2016朝阳高三数学理
北京市朝阳区2016届高三二模数学(理)试题【含答案】
北京市朝阳区2015-2016学年度第二学期高三综合练习(二)数学(理科)2016.5一、选择题:本大题共8小题,每小题5分,共40分.在四个选项中,选出符合题目要求的一项.1.已知集合{}124xA x =<<,{}10B x x =-≥,则A B I =( )A .{}12x x ≤< B .{}01x x <≤C .{}01x x <<D .{}12x x <<2.复数i1iz =-(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.执行如图所示的程序框图,输出的S 值为( ) A .6B .10C .14D .154.已知非零向量a ,b ,“a ∥b ”是“a ∥()+a b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件5.同时具有性质:“①最小正周期是π; ②图象关于直线3x =π对称;③在区间56⎡⎤⎢⎥⎣⎦,ππ上是单调递增函数”的一个函数可以是( ) A .cos 26x y ⎛⎫=+⎪⎝⎭π B .sin 26y x 5⎛⎫=+⎪⎝⎭π C .cos 23y x ⎛⎫=-⎪⎝⎭π D .sin 26y x ⎛⎫=-⎪⎝⎭π 6.已知函数()122log 2a x x f x x x -≤⎧=⎨+>⎩,,(0a >且)1a ≠的最大值为1,则a 的取值范围是( )A .112⎡⎫⎪⎢⎣⎭,B .()01,C .102⎛⎤ ⎥⎝⎦,D .()1+∞,7.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( ) A .48B .72C .84D .1688.已知正方体1111ABCD A BC D -的棱长为2,E 是棱11D C 的中点,点F 在正方体内部或正方体的表面上,且EF ∥平面11A BC ,则动点F 的轨迹所形成的区域面积是( )A.92B.C .D .二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.双曲线22:13x C y -=的渐近线方程是 ;若抛物线()220y px p =>的焦点与双曲线C 的一个焦点重合,则p = .10.如图,P 为⊙O 外一点,PA 是⊙O 的切线,A 为切点,割线PBC 与⊙O 相交于B C ,两点,且3PC PA =,D 为线段BC 的中点,AD 的延长线交⊙O 于点E .若1PB =,则PA 的长为______;AD DE ⋅的值是 .11.已知等边ABC ∆的边长为3,D 是BC 边上一点,若1BD =,则AC AD ⋅uu u r uuu r的值是______.12.已知关于x y ,的不等式组022x y x x y x y k≥⎧⎪≥⎪⎨+≤⎪⎪-≥⎩所表示的平面区域D 为三角形区域,则实数k 的取值范围是 .13.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元.每年销售蔬菜的收入为26万元.设()f n 表示前n 年的纯利润(()f n =前n 年的总收入-前n 年的总费用支出-投资额),则()f n = (用n 表示);从第______年开始盈利.14.在平面直角坐标系xOy 中,以点A ()20, ,曲线y =B ,第一象限内的点C ,构成等腰直角三角形ABC ,且90A ∠=︒,则线段OC 长的最大值是______.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,sin A C =. (Ⅰ)求a 的值;(Ⅱ)若角A 为锐角,求b 的值及ABC ∆的面积.交通指数值0.25 0.10 0.050.15 02 4 6 8 10 0.20 13 5 7 9 交通指数是交通拥堵指数的简称,是综合反映某区域道路网在某特定时段内畅通或拥堵实际情况的概念性指数值.交通指数范围为()010, ,五个级别规定如下:某人在工作日上班出行每次经过的路段都在同一个区域内,他随机记录了上班的40个工作日早高峰时段(早晨7点至9点)的交通指数()平均值),其统计结果如直方图所示. (Ⅰ)据此估计此人260个工作日中早高峰时段(早晨7点至9点)中度拥堵的天数;(Ⅱ)若此人早晨上班路上所用时间近似为:畅通时30分钟,基本畅通时35分钟,轻度拥堵时40分钟,中度拥堵时50分钟,严重拥堵时70分钟,以直方图中各种路况的频率作为每天遇到此种路况的概率,求此人上班路上所用时间X 的数学期望.ECDBA图1BFOCDA 1E 图2如图1,在等腰梯形ABCD 中,//BC AD ,122BC AD ==,60A ∠=︒,E 为AD 中点,点O F 、分别为,BE DE 的中点.将ABE ∆沿BE 折起到1A BE ∆的位置,使得平面1A BE ⊥平面BCDE (如图2). (Ⅰ)求证:1AO CE ⊥; (Ⅱ)求直线1A B 与平面1ACE 所成角的正弦值; (Ⅲ)侧棱1AC 上是否存在点P ,使得//BP 平面1AOF ?若存在,求出11A PAC 的值;若不存在,请说明理由.已知函数()()()2111ln 2f x x a x a x =-+++-,a R ∈. (Ⅰ)当3a =时,求曲线():C y f x =在点()()11f ,处的切线方程; (Ⅱ)当[]12x ∈, 时,若曲线():C y f x =上的点()x y ,都在不等式组1232x x y y x ⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的平面区域内,试求a 的取值范围.19.(本小题满分14分)在平面直角坐标系xOy 中,点()()0000P x y y ≠,在椭圆22:12x C y +=上,过点P 的直线l 的方程为0012x xy y +=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)若直线l 与x 轴、y 轴分别相交于A B 、两点,试求OAB ∆面积的最小值;(Ⅲ)设椭圆C 的左、右焦点分别为1F ,2F ,点Q 与点1F 关于直线l 对称,求证:点2Q P F 、、三点共线.20.(本小题满分13分)已知集合(31122n S k k k N n *⎧⎫-⎪⎪=≤≤∈≥⎨⎬⎪⎪⎩⎭,,且)n N *∈.若存在非空集合12n S S S ,,,,使得12n S S S S =,且()1i j S S i j n i j =∅≤≤≠,,,并()12i x y S i n x y ∀∈=>,, ,,,,都有i x y S -∉,则称集合S 具有性质P ,i S (12i n =, ,,)称为集合S 的P 子集. (Ⅰ)当2n =时,试说明集合S 具有性质P ,并写出相应的P 子集12S S ,;(Ⅱ)若集合S 具有性质P ,集合T 是集合S 的一个P 子集,设{}3nT s s T '=+∈,求证:x y T T '∀∈,,x y >,都有x y TT '-∉;(Ⅲ)求证:对任意正整数2n ≥,集合S 具有性质P .北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.5一、选择题:(满分40分)二、填空题:(满分30分) [0,1)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)解:()Ⅰ) 0A <<π,由正弦定理sin sin a cA C=…………………6分()Ⅱ) cos A =由余弦定理2222cos a b c bc A =+-,得22150b b --=. 解得5b =或3b =-(舍负).…………………13分 解: (Ⅰ)由已知可得:上班的40个工作日中早高峰时段中度拥堵的频率为0.25, 据此估计此人260个工作日早高峰时段(早晨7点至9点)中度拥堵的天数为 260×0.25=65天. ……………………………………………………5分 (Ⅱ)由题意可知X 的可能取值为30,35,40,50,70.且(30)0.05P X ==;(35)0.10P X ==;(40)0.45P X ==; (50)0.25P X ==;(70)0.15P X ==;所以300.05+350.1+400.45+500.25+700.15=46EX =⨯⨯⨯⨯⨯.…………………………………13分17.(本小题满分14分)解:(Ⅰ)如图1,在等腰梯形ABCD 中,由//BC AD ,122BC AD ==,60A ∠=︒,E 为AD 中点,所以ABE ∆为等边三角形.如图2, 因为O 为BE 的中点,所以1AO BE ⊥. 又因为平面1A BE ⊥平面BCDE , 且平面1A BE平面BCDE BE =,所以1AO ⊥平面BCDE ,所以1AO CE ⊥.………4分 (Ⅱ)连结OC ,由已知得CB CE =,又O 为BE 的中点,图2所以OC BE ⊥.由(Ⅰ)知1AO ⊥平面BCDE , 所以11,AO BE AO OC ⊥⊥, 所以1,,OA OB OC 两两垂直.以O 为原点,1,,OB OC OA 分别为,,x y z 轴建立空间直角坐标系(如图).因为2BC =,易知1OA OC ==所以1(00(100),(0(100)A B C E -,,,,,所以111(103),(033),(10A B AC A E =-=-=-,,,,,. 设平面1ACE 的一个法向量为(,,)x y z =n , ECDBA图1DCBFODA 1E由 110,0 AC A E ⎧⋅=⎪⎨⋅=⎪⎩n n得0, 0.x -=--=⎪⎩即0, 0. y z x -=⎧⎪⎨+=⎪⎩取1z =,得(,1)=n . 设直线1A B 与平面1ACE 所成角为θ,则1sin cos ,A B θ=〈〉===n . 所以直线1A B 与平面1ACE 所成角的正弦值为5. …………………9分 (Ⅲ)假设在侧棱1AC 上存在点P ,使得//BP 平面1AOF . 设11A P AC λ=,[0,1]λ∈.因为1111BP BA A P BA AC λ=+=+,所以(10(0(1)BP λ=-+=-. 易证四边形BCDE 为菱形,且CE BD ⊥,又由(Ⅰ)可知,1AO CE ⊥,所以CE ⊥平面1AOF .所以(1,CE =-为平面1AOF 的一个法向量.由(1)(1,130BP CE λ⋅=-⋅-=-=,得1[0,1]3λ=∈. 所以侧棱1AC 上存在点P ,使得//BP 平面1AOF ,且1113A P AC =. …………14分 18.(本小题满分13分) 解:(Ⅰ)当3a =时, 21()42ln 2f x x x x =-+-,0x >. 2()4f x x x'=-+-. 则(1)1421f '=-+-=,而17(1)422f =-+=. 所以曲线在点(1,(1)f )处的切线方程为712y x -=-,即2250x y -+=.…………………………………………………………………………4分C(Ⅱ)依题意当时,曲线上的点都在不等式组12,,32x x y y x ⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的平面区域内,等价于当时,3()2x f x x ≤≤+恒成立. 设211)ln 2x ax a x (=-++-,. 所以21(1)()=+=a x ax a g x x a+x x---++-'(1)(1))=x x a x ---(-.(1)当11a -≤,即2a ≤时,当[]1,2x ∈时,()0g x '≤,()g x 为单调减函数,所以(2)()(1)g g x g ≤≤. 依题意应有131,222221ln20,()()()g a g a a ⎧=-≤⎪⎨⎪=-++-≥⎩ 解得21a a ,.≤⎧⎨≥⎩所以12a ≤≤.(2)若 112a <-<,即23a <<时,当[)1,1x a ∈-,()0g x '≥,()g x 为单调增函数,当x ∈(]1,2a -,()0g x '<,()g x 为单调减函数.由于13(1)(1)22g a g a ->=->,又因为max 3()(1)2g x g a =-≤,矛盾,所以不合题意. (3)当12a -≥,即3a ≥时,注意到max 15()(2)(1)22g x g g a =>=-≥,又因为max 3()(2)2g x g =≤,矛盾,显然不合题意.综上所述,12a ≤≤. …………………………………………13分19.(本小题满分14分) 解:(Ⅰ)依题意可知a =1c ==,所以椭圆C离心率为e ==. …………… 3分 (Ⅱ)因为直线l 与x 轴,y 轴分别相交于,A B 两点,所以000,0x y ≠≠. 令0y =,由0012x x y y +=得02x x =,则02(,0)A x . []1,2x ∈C (),x y 12x ≤≤()()g x f x x =-[]1,2x ∈令0x =,由0012x x y y +=得01y y =,则01(0,)B y . 所以OAB ∆的面积0000112122OAB S OA OB x y x y ∆===. 因为点00(,)P x y 在椭圆:C 2212x y +=上,所以220012x y +=.所以220012x y =+≥.即00x y ≤,则001x y ≥所以00112OAB S OA OB x y ∆==≥. 当且仅当22002x y =,即001,2x y =±=±时,OAB ∆… 9分 (Ⅲ)①当00x =时,(0,1)P ±.当直线:1l y =时,易得(1,2)Q -,此时21F P k =-,21F Q k =-.因为22F Q F P k k =,所以三点2,,Q P F 共线. 同理,当直线:1l y =-时,三点2,,Q P F 共线.②当00x ≠时,设点(,)Q m n ,因为点Q 与点1F 关于直线l 对称,所以000011,22202() 1.1212x m n y n x m y -⎧⋅+⋅=⎪⎪⎪⎨-⎪⋅-=--⎪+⎪⎩整理得000000240,220.x m y n x y m x n y +--=⎧⎨-+=⎩解得220002200000220044,448.4x x y m y x x y y n y x ⎧+-=⎪+⎪⎨+⎪=⎪+⎩所以点22000000222200004448(,)44x x y x y y Q y x y x +-+++. 又因为200(1,)F P x y =-,220000002222200004448(1,)44x x y x y y F Q y x y x +-+=-++, 且22200000000000002222220000004448(48)(48)(1)(1)(1)444x x y x y y x y x x y x y y x y x y x +-+--+--⋅-⋅-=⋅+++2200000220048(448)4x y x x y y x --+-=⋅+ 222200000002222220000008484(2)84280444y x y x y y y y x y x y x --+-++-⨯+=⋅=⋅=⋅=+++. 所以2//F P 2F Q .所以点2,,Q P F 三点共线.综上所述,点2,,Q P F 三点共线. …………………………………14分 20.(本小题满分13分)证明:(Ⅰ)当2n =时,{1,2,3,4}S =,令1{1,4}S =,2{2,3}S =,则12S S S =, 且对,(1,2),i x y S i x y ∀∈=>,都有i x y S -∉,所以S 具有性质P .相应的P 子集为1{1,4}S =,2{2,3}S =. ………… 3分(Ⅱ)①若31,(1)2n x y T y x -∈≤<≤,由已知x y T -∉, 又31132n n x y --≤-<,所以x y T '-∉.所以'x y T T -∉.②若,x y T '∈,可设3,3nnx s y r =+=+,,r s T ∈,且3112n r s -≤<≤,此时31(3)(3)132n nnn x y s r s r --=+-+=-≤-<.所以'x y T -∉,且x y s r T -=-∉.所以x y T T '-∉.③若y T ∈, 3nx s T '=+∈,s T ∈,则313331(3)()3(1)3222n n n nnnx y s y s y -+--=+-=-+≥-+=>, 所以x y T -∉.又因为,y T s T ∈∈,所以s y T -∉.所以(3)()3nnx y s y s y T '-=+-=-+∉. 所以'x y TT -∉.综上,对于,'x y T T ∀∈,x y >,都有'x y T T -∉. …………… 8分(Ⅲ)用数学归纳法证明.(1)由(Ⅰ)可知当2n =时,命题成立,即集合S 具有性质P . (2)假设n k =()2k ≥)时,命题成立.即1231{1,2,3,,}2k k S S S S -==,且(1,,)ij S S i j n i j =∅≤≤≠,,(1,2,,),i x y S i k x y ∀∈=>,都有i x y S -∉.那么 当1n k =+时,记{3|}ki i S s s S '=+∈,,并构造如下个集合:111S S S '''=,222S S S '''=,,k k kS S S '''=, 1313131{1,2,,21}222k k k k S +---''=++⨯+,显然()i j S S i j ''''=∅≠.又因为131313122k k +--=⨯+,所以112131{1,2,3,,}2k kk S S S S ++-''''''''=.下面证明中任意两个元素之差不等于中的任一元素(1,2,,1)i k =+.①若两个元素13131,22k k k r s S +--''++∈,31112k r s -≤<≤+, 则313131()()222k k k s r s r ---+-+=-≤, 所以13131()()22k k k s r S +--''+-+∉. ②若两个元素都属于i ii S S S '''=(1)i k ≤≤,由(Ⅱ)可知,i S ''中任意两个元素之差不等于i S ''中的任一数(1,2,,1)i k =+.从而,1n k =+时命题成立.综上所述,对任意正整数2n ≥,集合S 具有性质P .………………………13分k +1 ¢¢S i¢¢S i。
2016 朝阳高三一模 数学 理 答案
北京市朝阳区高三年级第一次综合练习答案数学试卷(理工类)2016.3一、选择题:本大题共8小题,每小题5分,共40分. 1.答案:D 2. 答案:D 3.答案:A 4.答案:B 5.答案:C 6.答案:D 7.答案:A 8.答案:C二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.答案:1010.答案:21n a n =-,(3)(411)n n ++11.答案:)4π 12.答案:3(,]4-∞ 13.答案:3(0,)414.答案:121||i i i a b =-∑ 22三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)解析:解:(Ⅰ)当1ω=时,21()sin 22x f x x =+1sin 2x x = sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z . 解得22,66k x k k 5πππ-≤≤π+∈Z . 所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分(Ⅱ)由21()sin 22x f x x ωω=+-1sin 2x x ωω= sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=. 则2332n ωπππ+=π+,n ∈Z . 解得162n ω=+.又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解析:解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4.由题意可知,13+41()128P A ⨯⨯=⨯4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====; 2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====;4448(4)C P X C ===所以随机变量X 的分布列为随机变量X 的均值10123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分 (Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解析:解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AAC C ⊥平面11AA B B , 所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1AB AA A = , 所以AC ⊥平面11AA B B .由已知11//AC AC ,所以11AC ⊥平面11AA B B . 因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA AB AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩ 取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角,所以cos ,⋅〈〉===⋅m n m n m n .所以二面角P AM B --的余弦值为17.………………………………9分 (Ⅲ)存在点P ,使得直线1AC //平面AMP . 设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-.设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩ n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩ 取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意).又1(2,0,2)AC =- ,若1AC //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--= n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1AC //平面AMP .…………14分18.(本小题满分13分)解析: 解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x a f x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数;当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,.……………………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数, 所以min ()(2)2+ln 2f x f a ==. 依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+--(0)x >,则2211(1)()()a x g x a x x x -'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>,()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减,所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e1)2e 0aa g x a a a----=++--=>. 故()g x 在(1,)+∞上存在唯一零点.取2-1-21e<e ax =,则221122()(1e 1)2e 24a ag x a a a a++=--+--=--212[e 2(1)]a a a +=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线. (3)当0a =时,()f x x =,显然不存在过点P (13),的切线. 综上所述,当0a >时,过点P (13),存在两条切线; 当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分19.(本小题满分14分)解析:解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为4+易得椭圆的离心率=2c e a =.………………………………………………………4分 (Ⅱ)由2220,1,42y m x y -+=⎨+=⎪⎩得22480x m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<.设11(,)A x y ,22(,)B x y,则122x x m +=-,21284m x x -=, 112m y +=,222my +=. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则12k k +=+211)(1)(x x -+-===28)(m m ----+==220==.因为120k k +=,所以PMN PNM ∠=∠.所以PM PN =. ………………………………………………………14分20.(本小题满分13分)解析:解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,….因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N ,即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数. 显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅,即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数.所以,所求通项公式为11(241),3n n k n -*=⋅+∈N .……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列, 且115k c a ==,22231k c a k ==-, 所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+.只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数.又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+,即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数,故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列, 故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个. …………………………………………………………………………………………13分。
北京市朝阳区2016届高三第二次(5月)综合数学理试题含答案
数学答案(理工类) 2016.5一、选择题:(满分40分) 题号1 2 3 4 5 6 7 8 答案 A B B C D A D C二、填空题:(满分30分) 题号9 10 11 12 13 14 答案 33y x =±,4 3,16 6 (,2][0,1)-∞- 21960n n -+-,5 221+ (注:两空的填空,第一空3分,第二空2分)三、解答题:(满分80分)15.(本小题满分13分)解:(Ⅰ) 因为21cos 212sin 3A A =-=-,且 0A <<π, 所以6sin 3A =. 因为3,sin 6sin c A C ==,由正弦定理sin sin a c A C=,得66332a c =⋅=⨯=.…………………6分 (Ⅱ) 由6sin ,032A A π=<<得3cos 3A =. 由余弦定理2222cos a b c bc A =+-,得22150b b --=.解得5b =或3b =-(舍负).所以152sin 22ABC S bc A ∆==. …………………13分 解: (Ⅰ)由已知可得:上班的40个工作日中早高峰时段中度拥堵的频率为0.25,据此估计此人260个工作日早高峰时段(早晨7点至9点)中度拥堵的天数为260×0.25=65天. ……………………………………………………5分(Ⅱ)由题意可知X 的可能取值为30,35,40,50,70.且(30)0.05P X ==;(35)0.10P X ==;(40)0.45P X ==;(50)0.25P X ==;(70)0.15P X ==;所以300.05+350.1+400.45+500.25+700.15=46EX =⨯⨯⨯⨯⨯.…………………………………13分17.(本小题满分14分)解:(Ⅰ)如图1,在等腰梯形ABCD 中,由//BC AD ,122BC AD ==,60A ∠=︒,E 为AD 中点,所以ABE ∆为等边三角形.如图2,因为O 为BE 的中点,所以1A O BE ⊥.又因为平面1A BE ⊥平面BCDE ,且平面1A BE 平面BCDE BE =,所以1A O ⊥平面BCDE ,所以1A O CE ⊥.………4分(Ⅱ)连结OC ,由已知得CB CE =,又O 为BE 的中点,图2所以OC BE ⊥.由(Ⅰ)知1A O ⊥平面BCDE ,所以11,A O BE A O OC ⊥⊥,所以1,,OA OB OC 两两垂直. 以O 为原点,1,,OB OC OA 分别为,,x y z 轴建立空间直角坐标系(如图). 因为2BC =,易知13OA OC ==. 所以1(003),(100),(030),(100)A B C E -,,,,,,,,, 所以111(103),(033),(103)A B AC A E =-=-=--,,,,,,. 设平面1A CE 的一个法向量为(,,)x y z =n ,E C D B A 图1 A 1x y z F O BC D EPC B F OD A 1 E由 110,0 AC A E ⎧⋅=⎪⎨⋅=⎪⎩n n 得330, 30.y z x z ⎧-=⎪⎨--=⎪⎩ 即0, 30. y z x z -=⎧⎪⎨+=⎪⎩ 取1z =,得(3,1,1)=-n .设直线1A B 与平面1A CE 所成角为θ, 则133315sin cos ,5255A B θ--=〈〉===⨯n . 所以直线1A B 与平面1A CE 所成角的正弦值为155. …………………9分 (Ⅲ)假设在侧棱1A C 上存在点P ,使得//BP 平面1A OF .设11A P AC λ=,[0,1]λ∈.因为1111BP BA A P BA AC λ=+=+, 所以(103)(033)(1,3,33)BP λλλ=-+-=--,,,,. 易证四边形BCDE 为菱形,且CE BD ⊥,又由(Ⅰ)可知,1A O CE ⊥,所以CE ⊥平面1A OF . 所以(1,3,0)CE =--为平面1A OF 的一个法向量. 由(1,3,33)(1,3,0)130BP CE λλλ⋅=--⋅--=-=,得1[0,1]3λ=∈. 所以侧棱1A C 上存在点P ,使得//BP 平面1A OF ,且1113A P A C =. …………14分 18.(本小题满分13分)解:(Ⅰ)当3a =时, 21()42ln 2f x x x x =-+-,0x >. 2()4f x x x'=-+-. 则(1)1421f '=-+-=,而17(1)422f =-+=. 所以曲线C 在点(1,(1)f )处的切线方程为712y x -=-,即2250x y -+=. …………………………………………………………………………4分(Ⅱ)依题意当[]1,2x ∈时,曲线C 上的点(),x y 都在不等式组12,,32x x y y x ⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的平面区域内,等价于当12x ≤≤时,3()2x f x x ≤≤+恒成立. 设()()g x f x x =-211)ln 2x ax a x (=-++-,[]1,2x ∈. 所以21(1)()=+=a x ax a g x x a+x x ---++-'(1)(1))=x x a x---(-. (1)当11a -≤,即2a ≤时,当[]1,2x ∈时,()0g x '≤,()g x 为单调减函数,所以(2)()(1)g g x g ≤≤. 依题意应有131,222221ln20,()()()g a g a a ⎧=-≤⎪⎨⎪=-++-≥⎩ 解得21a a ,.≤⎧⎨≥⎩所以12a ≤≤. (2)若 112a <-<,即23a <<时,当[)1,1x a ∈-,()0g x '≥,()g x 为单调增函 数,当x ∈(]1,2a -,()0g x '<,()g x 为单调减函数.由于3(1)2g >,所以不合题意. (3)当12a -≥,即3a ≥时,注意到15(1)22g a =-≥,显然不合题意. 综上所述,12a ≤≤. …………………………………………13分19.(本小题满分14分)解:(Ⅰ)依题意可知2a =,211c =-=,所以椭圆C 离心率为1222e ==. …………… 3分 (Ⅱ)因为直线l 与x 轴,y 轴分别相交于,A B 两点,所以000,0x y ≠≠. 令0y =,由0012x x y y +=得02x x =,则02(,0)A x .令0x =,由0012x xy y +=得01y y =,则01(0,)B y .所以OAB ∆的面积0000112122OAB S OA OB x y x y ∆===.因为点00(,)P x y 在椭圆:C 2212x y +=上,所以22012x y +=. 所以2002001222x y x y =+≥.即0022x y ≤,则0012x y ≥. 所以001122OAB S OA OB x y ∆==≥. 当且仅当22002x y =,即0021,2x y =±=±时,OAB ∆面积的最小值为2.…9分 (Ⅲ)①当00x =时,(0,1)P ±.当直线:1l y =时,易得(1,2)Q -,此时21F P k =-,21F Q k =-.因为22F Q F P k k =,所以三点2,,Q P F 共线.同理,当直线:1l y =-时,三点2,,Q P F 共线.②当00x ≠时,设点(,)Q m n ,因为点Q 与点1F 关于直线l 对称,所以000011,22202() 1.1212x m ny n x m y -⎧⋅+⋅=⎪⎪⎪⎨-⎪⋅-=--⎪+⎪⎩整理得000000240,220.x m y n x y m x n y +--=⎧⎨-+=⎩ 解得220002200000220044,448.4x x y m y x x y y n y x ⎧+-=⎪+⎪⎨+⎪=⎪+⎩ 所以点22000000222200004448(,)44x x y x y y Q y x y x +-+++.又因为200(1,)F P x y =-,220000002222200004448(1,)44x x y x y y F Q y x y x +-+=-++, 且 22200000000000002222220000004448(48)(48)(1)(1)(1)444x x y x y y x y x x y x y y x y x y x +-+--+--⋅-⋅-=⋅+++ 2200000220048(448)4x y x x y y x --+-=⋅+ 222200000002222220000008484(2)84280444y x y x y y y y x y x y x --+-++-⨯+=⋅=⋅=⋅=+++. 所以2//F P 2F Q .所以点2,,Q P F 三点共线.综上所述,点2,,Q P F 三点共线. …………………………………14分 20.(本小题满分13分)证明:(Ⅰ)当2n =时,{1,2,3,4}S =,令1{1,4}S =,2{2,3}S =,则12S S S =, 且对,(1,2),i x y S i x y ∀∈=>,都有i x y S -∉,所以S 具有性质P .相应的P 子集为1{1,4}S =,2{2,3}S =. ………… 3分 (Ⅱ)①若31,(1)2n x y T y x -∈≤<≤,由已知x y T -∉, 又31132n n x y --≤-<,所以x y T '-∉.所以'x y T T -∉. ②若,x y T '∈,可设3,3n n x s y r =+=+,,r s T ∈,且3112n r s -≤<≤, 此时31(3)(3)132n n nn x y s r s r --=+-+=-≤-<. 所以'x y T -∉,且x y s r T -=-∉.所以x y TT '-∉.③若y T ∈, 3n x s T '=+∈,s T ∈, 则313331(3)()3(1)3222n n n n nn x y s y s y -+--=+-=-+≥-+=>, 所以x y T -∉.又因为,y T s T ∈∈,所以s y T -∉.所以(3)()3n n x y s y s y T '-=+-=-+∉.所以'x y TT -∉. 综上,对于,'x y T T ∀∈,x y >,都有'x y T T -∉. …………… 8分 (Ⅲ)用数学归纳法证明.(1)由(Ⅰ)可知当2n =时,命题成立,即集合S 具有性质P .(2)假设n k =(2k ≥)时,命题成立.即1231{1,2,3,,}2k k S S S S -==, 且(1,,)i j S S i j n i j =∅≤≤≠,,(1,2,,),i x y S i k x y ∀∈=>,都有i x y S -∉. 那么 当1n k =+时,记{3|}k i i S s s S '=+∈,, 并构造如下 k +1个集合:111S S S '''=,222S S S '''=,,k k kS S S '''=, 1313131{1,2,,21}222k k k k S +---''=++⨯+, 显然()i j S S i j ''''=∅≠. 又因为131313122k k +--=⨯+,所以112131{1,2,3,,}2k k k S S S S ++-''''''''=. 下面证明 ¢¢S i 中任意两个元素之差不等于 ¢¢S i 中的任一元素(1,2,,1)i k =+.①若两个元素13131,22k k k r s S +--''++∈,31112k r s -≤<≤+, 则313131()()222k k k s r s r ---+-+=-≤, 所以13131()()22k k k s r S +--''+-+∉. ②若两个元素都属于i i i S S S '''=(1)i k ≤≤,由(Ⅱ)可知,i S ''中任意两个元素之差不等于i S ''中的任一数(1,2,,1)i k =+. 从而,1n k =+时命题成立.综上所述,对任意正整数2n ≥,集合S 具有性质P .………………………13分。
2016届朝阳高三数学(理)答案
P F D A E C B
18. (本小题满分 14 分) 已知函数 f ( x ) ax ln x ,其中 a R . (Ⅰ)若 f ( x ) 在区间 [1, 2] 上为增函数,求 a 的取值范 围; (Ⅱ)当 a e 时, (ⅰ)证明: f ( x) 2 0 ; (ⅱ)试判断方程 f ( x)
16. (本小题满分 13 分) 解: (Ⅰ)因为 cos ADB 又因为 CAD
2 7 2 ,所以 sin ADB . 10 10
,所以 C ADB . 4 4
5
所以 sin C sin(ADB ) sin ADB cos cos ADB sin 4 4 4
第二部分(非选择题 共 110 分)
2
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.把答案填在答题卡上.
9.函数 y 2sin(2 x ) 1 的最小正周期是 6
,最小值是
.
x y ≤ 2, 10.若 x , y 满足约束条件 2 x y ≥ 1,则 z x y 的最大值为 y ≤1,
20. (本小题满分 13 分) 已知有穷数列: a1 , a2 , a3 , ① a1 a 3) 的各项均为正数,且满足条件:
, k 1) .
2 1 2an 1 (n 1, 2,3, an an 1
(Ⅰ)若 k 3, a1 2 ,求出这个数列; (Ⅱ)若 k 4 ,求 a1 的所有取值的集合; (Ⅲ)若 k 是偶数,求 a1 的最大值(用 k 表示) .
(Ⅰ)因为 f ( x ) 在区间 [1, 2] 上为增函数,所以 f ( x) 0 在 x [1, 2] 上恒成立, 即 f ( x) a 则a .
朝阳区2015-2016学年第一学期期末高三数学(理)试题答案
北京市朝阳区2015-2016学年度第一学期期末高三年级统一考试数学答案(理工类) 2016.1一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)解:(Ⅰ)设“选出的3名同学来自不同班级”为事件A ,则1203373731049().60C C C C P A C ⋅+⋅== 所以选出的3名同学来自班级的概率为4960. ……………………………5分 (Ⅱ)随机变量X 的所有可能值为0,1,2,3,则03373107(0)24C C P X C ⋅===; 123731021(1)40C C P X C ⋅===; 21373107(2)40C C P X C ⋅===; 30373101(3)120C C P X C ⋅===. 所以随机变量X 的分布列是随机变量X 的数学期望721719()012324404012010E X =⨯+⨯+⨯+⨯=. …………………………13分16.(本小题满分13分) 解:(Ⅰ)因为cos ADB ∠=,所以sin ADB ∠= 又因为4CAD π∠=,所以4C ADB π∠=∠-.所以sin sin()sin cos cos sin 444C ADB ADB ADB πππ∠=∠-=∠⋅-∠⋅45==. ………………………7分 (Ⅱ)在ACD ∆中,由ADCACC AD ∠=∠sin sin,得74sin sin AC C AD ADC ⋅⋅∠==∠ 所以1172sin 22572210ABD S AD BD ADB ∆=⋅⋅∠=⋅⋅=. …………13分 17.(本小题满分13分)(Ⅰ)证明:因为底面ABCD 是菱形,所以AB ∥CD . 又因为AB ⊄面PCD ,CD ⊂面PCD ,所以AB ∥面PCD . 又因为,,,A B E F 四点共面,且平面ABEF 平面PCD EF =, 所以AB ∥EF . ………………………5分 (Ⅱ)取AD 中点G ,连接,PG GB .因为PA PD =,所以PG AD ⊥. 又因为平面PAD ⊥平面ABCD , 且平面PAD 平面ABCD AD =,所以PG ⊥平面ABCD .所以PG GB ⊥. 在菱形ABCD 中,因为AB AD =, 60DAB ∠=︒,G 是AD 中点, 所以AD GB ⊥.如图,建立空间直角坐标系G xyz -.设2PA PD AD a ===,则(0,0,0),(,0,0)G A a,,0),(2,0),(,0,0),)B C a D a P--.又因为AB∥EF,点E是棱PC中点,所以点F是棱PD中点.所以(E a-,(2aF-.所以3(2aAF=-,(,2aEF=.设平面AFE的法向量为(,,)x y z=n,则有0,0.AFEF⎧⋅=⎪⎨⋅=⎪⎩nn所以,.zy x⎧=⎪⎨=⎪⎩令3x=,则平面AFE的一个法向量为3,33)=n.因为BG⊥平面PAD,所以3,0)GB a=是平面PAF的一个法向量.因为13cos,13393GB<GB>aGB⋅===⋅⋅nnn,所以平面PAF与平面AFE所成的锐二面角的余弦值为1313.……………………13分18.(本小题满分14分)解:函数()f x定义域),0(+∞∈x,1()f x ax'=+.(Ⅰ)因为()f x在区间[1,2]上为增函数,所以()0f x'≥在[1,2]x∈上恒成立,即1()0f x ax'=+≥,1ax≥-在[1,2]x∈上恒成立,则1.2a≥-………………………………………………………4分(Ⅱ)当ea=-时,() e lnf x x x=-+,e1()xf xx-+'=.(ⅰ)令0)(='xf,得1ex=.令()0f x'>,得1(0,)ex∈,所以函数)(xf在1(0,)e单调递增.令()0f x '<,得1(,)e x ∈+∞,所以函数)(x f 在1(,)e+∞单调递减.所以,max 111()()e ln 2e e ef x f ==-⋅+=-.所以()20f x +≤成立. …………………………………………………9分 (ⅱ)由(ⅰ)知, max ()2f x =-, 所以2|)(|≥x f . 设ln 3(),(0,).2x g x x x =+∈+∞所以2ln 1)(x x x g -='. 令0)(='x g ,得e x =.令()0g x '>,得(0,e)x ∈,所以函数)(x g 在(0,e)单调递增, 令()0g x '<,得(e,)x ∈+∞,所以函数)(x g 在(e,)+∞单调递减;所以,max lne 313()(e)2e 2e 2g x g ==+=+<, 即2)(<x g . 所以)(|)(|x g x f > ,即>|)(|x f ln 32x x +. 所以,方程=|)(|x f ln 32x x +没有实数解. ……………………………14分 19.(本小题满分14分)解:(Ⅰ)由题意可知24a =,243b =,所以22283c a b =-=. 所以6c e a ==.所以椭圆C 6…………………………3分 (Ⅱ)若切线l 的斜率不存在,则:1l x =±.在223144x y +=中令1x =得1y =±. 不妨设(1,1),(1,1)A B -,则110OA OB ⋅=-=.所以OA OB ⊥.同理,当:1l x =-时,也有OA OB ⊥. 若切线l 的斜率存在,设:l y kx m =+1=,即221k m +=.由2234y kx m x y =+⎧⎨+=⎩,得222(31)6340k x kmx m +++-=.显然0∆>. 设11(,)A x y ,22(,)B x y ,则122631km x x k +=-+,21223431m x x k -=+. 所以2212121212()()()y y kx m kx m k x x km x x m =++=+++.所以1212OA OB x x y y ⋅=+221212(1)()k x x km x x m =++++22222346(1)3131m kmk km m k k -=+-+++2222222(1)(34)6(31)31k m k m k m k +--++=+22244431m k k --=+ 2224(1)44031k k k +--==+.所以OA OB ⊥.综上所述,总有OA OB ⊥成立. ………………………………………………9分(Ⅲ)因为直线AB 与圆O 相切,则圆O 半径即为OAB ∆的高, 当l 的斜率不存在时,由(Ⅱ)可知2AB =.则1OAB S ∆=.当l 的斜率存在时,由(Ⅱ)可知,AB ====== 所以2242222242424(1)(91)4(9101)44(1)(31)961961k k k k k AB k k k k k ++++===++++++ 24222164164164419613396k k k k k=+⋅=+≤+=++++(当且仅当k =时,等号成立).所以AB ≤.此时, max (S )OAB ∆=. 综上所述,当且仅当3k =时,OAB ∆2314分 20.(本小题满分13分)解:(Ⅰ)因为13,2k a ==,由①知32a =; 由②知,21211223a a a a +=+=,整理得,2222310a a -+=.解得,21a =或212a =.当21a =时,不满足2323212a a a a +=+,舍去; 所以,这个数列为12,,22. …………………………………………………3分 (Ⅱ)若4k =,由①知4a =1a . 因为11212(1,2,3)n n n n a a n a a +++=+=,所以111(2)(1)0n n n n a a a a ++--=. 所以112n n a a +=或11(1,2,3)n na n a +==. 如果由1a 计算4a 没有用到或者恰用了2次11n na a +=,显然不满足条件;所以由1a 计算4a 只能恰好1次或者3次用到11n na a +=,共有下面4种情况: (1)若211a a =,3212a a =,4312a a =,则41114a a a ==,解得112a =;(2)若2112a a =,321a a =,4312a a =,则4111a a a ==,解得11a =; (3)若2112a a =,3212a a =,431a a =,则4114a a a ==,解得12a =; (4)若211a a =,321a a =,431a a =,则4111a a a ==,解得11a =; 综上,1a 的所有取值的集合为1{,1,2}2. ………………………………………………8分 (Ⅲ)依题意,设*2,,m 2k m m =∈≥N .由(II )知,112n n a a +=或11(1,2,3,21)n na n m a +==- . 假设从1a 到2m a 恰用了i 次递推关系11n na a +=,用了21m i --次递推关系112n n a a +=,则有(1)211()2itm a a -=⋅,其中21,t m i t ≤--∈Z .当i 是偶数时,0t ≠,2111()2tm a a a =⋅=无正数解,不满足条件;当i 是奇数时,由12111(),21222t m a a a t m i m -=⋅=≤--≤-得22211()22t m a -=≤,所以112m a -≤.又当1i =时,若213221222211111,,,,222m m m m a a a a a a a a ---====, 有222111()2m m a a --=⋅,222112m m a a a -==,即112m a -=. 所以,1a 的最大值是12m -.即1212ka -=.…………………………………13分。
2016朝阳高三一模理科数学
北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2016.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i +2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是 A .M N N = B .()UMN =∅ðC .MN U = D .()UM N ⊆ð3. “a b >”是“e e a b>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8 D .3 5.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c若222()tan 3a c b B ac +-=,则角B 的值为A .3π B .6π C .233ππ或D . 566ππ或 6.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误..的是 A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D. 前6个月的平均收入为40万元(注:结余=收入-支出)万元 月O23 430 1 10 2 5689 10 7111240 60 570 908收入支出开始1,1i S ==4?i <1i i =+2S S i =+输出S 结束 否 是(第4题图)(第7题图)正视图侧视图俯视图2 11 17.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13 B .12 C .1 D .328.若圆222(1)x y r +-=与曲线(1)1x y -=的没有公共点,则半径r 的取值范围是 A .02r << B .1102r <<C .03r <<D .1302r << 第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9. 二项式251()x x+的展开式中含4x 的项的系数是 (用数字作答). 10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;2610410n a a a a +++++=______.11.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲 线1C 与2C 的交点的极坐标...为 . 12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D 有公共点,则实数a 的取值范围是 . 13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+.若点M 在ABC ∆的内部(不含边界), 则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i (1,2,,12i =)项能力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项能力特征分别记为1212(,,,)A a a a =,1212(,,,)B b b b =,则,A B两名学生的不同能力特征项数为 (用,i i a b 表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数213()sin 3cos 222x f x x ωω=+-,0ω>. (Ⅰ)若1ω=,求()f x 的单调递增区间;(Ⅱ)若()13f π=,求()f x 的最小正周期T 的表达式并指出T 的最大值.16.(本小题满分13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望; (Ⅲ)试判断男学生阅读名著本数的方差21s 与女学生阅读名著本数的方差22s 的大小(只需 写出结论). 17.(本小题满分14分)人数 本数 性别 1 2 3 4 5 男生 1 4 3 2 2 女生 0 1 3 3 1如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(Ⅰ)求证:11A C AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值; (Ⅲ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由.18.(本小题满分13分)已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.19.(本小题满分14分)AMPCBA 1C 1B 1已知点(2,1)P 和椭圆:C 22142x y +=. (Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率; (Ⅱ)若直线:l 220(0)x y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x 轴分别交于M ,N 两点,求证:PM PN =.20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且n n k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分)题号 1 2 3 4 5 6 7 8 答案D DA BCDA C二、填空题:(满分30分)题号 91011121314答案1021n a n =-,(3)(411)n n ++(2,)4π 3(,]4-∞3(0,)4121||ii i ab =-∑22(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)当1ω=时,213()sin 3cos 222x f x x =+-13sin cos 22x x =+ sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z .所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分(Ⅱ)由213()sin 3cos 222x f x x ωω=+- 13sin cos 22x x ωω=+ sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z . 解得162n ω=+.又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分) 解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 .由题意可知, 13+417()=12896P A ⨯⨯=⨯.………………………………………4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====; 2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====; 44481(4)70C P X C ===. 所以随机变量X 的分布列为X0 1 2 3 4 P170 835 1835 835 170随机变量X 的均值116361610123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分(Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AA C C ⊥平面11AA B B ,所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1ABAA A =,所以AC ⊥平面11AA B B .由已知11//A C AC ,所以11A C ⊥平面11AA B B . 因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示.由已知 11111222AB AC AA A B AC =====,所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,PBA 1C 1B 1z1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P . 易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角, 所以3317cos ,1717⋅〈〉===⋅m n m n m n. 所以二面角P AM B --的余弦值为31717.………………………………9分 (Ⅲ)存在点P ,使得直线1A C //平面AMP .设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-. 设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意).又1(2,0,2)AC =-,若1A C //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--=n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1A C //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x a f x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,.……………………………………………………………………………………4分(Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数, 所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x-'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<.故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e 1)2e 0aa g x a a a----=++--=>.故()g x 在(1,)+∞上存在唯一零点.取2-1-21e<e ax =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]a a a+=-+. 设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,显然不存在过点P (13),的切线. 综上所述,当0a >时,过点P (13),存在两条切线; 当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分 19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为(2,1)P 是椭圆C 上的点,由椭圆定义得124PF PF +=. 所以12PF F ∆的周长为422+. 易得椭圆的离心率2=2c e a =.………………………………………………………4分 (Ⅱ)由22220,1,42x y m x y ⎧-+=⎪⎨+=⎪⎩得2242280x mx m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<. 设11(,)A x y ,22(,)B x y ,则1222x x m +=-,21284m x x -=, 1122x m y +=,2222x m y +=. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k , 则1212121122y y k k x x --+=+-- 12211222(1)(2)(1)(2)22(2)(2)x m x m x x x x ++--+--=-- 122112(22)(2)(22)(2)2(2)(2)x m x x m x x x +--++--=-- 1212121222(4)()22422[2()2]x x m x x m x x x x +-+-+=-++ 2121222(8)(4)228216244442[2()2]m m m m x x x x ----+=-++ 2121222(8)(4)22821628[2()2]m m m m x x x x ----+=-++ 2212122216222828216208[2()2]m m m m x x x x --+-+==-++. 因为120k k +=,所以PMN PNM ∠=∠. 所以PM PN =. ………………………………………………………14分 20.(本小题满分13分)解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,…. 因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4. (ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N ,即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数.显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅, 即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数. 所以,所求通项公式为11(241),3n n k n -*=⋅+∈N . ……………………………………………………………………………6分 (Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列,且115k c a ==,22231k c a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+. 只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数.又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+,即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数, 故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列,故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个.…………………………………………………………………………………………13分。
北京市朝阳区2016届高三第二次(5月)统一考试数学理试题 含答案
开始输出S 的值2,1k S ==5?k <1k k =+ S S k=+结束是否 北京市朝阳区2015-2016学年度高三年级第二学期统一考试数学试卷(理工类) 2016.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1.已知集合{}124xA x =<<,{}10B x x =-≥,则A B =A .{}12x x ≤<B .{}01x x <≤C .{}01x x <<D .{}12x x <<2.复数i1iz =-(i 为虚数单位)在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.执行如图所示的程序框图,输出的S值为A .6B .10C .14D .15 4.已知非零向量a ,b ,“a ∥b ”是 “a ∥()+a b ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.同时具有性质:“①最小正周期是π; ②图象关于直线3x π=对称;③在区间5,6π⎡⎤π⎢⎥⎣⎦上是单调递增函数”的一个函数可以是A .cos()26x y π=+ B .sin(2)6y x 5π=+C .cos(2)3y x π=-D .sin(2)6y x π=-6.已知函数1,2,()2log ,2a x x f x x x -≤⎧=⎨+>⎩(0a >且1)a ≠的最大值为1,则a 的取值范围是A .112[,) B .01(,) C .102(,] D .1(,)+∞7.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检 查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是A .48B .72C .84D .1688.已知正方体1111A B C D A B C D-的棱长为2,E 是棱11D C 的中点,点F 在正方体内部或正方体的表面上,且EF ∥平面11A BC ,则动点F 的轨迹所形成的区域面积是A .92BCD第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.双曲线22:13x C y -=的渐近线方程是 ;若抛物线22(0)ypx p =>的焦点与双曲线C 的一个焦点重合,则p = . 10.如图,P 为⊙O 外一点,PA 是⊙O 的切线,A为切点,割线PBC与⊙O 相交于,B C 两点,且3PC PA =,D 为线段BC 的中点,AD 的延长线交⊙O 于点E .若1PB =,则PA 的长为______; AD DE ⋅的值是.11.已知等边ABC ∆的边长为3,D 是BC 边上一点,若1BD =,则AC AD ⋅的值是______.12.已知关于,x y 的不等式组0,,2,2x y x x y x y k≥⎧⎪≥⎪⎨+≤⎪⎪-≥⎩所表示的平面区域D 为三角形区域,则实数k 的取值范围是 .13.为了响应政府推进“菜篮子"工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元。
2016北京市朝阳区高三(一模)数 学(理)
2016北京市朝阳区高三(一模)数学(理)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)i是虚数单位,=()A.1﹣i B.﹣1﹣i C.1+i D.﹣1+i2.(5分)已知全集U=R,函数y=ln(x﹣1)的定义域为M,集合N={x|x2﹣x<0},则下列结论正确的是()A.M∩N=N B.M∩(∁U N)=∅C.M∪N=U D.M⊆(∁U N)3.(5分)“”是“e a>e b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.(5分)执行如图所示的程序框图,输出的S值为()A.42 B.19 C.8 D.35.(5分)在△ABC中,角A,B,C,的对边分别为a,b,c,若(a2+c2﹣b2)tanB=ac,则角B的值为()A.B.或C.D.或6.(5分)某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是()(注:结余=收入﹣支出)A.收入最高值与收入最低值的比是3:1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元7.(5分)某三棱锥的三视图如图所示,则该三棱锥的体积是()A.B.C.1 D.8.(5分)若圆x2+(y﹣1)2=r2与曲线(x﹣1)y=1没有公共点,则半径r的取值范围是()A.0<r<B.0<r<C.0<r<D.0<r<二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.(5分)二项式(x2+)5的展开式中含x4的项的系数是(用数字作答).10.(5分)已知等差数列{a n}(n∈N*)中,a1=1,a4=7,则数列{a n}的通项公式a n= ;a2+a6+a10+…+a4n+10= .11.(5分)在直角坐标系xOy中,曲线C1的方程为x2+y2=2,曲线C2的参数方程为(t为参数).以原点O 为极点,x轴非负半轴为极轴,建立极坐标系,则曲线C1与C2的交点的极坐标为.12.(5分)不等式组所表示的平面区域为D.若直线y=a(x+1)与区域D有公共点,则实数a的取值范围是.13.(5分)已知M为△ABC所在平面内的一点,且.若点M在△ABC的内部(不含边界),则实数n 的取值范围是.14.(5分)某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i(i=1,2,…,12)项能力特征用x i表示,,若学生A,B的十二项能力特征分别记为A=(a1,a2,…,a12),B=(b1,b2,…,b12),则A,B两名学生的不同能力特征项数为(用a i,b i表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数,ω>0.(Ⅰ)若ω=1,求f(x)的单调递增区间;(Ⅱ)若,求f(x)的最小正周期T的表达式并指出T的最大值.16.(13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如表.1 2 3 4 5 男生 1 4 3 2 2 女生0 1 3 3 1(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望; (Ⅲ)试判断男学生阅读名著本数的方差与女学生阅读名著本数的方差的大小(只需写出结论).17.(14分)如图,在直角梯形AA 1B 1B 中,∠A 1AB=90°,A 1B 1∥AB ,AB=AA 1=2A 1B 1=2.直角梯形AA 1C 1C 通过直角梯形AA 1B 1B 以直线AA 1为轴旋转得到,且使得平面AA 1C 1C ⊥平面AA 1B 1B .M 为线段BC 的中点,P 为线段BB 1上的动点. (Ⅰ)求证:A 1C 1⊥AP ;(Ⅱ)当点P 是线段BB 1中点时,求二面角P ﹣AM ﹣B 的余弦值; (Ⅲ)是否存在点P ,使得直线A 1C ∥平面AMP ?请说明理由.18.(13分)已知函数f(x)=x+alnx,a∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)当x∈[1,2]时,都有f(x)>0成立,求a的取值范围;(Ⅲ)试问过点P(1,3)可作多少条直线与曲线y=f(x)相切?并说明理由.19.(14分)已知点和椭圆C:.(Ⅰ)设椭圆的两个焦点分别为F1,F2,试求△PF1F2的周长及椭圆的离心率;(Ⅱ)若直线l:与椭圆C交于两个不同的点A,B,直线PA,PB与x轴分别交于M,N两点,求证:|PM|=|PN|.20.(13分)已知等差数列{a n}的通项公式.设数列{b n}为等比数列,且.(Ⅰ)若b1=a1=2,且等比数列{b n}的公比最小,(ⅰ)写出数列{b n}的前4项;(ⅱ)求数列{k n}的通项公式;(Ⅱ)证明:以b1=a2=5为首项的无穷等比数列{b n}有无数多个.数学试题答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.【解答】===1+i,故选C.2.【解答】由x﹣1>0,解得:x>1,故函数y=ln(x﹣1)的定义域为M=(1,+∞),由x2﹣x<0,解得:0<x<1,故集合N={x|x2﹣x<0}=(0,1),∴∁U N={x|x≥1或x≤0},∴M⊆(∁U N),故选:D.3.【解答】∵“”⇔a>b⇒“e a>e b”,反之不成立,例如取a=2,b=﹣1.∴“”是“e a>e b”的充分不必要条件.故选:A.4.【解答】模拟执行程序,可得i=1,S=1满足条件i<4,S=3,i=2满足条件i<4,S=8,i=3满足条件i<4,S=19,i=4不满足条件i<4,退出循环,输出S的值为19.故选:B.5.【解答】∵cosB=,∴a2+c2﹣b2=2accosB,代入已知等式得:2ac•cosBtanB=ac,即sinB=,则B=或.6.【解答】由图可知,收入最高值为90万元,收入最低值为30万元,其比是3:1,故A正确,由图可知,结余最高为7月份,为80﹣20=60,故B正确,由图可知,1至2月份的收入的变化率为与4至5月份的收入的变化率相同,故C正确,由图可知,前6个月的平均收入为(40+60+30+30+50+60)=45万元,故D错误,故选:D.7.【解答】由三视图可知:该几何体为如图所示的三棱锥,CB⊥侧面PAB.该几何体的体积V=××1=.故选:A.8.【解答】圆的圆心为(0,1),半径为r设圆与曲线y=相切的切点为(m,n),可得n=,①y=的导数为y′=﹣,可得切线的斜率为﹣,由两点的斜率公式可得•(﹣)=﹣1,即为n﹣1=m(m﹣1)2,②由①②可得n4﹣n3﹣n﹣1=0化为(n2﹣n﹣1)(n2+1)=0,即有n2﹣n﹣1=0,解得n=或,则有或.可得此时圆的半径r==.r的范围是(0,).故选:C.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.【解答】二项式(x2+)5的展开式中通项公式为 T r+1= x10﹣2r x﹣r=x10﹣3r.令 10﹣3r=4,可得 r=2,∴展开式中含x4的项的系数是=10,故答案为10.10.【解答】∵等差数列{a n}(n∈N*)中,a1=1,a4=7,∴a4=1+3d=7,解得d=2,∴a n=1+(n﹣1)×2=2n﹣1,∴a2=1+2=3,a6=1+5×2=11,a6﹣a2=8,∴a2+a6+a10+…+a4n+10=×3+×8=(n+3)(4n+11).故答案为:2n﹣1,(n+3)(4n+11).11.【解答】将曲线C2的参数方程(t为参数)代入曲线C1的方程为x2+y2=2,可得(2﹣t)2+t2=2,解得t=1,可得交点的直角坐标为(1,1),由x=ρcosθ,y=ρsinθ,tanθ=,可得ρ==,tanθ=1,0<θ<,可得θ=.可得交点的极坐标为(,).故答案为:(,).12.【解答】作出不等式组对应的平面区域图示:因为y=a(x+1)过定点C(﹣1,0).当a≤0时,直线y=a(x+1)与区域D有公共点,满足条件.当a>0时,当直线y=a(x+1)过点A时,由公共点,由得,即A(3,3),代入y=a(x+1)得4a=3,a=,又因为直线y=a(x+1)与平面区域D有公共点.此时0<a≤.综上所述,a≤.故答案为:.13.【解答】如图,由得:;∴;∴;∴;∴;∴实数n的取值范围是.故答案为:.14.【解答】若第i(i=1,2,…,12)项能力特征相同,则差为0,特征不相同,绝对值为1,则用x i表示A,B两名学生的不同能力特征项数为=|a1﹣b1|+|b2﹣c2|+…+|c12﹣a12|=,设第三个学生为C=(c1,c2,…,c12),则d i=|a i﹣b i|+|b i﹣c i|+|c i﹣a i|,1≤i≤12,∵d i的奇偶性和(a i﹣b i)+(b i﹣c i)+(c i﹣a i)=0一样,∴d i是偶数,3名学生两两不同能力特征项数总和为S=d1+d2+…+d12为偶数,又S≥7×3=21.则S≥22,取A=(0,1,1,0,1,1,0,1,1,0,1,1),B=(1,0,1,1,0,1,1,0,1,1,0,1),C=(1,1,0,1,1,0,1,1,0,1,1,1),则不同能力特征数总和恰好为22,∴最小值为22,故答案为:,22三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.【解答】解:(Ⅰ)当ω=1时,==.令.解得.所以f(x)的单调递增区间是.…(7分)(Ⅱ)由==.因为,所以.则,n∈Z.解得.又因为函数f(x)的最小正周期,且ω>0,所以当ω=时,T的最大值为4π.…(13分)16.【解答】(Ⅰ)设事件A:从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4.由题意可知,.…(4分)(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X的取值为0,1,2,3,4.由题意可得,,,,.所以随机变量X的分布列为X 0 1 2 3 4P随机变量X的均值.…(10分)(Ⅲ).…(13分)17.【解答】(Ⅰ)证明:由已知∠A1AB=∠A1AC=90°,且平面AA1C1C⊥平面AA1B1B,所以∠BAC=90°,即AC⊥AB.又因为AC⊥AA1且AB∩AA1=A,所以AC⊥平面AA1B1B.因为AP⊂平面AA1B1B,所以A1C1⊥AP.…(4分)(Ⅱ)由(Ⅰ)可知AC,AB,AA1两两垂直.分别以AC,AB,AA1为x轴、y轴、z轴建立空间直角坐标系如图所示.由已知 AB=AC=AA1=2A1B1=2A1C1=2,所以A(0,0,0),B(0,2,0),C(2,0,0),B1(0,1,2),A1(0,0,2).因为M为线段BC的中点,P为线段BB1的中点,所以.易知平面ABM的一个法向量=(0,0,1).设平面APM的一个法向量为=(x,y,z),由,得取y=2,得=(﹣2,2,﹣3).由图可知,二面角P﹣AM﹣B的大小为锐角,所以===.所以二面角P﹣AM﹣B的余弦值为.…(9分)(Ⅲ)存在点P,使得直线A1C∥平面AMP.设P(x1,y1,z1),且,λ∈[0,1],则(x1,y1﹣2,z1)=λ(0,﹣1,2),所以x1=0,y1=2﹣λ,z1=2λ.所以.设平面AMP的一个法向量为=(x0,y0,z0),由,得取y0=1,得(显然λ=0不符合题意).又,若A1C∥平面AMP,则.所以.所以.所以在线段BB1上存在点P,且时,使得直线A1C∥平面AMP.…(14分)18.【解答】(Ⅰ)函数f(x)的定义域为{x|x>0}..(1)当a≥0时,f′(x)>0恒成立,函数f(x)在(0,+∞)上单调递增;(2)当a<0时,令f′(x)=0,得x=﹣a.当0<x<﹣a时,f′(x)<0,函数f(x)为减函数;当x>﹣a时,f′(x)>0,函数f(x)为增函数.综上所述,当a≥0时,函数f(x)的单调递增区间为(0,+∞).当a<0时,函数f(x)的单调递减区间为(0,﹣a),单调递增区间为(﹣a,+∞).…(4分)(Ⅱ)由(Ⅰ)可知,(1)当﹣a≤1时,即a≥﹣1时,函数f(x)在区间[1,2]上为增函数,所以在区间[1,2]上,f(x)min=f(1)=1,显然函数f(x)在区间[1,2]上恒大于零;(2)当1<﹣a<2时,即﹣2<a<﹣1时,函数f(x)在[1,﹣a)上为减函数,在(﹣a,2] 上为增函数,所以f(x)min=f(﹣a)=﹣a+aln(﹣a).依题意有f(x)min=﹣a+aln(﹣a)>0,解得a>﹣e,所以﹣2<a<﹣1.(3)当﹣a≥2时,即a≤﹣2时,f(x)在区间[1,2]上为减函数,所以f(x)min=f(2)=2+aln2.依题意有f(x)min=2+aln2>0,解得,所以.综上所述,当时,函数f(x)在区间[1,2]上恒大于零.…(8分)(Ⅲ)设切点为(x0,x0+alnx0),则切线斜率,切线方程为.因为切线过点P(1,3),则.即.…①令(x>0),则.(1)当a<0时,在区间(0,1)上,g′(x)>0,g(x)单调递增;在区间(1,+∞)上,g′(x)<0,g(x)单调递减,所以函数g(x)的最大值为g(1)=﹣2<0.故方程g(x)=0无解,即不存在x0满足①式.因此当a<0时,切线的条数为0.(2)当a>0时,在区间(0,1)上,g′(x)<0,g(x)单调递减,在区间(1,+∞)上,g′(x)>0,g(x)单调递增,所以函数g(x)的最小值为g(1)=﹣2<0.取,则.故g(x)在(1,+∞)上存在唯一零点.取,则=.设,u(t)=e t﹣2t,则u′(t)=e t﹣2.当t>1时,u′(t)=e t﹣2>e﹣2>0恒成立.所以u(t)在(1,+∞)单调递增,u(t)>u(1)=e﹣2>0恒成立.所以g(x2)>0.故g(x)在(0,1)上存在唯一零点.因此当a>0时,过点P(1,3)存在两条切线.(3)当a=0时,f(x)=x,显然不存在过点P(1,3)的切线.综上所述,当a>0时,过点P(1,3)存在两条切线;当a≤0时,不存在过点P(1,3)的切线.…(13分)19.【解答】(Ⅰ)由题意可知,a2=4,b2=2,所以c2=2.因为是椭圆C上的点,由椭圆定义得|PF1|+|PF2|=4.所以△PF1F2的周长为.易得椭圆的离心率.…(4分)(Ⅱ)证明:由得.因为直线l与椭圆C有两个交点,并注意到直线l不过点P,所以解得﹣4<m<0或0<m<4.设A(x1,y1),B(x2,y2),则,,,.显然直线PA与PB的斜率存在,设直线PA与PB的斜率分别为k1,k2,则======.因为k1+k2=0,所以∠PMN=∠PNM.所以|PM|=|PN|.…(14分)20.【解答】(Ⅰ)观察数列{a n}的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,….因为数列{a n}是递增的整数数列,且等比数列以2为首项,显然最小公比不能是,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知b1=2,公比q=4,所以.又,所以,即.再证k n为正整数.显然k1=1为正整数,n≥2时,,即,故为正整数.所以,所求通项公式为;(Ⅱ)证明:设数列{c n}是数列{a n}中包含的一个无穷等比数列,且,,所以公比.因为等比数列{c n}各项为整数,所以q为整数.取k2=5m+2(m∈N*),则q=3m+1,故.只要证是数列{a n}的项,即证3k n﹣1=5•(3m+1)n﹣1.只要证(n∈N*)为正整数,显然k1=2为正整数.又n≥2时,,即,又因为k1=2,5m(3m+1)n﹣2都是正整数,故n≥2时,k n也都是正整数.所以数列{c n}是数列{a n}中包含的无穷等比数列,其公比q=3m+1有无数个不同的取值,对应着不同的等比数列,故数列{a n}所包含的以a2=5为首项的不同无穷等比数列有无数多个.。
北京市朝阳区2016届高三二模数学理科试题
开始输出S 的值2,1k S ==5?k <1k k =+S S k =+结束 是否 北京市朝阳区2015-2016学年度高三年级第二学期统一考试数学试卷(理工类) 2016.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{}124xA x =<<,{}10B x x =-≥,则A B I =A .{}12x x ≤<B .{}01x x <≤C .{}01x x <<D .{}12x x << 2.复数i1iz =-(i 为虚数单位)在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.执行如图所示的程序框图,输出的S 值为 A .6 B .10 C .14 D .15 4.已知非零向量a ,b ,“a ∥b ”是 “a ∥()+a b ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.同时具有性质:“①最小正周期是π; ②图象关于直线3x π=对称; ③在区间5,6π⎡⎤π⎢⎥⎣⎦上是单调递增函数”的一个函数可以是 A .cos()26x y π=+ B .sin(2)6y x 5π=+C .cos(2)3y x π=-D .sin(2)6y x π=-6.已知函数1,2,()2log ,2a x x f x x x -≤⎧=⎨+>⎩(0a >且1)a ≠的最大值为1,则a 的取值范围是A .112[,) B .01(,) C .102(,] D .1(,)+∞7.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检 查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是A .48B .72C .84D .1688.已知正方体1111A B C D A B C D -的棱长为2,E 是棱11D C 的中点,点F 在正方体内部或正方体的表面上,且EF ∥平面11A BC ,则动点F 的轨迹所形成的区域面积是 A .92B .23C .33D .42第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.双曲线22:13x C y -=的渐近线方程是 ;若抛物线22(0)y px p =>的焦点与 双曲线C 的一个焦点重合,则p = .10.如图,P 为⊙O 外一点,PA 是⊙O 的切线,A 为切点,割线PBC与⊙O 相交于,B C 两点,且3PC PA =,D 为线段BC 的中点, AD 的延长线交⊙O 于点E .若1PB =,则PA 的长为______;AD DE ⋅的值是 .11.已知等边ABC ∆的边长为3,D 是BC 边上一点,若1BD =,则AC AD ⋅uuu r uuu r的值是______.12.已知关于,x y 的不等式组0,,2,2x y x x y x y k≥⎧⎪≥⎪⎨+≤⎪⎪-≥⎩所表示的平面区域D 为三角形区域,则实数k 的取值范围是 .13.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元.每年销售蔬菜的收入为26万元.设()f n 表示前n 年的纯利润(()f n =前n 年的总收入-前n 年的总费用支出-投资额),则()f n =E CODBAP(用n 表示);从第 年开始盈利.14.在平面直角坐标系O x y 中,以点A (2,0),曲线21y x =-上的动点B ,第一象限内的点C ,构成等腰直角三角形ABC ,且90A ∠=︒,则线段OC 长的最大值是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,已知1cos 23A =-,3,sin 6sin c A C ==.(Ⅰ)求a 的值;(Ⅱ) 若角A 为锐角,求b 的值及ABC ∆的面积.16.(本小题满分13分)交通指数是交通拥堵指数的简称,是综合反映某区域道路网在某特定时段内畅通或拥堵实际情况的概念性指数值.交通指数范围为(010),,五个级别规定如下: 交通指数 (0,2)[2,4)[4,6)[6,8)[8,10)级别畅通基本畅通轻度拥堵中度拥堵严重拥堵某人在工作日上班出行每次经过的路段都在同一个区域内,他随机记录了上班的40个工作日早高峰时段(早晨7点至9点)的交通指数(平均值),其统计结果如直方图所示.(Ⅰ)据此估计此人260个工作日中早高峰 时段(早晨7点至9点)中度拥堵的 天数;(Ⅱ)若此人早晨上班路上所用时间近似为: 畅通时30分钟,基本畅通时35分钟, 轻度拥堵时40分钟,中度拥堵时50 分钟,严重拥堵时70分钟,以直方图 中各种路况的频率作为每天遇到此种路况的概率,求此人上班路上所用时间X 的数学期望.频率组距交通指数值0.25 0.10 0.05 0.152 4 6 8 10 0.20 13 5 7 917.(本小题满分14分)如图1,在等腰梯形ABCD 中,//BC AD ,122BC AD ==,60A ∠=︒, E 为AD 中点,点,O F 分别为,BE DE 的中点.将ABE ∆沿BE 折起到1A BE ∆的位置,使得平面1A BE ⊥平面BCDE (如图2).(Ⅰ)求证:1A O CE ⊥;(Ⅱ)求直线1A B 与平面1A CE 所成角的正弦值;(Ⅲ)侧棱1A C 上是否存在点P ,使得//BP 平面1A OF ? 若存在,求出11A PA C的值;若不 存在,请说明理由.18. (本小题满分13分)已知函数21()(1)1)ln 2f x x a x a x =-+++-(,a ∈R . (Ⅰ)当3a =时,求曲线:()C y f x =在点(1,(1))f 处的切线方程;(Ⅱ)当[]1,2x ∈时,若曲线:()C y f x =上的点(,)x y 都在不等式组12,,32x x y y x ⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的 平面区域内,试求a 的取值范围.ECDBA图1BFOCDA 1E 图219.(本小题满分14分)在平面直角坐标系O x y 中,点000(,)(0)P x y y ≠在椭圆:C 2212x y +=上,过点P 的直线l 的方程为0012x xy y +=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)若直线l 与x 轴、y 轴分别相交于,A B 两点,试求OAB ∆面积的最小值;(Ⅲ)设椭圆C 的左、右焦点分别为1F ,2F ,点Q 与点1F 关于直线l 对称,求证:点2,,Q P F三点共线.20.(本小题满分13分)已知集合311,(22n S k k k n *⎧⎫-⎪⎪=≤≤∈≥⎨⎬⎪⎪⎩⎭N ,且)n *∈N .若存在非空集合12,,,n S S S L ,使得12n S S S S =U UL U ,且(1,,)i j S S i j n i j =∅≤≤≠I ,并,(1,2,,),i x y S i n x y ∀∈=>L ,都有i x y S -∉,则称集合S 具有性质P ,i S (1,2,,i n =L )称为集合S 的P 子集. (Ⅰ)当2n =时,试说明集合S 具有性质P ,并写出相应的P 子集S 1,S 2;(Ⅱ)若集合S 具有性质P ,集合T 是集合S 的一个P 子集,设{3|}nT s s T '=+∈,求证:,x y T T '∀∈U ,x y >,都有x y T T '-∉U ; (Ⅲ)求证:对任意正整数2n ≥,集合S 具有性质P .北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.5一、选择题:(满分40分)题号 1 2 3 4 5 6 7 8 答案ABBCDADC二、填空题:(满分30分) 题号 91011121314答案33y x =±,4 3,16 6(,2][0,1)-∞-U21960n n -+-,5221+(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)解:(Ⅰ) 因为21cos 212sin 3A A =-=-,且 0A <<π,所以6sin 3A =. 因为3,sin 6sin c A C ==,由正弦定理sin sin a cA C=,得66332a c =⋅=⨯=.…………………6分 (Ⅱ) 由6sin ,032A A π=<<得3cos 3A =. 由余弦定理2222cos a b c bc A =+-,得22150b b --=. 解得5b =或3b =-(舍负). 所以152sin 22ABC S bc A ∆==. …………………13分 解: (Ⅰ)由已知可得:上班的40个工作日中早高峰时段中度拥堵的频率为0.25, 据此估计此人260个工作日早高峰时段(早晨7点至9点)中度拥堵的天数为 260×0.25=65天. ……………………………………………………5分 (Ⅱ)由题意可知X 的可能取值为30,35,40,50,70.且(30)0.05P X ==;(35)0.10P X ==;(40)0.45P X ==; (50)0.25P X ==;(70)0.15P X ==;所以300.05+350.1+400.45+500.25+700.15=46EX =⨯⨯⨯⨯⨯.…………………………………13分17.(本小题满分14分)解:(Ⅰ)如图1,在等腰梯形ABCD 中,由//BC AD ,122BC AD ==,60A ∠=︒,E 为AD 中点,所以ABE ∆为等边三角形.如图2, 因为O 为BE 的中点,所以1A O BE ⊥. 又因为平面1A BE ⊥平面BCDE , 且平面1A BE I 平面BCDE BE =,所以1A O ⊥平面BCDE ,所以1A O CE ⊥.………4分(Ⅱ)连结OC ,由已知得CB CE =,又O 为BE 的中点,图2所以OC BE ⊥.由(Ⅰ)知1A O ⊥平面BCDE , 所以11,A O BE A O OC ⊥⊥, 所以1,,OA OB OC 两两垂直.以O 为原点,1,,OB OC OA 分别为,,x y z 轴建立空间直角坐标系(如图).因为2BC =,易知13OA OC ==.所以1(003),(100),(030),(100)A B C E -,,,,,,,,, 所以111(103),(033),(103)A B AC A E =-=-=--u u u r u u u r u u u r,,,,,,. 设平面1A CE 的一个法向量为(,,)x y z =n ,ECDBA图1A 1xy z FOB CDEP CBFODA 1E由 110,0 AC A E ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n 得330, 30.y z x z ⎧-=⎪⎨--=⎪⎩ 即0, 30. y z x z -=⎧⎪⎨+=⎪⎩取1z =,得(3,1,1)=-n .设直线1A B 与平面1A CE 所成角为θ,则133315sin cos ,5255A B θ--=〈〉===⨯u u u r n . 所以直线1A B 与平面1A CE 所成角的正弦值为155. …………………9分 (Ⅲ)假设在侧棱1A C 上存在点P ,使得//BP 平面1A OF .设11A P AC λ=u u u r u u u r ,[0,1]λ∈.因为1111BP BA A P BA AC λ=+=+u u u r u u u r u u u r u u u r u u u r, 所以(103)(033)(1,3,33)BP λλλ=-+-=--u u u r,,,,. 易证四边形BCDE 为菱形,且CE BD ⊥,又由(Ⅰ)可知,1A O CE ⊥,所以CE ⊥平面1A OF .所以(1,3,0)CE =--u u u r为平面1A OF 的一个法向量.由(1,3,33)(1,3,0)130BP CE λλλ⋅=--⋅--=-=u u u r u u u r ,得1[0,1]3λ=∈.所以侧棱1A C 上存在点P ,使得//BP 平面1A OF ,且1113A P A C =. …………14分 18.(本小题满分13分) 解:(Ⅰ)当3a =时, 21()42ln 2f x x x x =-+-,0x >. 2()4f x x x'=-+-.则(1)1421f '=-+-=,而17(1)422f =-+=. 所以曲线C 在点(1,(1)f )处的切线方程为712y x -=-,即2250x y -+=.…………………………………………………………………………4分(Ⅱ)依题意当[]1,2x ∈时,曲线C 上的点(),x y 都在不等式组12,,32x x y y x ⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的平面区域内,等价于当12x ≤≤时,3()2x f x x ≤≤+恒成立. 设()()g x f x x =-211)ln 2x ax a x (=-++-,[]1,2x ∈. 所以21(1)()=+=a x ax a g x x a+x x ---++-'(1)(1))=x x a x---(-. (1)当11a -≤,即2a ≤时,当[]1,2x ∈时,()0g x '≤,()g x 为单调减函数,所以(2)()(1)g g x g ≤≤. 依题意应有131,222221ln20,()()()g a g a a ⎧=-≤⎪⎨⎪=-++-≥⎩ 解得21a a ,.≤⎧⎨≥⎩所以12a ≤≤.(2)若 112a <-<,即23a <<时,当[)1,1x a ∈-,()0g x '≥,()g x 为单调增函 数,当x ∈(]1,2a -,()0g x '<,()g x 为单调减函数.由于3(1)2g >,所以不合题意. (3)当12a -≥,即3a ≥时,注意到15(1)22g a =-≥,显然不合题意. 综上所述,12a ≤≤. …………………………………………13分19.(本小题满分14分) 解:(Ⅰ)依题意可知2a =,211c =-=,所以椭圆C 离心率为1222e ==. …………… 3分 (Ⅱ)因为直线l 与x 轴,y 轴分别相交于,A B 两点,所以000,0x y ≠≠. 令0y =,由0012x x y y +=得02x x =,则02(,0)A x .令0x =,由0012x x y y +=得01y y =,则01(0,)B y . 所以OAB ∆的面积0000112122OAB S OA OB x y x y ∆===. 因为点00(,)P x y 在椭圆:C 2212x y +=上,所以220012x y +=. 所以2002001222x y x y =+≥.即0022x y ≤,则0012x y ≥. 所以001122OAB S OA OB x y ∆==≥. 当且仅当22002x y =,即0021,2x y =±=±时,OAB ∆面积的最小值为2. … 9分(Ⅲ)①当00x =时,(0,1)P ±.当直线:1l y =时,易得(1,2)Q -,此时21F P k =-,21F Q k =-.因为22F Q F P k k =,所以三点2,,Q P F 共线. 同理,当直线:1l y =-时,三点2,,Q P F 共线.②当00x ≠时,设点(,)Q m n ,因为点Q 与点1F 关于直线l 对称,所以000011,22202() 1.1212x m n y n x m y -⎧⋅+⋅=⎪⎪⎪⎨-⎪⋅-=--⎪+⎪⎩整理得000000240,220.x m y n x y m x n y +--=⎧⎨-+=⎩解得220002200000220044,448.4x x y m y x x y y n y x ⎧+-=⎪+⎪⎨+⎪=⎪+⎩所以点22000000222200004448(,)44x x y x y y Q y x y x +-+++.又因为200(1,)F P x y =-u u u u r ,220000002222200004448(1,)44x x y x y y F Q y x y x +-+=-++u u u u r , 且 22200000000000002222220000004448(48)(48)(1)(1)(1)444x x y x y y x y x x y x y y x y x y x +-+--+--⋅-⋅-=⋅+++2200000220048(448)4x y x x y y x --+-=⋅+ 222200000002222220000008484(2)84280444y x y x y y y y x y x y x --+-++-⨯+=⋅=⋅=⋅=+++. 所以2//F P u u u u r 2F Q u u u u r .所以点2,,Q P F 三点共线.综上所述,点2,,Q P F 三点共线. …………………………………14分 20.(本小题满分13分)证明:(Ⅰ)当2n =时,{1,2,3,4}S =,令1{1,4}S =,2{2,3}S =,则12S S S =U , 且对,(1,2),i x y S i x y ∀∈=>,都有i x y S -∉,所以S 具有性质P .相应的P 子集为1{1,4}S =,2{2,3}S =. ………… 3分 (Ⅱ)①若31,(1)2n x y T y x -∈≤<≤,由已知x y T -∉, 又31132n n x y --≤-<,所以x y T '-∉.所以'x y T T -∉U . ②若,x y T '∈,可设3,3n nx s y r =+=+,,r s T ∈,且3112n r s -≤<≤, 此时31(3)(3)132n n nn x y s r s r --=+-+=-≤-<. 所以'x y T -∉,且x y s r T -=-∉.所以x y T T '-∉U .③若y T ∈, 3nx s T '=+∈,s T ∈, 则313331(3)()3(1)3222n n n n nn x y s y s y -+--=+-=-+≥-+=>, 所以x y T -∉.又因为,y T s T ∈∈,所以s y T -∉.所以(3)()3n n x y s y s y T '-=+-=-+∉.所以'x y T T -∉U .综上,对于,'x y T T ∀∈U ,x y >,都有'x y T T -∉U . …………… 8分 (Ⅲ)用数学归纳法证明.(1)由(Ⅰ)可知当2n =时,命题成立,即集合S 具有性质P .(2)假设n k =(2k ≥)时,命题成立.即1231{1,2,3,,}2k k S S S S -==L U UL U , 且(1,,)i j S S i j n i j =∅≤≤≠I ,,(1,2,,),i x y S i k x y ∀∈=>L ,都有i x y S -∉. 那么 当1n k =+时,记{3|}k i i S s s S '=+∈,,并构造如下 k +1个集合:111S S S '''=U ,222S S S '''=U ,,kk k S S S '''=U , 1313131{1,2,,21}222k k k k S +---''=++⨯+L , 显然()i j S S i j ''''=∅≠I . 又因为131313122k k +--=⨯+,所以112131{1,2,3,,}2k k k S S S S ++-''''''''=U UL U U L . 下面证明 ¢¢S i 中任意两个元素之差不等于¢¢S i 中的任一元素(1,2,,1)i k =+L . ①若两个元素13131,22k k k r s S +--''++∈,31112k r s -≤<≤+, 则313131()()222k k k s r s r ---+-+=-≤, 所以13131()()22k k k s r S +--''+-+∉. ②若两个元素都属于i i i S S S '''=U (1)i k ≤≤,由(Ⅱ)可知,i S ''中任意两个元素之差不等于i S ''中的任一数(1,2,,1)i k =+L . 从而,1n k =+时命题成立.综上所述,对任意正整数2n ≥,集合S 具有性质P .………………………13分。
朝阳区2016届高三一模数学(理)试题及标准答案(word版)
北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2016.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i +2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是 A .M N N = B .()UMN =∅C .MN U = D .()U M N ⊆3.>e e ab>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8 D .35.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c若222()tan a c b B +-=,则角B 的值为A . 3πB . 6πC . 233ππ或 D . 566ππ或(第4题图)6.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误..的是 A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D. 前6个月的平均收入为40万元 (注:结余=收入-支出)7.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13 B .12C .1D .328.若圆222(1)x y r+-=与曲线(1)1x y -=的没有公共点,则半径r 的取值范围是 A.0r << B.0r <<C.0r << D .0r <<第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.月23415689 10 7111258(第7题图)侧视图俯视图9. 二项式251()x x+的展开式中含4x 的项的系数是 (用数字作答).10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;2610410n a a a a +++++=______.11.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲 线1C 与2C 的交点的极坐标...为 . 12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D 有公共点,则实数a 的取值范围是 . 13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+.若点M 在ABC ∆的内部(不含边界),则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i (1,2,,12i =)项能力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项能力特征分别记为1212(,,,)A a a a =,1212(,,,)B b b b =,则,A B两名学生的不同能力特征项数为 (用,i i a b 表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知函数21()sin 22x f x x ωω=+,0ω>. (Ⅰ)若1ω=,求()f x 的单调递增区间;(Ⅱ)若()13f π=,求()f x 的最小正周期T 的表达式并指出T 的最大值.16.(本小题满分13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望;(Ⅲ)试判断男学生阅读名著本数的方差21s 与女学生阅读名著本数的方差22s 的大小(只需 写出结论).17.(本小题满分14分)如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(Ⅰ)求证:11A C AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值;(Ⅲ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由.18.(本小题满分13分)已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;AMPCBA 1C 1B 1(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.19.(本小题满分14分)已知点P 和椭圆:C 22142x y +=. (Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率;(Ⅱ)若直线:l 20(0)y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x轴分别交于M ,N 两点,求证:PM PN =.20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且n n k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分)二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)当1ω=时,21()sin 22x f x x =1sin 2x x =+ sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z . 所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分 (Ⅱ)由21()sin 22x f x x ωω=+ 1sin 2x x ωω=+ sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z . 解得162n ω=+.又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 . 由题意可知,13+41()128P A ⨯⨯=⨯4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====;2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====; 44481(4)70C P X C ===. 所以随机变量X 的分布列为随机变量X 的均值0123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分(Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AA C C ⊥平面11AA B B ,所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1ABAA A =,所以AC ⊥平面11AA B B .由已知11//A C AC ,所以11A C ⊥平面11AA B B . 因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA A B AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角,所以cos ,⋅〈〉===⋅m n m n m n.所以二面角P AM B --.………………………………9分 (Ⅲ)存在点P ,使得直线1A C //平面AMP .设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-. 设平面AMP 的一个法向量为0000(,,)x y z =n ,由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意).又1(2,0,2)AC =-,若1A C //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--=n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1A C //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x af x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,. ……………………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数,所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x -'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e 1)2e 0aag x a a a----=++--=>.故()g x 在(1,)+∞上存在唯一零点.取2-1-21e<e ax =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]aa a+=-+.设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,显然不存在过点P (13),的切线.综上所述,当0a >时,过点P (13),存在两条切线;当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =.因为P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为4+.易得椭圆的离心率=2c e a =.………………………………………………………4分 (Ⅱ)由2220,1,42y m x y -+=⎨+=⎪⎩得22480x m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<. 设11(,)A x y ,22(,)B x y,则122x x +=-,21284m x x -=, 112m y +=,222m y +=. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则12k k +=211)(1)(x x -+-====2=220==. 因为120k k +=,所以PMN PNM ∠=∠. 所以PM PN =. ………………………………………………………14分 20.(本小题满分13分)解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,…. 因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N , 即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数.显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅, 即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数. 所以,所求通项公式为11(241),3n n k n -*=⋅+∈N . ……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列,且115k c a ==,22231k c a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+. 只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数. 又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+, 即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数, 故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列,故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个.…………………………………………………………………………………………13分。
a北京市朝阳区2016届高三第一次综合练习(一模)数学理试题(解析版)
北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2016.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i + 答案:D解析:分母实数化,即分子与分母同乘以分母的其轭复数:222(1)111i i i i i i-==++-。
2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是 A .M N N = B .()UMN =∅ðC .M N U =D .()U M N ⊆ð答案:D解析:∵函数 y =ln(x -1)的定义域M ={}|1x x >,N ={}|01x x <<,又U =R ∴{}|1U C N x x =≥≤或x 0,∴M N =∅,故 A ,C 错误,D 显然正确。
3. “a b >”是“e e a b>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案:A 解析:由a b >,知0a b >≥,又xy e =是增函数,所以,a b e e >,由a b e e >知a b >,但,a b 取负值时,,a b 无意义, 故选A 。
4. 执行如图所示的程序框图,输出的S 值为 A .42B .19C .8D .3答案:B解析:依次执行结果如下:S =2×1+1=3,i =1+1=2,i <4; S =2×3+2=8,i =2+1=3,i <4; S =2×8+1=19,i =3+1=42,i ≥4; 所以,S =19,选B 。
北京市朝阳区2016届高三上学期期末数学试卷(理科)Word版含解析
2015-2016学年北京市朝阳区高三(上)期末数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合M={x|﹣1<x<1},,则M∩N=()A.{x|0≤x<1} B.{x|0<x<1} C.{x|x≥0} D.{x|﹣1<x≤0}2.复数z=i(1+i)(i是虚数单位)在复平面内所对应点的坐标为()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)3.执行如图所示的程序框图,则输出的i值为()A.3 B.4 C.5 D.64.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有()A.30辆B.300辆C.170辆D.1700辆5.“a>1”是“函数f(x)=a•x+cosx在R上单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.已知点Q(2,0)及抛物线x2=4y上一动点P(x,y),则y+|PQ|的最小值是()A.B.1 C.2 D.37.某四棱锥的三视图如图所示,则该四棱锥的侧面积是()A.27 B.30 C.32 D.368.设函数f(x)的定义域D,如果存在正实数m,使得对任意x∈D,都有f(x+m)>f(x),则称f(x)为D上的“m型增函数”.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x﹣a|﹣a(a∈R).若f(x)为R上的“20型增函数”,则实数a的取值范围是()A.a>0 B.a<5 C.a<10 D.a<20二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.函数y=2sin(2x+)+1的最小正周期是,最小值是.10.若x,y满足约束条件则z=x+y的最大值为.11.在各项均为正数的等比数列{a n}中,若a2=2,则a1+2a3的最小值是.12.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,甲同学不与老师相邻,则不同站法种数为.13.已知A,B为圆C:(x﹣m)2+(y﹣n)2=9(m,n∈R)上两个不同的点(C为圆心),且满足,则|AB|= .14.已知点O在△ABC的内部,且有=,记△AOB,△BOC,△AOC的面积分别为S△AOB,S△BOC,S△AOC.若x=y=z=1,则S△AOB:S△BOC:S△AOC= ;若x=2,y=3,z=4,则S△AOB:S△BOC:S△AOC= .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.某中学高一年级共8个班,现从高一年级选10名同学组成社区服务小组,其中高一(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学来自不同班级的概率;(Ⅱ)设X为选出同学中高一(1)班同学的人数,求随机变量X的分布列和数学期望.16.如图,在△ABC中,点D在BC边上,,.(Ⅰ)求sin∠C的值;(Ⅱ)若BD=5,求△ABD的面积.17.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.点E是棱PC的中点,平面ABE与棱PD交于点F.(Ⅰ)求证:AB∥EF;(Ⅱ)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF与平面AFE所成的锐二面角的余弦值.18.已知函数f(x)=ax+lnx,其中a∈R.(Ⅰ)若f(x)在区间上为增函数,求a的取值范围;(Ⅱ)当a=﹣e时,(ⅰ)证明:f(x)+2≤0;(ⅱ)试判断方程是否有实数解,并说明理由.19.已知圆O:x2+y2=1的切线l与椭圆C:x2+3y2=4相交于A,B两点.(Ⅰ)求椭圆C的离心率;(Ⅱ)求证:OA⊥OB;(Ⅲ)求△OAB面积的最大值.20.已知有穷数列:的各项均为正数,且满足条件:①a1=a k;②.(Ⅰ)若k=3,a1=2,求出这个数列;(Ⅱ)若k=4,求a1的所有取值的集合;(Ⅲ)若k是偶数,求a1的最大值(用k表示).2015-2016学年北京市朝阳区高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合M={x|﹣1<x<1},,则M∩N=()A.{x|0≤x<1} B.{x|0<x<1} C.{x|x≥0} D.{x|﹣1<x≤0}【考点】交集及其运算.【分析】求出N中不等式的解集确定出N,找出M与N的交集即可.【解答】解:由N中不等式变形得:x(x﹣1)≤0,且x≠1,解得:0≤x<1,即N={x|0≤x<1},∵M={x|﹣1<x<1},∴M∩N={x|0≤x<1},故选:A.2.复数z=i(1+i)(i是虚数单位)在复平面内所对应点的坐标为()A.(1,1)B.(﹣1,﹣1)C.(1,﹣1)D.(﹣1,1)【考点】复数代数形式的乘除运算.【分析】先将z=i(1+i)化简,从而判断即可.【解答】解:z=i(1+i)=﹣1+i,∴复数z=i(1+i)(i是虚数单位)在复平面内所对应点的坐标为:(﹣1,1),故选:D.3.执行如图所示的程序框图,则输出的i值为()A.3 B.4 C.5 D.6【考点】程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的m,i的值,当m=0时满足条件m=0,退出循环,输出i的值为4.【解答】解:模拟执行程序框图,可得m=1,i=1,m=1×(2﹣1)+1=2,i=2,不满足条件m=0,m=2×(2﹣2)+1=1,i=3,不满足条件m=0,m=1×(2﹣3)+1=0,i=4,满足条件m=0,退出循环,输出i的值为4.故选:B.4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有()A.30辆B.300辆C.170辆D.1700辆【考点】频率分布直方图.【分析】由频率分布直方图求出在这段时间内以正常速度通过该处的汽车的频率,由此能估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有多少辆.【解答】解:由频率分布直方图得:在这段时间内以正常速度通过该处的汽车的频率为(0.03+0.035+0.02)×10=0.85,∴估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有:2000×0.85=1700(辆).故选:D.5.“a>1”是“函数f(x)=a•x+cosx在R上单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:若函数f(x)=a•x+cosx在R上单调递增,则f′(x)≥0恒成立,即f′(x)=a﹣sinx≥0,即a≥sinx,∵﹣1≤sinx≤1,∴a≥1,则“a>1”是“函数f(x)=a•x+cosx在R上单调递增”充分不必要条件,故选:A.6.已知点Q(2,0)及抛物线x2=4y上一动点P(x,y),则y+|PQ|的最小值是()A.B.1 C.2 D.3【考点】抛物线的简单性质.【分析】抛物线的准线是y=﹣1,焦点F(0,1).设P到准线的距离为d,利用抛物线的定义得出:y+|PQ|=d﹣1+|PQ|=|PF|+|PQ|﹣1≥|FQ|﹣1,利用当且仅当F、Q、P共线时取最小值,从而得出故y+|PQ|的最小值.【解答】解:抛物线x2=4y的准线是y=﹣1,焦点F(0,1).设P到准线的距离为d,则y+|PQ|=d﹣1+|PQ|=|PF|+|PQ|﹣1≥|FQ|﹣1=3﹣1=2(当且仅当F、Q、P共线时取等号)故y+|PQ|的最小值是2.故选C.7.某四棱锥的三视图如图所示,则该四棱锥的侧面积是()A.27 B.30 C.32 D.36【考点】由三视图求面积、体积.【分析】几何体为侧放的四棱锥,作出直观图,代入数据计算四个侧面的面积.【解答】解:由三视图可知几何体为四棱锥,作出直观图如图所示,其中底面ABCD是边长为3的正方形,DA⊥平面PAB,AP⊥平面ABCD,AP=4,∴CD⊥平面PAD,PB=PD=5,∴S△ADP==6,S△ABP==6,S△CDP==,S△CBP==.∴四棱锥的侧面积S=6+6++=27.故选A.8.设函数f(x)的定义域D,如果存在正实数m,使得对任意x∈D,都有f(x+m)>f(x),则称f(x)为D上的“m型增函数”.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x﹣a|﹣a(a∈R).若f(x)为R上的“20型增函数”,则实数a的取值范围是()A.a>0 B.a<5 C.a<10 D.a<20【考点】函数的值.【分析】由已知得f(x)=,f(x+20)>f(x),由此能求出实数a的取值范围.【解答】解:∵函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x﹣a|﹣a(a∈R),∴f(x)=,∵f(x)为R上的“20型增函数”,∴f(x+20)>f(x),当x=0时,|20﹣a|﹣a>0,解得a<10.∴实数a的取值范围是a<10.故选:C.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.函数y=2sin(2x+)+1的最小正周期是π,最小值是﹣1 .【考点】正弦函数的图象.【分析】由条件利用正弦函数的周期性和最小值,得出结论.【解答】解:函数y=2sin(2x+)+1的最小正周期是=π,最小值为﹣2+1=﹣1,故答案为:π,﹣1.10.若x,y满足约束条件则z=x+y的最大值为 4 .【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(3,1),化目标函数z=x+y为y=﹣x+z.由图可知,当直线y=﹣x+z过A时,直线在y轴上的截距最大,z有最大值为4.故答案为:4.11.在各项均为正数的等比数列{a n}中,若a2=2,则a1+2a3的最小值是4.【考点】等比数列的通项公式;数列的函数特性.【分析】由基本不等式可得,a1+2a3≥2=,结合已知即可求解【解答】解:∵a2=2,且a n>0由基本不等式可得,a1+2a3≥2==4即最小值为故答案为:12.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,甲同学不与老师相邻,则不同站法种数为12 .【考点】计数原理的应用.【分析】由题意,甲必须站两端,有2种方法,其余3名同学,有=6种方法,根据乘法原理,可得结论.【解答】解:由题意,甲必须站两端,有2种方法,其余3名同学,有=6种方法,根据乘法原理,共有2×6=12种方法.故答案为:12.13.已知A,B为圆C:(x﹣m)2+(y﹣n)2=9(m,n∈R)上两个不同的点(C为圆心),且满足,则|AB|= 4 .【考点】平面向量数量积的运算.【分析】求得圆的圆心和半径,运用向量的减法运算和数量积的性质:向量模的平方即为向量的平方,求得|+|2+||2=36,即可得到所求值.【解答】解:由圆C:(x﹣m)2+(y﹣n)2=9可得,圆心C(m,n),半径为3,由题意可得||=||=3,由|+|2+||2=|+|2+|﹣|2=2+2+2•+2+2﹣2•=2(2+2)=2(32+32)=36,由,可得||2=16,即有||=4.故答案为:4.14.已知点O 在△ABC 的内部,且有=,记△AOB ,△BOC ,△AOC 的面积分别为S △AOB ,S △BOC ,S △AOC .若x=y=z=1,则S △AOB :S △BOC :S △AOC = 1:1:1 ;若x=2,y=3,z=4,则S △AOB :S △BOC :S △AOC = 4:2:3 . 【考点】向量的线性运算性质及几何意义.【分析】(1)由=,得O 是△ABC 的重心,故S △AOB =S △BOC =S △AOC ,得出答案;(2)延长OA ,OB ,OC ,使OD=2OA ,OE=3OB ,OF=4OC ,结合已知可得O 是△DEF 的重心,故△DOE ,△EOF ,△DOF 的面积相等,进而得到答案.【解答】解:若=,则O 是△ABC 的重心,∴S △AOB =S △BOC =S △AOC =S △ABC ,∴S △AOB :S △BOC :S △AOC =1:1:1.若2+3+4=,延长OA ,OB ,OC ,使OD=2OA ,OE=3OB ,OF=4OC ,如图所示:则,∴O 是△DEF 的重心,∴S △DOE =S △EOF =S △DOF .∴S △AOB ==×OD ×sin ∠AOB=S △DOE ,S △BOC ==OFsin ∠BOC=S △EOF ,S △AOC ==OFsin ∠BOC=S △DOF ,∴S △AOB :S △BOC :S △AOC =::=4:2:3.故答案为1:1:1,4:2:3.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.某中学高一年级共8个班,现从高一年级选10名同学组成社区服务小组,其中高一(1)班选取3名同学,其它各班各选取1名同学.现从这10名同学中随机选取3名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(Ⅰ)求选出的3名同学来自不同班级的概率;(Ⅱ)设X为选出同学中高一(1)班同学的人数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)设“选出的3名同学来自不同班级”为事件A,利用排列组合知识能求出选出的3名同学来自班级的概率.(Ⅱ)随机变量X的所有可能值为0,1,2,3,分别求出相应的概率,由此能求出随机变量X的分布列和随机变量X的数学期望E(X).【解答】(本小题满分13分)解:(Ⅰ)设“选出的3名同学来自不同班级”为事件A,则P(A)==.所以选出的3名同学来自班级的概率为.…(Ⅱ)随机变量X的所有可能值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,∴随机变量X的分布列是随机变量X的数学期望E(X)==.16.如图,在△ABC中,点D在BC边上,,.(Ⅰ)求sin∠C的值;(Ⅱ)若BD=5,求△ABD的面积.【考点】正弦定理.【分析】(Ⅰ)由同角三角函数基本关系式可求sin∠ADB,由.利用两角差的正弦函数公式及特殊角的三角函数值即可求值得解.(Ⅱ)先由正弦定理求AD的值,再利用三角形面积公式即可得解.【解答】(本小题满分13分)解:(Ⅰ)因为,所以.又因为,所以.所以=.…(Ⅱ)在△ACD中,由,得.所以.…17.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,且∠DAB=60°.点E是棱PC的中点,平面ABE与棱PD交于点F.(Ⅰ)求证:AB∥EF;(Ⅱ)若PA=PD=AD,且平面PAD⊥平面ABCD,求平面PAF与平面AFE所成的锐二面角的余弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(Ⅰ)推导出AB∥CD,从而AB∥面PCD,由此能证明AB∥EF.(Ⅱ)取AD中点G,连接PG,GB.以G为原点,GA为x轴,GB为y轴,GP为z轴,建立空间直角坐标系G﹣xyz.利用向量法能求出平面PAF与平面AFE所成的锐二面角的余弦值.【解答】(本小题满分13分)证明:(Ⅰ)因为底面ABCD是菱形,所以AB∥CD.又因为AB⊄面PCD,CD⊂面PCD,所以AB∥面PCD.又因为A,B,E,F四点共面,且平面ABEF∩平面PCD=EF,所以AB∥EF.…解:(Ⅱ)取AD中点G,连接PG,GB.因为PA=PD,所以PG⊥AD.又因为平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,所以PG⊥平面ABCD.所以PG⊥GB.在菱形ABCD中,因为AB=AD,∠DAB=60°,G是AD中点,所以AD⊥GB.如图,以G为原点,GA为x轴,GB为y轴,GP为z轴,建立空间直角坐标系G﹣xyz.设PA=PD=AD=2a,则G(0,0,0),A(a,0,0),.又因为AB∥EF,点E是棱PC中点,所以点F是棱PD中点.所以,.所以,.设平面AFE的法向量为n=(x,y,z),则有所以令x=3,则平面AFE的一个法向量为.因为BG⊥平面PAD,所以是平面PAF的一个法向量.因为,所以平面PAF与平面AFE所成的锐二面角的余弦值为.…18.已知函数f(x)=ax+lnx,其中a∈R.(Ⅰ)若f(x)在区间上为增函数,求a的取值范围;(Ⅱ)当a=﹣e时,(ⅰ)证明:f(x)+2≤0;(ⅱ)试判断方程是否有实数解,并说明理由.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)求出函数的导数,分离出a,结合函数的单调性求出a的范围即可;(Ⅱ)(i)解关于导函数的不等式,求出函数的单调区间,从而求出f(x)的最大值,证出结论;(ii)求出|f(x)|≥2,令g(x)=+,求出g(x)的最大值小于|f(x)|的最小值,从而判断无解.【解答】解:函数f(x)定义域x∈(0,+∞),f′(x)=a+,(Ⅰ)因为f(x)在区间上为增函数,所以f′(x)≥0在x∈上恒成立,即,在x∈上恒成立,则.…(Ⅱ)当a=﹣e时,f(x)=﹣ex+lnx,.(ⅰ)令f′(x)=0,得.令f′(x)>0,得,所以函数f(x)在单调递增.令f′(x)<0,得,所以函数f(x)在单调递减.所以,.所以f(x)+2≤0成立.…(ⅱ)由(ⅰ)知,f(x)max=﹣2,所以|f(x)|≥2.设.所以.令g'(x)=0,得x=e.令g'(x)>0,得x∈(0,e),所以函数g(x)在(0,e)单调递增,令g'(x)<0,得x∈(e,+∞),所以函数g(x)在(e,+∞)单调递减;所以,,即g(x)<2.所以|f(x)|>g(x),即|f(x)|>.所以,方程|f(x)|=没有实数解.…19.已知圆O:x2+y2=1的切线l与椭圆C:x2+3y2=4相交于A,B两点.(Ⅰ)求椭圆C的离心率;(Ⅱ)求证:OA⊥OB;(Ⅲ)求△OAB面积的最大值.【考点】椭圆的简单性质.【分析】(Ⅰ)由题意可得椭圆的a,b,c,由离心率公式可得所求值;(Ⅱ)讨论切线的斜率不存在和存在,设出直线方程,联立椭圆方程,运用韦达定理和向量的数量积的坐标表示,化简整理,即可得证;(Ⅲ)因为直线AB与圆O相切,则圆O半径即为△OAB的高.讨论当l的斜率不存在时,由(Ⅱ)可知|AB|=2.则S△OAB=1.当l的斜率存在时,运用弦长公式和点到直线的距离公式,运用基本不等式可得面积的最大值.【解答】解:(Ⅰ)由题意可知a2=4,,即有.则.故椭圆C的离心率为;(Ⅱ)证明:若切线l的斜率不存在,则l:x=±1.在中,令x=1得y=±1.不妨设A(1,1),B(1,﹣1),则.可得OA⊥OB;同理,当l:x=﹣1时,也有OA⊥OB.若切线l的斜率存在,设l:y=kx+m,依题意,即k2+1=m2.由,得(3k2+1)x2+6kmx+3m2﹣4=0.显然△>0.设A(x1,y1),B(x2,y2),则,.所以.所以=====.所以OA⊥OB.综上所述,总有OA⊥OB成立.(Ⅲ)因为直线AB与圆O相切,则圆O半径即为△OAB的高.当l的斜率不存在时,由(Ⅱ)可知|AB|=2.则S△OAB=1.当l的斜率存在时,由(Ⅱ)可知,====.所以=,(当且仅当时,等号成立).所以.此时,.综上所述,当且仅当时,△OAB面积的最大值为.20.已知有穷数列:的各项均为正数,且满足条件:①a1=a k;②.(Ⅰ)若k=3,a1=2,求出这个数列;(Ⅱ)若k=4,求a1的所有取值的集合;(Ⅲ)若k是偶数,求a1的最大值(用k表示).【考点】数列的应用.【分析】(Ⅰ)∵k=3,a1=2,由①知a3=2;由②知,,整理得,a2.即可得出a3.(II)若k=4,由①知a4=a1.由于,解得或.分类讨论即可得出.(Ⅲ)依题意,设k=2m,m∈N*,m≥2.由( II)知,或.假设从a1到a2m恰用了i次递推关系,用了2m﹣1﹣i次递推关系,则有,其中|t|≤2m ﹣1﹣i,t∈Z.对i分类讨论即可得出.【解答】解:(Ⅰ)∵k=3,a1=2,由①知a3=2;由②知,,整理得,.解得,a2=1或.当a2=1时,不满足,舍去;∴这个数列为.(Ⅱ)若k=4,由①知a4=a1.∵,∴.∴或.如果由a1计算a4没有用到或者恰用了2次,显然不满足条件;∴由a1计算a4只能恰好1次或者3次用到,共有下面4种情况:(1)若,,,则,解得;(2)若,,,则,解得a1=1;(3)若,,,则,解得a1=2;(4)若,,,则,解得a1=1;综上,a1的所有取值的集合为.(Ⅲ)依题意,设k=2m,m∈N*,m≥2.由( II)知,或.假设从a1到a2m恰用了i次递推关系,用了2m﹣1﹣i次递推关系,则有,其中|t|≤2m﹣1﹣i,t∈Z.当i是偶数时,t≠0,无正数解,不满足条件;当i是奇数时,由得,∴.又当i=1时,若,有,,即.∴a1的最大值是2m﹣1.即.2016年8月22日。
北京市朝阳区2016届高三下学期第二次综合练习数学(理)试题 含答案
数学试卷(理工类)第Ⅰ卷(共40分)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1。
已知集合{|124}xA x =<<,{|10}B x x =-≥,则A B =( )A .{|12}x x ≤<B .{|01}x x <≤C .{|01}x x <<D .{|12}x x <<2.复数1iz i=-(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.执行如图所示的程序框图,输出S 的值为( ) A .6 B .10 C .14 D .154。
已知非零向量,a b ,“//a b ”是“//()a a b +”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件5。
同时具有性质:“①最小正周期是π;②图象关于直线3x π=对称;③在区间5[,]6ππ上是单调递增函数”的一个函数可以是( )A .cos()26x y π=+B .5sin(2)6y x π=+C .cos(2)3y x π=-D .sin(2)6y x π=-6.已知函数1,2()2log ,2a x x f x x x -≤⎧=⎨+>⎩(0a >且1a ≠)的最大值为1,则a 的取值范围是( )A .1[,1)2B .(0,1)C .1(0,]2D .(1,)+∞7.某学校高三年级有两个文科班,四个理科班,现从每个班指定1名同学,对各班的卫生进行检查,若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是( )A .48B .72C .84D .1688。
已知正方体1111ABCD A BC D -的棱长为2,E 是棱11D C 的中点,动点F 在正方体内部或正方体的表面上,且//EF 平面11A BC ,则动点F 的轨迹所形成的区域面积是( )A .92B. C. D.第Ⅱ卷(共110分)二、填空题(每题5分,满分30分,将答案填在答题纸上)9.双曲线22:13x C y -=的渐近线方程是;若抛物线22(0)ypx p =>的焦点与双曲线C 的一个焦点重合,则p = .10。
2016高三上期中-朝阳理科
北京市朝阳区2016-2017学年度高三年级第一学期统一考试数学试卷(理工类) 2016.11(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知全集U =R ,集合{}2|20A x x x =-<,{}|10B x x =-≥,则()U AB =ðA .{}|01x x <<B .{}|0x x <C .{}|2x x >D .{}|12x x <<2.下列函数中,在其定义域上既是偶函数又在(0)+∞,上单调递减的是 A .2y x =B .1y x =+C .lg ||y x =-D .2x y =-3.若 2.1log 0.6a =,0.62.1b =,0.5log 0.6c =,则a ,b ,c 的大小关系是 A .a b c >> B .b c a >> C .c b a >> D .b a c >>4.已知函数2()f x ax x =-,若对任意12,[2,)x x ∈+∞,且12x x ≠,不等式1212()()0f x f x x x ->-恒成立,则实数a 的取值范围是A .1(,)2+∞ B .1[,)2+∞ C .1(,)4+∞ D .1[,)4+∞ 5.设R m ∈且0m ≠,“不等式4+4m m>”成立的一个充分不必要条件是 A .0m > B .1m > C .2m > D .2m ≥ 6.已知三角形ABC 外接圆O 的半径为1(O 为圆心),且2OA AB AC ++=0,||2||OA AB =,则CA BC ⋅等于A .154-B. C .154 D7.已知函数21,0,()log ,0,x x f x x x +≤⎧=⎨>⎩则函数1()(())2g x f f x =-的零点个数是 A .4 B .3 C .2 D .18. 5个黑球和4个白球从左到右任意排成一排,下列说法正确的是A .总存在一个黑球,它右侧的白球和黑球一样多B .总存在一个白球,它右侧的白球和黑球一样多C .总存在一个黑球,它右侧的白球比黑球少一个D .总存在一个白球,它右侧的白球比黑球少一个第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.已知平面向量(1,2),(2,)y ==-a b .若a //b ,则y = .10.函数22()cos sin f x x x =-的单调递减区间为 .11.各项均为正数的等比数列{}n a 的前n 项和为n S .若23=a ,245S S =,则1a = ,4S = .12.已知角A 为三角形的一个内角,且3cos 5A =,则t a n A = ,tan()4A π+= .13.已知函数221,0,()(1)2,0xmx x f x m x ⎧+≥=⎨-<⎩在(,)-∞+∞上是具有单调性,则实数m 的取值范围 .14.《九章算术》是我国古代一部重要的数学著作,书中有如下问题:“今有良马与驽马发长安,至齐.齐去长安三千里,良马初日行一百九十三里,日增一十三里,驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,问几何日相逢.”其大意为:“现在有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是3000里,良马第一天行193里,之后每天比前一天多行13里,驽马第一天行97里,之后每天比前一天少行0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇.”试确定离开长安后的第 天,两马相逢.DCA三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)已知数列{}()N n a n *∈是公差不为0的等差数列,11a =,且248111,,a a a 成等比数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列11{}n n a a +⋅的前n 项和为n T ,求证:1n T <.16.(本小题满分13分)已知函数()sin f x a x x =(a ∈R )的图象经过点(,0)3π. (Ⅰ)求()f x 的最小正周期; (Ⅱ)若3[,]22x ππ∈,求()f x 的取值范围.17.(本小题满分13分)如图,已知,,,A B C D 四点共面,=1CD ,2BC =,4AB =,120ABC ∠=,cos 7BDC ∠=. (Ⅰ)求sin DBC ∠的值; (Ⅱ)求AD 的长.18. (本小题满分13分)已知函数2()cos 4x f x ax x =-+()R a ∈,ππ[,]22x ∈-. (Ⅰ)若函数()f x 是偶函数,试求a 的值;(Ⅱ)当0a >时,求证:函数()f x 在π(0,)2上单调递减.19.(本小题满分14分)已知函数2()e ()xf x x a =-,a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)若函数()f x 在(3,0)-上单调递减,试求a 的取值范围; (Ⅲ)若函数()f x 的最小值为2e -,试求a 的值.20.(本小题满分14分)设b a ,是正奇数,数列}{n c (n *∈N )定义如下:b c a c ==21,,对任意3≥n ,nc 是21--+n n c c 的最大奇约数.数列}{n c 中的所有项构成集合A . (Ⅰ)若15,9==b a ,写出集合A ;(Ⅱ)对1≥k ,令221=max {,}k k k d c c -(max{,}p q 表示,p q 中的较大值),求证:k k d d ≤+1;(Ⅲ)证明集合A 是有限集,并写出集合A 中的最小数.。
北京市朝阳区2016届高三数学上学期期中试题理
北京市朝阳区2015-2016学年度高三年级第一学期期中统一考试数学试卷(理工类)2015.1 1(考试时间120分钟满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题共40分)、选择题:本大题共8小题,每小题5分,共40分•在每小题给出的四个选项中,选出符合题目要求的一项1.已知集合A ={x x 兰3,x w R} , B ={x x—1 ^0,x€ N},贝U A" B =( )A. {0,1} B . {0,1,2} C . {2,3} D . {1,2,3}2.已知很三(0,二),且COS M =35则tan〉=( )fl3344A .-BC D44333. 已知等差数列{a*}的公差为2 ,若c1i, a2,创成等比数列,那么a1等于()A. 2B. 1C. -1D. -24. 给出下列命题:~7 2 2①若给定命题p : x R ,使得x • x「1 ::: 0,则—p : - x R,均有x • x「1 _ 0 ;②若p q为假命题,则p,q均为假命题;③命题“若x2 -3x • 2 =0,则x = 2 ”的否命题为“若x2 -3x • 2 = 0,则x = 2 ,其中正确的命题序号是()A.①B. ①②C.①③D. ②③5.已知函数f(x)=Asin(豹x+®)(x€ R, A>0,国>0^:-)的图象(部分)如图所示,则2A .n f(x) =2s in (二x )6B .n f (x) =2sin(2 二x )6C .f(x) =2s in (二x )3D .f (x) =2sin(2 rx -)f(x)的解析式是()32x _16.设p :0 , q : x 2 -(2a 1)x a(a 1^:: 0 ,若p 是q 的充分不必要条件,则实x -1数a 的取值范围是()的值是第二部分(非选择 题 共110分)二、填空题:本大题共 6小题,每小题5分,共30分.把答案填在答题卡上1 n9.已知三个数(一),log 23,log 2 n ,其中最大的数是 _____________ .210.已知平面向量a = 21 , b =:[『13 .若向量a _ (a + b ),则实数■的值是 ____________________________________________________________________________ 11. 如图,在L ABCD 中,E 是 CD 中点,BE =xAB yAD , 贝 H x ■ y = _____ .12. 若函数 f(x)=2sin(0,0)是偶函数,则 ■'的最小值为 ________13. 若函数f (x) =「Si 门乂在区间(-,-)上单调递增,cosx6 3是 _____ . ___14. 如图,已知边长为 4的正方形ABCD E 是BC 边上一动点7.在ABC 中, A 1 A. (0,二)2已知AB• [0,1) C •(0,2]2 2AC =4 , |BC =3, M ,N 分别是BC 边上的三等分点,则AM ANA. 5 B .21C. 6D. 88.已知定义在R 上的函数f(x)x+?x 匸[0, ° 且 f (x+2) = f(x).若方程 z-X 2*[—1,0),f (x) -kx -2=0有三个不相等的实数根,则实数k 的取值范 围是()I)中汕-冷D.(-异山航)则实数a 的取值范围D A(与B C不重合),连结AE作EF丄AE交/ BCD勺外角平分线T —I于F.设BE =X ,记f (x) =EC CF ,则函数f (x)的值域是__________ ;当ECF面积最大时,EF二三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程•15. (本小题满分13分)已知函数f (x) =2 3sin °cos° - 2cos2-.2 2 2n(I)求f()的值;3(n)求函数f (x)的单调递减区间及对称轴方程.16. (本小题满分13分)1 已知等差数列:a. f的首项a1=1,公差d =1,前n项和为S n,且b n.Sn(I)求数列1b n 1的通项公式;(n)求证:b1 ■ b2 ■ b^ J11 b n < 2.17. (本小题满分13分)1 在.ABC中,角A, B, C所对的边分别为a,b,c .且cosB--1.2(I)若a =2, b=2・.3,求角C ;(n)求si nA si nC的取值范围.18. (本小题满分13分)2x已知函数f (x) =alnx (a 1)x .2(I)当a 0时,求函数f(x)的单调区间;1(n)当a - -1 时,证明f (x) .219. (本小题满分14分)已知函数f(xHe^(ax2 - bx 1)(其中e是常数,a 0, b R ),函数f (x)的导函数为f (x),且f (-1) =0 .(I)若a = 1,求曲线y = f (x)在点(0, f (0))处的切线方程;1(n)当a 时,若函数f (x)在区间[-1,1]上的最大值为4e,试求a,b的值.520. (本小题满分14分)已知实数数列{a.}满足:a n 2 H a n 1 Ha n(n=1,2,…),a^ a,a^ b,记集合M ={a n| n N }.(i)若a=1,b=2,用列举法写出集合M ;(n )若a:::0,b :::0,判断数列{a n}是否为周期数列,并说明理由(川)若a _0,b _ 0 ,且a • b = 0,求集合M的元素个数的最小值北京市朝阳区2D】5T(HB学年度高三年圾第一学期期中统一考试数学答案〔理工类)201511一,述择題;GI]234567«答案D D A A A B C C二,頃空*; (*舟分)91011121J14h空K-512J?2im)(0T4J(注:两空的璃空.博一空分,第二空空廿〉三、解善題:f渦片ao分】巧£本小昭書分12分)/(x) = 2^siii^cM^-2M<^ =花迎T-CO5I-1 “Eiin{工_自_1.(I)疋〉■如討•(>"<□> Il口氐+半弘一号£2ihn■垄帶2 6 22ix+y<x<2*x+y(itEZ).1-1 □函散“的单白痙减世问ft[2br + ^.2H+半]讷e Z). 建■工一手=肚+害得工:《叶+¥(吐石.6 2 3所以函ftZ(i)的对IM*方程是工=虹+丁("可一W: CI)因为尊莖敷列{%}中,气=1盘菱寸=1,g j - n(n —h * n1 +»Hi W S =JM,十_ d = ----------2 210 5/因为Ou——<1 ,ft+L所规也+爲+机+…+虬气2,17.(■本小題祸分H廿)-^― ■又H 転所W jj=—, KsinS=—.由正強定S==® —却口丿sin£f可帚着誉呗心T二… 4■■ ■' 1 773 6所以C = -LID 5W小迪(?=沁{亍一G宜1(7■ {半CMC-^s±nC)tinC-^5ID2C+1CQ52C-14 4 4期smd mt?的眾筑宛Bl是”13分M:函数的定.丈诚为(①砂).阳斗_(”D■亡g±£.g也所叹函数m的单洞建老医闻星(吐c利仏十R)・亀调递城区间拦⑷」).<2)当心二】时"-所以£口)工0莊壷一a«t/h)的葷鴻渥增匿问星(0・+8).<3)当口A】时「珂为JTA O. ^/r(r)>0 ^x><7^0<Kl.8(I) U) l 时.因为x>a ・fXx)>0 +令Sl<x<a -的单iflil塔区剧悬(04)和皈炖}・单谄遏期区间是(IQ......................... .......... 7分(0)当口二一1 时./(r) = -inAr+—,广匕)=一丄+工=^^=& + 廉_"2 xx I于广5) = 11带H =1或匸=一1 <*).当x受化时* /(I),所以耳=1肝屈数于(肝的虽水直为㊁一flitl/(r)>^«i. —............................. 】3 分19 I本小题褂分14分〉Mt K^/txJ-e'Xdt^Znr+l)・flit!/(x)-^'(-^ + p^r-&)x+*-]).週为f (—1)=0”即2b = 3a+l................ —2 分(I)当口=1 时.b = 2.X/(0) = 1,/(0)=1.瞬以曲ft/(x}a<(oy(o))it的切蟀方程为”-i・ i(x-o),即工一y+l=0、- ................... T 分(町由□知衬丸幻■孑鬣加二+兰尹:r+】).因为心0・ foo=3-切=*0+1)0 -翠).22a1 如一1询为我事二•所以p- A ■「52d/r (x ) = -eve -' (.v *lXx -》Q 煜-1 < A < :2a2aia_l 3。
北京市朝阳区2016届高三数学第二次(5月)综合练习试题 理
北京市朝阳区2015-2016学年度高三年级第二次综合练习数学试卷(理工类) 2016.5(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合{}124xA x =<<,{}10B x x =-≥,则A B I =A .{}12x x ≤< B .{}01x x <≤ C .{}01x x << D .{}12x x << 2.复数i1iz =-(i 为虚数单位)在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.执行如图所示的程序框图,输出的S 值为 A .6 B .10 C .14 D .154.已知非零向量a ,b ,“a ∥b ”是 “a ∥()+a b ”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.同时具有性质:“①最小正周期是π; ②图象关于直线3x π=对称; ③在区间5,6π⎡⎤π⎢⎥⎣⎦上是单调递增函数”的一个函数可以是 A .cos()26x y π=+B .sin(2)6y x 5π=+ C .cos(2)3y x π=- D .sin(26y x π=-6.已知函数1,2,()2log ,2a x x f x x x -≤⎧=⎨+>⎩(0a >且1)a ≠的最大值为1,则a 的取值范围是A .112[,) B .01(,) C .102(,] D .1(,)+∞7.某学校高三年级有两个文科班,四个理科班,现每个班指定1人,对各班的卫生进行检 查.若每班只安排一人检查,且文科班学生不检查文科班,理科班学生不检查自己所在的班,则不同安排方法的种数是A .48B .72C .84D .1688.已知正方体1111A B C D A B C D -的棱长为2,E 是棱11D C 的中点,点F 在正方体内部或正方体的表面上,且EF ∥平面11A BC ,则动点F 的轨迹所形成的区域面积是 A .92B.C.D. 第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.双曲线22:13x C y -=的渐近线方程是 ;若抛物线22(0)y px p =>的焦点与 双曲线C 的一个焦点重合,则p = .10.如图,P 为⊙O 外一点,PA 是⊙O 的切线,A 为切点,割线PBC 与⊙O 相交于,B C 两点,且3PC PA =,D 为线段BC 的中点, AD 的延长线交⊙O 于点E .若1PB =,则PA 的长为______;AD DE ⋅的值是 .11.已知等边ABC ∆的边长为3,D 是BC 边上一点,若1BD =,则AC AD ⋅uuu r uuu r的值是______.12.已知关于,x y 的不等式组0,,2,2x y x x y x y k≥⎧⎪≥⎪⎨+≤⎪⎪-≥⎩所表示的平面区域D 为三角形区域,则实数k 的取值范围是 .13.为了响应政府推进“菜篮子”工程建设的号召,某经销商投资60万元建了一个蔬菜生产基地.第一年支出各种费用8万元,以后每年支出的费用比上一年多2万元.每年销售蔬菜的收入为26万元.设()f n 表示前n 年的纯利润(()f n =前n 年的总收入-前n 年的总费用支出-投资额),则()f n = (用n 表示);从第 年开始盈利.14.在平面直角坐标系O x y 中,以点A (2,0),曲线y =B ,第一象限内的点C ,构成等腰直角三角形ABC ,且90A ∠=︒,则线段OC 长的最大值是 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,已知,(Ⅰ)求a 的值;(Ⅱ) 若角A 为锐角,求b 的值及ABC ∆的面积.16.(本小题满分13分)交通指数是交通拥堵指数的简称,是综合反映某区域道路网在某特定时段内畅通或拥堵实际情况的概念性指数值.交通指数范围为(010),,五个级别规定如下:某人在工作日上班出行每次经过的路段都在同一个区域内,他随机记录了上班的40个工作日早高峰时段(早晨7点至9点)的交通指数(平均值),其统计结果如直方图所示.(Ⅰ)据此估计此人260个工作日中早高峰 时段(早晨7点至9点)中度拥堵的 天数;(Ⅱ)若此人早晨上班路上所用时间近似为: 畅通时30分钟,基本畅通时35分钟, 轻度拥堵时40分钟,中度拥堵时50 分钟,严重拥堵时70分钟,以直方图 中各种路况的频率作为每天遇到此种路况的概率,求此人上班路上所用时间X 的数学期望.交通指数值0.25 0.10 0.05 0.152 4 6 8 10 0.20 13 5 7 917.(本小题满分14分)如图1,在等腰梯形ABCD 中,//BC AD ,122BC AD ==,60A ∠=︒, E 为AD 中点,点,O F 分别为,BE DE 的中点.将ABE ∆沿BE 折起到1A BE ∆的位置,使得平面1A BE ⊥平面BCDE (如图2).(Ⅰ)求证:1A O CE ⊥;(Ⅱ)求直线1A B 与平面1A CE 所成角的正弦值;(Ⅲ)侧棱1A C 上是否存在点P ,使得//BP 平面1A OF ? 若存在,求出11A PA C的值;若不 存在,请说明理由.18. (本小题满分13分)已知函数21()(1)1)ln 2f x x a x a x =-+++-(,a ∈R . (Ⅰ)当3a =时,求曲线:()C y f x =在点(1,(1))f 处的切线方程;(Ⅱ)当[]1,2x ∈时,若曲线:()C y f x =上的点(,)x y 都在不等式组12,,32x x y y x ⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的平面区域内,试求a 的取值范围.ECDBA图1BFOCDA 1E 图219.(本小题满分14分)在平面直角坐标系O x y 中,点000(,)(0)P x y y ≠在椭圆:C 2212x y +=上,过点P 的直线l 的方程为0012x xy y +=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)若直线l 与x 轴、y 轴分别相交于,A B 两点,试求OAB ∆面积的最小值;(Ⅲ)设椭圆C 的左、右焦点分别为1F ,2F ,点Q 与点1F 关于直线l 对称,求证:点2,,Q P F三点共线.20.(本小题满分13分)已知集合311,(22n S k k k n *⎧⎫-⎪⎪=≤≤∈≥⎨⎬⎪⎪⎩⎭N ,且)n *∈N .若存在非空集合12,,,n S S S ,使得12n S S S S =,且(1,,)i j S S i j n i j =∅≤≤≠,并,(1,2,,),i x y S in x y ∀∈=>,都有i x y S -∉,则称集合S 具有性质P ,i S (1,2,,i n =)称为集合S 的P 子集.(Ⅰ)当2n =时,试说明集合S 具有性质P ,并写出相应的P 子集S 1,S 2;(Ⅱ)若集合S 具有性质P ,集合T 是集合S 的一个P 子集,设{3|}nT s s T '=+∈,求证:,x y TT '∀∈,x y >,都有x y T T '-∉;(Ⅲ)求证:对任意正整数2n ≥,集合S 具有性质P .数学答案(理工类) 2016.5一、选择题:(满分40分)二、填空题:(满分30分) 10[0,1) (注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分)0A <<π,由正弦定理sin sin a cA C=分cos A =. 由余弦定理2222cos a b c bc A =+-,得22150b b --=. 解得5b =或3b =-(舍负).…………………13分 解: (Ⅰ)由已知可得:上班的40个工作日中早高峰时段中度拥堵的频率为0.25, 据此估计此人260个工作日早高峰时段(早晨7点至9点)中度拥堵的天数为 260×0.25=65天. ……………………………………………………5分 (Ⅱ)由题意可知X 的可能取值为30,35,40,50,70.且(30)0.05P X ==;(35)0.10P X ==;(40)0.45P X ==;(50)0.25P X ==;(70)0.15P X ==;所以300.05+350.1+400.45+500.25+700.15=46EX =⨯⨯⨯⨯⨯.…………………………………13分17.(本小题满分14分)解:(Ⅰ)如图1,在等腰梯形ABCD 中,由//BC AD ,122BC AD ==,60A ∠=︒,E 为AD 中点,所以ABE ∆为等边三角形.如图2, 因为O 为BE 的中点,所以1A O BE ⊥. 又因为平面1A BE ⊥平面BCDE , 且平面1A BE平面BCDE BE =,所以1A O ⊥平面BCDE ,所以1A O CE ⊥.………4分(Ⅱ)连结OC ,由已知得CB CE =,又O 为BE 的中点,图2所以OC BE ⊥.由(Ⅰ)知1A O ⊥平面BCDE , 所以11,A O BE A O OC ⊥⊥, 所以1,,OA OB OC 两两垂直.以O 为原点,1,,OB OC OA 分别为,,x y z 轴建立空间直角坐标系(如图).因为2BC =,易知1OA OC ==所以1(00(100),(0(100)A B C E -,,,,,所以111(103),(033),(10A B AC A E =-=-=-,,,,,. 设平面1A CE 的一个法向量为(,,)x y z =n ,ECDBA图1DCBFODA 1E由 110,0 AC A E ⎧⋅=⎪⎨⋅=⎪⎩n n得0, 0.x =--=⎪⎩即0, 0. y z x -=⎧⎪⎨+=⎪⎩取1z =,得(=n .设直线1A B 与平面1A CE 所成角为θ,则1sin cos ,A B θ=〈〉===n 所以直线1A B 与平面1A CE. …………………9分 (Ⅲ)假设在侧棱1A C 上存在点P ,使得//BP 平面1A OF . 设11A P AC λ=,[0,1]λ∈.因为1111BP BA A P BA AC λ=+=+,所以(10(0()BP λ=-+=-. 易证四边形BCDE 为菱形,且CE BD ⊥,又由(Ⅰ)可知,1A O CE ⊥,所以CE ⊥平面1A OF .所以(1,CE =-为平面1A OF 的一个法向量.由()(1,130BP CE λ⋅=-⋅-=-=,得1[0,1]3λ=∈. 所以侧棱1A C 上存在点P ,使得//BP 平面1A OF ,且1113A P A C =. …………14分 18.(本小题满分13分) 解:(Ⅰ)当3a =时, 21()42ln 2f x x x x =-+-,0x >. 2()4f x x x'=-+-.则(1)1421f '=-+-=,而17(1)422f =-+=. 所以曲线C 在点(1,(1)f )处的切线方程为712y x -=-,即2250x y -+=.…………………………………………………………………………4分(Ⅱ)依题意当[]1,2x ∈时,曲线C 上的点(),x y 都在不等式组12,,32x x y y x ⎧⎪≤≤⎪≤⎨⎪⎪≤+⎩所表示的平面区域内,等价于当12x ≤≤时,3()2x f x x ≤≤+恒成立. 设()()g x f x x =-211)ln 2x ax a x (=-++-,[]1,2x ∈. 所以21(1)()=+=a x ax a g x x a+x x ---++-'(1)(1))=x x a x---(-. (1)当11a -≤,即2a ≤时,当[]1,2x ∈时,()0g x '≤,()g x 为单调减函数,所以(2)()(1)g g x g ≤≤. 依题意应有131,222221ln20,()()()g a g a a ⎧=-≤⎪⎨⎪=-++-≥⎩ 解得21a a ,.≤⎧⎨≥⎩所以12a ≤≤.(2)若 112a <-<,即23a <<时,当[)1,1x a ∈-,()0g x '≥,()g x 为单调增函 数,当x ∈(]1,2a -,()0g x '<,()g x 为单调减函数.由于3(1)2g >,所以不合题意. (3)当12a -≥,即3a ≥时,注意到15(1)22g a =-≥,显然不合题意. 综上所述,12a ≤≤. …………………………………………13分19.(本小题满分14分) 解:(Ⅰ)依题意可知a =1c ==,所以椭圆C离心率为2e ==. …………… 3分 (Ⅱ)因为直线l 与x 轴,y 轴分别相交于,A B 两点,所以000,0x y ≠≠. 令0y =,由0012x x y y +=得02x x =,则02(,0)A x .令0x =,由0012x x y y +=得01y y =,则01(0,)B y . 所以OAB ∆的面积0000112122OAB S OA OB x y x y ∆===. 因为点00(,)P x y 在椭圆:C 2212x y +=上,所以220012x y +=.所以220012x y =+≥.即002x y ≤,则001x y ≥所以00112OAB S OA OB x y ∆==≥ 当且仅当22002x y =,即001,x y =±=OAB ∆… 9分(Ⅲ)①当00x =时,(0,1)P ±.当直线:1l y =时,易得(1,2)Q -,此时21F P k =-,21F Q k =-.因为22F Q F P k k =,所以三点2,,Q P F 共线. 同理,当直线:1l y =-时,三点2,,Q P F 共线.②当00x ≠时,设点(,)Q m n ,因为点Q 与点1F 关于直线l 对称,所以000011,22202() 1.1212x m n y nx m y -⎧⋅+⋅=⎪⎪⎪⎨-⎪⋅-=--⎪+⎪⎩整理得000000240,220.x m y n x y m x n y +--=⎧⎨-+=⎩ 解得220002200000220044,448.4x x y m y x x y y n y x ⎧+-=⎪+⎪⎨+⎪=⎪+⎩所以点22000000222200004448(,)44x x y x y y Q y x y x +-+++.又因为200(1,)F P x y =-,220000002222200004448(1,)44x x y x y y F Q y x y x +-+=-++, 且 22200000000000002222220000004448(48)(48)(1)(1)(1)444x x y x y y x y x x y x y y x y x y x +-+--+--⋅-⋅-=⋅+++2200000220048(448)4x y x x y y x --+-=⋅+ 222200000002222220000008484(2)84280444y x y x y y y y x y x y x --+-++-⨯+=⋅=⋅=⋅=+++. 所以2//F P 2F Q .所以点2,,Q P F 三点共线.综上所述,点2,,Q P F 三点共线. …………………………………14分 20.(本小题满分13分)证明:(Ⅰ)当2n =时,{1,2,3,4}S =,令1{1,4}S =,2{2,3}S =,则12S S S =, 且对,(1,2),i x y S i x y ∀∈=>,都有i x y S -∉,所以S 具有性质P .相应的P 子集为1{1,4}S =,2{2,3}S =. ………… 3分(Ⅱ)①若31,(1)2n x y T y x -∈≤<≤,由已知x y T -∉, 又31132n n x y --≤-<,所以x y T '-∉.所以'x y T T -∉.②若,x y T '∈,可设3,3nnx s y r =+=+,,r s T ∈,且3112n r s -≤<≤,此时31(3)(3)132n nnn x y s r s r --=+-+=-≤-<.所以'x y T -∉,且x y s r T -=-∉.所以x y T T '-∉.③若y T ∈, 3nx s T '=+∈,s T ∈,则313331(3)()3(1)3222n n n nnnx y s y s y -+--=+-=-+≥-+=>, 所以x y T -∉.又因为,y T s T ∈∈,所以s y T -∉.所以(3)()3n nx y s y s y T '-=+-=-+∉.所以'x y T T -∉.综上,对于,'x y TT ∀∈,x y >,都有'x y T T -∉. …………… 8分(Ⅲ)用数学归纳法证明.(1)由(Ⅰ)可知当2n =时,命题成立,即集合S 具有性质P . (2)假设n k =(2k ≥)时,命题成立.即1231{1,2,3,,}2k k S S S S -==,且(1,,)ij S S i j n i j =∅≤≤≠,,(1,2,,),i x y S i k x y ∀∈=>,都有i x y S -∉.那么 当1n k =+时,记{3|}ki i S s s S '=+∈,,并构造如下 k +1个集合:111S S S '''=,222S S S '''=,,k k kS S S '''=, 1313131{1,2,,21}222k k k k S +---''=++⨯+,显然()i j S S i j ''''=∅≠.又因为131313122k k +--=⨯+,所以112131{1,2,3,,}2k kk S S S S ++-''''''''=.下面证明 ¢¢S i 中任意两个元素之差不等于¢¢S i 中的任一元素(1,2,,1)i k =+.①若两个元素13131,22k k k r s S +--''++∈,31112k r s -≤<≤+, 则313131()()222k k k s r s r ---+-+=-≤, 所以13131()()22k k k s r S +--''+-+∉. ②若两个元素都属于i ii S S S '''=(1)i k ≤≤,由(Ⅱ)可知,i S ''中任意两个元素之差不等于i S ''中的任一数(1,2,,1)i k =+.从而,1n k =+时命题成立.综上所述,对任意正整数2n ≥,集合S 具有性质P .………………………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市朝阳区高三年级第一次综合练习数学试卷(理工类) 2016.3(考试时间120分钟 满分150分)本试卷分为选择题(共40分)和非选择题(共110分)两部分第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. i 为虚数单位,复数2i 1i+= A .1i - B .1i -- C .1i -+ D .1i +2. 已知全集U =R ,函数ln(1)y x =-的定义域为M ,集合{}20N x x x =-<,则下列结论正确的是 A .M N N = B .()UMN =∅ðC .MN U = D .()U M N ⊆ð3. “a b >”是“e e ab>”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 4. 执行如图所示的程序框图,输出的S 值为 A .42 B .19 C .8 D .35.在ABC ∆中,角A ,B ,C 的对边分别为,,.a b c若222()tan 3a c b B ac +-=,则角B 的值为A . 3πB . 6πC . 233ππ或 D . 566ππ或开始1,1i S ==4?i < 1i i =+2S S i =+输出S结束 否 是(第4题图)6.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误..的是 A. 收入最高值与收入最低值的比是3:1B. 结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D. 前6个月的平均收入为40万元 (注:结余=收入-支出)7.某三棱锥的三视图如图所示,则该三棱锥的体积是A .13 B .12C .1D .328.若圆222(1)x y r +-=与曲线(1)1x y -=的没有公共点,则半径r 的取值范围是 A .02r << B .1102r <<C .03r <<D .1302r <<第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.万元 月O23430 110 20 5689 10 7111240 60 570 90 8收入支出(第7题图)正视图侧视图俯视图2 1119. 二项式251()x x+的展开式中含4x 的项的系数是 (用数字作答).10.已知等差数列}{n a (n *∈N )中,11=a ,47a =,则数列}{n a 的通项公式n a = ;2610410n a a a a +++++=______.11.在直角坐标系xOy 中,曲线1C 的方程为222x y +=,曲线2C 的参数方程为2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴非负半轴为极轴,建立极坐标系,则曲 线1C 与2C 的交点的极坐标...为 . 12.不等式组0,,290x y x x y ≥⎧⎪≤⎨⎪+-≤⎩所表示的平面区域为D .若直线(1)y a x =+与区域D 有公共点,则实数a 的取值范围是 . 13.已知M 为ABC ∆所在平面内的一点,且14AM AB nAC =+.若点M 在ABC ∆的内部(不含边界),则实数n 的取值范围是____.14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第i (1,2,,12i =)项能力特征用i x 表示,0,1i i x i ⎧=⎨⎩如果某学生不具有第项能力特征,,如果某学生具有第项能力特征.若学生,A B 的十二项能力特征分别记为1212(,,,)A a a a =,1212(,,,)B b b b =,则,A B两名学生的不同能力特征项数为 (用,i i a b 表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为 . 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分) 已知函数213()sin 3cos 222x f x x ωω=+-,0ω>. (Ⅰ)若1ω=,求()f x 的单调递增区间;(Ⅱ)若()13f π=,求()f x 的最小正周期T 的表达式并指出T 的最大值.16.(本小题满分13分)为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.(Ⅰ)从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4的概率?(Ⅱ)若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为X ,求随机变量X 的分布列和数学期望;(Ⅲ)试判断男学生阅读名著本数的方差21s 与女学生阅读名著本数的方差22s 的大小(只需 写出结论).17.(本小题满分14分)如图,在直角梯形11AA B B 中,190A AB ∠=︒,11//A B AB ,11122AB AA A B ===.直角梯形11AAC C 通过直角梯形11AA B B 以直线1AA 为轴旋转得到,且使得平面11AA C C ⊥平面11AA B B .M 为线段BC 的中点,P 为线段1BB 上的动点.(Ⅰ)求证:11A C AP ⊥;(Ⅱ)当点P 是线段1BB 中点时,求二面角P AM B --的余弦值;(Ⅲ)是否存在点P ,使得直线1A C //平面AMP ?请说明理由.18.(本小题满分13分)已知函数()f x =ln ,x a x a +∈R . (Ⅰ)求函数()f x 的单调区间;人数 本数性别12 3 4 5 男生 1 4 3 2 2 女生1331AMPCBA 1C 1B 1(Ⅱ)当[]1,2x ∈时,都有()0f x >成立,求a 的取值范围;(Ⅲ)试问过点(13)P ,可作多少条直线与曲线()y f x =相切?并说明理由.19.(本小题满分14分)已知点(2,1)P 和椭圆:C 22142x y +=. (Ⅰ)设椭圆的两个焦点分别为1F ,2F ,试求12PF F ∆的周长及椭圆的离心率; (Ⅱ)若直线:l 220(0)x y m m -+=≠与椭圆C 交于两个不同的点A ,B ,直线PA ,PB 与x轴分别交于M ,N 两点,求证:PM PN =.20.(本小题满分13分)已知等差数列}{n a 的通项公式31()n a n n *=-∈N .设数列{}n b 为等比数列,且n n k b a =.(Ⅰ)若11=2b a =,且等比数列{}n b 的公比最小, (ⅰ)写出数列{}n b 的前4项; (ⅱ)求数列{}n k 的通项公式;(Ⅱ)证明:以125b a ==为首项的无穷等比数列{}n b 有无数多个.北京市朝阳区2015-2016学年度第二学期高三年级统一考试数学答案(理工类) 2016.3一、选择题:(满分40分)题号 1 2 3 4 5 6 7 8 答案DDABCDAC二、填空题:(满分30分) 题号 91011121314答案1021n a n =-,(3)(411)n n ++(2,)4π 3(,]4-∞3(0,)4121||ii i ab =-∑22(注:两空的填空,第一空3分,第二空2分) 三、解答题:(满分80分) 15.(本小题满分13分) 解:(Ⅰ)当1ω=时,213()sin 3cos 222x f x x =+-13sin cos 22x x =+ sin()3x π=+.令22,232k x k k ππππ-≤+≤π+∈Z .解得22,66k x k k 5πππ-≤≤π+∈Z . 所以()f x 的单调递增区间是[2,2],66k k k 5πππ-π+∈Z .……………………7分 (Ⅱ)由213()sin 3cos 222x f x x ωω=+-13sin cos 22x x ωω=+ sin()3x ωπ=+.因为()13f π=,所以sin()133ωππ+=.则2332n ωπππ+=π+,n ∈Z . 解得162n ω=+.又因为函数()f x 的最小正周期2T ωπ=,且0ω>,所以当ω12=时,T 的最大值为4π. ………………………………………13分 16.(本小题满分13分)解:(Ⅰ)设事件A :从这个班级的学生中随机选取一名男生,一名女生,这两名学生阅读本数之和为4 . 由题意可知, 13+417()=12896P A ⨯⨯=⨯.………………………………………4分(Ⅱ)阅读名著不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4.由题意可得44481(0)70C P X C ===; 134448168(1)7035C C P X C ====;2244483618(2)7035C C P X C ====; 314448168(3)7035C C P X C ====; 44481(4)70C P X C ===. 所以随机变量X 的分布列为X 0 1 2 3 4P170 835 1835 835 170 随机变量X 的均值116361610123427070707070EX =⨯+⨯+⨯+⨯+⨯=.…………10分(Ⅲ)21s >22s .…………………………………………………………………………13分17.(本小题满分14分)解:(Ⅰ)由已知1190A AB A AC ∠=∠=︒,且平面11AA C C ⊥平面11AA B B ,所以90BAC ∠=︒,即AC AB ⊥. 又因为1AC AA ⊥且1ABAA A =,所以AC ⊥平面11AA B B .由已知11//A C AC ,所以11A C ⊥平面11AA B B . 因为AP ⊂平面11AA B B ,所以11AC AP ⊥.…………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知1,,AC AB AA 两两垂直.分别以1,,AC AB AA 为x 轴、y 轴、z 轴建立空间直角坐标系如图所示. 由已知 11111222AB AC AA A B AC =====, 所以(0,0,0),(0,2,0),(2,0,0),A B C 1(0,1,2)B ,1(0,0,2)A .因为M 为线段BC 的中点,P 为线段1BB 的中点,所以3(1,1,0),(0,,1)2M P .易知平面ABM 的一个法向量(0,0,1)=m . 设平面APM 的一个法向量为(,,)x y z =n ,由 0,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得0, 30. 2x y y z +=⎧⎪⎨+=⎪⎩取2y =,得(2,2,3)=--n .由图可知,二面角P AM B --的大小为锐角, 所以3317cos ,1717⋅〈〉===⋅m n m n m n.所以二面角P AM B --的余弦值为31717.………………………………9分 (Ⅲ)存在点P ,使得直线1A C //平面AMP .设111(,,)P x y z ,且1BP BB λ=,[0,1]λ∈,则111(,2,)(0,1,2)x y z λ-=-, 所以1110,2,2x y z λλ==-=.所以(0,2,2)AP λλ=-. 设平面AMP 的一个法向量为0000(,,)x y z =n ,yxAMPC BA 1 C 1B 1z由 000,0,AM AP ⎧⋅=⎪⎨⋅=⎪⎩n n 得00000, (2)20. x y y z λλ+=⎧⎨-+=⎩取01y =,得02(1,1,)2λλ-=-n (显然0λ=不符合题意).又1(2,0,2)AC =-,若1A C //平面AMP ,则10AC ⊥n . 所以10220AC λλ-⋅=--=n .所以23λ=. 所以在线段1BB 上存在点P ,且12BPPB =时,使得直线1A C //平面AMP .…………14分 18.(本小题满分13分)解:(Ⅰ)函数()f x 的定义域为{}0x x >.()1a x af x x x+'=+=. (1)当0a ≥时,()0f x '>恒成立,函数()f x 在(0,)+∞上单调递增; (2)当0a <时, 令()0f x '=,得x a =-.当0x a <<-时,()0f x '<,函数()f x 为减函数; 当x a >-时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≥时,函数()f x 的单调递增区间为(0,)+∞.当0a <时,函数()f x 的单调递减区间为(0,)a -,单调递增区间为(+)a -∞,. ……………………………………………………………………………………4分 (Ⅱ)由(Ⅰ)可知,(1)当1a -≤时,即1a ≥-时,函数()f x 在区间[]1,2上为增函数,所以在区间[]1,2上,min ()(1)1f x f ==,显然函数()f x 在区间[]1,2上恒大于零; (2)当12a <-<时,即21a -<<-时,函数()f x 在[)1a -,上为减函数,在(],2a - 上为增函数,所以min ()()ln()f x f a a a a =-=-+-.依题意有min ()ln()0f x a a a =-+->,解得e a >-,所以21a -<<-. (3)当2a -≥时,即2a ≤-时,()f x 在区间[]1,2上为减函数,所以min ()(2)2+ln 2f x f a ==.依题意有min ()2+ln 20f x a =>,解得2ln 2a >-,所以22ln 2a -<≤-. 综上所述,当2ln 2a >-时,函数()f x 在区间[]1,2上恒大于零.………………8分 (Ⅲ)设切点为000,ln )x x a x +(,则切线斜率01a k x =+, 切线方程为0000(ln )(1)()ay x a x x x x -+=+-. 因为切线过点(1,3)P ,则00003(ln )(1)(1)ax a x x x -+=+-. 即001(ln 1)20a x x +--=. ………………① 令1()(ln 1)2g x a x x =+-- (0)x >,则 2211(1)()()a x g x a x x x -'=-=. (1)当0a <时,在区间(0,1)上,()0g x '>, ()g x 单调递增;在区间(1,)+∞上,()0g x '<,()g x 单调递减, 所以函数()g x 的最大值为(1)20g =-<. 故方程()0g x =无解,即不存在0x 满足①式. 因此当0a <时,切线的条数为0.(2)当0a >时, 在区间(0,1)上,()0g x '<,()g x 单调递减,在区间(1,)+∞上,()0g x '>,()g x 单调递增, 所以函数()g x 的最小值为(1)20g =-<.取21+1ee ax =>,则221112()(1e 1)2e 0aag x a a a----=++--=>.故()g x 在(1,)+∞上存在唯一零点.取2-1-21e<e ax =,则221122()(1e 1)2e 24a a g x a a a a ++=--+--=--212[e 2(1)]aa a+=-+.设21(1)t t a=+>,()e 2t u t t =-,则()e 2t u t '=-. 当1t >时,()e 2e 20t u t '=->->恒成立.所以()u t 在(1,)+∞单调递增,()(1)e 20u t u >=->恒成立.所以2()0g x >. 故()g x 在(0,1)上存在唯一零点.因此当0a >时,过点P (13),存在两条切线.(3)当0a =时,()f x x =,显然不存在过点P (13),的切线.综上所述,当0a >时,过点P (13),存在两条切线;当0a ≤时,不存在过点P (13),的切线.…………………………………………………13分19.(本小题满分14分)解:(Ⅰ)由题意可知,24a =,22b =,所以22c =. 因为(2,1)P 是椭圆C 上的点,由椭圆定义得124PF PF +=.所以12PF F ∆的周长为422+. 易得椭圆的离心率2=2c e a =.………………………………………………………4分 (Ⅱ)由22220,1,42x y m x y ⎧-+=⎪⎨+=⎪⎩得2242280x mx m ++-=. 因为直线l 与椭圆C 有两个交点,并注意到直线l 不过点P ,所以22844(8)0,0.m m m ⎧-⨯->⎨≠⎩解得40m -<<或04m <<. 设11(,)A x y ,22(,)B x y ,则1222x x m +=-,21284m x x -=, 1122x m y +=,2222x m y +=. 显然直线PA 与PB 的斜率存在,设直线PA 与PB 的斜率分别为1k ,2k ,则1212121122y y k k x x --+=+-- 12211222(1)(2)(1)(2)22(2)(2)x m x m x x x x ++--+--=-- 122112(22)(2)(22)(2)2(2)(2)x m x x m x x x +--++--=-- 1212121222(4)()22422[2()2]x x m x x m x x x x +-+-+=-++ 2121222(8)(4)228216244442[2()2]m m m m x x x x ----+=-++ 2121222(8)(4)22821628[2()2]m m m m x x x x ----+=-++ 2212122216222828216208[2()2]m m m m x x x x --+-+==-++. 因为120k k +=,所以PMN PNM ∠=∠. 所以PM PN =. ………………………………………………………14分 20.(本小题满分13分)解:(Ⅰ)观察数列}{n a 的前若干项:2,5,8,11,14,17,20,23,26,29,32,35,…. 因为数列}{n a 是递增的整数数列,且等比数列以2为首项,显然最小公比不能是52,最小公比是4.(ⅰ)以2为首项,且公比最小的等比数列的前四项是2,8,32,128.(ⅱ)由(ⅰ)可知12b =,公比4q =,所以124n n b -=⋅.又31n n k n b a k ==-,所以13124,n n k n -*-=⋅∈N , 即11(241),3n n k n -*=⋅+∈N . 再证n k 为正整数.显然11k =为正整数,2n ≥时,1222111(2424)24(41)2433n n n n n n k k ------=⋅-⋅=⋅⋅-=⋅, 即2124(2)n n n k k n --=+⋅≥,故11(241),3n n k n -*=⋅+∈N 为正整数. 所以,所求通项公式为11(241),3n n k n -*=⋅+∈N . ……………………………………………………………………………6分(Ⅱ)设数列{}n c 是数列}{n a 中包含的一个无穷等比数列,且115k c a ==,22231k c a k ==-,所以公比2315k q -=.因为等比数列{}n c 各项为整数,所以q 为整数. 取252k m =+(m *∈N ),则13+=m q ,故15(31)n n c m -=⋅+.只要证15(31)n n c m -=⋅+是数列}{n a 的项,即证31n k -15(31)n m -=⋅+. 只要证11[5(31)1]3n n k m -=++()n *∈N 为正整数,显然12k =为正整数. 又2n ≥时,12215[(31)(31)]5(31)3n n n n n k k m m m m -----=+-+=+, 即215(31)n n n k k m m --=++,又因为12k =,25(31)n m m -+都是正整数,故2n ≥时,n k 也都是正整数.所以数列{}n c 是数列}{n a 中包含的无穷等比数列,其公比13+=m q 有无数个不同的取值,对应着不同的等比数列,故数列}{n a 所包含的以52=a 为首项的不同无穷等比数列有无数多个.…………………………………………………………………………………………13分。