七年级上册数学数轴练习题及答案
【七年级数学】数轴练习题(含答案)
数轴练习题(含答案)§2.2 数轴在线检测1.画一条水平直线,在直线上取一点表示0,叫做_________;•选取某一长度作为________;规定直线上向右的方向为_________,这样就得到了数轴.•我们把上述三方向称为数轴的三要素.所有的有理数都可以用数轴上的______表示.2.数轴上表示负数的点在原点的__________,表示正数的点在原点的_______,原点表示的数是________.3.数轴上表示-2的点离原点的距离是______个单位长度;表示+2•的点离原点的距离是_____个单位长度;数轴上与原点的距离是2个单位长度的点有_______个,它们表示的数分别是________.4.判断下列所画的数轴是否正确,如不正确,请指出.5.在所给的数轴上画出表示下列各数的点2,-3,,0,,5,。
6.指出数轴上A,B,c,D,E,F各点所代表的数字.7.在数轴上画出表示下列各数的点,并回答下列问题.-3,2,-15,-2,0,15,3.(1)哪两个数的点与原点的距离相等?(2)表示-2的点与表示3的点相差几个单位长度?8.将-1所对应的点在数轴上先向右移动4个单位长度,再向左移动5•个单位长度后,得到的点对应的数是什么?基础巩固训练一、选择题1.图1中所画的数轴,正确的是()2.在数轴上,原点及原点左边的点所表示的数是()A.正数 B.负数 c.非负数 D.非正数3.与原点距离是2.5个单位长度的点所表示的有理数是() A.2.5 B.-2.5 c.±2.5 D.这个数无法确定4.关于- 这个数在数轴上点的位置的描述,正确的是()A.在-3的左边 B.在3的右边 c.在原点与-1之间 D.在-1的左边5.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是()A.+6 B.-3 c.+3 D.-96.不小于-4的非正整数有()A.5个 B.4个 c.3个 D.2个7.如图所示,是数a,b在数轴上的位置,下列判断正确的是() A.a 0 B.a 1 c.b -1 D.b -1二、填空题1.数轴的三要素是______ _______.2.数轴上表示的两个数,________边的数总比________边的数大.3.在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.4.有理数a,b,c在数轴上的位置如图所示,用“ ”将a,b,•c•三个数连接起________.5.大于-3.5小于4.7的整数有_______个.6.用“ ”、“ ”或“=”填空.(1)-10______0;(2) ________- ;(3)- _______- ;(4)-1.26________1 ;(5) ________- ;(6)- _______3.14;(7)-0.25______- ;(8)- ________ .7.在数轴上到表示-2的点相距8个单位长度的点表示的数为_________.三、解答题1.画出数轴并标出表示下列各数的点,并用“〈”把下列各数连接起.-3 ,4,2.5,0,1,7,-5.2.如图所示,根据数轴上各点的位置,写出它们所表示的数.3.一个点从数轴上表示-2的点开始,按下列条移动后,到达终点,•说出终点所表示的数,并画图表示移动过程.(1)先向右移动3个单位,再向右移动2个单位.(2)先向左移动5个单位,再向右移动3个单位.(3)先向左移动3.5个单位,再向右移动1.5个单位.(4)先向右移动2个单位,再向左移动6.5个单位.四、创新题1.初一(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下A队-50分;B队150分;c队-300分;D队0分;E队100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并将代表该队的字母标上;(3)从数轴上看A队与B队相差多少分?c队与E队呢?2.超市、书店、•玩具店依次坐落在一条东西走向的大街上,•超市在书店西边a的大小.2.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A,B,c,•D对应的数分别是数a,b,c,d,且d-2a=10,那么数轴的原点应是哪一点?中考题回顾六、中考题1.(7℃,把它们从高到低排列正确的是()A.-10℃,-7℃,1℃; B.-7℃,-10℃,1℃c.1℃,-7℃,-10℃; D.1℃,-10℃,-7℃2.(2.3.(.4.(2答案一、1.D 2.D 3.c 4.D 5.c 6.A 7.D二、1.原点、正方向和单位长度 2.右左 3.右 6 左 8 14 4.ca b • 5.86.(1)(2)(3)(4)(5)(6)(7)= (8)7.6或-10三、1.画图(略) -5 -3 -1 0 1 2.5 4 72.A0 B-1 c4 D-2.5 E2 F-43.如图所示(1)(2)(3)(4)四、1.(1)c队 A队 D队 E队 B队;(2)如图所示(3)A队与B队相差a;(3)当a 0时,a -a.2.B为原点.六、1.c 2. 3. 4.-3 2。
人教版数学七年级上册1.2.2《数轴》训练习题(有答案)
《数轴》基础训练知识点1(数轴的概念及画法)1.关于数轴,下列说法最准确的是()A.—条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.[2017河北石家庄四十一中模拟]以下是四位同学画的数轴,其中正确的是()A. B.C. D.3.下列所画数轴对不对?如果不对,请指出错在哪里.知识点2(数轴上的点与有理数的关系)4.下列说法正确的是()A.所有的有理数都可以用数轴上的点表示B.数轴上表示﹣2的点有2个C.数轴上的点表示的数不是正数就是负数D.数轴上表示﹣a的点一定在原点的左边5.将数轴上表示数〇的点向左移动3个单位长度后,再向右移动1个单位长度,到达点M,则点M表示的数是()A.3B.4C.2D.﹣26.在数轴上,表示+5的点在原点的______侧,距离原点______个单位长度;表示﹣7的点在原点的______侧,距离原点______个单位长度;两点之间的距离为______个单位长度.点P与原点的距离是______.8.如图,数轴上的点M到原点的距离是m,则点M表示的数是______.9.在数轴上表示下列各数:﹣5,0,﹣334,112,﹣2.10.[2018湖南常德澧县一中]快递员骑自行车从快递公司出发,先向西骑行2km 到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到公司.(1)以快递公司为原点,以向东方向为正方向,用0.5cm表示1km,画出数轴,并在该数轴上标出三个村庄的位置;(2)C村离A村有多远?(3)快递员一共骑行了多远?参考答案1.D2.D【解析】A项,没有原点,错误;B项,单位长度不统一,错误;C项,没有正方向,错误.故选D.3.【解析】①②③④所画数轴都不对,⑤所画数轴正确.①错在没有画原点;②错在单位长度不统一;③错在没有单位长度;④错在正方向画反了.4.A【解析】所有的有理数都可以用数轴上的点表示,故A正确;数轴上表示﹣2的点只有1个,故B错误;数轴上的点表示的数可以是正数、负数、0,故C错误;当a=0时,数轴上表示﹣a的点是原点;当a是负数时,数轴上表示的点在原点的右边,故D错误.故选A.5.D【解析】因为将数轴上表示数0的点向左移动3个单位长度后,对应的点表示的数是﹣3,再向右移动1个单位长度,对应的点表示的数是﹣2,即点M表示的数是﹣2.故选D.6.右 5 左7 12所以点P表示的数是﹣6,所以点P与原点的距离是6.8.﹣m【解析】观察题中数轴可知点M在原点的左边,又点M到原点的距离是m,因此点M表示的数是﹣m.9.【解析】在数轴上表示各数,如图所示.10.【解析】(1)如图所示.(2)由题意可知,C村与A村分别位于快递公司的两侧,且C村离快递公司4km,A村离快递公司2km,所以C村与A村的距离为4+2=6(km)(3)快递员一共骑行了2+3+9+4=18(km).《数轴》提升训练1.[2018吉林五中课时作业]数轴上原点及原点右边的点所表示的数是()A.负数B.非负数C.正数D.非正数2.[2018海南海口九中课时作业]如图,在数轴上表示点P到原点的距离为3个单位长度的点是()A点D B.点A C.点D和点A D.点B和点C3.[2018河北邯郸二十五中课时作业]如图,在数轴上点P表示的有理数可能是()A.﹣2.5B.2.5C.﹣1.5D.1.54.[2018河南景德镇五中课时作业]数轴上点A所表示的数是﹣1,将点A沿数轴移动2个单位长度到点B,则点B所表示的数是()A.﹣3B.1C.﹣1或3D.﹣3或15.[2018河南大学附中课时作业]数轴上与原点距离为4.5个单位长度的点所表示的数是______.6.[2018福建福州三牧中学课时作业]到原点的距离不大于3.2的点表示的整数有______个,它们是____________.7.[2018山西太原十二中课时作业]在数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上任意画出一条长为2017cm的线段MN,则线段MN盖住的整点有_____个.8.[2018天津市南开中学课时作业]如图,点A表示﹣4,点D表示﹣5.(1)在数轴上标出原点指出点O;(2)指出点B所表示的数;(3)若C,B两点到原点的距离相等,且C,B两点在原点的两侧,则点C表示什么数?9.[2017湖北黄冈启黄中学月考]如图,已知在纸面上有一数轴.操作一:(1)折叠纸面,使表示1的点与表示﹣1的点重合,则表示﹣2的点与表示___的点重合;操作二:(2)折叠纸面,使表示﹣1的点与表示3的点重合,回答下列问题:①表示5的点与表示___的点重合;②若数轴上A,B两点之间的距离为9(A在B的左侧),且折叠后A,B两点表示的数.10.[2018山西朔州四中课时作业]已知数轴上三点M,O,N表示的数分别为﹣3,0,1,点P为数轴上一点,其表示的数为x.(1)如果点P到点M、点N点的距离相等,那么x的值为多少?(2)数轴上是否存在点P,使点P到点M、点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由.参考答案1.B【解析】因为数轴上原点所表示的数是0,原点右边的点所表示的数是正数,所以数轴上原点及原点右边的点所表示的数是非负数.故选B.2.C【解析】观察题中数轴,可知点A表示的数是﹣3,点D表示的数是3,它们到原点的距离都是3个单位长度,故选C.3.C【解析】由题中数轴,知点P表示的有理数在﹣2与﹣1之间,只有选项C中数﹣1.5符合条件,故选C.4.D【解析】点A所表示的数是﹣1,向右移动2个单位长度得到的点所表示的数是1;向左移动2个单位长度得到的点所表示的数是﹣3.因此点B所表示的数是﹣3或1.故选D.5.4.5或﹣4.5【解析】因为在数轴上表示4.5和﹣4.5的两个点到原点的距离都是4.5个单位长度,所以与原点距离为4.5个单位长度的点所表示的数是4.5或﹣4.5.6.7 ﹣3,﹣2,﹣1,0,1,2,3【解析】因为在数轴上表示﹣3.2和3.2的点到原点的距离均是3.2,所以到原点的距离不大于3.2的点表示的整数有7个,它们是﹣3,﹣2,﹣1,0,1,2,3.7.2017或2018【解析】因为该数轴的单位长度为1cm,所以在数轴上任意画出一条长为1cm 的线段,盖住的整点有1或2个;任意画出一条长为2cm的线段,盖住的整点有2或3个;任意画出一条长为3cm的线段,盖住的整点有3或4个……所以任意画出一条长为2017cm的线段时,盖住的整点有2017或2018个.8.【解析】(1)如图所示.(2)点B所表示的数是3.(3)点C表示﹣3.9.【解析】(1)2因为表示1的点与表示﹣1的点重合,所以折痕经过的点为表示0的点,所以表示﹣2的点与表示2的点重合.(2)①﹣3因为表示﹣1的点与表示3的点重合,所以折痕经过的点为表示1的点,所以表示5的点与表示﹣3的点重合.②因为A,B两点之间的距离为9,且折叠后A,B两点重合,所以A,B两点到折痕经过的点的距离均为4.5,由①知折痕经过的点为表示1的点,又A在B 的左侧,所以点A表示的数为﹣3.5,点B表示的数为5.5.10.【解析】(1)根据三点M,O,N表示的数,得出点N,M之间的距离为4个单位长度,因为点P到点M、点N的距离相等,所以点P在点M右边,且离点M 2个单位长度,由点M表示的数为﹣3,可知点P表示的数为﹣1,所以x的值是﹣1.(2)存在点P,x的值为﹣3.5或1.5.由点P到点M、点N的距离之和为5,可知点P在点M的左边或点N的右边.①当点P在点M的左边时,点P到点M的距离为54122-==0.5,所x=﹣3.5;②当点P在点N的右边时,点P到点N的距离为54122-==0.5,所以x=1.5.综上x的值为﹣3.5或1.5.《数轴》典型例题数轴的概念虽简单,但初学者也会因疏忽犯下一些小错误,而数轴作为中学数学的基本工具又是非常重要的,这里通过一些例题来纠正一些容易出现的典型错误一、数轴概念例1 回答问题:下图中哪一个表示数轴?不是数轴的请说出原因.分析:数轴的三要素原点、正方向和单位长度,这三者对于数轴来说是缺一不可.解:根据数轴的三要素:图(1)是数轴,它是具备了原点、正方向和单位长度的直线.图(2)不是数轴,因为单位长度不一致.图(3)不是数轴,因为没有原点和单位长度.图(4)不是数轴,因为它是射线,不是直线.图(5)不是数轴,有两处错误,一是没有标明正方向;二是负数的排序错误,从原点向左依次应是-1,-2,-3,….说明:识别一个图形是否是数轴,方法是第一,这个图形是一条直线;第二,这条直线要满足三要素.即原点、正方向和单位长度,缺一不可.二、数轴及数轴上的点例2在所给的数轴上画出表示下列各数的点:分析:第一步画数轴,第二步在数轴上找出相对应的点,每个正有理数都可用数轴上原点右边的一个点来表示,例如2、3.5,可用数轴上分别位于原点右边2个单位,3.5个单位的点表示.每一个负有理数都可用数轴上原点左边的一个点来表示,解:说明:数轴上表示数的点可用大写字母标出,写在数轴上方所对应数的上面,原点用O 标出,它表示数0.数轴上原点的位置要根据需要来确定,不一定要居中.单位长度应根据需要来确定,1 cm 的长度可以表示1个单位长度,也可以表示2个,5个,10个…单位长度,但在同一数轴上,单位长度必须一致,不可随意改变.变式练习:指出数轴上A 、B 、C 、D 、E 各点分别表示什么数.参考答案:O 表示0,A 表示322-,B 表示1,C 表示413,D 表示-4,E 表示-0.5. 三、数轴上的点与原点的关系例3 填空(1)数轴上表示2的点在原点的_____边,与原点的距离是____个单位长度.(2)数轴上表示-2的点在原点的____边,与原点的距离是___个单位长度.(3)数轴上在原点右边距原点3.7个单位长度的点表示数_______.(4)数轴上在原点左边距原点85个单位长度的点表示数______. (5)数轴上距原点2个单位长度的点有_____个,它们分别表示数______. 分析:数轴上,表示正数的点都在原点的右边,表示负数的点都在原点的左边.距离不会是负数.答案:(1)右,2 (2)左,2 (3)3.7 (4)85- (5)2,+2和-2 说明:①可以画数轴来加深认识.②数轴上表示3的点在原点的右边,表示-3的点在原点的左边,它们与原点的距离都是3个单位长度;同样,数轴上表示2 018的点在原点的右边,表示-2 018的点在原点的左边,它们与原点的距离都是2 018个单位长度.即如果a 表示一个正数,则数轴上表示数a 的点在原点的右边,它与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度.③如果a 表示一个正数,数轴上距原点a 个单位长度的点有2个,它们分别是数a 和-a .。
初一上册数学《数轴》试题及答案
初⼀上册数学《数轴》试题及答案 进⼊到初⼀后,要如何去学好数学这⻔功课呢?平时要怎样做练习呢?别着急,接下来不妨和店铺⼀起来做份初⼀上册数学《数轴》试题,希望对各位有帮助! 初⼀上册数学《数轴》试题及答案 ⼀、选择题(共24⼩题) 1.﹣5的相反数是( )A.5B.C.﹣5D. 【考点】相反数. 【专题】计算题. 【分析】只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等. 【解答】解:﹣5的相反数是5. 故选A. 【点评】本题主要考查相反数的概念和意义:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等. 2.﹣6的相反数是( )A.﹣6B.6C.﹣D. 【考点】相反数. 【分析】根据相反数的概念解答即可. 【解答】解:﹣6的相反数是6, 故选:B. 【点评】本题考查了相反数的意义,⼀个数的相反数就是在这个数前⾯添上“﹣”号;⼀个正数的相反数是负数,⼀个负数的相反数是正数,0的相反数是0. 3.﹣5的相反数是( ) A. B.﹣5 C. D.5 【考点】相反数. 【分析】直接根据相反数的定义求解. 【解答】解:﹣5的相反数是5. 故选D. 【点评】本题考查了相反数:a的相反数为﹣a. 4.﹣2是2的( )A.相反数B.倒数C.绝对值D.算术平⽅根 【考点】相反数. 【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可直接得到答案. 【解答】解:﹣2是2的相反数, 故选:A. 【点评】此题主要考查了相反数,关键是掌握相反数的概念. 5.﹣3的相反数是( )A.﹣3B.﹣C.D.3 【考点】相反数. 【专题】常规题型. 【分析】根据只有符号不同的两个数互为相反数解答. 【解答】解:﹣3的相反数是3. 故选:D. 【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键. 6.2014的相反数是( ) A. B.﹣ C.﹣2014 D.2014 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:2014的相反数是﹣2014, 故选:C. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 7.﹣的相反数是( ) A. B.﹣ C.7 D.﹣7 【考点】相反数. 【专题】常规题型. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:﹣的相反数是, 故选:A. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 8.有理数﹣3的相反数是( )A.3B.﹣3C.D.﹣ 【考点】相反数. 【专题】常规题型. 【分析】根据相反数的意义,只有符号不同的数为相反数. 【解答】解:﹣3的相反数是3. 故选:A. 【点评】本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0. 9.﹣的相反数是( ) A. B.﹣ C.5 D.﹣5 【考点】相反数. 【分析】求⼀个数的相反数,即在这个数的前⾯加负号. 【解答】解:﹣的相反数是 . 故选:A. 【点评】本题考查了相反数的意义,⼀个数的相反数就是在这个数前⾯添上“﹣”号.⼀个正数的相反数是负数,⼀个负数的相反数是正数,0的相反数是0.学⽣易把相反数的意义与倒数的意义混淆. 10.4的相反数是( )A.4B.﹣4C.D. 【考点】相反数. 【分析】根据相反数的性质,互为相反数的两个数和为0,采⽤逐⼀检验法求解即可. 【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4. 故选:B. 【点评】主要考查相反数的性质. 相反数的定义为:只有符号不同的两个数互为相反数,0的相反数是0. 11.﹣的相反数是( ) A. B.﹣ C.﹣2 D.2 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:﹣的相反数是, 故选:A. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 12.2014的相反数是( )A.2014B.﹣2014C.D. 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:2014的相反数是﹣2014. 故选:B. 【点评】本题考查了相反数的概念,在⼀个数的前⾯加上负号就是这个数的相反数. 13.﹣的相反数是( )A.2B.C.﹣2D.﹣ 【考点】相反数. 【分析】根据相反数的定义,只有符号不同的两个数是互为相反数,﹣的相反数为 . 【解答】解:与﹣符号相反的数是,所以﹣的相反数是 ; 故选:B. 【点评】本题主要相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a. 14.a(a≠0)的相反数是( )A.﹣aB.a2C.|a|D. 【考点】相反数. 【分析】直接根据相反数的定义求解. 【解答】解:a的相反数为﹣a. 故选:A. 【点评】本题考查了相反数:a的相反数为﹣a,正确掌握相反数的定义是解题关键. 15.2的相反数是( )A.1B.C.﹣2D. 【考点】相反数. 【专题】常规题型. 【分析】根据⼀个数的相反数就是在这个数前⾯添上“﹣”号,求解即可. 【解答】解:2的相反数是﹣2. 故选:C. 【点评】本题考查了相反数的意义,⼀个数的相反数就是在这个数前⾯添上“﹣”号:⼀个正数的相反数是负数,⼀个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆. 16.若⼀个数的相反数是3,则这个数是( )A.﹣B.C.﹣3D.3 【考点】相反数. 【分析】两数互为相反数,它们的和为0. 【解答】解:设3的相反数为x. 则x+3=0, x=﹣3. 故选:C. 【点评】本题考查的是相反数的概念,两数互为相反数,它们的和为0. 17.﹣的相反数是( )A.﹣B.C.﹣5D.5 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:﹣的相反数是, 故选:B. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 18.实数﹣的相反数是( )A.﹣2B.C.2D.﹣|﹣0.5| 【考点】相反数. 【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数即可得到答案. 【解答】解:﹣的相反数是, 故选:B. 【点评】此题主要考查了相反数,正确把握相反数的概念即可. 19. 的相反数是( ) A. B. C.﹣ D.﹣ 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:的相反数是﹣, 故选:D. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 20. 的相反数是( ) A. B.﹣2 C. D.2 【考点】相反数. 【专题】计算题. 【分析】根据相反数的定义进⾏解答即可. 【解答】解:由相反数的定义可知,﹣的相反数是﹣(﹣ )= . 故选:C. 【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数. 21.3的相反数是( )A.3B.C.﹣3D.﹣ 【考点】相反数. 【分析】根据相反数的定义,即可解答. 【解答】解:3的相反数是﹣3,故选:C. 【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义. 22.﹣6的相反数是( )A.6B.﹣6C.D. 【考点】相反数. 【分析】根据相反数的定义,即可解答. 【解答】解:﹣6的相反数是6,故选:A. 【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义. 23. 的相反数是( ) A. B.﹣ C.3 D.﹣3 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数求解后选择即可. 【解答】解:﹣的相反数是 . 故选:A. 【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键. 24. 的相反数是( ) A. B.﹣ C.2 D.﹣2 【考点】相反数. 【专题】计算题. 【分析】根据相反数的概念解答即可. 【解答】解:的相反数是﹣,添加⼀个负号即可. 故选:B. 【点评】本题考查了相反数的意义,⼀个数的相反数就是在这个数前⾯添上“﹣”号;⼀个正数的相反数是负数,⼀个负数的相反数是正数,0的相反数是0. ⼆、填空题(共6⼩题) 25.﹣的相反数是 . 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:﹣的相反数是, 故答案为: . 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 26. a的相反数是﹣9,则a= 9 . 【考点】相反数. 【分析】根据相反数定义解答即可. 【解答】解:∵a的相反数是﹣9, ∴a=9. 故答案为:9. 【点评】此题考查了相反数的定义,只有符号不同的两个数,称为互为相反数,其中的⼀个数是另⼀个的相反数. 27.﹣的相反数是 . 【考点】相反数. 【分析】求⼀个数的相反数就是在这个数前⾯添上“﹣”号. 【解答】解:﹣的相反数是﹣(﹣ )= . 故答案为: . 【点评】本题考查了相反数的意义,⼀个数的相反数就是在这个数前⾯添上“﹣”号; ⼀个正数的相反数是负数,⼀个负数的相反数是正数,0的相反数是0.学⽣易把相反数的意义与倒数的意义混淆. 28. 3的相反数为 ﹣3 . 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:3的相反数为﹣3, 故答案为:﹣3. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 29.﹣2014的相反数 2014 . 【考点】相反数. 【专题】常规题型. 【分析】根据只有符号不同的两个数互为相反数,可得答案. 【解答】解:∵﹣2014的相反数是2014, 故答案为:2014. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 30. 2014的相反数是 ﹣2014 . 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:2014的相反数是﹣2014, 故答案为:﹣2014. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数.看了"初⼀上册数学《数轴》试题及答案"的⼈还看:1.2016七年级下册数学第七章检测试题2.2016七年级下册数学练习题3.2016七年级下册数学题4.2016年数学七年级下册配套练习册答案。
1.2.2 人教版七年级上册数学 第一章《有理数》数轴 专题训练含答案及解析
简单1、在数轴上,一点从原点开始,先向右移动2个单位,再向左移动3个单位后到达终点,这个终点表示的数是()A.-1 B.1 C.5 D.-5 【分析】根据向右移动用加,向左移动用减进行计算,列式求解即可.【解答】根据题意,0+2-3=-1,∴这个终点表示的数是-1.故选A.2、在数轴上表示数-3,0,2.5,0.4的点中,不在原点右边的有()A.0个B.1个C.2个D.3个【分析】根据2.5,0.4是正数,在原点右边,-3是负数,在原点左边,0在在原点,即可求得答案.【解答】∵2.5,0.4是正数,在原点右边,-3是负数,在原点左边,0在在原点,∴不在原点右边的有:-3和0.故选C.3、如图所示,数轴上A、B两点所表示的有理数的和是()A.3 B.2 C.1 D.-1 【分析】根据图示找出点A、B所表示的有理数,然后求它们的和即可.【解答】根据图示知,数轴上A、B两点所表示的有理数是-3和2,所以它们的和为:(-3)+2=-1;故选C.4、已知数轴上的A点到原点的距离是2,那么在数轴上到A点的距离是3的点所表示的数有()A.1个B.2个C.3个D.4个【分析】本题要先对A点所在的位置进行讨论,得出A点表示的数,然后分别讨论所求点在A的左右两边的两种情况,即可得出答案.【解答】∵数轴上的A点到原点的距离是2,∴点A可以表示2或-2.(1)当A表示的数是2时,在数轴上到A点的距离是3的点所表示的数有2-3=-1,2+3=5;(2)当A表示的数是-2时,在数轴上到A点的距离是3的点所表示的数有-2-3=-5,-2+3=1.故选D.5、在数轴上,点M表示的数是-2,将它先向右移动4.5个单位,再向左移5个单位到达点N,则点N表示的数是___________.【分析】根据数轴上左加右减的原则进行解答即可.【解答】数轴上表示-2的点先向右移动4.5个单位的点为:-2+4.5=2.5;再向左移动5个单位的点为:2.5-5=-2.5.故答案为:-2.5.6、如果数轴上点A所对应的有理数是−112,那么数轴上距A点5个单位长度单位的点所对应的有理数是多少?【分析】设距A点5个单位长度单位的点所对应的有理数是x,再根据数轴上两点间的距离公式求出x的值即可.【解答】设距A点5个单位长度单位的点所对应的有理数是x,则1152x+=,解得72x=或132x=-.答:数轴上距A点5个单位长度单位的点所对应的有理数是72或132-.简单题1.如图:下面给出的四条数轴中画得正确的是()A.B.C.D.【分析】根据数轴的三要素来判断数轴是否正确.数轴三要素:原点,正方向,单位长度.【解答】A、没有原点,故错误;B、三要素完整,故正确;C、0的左边应该是负数,右边是正数,故错误;D、单位长度不一致,故错误.故选B.2. 下列说法正确的是()A.有原点、正方向的直线是数轴B.数轴上两个不同的点可以表示同一个有理数C.有些有理数不能在数轴上表示出来D.任何一个有理数都可以用数轴上的点表示【分析】根据数轴的定义及意义,依次分析选项可得答案.【解答】根据题意,依次分析选项可得,A、根据数轴的概念,有原点、正方向且规定了单位的直线是数轴,A错误;又由实数与数轴上的点是一一对应的,故B、C均错误;D、实数与数轴上的点是一一对应的,即任何一个有理数都可以用数轴上的点表示,正确;故选D.3. 在数轴上,原点右边的点表示()A.正数B.负数C.整数D.非负数【分析】在数轴上,原点右边的数是正数,原点左边的数是负数,原点表示0,根据以上内容选出即可.【解答】在数轴上,原点右边的数是正数,故选A.4. 设a是一个负数,则数轴上表示数-a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【分析】根据数轴的相关概念解题.【解答】因为a是一个负数,则-a是一个正数,二者互为相反数,-a在原点的右边.故选B.5.数轴上找不到既不表示正数也不表示负数的点.A.正确B.错误解答:原点既不表示正数,也不表示负数,它表示0.故选B.6.所有的有理数都可以用数轴上的点来表示.A.正确B.错误解答:有理数与数轴上的点是一一对应的.故选A.7.数轴上表示—a的点一定在原点的左边.A.正确B.错误解答:当a为负数时,—a就是正数,这时表示的点就在原点的右边.故选B.难题1. 数轴上,对原点性质表述正确的是()A.表示0的点B.开始的一个点C.数轴中间的一个点D.它是数轴上的一个端点【分析】理解原点是表示0的点,由此分析即可得出正确选项.【解答】在数轴上,我们把原点定义为表示0的点.故选A.2. 下列结论正确的个数是()①规定了原点、正方向和单位长度的直线叫数轴;②同一数轴上的单位长度都必须一致;③有理数都可以表示在数轴上;④数轴上的点都表示有理数.A.0 B.1 C.2 D.3【分析】根据数轴的定义对各小题进行逐一判断即可.【解答】①符合数轴的定义,故本小题正确;②同一数轴上的单位长度都必须一致是数轴的特点,故本小题正确;③有理数都可以表示在数轴上,故本小题正确;④数轴上的点都表示实数,故本小题错误.故选D.3. 数轴上原点及原点左边的点表示的数是()A.负整数B.正整数C.负数D.负数和0 【分析】根据数轴的特点进行解答即可.【解答】∵数轴上右边的数总比左边的大,∴原点左边的点表示的数都小于0,∴原点左边的点表示的数是负数;∴数轴上原点及原点左边的点表示的数是负数和0;故选D.4.下列语句:1.数轴上的点只能表示整数;2.数轴是一条线段;3.数轴上的一个点只能表示一个数;4.数轴上找不到既不表示正数又不表示负数的点。
七年级数学上册《数轴、相反数、绝对值》专题练习(含答案)
七年级数学上册《数轴、相反数、绝对值》专题练习(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.-5的绝对值为( )A.-5 B.5 C.-15D.152.-18的相反数是( )A.-8 B.18C.0.8 D.83.在下面所画的数轴中,你认为正确的数轴是( )4.下列说法正确的是( )A.正数与负数互为相反数B.符号不同的两个数互为相反数C.数轴上原点两旁的两个点所表示的数互为相反数D.任何一个有理数都有它的相反数5.数轴上的点A,B位置如图所示,则线段AB的长度为( )A.-3 B.5 C.6 D.7 6.若a=7,b=5,则a-b的值为( )A.2 B.12C.2或12 D.2或12或-12或-2 7.实数a,b在数轴上的位置如图所示,以下说法正确的是()A . a +b =0B . b <aC . a b >0D . |b |<|a |8.下列式子不正确的是 ( )A .44-=B .1122=C .00=D . 1.5 1.5-=-9.如果有理数a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,d 是倒数等于它本身的数,那么式子a -b +c 2-d 的值是 ( )A .-2B .-1C .0D .110.如果abcd<0,a +b =0,cd>0,那么这四个数中的负因数至少有 ( )A .4个B .3个C .2个D .1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-112的相反数是______;-2是______的相反数;_______与110互为倒数. 13.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A ,B 表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x 的值,使1x -=x -1成立,你写出的x 的值是______.17.若x ,y 是两个负数,且x<y ,那么x _______y .18.如图,数轴上的A ,B ,C 三点所表示的数分别是a ,b ,c ,其中AB =BC ,若a >b >c ,则该数轴的原点O 的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-135,-(+6.3),+(-32),12,312.20.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:(2)用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.-132,4 ,2.5,0,1,-(-7),-5,-112.21.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A队与B队相差多少分?C队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x的点与表示数1的点的距离等于1,其几何意义可表示为:x-=1,这样的数x可以是0或2.1x-=2的几何意义可仿上解释为:在数轴上____________________________,(1)等式2其中x 的值可以是______________.(2)等式3x +=2的几何意义可仿上解释为:在数轴上____________________________,其中x 的值可以是______________.(3)在数轴上,表示数x 的点与表示数5的点的距离等于6,其中x 的值可以是_______,其几何意义可以表示为_______.24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x 的相反数是_______,m +12n 的相反数是_______.(2)数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=12(2+6),那么到点100和到点999距离相等的点表示的数是_______;到点m 和点-n 距离相等的点表示的数是_______.(3)数轴上点4和点9之间的距离为5个单位,有这样的关系5=9-4,那么点10和点-3之间的距离是_______;点m 和点n 之间的距离是_______.25.(6分)设0a b c ++=,0abc >,求b c c a a b a b c+++++的值。
七年级数学上册《数轴》同步练习题(附答案)
七年级数学上册《数轴》同步练习题(附答案)一、选择题1、如图所示的图形为四位同学画的数轴,其中正确的是( )A .B .C .D .2、如图,数轴上被墨水遮盖的数可能是( )A . 3.2-B .3-C .2-D .0.5-3、如图,在数轴上有A ,B ,C ,D 四个点,对它们表示的数,叙述正确的是( )A .点D 表示的数为﹣2.5B .点C 表示的数为﹣1.5 C .点B 表示的数为0.5D .点A 表示的数为1.254、如图的数轴被墨迹盖住一部分,被盖住的整数点有( )A .7个B .8个C .9个D .10个5、点123,,,,n A A A A (n 为正整数)都在数轴上,点1A 在原点O 的左边,且11A O =;点2A 在点1A 的右边,且212A A =;点3A 在点2A 的左边,且323A A =;点4A 在点3A 的右边,且434A A =;…,依照上述规律,点20182019,A A 所表示的数分别为 ( )A .2018,-2019B .1009,-1010C .-2018,2019D .-1009,1009二、填空题 6、已知在数轴上,位于原点左边的点A 到原点的距离是8,那么点A 所表示的数是______.7、如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是______.8、数轴上,到2这个点的距离等于3的点所表示的数是__________.9、正整数、0、负整数统称__________;正分数和负分数统称____________;整数和分数统称_________.10、画一条______,在直线上取一点表示0,并把这个点叫作_______,选取某一长度作为______,规定直线上向右的方向为_______,就得到_______.11、规定了______、______和_______的______叫数轴.12、在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.13、在数轴上到表示-2的点相距8个单位长度的点表示的数为_____.三、解答题,-0.514、已知下列有理数:-4,2,-3.5,0,-2,312(1)在数轴上标出这些有理数表示的点;(2)设表示-0.5的点为A,那么与A点的距离相差4个单位长度的点所表示的数是多少?15、一辆货车从超市出发,向东走了3千米到达A地,继续向东走25千米到达B地,然后向西走了10千米到达C地,最后回到超市。
七年级初一上册数学人教版《数轴》 练习试题 测试卷(含答案)(1)
《1.2.2数轴》课时练一、选择题1.在下列图中,正确画出的数轴是()A.B.C.D.2.如图,数轴的单位长度为1,如果点A表示的数是﹣1,那么点B表示的数是()A.4B.3C.2D.13.如图,数轴上点A对应的数是,将点A沿数轴向左移动3个单位至点B,则点B对应的数是()A.﹣B.﹣2C.3D.4.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣35.下列四个数表示在数轴上,它们对应的点中,离原点最近的是()A.﹣2B.1.3C.﹣0.4D.0.66.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.107.在数轴上从左到右有A,B,C三点,其中AB=1,BC=2,如图所示.设点A,B,C 所对应数的和是x,则下列说法错误的是()A.若以点A为原点,则x的值是4B.若以点B为原点,则x的值是1C.若以点C为原点,则x的值是﹣4D.若以BC的中点为原点,则x的值是﹣2 8.有理数a在数轴上的对应点的位置如图所示,如果有理数b满足a<b<﹣a,那么b的值可以是()A.2B.3C.﹣1D.﹣2二、填空题9.数轴上的点A表示的数为﹣10,点B表示的数为﹣4,则A、B之间的距离为.10.已知在数轴上点A所表示的数是﹣2,如果将点A向左移动3个单位长度得到点B,那么点B所表示的数是.11.已知A,B是数轴上的两点,且AB=4.5,点B表示的数为1,则点A表示的数为.12.在数轴上,表示数a的点在原点的左侧,距离原点4个单位长度,则a=.13.如果数轴上的点A对应的有理数为﹣4,那么与A相距四个单位长度的点所对应的有理数为.14.数轴上表示整数的点称为整点.某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2020cm的线段AB,则盖住的整点的个数是.15.有理数a、b在数轴上的位置如图所示,则a、b大小是:a b.16.在数轴上,已知点A所表示的数为﹣2,则点A移动4个单位长度后所表示的数是.17.一个点从数轴上的原点开始,先向右移动1个单位长度,再向左移动2个单位长度,再向右移动3个单位长度,再向左移动4个单位长度,……,移动2020次后,该点所对应的数是.18.小明写作业时不小心将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有个.三、解答题19.已知下列有理数:.(1)这些有理数中,整数有个,非负数有个;(2)画数轴,在数轴上找出这些数所在的位置,并标出相应的点.20.某高速公路养护小组,乘车沿南北方向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下:(单位:km)﹣9,+7,﹣13,﹣3,+11,﹣6,+16,﹣8,+4,+14.(1)养护过程中,最远处离出发点有km.(2)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(3)若汽车耗油为0.6L/km,则这次养护共耗油多少升?21.李老师进行家访,从学校出发,先向西开车行驶4km到达A同学家,继续向西行驶7km 到达B同学家,然后又向东行驶15km到达C同学家,最后回到学校.(1)以学校为原点,以向东方向为正方向,用1个单位长度表示1km,画出数轴,并在数轴上表示出A、B、C三个同学的家的位置.(2)A同学家离C同学家有多远?(3)李老师一共行驶了多少km?22.根据如图给出的数轴,解答下面的问题:(1)点A表示的数是,点B表示的数是.若将数轴折叠,使得A与﹣5表示的点重合,则B点与数表示的点重合;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)已知M点到A、B两点距离和为8,求M点表示的数.参考答案1.B 2.B 3.D 4.D 5.C 6.D 7.C 8.C9.6 10.﹣5 11.﹣3.5或5.5 12.﹣4 13.0或﹣814.2020或2021 15.<16.﹣6或2 17.﹣1010 18.619.解:(1)整数有﹣(﹣3),﹣3,0,+4,共4个,非负数有﹣(﹣3),0,+4,共3个.故答案为:4,3.(2)如图所示:20.解:(1))|﹣9+7|=2(千米),|﹣2+(﹣13)|=15(千米),|﹣15+(﹣3)|=18(千米),|﹣18+11|=7(千米),|﹣7+(﹣6)|=13(千米),|﹣13+16|=3(千米),|3+(﹣8)|=5(千米),|﹣5+4|=1(千米),|﹣1+14|=13(千米),最远处离出发点有18千米.故答案为:18.(2)(﹣9)+7+(﹣13)+(﹣3)+11+(﹣6)+16+(﹣8)+4+14=13(千米),答:养护小组最后到达的地方在出发点的北方距出发点13千米;(3)(|﹣9|+7+|﹣13|+|﹣3|+11+|﹣6|+16+|﹣8|+4+14)×0.6=91×0.6=54.6.(升),答:这次养护共耗油54.6升.21.解:(1)如图:(2)4﹣(﹣4)=8(km).答:A同学家离C同学家有8km.(3)4+7+15+4=30(km).答:李老师一共行驶了30km.22.解:(1)根据题意得:点A表示的数是1,点B表示的数是﹣3.将数轴折叠,使得A与﹣5表示的点重合,则B点与数﹣1表示的点重合;故答案为:1;﹣3;﹣1;(2)在A的左边时,1﹣4=﹣3,在A的右边时,1+4=5,所表示的数是﹣3或5;故答案为:﹣3或5;(3)∵M点到A、B两点距离和为8,设点M对应的数是x,当点M在点A右边时,x﹣(﹣3)+x﹣1=8,解得x=3;当点M在点B左边时,(﹣3)﹣x+1﹣x=8,解得x=﹣5.∴M点表示的数为3或﹣5.。
【七年级数学】数轴练习题(含答案)
【七年级数学】数轴练习题(含答案)数轴练题(含答案)§2.2数轴在线检测1.画一条水平直线,在直线上取一点表示,叫做_________;•选取某一长度作为________;规定直线上向右的方向为_________,这样就得到了数轴.•我们把上述三方向称为数轴的三要素.所有的有理数都可以用数轴上的______表示.2.数轴上表示负数的点在原点的__________,表示正数的点在原点的_______,原点表示的数是________.3.数轴上表示-2的点离原点的距离是______个单位长度;表示+2•的点离原点的距离是_____个单位长度;数轴上与原点的距离是2个单位长度的点有_______个,它们表示的数分别是________.4.判断下列所画的数轴是否正确,如不正确,请指出.5.在所给的数轴上画出表示下列各数的点2,-3,,,,5,。
6.指出数轴上A,B,c,D,E,F各点所代表的数字.7.在数轴上画出透露表现以下各数的点,并回答以下问题.-3,2,-15,-2,,15,3.(1)哪两个数的点与原点的距离相等?(2)表示-2的点与表示3的点相差几个单位长度?8.将-1所对应的点在数轴上先向右移动4个单元长度,再向左移动5•个单元长度后,获得的点对应的数是什么?根蒂根基牢固训练一、挑选题1.图1中所画的数轴,正确的是()2.在数轴上,原点及原点左侧的点所透露表现的数是()A.正数B.负数c.非负数D.非正数3.与原点距离是2.5个单位长度的点所表示的有理数是()A.2.5 B.-2.5 c.±2.5 D.这个数无法确定4.关于-这个数在数轴上点的位置的描述,正确的是()A.在-3的左侧B.在3的右边c.在原点与-1之间D.在-1的左侧5.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是()A.+6 B.-3 c.+3 D.-96.不小于-4的非正整数有()A.5个B.4个c.3个D.2个7.如图所示,是数a,b在数轴上的位置,下列判断正确的是()A.a 0 B.a 1 c.b -1 D.b -1二、填空题1.数轴的三要素是______ _______.2.数轴上透露表现的两个数,________边的数总比________边的数大.3.在数轴上透露表现数6的点在原点_______侧,到原点的距离是_______个单元长度,透露表现数-8的点在原点的______侧,到原点的距离是________个单元长度.透露表现数6的点到透露表现数-8的点的距离是_______个单元长度.4.有理数a,b,c在数轴上的位置如图所示,用“ ”将a,b,•c•三个数连接起________.5.大于-3.5小于4.7的整数有_______个.6.用“ ”、“ ”或“=”填空.(1)-10______0;(2)________-;(3)- _______-;(4)-1.26________1;(5)________-;(6)-_______3.14;(7)-0.25______-;(8)- ________.7.在数轴上到表示-2的点相距8个单位长度的点表示的数为_________.三、解答题1.画出数轴并标出透露表现以下各数的点,并用“〈”把以下各数毗连起.-3,4,2.5,,1,7,-5.2.如图所示,根据数轴上各点的位置,写出它们所表示的数.3.一个点从数轴上表示-2的点开始,按下列条移动后,到达终点,•说出终点所表示的数,并画图表示移动过程.(1)先向右移动3个单位,再向右移动2个单位.(2)先向左移动5个单位,再向右移动3个单位.(3)先向左移动3.5个单位,再向右移动1.5个单位.(4)先向右移动2个单元,再向左移动6.5个单元.四、创新题1.初一(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下A队-50分;B队150分;c队-300分;D队分;XXX100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并将代表该队的字母标上;(3)从数轴上看A队与B队相差多少分?c队与E队呢?2.超市、书店、•玩具店依次坐落在一条东西走向的大街上,•超市在书店西边a的大小.2.如图所示,数轴上标出若干个点,每相邻两点相距一个单元长度,点A,B,c,•D对应的数分别是数a,b,c,d,且d-2a=10,那么数轴的原点应是哪一点?中考题回忆六、中考题1.(7℃,把它们从高到低排列正确的是()A.-10℃,-7℃,1℃; B.-7℃,-10℃,1℃c.1℃,-7℃,-10℃; D.1℃,-10℃,-7℃2.(2.3.(.4.(2谜底一、1.D 2.D 3.c 4.D 5.c 6.A 7.D二、1.原点、正方向和单位长度2.右左3.右6左8144.ca b • 5.86.(1)(2)(3)(4)(5)(6)(7)=(8)7.6或-10三、1.绘图(略)-5 -3 -1 0 1 2.5 4 72.A0 B-1 c4 D-2.5 E2 F-43.如图所示(1)(2)(3)(4)四、1.(1)c队A队D队E队B队;(2)如图所示(3)A队与B队相差a;(3)当a 0时,a -a.2.B为原点.。
初一数学数轴与坐标练习题及答案
初一数学数轴与坐标练习题及答案1. 将下列数标在数轴上:a) -3b) 2c) 0d) -5答案:a) 在数轴上标记点-3b) 在数轴上标记点2c) 在数轴上标记点0d) 在数轴上标记点-52. 在数轴上标记以下数的坐标,并写出它们的相反数:a) 4b) -7c) -1答案:a) 在数轴上标记点4,其相反数为-4b) 在数轴上标记点-7,其相反数为7c) 在数轴上标记点-1,其相反数为13. 用数轴表示以下数对的位置,并填写空格中的数字:a) (2, -2)b) (-3, 3)c) (0, 0)答案:a) 在数轴上标记点2和-2,中间有4个格子b) 在数轴上标记点-3和3,中间有6个格子c) 在数轴上标记点0和0,中间有0个格子4. 用数轴表示下列范围,并写出范围内的整数:a) -2 ≤ x ≤ 2b) -5 < x ≤ 3c) -∞ < x < 1答案:a) 在数轴上标记点-2和2,范围内的整数为-2, -1, 0, 1, 2b) 在数轴上标记点-5和3,范围内的整数为-4, -3, -2, -1, 0, 1, 2, 3c) 在数轴上标记点-∞和1,范围内的整数为-∞, -5, -4, -3, -2, -1, 05. 将下列方程在数轴上表示出来,并写出方程的解集:a) x + 3 = 1b) 2x - 5 = -3c) -4x + 6 = 2x + 10答案:a) 在数轴上标记点1和3,方程的解集为{x | x = -2}b) 在数轴上标记点-3和1,方程的解集为{x | -3 ≤ x ≤ 1}c) 在数轴上标记点-2和3,方程的解集为{x | x = 1.6}6. 在数轴上表示以下不等式,并写出其解集:a) x > 2b) x ≤ -1c) -3 < x ≤ 4答案:a) 在数轴上标记点2,并将2之后的部分标记为箭头,不等式的解集为{x | x > 2}b) 在数轴上标记点-1,并将-1及其左侧的部分标记为箭头,不等式的解集为{x | x ≤ -1}c) 在数轴上标记点-3和4,并用实心圆圈标记-3,将-3之后到4的部分标记为箭头,不等式的解集为{x | -3 < x ≤ 4}通过以上习题,我们练习了数轴和坐标系的相关概念,并学会了在数轴上表示数、范围、方程和不等式等内容。
七年级数学上册暑假预习《数轴》测试题练习(含答案解析)
七年级数学上册暑假预习《数轴》测试题练习(含答案解析)一.选择题(共6小题)1.(2023•开阳县模拟)在数轴上,点A,B在原点O的两侧,分别表示数a,3,将点A向左平移1个单位长度,得到点C,若CO=BO,则a的值为()A.4 B.2 C.﹣2 D.﹣1【思路点拨】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【规范解答】解:由题意知:A点表示的数为a,B点表示的数为3,C点表示的数为a﹣1.因为CO=BO,所以|a﹣1|=3,解得a=﹣2或4∵a<0,∴a=﹣2.故选:C.【考点评析】本题考查了数轴和绝对值方程的解法,用含a的式子表示出点C是解决本题的关键.2.(2022秋•洪山区校级期末)如图,数轴上A、B两点所表示的数分别为a、b,下列各式中:①(a﹣1)(b﹣1)>0;②(a﹣1)(b+1)>0;③(a+1)(b+1)>0.其中,正确的式子有()个.A.0 B.1 C.2 D.3【思路点拨】因为数轴上右边的数总比左边的大,大数减小数差为正,小数减大数差为负.再根据乘法运算同号得正,异号得负.【规范解答】解:∵a<1,∴a﹣1<0.∵b<1,∴b﹣1<0.∴(a﹣1)(b﹣1)>0.∴①正确,∵b<﹣1,∴b﹣(﹣1)<0.即b+1<0,∴(a﹣1)(b+1)>0.∴②正确,∵a>0,∴a+1>0,又∵b<﹣1,∴b+1<0,∴(a+1)(b+1)<0.∴③错误.故选:C.【考点评析】本题考查数轴和数轴上点的大小的比较,还考查了两个数相乘,积的符号问题.3.(2022秋•内江期末)如图,点A在数轴上表示的数为﹣3,点B表示的数为2,点P在数轴上表示的是整数,点P不与A、B重合,且PA+PB=5,则满足条件的P点表示的整数有()个A.1 B.2 C.3 D.4【思路点拨】不管点P在点A的左边,还是在点B的右边,PA+PB>5,故点P在A,B之间.【规范解答】解:∵PA+PB=5,∴点P在A,B两点之间,A,B两点之间的整数有﹣2,﹣1,0,1,故选:D.【考点评析】本题考查的是数轴,解题的关键是确定点P的大概位置.4.(2022秋•鼓楼区校级期末)如图,A,B,C,D是数轴上的四个点,已知a,b均为有理数,且a+b=0,则它们在数轴上的位置不可能落在()A.线段AB上B.线段BC上C.线段BD上D.线段AD上【思路点拨】根据相反数的性质,数轴的定义可知,a,b位于原点两侧,据此即可求解.【规范解答】解:∵a,b均为有理数,且a+b=0,∴a,b位于原点两侧,∴a,b在数轴上的位置不可能落在线段AB上.故选:A.【考点评析】本题考查了相反数的性质,数轴的定义,数形结合是解题的关键.5.(2023•裕华区二模)如图,某同学用直尺画数轴,数轴上点A,B分别在直尺的1cm,9cm 处,若点A对应﹣4,直尺的0刻度位置对应﹣6,则线段AB中点对应的数为()A.4 B.5 C.8 D.0【思路点拨】在直尺中找到线段AB的中点对应的数字是5.根据题意可知直尺中每一厘米是数轴上两个单位长度,即可推理出直尺中数字5对应数轴上的数.【规范解答】解:由题可得线段AB的中点在直尺上是数字5,∵点A对应﹣4,直尺的0刻度位置对应﹣6,∴直尺中一厘米是数轴上两个单位长度.∴(5﹣1)×2=8,﹣4+8=4.∴线段AB中点对应的数为4.故选:A.【考点评析】本题以数轴为背景考查了学生在数轴上的数形结合的能力.本题难度不大,找出线段AB的中点,明确直尺上1厘米对数轴是几个单位长度,再推理得出答案即可.6.(2022秋•荆门期末)如图,正六边形ABCDEF(每条边长相等、每个角相等)在数轴上的位置如图所示,点E、F对应的数分别为﹣3、﹣1,现将正六边形ABCDEF绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点A所对应的数为1,像这样连续翻转后数轴上2023这个数所对应的点是()A.点C B.点D C.点E D.点F【思路点拨】根据点的坐标所呈现的规律得出答案即可.【规范解答】解:由题意得,A(1,0),B(3,0),C(5,0),D(7,0),E(9,0),F(11,0)…设第n个点所对应的数是2023,则2n﹣1=2023,解得n=1012,而1012÷6=168……4,因此数轴上2023这个数所对应的点为点D,故选:B.【考点评析】本题考查数轴,掌握数轴表示数的方法以及各个点所对应数轴上的数的规律是正确解答的前提.二.填空题(共5小题)7.(2022秋•五莲县期末)已知数轴上三点M,O,N对应的数分别是﹣1,0,3,点P为数轴上任意点,其对应的数为x.如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时P点到点M、点N的距离相等,则t的值为或4..【思路点拨】分别根据①当点M和点N在点P同侧时;②当点M和点N在点P异侧时,进行解答即可.【规范解答】解:设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M 永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1,PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.故答案为:或4.【考点评析】此题主要考查了数轴的应用以及一元一次方程的应用,根据M,N位置的不同进行分类讨论得出是解题关键.8.(2022秋•叙州区期末)数轴上A、B两点对应的数分别为﹣18和﹣3,P为数轴上一点,若AP:PB=3:2,则点P表示的数是﹣9或27 .【思路点拨】分两种情况,分别根据P点到A、B距离的比为3:2列出方程,即可解得答案.【规范解答】解:当P在线段AB上时,设点P表示的数是x,∵A、B两点对应的数分别为﹣18和﹣3,∴PA=x﹣(﹣18)=x+18,PB=﹣3﹣x,∴(x+18):(﹣3﹣x)=3:2,解得x=﹣9,经检验,x=﹣9符合题意,当P在线段AB延长线上时,PA=x﹣(﹣18)=x+18,PB=x+3,∴(x+18):(x+3)=3:2,解得x=27,经检验,x=27符合题意,故答案为:﹣9或27.【考点评析】本题考查数轴上两点之间的距离问题,解题的关键是分类讨论,分别列方程解决问题.9.(2022秋•陈仓区期末)点A为数轴上表示﹣1的点,若将点A沿数轴一次平移一个单位,平移两次后到达点B,则点B表示的数是﹣3或1或﹣1 .【思路点拨】讨论每次平移向右或向左平移即可得到答案.【规范解答】解:当两次都向左平移时,点B表示的数为﹣1﹣1﹣1=﹣3;当两次都向右平移时,点B表示的数为﹣1+1+1=1;当第一次向右,第二次向左或第一次向左,第二次向右平移时,点B表示的数为﹣1+1﹣1=﹣1;故答案为:﹣3或1或﹣1.【考点评析】本题主要考查了数轴上两点的距离,利用分类讨论的思想求解是解题的关键.10.(2022秋•郑州期末)如图1,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为﹣5,b,4,某同学将刻度尺如图放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对应刻度1.8cm,点C对齐刻度5.4cm.则数轴上点B所对应的数b为﹣2 .【思路点拨】数轴上A、C两点间的单位长度是9,刻度尺对应的是5.4,所以数轴的单位长度是0.6cm,AB的长度是1.8cm,除以0.6得AB在数轴上的单位长度.【规范解答】解:∵5.4÷[4﹣(﹣5)]=0.6(cm),∴数轴的单位长度是0.6厘米,∵1.8÷0.6=3,∴在数轴上A,B的距离是3个单位长度,∴点B所对应的数b为﹣5+3=﹣2.故答案为:﹣2.【考点评析】本题考查的是数轴的概念和单位长度的换算,解题的关键是数轴上的单位长度等于多少cm.11.(2022秋•丽水期中)如图,将一条长为60cm的卷尺铺平放置在数轴上,使得0cm刻度线和60cm刻度线分别落在数轴上表示数﹣20和数10的点上.(1)数轴的原点O对应的是卷尺上40 cm的刻度线;(2)将卷尺沿直线MN向右折叠,使得0cm刻度线与58cm刻度线重合,此时10cm刻度线在数轴上对应点表示的数是 4 .【思路点拨】(1)根据已知可得数轴上的一个单位长度表示2cm,再根据原点与﹣20的距离即可求出答案;(2)根据0cm刻度线与58cm刻度线重合,可知直线MN过卷尺的29cm刻度线,所以10cm 刻度线与29×2﹣10=48cm刻度线重合,即可求出答案.【规范解答】解:(1)∵0cm刻度线和60cm刻度线分别落在数轴上表示数﹣20和数10的点,∴数轴上的一个单位长度表示2cm,∵原点与﹣20的距离为20的单位长度,∴20×2=40(cm),∴数轴的原点O对应的是卷尺上40cm的刻度线;故答案为:40.(2)∵0cm刻度线与58cm刻度线重合,∴直线MN过卷尺的29cm刻度线,∴10cm刻度线与29×2﹣10=48cm刻度线重合,∴48cm刻度线在数轴上对应点表示的数是=4.故答案为:4.【考点评析】本题考查了数轴.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.三.解答题(共6小题)12.(2022秋•迁安市期末)如图1,已知数轴上A、B两点所表示的数分别为﹣1和4.(1)线段AB长是 5 ;(2)若P为线段AB上的一点(点P不与A、B两点重合),当PM=AP,PN=BP,如图2所示,求此时MN的长.【思路点拨】(1)根据数轴上两点间距离公式计算可得,即数轴上两点A、B表示的数分别为x1、x2,则AB=|x1﹣x2|;(2)根据当,,相加可得.【规范解答】解:(1)AB=|4﹣(﹣1)|=5,故答案为:5;(2)∵,,∴MN=MP+NP,∴,∴,∴.【考点评析】本题考查了线段的和差倍分关系,解题的关键是找到线段之间的数量关系.13.(2022秋•晋安区期末)已知点P、点A、点B是数轴上的三个点.若点P到原点的距离等于点A、点B到原点距离的和的一半,则称点P为点A和点B的“关联点”.(1)已知点A表示1,点B表示﹣3,下列各数﹣2、﹣1、0、2在数轴上所对应的点分别是P1、P2、P3、P4,其中是点A和点B的“关联点”的是P1,P4;(2)已知点A表示3,点B表示m,点P为点A和点B的“关联点”,且点P到原点的距离为5,求m的值.【思路点拨】(1)设点A和点B的“关联点”所表示的数为:x,根据“关联点”的定义,列出一元一次方程,进行求解,即可得出结论;(2)根据“关联点”的定义,列出一元一次方程,进行求解即可.【规范解答】解:(1)设点A和点B的“关联点”所表示的数为:x,由题意得:,∴|x|=2,∴x=±2,∵﹣2、﹣1、0、2在数轴上所对应的点分别是P1、P2、P3、P4,∴其中是点A和点B的“关联点”的是:P1,P4.故答案为:P1,P4.(2)∵点P为点A和点B的“关联点”,且点P到原点的距离为5,点A表示3,点B表示m,∴2×5=3+|m|,∴|m|=7,∴m的值为:7或﹣7.【考点评析】本题考查绝对值的意义,以及一元一次方程的应用.理解并掌握“关联点”的定义,是解题的关键.14.(2022秋•礼泉县期末)如图,在一条不完整的数轴上从左到右有点A,B,C,D,其中AD=6,且AB=BC=CD.(1)则BC的长为 2 ;(2)若以B为原点,写出点A,C,D所对应的数,并求出它们所对应数的和.【思路点拨】(1)由AD=6,B、C是AD的三等分点,直接计算即可;(2)分别得出AB,BC,BD的长,再根据数轴与实数的对应关系解答.【规范解答】解:(1)∵AD=6,B、C是AD的三等分点,∴BC=AD==2.故答案为:2.(2)∵AD=6,B、C是AD的三等分点,∴AB=BC=CD=AD=2,若B为原点,则点A,C,D所对应的数分别为﹣2,2,4,∴点A,C,D所对应的数的和为﹣2+2+4=4.【考点评析】本题主要考查了数轴以及有理数的计算,解题的关键是熟练掌握数轴上点的坐标特征,是基础考点.15.(2022秋•南充期末)出租车司机沿东西方向的公路送乘客,如果规定向东为正,向西为负,当天的历史记录如下(单位:km).+17,﹣9,+7,﹣15,﹣4,+10,﹣6,﹣8,+5,+13.(1)最后一名乘客到达的地方在出租车出发点的什么方向?距出发点多少千米?(2)若汽车每千米耗油量为0.06L,出租车送完最后一名乘客回到出发点时,共耗油多少L?【思路点拨】(1)对所有记录数据求和,根据结果的符号和绝对值进行求解;(2)先求得所有行驶路程的和,再乘以每千米耗油量为0.06L进行求解.【规范解答】解:(1)(+17)+(﹣9)+(+7)+(﹣15)+(﹣4)+(+10)+(﹣6)+(﹣8)+(+5)+(+13)+17﹣9+7﹣15﹣4+10﹣6﹣8+5+13=10(km),答:最后一名乘客到达的地方在出租车出发点的东方;距出发点10千米;(2)0.06×(|+17|+|﹣9|+|+7|+|﹣15|+|﹣4|+|+10|+|﹣6|+|﹣8|+|+5|+|+13|)=0.06×(17+9+7+15+4+10+6+8+5+13)=0.06×94=5.64(L),答:出租车送完最后一名乘客回到出发点时,共耗油5.64L.【考点评析】此题考查了运用正负数解决实际问题的能力,关键是能准确理解并运用该知识进行列式、计算.16.(2022秋•越秀区校级期末)如图,已知数轴上A,B两点表示的数分别为﹣1,3,点P 为数轴上一动点,其表示的数为x.(1)若点P为AB的中点,则x的值为 1 ;(2)若点P在原点的右侧,且到点A,B的距离之和为8,则x的值为 5 ;(3)某时刻点A,B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时沿数轴向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.求当点A,B之间的距离为3个单位长度时,点P表示的数.【思路点拨】(1)利用数轴上两点A、B对应的数分别为﹣1、3,得出中点位置P点表示的数,可得x的值;(2)根据PA+PB=8列方程可解答;(3)利用当A在B的左侧或B右侧时,分别列方程得出即可.【规范解答】解:(1)∵数轴上A,B两点表示的数分别为﹣1,3,点P为AB的中点,其表示的数为x,∴x==1;故答案为:1;(2)∵数轴上A,B两点表示的数分别为﹣1,3,∴AB=3﹣(﹣1)=4,∵点P在原点的右侧,且到点A,B的距离之和为8,∴x﹣3+x+1=8,∴x=5,故答案为:5;(3)设运动时间为t秒,则运动后点A表示:﹣1+2t,点B表示3+0.5t,点P表示:x =1﹣6t,∵点A,B之间的距离为3个单位长度,∴(3+0.5t)﹣(﹣1+2t)=±3,解得:t=或,∴x=1﹣6×=﹣3或x=1﹣6×=﹣27;答:点P表示的数是﹣3或﹣27.【考点评析】此题主要考查了一元一次方程的应用以及数轴上点的坐标与距离表示方法等知识,利用分类讨论得出是解题关键.17.(2022秋•南召县期末)如图,在一条不完整的数轴上从左到右依次有三个点A、B、C;其中AB=2BC,设点A、B、C所对应数点和为m.(1)若点C为原点,BC=1,则点A对应的数为﹣3 ,点B对应的数为﹣1 ,m 的值为﹣4 ;(2)若点B为原点,AC=9,求m的值.(3)若原点O到点C的距离为6,且OC=AB,直接写出m的值.【思路点拨】(1)根据数轴上的点对应的数即可求解;(2)根据数轴上原点的位置确定其它点对应的数即可求解;(3)根据原点在点C的右边先确定点C对应的数,进而确定点B、点A所表示的数即可求解.【规范解答】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=9,AB=2BC,∴点A所对应的数为﹣6,点C所对应的数为3,∴m=﹣6+3+0=﹣3;(3)∵原点O到点C的距离为6,∴点C所对应的数为±6,∵OC=AB,∴AB=6,当点C对应的数为6,∵AB=6,AB=2BC,∴BC=3,∴点B所对应的数为3,点A所对应的数为﹣3,∴m=3﹣3+6=6;当点C所对应的数为﹣6,∵AB=6,AB=2BC,∴BC=3,∴点B所对应的数为﹣9,点A所对应的数为﹣15,∴m=﹣15﹣9﹣6=﹣30综上所述m=6或﹣30.【考点评析】本题考查了数轴,解决本题的关键是数形结合思想的灵活运用.。
七年级上册数学《数轴》的练习题和参考答案
一、选择题1.下列是几个同学画的数轴,请你判断其中正确的是2.下列说法正确的是( )A.没有最大的正数,却有最大的负数B.数轴上离原点越远,表示数越大C.0大于一切非负数D.在原点左边离原点越远,数就越小3.下列说法正确的是( )A.数轴上一个点可以表示两个不同的有理数B.表示-P的点一定在原点的左边C.在数轴上表示-8的点与表示+2的点的距离是6D.数轴上表示- 的点,在原点左边,距原点个单位长度。
4.如图所示,点M表示的数是( )A. 2.5B.C.D. 2.55.下列结论正确的有( )个:① 规定了原点,正方向和单位长度的直线叫数轴② 最小的整数是0 ③ 正数,负数和零统称有理数④ 数轴上的点都表示有理数A.0B.1C.2D.37.在数轴上,A点和B点所表示的数分别为-2和1,若使A点表示的数是B点表示的数的3倍,应把A点 ( )A.向左移动5个单位B.向右移动5个单位C.向右移动4个单位D.向左移动1个单位或向右移动5个单位8.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是 ( )A.1B.-6C.2或-6D.不同于以上答案二、填空题9 .在数轴上表示的两个数中,的数总比的数大。
10.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。
11.在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的侧,距原点个单位;两点之间的距离为个单位长度。
12.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。
2024~2025学年七年级数学上册1.2.2数轴课后练「含答案」
1.将1-在数轴上对应的点向右平移2个单位,则此时该点对应的数是( )A .1-B .1C .3-D .32.下列说法:①规定了原点、正方向的直线是数轴;②数轴上两个不同的点可以表示同一个有理数;③有理数11000-在数轴上无法表示出来;④任何一个有理数都可以在数轴上找到与它对应的唯一点.其中正确的是( )A .①②③④B .②③④C .③④D .④3.点A 为数轴上表示5-的点,将点A 在数轴上平移2个单位长度到点B ,则点B 所表示的数为( )A .3B .3-C .3-或7-D .3-或74.下面的数轴被墨迹盖住一部分,被盖住的整数有( )个.A .11B .10C .9D .85.如图,将刻度尺放在数轴上,让3cm 和5cm 刻度线分别与数轴上表示2和4的两点重合对齐,则数轴上与0cm 刻度线对齐的点表示的数为( )A .2-B .0C .1-D .16.一只电子蚂蚁沿数轴从点A 向右爬行2个单位长度到达点B ,若点B 表示的数为4-,则点A 表示的数为 .7.直线上A 点表示的数是( ),B 点表示的数写成小数是( ).8.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“1cm ”和“8cm ”分别对应数轴上的2-和x ,那么x 的值为 .9.画一条数轴,并在数轴上标出下列各数:2, 1.53--,,0,12,3.5.10.如图,已知点A ,B ,C 在数轴上表示的数分别是1-,5-,2,回答下列问题:(1)将B 点向右移动6个单位长度,此时B 点表示的数是多少;(2)将C 点向左移动6个单位长度,此时C 点表示的数是多少;(3)移动A ,B ,C 三个点中的任意两个,能使三个点表示的数相等吗,你有几种移动方法,请写出来.11.阅读与思考如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出,终点表示的数是2-.参照图中所给的信息,完成填空:已知A ,B 都是数轴上的点.(1)若点A 表示数3-.将点A 向右移动5个单位长度至点1A .则点1A 表示的数是________;(2)若点A 表示数2,将点A 先向左移动7个单位长度,再向右移动92个单位长度至点2A ,则点2A 表示的数是________;(3)若将点B 先向左移动3个单位长度,再向右移动6个单位长度,终点表示的数恰好是0,则点B 所表示的数是________.1.B【分析】本题考查了数轴上的动点问题,正确理解有理数所表示的点左右移动后得到的点所表示的数是解题的关键.将1-在数轴上对应的点向右平移2个单位,在数轴上找到这个点,即得这个点所表示的数.【详解】根据题意:数轴上1-所对应的点向右平移2个单位,则此时该点对应的数是1.故选B .2.D【分析】此题主要考查了数轴的相关概念,规定了原点、正方向、单位长度的直线叫做数轴.所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数可得答案.【详解】解:①规定了原点、正方向和单位长度的直线是数轴,故原说法错误;②数轴上两个不同的点可以表示同一个有理数,说法错误;③有理数11000-在数轴上无法表示出来,说法错误,可以表示;④任何一个有理数都可以在数轴上找到与它对应的唯一点,说法正确;故选:D .3.C【分析】本题考查了数轴上点的平移规律,掌握规律是解题的关键.平移规律:向右加,向左减;据此即可求解.【详解】解:∵点A 为数轴上表示5-的点,∴将点A 在数轴上向右平移2个单位长度到3-,将点A 在数轴上向左平移2个单位长度到7-,∴点B 所表示的数为3-或7-故选:C .4.C【分析】本题考查了数轴.熟练掌握数轴是解题的关键.根据在数轴上表示有理数进行作答即可.【详解】解:由数轴可知,被盖住的整数有654321234-----,,,,,,,,,共9个,故选:C .5.C【分析】本题考查数轴的概念,关键是掌握数轴的三要素.由数轴的概念即可求解.【详解】解:∵3cm 和5cm 刻度分别与数轴上表示2和4的两点对齐,∴数轴的单位长度是1cm ,∴原点对应1cm的刻度,∴数轴上与0cm刻度线对齐的点表示的数是1-,故选:C.6.6-【分析】本题考查的是数轴,正确判断出点A和点B在原点的左侧是解题的关键.由题意可知,一只电子蚂蚁沿数轴从点A向右爬行2个单位长度到达点B,点B表示的数为4-,可以判断点A在原点的左侧,且点A与点B的距离是2个单位长度,即可以求出点A表示的数.【详解】解:Q一只电子蚂蚁沿数轴从点A向右爬行2个单位长度到达点B,点B表示的数为4-,\可以判断点A在原点的左侧,且点A与点B的距离是2个单位长度,\点A表示的数为:426--=-,-故答案为:67.1-0.5【分析】此题考查了用数轴上的点表示有理数,根据点A和点B在直线上的位置求解即可.【详解】根据题意得,直线上A点表示的数是1-,B点表示的数写成小数是0.5.故答案为:1-,0.5.8.5【分析】本题考查有理数与数轴,根据距离相等计算即可.【详解】刻度尺上“1cm”和“8cm”的距离是7,∴对应数轴上的2-和x的距离也是7,x=,∴5故答案为:5.9.见解析【分析】本题主要考查了用数轴表示有理数,先画出数轴,再在数轴上表示出各数即可.【详解】解:如图所示,即为所求.10.(1)1;(2)4-;(3)能,移动方法共有3种:方案一:将点B向右移动7个单位,点A向右移动3个单位,此时三个点表示的数均为2;方案二:将点B向右移动4个单位,点C向左移动3个单位,此时三个点表示的数均为1-;方案三:将点A向左移动4个单位,点C向左移动7个单位,此时三个点表示的数均为5-.【分析】本题考查数轴的简单应用,理解点在数轴上的移动规律与点对应的数相应的变化是解题的关键.(1)由数轴上的点的移动规律即可求解.(2)由数轴上的点的移动规律即可求解.(3)由数轴上的点的移动规律并分类讨论即可求解.【详解】(1)因为点B表示的数是5-,所以将B点向右移动6个单位长度后,此时点B所表示的数是561-+=;(2)因为点C表示的数是2,所以将B点向左移动6个单位长度后,此时点C所表示的数是264-=-;(3)一共有3种移动方法能使移动A,B,C三个点中的任意两个点之后,三个点表示的数相等,且三种方案如下所述:方案一:将点B向右移动7个单位,点A向右移动3个单位,此时三个点表示的数均为2,符合题意;方案二:将点B向右移动4个单位,点C向左移动3个单位,此时三个点表示的数均为1-,符合题意;方案三:将点A向左移动4个单位,点C向左移动7个单位,此时三个点表示的数均为5-,符合题意;综上所述:移动A,B,C三个点中的任意两个,能使三个点表示的数相等,且符合题意的移动方法共有3种.11.(1)2(2)1 2 -(3)3-【分析】本题主要考查了数轴上动点平移问题,解题关键是掌握数轴上点往右移几就加几,往左移几就减几,概括为“右加左减.(1)根据数轴上的点向右平移加,向左平移减,可得点表示的数;(2)根据数轴上的点向右平移加,向左平移减,可得点表示的数;(3)根据数轴上的点向右平移加,向左平移减,可得B点表示的数.【详解】(1)解:由题意得:352-+=,∴点1A表示的数是2;(2)解:由题意得:91 2722 -+=-∴点2A表示的数是12 -;(3)解:由题意得:0先向右移动3个单位长度,再向左移动6个单位长度得到点B ∴0363+-=-∴点B所表示的数是3-。
人教版七年级数学上册1.2.2数轴同步练习题含答案
人教版七年级数学上册1.2.2数轴同步练习题1.下列关于数轴的说法正确的是( )A .数轴是一条规定了原点、正方向和单位长度的直线B .数轴的正方向一定向右C .数轴上的点只能表示整数D .数轴上的原点表示有理数的起点 2.下列数轴的画法中,正确的是( )3.(1)将有理数-2,1,0,-212,314在数轴上表示出来;(2)写出数轴上点A ,B ,C 表示的数.4.如图所示,数轴上四点M ,N ,P ,Q 中,表示负整数的点是( )A .点MB .点NC .点PD .点Q5.有下列一组数:1,4,0,-12,-3,这些数在数轴上对应的点中,不在原点右边的点有( )A .2个B .3个C .4个D .5个6.点A 是数轴上表示-2的点,当点A 沿数轴移动4个单位长度到点B 时,点B 表示的有理数是( )A .-4B .-6C .2或-4D .2或-67.有理数a ,b ,c 在数轴上的位置如图所示,则下列说法正确的是( )A .a ,b ,c 都为正数B .b ,c 为正数,a 为负数C .a ,b ,c 都为负数D .b ,c 为负数,a 为正数 8.如图,点A 表示的数是________.9.如图,小明在写作业时不慎将墨水滴在数轴上,墨迹遮住部分的整数共有________个.10.点A ,B ,C ,D 分别表示-3,-112,0,4.请解答下列问题:(1)在数轴上描出A ,B ,C ,D 四个点;(2)现在把数轴的原点取在点B 处,其余均不变,那么点A ,B ,C ,D 分别表示什么数?11.如图12,上七年级的小贝在一张纸上画了一条数轴,妹妹不知道它有什么用处,就在上面画了一只小猫和一只小狗,于是数轴上标的数字有的看不到了,请根据数轴回答下列问题:(1)被小猫遮住的是正数还是负数?(2)被小狗遮住的整数有几个?(3)此时小猫和小狗之间(即点A,B之间)的整数有几个?图1212.某公交路线经过一条东西向的大街,从西往东设置有公园、书店、学校、小区四个站点,相邻两个站点之间的距离依次为3 km,2 km,1.5 km.如果以学校为原点,向东为正方向,以图上1 cm长为单位长度表示实际距离1 km,请画出数轴,并将四个站点在数轴上表示出来.13.育才路上依次有八中、新华中学和九中三所中学,八中在新华中学东900米处,新华中学在九中东800米处,现小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在八中的什么方向上?距八中有多远?试用画数轴的方法解决此题.14.在正方形的四个顶点处逆时针依次标上“合”“格”“优”“秀”四个字,将正方形放置在数轴上,其中“优”“秀”对应的数分别为-2和-1,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚,例如第一次翻滚后“全”所对应的数为0,则连续翻滚后与数轴上数2020重合的字是( )A.合 B.格 C.优 D.秀15.如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2020将与圆周上的数字________重合.16.如图,将一刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“8 cm”分别对应数轴上的-3和x,那么x的值为( )A.8 B.7 C.6 D.517.如图,把一根木棒放在数轴上,数轴的1个单位长度为1 cm,木棒的左端点与数轴上的点A重合,右端点与点B重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B处时,它的右端点在数轴上所对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为________cm.(2)图中点A表示的数是________,点B表示的数是________.(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了.1.A 2.D3.解:(1)如图所示.(2)点A表示-3,点B表示-1,点C表示4.4.A5.B .6.D7.D8.-29.710.解:(1)如图所示:(2)点A 表示-112,点B 表示0,点C 表示112,点D 表示512.11.解:(1)被小猫遮住的是负数.(2)被小狗遮住的整数有12,13,14,15,16,17,18,共7个.(3)小猫和小狗之间的整数有-16,-15,-14,…,-1,0,1,2,…,10,11,共28个. 12.解:如图所示:13.解:数轴画法不唯一,示例如下:由题意得三所中学在数轴上的位置如图所示:通过数轴,能看出小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在新华中学的东边,且距离新华中学200米处,即小明在八中的西边,距离八中有700米.14.C . 15.3 . 16.D17.解:(1)由数轴观察知三根木棒的长是20-5=15(cm),则此木棒的长为15÷3=5(cm).故答案为5.(2)10 15(3)借助数轴,B 表示爷爷的年龄,A 表示小红的年龄,把小红与爷爷的年龄差看作木棒AB . 当爷爷的年龄是小红现在的年龄时,即将B 向左移与A 重合,此时小红的年龄是-40岁;当小红的年龄是爷爷现在的年龄时,即将A 向右移与B 重合,此时爷爷的年龄为125岁,所以可知爷爷比小红大(125+40)÷3=55(岁),所以爷爷现在的年龄为125-55=70(岁).。
人教版七年级数学上册第1章《有理数-数轴》课后测试题(附答案)
人教版七年级数学上册第1章《有理数-数轴》课后测试题(附答案)一.选择题1.下列数轴画正确的是()A.B.C.D.2.下列一组数:1,4,0,−12,−3在数轴上表示的点中,不在原点右边的点的个数为()A.2个B.3个C.4个D.5个3.数轴上表示−5的点到原点的距离为()A.5B.−5C.15D.−154.如图,点M表示的数是()A.1.5B.−1.5C.2.5D.−2.55.如图,数轴上有A,B,C,D四个点,其中到原点距离相等的两个点是()A.点B与点D B.点A与点C C.点A与点D D.点B与点C6.数轴上与原点距离为5的点表示的是()A.5B.−5C.±5D.6二.填空题10.如果数轴上的点A对应的数为−1,那么与A点相距3个单位长度的点所对应的有理数为.三.解答题12.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)请问A ,B 两点之间的距离是多少? (3)在数轴上画出与点A 的距离为2的点(用不同于A ,B 的其它字母表示),并写出这些点表示的数.答案:1.C2.B 解析:1,4是正数在数轴的右边,0在原点,−12 ,−3是负数在数轴的左边,所以不在原点右边的点的数是1,4,0,共3个.3.A 解析:∵在数轴上,表示数a 的点到原点的距离可表示为|a|,∴数轴上表示−5的点到原点的距离为|−5|=5.4.D5.C 解析:由数轴可得:点A 表示的数为−2,点D 表示的数为2,根据数轴上表示数a 的点与表示数−a 的点到原点的距离相等,∴点A 与点D 到原点的距离相等.6.C 解析:∵数轴上与原点距离为5,设该点为x ,得|x|=5,∴x=±5.7.28±2.5.解析:设数轴上,到原点的距离等于2.5个单位长度的点所表示的有理数是x ,则|x|=2.5, 解得:x=±2.5.9.5解:如图所示:,数轴上到原点的距离小于223 个长度单位的点中,表示整数的点有:−2,−1,0,1,2共5个. 10.−4或2解析:在A 点左边与A 点相距3个单位长度的点所对应的有理数为−4;在A 点右边与A 点相距3个单位长度的点所对应的有理数为 2.11.解:如图,12.解:(1)根据所给图形可知A :1,B :−2.5;(2)依题意得:AB 之间的距离为:1+2.5=3.5; (3)设这两点为C 、D ,则这两点为C :1−2=−1,D :1+2=3.。
七年级数学上册《第一章 数轴》同步练习及答案-人教版
七年级数学上册《第一章 数轴》同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列四个选项中,所画数轴正确的是( ) A . B . C . D .2.数轴上点A 表示的数是3-,将点A 在数轴上平移7个单位长度得到点B ,则点B 表示的数是( )A .4B .4-或10C .4或10-D .10-3.如图,数轴上蚂蚁所在点表示的数可能为( )A .3B .0C .1-D .2-4.如图,一条不完整的数轴上两个点表示的数分别是a 和2-,则a -可能是( )A .4B .2C .1-D .4-5.数轴上一点A 在原点左侧,离开原点4个单位长度,点A 表示的数是( ) A .4 B .4- C .4± D .2-6.在数轴上点A 表示的数是1,到点A 的距离是3个单位长度的点表示的数是( ) A .3 B .3- C .3± D .4或2-7.点A 在数轴上表示﹣3,将A 向右移动4个单位长度,再向左移动7个单位长度,此时A 点所表示的数是( )A .0B .﹣6C .8D .68.如图,在数轴上点M 表示的数可能是( )A . 2.3B . 1.5-C .1.5D .2.3二、填空题9.已知点A,B,O,C在数轴上的位置如图所示,O为原点,点B、C到原点O的距离相三、解答题个数连接起来.-和 4.3,那么点A与点B之间的距18.数轴上的点A,点B分别表示有理数 2.1离为多少?如果数轴上另有一点C,且点C和B到点A的距离相等,那么点C所对应的有理数是多少?19.在数轴上,一只蚂蚁从原点出发,先向右爬行了4个单位长度到达点A ,再向右爬行了2个单位长度到达点B ,然后又向左爬行了10个单位长度到达点C .(1)画出数轴并标出A ,B ,C 三点在数轴上的位置;(2)写出点A 、B 、C 三点表示的数;(3)根据点C 在数轴上的位置,点C 可以看作是蚂蚁从原点出发,向哪个方向爬行了几个单位长度得到的?20.已知数轴上有A 、B 、C 三个点,分别表示有理数-20,-8,8,动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为x 秒.(1)当6x =时,点P 到点A 的距离PA = ______ ;此时点P 所表示的数为______ ;(2)当点P 运动到B 点时,点Q 同时从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后也停止运动,则点Q 出发5秒时与P 点之间的距离QP = ______ ;(3)在(2)的条件下,当点Q 到达C 点之前,请求出点Q 移动几秒时恰好与点P 之间的距离为2个单位?参考答案:1.C2.C3.A4.A5.B6.D7.B8.A9.1a -/1a -+。
人教版 七年级数学上册 第1章 数轴、相反数和绝对值 专题练习(含答案)
人教版七年级数学上册第1章数轴、相反数和绝对值专题练习(含答案)例1:若(a-1)2 +||b-2=0,则以a、b为边长的等腰三角形的周长为_________.例2:若实数a、b满足04|2|=-++ba,则ba2= .例3:若实数、y满足|4|80x y-+-=,则以x、的值为边长的等腰三角形的周长为。
例4:已知8,2,a b a b b a==-=-,则a b+的值是()1066101010A B C D---、、、或、或题型精练1、如图5-1,数轴上点P表示的数可能是()77 3.210A B C D---、、、、2、如图5-2,数轴上的点A表示的数为a,则1a等于()A、12-B、12C、-2D、23、如图5-3,若将三个数3-,7,11表示在数轴上,其中能被如图所示的阴影覆盖的数是.4、如图5-4,在数轴上点A和点B之间表示的整数点有_________个.x y-201P-3-123图5-1图5-2-201-3-123图5-3图5-4BA2-75、如图5-5,数轴上两点A 、B 分别表示实数a 、b ,则下列四个数中最大的一个数是 ( ) A 、aB 、C 、1aD 、1b6、如图5-6,数轴上表示数3的点是_______________.7、实数a ,在数轴上对应点的位置如图5-7所示,则a (填“<”、“>”或“=”) .8、实数a 、两数在数轴上的位置如图5-8所示,下列结论正确的是 ( )0A a b B a b ->+>、、 00C a b D b a -<-<、、9、如图5-9,数轴上A B ,两点表示的数分别为1-和3,点B 关于点A 的对称点为C ,则点C 所表示的数 为( )A 、23--B 、13--C 、23-+D 、13+10、已知a 、两数在数轴上所对应的点如图5-10所示,,,M a b N a b H a b G a b =+=-+=-=--,下列各式正确的是 ( )A M N H GB H M G NC H M N GD G H M N>>>>>>>>>>>>、、、、11、如果上升3米记作+3米,那么下降2米记作 米.12、把温度计显示的零上5℃用+5℃表示,那么-2℃应表示为________. 13、如果+3吨表示运入仓库的大米吨数,那么运出5吨大 米表示为 ( ) A 、-5吨 B 、+5吨 C 、-3吨 D 、+3吨 14、如果+20%表示增加20%,那么-6%表示 ( ) A 、增加14% B 、增加6% C 、减少6% D 、减少26%15、如果向东走80 m 记为80 m ,那么向西走60 m 记为 ( ) A 、-60 mB 、︱-60︱mC 、-(-60)mD 、m 16、点A ,B ,C ,D 在数轴上的位置如图5-11所示,其中表示-2的相反数的点是___________.601-10 -3-2A BCD图5-1111-0A B5-5图0 -2 1 -3 -1 2 35-6图A B C 5-7图a b5-9图CB O A 5-10图1-a1b。
人教版七年级上册数学数轴同步练习(含答案)
人教版七年级上册数学1.2.2数轴同步练习一、单选题1.下列图形表示数轴正确的是()A.B.C.D.2.a,b在数轴上对应的点如图,下列结论正确的是()A.b﹣a<0B.a+b>0C.ab<0D.ab>03.数轴上表示数m和m+4的点到原点的距离相等,则m为()A.﹣2B.﹣1C.2D.14.如图,数轴的单位长度为1,如果点B表示的数是4,那么点A表示的数是()A.1B.0C.-2D.-45.如图,数轴上的两个点分别表示数a和-2,则a可以是()A.-3B.-1C.1D.26.如图,数轴上被阴影盖住的点表示的数可能是()A.3B.0C.-1D.-2=,则点C所对应7.如图,数轴上A,B两点对应的实数分别是3和-1,且AB AC的实数是()A.4B.5C.6D.78.数轴上点A表示的数是-2,将点A在数轴上移动6个单位长度得到点B,则点B表示的数是()A.4B.-4或8C.-8D.4或-8二、填空题9.数轴的概念:规定了______、_____、______的直线叫做数轴.10.如图,在已知的数轴上,表示 1.75的点可能是____.11.数轴上一个点到-2所表示的点的距离为5,那么这个点在数轴上所表示的数是__.12.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的所有整数的和是______.13.数轴上的点A到原点的距离为2,点B到点A的距离是3且在原点的右边,则点B表示的数是为_____.14.在数轴上表示8的点和表示m的点的距离为5,则这个数m=________.15.数轴上表示数﹣14和表示数﹣5的两点之间的距离是_____.16.已知数轴上的点A到原点的距离是2个单位长度,那么数轴上到A点的距离是3个单位长度的点所表示的数有______个.三、解答题17.在数轴上画出表示下列各数的点,并用<连接起来.-412,-4,1,0,21218.点A在数轴上距离原点5个单位长度,且位于原点右侧,若将点A向左移动7个单位长度到点B,求点B表示的数.19.已知,在数轴上,点A到原点的距离为3,点B到原点的距离为5.(1)求点A表示的数;(2)求点B表示的数;(3)利用数轴求A、B两点间的距离为多少?画数轴说明.20.一只电子蚂蚁在数轴上从-3出发向左运动2个单位长度到点A处,再向右运动4个单位长度到点C处.(1)画出数轴标出A、C所表示的数;(2)这只电子蚂蚁一共运动多少个单位长度?参考答案:1.B2.C3.A4.C5.A6.A7.D8.D9.原点正方向单位长度10.B11.3或-712.4-13.5或114.3或1315.916.417.11 4<401222 --<<<18.点B表示的数为-219.(1) 3±(2) 5±(3)8或2,20.6答案第1页,共1页。
人教版七年级上册数学 第一章 数轴 课后作业(有答案)
人教版七年级上册数学 第一章 数轴 课后作业一、单选题1.如图,在数轴上,小手遮挡住的点表示的数可能是( )A .﹣1.5B .﹣2.5C .﹣0.5D .0.52.如图,数轴上表示﹣2的点A 到原点的距离是( )A .﹣2B .2C .12D .123.如图所示,a 和b 的大小关系是( )A .a >bB .a <bC .2a=bD .2b=a4.数轴上点A 到原点的距离是7,点A 表示的数是( )A .7B .-7C .7或-7D .不确定5.下列选项是四位同学画的数轴,其中正确的是( )A .B .C .D . 6.数轴上点 A 表示 a ,将点 A 沿数轴向左移动 3 个单位得到点 B ,设点 B 所 表示的数为 x ,则 x 可以表示为( )A .a ﹣3B .a+3C .3﹣aD .3a+37.大于-2.5且小于4的整数有( )A .4个B .5个C .6个D .7个8.如图,点O A B 、、在数轴上,分别表示数02,4,,数轴上另有一点,C 到A 点的距离为1,到点B 的距离小于3,则点C 位于( )A .点O 的左边B .点O 与点A 之间C .点A 与点B 之间D .点B 的右边是()A.-2B.-3C.πD.–π二、填空题10.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是____.11.一只蚂蚁从数轴上一点A出发,爬了7 个单位长度到了+1,则点A 所表示的数是_____12.在数轴上,如果点A、点B所对应的数分别为3-、2,那么A、B两点的距离AB=_______.13.已知实数a,b,在数轴上的对应点位置如图所示,则a+b﹣2_____0(填“>”“<”或“=”).14.A为数轴上表示﹣1的点,将点A沿数轴向右平移3个单位到点B,则点B所表示的数为______.15.如果物体从A点出发,按照A→B(第1步)→C(第二步)→D→A→E→F→G→A→B…的顺序循环运动,则经过第2013步后物体共经过B处_____次.三、解答题16.画数轴表示下列各数,并按从小到大的顺序用“<”将这些数连接起来.2.5,-223,0,-32,3,-4,1.17.如图,在数轴上有A、B、C这三个点.回答:(1)A、B、C这三个点表示的数各是多少?(2)A、B两点间的距离是多少?A、C两点间的距离是多少?(3)若将点A向右移动5个单位后,则A、B、C这三个点所表示的数谁最大?(4)应怎样移动点B的位置,使点B到点A和点C的距离相等?18.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250米/分钟,那么小明跑步一共用了多长时间?19.如图,已知A、B、C是数轴上的三点,点C表示的数是6,点B与点C之间的距离是4,点B与点A的距离是12,点P为数轴上一动点.(1)数轴上点A表示的数为.点B表示的数为;(2)数轴上是否存在一点P,使点P到点A、点B的距离和为16,若存在,请求出此时点P所表示的数;若不存在,请说明理由;(3)点P以每秒1个单位长度的速度从C点向左运动,点Q以每秒2个单位长度从点B出发向左运动,点R从点A以每秒5个单位长度的速度向右运动,它们同时出发,运动的时间为t秒,请求点P与点Q,点R的距离相等时t的值.答案1.C 2.B 3.B 4.C 5.D6.A 7.C 8.C 9.D10.-1或5 11.﹣6 或 812.5 13.<14.2. 15.25216解:将各数标在数轴上如图:23-<-<-<<<<.4201 2.533217.解:(1)观察数轴得:A:-6,B:1,C:4;(2)AB的距离为:1-(-6)=-7;AC的距离为:4-(-6)=-10;(3)A向右移动5个单位变为:-1则A、B、C此刻分别为:-1、1、4,其中4最大,即点C;(4)∵AC的距离为10∴要使得AB、BC距离相等,则AB、BC都为5∴只需将点B向左移动2个单位即可18.解:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km).故小彬家与学校之间的距离是 3km;(3)小明一共跑了(2+1.5+1)×2=9(km),小明跑步一共用的时间是:9000÷250=36(分钟).答:小明跑步一共用了 36 分钟长时间.19.解:(1)由题意可知点A和点B都在点C的左边,且点A小于0,则由题意可得数轴上点B表示的数为6-4=2,点A表示的数为2-10=﹣10,故答案为:﹣10,2;(2)∵AB=12,∴P不可能在线段AB上,所以分两种情况:①如图1,当点P在BA的延长线上时,PA+PB=16,∴PA+PA+AB=16,2PA=16﹣12=4,PA=2,则点P表示的数为﹣12;②如图2,当点P在AB的延长线上时,同理得PB=2,则点P表示的数为4;综上,点P表示的数为﹣12或4;(3)由题意得:t秒P点到点Q,点R的距离相等,则此时点P、Q、R所表示的数分别是6﹣t,2﹣2t,﹣10+5t,;①6﹣t﹣(2﹣2t)=6﹣t﹣(﹣10+5t),解得t=127②6﹣t﹣(2﹣2t)=(﹣10+5t)﹣(6﹣t),解得t=4;答:点P与点Q,点R的距离相等时t的值是12或4秒.7。
人教版七年级上册数学数轴课时作业(含答案)
人教版七年级上册数学1.2.2数轴课时作业(含答案)一、填空题1.点A为数轴上表示−1的点,若将点A沿数轴一次平移一个单位,平移两次后到达点B,则点B表示的数是.2.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的所有整数的和是.3.在数轴上到表示-2的点距离为5的点所表示的有理数是.4.点A、B、P是数轴上不重合的三个点,点A表示的数为−3,点B表示的数为1,若A、B、P三个点中,其中一点到另外两点的距离相等时,我们称这三个点为“和谐三点”,则符合“和谐三点”的点P表示的数为.5.数轴上的点M对应的数是-2,那么将点M向右移动4个单位长度,此时点M表示的数是。
6.数轴上,一只蚂蚁从点A爬行4个单位长度到了表示−3的点B,则点A表示的数是.7.数轴上点A表示1,从A出发沿正方向移动3个单位长度到达点B,则点B表示的数是.8.在数轴上,若A点表示-3,在A点左侧到点A距离等于2的点所表示的数是.9.数轴上点A表示的数为0.3.B表示的数为−13,则这两点中距离原点较近的是点(填“A”或“B”).10.已知数轴上点A表示7,点B,C表示互为相反数的两个数,且点C与点A间的距离为2,则点B表示的数是.二、选择题11.在数轴上,把表示−2的点沿着数轴移动7个单位长度得到的点所表示的数是()A.5B.−9C.±5D.5或−912.如图,数轴的单位长度为1,若点A和点C所表示的两个数的绝对值相等,则点B表示的数是()A.-3B.-1C.1D.313.如图,数轴的单位长度为1,数轴上有A,B,C三个点.若点A,B到原点的距离相等,则点C表示的数是()A.2B.1C.−1D.−214.如图,数轴上点P表示的有理数可能是()A.-1.6B.2.4C.-0.6D.-0.415.数轴上的点B到原点的距离是6,则点B表示的是为()A.12或−12B.6C.−6D.6或−616.下列各图中,所画出的数轴正确的是()A.B.C.D.17.如下图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位度到达点C,若点C表示的数为1,则点A表示的数为()A.-1B.+1C.-2D.-318.如图,数轴上表示的数是-0.5的点是()A.点A B.点B C.点C D.点D19.已知a,b是有理数,若a在数轴上的对应点的位置如图所示,a+b<0,有以下结论:①b< 0;②b−a>0;③|−a|>−b;④b a<−1,则所有正确的结论是()A.①④B.①③C.②③D.②④20.如图,数轴的单位长度为1.若点B和点C所表示的两个数的绝对值相等,则点A,D表示的数分别是()A.−4,1B.−2,3C.−3,2D.−1,4三、解答题21.画一条数轴,并在数轴上表示下列各数:−2,3,92,0.22.已知A,B两点在数轴上表示的数分别是−3和12,现A,B两点分别以1个单位/秒,3个单位秒的速度向左运动,A比B早1秒出发,问B出发后几秒原点恰好在两点正中间?答案1.−3或1或−12.−43.3或-7 4.-7或-1或5 5.2 6.−7或1或1或−77.4 8.-5 9.A 10.-9或-5 11.D 12.B 13.C 14.A 15.D 16.C 17.C 18.B 19.A 20.A21.解:图形如图所示:22.解:设B出发t秒时原点在它们的正中间,由题意得|−3−1−t|=|12−3t|,∴-(-3-1-t)=12-3t,∴t=2,答:B出发2t秒时原点在它们的正中间.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册数学数轴练习题及答案
导读:知识需要不断地积累,通过做练习才能让知识掌握的更加扎实,下面是为大家提供了数轴练习题,欢迎阅读。
一、选择题
1.下列是几个同学画的数轴,请你判断其中正确的是
2.下列说法正确的是()
A.没有最大的正数,却有最大的负数
B.数轴上离原点越远,表示数越大
C.0大于一切非负数
D.在原点左边离原点越远,数就越小
3.下列说法正确的是()
A.数轴上一个点可以表示两个不同的有理数
B.表示-P的点一定在原点的左边
C.在数轴上表示-8的点与表示+2的点的距离是6
D.数轴上表示-的点,在原点左边,距原点个单位长度。
4.如图所示,点M表示的数是()
A.2.5
B.
C.
D.2.5
5.下列结论正确的有()个:
①规定了原点,正方向和单位长度的直线叫数轴②最小的整数是0③正数,负数和零统称有理数④数轴上的点都表示有理数
A.0B.1C.2D.3
7.在数轴上,A点和B点所表示的数分别为-2和1,若使A点表示的数是B点表示的数的3倍,应把A点()
A.向左移动5个单位
B.向右移动5个单位
C.向右移动4个单位
D.向左移动1个单位或向右移动5个单位
8.点A为数轴上表示-2的动点,当点A沿数轴移动4个单位长到B
时,点B所表示的实数是()
A.1
B.-6
C.2或-6
D.不同于以上答案
二、填空题
9.在数轴上表示的两个数中,的数总比的数大。
10.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。
11.在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的
侧,距原点个单位;两点之间的距离为个单位长度。
12.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。
13.与原点距离为2.5个单位长度的点有个,它们表示的有理数是。
14.到原点的距离不大于3的整数有个,它们是:。
15.数轴上表示-7与-3的两个点之间的距离是个单位长度。
16.在数轴上的点A,B分别表示-1和-3,点C是线段AB的中点,则点C表示的数是
17.已知数轴上点A表示的数是-2,将点A向左移动2个单位长度得到点B,若点C与点B的距离等于3个单位长度,则点C表示的数是
18.设数b是一个负数,则数轴上表示b的点在原点的边,与原点的距离是___个单位长度。
20.小明的家(记为A)与他上学的学校(记为B),书店(记为C)
依次座落在一条东西走向的大街上,小明家位于学校西边30米处,
书店位于学校东边100米处,小明从学校沿这条街向东走40米,接
着又向西走了70米到达D处,试用数轴表示上述A、、B、C、D的位置。
21.(共8分)在数轴上有三个点A、B、C如图所示,请回答:
(1)把点A向右移动7个单位后,A、B、C三个点表示的数那个最小,是多少?
(2)把B点向左移动5个单位后,这是A点所表示的数比B所表示的数大多少?
(3)如果让A表示的数最大,则A点应该怎样移动,至少移动大于几个单位长度?
22.在数轴上,老师不小心把一滴墨水滴在画好的数轴上,如图所示,试根据图中标出的数值判断被墨水盖住的整数,并把它写出来。
23.已知数轴上有A,B两点,A,B之间的距离为1,A与原点O
的距离为3,那么所有满足条件的点B与原点O的距离之和等于多少?
1.2.2数轴
参考答案:
16.—2
17.—1或—7
18.左边,—b,
19.-3<-3<-1.25<0<1<3
20.
21.(1)B,1(2)—1(3)8
22.-12,-11,-10,-9,-8,11,12,13,14,15,16,17
23.12。