2010年重庆中考数学试卷(附解析)

合集下载

2010年重庆市初中考试

2010年重庆市初中考试

重庆市2010年初中毕业暨高中招生考试数 学 试 卷(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(ab ac a b --,对称轴公式为a bx 2-=.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1.3的倒数是( ) A .31 B .31- C .3 D .-3 2.计算232x x ⋅的结果是( )A .x 2B .52xC .62xD .5x3.不等式 的解集为( )A .3>xB .x ≤4C .43<<xD .3<x ≤44.如图,点B 是△ADC 的边AD 的延长线上一点, AC DE //.若︒=∠50C ,︒=∠60BDE ,则CDB ∠的度数等于( )A .70ºB .100ºC .110ºD .120º5.下列调查中,适宜采用全面调查(普查)方式的是() A .对全国中学生心理健康现状的调查 B .对冷饮市场上冰淇淋质量情况的调查 C .对我市市民实施低碳生活情况的调查 D .对我国首架大型民用直升机各零部件的检查6.如图,△ABC 是⊙O 的内接三角形,若︒=∠70ABC ,则AOC ∠的度数等于( ) A .140º B .130º C .120º D .110º7.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( )4题图B6题图B8.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~图④中相同的是( )A .图①B .图②C .图③D .图④9.小华的爷爷每天坚持体育锻炼.某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y 与时间x 的函数关系的大致图象是( )10.已知:如图,在正方形ABCD 外取一点E ,连接AE ,BE ,DE .过点A 作AE 的垂线交ED 于点P .若AE=AP=1,PB =5.下列结论:①△APD ≌△AEB;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =61+;⑤S 正方形ABCD =64+.其中正确结论的序号是( )A .①③④B .①②⑤C .③④⑤D .①③⑤二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上.11.上海世界博览会自2010年5月1日开幕以来,截止到5月18日,累计参观人数约为324万人,将324万用科学计数法表示为 万.12.“情系玉树 大爱无疆”.在为青海玉树的捐款活动中,某小组7位同学的捐款数额(元)分别是:5,20,5,50,10,5,10.则这组数据的中位数是 .13.已知△ABC 与△DEF 相似且对应中线的比为2︰3,则△ABC 与△DEF 的周长比为 .7题图D.C.B.A.⋅⋅⋅⋅⋅⋅图④图③图②图①A .B .C .D .10题图DCE14. 已知⊙O 的半径为3cm ,圆心O 到直线l 的距离是4cm ,则直线l 与⊙O 的位置关系是 . 15.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的平方作为点P的纵坐标,则点P 落在抛物线522++-=x x y 与x 轴所围成的区域内(不含边界)的概率是 .16.含有同种果蔬但浓度不同的A,B两种饮料,A种饮料重40千克,B种饮料重60千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同重量是 千克.三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤. 17.计算:102010)51()5(97)1(-+-⨯+---π.18.解方程:.111=+-xx x19.尺规作图:请在原图上作一个∠AOC ,使其是已知∠AOB 的23倍.(要求:写出已知、求作,保留作图痕迹,在所作图中标上必要的字母,不写作法和结论)已知: 求作:20.已知:如图,在Rt △ABC 中,∠C=90°,AC=3.点D 为BC 边上一点,且BD=2AD ,∠ADC=60°.求△ABC的周长.(结果保留根号)OA19题图BBC20题图AD四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:xx x x x 24)44(222+-÷-+,其中1-=x .22.已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连接BO ,若S △AOB =4.(1)求该反比例函数的解析式和直线AB 的解析式; (2)若直线AB 与y 轴的交点为C ,求△OCB 的面积.23.在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如下两幅不完整的统计图:(1)求该班团员在这个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;(2)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“传箴言”活动总结会,请你用列表法或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.条数所发箴言条数扇形统计图4条5条1条2条3条25%23题图24.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90º.点E是DC 的中点,过点E 作DC 的垂线交AB 于点P ,交CB 的延长线于点M .点F 在线段ME 上,且满足CF=AD ,MF=MA . (1)若∠MFC=120°,求证:AM=2MB ;(2)求证:∠MPB=90°-21∠FCM .五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.今年我国多个省市遭受严重干旱.受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:进入5 2.8 元/千克下降至第2周的2.4 元/千克,且y 与周数x 的变化情况满足二次函数c bx x y ++-=2201. (1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y 与x 所满足的函数关系式,并求出5月份y 与x 所满足的二次函数关系式;(2)若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为2.141+=x m ,5月份的进价m (元/千克)与周数x 所满足的函数关系为251+-=x m .试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月的第2周共销售100吨此种蔬菜.从5月的第3周起,由于受暴雨的影响,此种蔬菜的可销售量将在第2周销量的基础上每周减少%a ,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨%8.0a .若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值.(参考数据:1369372=,1444382=,1521392=,1600402=,1681412=)26.已知:如图(1),在平面直角坐标系xOy 中,边长为2的等边△OAB 的顶点B 在第一象限,顶点A 在24题图CMx 轴的正半轴上.另一等腰△OCA 的顶点C 在第四象限,OC=AC ,∠C =120°.现有两动点P,Q分别从A,O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B 运动,当其中一个点到达终点时,另一点也随之停止.(1)求在运动过程中形成的△OPQ 的面积S 与运动的时间t 之间的函数关系式,并写出自变量t 的取值范围; (2)在等边△OAB 的边上(点A 除外)存在点D ,使得△OCD 为等腰三角形,请直接写出所有符合条件的点D 的坐标;(3)如图(2),现有∠MCN =60°,其两边分别与OB ,AB 交于点M ,N ,连接MN .将∠MCN 绕着C 点旋转(0°<旋转角<60°),使得M ,N 始终在边OB 和边AB 上.试判断在这一过程中,△BMN 的周长是否发生变化?重庆市2010年初中毕业暨高中招生考试数学试题参考答案一、选择题1—5 ABDCD 6—10 ABBCD 二、填空题11. 21024.3⨯ 12.10 13. 2:3 14 相离 15 5316.24 三、解答题17.解:原式=1-7+3×1+5 =2.18. 解:方程两边同乘)1(-x x ,得)1(12-=-+x x x x . 整理,得12=x .解得21=x . 经检验,21=x 是原方程的解,所以原方程的解是21=x .19. 已知:∠AOB 求作:∠AOC=23∠AOB 作图如下:20.解:在Rt △ADC 中,∴BD=2AD=4.∵tan ∠ADC=DCAC, ∴BC=BD+DC=5. 在Rt △ABC 中,7222=+=BC AC AB .∴△ABC 的周长=3572++=++AC BC AB . 四 、解答题:21.解:原式=)2()2)(2(442+-+÷-+x x x x x x x =)2)(2()2()2(2-++⋅-x x x x x x =2-x .当1-=x 时,原式=-1-2=-3. 22.解:(1)由A(-2,0),得OA=2. ∵点B(2,n)在第一象限,S △AOB =4.∴.421=⋅n OA ∴4=n ∴点B 的坐标是(2,4). 设该反比例函数的解析式为)0(≠=a xay . 19题答图CDBAO将点B 的坐标代入,得,24a=∴8=a . ∴反比例函数的解析式为:xy 8=.设直线AB 的解析式为)0(≠+=k bkx y .将点A ,B 的坐标分别代入,得⎩⎨⎧=+=+-.42,02b k b k解得⎩⎨⎧==.2,1b k∴直线AB 的解析式为.2+=x y (2)在2+=x y 中,令,0=x 得.2=y ∴点C 的坐标是(0,2).∴OC=2 ∴S △OCB =.2222121=⨯⨯=⋅B x OC 23.解: (1)该班团员人数为:3÷25%=12(人). 发4条箴言的人数为:12-2-2-3-1=4(人) . 该班团员所发箴言的平均条数为:3125144332212=⨯+⨯+⨯+⨯+⨯(条).补图如下:(2)画树状图如下:(或列表:条数由上得,所选两位同学恰好是一位男同学和一位女同学的概率为.127=P 24.证明:(1)连接MD.∵点E 是DC 的中点,ME ⊥DC ,∴MD=MC. 又∵AD=CF ,MF=MA ,∴△AMD ≌△FMC. ∴∠MAD=∠MFC=120°. ∵AD ∥BC ,∠ABC=90°. ∴∠BAD=90°,∴∠MAB=30°. 在Rt △AMB 中,∠MAB=30°, ∴BM=21AM ,即AM=2BM. (2)∵△AMD ≌△FMC ,∴∠ADM=∠FCM. ∵AD ∥BC ,∴∠ADM=∠CMD. ∴∠CMD=∠FCM.∵MD=MC ,ME ⊥DC ,∴∠DME=∠CME=21∠CMD. ∴∠CME=21∠FCM. 在Rt △MBP 中,∠MPB=90°-∠CME =90°-21∠FCM. 五、解答题:25.解:(1)4月份y 与x 满足的函数关系式为8.12.0+=x y . 把8.2,1==y x 和4.2,2==y x 分别代入c bx x y ++-=2201,得 ⎪⎩⎪⎨⎧=++⨯-=++-4.224201,8.2201c b c b 解得⎩⎨⎧=-=.1.3,25.0c b∴五月份y 与x 满足的函数关系式为.1.325.005.02+--=x x y(2)设4月份第x 周销售此种蔬菜一千克的利润为1W 元,5月份第x 周销售此种蔬菜一千克的利润为2W 元..6.005.0)2.141()8.12.0(1+-=+-+=x x x W∵-0.05<0,∴1W 随x 的增大而减小. ∴当1=x 时,1W 最大=-0.05+0.6=0.55. 2W ==+--+--)251()1.325.005.0(2x x x .1.105.005.02+--x x ∵对称轴为,5.0)05.0(205.0-=-⨯-=x 且-0.05<0,∴x >-0.5时,y 随x 的增大而减小. ∴当x=1时,2W 最大=1所以4月份销售此种蔬菜一千克的利润在第1周最大,最大利润为0.55元;5月份销售此种蔬菜一千克的利润在第1周最大,最大利润为1元.(3)由题意知:()[]().1004.2%8.014.22%1100⨯=+⨯+-a a整理,得0250232=-+a a .解得2152923±-=a .∵1521392=,1600402=,而1529更接近1521,∴391529≈.∴31-≈a (舍去)或8≈a . 答:a 的整数值为8.26.解:(1) 过点C 作CD ⊥OA 于点D.(如图①) ∵OC=AC ,∠ACO=120°, ∴∠AOC=∠OAC=30°.∵OC=AC , CD ⊥OA , ∴OD=DA=1. 在Rt △ODC 中,(i )当320<<t 时,t OQ =,t AP 3=,t AP OA OP 32-=-=.过点Q 作QE ⊥OA 于点E. (如图①)在Rt △OEQ 中,∵∠AOC=30°, ∴221tOQ QE ==. ∴S △OPQ =t t t t EQ OP 21432)32(21212+-=⋅-=⋅. 即.21432t t S +-=OC=OD cos ∠AOC =1cos30︒=233.第 11 页 共 11 页 (ii )当33232≤<t 时,(如图②) t OQ =,.23-=t OP∵∠BOA=60°,∠AOC=30°,∴∠POQ=90°.∴S △OPQ =.23)23(21212t t t t OP OQ -=-=⋅ 即t t S -=223. 故当320<<t 时,t t S 21432+-=, 当33232≤<t 时,t t S -=223. (2)D )1,33(或)0,332(或)0,32(或)332,34(. (3)△BMN 的周长不发生变化. 延长BA 至点F ,使AF=OM ,连接CF. (如图③)∵∠MOC=60°=∠FAC=90°,OC=AC ,∴△MOC ≌△FAC.∴MC=CF ,∠MCO=∠FCA.∴∠FCN=∠FCA+∠NCA=∠MCO+∠NCA=∠OCA-∠MCN=60°.∴∠FCN=∠MCN.又∵MC=CF ,CN=CN ,∴△MCN ≌△FCN.∴MN=NF.∴BM+MN+BN=BM+NF+BN=BO-OM+BA+AF=BA+BO=4. ∴△BMN 的周长不变,其周长为4.。

13重庆市2010年中考(含答案)数学试卷

13重庆市2010年中考(含答案)数学试卷

2010年重庆市中考数学试卷(13)一、选择题(共10小题,每小题4分,满分40分)1.解:因为3×=1,所以3的倒数为.故选B.2.解:2x3•x2=2x5.故选B.3.解:依题意得:在数轴上表示为:∴原式的解集为3<x≤4.故选D.4.解:∵DE∥AC,∠BDE=60°,∠C=50°,∴∠BDE=∠A=60°,∵∠BDC=∠A+∠C=60°+50°=110°.故选C.5.解:A、普查的难度较大,适合用抽样调查的方式,故A错误;B、调查过程带有破坏性,只能采取抽样调查的方式,故B错误;C、普查的难度较大,适合用抽样调查的方式,故C错误;D、事关重大应选用普查,正确.故选D.6.解:∵∠AOC和∠ABC是同弧所对的圆心角和圆周角,∴∠AOC=2∠ABC=140°;故选A.7.解:该几何体由四个小正方体组成,第一行有3个小正方体,故它的俯视图为B.故选B.8.解:依题意,旋转10次共旋转了10×45°=450°,因为450°﹣360°=90°,所以,第10次旋转后得到的图形与图②相同,故选B.9.解:图象应分三个阶段,第一阶段:慢步到离家较远的绿岛公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:打了一会儿太极拳,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:跑步回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选C.10.解:①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=∠PAD,又∵AE=AP,AB=AD,∴△APD≌△AEB;故此选项成立;③∵△APD≌△AEB,∴∠APD=∠AEB,又∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,∴∠BEP=∠PAE=90°,∴EB⊥ED;故此选项成立;②过B作BF⊥AE,交AE的延长线于F,∵AE=AP,∠EAP=90°,∴∠AEP=∠APE=45°,又∵③中EB⊥ED,BF⊥AF,∴∠FEB=∠FBE=45°,又∵BE===,∴BF=EF=,故此选项不正确;④如图,连接BD,在Rt△AEP中,∵AE=AP=1,∴EP=,又∵PB=,∴BE=,∵△APD≌△AEB,∴PD=BE=,∴S△ABP+S△ADP=S△ABD﹣S△BDP=S正方形ABCD﹣×DP×BE=×(4+)﹣××=+.故此选项不正确.⑤∵EF=BF=,AE=1,∴在Rt△ABF中,AB2=(AE+EF)2+BF2=4+,∴S正方形ABCD=AB2=4+,故此选项正确;故选D.11.解:324万=3.24×102万.12.解:按从小到大的顺序排列这组数据:5、5、5、10、10、20、50,中间的一个数是10,则这组数据的中位数是10(元).故填10.13.解:∵△ABC与△DEF相似且对应中线的比为2:3,∴它们的相似比为2:3;故△ABC与△DEF的周长比为2:3.14.解:∵圆心O到直线l的距离是4cm,大于⊙O的半径为3cm,∴直线l与⊙O相离.15.解:如图,﹣2,﹣1,0,1,2的平方为4,1,0,1,4.点P的坐标为(﹣2,4),(﹣1,1),(0,0),(1,1),(2,4);描出各点:﹣2<1﹣,不合题意;把x=﹣1代入解析式得:y1=2,1<2,故(﹣1,1)在该区域内;把x=0代入解析式得:y2=5,0<5,故(0,0)在边界上,不在区域内;把x=1代入解析式得:y3=6,1<6,故(1,1)在该区域内;把x=2代入解析式得:y4=5,4<5,故(2,4)在该区域内.所以5个点中有3个符合题意,点P落在抛物线y=﹣x2+2x+5与x轴所围成的区域内(不含边界)的概率是.16.解:设原来A种饮料的浓度为a,原来B种饮料的浓度为b,从每种饮料中倒出的相同的重量是x千克.由题意,得=,化简得(5a﹣5b)x=120a﹣120b,即(a﹣b)x=24(a﹣b),∵a≠b,∴x=24.∴从每种饮料中倒出的相同的重量是24千克.17.解:原式=1﹣7+3×1+5=2.18.解:方程两边同乘x(x﹣1),得x2+x﹣1=x(x﹣1)(2分)整理,得2x=1(4分)解得x=(5分)经检验,x=是原方程的解,所以原方程的解是x=.(6分)AOC=∠∵sin∠ADC=,∴AD===2.∴BD=2AD=4,∵tan∠ADC=,DC===1,∴BC=BD+DC=5.在Rt△ABC中,AB==2,∴△ABC的周长=AB+BC+AC=2+5+.21.解:原式=÷(3分)=×(5分)=x﹣2,(8分)当x=﹣1时,原式=﹣1﹣2=﹣3.(10分)22.解:(1)由A(﹣2,0),得OA=2;∵点B(2,n)在第一象限内,S△AOB=4,∴OA•n=4;∴n=4;∴点B的坐标是(2,4);设该反比例函数的解析式为y=(a≠0),将点B的坐标代入,得4=,∴a=8;∴反比例函数的解析式为:y=;设直线AB的解析式为y=kx+b(k≠0),将点A,B的坐标分别代入,得,解得;∴直线AB的解析式为y=x+2;(2)在y=x+2中,令x=0,得y=2.∴点C的坐标是(0,2),∴OC=2;∴S△OCB=OC×2=×2×2=2.23.解:(1)该班团员人数为:3÷25%=12(人);发4条箴言的人数为:12﹣2﹣2﹣3﹣1=4(人);该班团员所发箴言的平均条数为:(2×1+2×2+3×3+4×4+1×5)÷12=3(条).补图如下:(2)画树状图如下:由上得,所选两位同学恰好是一位男同学和一位女同学的概率P=.24.证明:(1)连接MD,∵点E是DC的中点,ME⊥DC,∴MD=MC,又∵AD=CF,MF=MA,∴△AMD≌△FMC,∴∠MAD=∠MFC=120°,∵AD∥BC,∠ABC=90°,∴∠BAD=90°,∴∠MAB=30°,在Rt△AMB中,∠MAB=30°,∴BM=AM,即AM=2BM;(2)连接MD,∵点E是DC的中点,ME⊥DC,∴MD=MC,又∵AD=CF,MF=MA,∴△AMD≌△FMC,∴∠ADM=∠FCM,∵AD∥BC,∴∠ADM=∠CMD∴∠CMD=∠FCM,∵MD=MC,ME⊥DC,∴∠DME=∠CME=∠CMD,∴∠CME=∠FCM,在Rt△MBP中,∠MPB=90°﹣∠CME=90°﹣∠FCM.25.解:(1)4月份y与x满足的函数关系式为y=0.2x+1.8把x=1,y=2.8和x=2,y=2.4,分别代入y=﹣+bx+c得解得:,∴5月份y与x满足的函数关系式为y=﹣0.05x2﹣0.25x+3.1;(2)设4月份第x周销售此种蔬菜一千克的利润为W1元,5月份第x周销售此种蔬菜一千克的利润为W2元.则:W1=(0.2x+1.8)﹣(x+1.2)=﹣0.05x+0.6∵﹣0.05<0,∴W1随x的增大而减少∴当x=1时,W1最大=﹣0.05+0.6=0.55W2=(﹣0.05x2﹣0.25x+3.1)﹣(﹣x+2)=﹣0.05x2﹣0.05x+1.1∵对称轴为x=﹣=﹣0.5,且﹣0.05<0,∴当x=1时,W2最大=1∴4月份销售此种蔬菜一千克的利润在第1周最大,最大利润为0.55元,5月份销售此种蔬菜一千克的利润在第1周最大,最大利润为1元.(3)由题意知:[100(1﹣a%)+2]×2.4(1+0.8a%)=2.4×100,整理,得a2+23a﹣250=0,解得a=∵392=1521,402=1600,而1529更接近1521,∴取≈39∴a≈﹣31(舍去)或a≈8.26.解:(1)过点C作CD⊥OA于点D.(如图)∵OC=AC,∠ACO=120°,∴∠AOC=∠OAC=30°.∵OC=AC,CD⊥OA,∴OD=DA=1.在Rt△ODC中,OC===(1分)(i)当0<t<时,OQ=t,AP=3t,OP=OA﹣AP=2﹣3t.过点Q作QE⊥OA于点E.(如图)在Rt△OEQ中,∵∠AOC=30°,∴QE=OQ=,∴S△OPQ=OP•EQ=(2﹣3t)•=﹣+t,即S=﹣+t;(3分)(ii)当<t≤时(如图)OQ=t,OP=3t﹣2.∴∠BOA=60°,∠AOC=30°,∴∠POQ=90°.∴S△OPQ=OQ•OP=t•(3t﹣2)=﹣t,即S=﹣t;故当0<t<时,S=﹣+t,当<t≤时,S=﹣t(5分)(2)D(,1)或(,0)或(,0)或(,)(9分)(3)△BMN的周长不发生变化.理由如下:延长BA至点F,使AF=OM,连接CF.(如图)又∵∠MOC=∠FAC=90°,OC=AC,∴△MOC≌△FAC,∴MC=CF,∠MCO=∠FCA.(10分)∴∠FCN=∠FCA+∠NCA=∠MCO+∠NCA=∠OCA﹣∠MCN=60°,∴∠FCN=∠MCN.在△MCN和△FCN中,,∴△MCN≌△FCN,∴MN=NF.(11分)∴BM+MN+BN=BM+NF+BN=BO﹣OM+BA+AF=BA+BO=4.∴△BMN的周长不变,其周长为4.。

【推荐下载】2010重庆中考数学试题

【推荐下载】2010重庆中考数学试题

[键入文字]
2010 重庆中考数学试题
重庆市2010 年初中毕业暨高中招生考试
(全卷共五个大题,满分150 分,考试时间120 分钟)
题号一二三四五总分总分人
得分
参考公式:抛物线y=ax2+bx+c(a&ne;0)的顶点坐标为(b2a ,4acb24a ),对称轴公式为x=b2a .
一、选择题:(本大题共10 个小题,每小题4 分,共40 分)在每个小题的下面,
都给出了代号为A、B、C、D 的四个答案中,其中只有一个是正确的,请将正确答案
的代号填表在题后的括号中.
1.3 的倒数是()
A.13 B.13 C.3 D.3
2.计算2x3&bull;x2 的结果是()
A.2x B.2x5 C.2x6 D.x5
3.不等式组的解集为()
A.x>3 B.x&le;4 C.3<x<4 D.3<x&le;4
4.如图,点B 是△ADC 的边AD 的延长线上一点,DE∥BC,若&ang;C=
50&deg;,&ang;BDE=60&deg;,则&ang;CDB 的度数等于()
A.70&deg; B.100&deg; C.110&deg; D.120&deg;
1。

2010年重庆市潼南县中考数学试卷(WORD版)含答案

2010年重庆市潼南县中考数学试卷(WORD版)含答案

重庆市潼南县2010年初中毕业暨高中招生考试数 学 试 卷参考公式: 抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(ab ac a b --,对称轴公式为a b x 2-= 一、选择题 (本大题10个小题,每小题4分,共40分 )在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1. 2的倒数是( )A .21 B .-2 C . -21D . 2 2. 计算3x +x 的结果是( ) A . 3x 2B . 2xC . 4xD . 4x 23. 数据 14 ,10 ,12, 13, 11 的中位数是 ( ) A .14B .12C .13D .114. 如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C =15°,则∠BOC 的度数为( )A.15° B . 30° C . 45°D .60°5. 已知函数y =11-x 的自变量x 取值范围是( ) A .x ﹥1B . x ﹤-1C . x ≠-1D . x ≠16. 如右下图,是由4个大小相同的正方体搭成的几何体,其俯视图是 ()7. 不等式2x +3≥5的解集在数轴上表示正确的是( )题图4题图6A B CD8. 方程23+x=11+x的解为()A.x=54B.x= -21C.x=-2D.无解9.如图,△ABC经过怎样的平移得到△DEF ( )A.把△ABC向左平移4个单位,再向下平移2个单位B.把△ABC向右平移4个单位,再向下平移2个单位C.把△ABC向右平移4个单位,再向上平移2个单位D.把△ABC向左平移4个单位,再向上平移2个单位10.如图,四边形ABCD是边长为1 的正方形,四边形EFGH是边长为2的正方形,点D与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F→H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是()二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上.11.2010年我县举行“菜花节”共接待游客约520000人,请将数字520000用科学记数法表示为:.12. △ABC与△DEF的相似比为3:4,则△ABC与△DEF的周长比为.题图9GHE(F)ABCD题图10A B C D7题图⎩⎨⎧=-=+.252,20y x y x 13. 计算:=+312 .14. 一套运动装标价200元,按标价的八折销售,则这套运动装的实际售价为 元.15. 如图,在矩形ABCD 中,AB =6 , BC =4, ⊙O 是以AB 为直径的圆,则直线DC 与⊙O 的位置关系是 .16. 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).(参考数据:414.12≈732.13≈)三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17. (6分)计算:(π-3.14)0-|-3|+121-⎪⎭⎫⎝⎛-(-1)2010.18.(6分)解方程组19.(6分)画一个等腰△ABC ,使底边长BC=a ,底边上的高为h (要求:用尺规作图,保留作图痕迹,写出已知,求作,不写作法和证明).已知:求作:20.(6分)根据市教委提出的学生每天体育锻炼不少于1小时的要求,为确保阳光体育运动时间得到落实,某校对九年级学生每天参加体育锻炼的时间作了一次抽样调查,其中部分结果记录如下:频数分布表:请你将频数分布表和频数分布直方图补充完整.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(10分)先化简,再求值:)11(x -÷11222-+-x x x ,其中x =2.a h5.2频数分布直方图题图2022. (10分)“清明节”前夕,我县某校决定从八年级(一)班、(二)班中选一个班去杨闇公烈士陵园扫墓,为了公平,有同学设计了一个方法,其规则如下:在一个不透明的盒子里装有形状、大小、质地等完全相同的3个小球,把它们分别标上数字1、2、3,由(一)班班长从中随机摸出一个小球,记下小球上的数字;在一个不透明口袋中装有形状、大小、质地等完全相同的4个小球,把它们分别标上数字1、2、3、4,由(二)班班长从口袋中随机摸出一个小球,记下小球上的数字,然后计算出这两个数字的和,若两个数字的和为奇数,则选(一)班去;若两个数字的和为偶数,则选(二)班去.(1)用树状图或列表的方法求八年级(一)班被选去扫墓的概率;(2)你认为这个方法公平吗?若公平,请说明理由;若不公平,请设计一个公平的方法.23.(10分)如图, 已知在平面直角坐标系xOy 中,一次函数b kx y +=(k ≠0)的图象与反比例函数x m y =(m ≠0)的图象相交于A 、B 两点,且点B 的纵坐标为21-,过点A 作AC ⊥x 轴于点C , AC =1,OC =2. 求:(1)求反比例函数的解析式;(2)求一次函数的解析式.题图2324.(10分) 如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连结AG ,点E 、F分别在AG 上,连接BE 、DF ,∠1=∠2 , ∠3=∠4.(1)证明:△AB E ≌△DAF ; (2)若∠AGB =30°,求EF 的长.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25. (10分)某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a 天后,再由甲、乙两工程队合作 天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?题图2426.(12分)如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1). (1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.题图26潼南县2010年初中毕业暨高中招生考试数 学 试 卷 参考答案与评分意见一、1.A 2.C 3.B 4.B 5.D 6.A 7.D 8.B 9.C 10.B二、11. 5.2×105 12. 3:4 13. 33 14. 160 15. 相离 16. 82.0 三、17. 解:原式=1-3+2-1 ----------------------------5分= -1 ------------------------------------6分 18. 解:由①+②,得 3x =45x =15------------------------------------------3分 把x =15代入①,得 15+y =20y =5-----------------------------------------------5分 ∴这个方程组的解是⎩⎨⎧==515y x ---------------------------------------6分19. 已知:线段a 、h求作:一个等腰△ABC 使底边BC=a ,底边BC 上的高为h ----------------------------------------------1分 画图(保留作图痕迹图略)--------------------------6分 20.每空1分,共6分备用图频数分布直方图四、21. 解:原式=)1)(1()1(12-+-÷-x x x x x -------------4分 2)1()1)(1(1--+⋅-=x x x x x -----------6分 =xx 1+ -----------------8分 当x =2时, 原式=212+=23-----------------10分22. 解: (1)法一:------4分 ------6分解法二:P(和为奇数)=126=21. ----------------------------------8分 (2)公平.理由为:P(和为偶数)=126=21∵P(和为奇数)= P(和为偶数)∴该方法公平----------------------------------------10分 23.解:(1)∵A C ⊥x 轴 AC=1 OC=2∴点A 的坐标为(2,1)------------------------------1分∵反比例函数xmy =的图像经过点A (2,1)∴ m =2------------------------------------------4分∴反比例函数的解析式为xy 2=---------------------5分 (2)由(1)知,反比例函数的解析式为xy 2=∵反比例函数x y 2=的图像经过点B 且点B 的纵坐标为-21∴点B 的坐标为(-4,-21)---------------------------6分∵一次函数y =kx +b 的图象经过点A (2,1)点B (-4,-21)∴⎪⎩⎪⎨⎧-=+-=+21412b k b k解得:k =41 b =21----------------------------------9分 ∴一次函数的解析式为2141+=x y ----------------------10分24.解:(1)∵四边形ABCD 是正方形∴AB=AD在△ABE 和△DAF 中⎪⎩⎪⎨⎧∠=∠=∠=∠3412DA AB ∴△ABE ≌△DAF -----------------------4分(2)∵四边形ABCD 是正方形∴∠1+∠4=900∵∠3=∠4∴∠1+∠3=900∴∠AFD=900----------------------------6分 在正方形ABCD 中, AD ∥BC∴∠1=∠AGB=300在Rt △ADF 中,∠AFD=900AD=2∴AF=3 DF =1----------------------------------------8分 由(1)得△ABE ≌△ADF ∴AE=DF=1∴EF=AF-AE=13- -----------------------------------------10分五、25. 解:(1)设乙独做x 天完成此项工程,则甲独做(x+30)天完成此项工程. 由题意得:20(3011++x x )=1 -----------------2分整理得:x 2-10x -600=0( 解得:x 1=30 x 2=-20 -----------------------------3分经检验:x 1=30 x 2=-20都是分式方程的解,但x 2=-20不符合题意舍去---------------------------4分x +30=60答:甲、乙两工程队单独完成此项工程各需要60天、30天.----5分(2)设甲独做a 天后,甲、乙再合做(20-3a )天,可以完成 此项工程.-------------------------------------------7分(3)由题意得:1×64)320)(5.21(≤-++a a解得:a ≥36---------------------------------------9分 答:甲工程队至少要独做36天后,再由甲、乙两队合作完成剩下的此项工程,才能使施工费不超过64万元. ---------------------------10分26. 解:(1)∵二次函数c bx x y ++=221的图像经过点A (2,0)C(0,-1) ∴⎩⎨⎧-==++1022c c b解得: b =-21 c =-1-------------------2分 ∴二次函数的解析式为121212--=x x y --------3分 (2)设点D 的坐标为(m ,0) (0<m <2)∴ OD =m ∴AD =2-m由△AD E ∽△AOC 得,OC DE AO AD = --------------4分 ∴122DE m =- ∴DE =22m ------------------------------------5分 ∴△CDE 的面积=21×22m -×m =242m m +-=41)1(412+--m 当m =1时,△CDE 的面积最大∴点D 的坐标为(1,0)--------------------------8分(3)存在 由(1)知:二次函数的解析式为121212--=x x y 设y=0则1212102--=x x 解得:x 1=2 x 2=-1 ∴点B 的坐标为(-1,0) C (0,-1)设直线BC 的解析式为:y =kx +b∴ ⎩⎨⎧-==+-10b b k 解得:k =-1 b =-1∴直线BC 的解析式为: y =-x -1在Rt △AOC 中,∠AOC=900 OA=2 OC=1由勾股定理得:AC=5∵点B(-1,0) 点C (0,-1) ∴OB=OC ∠BCO=450①当以点C 为顶点且PC=AC=5时, 设P(k , -k -1)过点P 作PH ⊥y 轴于H∴∠HCP=∠BCO=450CH=PH=∣k ∣ 在Rt △PCH 中k 2+k 2=()25 解得k 1=210, k 2=-210 ∴P 1(210,-1210-) P 2(-210,1210-)---10分 ②以A 为顶点,即AC=AP=5设P(k , -k -1)过点P 作PG ⊥x 轴于GAG=∣2-k ∣ GP=∣-k -1∣在Rt △APG 中 AG 2+PG 2=AP 2(2-k )2+(-k -1)2=5解得:k 1=1,k 2=0(舍)∴P 3(1, -2) ----------------------------------11分 ③以P 为顶点,PC=AP 设P(k , -k -1) 过点P 作PQ ⊥y 轴于点QPL ⊥x 轴于点L∴L(k ,0)∴△QPC 为等腰直角三角形PQ=CQ=k由勾股定理知CP=PA=2k∴AL=∣k -2∣, PL=|-k -1|在Rt △PLA 中 (2k)2=(k -2)2+(k +1)2解得:k =25∴P 4(25,-27) ------------------------12分 综上所述: 存在四个点:P 1(210,-1210-) P 2(-210,1210-) P 3(1, -2) P 4(25,-27)。

【2010真题】重庆市江津区初中毕业暨高中招生考试数学中考试卷及答案

【2010真题】重庆市江津区初中毕业暨高中招生考试数学中考试卷及答案

重庆市江津区2010年初中毕业暨高中招生考试数 学 试 卷参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为(—b 2a ,4a ),对称轴公式为x =—b 2a.一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中. 1.—3的绝对值是()A .3B .—3C .13D .— 132.下列运算正确的是()A .x 2+x 4=x 6B .x 2·x 3=x 6C .(x 3) 3=x 6D .25+35=5 5 3.函数y =x +1中自变量的取值范围是()A .x ≥—1B .x ≤—1C .x >—1D .x <—14.如图,点A 、B 、P 为⊙O 上的点,若∠PBO =15°,且P A ∥OB ,则∠AOB =()A .15°B .20°C .30°5.方程组⎩⎨⎧=-=+15y x y x 的解是()A .⎩⎨⎧==32y xB .⎩⎨⎧==23y xC .⎩⎨⎧==41y xD .⎩⎨⎧==14y x6.如图,△ABC ,AB =AC =x ,BC =6,则腰长x 的取值范围是()A .0<x <3B .x >3C .3<x <6D .x >6 7.若1,3,x ,5,6五个数的平均数为4,则x 的值为() A .3 B .4 C .5 D .68.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是() A .AB =CD B .AD =BC C .AB =BC D .AC =BD9.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕点A 顺时针90°旋转后,得到△AFB ,连接EF .下列结论中正确的个数有() ①∠EAF =45°;②△ABE ∽△ACD ;③EA 平分∠CEF ;④BE 2+DC 2=DE 2 A .1个 B .2个 C .3个 D .4个第8题 第4题第8题10.如图,等腰Rt △ABC (∠ACB =90º)的直角边与正方形DEFG 的边长均为2,且AC 与DE 在同一条直线上,开始时点C 与点D 重合,让△ABC 沿直线向右平移,直线到点A 与点E 重合为止.设CD 的长为x ,△ABC 与正方形DEFG 重合部分(图中阴影部分)的面积为y 、则y 与x 之间的函数的图象大致是()二、填空题:(本大题共6个小题,每小题4分,共24分)请将正确答案填在空格的横线上.11.2010年举世瞩目的世界博览会于5月1日在上海开幕,在关部门第一次统计时,门票销售大约为6200万张,这个门票销售的数据用科学记数法表示为_____________张. 12.把多项式x 2-x-2分解因式得_____________. 13.先观察下列等式:11×2 =1-12 12×3 =12 - 13 13×4 =13 - 14 ……则计算:11×2 +12×3 +13×4 +14×5 +15×6=_____________.14.已知点P (a ,3)、P (-2,b )关于x 轴对称,则a =____________,b =____________. 15.我们定义c a db=ad -bc ,例如42 53=2×5-3×4=10-12=-2.若x 、y 均为整数,且满足1<42 53<3则x +y 的值_____________. 16.已知:在面积为7的梯形ABCD 中,AD ∥BC ,AD =3,BC =4.P 为边AD 上不与A 、D 重合的一动点Q 是边BC 上任意一点.连结AQ 、DQ ,过点P 作PE ∥DQ 交AQ 于E ,作PF ∥AQ 交DQ 于F .则△PEF 面积的最大值是_____________.三、解答题:(本大题共4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.EFD ABP第16题 Q第9题 第10题BG0 0 频数分布直方图17.计算:(-1) 2+(14)-1+ 2 sin45º+2010018.解方程:x x -1 -1= 3(x -1)(x +2)19.如图,有分别过A 、B 两个加油站的公路l 1、l 2相交于点O ,现准备在∠AOB 内建一个油库,要求油库的位置点P 满足到A 、B 两个加油站的距离相等,而且P 到两个公路l 1、l 2的距离也相等.请用尺规作图作出点P (不写作法,保留作图痕迹)20.在等腰△ABC 中,三边分别为a 、b 、c .其中a =5,若关于x 的方程x 2+(b +2)x +6-b =0有两个相等的实数根,求△ABC 的周长.四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:(x +1x 2-x -x x 2-2x +1)÷ 1x ,其中x =2+122.某校学生会要求学生参加一项社会调查活动.九年级学生小明想了解他所在村1000户村民的家庭收入情况,从中随机调查了40户村民的家庭收入情况(收入取整数,单位:元)并绘制了如下的频数分布表和频数分布直方图.(1)补全频数分布表和补全频分布直方图; (2)这40户家庭收入的中位数落在哪一个小组?(3)请你估计该村家庭收入较低(不足1000元)23.如图,已知点B 、E 、C 、F 在同一条直线上,AB =DE ,∠A =∠D ,AC ∥DF . 求证:(1)△ABC ≌△DEF ;(2)BE =CF .QBA l 1l 2第19题 · ·24.如图,反比例函数y =kx的图象经过点A (4,b ),过点作AB ⊥x 轴于点B ,△AOB 的面积为2. (1)求k 和b 的值;(2)若一次函数y =ax -3五、解答题:(本大题共2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.端午节吃粽子是中华民民族的传统习俗,今年某商场销售甲厂家的高档、中档、低档三个品种及乙厂家的精装、简装两个品种的盒装粽子.现需要在甲、乙两个厂家中各选购一个品种. (1)写出所有选购方案(利用树状图或列表方法求选购方案);(2)如果(1)中各种选购方案被选中的可能性相同,那么甲厂家的高档粽子被选中的概率是多少? (3)现某中学准备购买两个品种的粽子共32盒(价格如下表所示),发给学校“留守儿童”,让他们过一个愉快的端午节,其中指定购买了甲厂家的高档粽子,再从乙厂家购买一个品种.若恰好用了1200元,请问购买了甲厂家的高档粽子多少盒?26.如图,抛物线y =ax 2+bx +1与x 轴交于两点A (-1,0)、B (1,0),与y 轴交于点C . (1)求抛物线的解析式;(2)过点B 作BD ∥CA 与抛物线交于点D ,求四边形ACBD 的面积;(3)在x 轴下方的抛物线上是否存在点M ,过M 作MN ⊥x 轴于点N ,使以A 、M 、N 为顶点的三角形与△BCD 相似?若存在,则求出点M 的坐标;若不存在,请说明理由.A DB(第23题)ACDO x y(第26题)。

2010年重庆市潼南县数学中考真题(word版含答案)

2010年重庆市潼南县数学中考真题(word版含答案)

重庆市潼南县2010年初中毕业暨高中招生考试数 学 试 卷参参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为4()24b ac b a a--,,对称轴公式为abx 2-=一、选择题 (本大题10个小题,每小题4分,共40分 )在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1. 2的倒数是( )A .21 B .2- C .12- D . 2 2. 计算3x x +的结果是( ) A . 3x 2B . 2xC . 4xD . 4x 23. 数据 14 ,10 ,12, 13, 11 的中位数是 ( ) A .14B .12C .13D .114. 如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C =15°,则∠BOC 的度数为( )A .15°B. 30°C. 45°D .60°5. 已知函数y =11-x 的自变量x 取值范围是()A .1x >B .1x <-C .1x ≠-D . 1x ≠6. 如右下图,是由4个大小相同的正方体搭成的几何体,其俯视图是 ( )题图4题图6ABCD7. 不等式235x+≥的解集在数轴上表示正确的是()8. 方程23+x=11+x的解为()A.x=54B.x=-21C.x=2-D.无解9.如图,ABC△经过怎样的平移得到DEF△( )A.把ABC△向左平移4个单位,再向下平移2个单位B.把ABC△向右平移4个单位,再向下平移2个单位C.把ABC△向右平移4个单位,再向上平移2个单位D.把ABC△向左平移4个单位,再向上平移2个单位10.如图,四边形ABCD是边长为1 的正方形,四边形EFGH是边长为2的正方形,点D 与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F→H方向平移至点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是()二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上.11. 2010年我县举行“菜花节”共接待游客约520000人,请将数字520000用科学记数法表示为:.题图9GHE(F)ABCD题图10A B C D7题图12. ABC △与DEF △的相似比为3:4,则ABC △与DEF △的周长比为 . 13. 计算:=+312 .14. 一套运动装标价200元,按标价的八折销售,则这套运动装的实际售价为 元. 15. 如图,在矩形ABCD 中,64AB BC ==,,O 是以AB 为直径的圆,则直线DC 与O 的位置关系是 .16. 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).1.4141.732)三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17. (6分)计算:(π-3.14)0-|-3|+121-⎪⎭⎫⎝⎛-(-1)2010.18.(6分)解方程组20225.x y x y +=⎧⎨-=⎩,19.(6分)画一个等腰ABC △,使底边长BC a =,底边上的高为h (要求:用尺规作图,保留作图痕迹,写出已知,求作,不写作法和证明).已知: 求作:20.(6分)根据市教委提出的学生每天体育锻炼不少于1小时的要求,为确保阳光体育运动时间得到落实,某校对九年级学生每天参加体育锻炼的时间作了一次抽样调查,其中部分结果记录如下:频数分布表:请你将频数分布表和频数分布直方图补充完整.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(10分)先化简,再求值:11x ⎛⎫- ⎪⎝⎭÷11222-+-x x x ,其中2x =.ah5.2频数分布直方图题图2022. (10分)“清明节”前夕,我县某校决定从八年级(一)班、(二)班中选一个班去杨闇公烈士陵园扫墓,为了公平,有同学设计了一个方法,其规则如下:在一个不透明的盒子里装有形状、大小、质地等完全相同的3个小球,把它们分别标上数字1、2、3,由(一)班班长从中随机摸出一个小球,记下小球上的数字;在一个不透明口袋中装有形状、大小、质地等完全相同的4个小球,把它们分别标上数字1、2、3、4,由(二)班班长从口袋中随机摸出一个小球,记下小球上的数字,然后计算出这两个数字的和,若两个数字的和为奇数,则选(一)班去;若两个数字的和为偶数,则选(二)班去.(1)用树状图或列表的方法求八年级(一)班被选去扫墓的概率;(2)你认为这个方法公平吗?若公平,请说明理由;若不公平,请设计一个公平的方法.23.(10分)如图, 已知在平面直角坐标系xOy 中,一次函数b kx y +=(0k ≠)的图象与反比例函数x m y =(0m ≠)的图象相交于A 、B 两点,且点B 的纵坐标为21-,过点A 作AC x ⊥轴于点C ,12AC OC ==,.求:(1)求反比例函数的解析式; (2)求一次函数的解析式.题图2324.(10分) 如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连结AG ,点E 、F 分别在AG 上,连接BE 、DF ,∠1=∠2 , ∠3=∠4. (1)证明:ABE DAF △≌△; (2)若30AGB ∠=,求EF 的长.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25. (10分)某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a 天后,再由甲、乙两工程队合作 天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?题图2426.(12分)如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,1-).(1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.题图26x备用图潼南县2010年初中毕业暨高中招生考试数 学 试 卷 参考答案与评分意见一、1.A 2.C 3.B 4.B 5.D 6.A 7.D 8.B 9.C 10.B二、11.5.2×105 12.3:4 13.33 14.160 15.相离 16.82.0 三、17. 解:原式1321=-+- ···························································································· 5分1=- ··············································································································· 6分 18. 解:由①+②,得345x =15x = ······················································································································ 3分把15x =代入①,得1520y +=5y = ························································································································ 5分 ∴这个方程组的解是⎩⎨⎧==515y x ·················································································································· 6分19. 已知:线段a 、h求作:一个等腰△ABC 使底边BC =a ,底边BC 上的高为h ····························· 1分 画图(保留作图痕迹图略) ·························································································· 6分四、21. 解:原式=)1)(1()1(12-+-÷-x x x x x ··································································· 4分 2)1()1)(1(1--+⋅-=x x x x x ··································································· 6分 =xx 1+ ······························································································· 8分 25.2频数分布直方图题图20当2x =时, 原式=212+=23········································································· 10分22. 解: (1)法一:·············································· 4分 ············································ 6分解法二:P (和为奇数)=126=21. ···································································································· 8分 (2)公平.理由为:P (和为偶数)=126=21∵P (和为奇数)= P (和为偶数) ∴该方法公平 ················································································································· 10分23.解:(1)∵AC ⊥x 轴,12AC OC ==, ∴点A 的坐标为(2,1) ································································································ 1分∵反比例函数xmy =的图像经过点A (2,1) ∴2m = ··························································································································· 4分∴反比例函数的解析式为xy 2=····················································································· 5分 (2)由(1)知,反比例函数的解析式为xy 2=∵反比例函数x y 2=的图像经过点B 且点B 的纵坐标为-21∴点B 的坐标为(-4,-21) ······················································································ 6分∵一次函数y kx b =+的图象经过点A (2,1)点B (-4,-21)∴⎪⎩⎪⎨⎧-=+-=+21412b k b k解得:k =41 b =21································································································ 9分 ∴一次函数的解析式为2141+=x y ············································································· 10分24.解:(1)∵四边形ABCD 是正方形∴AB AD =在ABE △和DAF △中⎪⎩⎪⎨⎧∠=∠=∠=∠3412DA AB ∴ABE DAF △≌△ ··················································································· 4分(2)∵四边形ABCD 是正方形∴∠1+∠4=90° ∵∠3=∠4 ∴∠1+∠3=90° ∴∠AFD =90° ································································································· 6分 在正方形ABCD 中, AD BC ∥ ∴∠1=∠AGB=30°在Rt ADF △中,90 2AFD AD ∠==,∴AF =3 1DF = ··············································································· 8分 由(1)得ABE ADF △≌△ ∴1AE DF == ∴EF AF AE =-=13- ······································································· 10分 五、25. 解:(1)设乙独做x 天完成此项工程,则甲独做(30x +)天完成此项工程. 由题意得:20(3011++x x )=1 ···················································································· 2分 整理得:2106000x x --=解得:130x =,220x =- ···························································································· 3分 经检验:130x =,220x =-都是分式方程的解,但220x =-不符合题意舍去 ··························································································· 4分 答:甲、乙两工程队单独完成此项工程各需要60天、30天 ······································· 5分(2)设甲独做a 天后,甲、乙再合做(20-3a )天,可以完成此项工程. ························ 7分 (3)由题意得:1×(1 2.5)(20)643a a ++-≤解得:36a ≥ ··············································································································· 9分 答:甲工程队至少要独做36天后,再由甲、乙两队合作完成剩下的此项工程,才能使施工费不超过64万元. ·········································································································· 10分26. 解:(1)∵二次函数c bx x y ++=221的图像经过点A (2,0),C (0,-1) ∴⎩⎨⎧-==++1022c c b 解得: b =-21 1c =- ·················································································· 2分 ∴二次函数的解析式为121212--=x x y ···························································· 3分 (2)设点D 的坐标为(m ,0) (0<m <2)∴OD m = ∴2AD m =-由△ADE ∽△AOC 得,OC DE AO AD = ········································································ 4分 ∴122DE m =- ∴DE =22m - ········································································································· 5分 ∴CDE △的面积=21×22m -×m =242m m +-=41)1(412+--m 当1m =时,△CDE 的面积最大∴点D 的坐标为(1,0) ·························································································· 8分(3)存在.由(1)知:二次函数的解析式为121212--=x x y 设0y = 则1212102--=x x 解得:1221x x ==-, ∴点B 的坐标为(-1,0) C (0,-1)设直线BC 的解析式为:+y kx b =∴ ⎩⎨⎧-==+-10b b k 解得:11k b =-=-, ∴直线BC 的解析式为: 1y x =--在Rt △AOC 中,∠AOC =90° OA =2 OC =1由勾股定理得:AC =5∵点B (1-,0) 点C (0,1-)∴45OB OC BCO =∠=,①当以点C 为顶点且PC AC ==5时,设P (k ,-k -1)过点P 作PH y ⊥轴于H∴45HCP BCO ∠=∠= CH PH ==∣k ∣ 在Rt PCH △中22k k +=()25 解得k 1=210, k 2=-210 ∴P 1(210,-1210-) P 2(-210,1210-) ································ 10分②以A 为顶点,即AC AP ==5设P (k ,-k -1)过点P 作PG ⊥x 轴于GAG =∣2-k ∣ GP =∣-k -1∣ 在Rt △APG 中 222AG PG AP +=(2-k )2+(-k -1)2=5解得:11k =,20k = (舍)∴P 3(1, -2) ····································································································· 11分 ③以P 为顶点,PC AP =,设P (k , -k -1) 过点P 作PQ y ⊥轴于点QPL x ⊥轴于点L∴L (k ,0)∴△QPC 为等腰直角三角形PQ CQ k ==由勾股定理知 CP PA ==2k ∴AL =∣2k -∣,PL =|1k --|在Rt PLA △中 (2k )2=(k -2)2+(k +1)2解得:k =25 ∴P 4(25,-27) ······································································ 12分 综上所述: 存在四个点:P 1(210,-1210-) P 2(-210,1210-) P 3(1, -2) P 4(25,-27)。

2010年重庆市潼南县中考数学试题及答案+

2010年重庆市潼南县中考数学试题及答案+

重庆市潼南县2010年初中毕业暨高中招生考试数 学 试 卷(全卷共五个大题 满分150分 考试时间120分钟)参考公式: 抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2a b ac a b --,对称轴公式为ab x 2-= 一、选择题 (本大题10个小题,每小题4分,共40分 )在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中. (10重庆潼南)1. 2的倒数是( A )A .21 B .-2 C. -21D. 2 (10重庆潼南)2. 计算3x +x 的结果是( C ) A . 3x 2B . 2x C. 4xD. 4x 2(10重庆潼南)3. 数据 14 ,10 ,12, 13, 11 的中位数是 (B ) A .14 B .12C .13D .11(10重庆潼南)4. 如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C=15°,则∠BOC 的度数为( )A .15° B. 30° C. 45°D .60°(10重庆潼南)5. 已知函数y =11-x 的自变量x 取值范围是( ) A .x ﹥1 B . x ﹤-1 C. x ≠-1 D. x ≠1(10重庆潼南)6. 如右下图,是由4个大小相同的正方体搭成的几何体,其俯视图是 ( )(10重庆潼南)7. 不等式2x +3≥5的解集在数轴上表示正确的是( )(10重庆潼南)8. 方程23+x =11+x 的解为( ) A .x =54 B .x = -21C .x =-2D .无解ABCO题图4正面题图6ABCDA B C D7题图(10重庆潼南)9.如图,△ABC 经过怎样的平移得到△ A .把△ABC 向左平移4个单位,再向下平移2个单位 B .把△ABC 向右平移4个单位,再向下平移2个单位 C .把△ABC 向右平移4个单位,再向上平移2个单位 D .把△ABC 向左平移4个单位,再向上平移2个单位(10重庆潼南)10.如图,四边形ABCD 是边长为1 的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与 x 之间函数关系的图象是( )二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上.(10重庆潼南)11. 2010年我县举行“菜花节”共接待游客约520000人,请将数字520000用科学记数法表示为: .(10重庆潼南)12. △ABC 与△DEF 的相似比为3:4,则△ABC 与△DEF 的周长比为 . (10重庆潼南)13. 计算:=+312 .(10重庆潼南)14. 一套运动装标价200元,按标价的八折销售,则这套运动装的实际售价为 元. (10重庆潼南)15. 如图,在矩形ABCD 中,AB=6 , BC=4, ⊙O 是以AB 为直径的圆,则直线DC 与⊙O 的位置关系是 .A B C DE F题图9GH E(F)EA BCD题图10AB CD GHFAx y 2222301xB y2222301xy2222301C xy2222301D⎩⎨⎧=-=+.252,20y x y x(10重庆潼南)16. 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).(参考数据:414.12≈ 732.13≈)三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.(10重庆潼南)17. (6分)计算:(π-3.14)0-|-3|+121-⎪⎭⎫ ⎝⎛-(-1)2010.(10重庆潼南)18.(6分)解方程组(10重庆潼南)19.(6分)画一个等腰△ABC ,使底边长BC=a ,底边上的高为h (要求:用尺规作图,保留作图痕迹,写出已知,求作,不写作法和证明).已知:求作:(10重庆潼南)20.(6分)根据市教委提出的学生每天体育锻炼不少于1小时的要求,为确保阳光体育运动时a h间得到落实,某校对九年级学生每天参加体育锻炼的时间作了一次抽样调查,其中部分结果记录如下:频数分布表:请你将频数分布表和频数分布直方图补充完整. 四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.(10重庆潼南)21.(10分)先化简,再求值:)11(x -÷11222-+-x x x ,其中x =2.(10重庆潼南)22. (10分)“清明节”前夕,我县某校决定从八年级(一)班、(二)班中选一个班去杨闇公烈士陵园扫墓,为了公平,有同学设计了一个方法,其规则如下:在一个不透明的盒子里装有形状、大小、质地等完全相同的3个小球,把它们分别标上数字1、2、3,由(一)班班长从中随机摸出一个小球,记下小球上的数字;在一个不透明口袋中装有形状、大小、质地等完全相同的4个小球,把它们分别标上数字1、2、3、4,由(二)班班长从口袋中随机摸出一个小球,记下小球上的数字,然后计算出这两个数字的和,若两个数字的和为奇数,则选(一)班去;若两个数字的和为偶数,则选(二)班去. (1)用树状图或列表的方法求八年级(一)班被选去扫墓的概率;(2)你认为这个方法公平吗?若公平,请说明理由;若不公平,请设计一个公平的方法.5.2频数分布直方图题图20(10重庆潼南)23.(10分)如图, 已知在平面直角坐标系xOy 中,一次函数b kx y +=(k ≠0)的图象与反比例函数x m y =(m ≠0)的图象相交于A 、B 两点,且点B 的纵坐标为21-,过点A 作AC ⊥x 轴于点C , AC=1,OC=2. 求:(1)求反比例函数的解析式;(2)求一次函数的解析式.(10重庆潼南)24.(10分) 如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连结AG ,点E 、F 分别在AG 上,连接BE 、DF ,∠1=∠2 , ∠3=∠4.(1)证明:△ABE ≌△DAF ;(2)若∠AGB=30°,求EF 的长.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.题图24题图23(10重庆潼南)25. (10分)某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a 天后,再由甲、乙两工程队合作 天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?(10重庆潼南)26.(12分)如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1). (1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标; (3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.题图26潼南县2010年初中毕业暨高中招生考试数 学 试 卷 参考答案与评分意见(10重庆潼南)一、1.A 2.C 3.B 4.B 5.D 6.A 7.D 8.B 9.C 10.B(10重庆潼南)二、11. 5.2×10512. 3:4 13. 33 14. 160 15. 相离 16. 82.0三、(10重庆潼南)17. 解:原式=1-3+2-1 ----------------------------5分= -1 ------------------------------------6分 (10重庆潼南)18. 解:由①+②,得 3x =45x =15------------------------------------------3分 把x =15代入①,得 15+y =20y =5-----------------------------------------------5分 ∴这个方程组的解是⎩⎨⎧==515y x ---------------------------------------6分(10重庆潼南)19. 已知:线段a 、h求作:一个等腰△ABC 使底边BC=a ,底边BC 上的高为h ----------------------------------------------1分画图(保留作图痕迹图略)--------------------------6分 20.每空1分,共6分频数分布直方图合计 50 1四、(10重庆潼南)21. 解:原式=)1)(1()1(12-+-÷-x x x x x -------------4分 2)1()1)(1(1--+⋅-=x x x x x -----------6分 =xx 1+ -----------------8分 当x =2时, 原式=212+=23-----------------10分(10重庆潼南)22. 解: (1)法一:------4分 ------6分解法二:P(和为奇数)=126=21. ----------------------------------8分 (2)公平.理由为:P(和为偶数)=126=21∵P(和为奇数)= P(和为偶数)∴该方法公平----------------------------------------10分 (10重庆潼南)23.解:(1)∵AC ⊥x 轴 AC=1 OC=2∴点A 的坐标为(2,1)------------------------------1分∵反比例函数xmy =的图像经过点A (2,1) ∴ m =2------------------------------------------4分∴反比例函数的解析式为xy 2=---------------------5分 (2)由(1)知,反比例函数的解析式为xy 2=∵反比例函数x y 2=的图像经过点B 且点B 的纵坐标为-21∴点B 的坐标为(-4,-21)---------------------------6分 ∵一次函数y =kx +b 的图象经过点A (2,1)点B (-4,-21)∴⎪⎩⎪⎨⎧-=+-=+21412b k b k解得:k =41 b =21----------------------------------9分 ∴一次函数的解析式为2141+=x y ----------------------10分(10重庆潼南)24.解:(1)∵四边形ABCD 是正方形∴AB=AD在△ABE 和△DAF 中⎪⎩⎪⎨⎧∠=∠=∠=∠3412DA AB ∴△ABE ≌△DAF-----------------------4分(2)∵四边形ABCD 是正方形∴∠1+∠4=900∵∠3=∠4∴∠1+∠3=900∴∠AFD=900----------------------------6分 在正方形ABCD 中, AD ∥BC∴∠1=∠AGB=300在Rt △ADF 中,∠AFD=900AD=2∴AF=3 DF =1----------------------------------------8分 由(1)得△ABE ≌△ADF ∴AE=DF=1∴EF=AF-AE=13- -----------------------------------------10分五、(10重庆潼南)25. 解:(1)设乙独做x 天完成此项工程,则甲独做(x+30)天完成此项工程.由题意得:20(3011++x x )=1 -----------------2分 整理得:x 2-10x -600=0(解得:x 1=30 x 2=-20 -----------------------------3分 经检验:x 1=30 x 2=-20都是分式方程的解,但x 2=-20不符合题意舍去---------------------------4分 x +30=60答:甲、乙两工程队单独完成此项工程各需要60天、30天.----5分 (2)设甲独做a 天后,甲、乙再合做(20-3a)天,可以完成 此项工程.-------------------------------------------7分(3)由题意得:1×64)320)(5.21(≤-++aa解得:a ≥36---------------------------------------9分 答:甲工程队至少要独做36天后,再由甲、乙两队合作完成剩下的此项工程,才能使施工费不超过64万元. ---------------------------10分(10重庆潼南)26. 解:(1)∵二次函数c bx x y ++=221的图像经过点A (2,0)C(0,-1) ∴⎩⎨⎧-==++1022c c b解得: b =-21c =-1-------------------2分 ∴二次函数的解析式为121212--=x x y --------3分(2)设点D 的坐标为(m ,0) (0<m <2)∴ OD=m ∴AD=2-m 由△ADE ∽△AOC 得,OCDEAO AD =--------------4分 ∴122DEm =- ∴DE=22m ------------------------------------5分∴△CDE 的面积=21×22m-×m=242m m +-=41)1(412+--m 当m =1时,△CDE 的面积最大∴点D 的坐标为(1,0)--------------------------8分 (3)存在 由(1)知:二次函数的解析式为121212--=x x y 设y=0则1212102--=x x 解得:x 1=2 x 2=-1 ∴点B 的坐标为(-1,0) C (0,-1)设直线BC 的解析式为:y =kx +b ∴ ⎩⎨⎧-==+-1b b k 解得:k =-1 b =-1∴直线BC 的解析式为: y =-x -1在Rt △AOC 中,∠AOC=900OA=2 OC=1 由勾股定理得:AC=5 ∵点B(-1,0) 点C (0,-1)∴OB=OC ∠BCO=450①当以点C 为顶点且PC=AC=5时,...设P(k, -k-1)过点P作PH⊥y轴于H∴∠HCP=∠BCO=450CH=PH=∣k∣在Rt△PCH中k2+k2=()25解得k1=210,k2=-210∴P1(210,-1210-) P2(-210,1210-)---10分②以A为顶点,即AC=AP=5设P(k, -k-1)过点P作PG⊥x轴于GAG=∣2-k∣ GP=∣-k-1∣在Rt△APG中 AG2+PG2=AP2(2-k)2+(-k-1)2=5解得:k1=1,k2=0(舍)∴P3(1, -2) ----------------------------------11分③以P为顶点,PC=AP设P(k, -k-1)过点P作PQ⊥y轴于点QPL⊥x轴于点L∴L(k,0)∴△QPC为等腰直角三角形PQ=CQ=k由勾股定理知CP=PA=2k∴AL=∣k-2∣, PL=|-k-1|在Rt△PLA中(2k)2=(k-2)2+(k+1)2解得:k=25∴P4(25,-27) ------------------------12分综上所述:存在四个点:P1(210,-1210-)P2(-210,1210-) P3(1, -2) P4(25,-27)。

重庆市2010年初中学业水平测试数学含答案

重庆市2010年初中学业水平测试数学含答案

重庆市2010年初中毕业暨高中招生考试·数学本卷难度:适中 难度系数:0.60 易错题:9、18 较难题:10、15、26(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为(-b 2a ,4ac -b 24a ),对称轴为x =-b 2a. 一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在对应的括号内.1. 3的倒数是( )A. 13B. -13 C. 3 D. -3 2. 计算2x 3·x 2的结果是( ) A. 2x B. 2x 5 C. 2x 6 D. x 53. 不等式组⎩⎪⎨⎪⎧x -1≤3,2x >6的解集为( )A. x >3B. x ≤4C. 3<x <4D. 3<x ≤44. 如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥AC .若∠C =50°,∠BDE =60°,则∠CDB 的度数等于( )A. 70°B. 100°C. 110°D. 120°第4题图第6题图5. 下列调查中,适宜采用全面调查(普查)方式的是()A. 对全国中学生心理健康现状的调查B. 对冷饮市场上冰淇淋质量情况的调查C. 对我市市民实施低碳生活情况的调查D. 对我国首架大型民用直升机各零部件的检查6. 如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AOC的度数等于()A. 140°B. 130°C. 120°D. 110°7. 由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是()8. 有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,则第10次旋转后得到的图形与图①~图④中相同的是()第8题图A. 图①B. 图②C. 图③D. 图④9. 小华的爷爷每天坚持体育锻炼.某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是()10. 已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交ED于点P.第10题图若AE =AP =1,PB = 5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2; ③EB ⊥ED ;④S △APD +S △APB =1+6; ⑤S 正方形ABCD =4+ 6. 其中正确结论的序号是( ) A. ①③④ B. ①②⑤ C. ③④⑤ D. ①③⑤二、填空题(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在对应的横线上. 11. 上海世界博览会自2010年5月1日开幕以来,截止到5月18日,累计参观人数约为324万人,将324万用科学记数法表示为 万.12. “情系玉树 大爱无疆”.在为青海玉树的捐款活动中,某小组7位同学的捐款数额(元)分别是:5,20,5,50,10,5,10.则这组数据的中位数是 .13. 已知△ABC 与△DEF 相似且对应中线的比为2∶3,则△ABC 与△DEF 的周长比为 . 14. 已知⊙O 的半径为3 cm ,圆心O 到直线l 的距离是4 cm ,则直线l 与⊙O 的位置关系是 . 15. 在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,则点P 落在抛物线y =-x 2+2x +5与x 轴所围成的区域内(不含边界)的概率是 .16. 含有同种果蔬但浓度不同的A ,B 两种饮料,A 种饮料重40千克,B 种饮料重60千克.现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同重量是 千克.三、解答题(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17. 计算:(-1)2010-|-7|+9×(5-π)0+(15)-1.18. 解方程:x x -1+1x =1.19. 尺规作图:请在原图上作一个∠AOC ,使其是已知∠AOB 的32倍.(要求:写出已知、求作,保留作图第19题图痕迹,在所作图中标上必要的字母,不写作法和结论) 已知: 求作:20. 已知:如图,在Rt △ABC 中,∠C =90°,AC = 3.点D 为BC 边上一点,且BD =2AD ,∠ADC =60°. 求△ABC 的周长.(结果保留根号)第20题图四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21. 先化简,再求值:(x 2+4x -4)÷x 2-4x 2+2x ,其中x =-1.22. 已知:如图,在平面直角坐标系xOy 中,直线A第22题图B与x轴交于点A(-2,0),与反比例函数在第一象限内的图象交于点B(2,n),连接BO,若S△AOB=4.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.23. 在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如下两幅不完整的统计图:第23题图(1)求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;(2)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学. 现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“传箴言”活动总结会,请你用列表法或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.24. 已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°.点E 是DC 的中点,过点E 作DC 的垂线交AB 于点P ,交CB 的延长线于点M .第24题图点F 在线段ME 上,且满足CF =AD ,MF =MA . (1)若∠MFC =120°,求证:AM =2MB ; (2)求证:∠MPB =90°-12∠FCM .五、解答题(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25. 今年我国多个省市遭受严重干旱.受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y (元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y 与周数x 的变化情况满足二次函数y =-120x 2+bx +c .(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y 与x 所满足的函数关系式,并求出5月份y 与x 所满足的二次函数关系式;(2)若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m =14x +1.2,5月份的进价m (元/千克)与周数x 所满足的函数关系为m =-15x +2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月的第2周共销售100吨此种蔬菜.从5月的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a %,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a %.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值.(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)26. 已知:如图①,在平面直角坐标系xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A 在x轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P,Q分别从A,O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B 运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系式,并写出自变量t的取值范围;(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图②,现有∠MCN=60°,其两边分别与OB,AB交于点M,N,连接MN.将∠MCN绕着C点旋转(0°<旋转角<60°),使得M,N始终在边OB和边AB上.试判断在这一过程中,△BMN的周长是否发生变化?若没变化,请求出其周长;若发生变化,请说明理由.图①图②第26题图重庆市2010年初中毕业暨高中招生考试1. A 【解析】乘积为1的两个数互为倒数,故3的倒数是13.2. B 【解析】2x 3·x 2=2·x 3·x 2=2x 3+2=2x 5.3. D 【解析】⎭⎪⎬⎪⎫x -1≤3⇒x ≤42x >6⇒x >3 ⇒不等式组的解集为3<x ≤4. 4. C 【解析】DE ∥AC ⇒∠CDE =∠C =50°,所以∠CDB =∠CDE +∠BDE =50°+60°=110°. 5. D 【解析】本题考查调查方式的合理选择.解题思路:× 6. A 【解析】由于同弧所对的圆周角等于其所对圆心角的一半,所以∠AOC =2∠ABC =2×70°=140°. 7. B 【解析】从上往下看几何体,所看到的图形是处于同一行的三个正方形,故俯视图选B. 8. B 【解析】由于周角为360°,每一次只旋转45°,所以经过360÷45=8次旋转后两个矩形重合,则再旋转2次,即第10次旋转后为图②.9. C 【解析】小华的爷爷从家慢步走到公园,在这段时间里离家距离y 随x 的变化不断增大;到公园后打一会儿太极拳,这段时间x 在变化,但离家的距离y 不变,图象为一段平行于x 轴的线段;最后跑步回家,离家的距离y 随x 的变化在不断减小最后至零,由于开始是慢步走,最后是跑步,前面的线段倾斜度较小.易错分析不理解y 与x 分别表示的变量间的关系. 10. D 【解析】易错分析本题综合性较强.题中涉及三角形全等、点到直线的距离、垂直、求面积等知识点,掌握上述知识点是解此题的关键.11. 3.24×102 【解析】科学记数法一般形式为a ×10n 形式,其中1≤a <10,n 为原数整数位数减1,则324=3.24×102.易错分析学生容易按常规把324万化为3240000而出错.12. 10 【解析】先把7个数按从小到大依次排列为:5、5、5、10、10、20、50,居于最中间位置的数据(若是偶数个数据,取中间两个的平均数)10是中位数.13. 2∶3 【解析】由题知对应中线的比为2∶3,则相似比为2∶3,根据周长之比等于相似比,得周长比为2∶3.14. 相离 【解析】圆心到直线的距离d 与r 比较:d >r ⇔相离;d =r ⇔相切;d <r ⇔相交;本题中d =4 cm >r =3 cm ,所以l 与⊙O 相离.15. 35或0.6 【解析】由题意,点P 有五个可能:(-2,4),(-1,1),(0,0),(1,1),(2,4),由于y =-x 2+2x +5=-(x -1)2+6,则顶点为(1,6),开口向下,又求得它与x 轴两交点为(1-6,0),(1+6,0),所以点(-2,4)在抛物线与x 轴围成的区域外,(0,0)在边界上,不合要求;当x =-1时,y =2>1,所以点(-1,1)在区域内;当x =1时,y =6>1,则点(1,1)在区域内;当x =2时,y =5>4,所以点(-2,4)在区域内.所以一共有3个点会落在区域内,概率为35=0.6.易错分析将概率与二次函数图象的性质等知识相结合,学生要善于分析问题,找出解题的突破口.16. 24 【解析】设A 种饮料浓度为a ,B 种饮料浓度为b ,又设倒出相同的重量为x 千克,则A 种饮料中剩下(40-x )千克中含果蔬(40-x )·a ,B 种饮料中余下(60-x )千克中含果蔬(60-x )·b ,A 种饮料中倒出的x 千克中含果蔬x ·a ,B 种饮料中倒出的x 千克中含果蔬x ·b 千克.根据互相倒入混合后浓度相同,得等式(40-x )·a +xb40=(60-x )·b +xa60⇒(40-x )·a +xb2=(60-x )·b +xa3⇒⎭⎪⎬⎪⎫120a -3ax +3bx =120b -2bx +2ax ⇒120(a -b )=5x (a -b ) A 、B 饮料浓度不同,故a ≠b ,即a -b ≠0 ⇒120=5x ⇒x =24.17.解:原式=1-7+3×1+5(5分) =2.(6分)18.解:方程两边同乘x (x -1),得x 2+x -1=x (x -1).(2分) 整理,得2x =1.(4分) 解得x =12.(5分)经检验,x =12是原方程的解,所以原方程的解是x =12.(6分)19.已知:∠AOB .(1分)求作:∠AOC ,使∠AOC =32∠AOB .(2分)作图如下:第19题解图(6分)20.解:在Rt △ADC 中,∵sin ∠ADC =AC AD ,∴AD =AC sin ∠ADC =3sin60°=2.(1分) ∴BD =2AD =4.(2分)∵tan ∠ADC =AC DC ,∴DC =AC tan ∠ADC =3tan60°=1.(3分)∴BC =BD +DC =5.(4分)在Rt △ABC 中,AB =AC 2+BC 2=27.(5分) ∴△ABC 的周长=AB +BC +AC =27+5+ 3.(6分)21.解:原式=x 2+4-4x x ÷(x +2)(x -2)x (x +2)(3分)=(x -2)2x ·x (x +2)(x +2)(x -2)(5分)=x -2.(8分)当x =-1时,原式=-1-2=-3.(10分) 解:(1)由A (-2,0),得OA =2. ∵点B (2,n )在第一象限内,S △AOB =4. ∴12OA ·n =4.∴n =4.(2分) ∴点B 的坐标是(2,4).(3分)设该反比例函数的解析式为y =ax (a ≠0).将B 点的坐标代入,得4=a2,∴a =8.(4分)∴反比例函数的解析式为y =8x .(5分)设直线AB 的解析式为y =kx +b (k ≠0).将点A ,B 的坐标分别代入,得⎩⎪⎨⎪⎧-2k +b =0,2k +b =4.(6分)解得⎩⎪⎨⎪⎧k =1,b =2.(7分)所以直线AB 解析式为y =x +2.(8分) (2)在y =x +2中,令x =0,得y =2. ∴点C 的坐标是(0,2).∴OC =2.(9分) ∴S △OCB =12×OC ·x B =12×2×2=2.(10分)23.解:(1)该班团员人数为:3÷25%=12(人).(1分) 发4条箴言的人数为:12-2-2-3-1=4(人).(2分) 该班团员所发箴言的平均条数为: 2×1+2×2+3×3+4×4+1×512=3(条).(3分)补全图如解图①:第23题解图①(5分) 错误!24,证明:(1)连接MD .(1分)∵点E 是DC 的中点,ME ⊥DC ,∴MD =MC .(2分) 又∵AD =CF ,MF =MA ,∴△AMD ≌△FMC .(3分) ∴∠MAD =∠MFC =120°.(4分) ∵AD ∥BC ,∠ABC =90°.∴∠BAD =90°,∴∠MAB =30°.(5分) 在Rt △AMB 中,∠MAB =30°, ∴BM =12AM ,即AM =2BM .(6分)(2)∵△AMD ≌△FMC ,∴∠ADM =∠FCM . ∵AD ∥BC ,∴∠ADM =∠CMD . ∴∠CMD =∠FCM .(7分)∵MD =MC ,ME ⊥DC ,∴∠DME =∠CME =12∠CMD .(8分)∴∠CME =12∠FCM .(9分)在Rt △MBP 中,∠MPB =90°-∠CME =90°-12∠FCM .(10分)25.解:(1)4月份y 与x 满足的函数关系式为y =0.2x +1.8.(1分) 把x =1,y =2.8和x =2,y =2.4分别代入y =-120x 2+bx +c ,得⎩⎨⎧-120+b +c =2.8,-120×4+2b +c =2.4.解得⎩⎪⎨⎪⎧b =-0.25,c =3.1. ∴5月份y 与x 的函数关系式为y =-0.05x 2-0.25x +3.1.(2分)(2)设4月份第x 周销售此种蔬菜一千克的利润为W 1元,5月份第x 周销售此种蔬菜一千克的利润为W 2元.W 1=(0.2x +1.8)-(14x +1.2)=-0.05x +0.6.(3分)∵-0.05<0,∴W 1随x 的增大而减小. ∴当x =1时,W 1最大=-0.05+0.6=0.55.(4分)∵W 2=(-0.05x 2-0.25x +3.1)-(-15x +2)=-0.05x 2-0.05x +1.1.(5分)∵对称轴为x =--0.052×(-0.05)=-0.5,且-0.05<0,∴当x >-0.5时,y 随x 的增大而减小. ∴当x =1时,W 2最大=1.(6分)所以4月份销售此种蔬菜一千克的利润在第1周最大,最大利润为0.55元;5月份销售此种蔬菜一千克的利润在第1周最大,最大利润为1元.(3)由题意知,[100(1-a %)+2]×2.4(1+0.8a %)=2.4×100.(8分) 整理,得a 2+23a -250=0.解得a =-23±15292.∵392=1521,402=1600,而1529更接近1521,∴取1529≈39. ∴a ≈-31(舍去)或a ≈8.(10分)第26题解图①26.解:(1)过点C 作CD ⊥OA 于点D .(如解图①) ∵OC =AC ,∠ACO =120°, ∴∠AOC =∠OAC =30°.∵OC =AC ,CD ⊥OA ,∴OD =DA =1. 在Rt △ODC 中,OC =OD cos ∠AOC =1cos30°=233.(1分) (ⅰ)当0<t <23时,OQ =t ,AP =3t ,OP =OA -AP =2-3t .过点Q 作QE ⊥OA 于点E .(如解图①)在Rt △OEQ 中,∵∠AOC =30°,∴QE =12OQ =t2.∴S △OPQ =12OP ·EQ =12(2-3t )·t 2=-34t 2+12t .即S =-34t 2+12t .(3分)第26题解图②(ⅱ)当23<t ≤233时,(如解图②)OQ =t ,OP =3t -2.∵∠BOA =60°,∠AOC =30°, ∴∠POQ =90°.∴S △OPQ =12OQ ·OP =12t ·(3t -2)=32t 2-t .即S =32t 2-t .故当0<t <23时,S =-34t 2+12t ,当23<t ≤233时,S =32t 2-t .(5分) (2)D (33,1)或(233,0)或(23,0)或(43,233).(9分) (3)△BMN 的周长不发生变化.第26题解图③延长BA至点F,使AF=OM,连接CF.(如解图③)∵∠MOC=∠F AC=90°,OC=AC,∴△MOC≌△F AC.∴MC=CF,∠MCO=∠FCA.(10分)∴∠FCN=∠FCA+∠NCA=∠MCO+∠NCA=∠OCA-∠MCN=60°.∴∠FCN=∠MCN.又∵MC=CF,CN=CN.∴△MCN≌△FCN.∴MN=NF.(11分)∴BM+MN+BN=BM+NF+BN=BO-OM+BA+AF=BA+BO=4. ∴△BMN的周长不变,其周长为4.(12分)。

2010年重庆市綦江县中考数学试题

2010年重庆市綦江县中考数学试题

ABCDFG2010年綦江县初中毕业暨高中招生考试数学试题一、选择题(本大题共10小题,每小题4分,满分40分)1.4的倒数是( )A .4B .-4C . 14D .22.计算2a 2÷a 的结果是( )A .2B .2aC .2a 3D .2a 2 3.一次函数y =―3x ―2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下左图的几何体的俯视图是( )5.两圆的圆心距为7cm ,半径分别为5cm 和2cm ,则两圆的位置关系是( ) A .内切 B .外切 C .外离 D .内含 6.为了描述我县城区某一天气温变化情况,应选择( )A .扇形统计图B .条形统计图C .折线统计图D .直方图 7.直角坐标系内点P (-2,3)关于原点的对称点Q 的坐标为( ) A .(2,-3) B .(2,3) C .(-2,3) D .(-2,-3)8.2010年“地球停电一小时”活动的某地区烛光晚餐中,设座位有x 排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位.则下列方程正确的是( ) A .30x -8=31x +26 B .30x +8=31x +26 C .30x -8=31x -26 D .30x +8=31x -269.如图,在矩形ABCD 中,AB =4,BC =3,点P 从起点B 出发,沿BC 、CD 逆时针方向向终点D 匀速运动.设点P 所走过的路程为x ,则线段AP 、AD 与矩形围成的图形面积为y ,则下列图象能大致反映y 与x 的函数关系的是( )10.如图,在□ABCD 中,分别以AB 、AD 为边向外作等边△ABE 、△ADF ,延长CB 交AE 于点G (点G 在点A 、E 之间),连接CE 、CF 、EF ,则以下四个 结论一定正确的是( )①△CDF ≌△EBC ②∠CDF =∠EAF ③△CDF 是等边三角形 ④CG ⊥AEA B CDA BPCDBCD1A A .只有①②B .只有①②③C .只有③④D .①②③④二、填空题(本大题共6小题,每小题4分,满分24分)11.上海世博会的口号是:“城市,让生活更美好”.到2010年5月30日止,参观上海世博会的人数累计为8004300人.数字8004300用科学记数法表示为 .12.不等式组⎩⎨⎧2x +1>-1x +2<≤3的整数解为 .13.如图,A 、B 、C 、D 是圆上四点,∠1=68º,∠A =40º.则∠D = .14.分式方程 3 x 2+x = 1x 2-x的解是x = .15.有一个可以改变体积的密闭容器内装有一定质量的CO 2,当改变容器的体积时,气体的密度也会随之改变:密度ρ(kg/m 3)是体积V (m 3)的反比例函数,它的图象如图所示,当V =2m 3时,气体的密度是 kg/m 3.16.观察下列三角形的三个顶点所标的数字规律,那么2010这个数在第 个三角形的 顶点处(第二空填“上”、“左下”或“右下”).三、解答题(本大题共4小题,每小题6分,满分24分)17.计算:310)2(21)2(|2|-+⎪⎭⎫⎝⎛+----π.18.解方程:x 2―2x ―1=0.19.尺规作图:如图,已知△ABC .求作:△ABC ,使A 1B 1=AB ,∠B 1=∠B ,B 1C 1=BC . 要求:写已知、求作,不写作法,不证明,保留作图痕迹. 已知: 求作:123 456789 101112第一个三角形第二个三角形第三个三角形第四个三角形…20.2010年5月18日“全国首届农村地区基础教育课程改革研讨会”在綦江召开,我县的“2+x ”拓展课程受到专家的高度评价.在100多项“2+x ”拓展课程中,教育行政主管部门对其中若干学生参加球类、棋类、绘画、书法、摄影、舞蹈活动的人数比例情况进行调查,所得的部分数据绘制了下面两幅不完整的统计图.请你根据图中提供的休息,回答下列问题:(1)求出扇性统计图中的a 的值,并求出被调查学生的总人数; (2)求出参加棋类活动的学生人数,并补全频数分布直方图.四、解答题(本大题共4小题,每小题10分,满分40分)21.先化简,再求值:x 2-x x +1÷ xx +1,其中x =3+1.22.据交管部门统计,高速公路超速行使是引发交通事故的主要原因.我县某校数学课外小组的几位同学想尝试用自己的知识检测车速,他们选择了渝黔高速公路某路段进行观测,该路段限速是每小时80千米(即最高速度不得超过80千米).如图,他们将观测点设在到公路的距离为0.1千米的P 处.这时,一辆轿车由綦江向重庆匀速直线驶来,测得此车从A 处到B 处所用的时间为3秒,并测得∠APO =59º,∠BPO =45º. 试计算AB 并判断此车是否超速?(精确到0.001) (参考数据:sin59º≈0.8572,cos59º≈0.5150,tan59º≈1.6643)球类书法棋类 绘画舞蹈摄影 30%15%10% 15%5%aAB CA EB F CD23.甲、乙两人玩游戏,他们准备了一个可以自由转动的转盘和一个不透明的袋子,转盘被分成面积相等的三个扇形,并在每一个扇形内标上数字-1、-2、-3;袋子中装有除数字以外其他均相同的三个乒乓球,球上标有数字1、2、3.游戏规则:转盘转动,当转盘停止后,指针所指区域(如果指针恰好在分界线上,那么指针指向某一区域为止)的数字与随机从袋子中摸出乒乓球的数字之和为0(1)用树状图或列表法求甲获胜的概率;(2)这个游戏规则对甲乙双方公平吗?请判断并说明理由.24.如图,在直角梯形ABCD 中,AD ∥BC ,∠A =90º,AB =AD =6,DE ⊥CD 交AB 于E ,DF 平分∠CDE 交BC 于F ,连接EF .(1)证明:CF =EF ;(2)当tan ∠ADE = 13时,求EF 的长.五、解答题(本大题共2小题,第25题10分,第26题12分,满分22分)25.“震再无情人有请”,玉树地震牵动了全国人民的心,武警部队接到命令,运送一批救灾物资到灾区,货车在公路A 处加满油后,以60千米/小时的速度匀速行使,前往与A 处相距360千米的灾区B 处.下表记录的是货车一次加满油后油箱内余油量y (升)与行(1)请你用学过的函数中的一种建立y 与x 之间的函数关系式,并说明选择这种函数的理由(不要求写出自变量的取值范围);(2)如果货车的行使速度和每小时的耗油量都不变,货车行使4小时后到达C处,C的前方12千米的D处有一加油站,那么在D处至少加多少升油,才能使货车到达灾区B处卸去货物后能顺利返回D处加油?(根据驾驶经验,为保险起见,油箱内余油量应随时不少于10升)26.已知抛物线y=ax2+bx+c(a>0)经过点B(12,0)和C(0,-6),对称轴为x=2.(1)求该抛物线的解析式.(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一个动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若存在,请说明理由.(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若存在,请说明理由.。

2010年重庆省中考《数学》试题及答案

2010年重庆省中考《数学》试题及答案
(1)设 天后每千克该野生菌的市场价格为 元,试写出 与 之间的函数关系式;
(2)若存放 天后,将这批野生菌一次性出售,设这批野生菌的销售总额为 元,试写出 与 之间的函数关系式;
(3)李经理将这批野生茵存放多少天后出售可获得最大利润 元?
(利润=销售总额-收购成本-各种费用)
13.把抛物线y=-3x2先向左平移1个单位,再向上平移2个单位后所得的函数 解析式为 。
14.已知一个样本1,3,2,x,5,其平均数是3,则这个样本的标准差是 。
15. 某超市一月份的营业额为200万元,二、三两月的营业额共800万元,如果平均每月增长率为 ,则由题意列方程应为__________________________________。
24. (本题满分8分)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=4㎝,DC=6㎝,试求AD的长. 小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题。请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC所在的直线为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点分别为点E、F,延长EB、FC相交于G点,试证明四边形AEGF是正方形;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.
26. (10分)有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售。

2010年重庆市中考数学试题分析

2010年重庆市中考数学试题分析

2010年重庆市中考数学试题分析2010年重庆中考数学试题与2009年相比给人的感觉是考查的内容有改变,试卷的结构较稳定,试卷的考查内容与重庆市教科院发部的考试说明基本一致,从题型到考试内容基本固定,难度在2009年的基础上明显加大。

1、题型与题量全卷满分150分,共有三种题型,共26个题,其中选择题10个,填空题6个,解答题10个,解答题中第三大题4个小题,每小题6分,共24分,第四大题4个小题,每小题10分,共40分,第五大题2个小题,共22分,第五大题第1小题10分,第五大题第2小题12分。

三种题型的分值比是40:24:86。

具体统计如下:试卷中第1—7、11—14、17—22小题为容易题,分值为88分,约占58%;第8、9、23、24小题为中档题,分值为28分,约占19%;第10、15、16、25、26小题为较难题,分值为34分,约占23%。

2、实际考试内容分布与考试说明的比较命题按照教育部制订的《数学课程标准》要求和重庆市教委颁布的初中毕业学业考试数学科《考试说明》进行命题,今年的考试说明跟2009年一样都较详细,对于某个知识的要求很具体。

第1题考3的倒数,第2题考整式乘法,第3题考解不等式组,第4题考直线平行求三角形的外角,第5题涉及低碳生活和学生心理健康等生活背景考适宜采用全面调查方式的应用,第6题考圆周角定理的计算,第7题考简单几何体的俯视图,第8题考几何图形的旋转,第9题考一次函数的图像,第10题考正方形的计算。

第11题涉及上海世界博览会考科学记数法,第12题涉及玉树地震考中位数,第13题考三角形相似,第14题考直线与圆的位置关系,第15题考二次函数和概率,第16题考果蔬饮料混合的浓度问题,第17题考实数的计算,第18题考分式方程的解答,第19题考角平分线的尺规作图,第20题考直角三角形的计算,第21题考分式化简的计算,第22题考直线和双曲线,第23题涉及传箴言活动考统计和概率的综合计算,第24题考直角梯形中三角形全等的证明,第25题涉及旱灾影响蔬菜价格考一次函数与二次函数的综合运用,第26题涉及动点的移动与图形面积的变化考分类讨论分段函数和图形的计算等。

重庆市2010年初中毕业暨高中招生考试word版

重庆市2010年初中毕业暨高中招生考试word版

重庆市2010年初中毕业暨高中招生考试数学试卷(全卷共五个大题,满分150分,考试时间120分钟) 题号一 二 三 四 五 总分 总分人 得分参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为(—b 2a ,4ac —b 24a ),对称轴公式为x =—b 2a . 一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中.9.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。

下面能反映当天小华的爷爷离家的距离y 与时间x 的函数关系的大致图象是()10.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PB = 5 .下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 ;⑤S 正方形ABCD =4+ 6 .其中正确结论的序号是()A .①③④B .①②⑤C .③④⑤D .①③⑤二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将答案填在题后的横线上.15.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同. 现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,则点P 落在抛物线y =-x 2+2x +5与x 轴所围成的区域内(不含边界)的概率是_____________.16.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克三、解答题:(本大题共4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.19.尺规作图:请在原图上作一个∠AOC ,使其是已知∠AOB 的 3 2倍(要求:写出已知、求作,保留作图痕迹,在所作图中标上必有要的字母,不写作法和结论)已知:求作:20.已知:如图,在Rt△ABC中,∠C=90°,AC= 3 .点D为BC边上一点,且BD=2AD,∠AD C=60°求△ABC的周长(结果保留根号)四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.22.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连结BO,若S=4.△AOB(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.23.在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如下两幅不完整的统计图:(1)求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;(2)如果发了3条箴的同学中有两位同学,发了4条箴言的同学中有三位女同学. 现要从发了3条箴和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.24. 已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°.点E 是DC 的中点,过点E 作DC 的垂线交AB 于点P ,交CB 的延长线于点M .点F 在线段ME 上,且满足CF =AD ,MF =MA .(1)若∠MFC =120°,求证:AM =2MB ;(2)求证:∠MPB =90°- 1 2∠FCM .五、解答题:(本大题共2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表: 周数x 1 2 3 4价格y (元/千克) 2 2.2 2.4 2.6进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y (元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y 与周数x 的变化情况满足二次函数y =- 1 20x 2+bx +c . (1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y 与x的函数关系式,并求出5月份y 与x 的函数关系式;(2)若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m = 1 4x +1.2,5月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m = 1 5x +2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a %,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8 a %.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值.(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)26.已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x 轴的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止.(1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围;(2)在等边△OAB的边上(点A除外)存在点D,使得△OCD为等腰三角形,请直接写出所有符合条件的点D的坐标;(3)如图(2),现有∠MCN=60°,其两边分别与OB、AB交于点M、N,连接MN.将∠MCN绕着C 点旋转(0°<旋转角<60°),使得M、N始终在边OB和边AB上.试判断在这一过程中,△BMN 的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.27.28.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市2010年初中毕业
一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、
C 、
D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中。

1.3的倒数是( )
A .13
B .— 13
C .3
D .—3 2.计算2x 3·x 2的结果是( )
A .2x
B .2x 5
C .2x 6
D .x 5
3.不等式组⎩⎨⎧>≤-6
2,31x x 的解集为( )
A .x >3
B .x ≤4
C .3<x <4
D .3<x ≤4
4.如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥BC ,若∠C =50°,∠BDE =60°,则∠CDB 的度数等于( )
A .70°
B .100°
C .110°
D .120°
5.下列调查中,适宜采用全面调查(普查)方式的是( )
A .对全国中学生心理健康现状的调查
B .对冷饮市场上冰淇淋质量情况的调查
C .对我市市民实施低碳生活情况的调查
D .以我国首架大型民用直升机各零部件的检查
6.如图,△ABC 是⊙O 的内接三角形,若∠ABC =70°,则∠AOC 的度数等于( )
A .140°
B .130°
C .120°
D .110°
7.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( )
8.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,则第10次旋转后得到的图形与图①~④中相同的是()
A .图①
B .图②
C .图③
D .图④
9.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。

下面能反映当天小华的爷爷离家的距离y 与时间x 的函数关系的大致图像是()
10.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE 。

过点A 作AE 的垂线交DE 于点P 。

若AE =AP =1,PB = 5 。

下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 ;⑤S
正方形ABCD =4+ 6 .其中正确结论的序号是
()
A .①③④
B .①②⑤
C .③④⑤
D .①③⑤
二、填空题:(本大题共6个小题,每小题4分,共24分)在每个小题中,请将
答案填在题后的横线上。

11.上海世界博览会自2010年5月1日开幕以来,截止到5月18日,累计参观人
数约为324万人,将324万用科学记数法表示为_____________万.
12.“情系玉树 大爱无疆”在为青海玉树的捐款活动中,某小组7位同学的捐款数额(元)分别是:5,
20,5,50,10,5,10. 则这组数据的中位数是_____________.
13.已知△ABC 与△DEF 相似且对应中线的比为2:3,则△ABC 与△DEF 的周长比为_____________.
14.已知⊙O 的半径为3cm ,圆心O 到直线l 的距离是4cm ,则直线l 与⊙O 的位置关系是_____________.
15.在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全
部相同。

现从盒子里随机取出一个小球,将该小球上的数字作为点P 的横坐标,将该数的平方作为点P 的纵坐标,则点P 落在抛物线y =-x 2+2x +5与x 轴所围成的区域内(不含边界)的概率是_____________.
16.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮
料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克
三、解答题:(本大题共4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.
17.计算:(-1)2010-| -7 |+ 9 ×( 5 -π)0+( 1 5
)-1 18.解方程:x x -1
+ 1 x =1 19.尺规作图:请在原图上作一个∠AOC ,使其是已知∠AOB 的 3 2
倍(要求:写出已知、求作,保留作图痕迹,在所作图中标上必有要的字母,不写作法和结论)
已知:
求作:
20. 已知:如图,在Rt △ABC 中,∠C =90°,AC = 3 。

点D 为BC 边上一点,且BD =2AD ,∠AD C
=60°求△ABC 的周长(结果保留根号)
四、解答题:(本大题共4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.
21.先化简,再求值:(x 2+4x -4)÷ x 2-4 x 2+2x
,其中x =-1 22.已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点A (-2,0),与反比例函数在第一象限内的图像的交于点B (2,n ),连结BO ,若S △AOB =4.
(1)求该反比例函数的解析式和直线AB 的解析式;
(2)若直线AB 与y 轴的交点为C ,求△OCB 的面积.
23.在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制
成了如下两幅不完整的统计图:
(1)求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;
(2)如果发了3条箴的同学中有两位同学,发了4条箴言的同学中有三位女同学。

现要从发了3条箴和4
条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率。

24. 已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°。

点E 是DC 的中点,过点E 作DC 的
垂线交AB 于点P ,交CB 的延长线于点M 。

点F 在线段ME 上,且满足CF =AD ,MF =MA 。

(1)若∠MFC =120°,求证:AM =2MB ;
(2)求证:∠MPB =90°- 1 2
∠FCM 。

25.今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周数x
1 2 3 4 价格y (元/千克) 2 2.2 2.4 2.6
进入55月第1周的2.8元/
千克下降至第2周的2.4元/千克,且y 与周数x 的变化情况满足二次函数y =- 1 20
x 2+bx +c 。

(1) 请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y
与x 的函数关系式,并求出5月份y 与x 的函数关系式;
(2) 若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m = 1 4
x +1.2,5月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m =5
1 x +2。

试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?
(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的
可供销量将在第2周销量的基础上每周减少a %,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8 a %。

若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值。

(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)
26.已知:如图(1),在平面直角坐标xOy 中,边长为2的等边△OAB 的顶点B 在第一象限,顶点A 在
x 轴的正半轴上。

另一等腰△OCA 的顶点C 在第四象限,OC =AC ,∠C =120°。

现有两动点P 、Q 分别从A 、O 两点同时出发,点Q 以每秒1个单位的速度沿OC 向点C 运动,点P 以每秒3个单位的速度沿A→O→B 运动,当其中一个点到达终点时,另一个点也随即停止。

(1)求在运动过程中形成的△OPQ 的面积S 与运动的时间t 之间的函数关系,并写出自变量t 的取值范围;
(2)在等边△OAB 的边上(点A 除外)存在点D ,使得△OCD 为等腰三角形,请直接写出所有符合条
件的点D 的坐标;
(3)如图(2),现有∠MCN =60°,其两边分别与OB 、AB 交于点M 、N ,连接MN .将∠MCN 绕着C
点旋转(0°<旋转角<60°),使得M 、N 始终在边OB 和边AB 上。

试判断在这一过程中,△BMN 的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.。

相关文档
最新文档