2021届冀教版九年级数学下册习题课件:专项训练十 尺规作图(共10张PPT)
《尺规作图》课件PPT课件
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质
《尺规作图》数学教学PPT课件(2篇)
B.已知两角和它们 D.已知三角
2.已知三边作三角形,用到的基本作图是(C )
A.作一个角等于已知角
B.平分一个已知角
C.在射线上截取一线段等于已知线段
D.作一条直线的垂线.
3.画三角形,使它的两条边分别等于两条已知线段,这 以画 无数 个
4.如图,已知∠α,∠β,线段a,求作△ABC,使∠A=∠α,∠
2 如图,已知∠A ,∠B,求作一个角,使它等于∠A+∠B. 所以∠CDF就是所求作的角.
3.用直尺和圆规作一个角等于已知角的示意图如下,则说
明的∠AOB ∠AOB 依据是( D )
A.SAS
B.ASA
C.AAS
D.SSS
4.如图,某人不小心把一块三角形的玻璃打碎成三块,现在
要到玻璃店去配一块完全一样的玻璃,那么他最少要
布置作业
书面作业:完成相关书本作业
数学活动 处处留心皆学问:作三角形的条件与证明三角 全等的条件之间有什么样的关系呢?
两个基本作图 (1)作一条线段等于已知线段
(2)作一个角等于已知角
1.3.3 尺规作图
八年级上册
学习目标
➢ 1.会利用基本尺规作图,完成已知两角和夹 三角形
➢ 2.探索完成已知两角和其中一角的对边作三角 过程,积累数学活动经验。
预习反馈
1.根据下列条件,能作出唯一的△ABC的是( D )
A. AB=4,BC=7,AC=2
2.教学重点 利用五个基本作图解决一些实际问题.
3.教学难点 将几何作图与几何设计综合在一起,解决实
际问题的动手作图能力.
• 尺规作图:在几何里,把只能使用没有刻度
的直尺和圆规这两种工具作几何图形的方法
称为尺规作图.
初三数学复习尺规作图ppt课件
作法:
1.以O为圆心,适当 长为半径作弧,交OA于M, 交OB于N.
2.分别以M,N为
圆心.大于 1 MN的长为 2
半径作弧.两弧在∠AOB
的内部交于C. 3.作射线OC.
A
M C
B
N
则射线OC即为所求.
O
4
作线段的垂直平分线。
已知:线段AB,
A
求作:线段AB的垂直平分线。 作法:(大两1)于弧分—交别12—于以AC点B、的AD、长两B为点为半;圆径心作,弧以,
2、连接AB’、B’C’、C’A。 2、连接A’B’、B’C、CA’。
17
利用位似定义如何将一个图形进行
放大或缩小? A
请把图中的四边
形缩小到原来的二
D
分之一
B
C
18
A
作法一
(1)在边形ABCD外任取一点O
D
(2)过点o分别作射线
B
OA,OB,OC,OD
A.
(3)分别在射线OA, OB,OC,OD上取点A,
A
.
B
.
O
.
.
D
C
21
a
⑶ 以B为圆心,b为半径画弧,交射线CN于点 A; ⑷ 连接AB; (5)△ABC即为所求的直 角三角形
9
已知:不在同一直线上的三点
A、B、C
求作:⊙O,使它经过A、B、C
B
作法:
F A O
1、连结AB,作线段AB的垂
C
直平分线DE,
G
2、连结BC,作线段BC的垂直平
分线FG,交DE于点O,
3、以O为圆心,OB为半径作圆,
. D. B . C
. B,,C,,D,, O
冀教版数学九年级下册全套ppt课件精选全文
又∵ ∠APB=40°,∴∠AOB=140°
︵ ︵
又∵AB=AB
∴∠AOB=2∠ACB
∴∠ACB=70°
B
C
练 习
如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P,
PE⊥AC于E。
A
求证:PE是⊙O的切线。
O
证明:连结OP。
∵AB=AC,∴∠B=∠C。
∵OB=OP,∴∠B=∠OPB,
A
d
C
O
B
点到圆心距离为d
⊙O半径为r.
(1)d<r
点A在圆内
(2)d=r
点B在圆上
(3)d>r
点C在圆外
三种位置关系
观察探究一
你发现这个自然现象反映出直线和圆的公共点
个数有几种情况?
探究活动二
请同学们在练习本上画一个圆,把直尺边缘看成一条直线,
平移直尺。
直线和圆分别有几个公共点?
两个公共点
●O
这点和切点之间的线段的长。
B
P
O
C
小结:切线是直线,不可以度量;切线长是指切线
上的一条线段的长,可以度量。
下面进一步探讨,先请一些同学做小实验:
(1)请同学们观察当圆变化时,切线长PA、PB之间
的关系,同时注意 1、2 之间的关系。
(2)请根据你的观察尝试总结它们之间的关系。
A
1
2
O
B
p
A
你能不能用所
2.用图形表示如下:
有两个公共点
有一个公共点
.o
.o
.
l
.o
l
l
相切
相交
九年级数学中考专题复习《尺规作图》课件
《尺规作图》
课前热身,复习回顾 31.如图,在用R尺t△规A作B一C中个,角∠等C于=9已0°知,角AC,<其BC作.分图别原以理点是A:,由B为△圆OD心C,≌大△于O'D1'ACB'得长∠为A半O径B=作∠圆A'弧O'B,',两 条其圆依弧据交的于定点理M是,( NA,作)直线MN交CB于点D.若BD=5,CD=3,则△ACD2的周长是( C )
知识梳理,融会贯通
例2 如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO为半径 画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于 3 .
2
60°
典例解析,能力提升
变式2.1 如图,在△ABC中,∠C=90°,以点B为圆心,以适当长为半径画弧交AB,BC于P,Q两
A.7SSS BB.8.SAS C.C12.ASA D.1D3.AAS
2.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项
正确的是( D )
因为PA+PC=BC=PB+PC,所以PA=PB,即点P在AB的垂直平分线上.
A.
B.
C.
D.
知识梳理,融会贯通
2.尺规作图的五种基本作图 (1)作一条线段等于已知线段 (2)作一个角等于已知角 (3)作一条线段的垂直平分线 (4)作一个角的平分线 (5)过一点作已知直线的垂线
课后练习,巩固拓展
1.如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大 于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连接AC, BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是 ( B ) A.矩形 B.菱形 C.正方形 D.等腰梯形
专题:尺规作图
专题十:尺规作图典例分析例1(2022福建中考)如图,BD是矩形ABCD的对角线.(1)求作⊙A,使得⊙A与BD相切(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,设BD与⊙A相切于点E,CF⊥BD,垂足为F.若直线CF与⊙A相切于点G,求tan ADB 的值.专题过关1.(2022贵港中考)尺规作图(保留作图痕迹,不要求写出作法):如图,已知线段m ,n .求作ABC ,使90,,A AB m BC n ∠=︒==.2.(2022重庆中考A 卷)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD 中,E 是AD 边上的一点,试说明BCE 的面积与矩形ABCD 的面积之间的关系.他的思路是:首先过点E 作BC 的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E 作BC 的垂线EF ,垂足为F (只保留作图㾗迹).在BAE 和EFB △中,∵EF BC ⊥,∴90EFB ∠=︒.又90A ∠=︒,∴__________________①∵AD BC ∥,∴__________________②又__________________③∴()BAE EFB AAS △≌△.同理可得__________________④∴111222BCE EFB EFC ABFE EFCD ABCD S S S S S S =+=+=△△△矩形矩形矩形.3.(2022广州中考)(10分)如图,AB是⊙O的直径,点C在⊙O上,且AC=8,BC=6.(1)尺规作图:过点O作AC的垂线,交劣弧于点D,连接CD(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O到AC的距离及sin∠ACD的值.4.(2022沈阳中考)如图,在ABC中,AD是ABC的角平分线,分别以点A,D为圆心,大于12AD的长为半径作弧,两弧交于点M,N,作直线MN,分别交AB,AD,AC于点E,O,F,连接DE,DF.(1)由作图可知,直线MN是线段AD的______.(2)求证:四边形AEDF是菱形.5.(2022山西中考)如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母),(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.6.(2022赤峰中考)如图,已知Rt ABC 中,90ACB ∠=︒,8AB =,5BC =.(1)作BC 的垂直平分线,分别交AB 、BC 于点D 、H ;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD ,求BCD △的周长.7.(2022无锡中考)如图,△ABC 为锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图:在AC 右上方确定点D ,使∠DAC =∠ACB ,且CD AD ⊥;(不写作法,保留作图痕迹)(2)在(1)的条件下,若60B ∠=,2AB =,3BC =,则四边形ABCD 的面积为.(如需画草图,请使用试卷中的图2)8.(2022河南中考)如图,反比例函数()0k y x x=>的图像经过点()2,4A 和点B ,点B 在点A 的下方,AC 平分OAB ∠,交x 轴于点C .(1)求反比例函数的表达式.(2)请用无刻度的直尺和圆规作出线段AC 的垂直平分线.(要求:不写作法,保留作图痕迹,使用2B 铅笔作图)(3)线段OA 与(2)中所作的垂直平分线相交于点D ,连接CD .求证:CD AB ∥.9.(2022北部湾中考)如图,在ABCD 中,BD 是它的一条对角线,(1)求证:ABD CDB △≌△;(2)尺规作图:作BD 的垂直平分线EF ,分别交AD ,BC 于点E ,F (不写作法,保留作图痕迹);(3)连接BE ,若25DBE ∠=︒,求AEB ∠的度数.10.(2022兰州中考)综合与实践问题情境:我国东周到汉代一些出土实物上反映出一些几何作图方法,如侯马铸铜遗址出土车軎范、芯组成的(如图1),它的端面是圆形,如图2是用“矩”(带直角的角尺)确定端面圆心的方法.....:将“矩”的直角尖端A 沿圆周移动,直到AB AC =,在圆上标记A ,B ,C 三点;将“矩”向右旋转,使它左侧边落在A ,B 点上,“矩”的另一条边与圆的交点标记为D 点,这样就用“矩”确定了圆上等距离的A ,B ,C ,D 四点,连接AD ,BC 相交于点,这样就用“矩”确定了圆上等距离的A ,B ,C ,D 四点,链接AD ,BC 相较于点O ,即O 为圆心.(1)问题解决:请你根据“问题情境”中提供的方法,用三角板还原..我国古代几何作图确定圆心O .如图3,点A ,B ,C 在O 上,AB AC ⊥,且AB AC =,请作出圆心O .(保留作图痕迹,不写作法)(2)类比迁移:小梅受此问题的启发,在研究了用“矩”(带直角的角尺)确定端面圆心的方法后发现,如果AB 和AC 不相等,用三角板也可以确定圆心O .如图4,点A ,B ,C 在O 上,AB AC ⊥,请作出圆心O .(保留作图痕迹,不写作法)(3)拓展探究:小梅进一步研究,发现古代由“矩”度量确定圆上等距离点时存在误差,用平时学的尺规作图....的方法确定圆心可以减少误差.如图5,点A ,B ,C 是O 上任意三点,请用不带刻度的直尺和圆规作出圆心O .(保留作图痕迹,不写作法)请写出你确定圆心的理由:______________________________.10.(2022黔东南中考)(1)请在图中作出ABC 的外接圆O (尺规作图,保留作图痕迹,不写作法);(2)如图,O 是ABC 的外接圆,AE 是O 的直径,点B 是CE 的中点,过点B 的切线与AC 的延长线交于点D .①求证:BD AD ⊥;②若6AC =,3tan 4ABC ∠=,求O 的半径.12.(2022陕西中考)问题提出(1)如图1,AD 是等边ABC 的中线,点P 在AD 的延长线上,且AP AC =,则APC ∠的度数为__________.问题探究(2)如图2,在ABC 中,6,120CA CB C ==∠=︒.过点A 作AP BC ∥,且AP BC =,过点P 作直线l BC ⊥,分别交AB BC 、于点O 、E ,求四边形OECA 的面积.问题解决(3)如图3,现有一块ABC 型板材,ACB ∠为钝角,45BAC ∠=︒.工人师傅想用这块板材裁出一个ABP △型部件,并要求15,BAP AP AC ∠=︒=.工人师傅在这块板材上的作法如下:①以点C 为圆心,以CA 长为半径画弧,交AB 于点D ,连接CD ;②作CD 的垂直平分线l ,与CD 于点E ;③以点A 为圆心,以AC 长为半径画弧,交直线l 于点P ,连接AP BP 、,得ABP △.请问,若按上述作法,裁得的ABP △型部件是否符合要求?请证明你的结论.13.(2022永州中考)如图,BD 是平行四边形ABCD 的对角线,BF 平分DBC ∠,交CD 于点F .(1)请用尺规作ADB ∠的角平分线DE ,交AB 于点E (要求保留作图痕迹,不写作法,在确认答案后,请用黑色笔将作图痕迹再填涂一次);(2)根据图形猜想四边形DEBF 为平行四边形,请将下面的证明过程补充完整.证明:∵四边形ABCD 是平行四边形,∴AD BC∥∵ADB ∠=∠______(两直线平行,内错角相等)又∵DE 平分ADB ∠,BF 平分DBC ∠,∴12EDB ADB ∠=∠,12DBF DBC ∠=∠∴EDB DBF∠=∠∴DE ∥______(______)(填推理的依据)又∵四边形ABCD 是平行四边形∴BE DF∥∴四边形DEBF 为平行四边形(______)(填推理的依据).14.(2022陕西中考)如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)15.(2022绥化中考)已知:ABC .(1)尺规作图:用直尺和圆规作出ABC 内切圆的圆心O ;(只保留作图痕迹,不写作法和证明)(2)如果ABC 的周长为14cm ,内切圆的半径为1.3cm ,求ABC 的面积.16.(2022青岛中考)已知:Rt ABC ,90B ∠=︒.求作:点P ,使点P 在ABC 内部,且,45PB PC PBC =∠=︒.17.(2022台州中考)如图,在ABC 中,AB AC =,以AB 为直径的⊙O 与BC 交于点D ,连接AD .(1)求证:BD CD =;(2)若⊙O 与AC 相切,求B Ð的度数;(3)用无刻度的直尺和圆规作出劣弧AD 的中点E .(不写作法,保留作图痕迹)18.(2022扬州中考)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)19.(2022泰州中考)已知:△ABC中,D为BC边上的一点.(1)如图①,过点D作DE∥AB交AC边于点E,若AB=5,BD=9,DC=6,求DE的长;(2)在图②,用无刻度的直尺和圆规在AC边上做点F,使∠DFA=∠A;(保留作图痕迹,不要求写作法)(3)如图③,点F在AC边上,连接BF、DF,若∠DFA=∠A,△FBC的面积等于12CD AB,以FD为半径作⊙F,试判断直线BC与⊙F的位置关系,并说明理由.20.(2022常州中考)(10分)现有若干张相同的半圆形纸片,点O是圆心,直径AB的长是12cm,C是半圆弧上的一点(点C与点A、B不重合),连接AC、BC.(1)沿AC、BC剪下△ABC,则△ABC是三角形(填“锐角”、“直角”或“钝角”);(2)分别取半圆弧上的点E、F和直径AB上的点G、H.已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);(3)经过数次探索,小明猜想,对于半圆弧上的任意一点C,一定存在线段AC上的点M、线段BC上的点N和直径AB上的点P、Q,使得由这四个点顺次连接构成的四边形是一个边长为4cm的菱形.小明的猜想是否正确?请说明理由.21.(2022武威中考)中国清朝末期的几何作图教科书《最新中学教科书用器画》由国人自编(图1),书中记载了大量几何作图题,所有内容均用浅近的文言文表述,第一编记载了这样一道几何作图题:原文释义甲乙丙为定直角.以乙为圆心,以任何半径作丁戊弧;以丁为圆心,以乙丁为半径画弧得交点己;再以戊为圆心,仍以原半径画弧得交点庚;乙与己及庚相连作线.如图2,ABC ∠为直角.以点B 为圆心,以任意长为半径画弧,交射线BA ,BC 分别于点D ,E ;以点D 为圆心,以BD 长为半径画弧与DE 交于点F ;再以点E 为圆心,仍以BD 长为半径画弧与DE 交于点G ;作射线BF ,BG .(1)根据以上信息,请你用不带刻度的直尺和圆规,在图2中完成这道作图题(保留作图痕迹,不写作法);(2)根据(1)完成的图,直接写出DBG ∠,GBF ∠,FBE ∠的大小关系.。