加热器温度控制设计
基于单片机的电阻炉温度控制系统设计
基于单片机的电阻炉温度控制系统设计一、引言电阻炉是一种广泛应用于工业生产中的加热设备,其温度控制的准确性对于工艺过程的稳定和产品质量的保证至关重要。
本文将基于单片机设计一个电阻炉温度控制系统,通过采集温度传感器的信号,用单片机控制加热器的工作状态,实现对电阻炉温度的精确控制。
二、系统结构设计本系统由四个模块组成:温度采集模块、温度控制模块、显示模块和控制模块。
1.温度采集模块:使用一个高精度的温度传感器,如PT100,将电阻炉内部的温度转化为电压信号。
该信号经过模拟转数字转换器(ADC)转换为数字信号,传输给单片机。
2.温度控制模块:根据温度采集模块传输的信号,单片机通过PID算法计算出控制值,并输出PWM信号控制加热器的工作状态。
PID算法可根据实际情况进行参数调整,以达到系统稳定的控制效果。
3.显示模块:采用数码管或液晶显示器显示当前电阻炉的温度值,方便操作员实时监测电阻炉的运行状态。
4.控制模块:可以通过按钮或者触摸屏等方式进行设定和调整控制参数,例如设定温度范围、PID参数调节等。
三、系统工作原理1.系统初始化:单片机启动后,进行相应的外设初始化和参数设定,包括温度采集模块的配置、PID参数的设定、显示模块的显示等。
2.温度采集与转换:通过温度传感器采集电阻炉内部的温度信号,将其转化为模拟电压信号。
利用ADC将模拟信号转换为数字信号,并传输给单片机进行处理。
3.PID算法计算:单片机根据采集到的温度值,通过PID算法计算出控制值。
PID控制算法通常包括比例系数(P)、积分系数(I)和微分系数(D)三个参数的调整,根据实际情况进行调节以达到控制精度和稳定性要求。
4.PWM输出控制:根据PID算法计算得到的控制值,单片机输出对应的PWM信号。
该信号通过驱动电路控制加热器的工作状态,调整和维持电阻炉的温度。
5.温度显示:单片机将当前的温度值通过显示模块进行显示,使操作员能够实时监测到电阻炉的温度。
单片机基于51单片机温度控制设计简介
单片机基于51单片机温度控制设计简介一、引言本文将介绍基于51单片机的温度控制设计,其中包括硬件设计和软件设计两个部分。
温度控制是工业自动化中非常重要的一部分,其应用范围非常广泛,如冷库、温室、恒温水槽等。
本文所介绍的温度控制设计可广泛应用于各种场合。
二、硬件设计1.传感器部分本设计采用DS18B20数字温度传感器,其具有精度高、抗干扰能力强等优点。
传感器的输出信号为数字信号,与51单片机通信采用单总线方式。
2.控制部分本设计采用继电器控制加热器的开关,继电器的控制信号由51单片机输出。
同时,为了保证控制精度,本设计采用PID控制算法,其中P、I、D系数均可根据实际情况进行调整。
3.显示部分本设计采用LCD1602液晶显示屏,可显示当前温度和设定温度。
4.电源部分本设计采用12V直流电源供电,其中需要注意的是,由于继电器的电流较大,因此需要采用稳压电源。
三、软件设计1.初始化在程序开始运行时,需要对各个模块进行初始化,包括DS18B20传感器、LCD1602液晶显示屏和PID控制器等。
2.采集温度程序需要不断地采集温度,通过DS18B20传感器获取当前温度值,并将其显示在LCD1602液晶显示屏上。
3.控制加热器根据当前温度和设定温度的差值,通过PID控制算法计算出控制信号,控制继电器的开关,从而控制加热器的加热功率。
4.调整PID参数为了保证控制精度,需要不断地调整PID控制算法中的P、I、D系数,以达到最优控制效果。
四、总结基于51单片机的温度控制设计,可以实现对温度的精确控制,具有应用广泛、控制精度高等优点。
本文所介绍的硬件设计和软件设计,可供读者参考和借鉴,同时也需要根据实际情况进行调整和改进。
加热炉温度控制系统
加热炉温度控制系统标题:加热炉温度控制系统摘要:加热炉温度控制系统是一种用于控制加热炉温度的设备。
它通过监测加热炉内的温度并相应地调节加热器的工作状态,以保持加热炉内的温度在设定范围内稳定。
本文将介绍加热炉温度控制系统的原理、组成部分以及工作流程,并探讨其在工业生产中的应用。
关键词:加热炉、温度控制、加热器、工业生产1. 引言加热炉是一种常见的热处理设备,广泛应用于冶金、机械加工和材料研究等领域。
在加热炉的使用过程中,保持加热炉内的温度稳定是非常重要的。
过低的温度会导致加热不充分,影响产品的质量;过高的温度则会造成能源的浪费,甚至导致设备损坏。
因此,开发一种稳定且可靠的加热炉温度控制系统对于提高生产效率和节约能源具有重要意义。
2. 温度控制系统的原理温度控制系统通常由温度传感器、控制器和执行器组成。
温度传感器用于实时监测加热炉内的温度变化,将温度信号传输给控制器。
控制器根据设定的温度范围和温度传感器反馈的实时温度,计算出相应的控制信号。
执行器根据控制信号调节加热器的工作状态,从而实现加热炉温度的稳定控制。
3. 温度控制系统的组成部分3.1 温度传感器温度传感器是温度控制系统中的重要组成部分。
常用的温度传感器有热电阻和热电偶两种。
热电阻传感器的工作原理是利用金属电阻随温度变化而发生的电阻变化,通过测量电阻的变化来确定温度。
热电偶传感器则是利用两种不同材料的接触产生的热电势随温差变化而变化,通过测量热电势的变化来确定温度。
3.2 控制器控制器是温度控制系统的核心部件,负责计算控制信号并将其传输给执行器。
控制器根据设定的温度范围和温度传感器反馈的实时温度,做出相应的控制决策。
常见的控制器包括PID控制器和模糊控制器。
PID控制器根据比例、积分和微分三个方面来调节控制信号;模糊控制器则利用模糊逻辑推断得出控制信号。
3.3 执行器执行器根据控制器传输的控制信号调节加热器的工作状态。
常见的执行器包括电动阀和可调电阻。
温度控制系统设计
温度控制系统设计一、引言温度控制系统是一种常见的自动化控制系统,用于监测和调节环境或设备的温度。
它在工业、农业、医疗等领域中广泛应用,可以提高生产效率、保障产品质量和人员安全。
本文将介绍温度控制系统的设计原理、组成部分以及相关技术。
二、设计原理温度控制系统的设计原理基于温度传感器和执行器的反馈控制。
首先,通过温度传感器实时检测环境或设备的温度,并将检测结果转化为电信号。
然后,将电信号输入到控制器中进行处理。
控制器根据设定的目标温度和实际温度之间的差异,计算出相应的控制信号。
最后,控制信号通过执行器,如加热器或冷却器,调节环境或设备的温度,使其逐渐接近目标温度。
三、组成部分1. 温度传感器温度传感器是温度控制系统的核心部件之一,用于测量环境或设备的温度。
常见的温度传感器包括热电阻和热电偶。
热电阻基于温度对电阻值的影响进行测量,而热电偶则利用两种不同金属的热电效应来测量温度。
2. 控制器控制器是温度控制系统的决策中心,它接收温度传感器的信号,并根据预设的控制算法计算出相应的控制信号。
根据控制算法的不同,控制器可以分为比例控制器、比例积分控制器和比例积分微分控制器等。
控制器还可以具备调节参数、报警功能等。
3. 执行器执行器是温度控制系统的执行部件,负责根据控制信号调节环境或设备的温度。
常见的执行器包括加热器和冷却器。
当温度低于目标温度时,加热器会被激活,向环境或设备中释放热能;当温度高于目标温度时,冷却器则会被激活,帮助环境或设备散热。
四、相关技术1. PID控制PID控制是一种常用的温度控制算法,通过比例、积分和微分三个控制参数对温度进行调节。
比例控制用于根据温度误差大小调整执行器的输出;积分控制则用于消除稳态误差;微分控制则用于抑制过冲和振荡。
PID控制可以根据实际应用需求进行参数调整,以达到更好的控制效果。
2. 信号处理温度传感器的信号需要进行处理和转换,以便控制器能够正确计算出控制信号。
信号处理技术包括滤波、放大、线性化等。
大功率电加热器电源与温度控制系统的设计
工作原理电加热器的安全运行和使用寿命与电加热器运行温度的高低有着直接的关系,因此对加热器运行温度的控制和实时监控十分重要。
本系统由温度传感器对加热元件、加热板以及蓄热块上的温度进行采样,所测温度信号经放大和A/D转换后送PLC,利用软件进行数据处理,处理后的数据实时显示,并驱动三相晶闸管调压器以调节加热器温度。
电加热器电源及温控系统技术路线见图1。
1.3技术性能1.3.1电源功能(1)长时运行工作制,电源系统能在各种试验状态下,把负载加热到要求的温度值,并进行恒温控制,同时电源系统供电主回路方案合理,可靠性高,可操作性、可维护性强,操作上的透明度高,安全性要高。
(2)电源系统能给加热器提供一个平滑的连续动态可调的输出电参数,实现带载动态调温功能,避免对加热器造成电动力冲击与温度过冲,实现温度平稳控制。
(3)电源系统具有输出参数控制模式调节功能,能根据实际工况进行最佳运行控制。
即工况良好时,当温度未达到其设定值时,电源应以高功率输出,工况不好时,比如天气潮湿、绝缘值低或长时间未做试验时,能够选择先低电压低功率加热,然后慢慢提高电参数,达到保护加热器与安全运行的目的。
(4)当负载温度达到预设温度时,电源应调节功率输出以维持电热元件恒定在设定温度,同时,在恒温过程中,电热元件避免不断受到交变力的作用,充分保证高温条件下负载的安全运行与使用寿命。
1.3.2电力电子装置(调功器)技术参数电力电子装置采用调压控制模式,试验中根据温度控制要求,调节控制值,达到控制脉冲的调制,从而实现输出电压调节,加热器电功率与负载温度可控的目的。
(1)额定输出功率:第1〜12组,每组功率288kW,12组单独运行, 电阻性负载;(2)调压范围:主回路输入电压的0〜98%;(3)工作制式:具备软启动、软停车功能,避免过大的电流冲击。
1.3.3系统保护功能(1)电源系统主回路具备一次侧雷击过电压保护,浪涌过电压保护,电源侧操作过电压保护,电源侧过电流保护,负载侧过电流保护,电力电子器件关断过电压保护,电力电子器件过热保护以及系统漏电保护。
温度控制器设计
温度控制器设计一、设计任务设计一个可以驱动1kW加热负载的水温控制器,具体要求如下:1、能够测量温度,温度用数字显示。
2、测量温度范围0~100℃,测量精度为0.5℃。
3、能够设置水温控制温度,设定范围40~90℃,且连续可调。
设置温度用数字显示。
4、水温控制精度≤±2℃。
5、当超过设定的温度20℃时,产生声、光报警。
二、设计方案分析根据设计要求,该温度控制器是既可以测量温度也可以控制温度,其组成框图如图1所示。
图1 温度控制器原理框图因为要求对温度进行测量显示,所以首先采用温度传感器,将温度变化转换成相应的电信号,并通过放大、滤波后送A/D转换器变成数字信号,然后进行译码显示。
若要求温度被控制在设定值附近,则要求将实际测量温度的信号与温度的设定值(基准电压)进行比较,根据比较结果(输出状态)来驱动执行机构,实现自动地控制、调节系统的温度。
测量的温度可以与另一个设定的温度上限比较器相比较,当温度超过上限温度值时,比较器产生报警信号输出。
1、温度检测及信号处理温度检测是温控系统的最关键部分,它只接影响整个系统的测量、控制精度。
目前检测温度的传感器很多,其测量范围、应用场合等也不尽相同。
例如热电偶温度传感器目前在工业生产和科学研究中已得到了广泛的应用,它是将温度信号转化成电动势。
目前热电偶温度传感器已形成系列化和标准化,主要优点是:它属于自发电型传感器,测量温度时可以不需要外加电源;结构简单,使用方便,热电偶的电极不受大小和形状的限制;测量温度范围广,高温热电偶测温高达1800℃以上,低温热电偶可测-260℃以下,目前主要用在高温测量工业生产现场中。
热电阻温度传感器是利用电阻值随温度升高而增大这一特性来测量温度的,目前应用较为广泛的热材料是铜和铂。
在铜电阻和铂电阻中,铂电阻性能最好,非常适合测量-200~+960℃范围内的温度。
国内统一设计的工业用铂电阻常用的分度号有Pt25、Pt100等,Pt100即表示该电阻的阻值在0℃时为100Ω。
基于PLC的锅炉加热温度控制系统设计
基于PLC的锅炉加热温度控制系统设计锅炉加热温度控制系统设计是一个非常重要的工程项目,特别是在工业生产中。
PLC(可编程逻辑控制器)是一种高级自动化控制设备,可以实现对锅炉加热温度的精确控制。
本文将介绍一个基于PLC的锅炉加热温度控制系统的设计。
【系统概述】该系统的基本目标是稳定地控制锅炉的加热温度,保证锅炉在正常工作范围内运行,并尽可能地提高热效率。
具体来说,系统需要实现以下功能:1.实时监测锅炉温度。
2.控制锅炉加热功率。
3.响应温度变化,并自动调整加热功率。
4.报警和故障保护功能。
【系统设计】1.硬件设计:硬件部分包括传感器、执行机构和PLC。
传感器用于实时监测锅炉温度,常用的温度传感器有热电偶和敏感电阻。
执行机构用于控制加热功率,可采用电磁阀或电加热器。
PLC负责处理数据和控制信号,可以选择常用的西门子、施耐德等PLC。
2.软件设计:软件部分主要包括PLC编程和人机界面设计。
PLC编程可以使用基于LD(梯形图)或SFC(时序功能图)的编程语言,根据具体控制要求,设计合适的控制算法和逻辑。
人机界面设计可以使用HMI(人机界面)或SCADA(监控与数据采集系统),实时显示锅炉温度、加热功率和系统状态,并提供控制和设定温度的功能。
3.控制策略设计:控制策略需要根据具体情况进行设计,一般分为开环控制和闭环控制两种。
开环控制是根据经验或数学模型预先设定温度和加热功率曲线,直接输出控制信号。
闭环控制则根据实时监测的温度反馈信息,通过控制算法动态调整加热功率,使实际温度尽可能接近设定温度。
4.报警和故障保护设计:系统需要具备报警和故障保护功能,当温度超出设定范围或系统出现故障时,及时发出警报并采取相应的措施,以保护锅炉和工艺安全。
【实施与测试】在实施前,需要进行系统调试,确保PLC编程和硬件连接正常。
在实际运行中,需要对系统进行定期检测和维护,以保证系统的稳定性和可靠性。
总结起来,基于PLC的锅炉加热温度控制系统的设计是一个复杂的工程,需要综合考虑硬件和软件的因素。
电加热炉温度控制系统设计
电加热炉温度控制系统设计电加热炉是一种广泛应用于工业生产中的设备,用于加热各种材料或工件。
电加热炉的温度控制是保证炉内温度稳定和精确的关键,对于生产质量和设备寿命有重要影响。
本文将介绍电加热炉温度控制系统的设计。
首先,电加热炉温度控制系统的设计需要考虑以下几个方面:1.温度传感器:选择合适的温度传感器用于测量炉内温度,如热电偶或热电阻。
传感器需要能够对温度进行准确测量,并具有较高的可靠性和耐高温性能。
2.控制算法:根据温度传感器的反馈信号,控制算法计算控制信号以调节炉内加热功率。
最常用的控制算法是PID控制算法,它根据温度偏差、偏差变化率和偏差累积进行控制信号计算,以实现温度的稳定控制。
3.控制器:选择合适的控制器用于执行控制算法并输出控制信号。
控制器需要具有快速的计算能力和稳定的控制性能。
常见的控制器类型包括单片机、PLC和工业控制计算机。
4.加热装置:选择合适的加热装置用于向电加热炉提供能量。
常见的加热装置包括电阻丝、电加热器和感应加热器。
加热装置需要能够根据控制信号调节加热功率,并具有可靠的性能。
5.温度控制系统的安全保护:设计温度控制系统需要考虑安全保护措施,以防止温度过高造成设备事故和人身伤害。
常见的安全保护措施包括过温保护、短路保护和漏电保护等。
在电加热炉温度控制系统的设计过程中,需要进行系统建模和参数调节。
系统建模是将电加热炉、加热装置和温度传感器等组成部分抽象为数学模型,以进行控制算法的设计和仿真验证。
参数调节是根据实际工艺要求对控制算法参数进行调整,以达到良好的控制性能。
最后,电加热炉温度控制系统的设计需要考虑实际应用情况和要求。
不同的工艺要求和生产环境可能需要不同的控制精度和性能需求,因此需要根据实际情况进行设计定制。
在总结上述内容后,设计电加热炉温度控制系统需要考虑温度传感器、控制算法、控制器、加热装置和安全保护等方面。
系统建模和参数调节是设计过程中的关键步骤。
根据实际应用情况和要求进行设计定制,以实现温度的稳定和精确控制。
硬件课程设计模拟温度控制
硬件课程设计模拟温度控制
设计一个模拟温度控制系统,需要考虑以下硬件组件:
1. 温度传感器:用于测量当前环境的温度。
2. 控制器:负责处理温度传感器的读数,并根据设定的温度范围控制其他硬件设备。
3. 加热设备:例如加热器或电炉,用于增加环境温度。
4. 冷却设备:例如风扇或制冷器,用于降低环境温度。
5. 显示屏:用于显示当前环境温度和设定的温度范围。
下面是一个简单的设计方案:
1. 将温度传感器连接到控制器的模拟输入口。
2. 将加热设备和冷却设备连接到控制器的数字输出口。
1
3. 将显示屏连接到控制器的数字输出口,用于显示温度信息。
4. 在控制器中编写代码来读取温度传感器的读数,并与设定的温度范围进行比较。
5. 如果当前温度低于设定范围的下限,控制器会打开加热设备来增加环境温度。
6. 如果当前温度高于设定范围的上限,控制器会打开冷却设备来降低环境温度。
7. 当温度处于设定范围内时,控制器将关闭加热设备和冷却设备。
8. 控制器会周期性地更新显示屏上的当前温度信息。
这只是一个简单的设计方案,实际的温度控制系统可能还需要考虑更多因素,例如温度曲线的变化速率、安全保护机制等。
2。
课程设计基于PLC的电加热炉温度控制系统设计
第一章绪论1.1选题背景及意义加热炉是利用电能来产生蒸汽或热水的装置。
因为其效率高、无污染、自动化程度高,稳定性好的优点,冶金、机械、化工等各类工业生产过程中广泛使用电加热炉对温度进行控制。
而传统的加热炉普遍采用继电器控制。
由于继电器控制系统中,线路庞杂,故障查找和排除都相对困难,而且花费大量时间,影响工业生产。
随着计算机技术的发展,传统继电器控制系统势必被PLC所取代。
二十世纪七十年代后期,伴随着微电子技术和计算机技术的快速发展,也使得PLC 具有了计算机的功能,成为了一种以电子计算机为核心的工业控制装置,在温度控制领域可以让控制系统变得更高效,稳定且维护方便。
在过去的几十年里至今,PID控制已在工业控制中得到了广泛的应用。
在工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)中位居第一。
由于其原理简单、使用方便、适应能力强,在工业过程控制中95%甚至以上的控制回路都采用了PID结构。
虽然后来也出现了很多不同新的算法,但PID仍旧是最普遍的规律。
1.2国内外研究现状及发展趋势一些先进国家在二十世纪七十年代后期到八十年代初期就开始研发电热锅炉,中国到八十年代中期才开始起步,对电加热炉的生产过程进行计算机控制的研究。
直到九十年代中期,不少企业才开始应用计算机控制的连续加热炉,可以说发展缓慢,而且对于国内的温度控制器,总体发展水平仍不高,不少企业还相当落后。
与欧美、日本,德国等先进国家相比,其差距较大。
目前我国的产品主要以“点位”控制和常规PID为主,只能处理一些简单的温度控制。
对于一些过程复杂的,时变温度系统的场合往往束手无策。
而相对于一些技术领先的国家,他们生产出了一批能够适应于大惯性、大滞后、过程复杂,参数时变的温度控制系统。
并且普遍采用自适应控制、模糊控制及计算机技术。
近年来,伴随着科学技术的不断快速发展,计算机技术的进步和检测设备及性能的不断提升,人工智能理论的实用化。
因此,高精度、智能化、人性化必然是国内外必然的发展趋势。
一种电动汽车空调系统PTC加热器控制器设计
39ELECTRONIC ENGINEERING & PRODUCT WORLD 2021.3设计应用esign & ApplicationD一种电动汽车空调系统PTC加热器控制器设计Design of PTC heater controller for air conditioning system of electric vehicle王晓辉 (奇瑞新能源汽车股份有限公司,安徽 芜湖 241000)摘 要:根据电动汽车空调系统PTC加热器特性设计控制器,采用PWM方式控制功率开关器件通断实现PTC 加热器功率的线性调节。
控制电路在高压侧,选用反激电源为辅助电源,通讯电路选用隔离CAN电路。
具备下电保持功能进行故障处理,过压、欠压和过流都具有硬件和软件双重保护功能。
功率电路均分为两路,提高了功率器件的可靠性和减小瞬态冲击电流。
通过整车搭载验证,在空调系统实现同等制热效果的条件下具备明显的节能效果。
关键词:电动汽车、空调系统、PTC加热器、控制器0 引言发展电动汽车是国家应对国际环境和能源危机的重要决策,我国大力发展电动汽车并取得显著技术成果,欧美各国从国家高度到企业层面,也已迅速调整发展战略,将汽车电动化作为未来的发展方向。
传统燃油车空调系统利用发动机热量制热,电动汽车电驱系统效率可以高达90%以上,损耗产生的热量远不足以供给空调系统制热,所以电动汽车空调系统制热使用PTC (正温度系数)加热器产生热量。
目前比较普遍的方案是使用继电器控制PTC 加热器电源通断,通过风门开度控制冷热风的风量来控制温度,此类方案能源浪费较大。
采用PWM (脉宽调制)方式控制功率开关器件通断PTC 加热器电源,实现PTC 加热器输出功率的线性控制。
本设计中PTC 加热器峰值功率5.2 kW ,输入电压范围260~410 V 。
考虑开关器件的散热需求,将功率电路均分为两路2.6 kW 。
考虑设计裕量,单路最大电流按10 A 设计,同时也有助于减小开关器件开通瞬间的峰值电流。
加热冷却控制的pid
通常的加热控制系统是,为了使被控制点的测量温度(PV)与设定温度(SV)一致,进行PID控制计算,控制加热器的电源功率。
下图就是加热控制系统的例子,控制容器内液体温度的系统。
设置加热冷却控制的PID:需要加热冷却的应用都带有加热控制(加热器~温度传感器)和冷却控制(冷却机构~温度传感器),两个控制系统,并且在大多数情况下,加热系统和冷却系统的响应特性不一样。
为此温控器也被设计成分别设置加热系统和冷却系统的PID参数。
设置加热冷却PID参数的方法:
设置加热冷却控制的温控器的PID参数有两种方法。
具体参数因温控器的型号,温控器档次以及制造商的不同而有差异。
①只有比例带可以分别设置的类型
此类型比例带可以对加热系统设置加热比例带,对冷却系统设置冷却比例带。
积分时间设置和微分时间设置则是加热系统和冷却系统共用。
因此此类型的加热冷却PID温控器,由加热比例带,冷却比例带,积分时间和微分时间4个PID参数进行演算。
这种类型设置只增加了一
个调整项目,虽然调整简单,但是微调整受限制。
②加热控制系统和冷却控制系统可以独立设置的类型
此类型因为加热和冷却的PID常数可以分别独立设置,所以可以更精确地调整常数,但是很难得到最佳PID参数。
传感器设计—温度控制器—鱼缸水温自动加热系统
鱼缸水温自动加热控制系统
流程图
制作应用
基本电路 图
元器 件选 取
电路 原理 分析
• 控制流程图
• 加热11s后,若水温仍低于26℃,则IC1(引脚2)仍小于 1/3Vcc,IC1输出端(3脚)为高电平,继续加热。若水温 高于26℃,Rt阻值减小,R1分压增大,IC1(引脚2) UR1>1/3Vcc,则暂稳态结束后电路立即复位,IC1输出端 (3脚)为低电平,指示灯LED熄灭,继电器K1-1释放, 停止加热。
• 发光二极管LED、二极管D1、继电器K连接IC1输出端(3 脚)。当IC1输出端(3脚)为高电平时,电压继电器K吸 合,指示灯LED亮,反之,LED灯灭。
基本原理:加热器功能的实现
加热电路
加热电路由加热器、继电器K1-1及220v交流电源组成,交流 欠电压继电器K1-1有一对常开触点,当线圈电压达到或大 于某额定值时,衔铁吸合,反之,衔铁释放。因此,当 IC1输出端(3脚)为高电平时,K1-1吸合,加热器工作, 反之,K1-1释放,加热器停止工作。
• 金属热电阻一般适用于-200~500℃范围内的温度测量,其 特点是测量准确、稳定性好、性能可靠,其温度系数更大 ,常温下的电阻值更高(通常在数千欧以上),但互换性 较差,非线性严重。
鱼缸水温加热控制器
• 热电阻的金属材料一般要求:尽可能大而且稳定的温度系 数、电阻率要大(在同样灵敏度下减小传感器的尺寸)、 在使用的温度范围内具有稳定的化学物理性能、材料的复 制性好、电阻值随温度变化要有间值函数关系(最好呈线 性关系)。
红外加热管的选型及温度控制设计方案
红外加热管的选型及温度控制设计方案红外加热管的选型与温度控制设计方案,这个听起来是不是有点高深?别担心,今天咱们就轻松聊聊这事儿,保证你听得懂,笑得出。
红外加热管就是那种用来发热的设备,它不是像我们平时见到的电暖气那样直接加热空气,而是通过发射红外线直接加热物体或者空气。
你可以想象成太阳的光线,温暖而柔和。
那为什么它这么牛?因为它的加热效率高,能量集中,完全不像那些大块头的加热器,整天噼里啪啦的,反而像个安静的小太阳,给你温暖的感觉。
好,既然说到这里了,咱们就来看看怎么选一个合适的红外加热管,再给它设计一个温控系统,保证你用得舒心,效果好。
选红外加热管,不光要看它的外形,更要关注它的技术参数。
咋选?最直接的就是看加热管的功率。
功率直接关系到它的加热能力,功率越大,加热速度越快,温度也越高。
所以你得搞清楚自己需要多少加热能力,比如是用来做烘干还是加热一些小物件,功率就得根据需求来决定。
过了火候,那加热管可能就烧得太快,得不偿失;太小了,又加热不够,白白浪费电力。
所以,这个功率选择,就像找鞋子,合适最重要。
再说说加热管的材质。
材质直接影响到它的使用寿命和稳定性。
你想啊,咱们都知道,东西烧久了就容易坏,尤其是电热类的设备。
但是,如果你选对了材质,能让加热管更耐高温,更抗氧化,那就能大大提高使用寿命,省下不少钱。
所以有时候看材质的好坏,简直就是考察它未来能“熬”多久的关键因素。
好啦,选好加热管之后,就得来聊聊温度控制的问题了。
温度控制就像是给加热管戴上了一颗“智能心脏”,它能精准地调节加热管的温度,避免过热或者不够热的情况。
你要知道,过热会浪费电力,甚至让加热管早早“退休”;温度太低,效果就差,根本达不到预期。
所以温控系统必须得精确,一定要选一个反应灵敏、稳定的温控器。
这里面有好多种技术,像常见的电子温控、数字温控这些都是比较好用的选择。
不过,话说回来,选择哪个温控器,还得看你实际的使用场景和预算。
价格上可能会有差距,功能也不完全一样,但靠谱的温控器能让你的红外加热管发挥最大效能,省心省电,还能大大延长使用寿命。
温度控制电路的设计
温度控制电路的设计首先,我们需要了解温度控制电路的原理。
温度控制电路主要由三个部分组成:温度传感器、比较器和控制器。
温度传感器负责将温度信号转换成电信号,并输入到比较器中。
比较器将温度信号与给定的温度值进行比较,输出一个开关信号。
控制器接收开关信号,并控制相应的装置(例如加热器或降温器)进行工作,以维持温度在给定范围内。
接下来,我们将通过一个实例来介绍温度控制电路的设计。
假设我们需要设计一个温度控制电路,用于控制一个电炉的加热温度。
我们要求电炉的温度在40摄氏度到60摄氏度之间,当温度达到60摄氏度时,电炉停止加热;当温度降到40摄氏度时,电炉开始加热。
首先,选择一个合适的温度传感器。
常见的温度传感器有热敏电阻、热电偶和半导体温度传感器等。
在这个例子中,我们选择热敏电阻作为温度传感器。
热敏电阻的电阻值随温度的变化而变化,一般情况下都是随温度上升而电阻值下降。
接下来,我们需要选择一个合适的比较器。
比较器的作用是将温度传感器的电信号与设定的温度进行比较,并输出开关信号。
在这个例子中,我们可以选择一个常用的运算放大器作为比较器。
运算放大器具有高增益和差分输入的特性,适合进行信号的比较和放大。
接下来,我们需要选择一个合适的控制器。
控制器的作用是接收比较器的开关信号,并控制电炉的加热。
在这个例子中,我们可以选择一个单片机作为控制器。
单片机具有高集成度和灵活性的特点,可以实现复杂的控制算法。
接下来,我们需要设计电路连接和电路调试。
首先,将热敏电阻连接到比较器的输入端。
然后,将比较器的输出端连接到单片机的输入端。
最后,将单片机的输出端连接到电炉的加热控制端。
在电路调试中,我们可以通过改变比较器的阈值和调整控制算法来使温度控制更加精确和稳定。
综上所述,温度控制电路设计的关键是选择合适的传感器、比较器和控制器,并进行合理的电路连接和调试。
通过合理的设计和调试,可以实现精确和稳定的温度控制。
温度控制电路在实际应用中有广泛的应用,对于提高设备工作效率和安全性具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程控制大作业
1确定被控对象
我的课题是以加热器为被控对象,设计一个加热器出口水温控制系统。
2课题的背景和研究意义
温度是工业对象中的主要被控参数之一,在工业企业中如何提高诸如电炉这样的温度控制对象的运行性能一直是现场技术人员努力解决的问题。
温度控制对于大型工业控制、制冷和制热等工程具有广阔的应用前景。
温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。
近几年来快速发展了多种先进的温度控制方式,如:PID控制,模糊控
制,神经网络及遗传算法控制等。
这些控制技术大大的提高了控制精度,不但使控制变得简便,而且使产品的质量更好,降低了产品的成本,提高了生产效率。
3生产过程和工艺流程
当前国内小型加热器一般分为两种类型,电加热式和燃油加热式。
我选用立式盘管燃油式加热器为例,由燃油供给系统、鼓风系统、燃烧器、加热管、控制系统等组成。
它的工艺流程如下:首先盘管加热器的受热面是一组盘管。
给水从加热器的底部进入内盘管,水沿内盘管螺旋上升至加热器上部,随即进外盘管,水沿外盘管螺旋下降至加热器底部。
水在内外盘管中受热,最后从加热器底部排出同时燃油对加热器进行加热,使加热器达到一定温度,这样就可以改变流过加热器盘管的水的温度,来控制出水口水温。
4分析被控对象特性,建立数学模型
对于被控对象的特性,我选择通过实验方法应用Matlab软件仿真出来并建
立其数学模型。
通过得出的实验数据确定被控对象的数学模型:W s =
2 e- i.5s。
4.5s+1
5控制方案
对于加热器出口水温的控制系统,我们可以选用水出口温度为被控参量,燃 料流量为控制变量,来进行分析。
同时该系统也属于温度控制系统,具有滞后 较大、纯滞后时间较长、扰动幅值大、负荷变化频繁、剧烈等特点。
对于动态 特性复杂、存在多种扰动或扰动幅度较大,控制质量要求高的生产过程,用简 单控制系统无法实现良好的性能,也满足不了工艺控制精度要求,而串级控制 系统属于复杂控制系统,主要用于对象容量滞后较大、纯滞后时间较长、扰动 幅值大、负荷变化频繁、剧烈的被控过程,所以这时可以考虑用串级控制系统。
系统的结构示意图如下:
水出口視度8
工作原理:如果出现外部干扰,使稳态工况遭到破坏,串级控制系统立即开 始控制工作。
根据扰动施加点的位置不同,分 3 种情况:( 1) 扰动作用于副回 路;( 2) 扰动作用于主过程;( 3)扰动同时作用于副回路和主过程。
在这里主
要介绍第二种情况。
假设此时
系统的控制方框图如下:
燃料压力f 3(t ) 、燃料热值f 4(t )为稳定值,只有水流量f 1(t ) 、水入口温度f 2( t )对主回路产生干扰,虽然副变送器不能提前测出,但副回路的闭环负反馈,使对象加热器内温度部分特性的时间常数大为缩短,加快了校正作用,可以及时的改变加热器内的温度,也使扰动对出口水温度影响很小。
本系统实现了加热器内温度的控制的功能,和实现了加热器出口水温控制的功能。
6 被控变量,控制变量的选择
被控主变量为出口水温,被控副变量为加热器内的温度,控制主变量为燃料阀的开度,控制副变量为给水阀的开度。
7 器件的选择
温度传感器采用温度传感器铂电阻Ptiooo。
因为铂热电阻的物理化学性能在高温和氧化性介质中很稳定,它能用作工业测温元件,且此元件线性较好。
在o—1oo 摄氏度时,最大非线性偏差小于o.5 摄氏度。
温度变送器我选用热电阻温度变送器,热电阻温度变送器可对温度传感器传感器输出的热电阻温度信号Pt1oo,Pt1ooo,Cu5o 进行精确测量,经隔离,变送,传输,转换成标准备的模拟信号输出,且精度高,量程,零点外部连续可调,稳定性能好。
这两个组成检测与变送单元。
控制器我选用的是模拟式控制器DDZ-m型仪表,因为模拟式控制器DDZ-m 型采用高增益、高阻抗线性集成电路组件,由于集成运放均为差分放大器,且输人对称性好,漂移小,并且集成运放有高增益,开环放大倍数很高,因此提高了仪表精度、稳定性和可靠性。
执行器我选用的是气动调节阀,是由气压信号控制的阀门。
因为其结构简单,可靠,维护方便,防火防爆。
对于本系统,当系统刚刚启动,或控制信号中断时,此时无控制信号,应切断进加热器的燃料,要求无燃料给加热器加热,以免加热器温度过高造成事故。
同样当系统有故障时,要求此时加热器内有水,即开大进水阀,免得由于无水而使得燃料直接给加热器加热,而损坏或损毁加热器。
因此在加热器的控制阀门时,为保证失控状态下锅炉的安全:给水阀应选气关式,而燃料阀应选气开式。
对于副控制器,当水温上升时,加热器内温度大于设定值为正偏差,控制器输出要随着减小,故为反作用。
对于主控制器,水温和加热器温度都上升时,因给水阀为气关型,
燃料阀为气开型,要使两个变量都下降,两个阀调节方向一致,故为反作用。
8 控制器设计
控制规律:我所设计的加热器出口水温系统属于连续控制。
主参数是生产工艺的主要控制指标,工艺上要求比较严格,要求无余差,稳定性好,又因被控对象有滞后环节,所以,主调节器选用PID 调节器。
而控制副参数是为了提高主参数的控制质量,对副参数的要求一般不严格,允许有静差。
因此,副调节器一般选P 调节即比例控制器就可以了。
控制参数整定:参数的整定我是在不断的实验试凑下完成的,实验试凑法就是根据控制器各参数对系统性能的影响程度,边观察系统的运行,边修改参数,直到满意为止。
首先将积分系数KI和微分系数KD取零,即取消微分和积分作用,采用纯比例控制。
将比例系数KP由小到大变化,观察系统的响应,直至速度快,且有一定范围的超调为止。
如果比例控制系统的静差达不到设计要求, 这时可以加入积分作用。
在整定时将积分系数KI 由小逐渐增加,积分作用就逐渐增强,观察输出会发现,系统的静差会逐渐减少直至消除。
反复试验几次,直到消除静差的速度满意为止。
注意这时的超调量会比原来加大,应适当的降低一点比例系数KP。
若使用比例积分(PI)控制器经反复调整仍达不到设计要求,或不稳定,这时应加入微
分作用,整定时先将微分系数KD从零逐渐增加,观察超调量和稳定性,同时相应地微调比例系数KP积分系数KI,逐步使凑,直到满意为止。
经过以上步骤的整定,得出比较合适的PID参数,P=2.3 ,1=3.93,D=1.125
9系统调试与仿真
Trsriffef Fcn2
10 结果与展望
仿真显示水温可以稳定的控制在设定温度。
展望:加热器原理的核心的是能量转换,最广泛的就是电能转换成热能。
比如电加热器,利用金属在交变磁场中产生涡流而使本身发热吸收。
又如光能能转换成热能;比如
太阳能热水器,吸收太阳光辐射热能和太阳光光能(光电效应)转换成热能两者兼有。
生物能是以生物为载体将太阳能以化学能形式贮存的一种能量,它直接或间接地来源于植物的光合作用。
研究新型的能源,并开发出相应的技术进行转换是将来的研究方向,并且探索如何将加热器更加高效的应用和拓展应用的领域也是未来发展的重点。