椭圆_双曲线_抛物线小结

合集下载

圆椭圆双曲线抛物线知识点汇总

圆椭圆双曲线抛物线知识点汇总

圆椭圆双曲线抛物线知识点汇总一、圆椭圆双曲线抛物线的定义1. 圆:圆是平面上到定点距离相等的所有点的集合。

圆由圆心和半径唯一确定。

2. 椭圆:椭圆是平面上到两个定点的距离之和为常数的所有点的集合。

椭圆由两个焦点和两个半轴唯一确定。

3. 双曲线:双曲线是平面上到两个定点的距离之差为常数的所有点的集合。

双曲线由两个焦点和两个实轴唯一确定。

4. 抛物线:抛物线是平面上到定点距离等于到定直线的距离的所有点的集合。

抛物线由焦点和直线唯一确定。

二、圆椭圆双曲线抛物线的方程1. 圆:圆的标准方程为(x-a)² + (y-b)² = r²,其中圆心为(a, b),半径为r。

2. 椭圆:椭圆的标准方程为x²/a² + y²/b² = 1,其中a和b分别为x轴和y轴上的半轴长。

3. 双曲线:双曲线的标准方程为x²/a² - y²/b² = 1或者y²/a² - x²/b² = 1,取决于焦点的位置。

4. 抛物线:抛物线的标准方程为y² = 4ax或者x² = 4ay,取决于抛物线开口的方向。

三、圆椭圆双曲线抛物线的性质1. 圆:圆的直径是圆上任意两点之间的最大距离,且所有直径相等。

2. 椭圆:椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆。

3. 双曲线:双曲线分为两支,每一支的焦点到定点的距离之差相等。

4. 抛物线:抛物线的焦点在抛物线上方,开口方向取决于系数a的正负号。

四、圆椭圆双曲线抛物线的应用1. 圆:在几何中常常与角度和三角函数结合,用于描述正弦和余弦函数的周期性。

2. 椭圆:在天体力学中用于描述行星轨道的形状,以及通信中的极化椭圆。

3. 双曲线:在光学和电磁学中用于描述折射和反射现象。

4. 抛物线:在物理学中用于描述自由落体运动和抛物线运动。

椭圆、双曲线、抛物线知识总结

椭圆、双曲线、抛物线知识总结

一.椭圆二.双曲线四.椭圆、双曲线及抛物线的性质对比(焦点在x轴上)名称椭圆双曲线抛物线定义|PF1|+|PF2|=2a(2a>|F1F2|)||PF1|-|PF2||=2a(2a<|F1F2︱)|PF|= 点F不在直线l上,PM⊥l于M标准方程12222=+byax(a>b>0)12222=-byax(a>0,b>0)y2=2px(p>0)图象几何性质范围byax≤≤,ax≥0≥x顶点),0(),0,(ba±±)0,(a±(0,0)对称性关于x轴,y轴和原点对称关于x轴对称焦点(±c,0 ))0,2(p轴长轴长2a,短轴长2b实轴长2a,虚轴长2b准线cax2±=2px-=通径abAB22=pAB2=渐近线xaby±=...——知识就是力量,学海无涯苦作舟!——不要担心知识没有用,知识多了,路也好选择,也多选择。

比如高考,高分的同学,填报志愿的时候选择学校的范围大,而在分数线左右的就为难了,分数低的就更加不要说了。

再比如,有了知识,你也可以随时炒老板。

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总
椭圆双曲线抛物线是数学中的重要概念,它们的知识点汇总如下:
首先是椭圆,它是一种抛物线,其特征是两个轴的长度不相等,形状像一个椭圆。

它的方程式为:x2/a2 + y2/b2 = 1,其中a为椭圆的长轴,b为椭圆的短轴。

其次是双曲线,它也是一种抛物线,其特征是两个轴的长度相等,形状像一个双曲线。

它的方程式为:x2/a2 - y2/b2 = 1,其中a为双曲线的长轴,b为双曲线的短轴。

最后是抛物线,它是一种曲线,其特征是一个轴的长度为零,形状像一个抛物线。

它的方程式为:y2 = 2px,其中p为抛物线的焦点距离。

椭圆双曲线抛物线是数学中重要的概念,它们的方程式分别为:x2/a2 + y2/b2 = 1(椭圆),x2/a2 - y2/b2 = 1(双曲线),y2 = 2px(抛物线)。

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总椭圆、双曲线、抛物线知识点汇总一、椭圆(Ellipse)1. 定义:椭圆是平面上所有到两个固定点(焦点)距离之和为常数的点的集合。

2. 标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)其中,\(a\) 是椭圆的长半轴,\(b\) 是短半轴。

3. 性质:- 焦点:椭圆上任意一点到两个焦点的距离之和是一个大于两焦点间距离的常数,即 \(2a\)。

- 椭圆的长轴和短轴互相垂直。

- 椭圆的面积 \(A = \pi a b\)。

4. 焦点性质:- 椭圆上任意一点 \(P\) 与两个焦点 \(F_1\) 和 \(F_2\) 构成的三角形中,\(PF_1 + PF_2 = 2a\)。

5. 椭圆的离心率 \(e\):\(e = \frac{c}{a}\)其中,\(c = \sqrt{a^2 - b^2}\) 是焦点到中心的距离。

二、双曲线(Hyperbola)1. 定义:双曲线是平面上所有到两个固定点(焦点)距离之差为常数的点的集合。

2. 标准方程:\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\) 为右开口双曲线;\(\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1\) 为上开口双曲线。

3. 性质:- 焦点:双曲线上任意一点到两个焦点的距离之差是一个小于两焦点间距离的常数,即 \(2a\)。

- 双曲线的两个分支分别位于中心点的两侧。

- 双曲线的面积无限大。

4. 焦点性质:- 双曲线上任意一点 \(P\) 与两个焦点 \(F_1\) 和 \(F_2\) 构成的三角形中,\(PF_1 - PF_2 = 2a\)。

5. 双曲线的离心率 \(e\):\(e = \frac{c}{a}\)其中,\(c = \sqrt{a^2 + b^2}\) 是焦点到中心的距离,且 \(e > 1\)。

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总一、椭圆椭圆是平面内到定点 F1、F2 的距离之和等于常数(大于|F1F2|)的动点 P 的轨迹,F1、F2 称为椭圆的焦点,两焦点的距离|F1F2|称为椭圆的焦距。

1、椭圆的标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。

焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。

2、椭圆的性质范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b\leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。

对称性:椭圆关于 x 轴、y 轴和原点对称。

顶点:焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。

离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e <1\)),它反映了椭圆的扁平程度,\(e\)越接近0,椭圆越接近圆;\(e\)越接近 1,椭圆越扁。

3、椭圆的参数方程焦点在 x 轴上:\(\begin{cases}x = a\cos\theta \\ y =b\sin\theta\end{cases}\)(\(\theta\)为参数)焦点在 y 轴上:\(\begin{cases}x = b\cos\theta \\ y =a\sin\theta\end{cases}\)(\(\theta\)为参数)4、椭圆中的焦点三角形设 P 为椭圆上一点,F1、F2 为焦点,\(\angle F1PF2 =\theta\),则三角形 PF1F2 的面积为\(S = b^2\tan\frac{\theta}{2}\)。

双曲线椭圆抛物线知识总结

双曲线椭圆抛物线知识总结

双曲线椭圆抛物线知识总结双曲线、椭圆和抛物线是二次曲线的三种特殊情况。

它们在数学和物理等领域中有广泛应用,下面是它们的一些基本特点和公式总结。

1. 双曲线:- 定义:双曲线是平面上一组点,使得到两个固定点的距离之差等于一个常数的点的轨迹。

- 方程:标准方程为(x/a)^2 - (y/b)^2 = 1,其中a和b为正常数。

- 焦点和准线:双曲线有两个焦点和两条准线。

焦点是曲线上的特殊点,准线是曲线上的两条无限远直线。

- 对称轴和顶点:双曲线有对称轴和顶点。

对称轴是曲线的对称中线,顶点是曲线的极值点。

- 对称性:双曲线是关于对称轴对称的,即左右对称。

2. 椭圆:- 定义:椭圆是平面上一组点,使得到两个固定点的距离之和等于一个常数的点的轨迹。

- 方程:标准方程为(x/a)^2 + (y/b)^2 = 1,其中a和b为正常数。

- 焦点和准线:椭圆有两个焦点和两条准线。

焦点是曲线上的特殊点,准线是曲线上的两条无限远直线。

- 对称轴和顶点:椭圆有对称轴和顶点。

对称轴是曲线的对称中线,顶点是曲线的极值点。

- 对称性:椭圆是关于对称轴对称的,即左右对称。

3. 抛物线:- 定义:抛物线是平面上一组点,使得到一个固定点的距离与到一条固定直线的距离相等的点的轨迹。

- 方程:标准方程为y = ax^2 + bx + c,其中a、b和c为常数,a ≠ 0。

- 焦点和准线:抛物线有一个焦点和一条准线。

焦点是曲线上的特殊点,准线是曲线上的无限远直线。

- 对称轴和顶点:抛物线有对称轴和顶点。

对称轴是曲线的对称中线,顶点是曲线的极值点。

- 对称性:抛物线是关于对称轴对称的,即左右对称。

以上是双曲线、椭圆和抛物线的基本知识总结,它们的性质和公式还有更多深入的内容,如离心率、焦距、直径等,可作为进一步学习的参考。

(完整版)椭圆,双曲线,抛物线知识点

(完整版)椭圆,双曲线,抛物线知识点
椭圆
标准
方程
(焦点在 轴)
(焦点在 轴)
定 义
第一定义:平面内与两个定点 , 的距离的和等于定长(定长大于两定点间的距离)的点的轨迹叫做椭圆,这两个定点叫焦点,两定点间距离焦距。
第二定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数时,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线是椭圆的准线。
顶点到准线的距离
焦点到准线的距离
焦点弦的几条性质
设直线过焦点F与抛物线 >0)交于 ,
则:(1) =
(2)
(3)通径长:
(4)焦点弦长
直线与抛物线的位置
抛物线 与直线 的位置关系:
利用 转化为一元二次方程用判别式确定。
切线
方程
焦点 ( )到准线 ( )的距离为
焦点 ( )到准线 ( )的距离为
椭圆上到焦点的最大(小)距离
最大距离为:
最小距离为:
相关应用题:远日距离
近日距离
椭圆的参数方程
( 为参数)
( 为参数)
椭圆上的点到给定直线的距离
利用参数方程简便:椭圆 ( 为参数)上一点到直线 的距离为:
直线和椭圆的位置
椭圆 与直线 的位置关系:
焦点 ( )到准线 ( )的距离为
焦点 ( )到准线 ( )的距离为
渐近线
方程
( )
( )
共渐近线的双曲线系方程
( )
( )
直线和双曲线的位置
双曲线 与直线 的位置关系:
利用 转化为一元二次方程用判别式确定。
二次方程二次项系数为零直线与渐近线平行。
相交弦AB的弦长
通径:
过双曲线上一点的切线

椭圆、双曲线、抛物线相关知识点的总结-教师版

椭圆、双曲线、抛物线相关知识点的总结-教师版

椭圆、双曲线、抛物线相关知识点总结一、 椭圆的标准方程及其几何性质椭圆的定义:我们把平面内与两个定点12F F ,的距离的和等于常数()12F F 大于的点的轨 迹叫做椭圆。

符号语言:()12222MF MF a a c +=>将定义中的常数记为a 2,则:①.当122a F F >时,点的轨迹是 椭圆②.当122a F F =时,点的轨迹是 线段 ③.当122a F F <时,点的轨迹 不存在标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图 形性质焦点坐标 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦 距 c F F 221= c F F 221= 范 围 a x ≤,b y ≤b x ≤,a y ≤对 称 性关于x 轴、y 轴和原点对称顶点坐标 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴 长长轴长=a 2,短轴长=b 2;长半轴长=a ,短半轴长=ba b c 、、关系 222a b c =+离 心 率)10(<<=e ace通 径22b a焦点位置不确定的椭圆方程可设为:()2210,0,mx ny m n m n +=>>≠与椭圆12222=+by a x 共焦点的椭圆系方程可设为:()222221x y k b a k b k +=>-++ 二、 双曲线的标准方程及其几何性质双曲线的定义:我们把平面内与两个定点12F F ,的距离的差的绝对值等于常数()12F F 小于 的点的轨迹叫做双曲线。

符号语言:()12-222MF MF a a c =<将定义中的常数记为a 2,则:①.当122a F F <时,点的轨迹是 双曲线②.当122a F F =时,点的轨迹是 两条射线 ③.当122a F F >时,点的轨迹 不存在标准方程22221x y a b -= (0,0)a b >> 22221y x a b -= (0,0)a b >> 图 形性质焦点坐标 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦 距 c F F 221=c F F 221=范 围 x a ≥,y R ∈y a ≥,x R ∈对 称 性 关于x 轴、y 轴和原点对称顶点坐标)0,(a ± ),0(a ±,实轴、虚轴 实轴长=a 2,虚轴长=b 2;实半轴长=a ,虚半轴长=ba b c 、、关系 222c a b =+离 心 率(e 1)ce a=>渐近线方程b y x a =± a y x b=±y oabxxy o a bx yao焦点位置不确定的双曲线方程可设为:()2210mx ny mn -=>与双曲线22221x y a b-=共焦点的双曲线系方程可设为:()2222221x y b k a a k b k -=-<<-+ 与双曲线22221x y a b-=共渐近线的双曲线系方程可设为:()22220x y a b λλ-=≠三、 抛物线的标准方程及其几何性质抛物线的定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等 的点的轨迹叫做抛物线。

完整版)椭圆,双曲线,抛物线知识点

完整版)椭圆,双曲线,抛物线知识点

完整版)椭圆,双曲线,抛物线知识点左老师备战考高基础复资料-椭圆椭圆是平面内与两个定点F1,F2的距离的和等于定长(定长大于两定点间的距离)的点的轨迹。

这两个定点叫焦点,两定点间距离为焦距。

椭圆的标准方程分为焦点在x轴和焦点在y轴的情况,分别为x^2/a^2+y^2/b^2=1和y^2/a^2+x^2/b^2=1,其中a>b>0.椭圆的范围为x≤a。

y≤b或y≤a。

x≤b,顶点坐标为(±a。

0)和(0.±b),对称轴为x轴和y轴,对称中心为原点O(0,0),焦点坐标为F1(c,0)和F2(-c,0)或F1(0,c)和F2(0,-c),其中c为焦距的一半,即c^2=a^2-b^2,离心率为e=c/a,离心率越大,椭圆越扁,离心率越小,椭圆越圆。

椭圆的准线为垂直于长轴且在椭圆外的直线,两准线间的距离为2b,准线方程为x=±a^2/c或y=±b^2/c。

椭圆上的点到焦点的最大(小)距离分别为a+c和a-c,椭圆的参数方程为x=acosθ。

y=bsinθ或x=bcosθ。

y=asinθ,其中θ为参数。

利用参数方程可以简便地求解椭圆上一点到直线Ax+By+C=0的距离,距离公式为d=|Ax+By+C|/√(A^2+B^2)。

注意:文章中的公式可能无法正确显示,建议查看原文。

双曲线是一种常见的曲线形式,其方程可以表示为y=±(b/x)或x=±(b/y),其中a和b为实数。

我们可以将其转化为一元二次方程,用判别式确定其位置关系。

如果二次项系数为零,则直线与渐近线平行。

另外,如果有相交弦AB,则其弦长可以表示为AB=1+k^2(x1+x2)^2-4x1x2,通径为AB=y2-y1.抛物线是另一种常见的曲线形式,其方程可以表示为y^2=2px或x^2=2py,其中p为正实数。

抛物线的焦点是其轨迹上与一定直线距离相等的点,而准线是该直线。

抛物线关于x轴对称,焦点在对称轴上,离心率为1,顶点到准线的距离等于焦点到准线的距离。

椭圆与双曲线知识点总结

椭圆与双曲线知识点总结

椭圆与双曲线知识点总结椭圆和双曲线都是曲线,是数学上的重要概念。

它们在很多地方都有着广泛的应用,特别是在几何学中,它们被广泛使用。

椭圆和双曲线都有一些比较共同的性质,也有一些明显的不同之处。

本文将从一般的基本性质、定义、方程式、参数方程式以及其他应用等方面,总结椭圆与双曲线知识点。

一、椭圆和双曲线的概念椭圆是一种椭圆形状的曲线,它是由两条对称的抛物线连接而成,抛物线的焦点位于椭圆的两个端点上。

椭圆曲线的弦长度相等,它的两个焦点到椭圆上任一点的距离之和是一定值,而两个焦点之间的距离是一定的。

双曲线是一种双曲线形状的曲线,它是由两条相交的抛物线连接而成的,抛物线的焦点位于双曲线的两个端点上。

双曲线的弦长度不相等,它的两个焦点到双曲线上任一点的距离之和是一定值,而两个焦点之间的距离也是一定的。

二、椭圆和双曲线的定义根据椭圆的性质,一般定义椭圆为:椭圆是一种椭圆形状的曲线,它是由两条对称的抛物线连接而成,抛物线的焦点位于椭圆的两个端点上,它的两个焦点到椭圆上任一点的距离之和是一定值,而两个焦点之间的距离是一定的。

双曲线的定义是:双曲线是一种双曲线形状的曲线,它是由两条相交的抛物线连接而成的,抛物线的焦点位于双曲线的两个端点上,它的两个焦点到双曲线上任一点的距离之和是一定值,而两个焦点之间的距离也是一定的。

三、椭圆和双曲线的方程式椭圆的方程式一般可以表示为:$$x=a\cos t,y=b\sin t$$其中,a和b分别为椭圆的长短轴,t为参数。

双曲线的方程式一般可以表示为:$$x=a\cosht,y=b\sinh t$$其中,a和b分别为双曲线的长短轴,t为参数。

四、椭圆和双曲线的参数方程式椭圆的参数方程式可以表示为:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$双曲线的参数方程式可以表示为:$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$五、椭圆和双曲线的性质1.椭圆的长短轴之和是一定值,即$a+b=C$;2.椭圆的长短轴之积也是一定值,即$ab=A$;3.椭圆的弦长度是一定值,即$2\pi a=L$;4.双曲线的长短轴之和是一定值,即$a+b=D$;5.双曲线的长短轴之积也是一定值,即$ab=B$;6.双曲线的弦长度是一定值,即$2\pi a\cosh t=M$;7.椭圆和双曲线都具有对称性,可以通过旋转或对称变换来实现。

圆锥曲线常用二级结论汇总

圆锥曲线常用二级结论汇总

圆锥曲线常用二级结论汇总以下是圆锥曲线常用的二级结论汇总,包括椭圆、双曲线和抛物线的性质和特点。

详细解析如下:1.椭圆(Ellipse):-定义:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。

-主要性质:-焦点与直径关系:椭圆的焦点到任意点的距离之和等于该点到直径的距离之和。

-长轴和短轴:椭圆的长轴是通过两个焦点的直线,短轴是垂直于长轴且通过中心点的直线。

-离心率:椭圆的离心率定义为焦距与长轴长度之比,介于0和1之间。

-对称性:椭圆具有x轴对称和y轴对称性。

2.双曲线(Hyperbola):-定义:双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点P的轨迹。

-主要性质:-焦点与直径关系:双曲线的焦点到任意点的距离之差等于该点到直径的距离之差。

-长轴和短轴:双曲线的长轴是通过两个焦点的直线,短轴是垂直于长轴且通过中心点的直线。

-离心率:双曲线的离心率定义为焦距与长轴长度之比,大于1。

-渐近线:双曲线有两条渐近线,与曲线趋于无穷远时相交。

3.抛物线(Parabola):-定义:抛物线是平面上到定点F的距离等于点P到定直线l的距离的点P的轨迹。

-主要性质:-焦点与直径关系:抛物线的焦点是位于开口方向上的对称点,与焦点距离相等的两条直线互相平行。

-对称性:抛物线具有顶点对称性,焦点、顶点和直线l三者共线。

-方程形式:抛物线的标准方程为y=ax^2+bx+c,其中a为常数且不为0。

4.曲线参数方程:-椭圆的参数方程:x=a*cosθ,y=b*sinθ,其中a和b分别为长轴和短轴的一半,θ是参数。

-双曲线的参数方程:x=a*coshθ,y=b*sinhθ,其中a和b分别为长轴和短轴的一半,θ是参数。

-抛物线的参数方程:x=at^2,y=2at,其中a为常数,t是参数。

5.曲线图像和方程:-椭圆的标准方程:(x/a)^2+(y/b)^2=1,其中a和b分别为长轴和短轴的一半。

-双曲线的标准方程:(x/a)^2-(y/b)^2=1,其中a和b分别为长轴和短轴的一半。

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b x a y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率 )10(<<=e ace )10(<<=e ace 准线2a x c=±2a y c=±参数方程与普通方程22221x y a b +=的参数方程为 ()cos sin x a y b θθθ=⎧⎨=⎩为参数 22221y x a b +=的参数方程为 ()cos sin y a x b θθθ=⎧⎨=⎩为参数3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

圆锥曲线(椭圆、双曲线、抛物线)知识点总结

圆锥曲线(椭圆、双曲线、抛物线)知识点总结

双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长〔<|F 1F 2|〕的点的轨迹〔21212F F a PF PF <=-〔a 为常数〕〕这两个定点叫双曲线的焦点.要注意两点:〔1〕距离之差的绝对值.〔2〕2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-b y a x 〔a >0,b >0〕(焦点在x 轴上);12222=-bx a y 〔a >0,b >0〕(焦点在y 轴上);1. 如果2x 项的系数是正数,那么焦点在x 轴上;如果2y 项的系数是正数,那么焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。

三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b-=>>上220022-=1x y a b ⇔2 直线与双曲线:〔代数法〕设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕;b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,假设0222=-k a babk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;假设2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点;假设k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 2020b x k a y >〔00y ≠〕或2020b x bk a a y << 〔00y ≠〕或b k a <-或k 不存在,直线与双曲线在一支上有两个交点;当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点〔左支一个点右支一个点〕; 3).当点00(,)P x y 在双曲线外部时: 当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =时,过点00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。

最新圆锥曲线-椭圆-双曲线-抛物线-知识点总结-例题习题精讲-详细答案

最新圆锥曲线-椭圆-双曲线-抛物线-知识点总结-例题习题精讲-详细答案

课程星级:★★★★★【椭圆】 一、椭圆的定义1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆。

这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。

注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形。

二、椭圆的方程1、椭圆的标准方程(端点为a 、b ,焦点为c )(1)当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;(2)当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中222b a c -=;2、两种标准方程可用一般形式表示:221x y m n += 或者 mx 2+ny 2=1 三、椭圆的性质(以12222=+by a x )0(>>b a 为例)知能梳理1、对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形;并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

2、范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

3、顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。

③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。

a 和b 分别叫做椭圆的长半轴长和短半轴长。

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结

圆锥曲线(椭圆,双曲线,抛物线)的定义、方程和性质知识总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII2椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a b y a x 中心在原点,焦点在x 轴上)0(12222>>=+b a b xa y 中心在原点,焦点在y 轴上图形范围 x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F)0(221>=c c F F离心率)10(<<=e ace )10(<<=e ace33. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总一、椭圆1、定义平面内与两个定点$F_1$,$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为长半轴长,$b$为短半轴长,$c$为半焦距,满足$c^2 = a^2 b^2$。

(2)焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)。

3、椭圆的性质(1)对称性:椭圆关于$x$轴、$y$轴和原点对称。

(2)范围:对于焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。

(3)顶点:焦点在$x$轴上时,顶点坐标为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上时,顶点坐标为$(0, \pm a)$,$(\pm b, 0)$。

(4)离心率:$e =\frac{c}{a}$($0 < e < 1$),反映了椭圆的扁平程度。

4、椭圆中的重要结论(1)过椭圆焦点的弦长:若弦过焦点$F_1$,则弦长$|AB| = 2a e(x_1 + x_2)$。

(2)椭圆上一点到焦点的距离:设椭圆上一点$P(x_0, y_0)$,两焦点为$F_1$,$F_2$,则$|PF_1| = a + ex_0$,$|PF_2| = aex_0$。

二、双曲线1、定义平面内与两个定点$F_1$,$F_2$的距离之差的绝对值等于常数(小于$|F_1F_2|$)的点的轨迹叫做双曲线。

这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。

2、标准方程(1)焦点在$x$轴上:$\frac{x^2}{a^2} \frac{y^2}{b^2} =1$($a > 0$,$b > 0$),其中$c^2 = a^2 + b^2$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P
F1
y
y
y
P
x
P
y
x
P
F2
x
F2 F1
x
范围 对称轴 对称中心 焦点坐标
x ≥ a, y∈R
y ≥ a , x∈R
x 轴 , y 轴;实轴长为 2a ,虚轴长为 2b
原点 O (0, 0)
F1 (−c, 0)
F2 (c, 0)
F1 (0, −c)
F2 (0, c)
焦点在实轴上, c = 顶点坐标 离心率
2
2
c
顶点 A1 ( A2 )到准线 l 2 ( l1 )的距离为 a + a
c
焦点到准 线的距离 渐近线 方程 共渐近线 的双曲线 系方程
焦点 F1 ( F2 )到准线 l1 ( l 2 )的距离为 c − a
2
2
c
焦点 F1 ( F2 )到准线 l 2 ( l1 )的距离为 a + c
c
y=±
b (虚) x a 实
2 y = 2 px
转化为一元二次方程用判别式确定。
y0 y = p ( x + x0 )
y0 y = − p( x + x0 )
x0 x = p( y + y0 )
x0 x = − p( y + y0 )
四.椭圆、双曲线及抛物线的性质对比(焦点在 x 轴上) 名称 椭圆 |PF1|+|PF2|=2a (2a>|F1F2|) 双曲线 ||PF1|-|PF2|| =2a(2a<|F1F2︱) 抛物线 |PF|= 点 F 不在直 线 l 上,PM⊥l 于 M
y
M
y
F2
M
®®®
F1
O
F2
x
O
x
F1


第二定义:平面内一个动点到一个定点的距离和它到一条定直线的 距离的比是小于 1 的正常数时,这个动点的轨迹叫椭圆,定点是椭 圆的焦点,定直线是椭圆的准线。 y
y
M M
F2
M
F1
F2
x
F1
M
x


x ≤a
y ≤b
x ≤b
y ≤a
顶点坐标 对 称 轴
( ± a,0) (0, ±b)
(0,± a ) (±b, 0)
x 轴, y 轴;长轴长为 2a ,短轴长为 2b
对称中心
原点 O (0, 0)
F1 (c, 0)
焦点坐标
F2 (−c, 0)
F1 (0, c )
F2 (0, −c)
焦点在长轴上, c =
a 2 − b 2 ; 焦距: F1 F2 = 2c
,e =
2
离 心 率
e=
c ( 0 < e < 1) a
Ax + By + C = 0 的距离为: d =
椭圆
x2 y2 + = 1 与直线 y = kx + b 的位置关系: a2 b2
x2 y 2 =1 + 转化为一元二次方程用判别式确定。 直线和椭 利用 a 2 b 2 y = kx + b 圆的位置
相交弦 AB 的弦长 AB = 1 + k 2 (x1 + x2 )2 − 4x1 x2 通径: AB = y2 − y1 过椭圆上 一点的切 线
p ( ,0) 2
准线
x=±
a2 c
x=−
p 2
通径
2b 2 AB = a
AB = 2 p
渐近线
y=±
b x a
——made by lucky 幽☆
x0 x y0 y + 2 = 1 利用导数 a2 b
y0 y x0 x + 2 = 1 利用导数 a2 b
二.双曲线 标准方程(焦点在 x 轴) 双曲线 标准方程(焦点在 y 轴)
x2 y2 − = 1(a > 0, b > 0) a2 b2
y2 x2 − = 1(a > 0, b > 0) a2 b2
c2 a2 − b2 = , a2 a
e 越大椭圆越扁, e 越小椭圆越圆。
x=±
准线方程 准线垂直于长轴,且在椭圆外;两准线间的距离:
a2 c
ቤተ መጻሕፍቲ ባይዱ
y=±
a2 c
2a 2 c
a2 −a 顶点 A1 ( A2 )到准线 l1 ( l 2 )的距离为 c 顶点到准
线的距离 顶点 A1 ( A2 )到准线 l 2 ( l1 )的距离为
三.抛物线
y 2 = 2 px ( p > 0)
抛 物 线 l y
y 2 = −2 px ( p > 0)
y l
x 2 = 2 py ( p > 0)
y
x 2 = −2 py ( p > 0)
y l
O
F
x
F
O
x O
F x l
O F
x
定义
平面内与一个定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛 物线,点 F 叫做抛物线的焦点,直线 l 叫做抛物线的准线。 { M MF =点 M 到直线 l 的距离}
x = a cos ϕ ( ϕ 为参数) y = b sin ϕ
x = b cos ϕ ( ϕ 为参数) y = a sin ϕ
椭圆上的 点到给定 直线的距 离
利用参数方程简便:椭圆
x = a cos ϕ ( ϕ 为参数)上一点到直线 y = b sin ϕ
|Aa cos ϕ + Bb sin ϕ + C| A2 + B 2
一.椭圆 (焦点在 x 轴) 标准 方程 (焦点在 y 轴)
x2 y2 + = 1(a > b > 0) a2 b2
y2 x2 + = 1(a > b > 0) a2 b2
第一定义:平面内与两个定点 F1 , F2 的距离的和等于定长(定长 大于两定点间的距离)的点的轨迹叫做椭圆,这两个定点叫焦点, 两定点间距离焦距。 {M MF1 + MF2 = 2 a} (2 a > F1 F2 )
范围 对称性 焦点
x ≥ 0, y ∈ R
x ≤ 0, y ∈ R
x ∈ R, y ≥ 0
x ∈ R, y ≤ 0
关于 x 轴对称 (
关于 y 轴对称
p ,0) 2
(−
p ,0) 2
(0,
p ) 2
(0, −
p ) 2
焦点在对称轴上 顶点 离心率 准线 方程 顶点到 准线的 距离 焦点到 准线的 距离
x=±
b y a
(虚) 实
x2 y2 − = k (k ≠ 0) a2 b2
y2 x2 − = k (k ≠ 0) a2 b2
x2 y2 双曲线 2 − 2 = 1 与直线 y = kx + b 的位置关系: a b
x2 y 2 =1 − 转化为一元二次方程用判别式确定。 直线和双 利用 a 2 b 2 y = kx + b 曲线的位
a2 +a c a2 −c c a2 +c c
焦点 F1 ( F2 )到准线 l1 ( l 2 )的距离为 焦点到准 线的距离 焦点 F1 ( F2 )到准线 l 2 ( l1 )的距离为 椭圆上到 焦点的最 大(小) 距离 椭圆的参 数方程 最大距离为: a + c 最小距离为: a − c 相关应用题:远日距离 a + c 近日距离 a − c
定义
标准 方程
x 2 y2 + =1 a 2 b2
(a>b>0)
x2 y2 − =1 a2 b2
(a>0,b>0)
y2=2px (p>0)
图象
范围
x ≤ a, y ≤ b
x ≥a
x≥0
顶点 对称性 焦点 几何 性质 轴
(± a,0), (0,±b)
(± a,0)
(0,0) 关于 x 轴对称
关于 x 轴,y 轴和原点对称 ( ± c,0 ) 长轴长 2a, 短轴长 2b 实轴长 2a, , 虚轴长 2b
第一定义:平面内与两个定点 F1 , F2 的距离的差的绝对值是常数 (小于 F1 F2 )的点的轨迹叫双曲线。这两个定点叫做双曲线的焦 点,两焦点的距离叫焦距。 {M MF1 − MF2 = 2 a} (2 a < F1 F2 )
P
F1
y
y
x
y
y
x
P
F2
x
F2 F1
x
定义
第二定义:平面内与一个定点 F 和一条定直线 l 的距离的比是常数 e ,当 e > 1 时,动点的轨迹是双曲线。定点 F 叫做双曲线的焦点, 定直线叫做双曲线的准线,常数 e ( e > 1 )叫做双曲线的离心率。
置 二次方程二次项系数为零直线与渐近线平行。 相交弦 AB 的弦长 AB = 1 + k 2 (x1 + x2 )2 − 4x1 x2 通径: AB = y2 − y1 过双曲线 上一点的 切线
x0 x y 0 y − 2 = 1 或利用导数 a2 b
y0 y x0 x − 2 = 1 或利用导数 a2 b
p2 4
2
y o
A ( x1 , y1 )
x B ( x2 , y2 ) F
(2) y1 y 2 = − p
(3)通径长: 2 p (4)焦点弦长 AB = x1 + x2 + p 抛物线 y 2 = 2 px 与直线 y = kx + b 的位置关系: 利用
相关文档
最新文档