⎛⎫⎛⎫-≥⇔+≥⇔+≤+≤+⎪ ⎪⎝⎭⎝⎭,k ∈Z , ∴,124A x k x k k ππππ⎧⎫=-≤≤+∈⎨⎬⎩⎭Z ,∴{}0A B ⋂=.故答案为:{}0﹒22.(,1]-∞【解析】 【分析】先求出集合B ,再由A ⊆B ,可求出实数a 的范围 【详解】由0x a -≥,得x a ≥,所以[,)B a =+∞,因为A =[1,6],且A ⊆B ,所以1a ≤,所以实数a 的范围是(,1]-∞,故答案为:(,1]-∞23.(,3][6,)-∞-⋃+∞【解析】【分析】根据对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =,可得两个函数值域的包含关系,进而根据关于m 的不等式组,解不等式组即可.【详解】因为()22()4321f x x x x =-+=--,所以函数()f x 的对称轴为2x =,对任意的[]11,4x ∈,记()[]1,3f x ∈-.记[]1,3A =-.由题意知,当0m =时不成立,当0m >时,()52g x mx m =+-在[]1,4上是增函数,所以[]()5,25g x m m ∈-+,记[]5,25B m m =-+由题意知,B A所以m m -≥-+≥⎧⎨⎩15253,解得6m ≥. 当0m <时,()52g x mx m =+-在[]1,4上是减函数,所以[]()25,5g x m m ∈+-,记[]25,5C m m =+-,由题意知,C A ⊇所以251{53m m +≤--≥,解得3m ≤-. 综上所述,实数m 的取值范围是(,3][6,)-∞-⋃+∞.故答案为: (,3][6,)-∞-⋃+∞【点睛】解决本题的关键是将问题转化为对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =, 可得两个函数值域的包含关系,进而分别求两个函数的值域.24.[2,+∞)【解析】【分析】根据A B ⊆结合数轴即可求解.【详解】∵{}22A x x =-≤≤≠∅,A B ⊆,∴A 与B 的关系如图:∴a ≥2.故答案为:[2,+∞).25.2022【解析】【分析】先分别求出集合M 的所有非空子集中最小的元素与最大的元素之和,从而得出答案.【详解】集合{}1,2,3,,2021M =⋅⋅⋅的非空子集共有202121-个其中以1为最小元素的非空子集共有20202个,以2为最小元素的非空子集共有20192个, …………以2021为最小元素的非空子集共有021=个,所以集合M 的所有非空子集中最小的元素之和为202020190122220212⨯+⨯++⨯ ① 其中以2021为最大元素的非空子集共有20202个,以20202为最大元素的非空子集共有20192个,…………以1为最大元素的非空子集共有021=个,所以集合M 的所有非空子集中最大的元素之和为202020190202122020212⨯+⨯++⨯ ② 由① + ②可得:()()()202020190202112202022120212+⨯++⨯+++⨯ 202020190202222022220222=⨯+⨯++⨯ ()()20212020201902021122022222202220222112-=⨯+++=⨯=-- 所以所有这样的()A σ的算术平均值为:()20212021202221202221-=-故答案为:2022 三、解答题26.(1){}5(2)(3),-∞【解析】【分析】(1)求出集合B ,进而求出补集与交集;(2)根据集合交集的结果得到集合的包含关系,进而分类讨论,求出实数m 的取值范围.(1)由题意得,集合{}25A x x =-<<,当3m =时,{}45B x x =≤≤, 所以{2U A x x =≤-或}5x ≥,所以{}()5U A B =.(2) 由A B B =,可得B A ⊆,①当B =∅时,可得121m m +>-,解得:2m <; ②当B ≠∅时,则满足12112215m m m m +≤-⎧⎪+>-⎨⎪-<⎩,解得:23m ≤<, 综上所述:实数m 的取值范围是(3),-∞.27.(1){23A B x x ⋂=-<≤或}9x =,A B R =(2)(){2R B A x x ⋂=≤-或}9x >【解析】【分析】(1)根据集合的交集和并集的定义即可求解; (2)先根据补集的定义求出B R ,然后再由交集的定义即可求解. (1)解:因为{3A x x =≤或}9x ≥,{}29B x x =-<≤,所以{23A B x x ⋂=-<≤或}9x =,A B R =; (2)解:因为全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤,所以{2R B x x =≤-或}9x >,所以(){2R B A x x ⋂=≤-或}9x >.28.(1)[]1,2-(2)()(),45,-∞-+∞【解析】【分析】(1)根据交集的定义,列出关于a 的不等式组即可求解;(2)由题意,A B ⊆,根据集合的包含关系列出关于a 的不等式组即可求解;(1)解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B =∅, ∴135a a ≥-⎧⎨+≤⎩,解得12a -≤≤, ∴a 的取值范围为[]1,2-;(2)解:∵{}3,{1A x a x a B x x =≤≤+=<-或5}x >,且A B A =,∴A B ⊆,∴31a +<-或5a >,即4a或5a >, ∴a 的取值范围是()(),45,-∞-+∞.29.(1){}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤ (2)32,2⎡⎤--⎢⎥⎣⎦ 【解析】【分析】(1)求出集合B ,进而求出交集和并集;(2)根据x A ∈是x B ∈的充分不必要条件得到A 是B 的真子集,进而得到不等式组,求出实数m 的取值范围.(1){}21A x x =-<<.当1m =-时,{}12B x x =-≤≤ 所以{}11A B x x ⋂=-≤<,{}22A B x x ⋃=-<≤;(2)x A ∈是x B ∈的充分不必要条件∴A 是B 的真子集,故21231m m +≤-⎧⎨+≥⎩即322m -≤≤- 所以实数m 的取值范围是32,2⎡⎤--⎢⎥⎣⎦. 30.(1){|22}A x x =-≤≤(2)[1,)-+∞【解析】【分析】(1)由不等式240x -≥,求得22x -≤≤,即可求解;(2)由A B A ⋃=,得到B A ⊆,列出不等式组,即可求解.(1)解:由240x -≥,即24x ≤,可得22x -≤≤,可得集合{|22}A x x =-≤≤.(2)解:因为{|22}A x x =-≤≤,且集合{|1}B x m x m =<<-,又因为A B A ⋃=,即B A ⊆,当B =∅时,即1m m ≥-,可得12m ≥,此时满足B A ⊆;当B ≠∅时,则满足2121m m m m ≥-⎧⎪-≤⎨⎪<-⎩,解得112m -≤<, 综上可得,1m ≥-,即实数m 的取值范围[1,)-+∞.。

新高中数学《集合》专项测试 (158)

新高中数学《集合》专项测试 (158)
确的是
(A) CI S1 (S2 S3)=
(B) S1 (CI S2 CI S3)
(C) CI S1 CI S2 CI S3 =
全国 1 理)
( D ) S1 (CI S2 CI S3)(2005
4.设集合 U={1,2,3,4,5},A={1,2,3},B={2,5},则 A∩( CU B)= ( )
B.[1, +∞)
C.[-1,1]
D.(-∞,-1] ∪[1,+∞)
I 10.设集合 A={4,5,7,9},B={3,4,7,8,9},全集 U=A B,则集合 u (A B)
中的元素共有(A)
(A)3 个
(B)4 个
(C)5 个
(D)6 个 (2009 全国卷Ⅰ理)
二、填空题
11.已知集合 A = −1, 0 ,1, 2, B = x x2 − x 0 ,则 A B =
20.集合 M={x|y= x-1},N={y|y= x-1},则 M∩N=_______.
21.设集合 A= x 1 x 2 ,B= x x a ,若 A B,则 a 的取值范围是
22.已知集合 A = x | x 1, B = x | x2 − 2x 0 ,则 A B =
()
A.A∩ B
B.A∩B
C. A ∩ B
D. A ∩B
8.若集合 M = a,b,c 中的元素是 ABC 的三边长,则△ ABC 一定不是
A.锐角三角形
B.直角三角形 C.钝角三角形 D.等},M={a}.若 P∪M=P,则 a 的取值范围是
A.(-∞, -1]
6.集合 A= {x∣ −1 x 2 },B={x∣x<1},则 A (ðR B) =

新高中数学《集合》专项测试 (1150)

新高中数学《集合》专项测试 (1150)

()
A. Q P
B. Q Ý P
C. Q Ü P
D. P = Q
6.已知集3; −
3 1
0
,
N
= x
x„
−3 ,则集合x
x …1 为(
)
A. M N B. M N C. ðR (M N ) D. ðR (M N ) (2008 辽宁理)
7.集合 M ={x | lg x 0}, N = {x | x2 4},则 M N = ( ) A. (1, 2) B. [1, 2)
25.若集合 A ={0, 2,3} , B ={x | x = ab, a,b A} ,则 B 的子集的个数是__________
个 26.已知集合 A={x|x >5},集合 B={x|x<a},若 A 为.
B={x|5<x<6},则实数 a 的值
27 . 已 知 集 合 A = {x 25 0.2x} , B = {y y = −x + 2 x} , 则
A.U B. {1,3,5} C.{3,5,6} D. {2,4,6}
() D.0 或 4(2013 年高考
3.设集合 M={-1,0,1},N={x|x2≤x},则 M∩N=
A.{0}
B.{0,1}
C.{-1,1}
南理)
() D . {-1,0,0} ( 2012 湖
4.某班共 30 人,其中 15 人喜爱篮球运动,10 人喜爱兵乓球运动,8 人对这两项运动都 不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为
则 CR (A B) =

33.设全集 U=R,集合 A= x | x2 − 2x 0 , B = x | x 1 ,则集 A ðU B =

高中数学集合练习题及答案-百度文库

高中数学集合练习题及答案-百度文库

高中数学集合练习题及答案-百度文库一、单选题1.已知集合{}{}0,11,A xx B x x x =≥=-≤≤∈Z ∣∣,则A B =( ) A .[]0,1B .{}1,2C .{}0,1D .[]1,22.设集合{}2A x x a =<,{}23B x x a =>+,若A B =R ,则实数a 的取值范围为( ) A .()1,3- B .()(),13,-∞-⋃+∞ C .[]1,3-D .(][),13,-∞-+∞3.记集合{}22M x x x =><-或,{}2|30N x x x =-≤,则MN =( )A .{|23}x x <≤B .或{}02}x x x ><-或C .{|02}x x ≤<D .{}|23x x -<≤4.设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是( )A .3B .6C .7D .85.已知集合{}13A x N x =∈≤≤,{}2650B x x x =-+<,则A B =( )A .∅B .{}1,2,3C .(]1,3D .{}2,36.已知集合{0A x x =≤或}1≥x ,{}39xB x =<,则A B =( )A .{}12x x ≤<B .{0x x ≤或}12x ≤<C .{}2x x <D .{}02x x ≤<7.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤8.已知集合{|12}A x x =-≤≤,{}0B x x =>,则A B ⋃=( ) A .{|2}x x ≤ B .{|1}x x ≥- C .{}|1x x >D .{}0x x9.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( ) A .{}0,1,2,3 B .{}0,1,2 C .{}1,2,3D .{}1,210.设全集{}{}{}10,2,3,5,0,3,5,9U n N n A B =∈≤==,则()U A B =( ) A .{2,6}B .{0,9}C .{1,9}D .∅11.设全集U =R .集合{A x y ==∣,则UA( )A .()(),12,-∞-+∞ B .[]1,2- C .(][),12,-∞-⋃+∞D .()1,2-12.已知集合{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,则集合B 中元素的个数是( ) A .1B .4C .3D .213.已知集合{}1A x x =≥-,{}12B x x =-<,则A B ⋃=( ) A .{}13x x -<< B .{}1x x >- C .{}13x x -≤<D .{}1x x ≥-14.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( ) A .{}1B .{}01,C .{}123,,D .{}0123,,,15.已知集合{}22280,03x A x x x B xx -⎧⎫=--≤=≤⎨⎬+⎩⎭,则A B ⋃=( ) A .{}42x x -≤≤ B .{42x x -≤≤且3}x ≠- C .{}34x x -≤≤D .{34}x x -<≤二、填空题16.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________. 17.设集合{1,2,3,4,6}M =,12,,,k S S S 都是M 的含有两个元素的子集,则k =______;若满足:对任意的{,}i i i S a b =,{,}j j j S a b ={}(,,1,2,3,,)i j i j k ≠∈都有,i i j j a b a b <<,且ji i ja ab b ≠,则k 的最大值是__________. 18.若{}31,3,a a ∈-,则实数a 的取值集合为______.19.已知集合{}2,1,0,1A =--,{}|3B x N x =∈<,则A B =_____.20.已知条件:212p k x -≤≤,:53q x -≤≤,p 是q 的充分条件,则实数k 的取值范围是_______.21.集合*83A x NN x ⎧⎫=∈∈⎨⎬-⎩⎭,用列举法可以表示为A =_________. 22.已知集合A ={2,log 2m },B ={m ,n }(m ,n ∈R),且{}1A B ⋂=-,则A ∪B =___________. 23.设P ,Q 为两个非空实数集合,P 中含有0,2两个元素,Q 中含有1,6两个元素,定义集合P+Q 中的元素是a+b ,其中aP ,b Q ,则P Q +中元素的个数是_________.24.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________. 25.对于数集M 、N ,定义{},,M N x x a b a M b N +==+∈∈,,,aM N x x a M b N b ⎧⎫÷==∈∈⎨⎬⎩⎭,若集合{}1,2P =,则集合()P P P +÷中所有元素之和为___________.三、解答题26.(1)已知全集{}|510,Z U x x x =-≤≤∈,集合M ={|07,Z x x x ≤≤∈},N ={|24,Z x x x -<∈≤},求()U N M (分别用描述法和列举法表示结果);(2)已知全集{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,若集合{}2,4,6,8UA B =,求集合B ;(3)已知集合2{|210,R,R}P x ax ax a x =++=∈∈,当集合P 只有一个元素时,求实数a 的值,并求出这个元素.27.已知U =R 且{}2|560A x x x =--<,{|3B x x =≥或1}x ≤.求:(1)A B ,A B ; (2)()()U U A B .28.已知{}{15},1,R A x x B x a x a a =-<<=-<<∈ (1)若2,B ∈求实数a 的取值范围 (2)若B A ⊆,求实数a 的取值范围29.已知集合{}1|43280x x A x +=-⋅+,{}|2.B x x a =+<(1)当1a =时,求A B ;(2)若“x B ∈”是“x A ∈”的必要条件,求实数a 的取值范围.30.已知集合A ={}123x m x m -≤≤+, . (1)当m =1时,求A B ,(RA )B ;(2)若A B =A ,求实数m 的取值范围.试从以下两个条件中任选一个补充在上面的问题中,并完成解答.① 函数()f x B ;② 不等式2x ≤的解集为B . 注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】一、单选题 1.C 【解析】 【分析】根据交集的定义和运算直接得出结果. 【详解】 由题意得,{1,0,1}B =-,又{}0A x x =≥,所以{0,1}A B =. 故选:C. 2.B 【解析】 【分析】由于A B =R ,所以223a a +<,解不等式即可. 【详解】由题意,223a a +<得1a <-或3a >, 故选:B . 3.A 【解析】 【分析】先求出集合N ,再由交集的定义即可得出答案. 【详解】{}{}2|30|03N x x x x x =-≤=≤≤,所以MN ={|23}x x <≤.故选:A 4.D 【解析】 【分析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案. 【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z , 所以A ⋂Z 子集的个数是328=. 故选:D 5.D 【解析】 【分析】本题考查集合的交集,易错点在于集合A 元素是自然数,集合B 的元素是实数. 【详解】∵{}{}131,2,3A x N x =∈≤≤=,{}{}265015B x x x x x =-+<=<<,∴{}2,3A B ⋂=.故选:D . 6.B 【解析】 【分析】解出不等式39x <,然后根据集合的交集运算可得答案. 【详解】因为{0A x x =≤或}1≥x ,{}39xB x =< {}2x x =<,所以A B ={0x x ≤或}12x ≤<,故选:B 7.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 8.B 【解析】 【分析】进行并集的运算即可. 【详解】{|12}A x x =-≤≤,{}0B x x =>, {|1}A B x x ∴⋃=≥-.故选:B .9.D 【解析】 【分析】先化简集合A ,继而求出A B . 【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2. 故选:D. 10.B 【解析】 【分析】根据集合的交运算和补运算求解即可. 【详解】因为{}{}100,1,2,3,4,5,6,7,8,9,10U n N n =∈≤=,{2,3,5}A , 则{0,1,4,6,7,8,9,10},{0,3,5,9}UA B ==,故(){0,9}U A B =.故选:B .11.D 【解析】 【分析】根据二次根式的性质,结合一元二次不等式的解法、补集的定义进行求解即可. 【详解】因为{[2,)(,1]A x y ===+∞-∞-∣, 所以UA()1,2-,故选:D 12.B 【解析】 【分析】根据所给定义求出集合B ,即可判断; 【详解】解:因为{}0,1,2A =,(){},,,,B x y x A y A x y A x y A =∈∈+∈-∈,所以()()()(){}0,0,1,0,2,0,1,1B =,即集合B 中的元素有()0,0,()1,0,()2,0,()1,1共4个,故选:B . 13.D 【解析】 【分析】求出集合B ,利用并集的定义可求得集合A B . 【详解】因为{}{}{}1221213B x x x x x x =-<=-<-<=-<<,因此,{}1A B x x ⋃=≥-. 故选:D. 14.D 【解析】 【分析】先求出集合B ,再由并集运算得出答案. 【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃= 故选:D 15.D 【解析】 【分析】分别解一元二次不等式以及分式不等式得集合A ,B ,再进行并集运算即可. 【详解】因为{}{}228024A x x x x x =--≤=-≤≤,{}20323x B xx x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭, 所以{}34A B x x ⋃=-<≤, 故选:D.二、填空题16.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算. 【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x < 17. 10 6 【解析】 【分析】列举M 的2个元素子集数个数即可;利用,i i j j a b a b << ,再结合ji i ja ab b ≠进行排除其他的即为答案. 【详解】M 的两元素子集有{1,2}{1,3}{1,4}{1,6}{2,3}{2,4}{2,6}{3,4}{3,6}{4,6}、、、、、、、、、,所以共有10个,因此k =10;因为前面的列举方式已经保证,i i j j a b a b <<,只需要再增加条件ji i ja ab b ≠即可,所以{1,2}{2,4}、、{3,6}保留一个,{1,3}{2,6}、保留一个,{2,3}{4,6}、只能保留一个,所以以上10个子集需要删去4个,还剩下6个,所以则k 的最大值是6.故max 6k .故答案为:10;6.18.{}0,1,3【解析】 【分析】根据元素的确定性和互异性可求实数a 的取值. 【详解】因为{}31,3,a a ∈-,故1a =-或3a =或3a a =,当1a =-时,31a =-,与元素的互异性矛盾,舍; 当3a =时,327a =,符合;当3a a =时,0a =或1a =±,根据元素的互异性,0,1a =符合, 故a 的取值集合为{}0,1,3. 故答案为:{}0,1,319.{}0,1【解析】 【分析】由题知{}0,1,2B =,再根基集合交集运算求解即可. 【详解】解:因为{}{}|30,1,2B x N x =∈<=,{}2,1,0,1A =-- 所以A B ={}0,1 故答案为:{}0,120.[2,)-+∞【解析】 【分析】设{}212A x k x =-≤≤,{}53B x x =-≤≤,则A B ⊆,再对A 分两种情况讨论得解. 【详解】记{}212A x k x =-≤≤,{}53B x x =-≤≤, 因为p 是q 的充分条件,所以A B ⊆. 当A =∅时,212k ->,即32k >,符合题意; 当A ≠∅时,32k ≤,由A B ⊆可得215k -≥-,所以2k ≥-,即322k -≤≤. 综上所述,实数的k 的取值范围是[2,)-+∞. 故答案为:[2,)-+∞. 21.{1,2}##{2,1} 【解析】 【分析】根据集合元素属性特征进行求解即可. 【详解】 因为83N x*∈-,所以31,2,4,8-=x ,可得2,1,1,5=--x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2} 22.1,1,22⎧⎫-⎨⎬⎩⎭【解析】 【分析】根据条件得到2log 1m =-,解出12m =,进而得到1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 【详解】因为{}1A B ⋂=-,所以1A -∈且1B -∈,所以2log 1m =-,解得:12m =,则1n =-,1,12B ⎧⎫=-⎨⎬⎩⎭,所以1,1,22A B ⎧⎫=-⎨⎬⎩⎭. 故答案为:1,1,22⎧⎫-⎨⎬⎩⎭23.4 【解析】 【分析】求得P Q +的元素,由此确定正确答案. 【详解】依题意,011,066,213,268+=+=+=+=, 所以P Q +共有4个元素. 故答案为:4 24.{x |2<x <3} 【解析】【分析】解二次不等式可得集合B ,再求交集即可. 【详解】∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}. 故答案为:{x |2<x <3} 25.232##11.5 【解析】 【分析】根据定义分别求出()P P P +÷中对应的集合的元素即可得到结论. 【详解】{1P =,2}, {|P P x x a b ∴+==+,aP ,}{2b P ∈=,3,4},(){|2P P P x x ∴+÷==,3,4,1,3}2,∴元素之和为323234122++++=, 故答案为:232. 三、解答题26.(1){}|47,Z x x x ≤≤∈,{}4,5,6,7;(2){}0,1,3,5,7,9,10;(3)1a =,元素为1-. 【解析】 【分析】(1)根据补集和交集的定义直接计算作答. (2)利用补集的定义直接计算作答. (3)利用元素与集合的关系推理计算作答. 【详解】(1)由{}|510,Z U x x x =-≤≤∈,N ={|24,Z x x x -<∈≤}, 得:{|52U N x x =-≤<-或410,Z}x x ≤≤∈,而{|07,Z}M x x x =≤≤∈, 所以{}()|47,Z U N M x x x =≤≤∈{}4,5,6,7=. (2)由{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,{}2,4,6,8UA B =,得{2,4,6,8}UB =,所以{}()0,1,3,5,7,9,10U U B B ==. (3)当0a =时,P =∅,不符合题意,当0a ≠时,因集合P 只有一个元素,则方程2210ax ax ++=有等根,2440a a ∆=-=, 此时1a =,集合P 中的元素为1-, 所以1a =,这个元素是1-.27.(1){|11A B x x ⋂=-<≤或36}x ≤<;A B R ⋃= (2)∅【解析】【分析】(1)先求解集合A ,再根据交集和并集的概念写出结论即可;(2)先分别求解集合A 和集合B 的补集,再根据交集的概念写出答案.(1)根据{}2|560A x x x =--<可知,{}|16A x x =-<< 又{|3B x x =≥或1}x ≤{|11A B x x ∴⋂=-<≤或36}x ≤<;A B R ⋃=.(2)根据题意,{|1U A x x =≤-或6}x ≥;{|13}U B x x =<<所以()()U U A B ⋂=∅.28.(1)23a <<;(2)05a ≤≤.【解析】【分析】(1)由题可得12a a -<<,即得;(2)根据B A ⊆,结合集合的包含关系,即可求得a 的取值范围.(1)∵2,B ∈{}1B x a x a =-<<,∴12a a -<<,即23a <<,∴实数a 的取值范围为23a <<;(2)∵B A ⊆,{}{15},1,R A x x B x a x a a =-<<=-<<∈,∴115a a -≥-⎧⎨≤⎩,解得05a ≤≤, 故实数a 的取值范围为05a ≤≤.29.(1)(]3,2-(2)()3,0.-【解析】【分析】(1)化简集合A ,B ,再由并集的定义求解即可;(2)列出实数a 的不等式组,解之即可得出实数a 的取值范围.(1)由143280x x +-⋅+,得()()22240x x --,则224x ,则12x ,所以[]1,2A =, 由12x +<,可得31x -<<,则()3,1B =-,所以[]()(]=1,23,13,2A B ⋃⋃-=-(2)()2,2B a a =---,因为“x B ∈”是“x A ∈”的必要条件,所以A B ⊆ ,所以2122a a --<⎧⎨->⎩, 所以()3,0.a ∈-30.(1){}|25=-≤≤A B x x ;(){}|20R A B x x =-≤< (2)1|4,12m m m ⎧⎫<--≤≤-⎨⎬⎩⎭或 【解析】【分析】(1)利用集合的运算求解即可.(2)通过A B =A 得出A B ⊆,计算时注意讨论A 为空集的情况.(1)选条件①:(1)当1m =时,{}|05A x x =≤≤,{}2B x x =|-2≤≤{}|25A B x x ∴=-≤≤{}|0,5R A x x x =<>或(){}|20R A B x x ∴⋂=-≤<选条件②:此时集合{}2B x x =|-2≤≤与①相同,其余答案与①一致;(2)若A B A =,则A B ⊆当A =∅时,123m m ->+,解得4m <-当A ≠∅时,21123232m m m m -≤-⎧⎪-≤+⎨⎪+≤⎩,即1412m m m ⎧⎪≥-⎪≥-⎨⎪⎪≤-⎩,解得112m -≤≤- 综上,实数m 的取值范围为1|412m m m ⎧⎫<--≤≤-⎨⎬⎩⎭或。

新高中数学《集合》专项测试 (1015)

新高中数学《集合》专项测试 (1015)

高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设集合 M ={x|x 2+x-6<0},N ={x|1≤x ≤3},则M ∩N =( )(A )[1,2) (B )[1,2] (C )( 2,3] (D )[2,3] (2011山东理1)2.已知集合{}30,31x M xN x x x ⎧+⎫=<=≤-⎨⎬-⎩⎭,则集合{}1x x ≥为( ) A.MN B.M N C.()R M N D.()R M N (2008辽宁理) 1.3.对于复数a,b,c,d ,若集合{}S=a,b,c,d 具有性质“对任意x,y S ∈,必有xy S ∈”,则当22a=1b =1c =b ⎧⎪⎨⎪⎩时,b+c+d 等于 ( )A .1B .-1C .0D .i (2010福建理)4.已知全集I =N *,集合A ={x |x =2n ,n ∈N *},B ={x |x =4n ,n ∈N },则( )A .I =A ∪BB .I =(IC A )∪B C .I =A ∪(I C B) D .I =(I C A )∪(I C B )(1996全国理,1)5.已知M,N 为集合I 的非空真子集,且M,N 不相等,若()1,N C M M N ⋂=∅⋃=则( )(A)M (B) N (C)I (D)∅ (2011年高考辽宁卷理科2)6.已知集合11{|,},{|,}623n M x x m m Z N y y n Z ==+∈==-∈,则M 和N 之间的关系为 -----( )A.M =NB.M NC.M ND.不确7.已知全集为R ,集合112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则R A C B =( )A.{}|0x x ≤B.{}|24x x ≤≤C. {}|024x x x ≤<>或D.{}|024x x x <≤≥或 (2013年高考湖北卷(理))二、填空题8.已知全集U R =,集合{}250A x Z x x =∈-+≤,{}40B x x =-<则()U C A B 中最 大的元素是 ▲ .9.已知全集U={1,2,3,4,5,6},集合A={l ,3,5},B={l ,2},则(СU A)∩B = ▲ .10.已知集合{,,lg()}A x xy xy =,集合{0,||,}B x y =,且A B =,则x y +=11.集合{3,2},{,},{2},a A B a b AB A B ====若则 .12.一个集合的所有子集共有n 个,若{}0,1,2,3,4,5n ∈,则n =1,2.413. 已知1a ≤时,集合[],2a a -有且只有3个整数,则a 的取值范围是___________.14.已知集合⎭⎬⎫⎩⎨⎧∈==R x y y A x ,21|,{}R x x y y B ∈-==),1(log |2,则=⋂B A .15.已知全集U ={0,1,2,3}且}2{=A C I ,则集合A 的真子集个数为7 。

新高中数学《集合》专项测试 (717)

新高中数学《集合》专项测试 (717)

高中数学《集合》测试题学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.设全集{}1,2,3,4,5,6,7U =,{}1,2,3,4,5P =,{}3,4,5,6,7Q =,则()U P Q =( ) A .{}1,2 B .{}3,4,5 C .{}1,2,6,7 D .{}1,2,3,4,5(2005浙江文) 2.设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()UN M ⋂=A.{}1,3B. {}1,5C. {}3,5D. {}4,5(2010全国卷1文数)(2)3.设集合{,}A a b =,{,,}B b c d =,则AB =( )A 、{}bB 、{,,}b c dC 、{,,}a c dD 、{,,,}a b c d4.下列4个命题111:(0,),()()23x x p x ∃∈+∞<2:(0,1),p x ∃∈㏒1/2x>㏒1/3x31p :(0,),()2x x ∀∈+∞>㏒1/2x411:(0,),()32x p x ∀∈<㏒1/3x其中的真命题是(A )13,p p ( B )14,p p (C )23,p p (D )24,p p (2009辽宁卷文)5.若集合{}20A x x x =|-<,{|03}B x x =<<,则AB 等于( )A .{}01x x |<<B .{}03x x |<<C .{}13x x |<<D .∅(2008福建文)(1)6.已知集合M={1,2,3,4},N={-2,2},下列结论成立的是 A.N ⊆M B.M ∪N=M C.M ∩N=N D.M ∩N={2}二、填空题7.已知集合A ={-1,0,1,2},B ={-2,0,2,4},则A ∩B =_________.8.已知2{1,},{1,}M y y x x R P x x a a R ==-∈==-∈,则集合M 与P 的关系是 9.已知集合A ={1,k -1},B ={2,3},且A ∩B ={2},则实数k 的值为 ▲ .10.设{|{|A y y B x y ====,则A B ⋂=________; 11.设T S ,是R 的两个非空子集,如果存在一个从S 到T 的函数)(x f y =满足; (i)}|)({S x x f T ∈=;(ii)对任意S x x ∈21,,当21x x <时,恒有)()(21x f x f <. 那么称这两个集合“保序同构”.现给出以下3对集合: ①*,N B N A ==;②}108|{},31|{≤≤-=≤≤-=x x B x x A ; ③R B x x A =<<=},10|{.其中,“保序同构”的集合对的序号是____________(写出所有“保序同构”的集合对的序号) (2013年高考福建卷(文)) 12. 集合A={}2|230x x x --<,B=2|02x x a x -⎧⎫≥⎨⎬-⎩⎭,若B ⊆A,则a 的取值范围是_______.13.已知两个元素的集合2{2,4}A x x =-+- ,若x A ∈,则满足条件的实数x 组成的集合为________;14.已知集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 则m =__________,n = __________.15.已知集合[)1,4A =,(),3B =-∞,,则A B =_________.16.已知集合{}1,3,A m =,{}3,4B =,{}1,2,3,4A B =则m = 2 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

{}
高中数学《集合》测试题
学校:__________ 姓名:__________ 班级:__________ 考号:__________
一、选择题
1.已知集合{
}{}{}5,4,3,7,5,4,2,7,6,5,4,3,2,1===B A U ,则(
)()U
U A B ⋃=( )
(A ){
}6,1 (B ){}5,4 (C ){}7,5,4,3,2 (D ){7,6,3,2,1}(2006年高考重庆理) 2.设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩(U C B )= ( )
A .{2}
B .{2,3}
C .{3}
D . {1,3}(2004全国1
文1)
3.设集合∈<≤=x x x A 且30{N}的真子集...的个数是( ) (A) 16
(B) 8;
(C) 7
(D) 4(2005天津文)
4.设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( ) (A)1 (B)3 (C)4 (D)8(2006辽宁理)
5.若集合{}3,2,1,0=A ,{
}4,2,1=B 则集合=⋃B A A. {}4,3,2,1,0 B. {
}4,3,2,1 C. {}2,1 D.
6.集合{|lg 0}M x x =>,2
{|4}N x x =≤,则M N =( ) A. (1,2) B. [1,2)
C. (1,2]
D. [1,2]
7.已知0>>b a ,全集U=R ,集合M ={b x |<x <
2
b
a +N },={a
b x |<x <a },
P ={b x |<x ≤ab },则N M P ,,满足的关系是---------------------------------------------------------( )
A.P =M ∪N.
B. P=M ∪N .
C.P=M ∩(u C N ).
D. P = (u C M )∩N. 8.已知集合}{
{}1,3,5,7,9,0,3,6,9,12A B ==,则A
B =
(A) }{3,5 (B) }{
3,6
(C) }{3,7 (D) }{
3,9 (2009宁夏海南卷文)
二、填空题
9.设集合102M x x ⎧⎫
=-<⎨⎬⎩⎭
,{}210N x x =+>,则M
N = ▲ .
10. 已知集合{}1 3 5 7U =,,,,{}1 3 7A =,,,{}1 7B =,,则()U C A B ⋂=
11.集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若A B ⊆,则a=__________ 12.已知集合{1,1,2,4},{1,0,2},A B =-=- 则_______,=⋂B A 关键字:求交集;数集
13.设集合}3,1{=A ,集合}5,4,2,1{=B ,则集合=B A
14.已知集合[)1,4A =,(),3B =-∞,,则A B =_________.
15.含三个元素的集合A ,既可表示为{,
,1}b
a a
,也可表示为2{,,0}a a b +,则20132013a b +=________;
16.已知集合{|1}A x x =>,{|12}B x x =-≤≤,则A B = .
17.已知A={a 1,a 2,a 3 ,a 4},B={2
2
2
2
1234,,,a a a a },其中a 1<a 2<a 3<a 4 ,a 1,a 2,a 3 ,a 4∈N , 若A ∩B={a 1,a 4} ,a 1+a 4=10,且A ∪B 所有元素和为124,集合A 为__________。

18.若集合}2,1{-=m A ,且}2{=B A ,则实数m 的值为 。

19.设集合{}
(,)6A x y y ax ==+,集合{}
(,)53B x y y x ==-.若点(1,)()∈b A
B ,则
a b -= .
20.已知集合{}lg M x y x ==,{N x y ==,则M ∩N = .
21.设全集U =R ,集合A =(1,+∞),集合B =(-∞,2)。

则U (A∩B)=__________
22.已知集合A={a 2,a+1,-3},B={a -3,2a -1,a 2
+1},若A ∩B={-3},则a= ;
23.集合{}{}
2320,10,P x x x Q x mx =-+==-=若P Q ⊇,则实数m 的值是
24.集合A ={0,2,a },B ={1,a 2
}.若A B ={0,1,2,4,16},则a 的值为
★ .
25.已知集合A ={x |x >5},集合B ={x |x <a },若A B={x |5<x <6},则实数a 的值
为 .
26.设集合{}
22,A x x x R =-≤∈,{}
2|,12B y y x x ==--≤≤,则
()________R C A B =
27.设全集{1,2,3,4,5}U =,集合{1,3,5}A =,集合{3,4}B =,则()
U C A B = .
28.当两个集合中一个集合为另一个集合的子集时称这两个集合之间构成“全食”,当两个集合有公
共元素,但互不为对方子集时称两个集合之间构成“偏食”.对于集合{}211,,1,|1,02A B x ax a ⎧⎫
=-==≥⎨⎬⎩⎭
, 若A 与B 构成“全食”或构成“偏食”,则a 的取值集合为 .
29.设集合A={3>x x },B={a x x >},且A ⊆B ,则a 的取值范围为 .
30.设集合2
2
2
{(,)|(2),,}A x y x y m x y R =-+≤∈, {(,)|2,,}B x y x y m x y R =+=∈, 若,A B ⋂≠∅ 则实数m 的取值范围是______________. 31.设集合{}{}25,log (3),,(,)R A a B a b a b =+=∈,若{}1A B =,则A B = .
三、解答题
32.记函数)32(log )(
2-=x x f 的定义域为集合M ,函数()g x =的定义
域为集合N .求: (Ⅰ)集合M ,N ;
(Ⅱ)集合N M ,()R C M N .(12分)
33.已知命题:“{}|11x x x ∃∈-<<,使等式2
0x x m --=成立”是真命题,
(1)求实数m 的取值集合M ;
(2)设不等式()(2)0x a x a -+-<的解集为N ,若x ∈N 是x ∈M 的必要条件,求a 的取值范围.(本小题满分14分)
34.已知集合}01{},034{22=-+-==+-=a ax x x B x x x A ,
}01{2=+-=mx x x C ,且C C A A B A =⋂=⋃,,求m a ,的值.
35.已知集合A={}2210,,x
ax x a r x R ++=∈∈∣ (1)若A 中只有一个元素,求a 得值; (2)若A 中至多有一个元素,求a 的取值范围。

36. 设集合22
{430},{10}A x x x B x x ax a =-+==-+-=,且,A B A ⋃=求a 的值.
37.已知集合2
{|(2)10,}A x x p x x R =+++=∈,12{|2
,}x
B y y x R -==∈,若
A B =∅,求实数p 的取值范围。

38.设集合{3},{15}A x a x a B x x x =≤≤+=<->或, (1)若A B ≠∅,则求实数a 的取值范围; (2)若A B A =,则求实数a 的取值范
围;
39.已知集合2514A
x y
x x ,集合)}127lg(|{2---==x x y x B ,集合
}121|{-≤≤+=m x m x C .
(1)求A
B ;
(2)若A C A = ,求实数m 的取值范围. (本小题满分14分)
40.已知集合A={x|x ≤a+3},B={x|x<-1或x>5}.
(1) 若2R a A
C B =-,求;
(2) 若B A ⊆,求a 的取值范围.。

相关文档
最新文档