Journal of Applied Polymer Science
高分子相关外文期刊&出版商&影响因子
Additives for Polymers《聚合物添加剂》英国ISSN:0306-3747,1971年创刊,全年12期,Elsevier Science出版社出版,选摘各国期刊和专利中有关塑料和橡胶工业新材料、产品、技术、商业动态等方面的文献和资料。
Advances in Polymer Technology《聚合物技术进展》美国ISSN:0730-6679,1981年创刊,全年4期,John Wiley出版社,SCI、EI收录期刊,SCI 2003年影响因子0.540,2003年EI收录32篇。
1981-1995年刊名为Advances in Polymer Technology 1981 - 1995,刊载反映聚合物技术进展和趋势的原始论文和评论,内容包括材料、生产和加工方法,设备和产品设计等方面,兼及技术经济研究论述、专利评介和技术快讯。
Biopolymers《生物聚合物》美国ISSN:0006-3525,1963年创刊,全年24期,John Wiley出版社,SCI、 EI收录期刊, SCI 2003年影响因子2.733,2003年EI收录70篇。
1963-1995年刊名为Biopolymers (including Peptide Science) 1963-1995,刊载生物分子的结构、特性、相互作用与集合方面的研究论文。
涉及有机与物理化学、实验与理论研究、结构的静态与动态和生物光谱学检定等。
Colloid & Polymer Science《胶体与聚合物科学》德国ISSN:0303-402X,1907年创刊,全年12 期,Springer-Verlag出版社,SCI、EI收录期刊,SCI 2002年影响因子1.182,2003年EI收录137篇。
附《胶体与聚合物科学进展》刊载胶体与聚合物的科学、技术及其应用等方面的研究论文、简讯和书评。
Biomaterials《生物材料》英国ISSN:0142-9612,1980年创刊,全年24期,Elsevier Science 出版社出版,SCI、EI收录期刊,SCI 2002年影响因子3.008。
合成树脂及应用期刊
合成树脂及应用期刊合成树脂是一种由化学反应合成得到的高分子化合物,具有良好的物理性质和化学性质,广泛应用于各个领域。
以下将介绍合成树脂及应用的一些相关期刊。
1. Polymer Journal (高分子学报)Polymer Journal是日本高分子学会旗下的一本期刊,创刊于1970年,发表高分子科学和工程方面的原创性研究论文。
该期刊涵盖了合成树脂的合成方法、表征、性质研究以及应用等领域的最新研究成果。
2. Journal of Applied Polymer Science (应用高分子科学报)Journal of Applied Polymer Science是国际知名的高分子科学期刊,创刊于1959年,每两周出版一期。
该期刊发表涉及合成树脂在各个领域的应用研究,例如聚合物复合材料、聚合物薄膜、聚合物纤维等方面的研究文章。
3. Macromolecules (大分子化学报)Macromolecules是美国化学学会旗下的一本重要期刊,创刊于1968年。
该期刊涵盖了合成树脂的合成、结构与性质研究、应用研究等领域。
该期刊在合成树脂的高分子物理和化学性质方面有重要研究贡献。
4. Polymer Chemistry (高分子化学)Polymer Chemistry是英国皇家化学学会旗下的一本期刊,创刊于2010年。
该期刊发表高分子化学和材料科学领域的高质量研究论文,包括合成树脂的设计合成、功能化修饰以及在材料科学、生物医学等方面的应用研究。
5. Journal of Polymer Science Part A: Polymer Chemistry (高分子科学A辑:高分子化学)Journal of Polymer Science Part A: Polymer Chemistry是一本由Wiley出版的期刊,创刊于1959年。
该期刊发表高分子化学领域的原创研究论文,包括合成树脂的制备、结构表征、热学、力学性能研究以及在聚合物合成、功能化修饰和纳米材料等方面的应用。
英文期刊缩写与全称对照(J)
标准文档英文期刊缩写与全称对照(J)JJ. Adhes. Journal of AdhesionJ. Adhes. Sci. Technol. Journal of Adhesion Science and Technology J. Adv. Mater. Journal of Advanced MaterialsJ. Aerosol Sci Journal of Aerosol ScienceJ. Agric. Food. Chem. Journal of Agricultural and Food ChemistryJ. Air Waste Manage. Assoc. Journal of the Air and Waste Management AssociationJ. Alloys Compd. Journal of Alloys and CompoundsJ. Am. Ceram. Soc. Journal of the American Ceramic SocietyJ. Am. Chem. Soc. Journal of the American Chemical SocietyJ. Am. Oil Chem. Soc. Journal of the American Oil Chemists Society J. Am. Soc. Brew. Chem. Journal of the American Society of Brewing ChemistsJ. Am. Soc. Mass. Spectrom. Journal of the American Society for Mass SpectrometryJ. Amer. Chem. Soc. Journal of the American Chemical SocietyJ. Anal. Appl. Pyrolysis Journal of Analytical and Applied Pyrolysis J. Anal. At. Spectrom. Journal of Analytical Atomic SpectrometryJ. Anal. Chem. Journal of Analytical ChemistryJ. Anal. Toxicol. Journal of Analytical ToxicologyJ. Antibiot. Journal of AntibioticsJ. Antimicrob. Chemother. Journal of Antimicrobial ChemotherapyJ. AOAC Int. Journal of AOAC InternationalJ. Appl. Bacteriol. Journal of Applied BacteriologyJ. Appl. Biomater. Journal of Applied BiomaterialsJ. Appl. Crystallogr. Journal of Applied CrystallographyJ. Appl. Electrochem. Journal of Applied ElectrochemistryJ. Appl. Phycol. Journal of Applied PhycologyJ. Appl. Phys. Journal of Applied PhysicsJ. Appl. Polym. Sci. Journal of Applied Polymer ScienceJ. Appl. Spectrosc. Journal of Applied SpectroscopyJ. Appl. Toxicol. Journal of Applied ToxicologyJ. Asian Nat. Prod. Res. Journal of Asian Natural Products Research J. Autom. Chem. Journal of Automatic ChemistryJ. Autom. Methods Manage. Chem. Journal of Automated Methods & Management in ChemistryJ. Bacteriol. Journal of BacteriologyJ. Bioact. Compat. Polym. Journal of Bioactive and Bompatible Polymers J. Biochem. Journal of BiochemistryJ. Biochem. Bioph. Methods Journal of Biochemical and Biophysical MethodsJ. Biol. Chem. Journal of Biological ChemistryJ. Biol. Inorg. Chem. Journal of Biological Inorganic ChemistryJ. Biolumin. Chemilumin. Journal of Bioluminescence and ChemiluminescenceJ. Biomater. Appl. Journal of Biomaterials ApplicationsJ. Biomater. Sci., Polym. Ed. Journal of Biomaterials Science Polymer EditionJ. Biomed. Mater. Res. Journal of Biomedial Materials ResearchJ. Biomol. NMR Journal of Biomolecular NMRJ. Biomol. Struct. Dyn. Journal of Biomolecular Structure and Dynamics J. Biotechnol. Journal of BiotechnologyJ. Can. Pet. Technol. Journal of Canadian Petroleum Technology J. Carbohydr. Chem. Journal of Carbohydrate ChemistryJ. Cardiovasc. Pharmacol. Journal of Cardiovascular PharmacologyJ. Catal. Journal of CatalysisJ. Cell. Biochem. Journal of Cellular BiochemistryJ. Cell Biol. Journal of Cell BiologyJ. Cell. Physiol. Journal of Cellular PhysiologyJ. Cell Sci. Journal of Cell ScienceJ. Ceram. Soc. Jpn. Journal of the Ceramic Society of JapanJ. Chem. Crystallogr. Journal of Chemical CrystallographyJ. Chem. Ecol. Journal of Chemical EcologyJ. Chem. Educ. Journal of Chemical EducationJ. Chem. Eng. Data Journal of Chemical and Engineering DataJ. Chem. Eng. Jpn. Journal of Chemical Engineering of JapanJ. Chem. Inf. Comput. Sci. Journal of Chemical Information and Computer ScienceJ. Chem. Neuroanat. Journal of Chemical NeuroanatomyJ. Chem. Phys. Journal of Chemical PhysicsJ. Chem. Res., Synop . Journal of Chemical Research SynopsisJ. Chem. Soc. Journal of the Chemical SocietyJ. Chem. Soc. Pak. Journal of the Chemical Society of PakistanJ. Chem. Soc., Chem. Commun. Journal of the Chemical Society, Chemical CommunicationsJ. Chem. Soc., Dalton Trans. Journal of the Chemical Society, Dalton TransactionsJ. Chem. Soc., Faraday Trans. Journal of the Chemical Society, Faraday TransactionsJ. Chem. Soc., Perkin Trans. 1 Journal of the Chemical Society, PerkinTransactions 1J. Chem. Soc., Perkin Trans. 2 Journal of the Chemical Society, Perkin Transactions 2J. Chem. Technol. Biotechnol. Journal of Chemical Technology and BiotechnologyJ. Chem. Thermodyn. Journal of Chemical ThermodynamicsJ. Chemom. Journal of ChemometricsJ. Chim. Phys. Phys.- Chim. Biol. Journal de Chimie Physique et de Physico-Chimie BiologiqueJ. Chin. Chem. Soc. Journal of the Chinese Chemical SocietyJ. Chin. Inst. Chem. Eng, Journal of the Chinese Institute of Chemical EngineersJ. Chromatogr. Journal of ChromatographyJ. Chromatogr. A Journal of Chromatography AJ. Chromatogr. B Journal of Chromatography BJ. Chromatogr. Sci. Journal of Chromatographic ScienceJ. Clin. Endocrinol. Metab. Journal of Clinical Endocrinology and MetabolismJ. Clin. Microbiol. Journal of Clinical MicrobiologyJ. Cluster Sci. Journal of Cluster ScienceJ. Coat. Technol. Journal of Coatings TechnologyJ. Colloid Interface Sci. Journal of Colloid and Interface Science J. Comb. Chem. Journal of Combinatorial ChemistryJ. Compos. Mater. Journal of Composite MaterialsJ. Compos. Tech. Res. Journal of Composites Technology and Research J. Comput. Aided Mater. Des. Journal of Computer-Aided Materials Design J. Comput. Aided Mol. Des. Journal of Computer-Aided Molecular Design J. Comput. Chem. Journal of Computational ChemistryJ. Contam. Hydrol. Journal of Contaminant HydrologyJ. Controlled Release Journal of Controlled ReleaseJ. Coord. Chem. Journal of Coordination ChemistryJ. Cryst. Growth Journal of Crystal GrowthJ. Dairy Sci. Journal of Dairy ScienceJ. Dispersion Sci. Technol. Journal of Dispersion Science and Technology J. Elastomers Plast. Journal of Elastomers and PlasticsJ. Electroanal. Chem. Journal of Electroanalytical ChemistryJ. Electroceram. Journal of ElectroceramicsJ. Electrochem. Soc. Journal of the Electrochemical SocietyJ. Electron. Mater. Journal of Electronic MaterialsJ. Electron Microsc. Journal of Electron MicroscopyJ. Electron. Spectrosc. Relat. Phenom. Journal of Electron Spectroscopy and Related PhenomenaJ. Endocrinol. Journal of EndocrinologyJ. Endotoxin Res. Journal of Endotoxin ResearchJ. Eng. Mater. Technol. Journal of Engineering Materials and Technology J. Environ. Biol. Journal of Environment biologyJ. Environ. Eng. Journal of Environment EngineeringJ. Environ. Health Journal of Environment HealthJ. Environ. Manage. Journal of Environment ManagementJ. Environ. Monit. Journal of Environmental MonitoringJ. Environ. Qual. Journal of Environment QualityJ. Environ. Radioact. Journal of Environment RadioactivityJ. Environ. Sci. Health., Part A Journal of Environment Science and Health, Part A Environmental ScienceJ. Environ. Sci. Health., Part B Journal of Environment Science and Health, Part B PesticidesJ. Enzym Inhib. Journal of Enzyme InhibitionJ. Essent. Oil Res. Journal of Essential Oil ResearchJ. Ethnopharmacol. Journal of EthnopharmacologyJ. Eur. Ceram. Soc. Journal of the European Ceramic SocietyJ. Exp. Biol. Journal of Experimental BiologyJ. Exp. Bot. Journal of Experimental BotanyJ. Exposure Anal. Environ. Epidemiol. Journal of Exposure Analysis and Environment EpidemiologyJ. Ferment. Bioeng. Journal of Fermentation and BioengineeringJ. Fire Sci. Journal of Fire SciencesJ. Fluid Mech. Journal of Fluid MechanicsJ. Fluids Eng. Journal of Fluids EngineeringJ. Fluorine Chem. Journal of Fluorine ChemistryJ. Food Biochem. Journal of Food BiochemistryJ. Food Eng. Journal of Food EngineeringJ. Food Lipids Journal of Food LipidsJ. Food Prot. Journal of Food ProtectionJ. Food Sci. Journal of Food ScienceJ. Gen. Appl. Microbiol. Journal of General and Applied Microbiology J. Gen. Microbiol. Journal of General MicrobiologyJ. Hazard. Mater. Journal of Hazardous materialsJ. Heat Transfer Journal of Heat TransferJ. Heterocycl. Chem. Journal of Heterocyclic ChemistryJ. High. Resolut. Chromatogr. Journal of High Resolution Chromatography J. Histochem. Cytochem. Journal of Histochemistry and Cytochemistry J. Hypertens. Journal of HypertensionJ. Imaging Sci. Technol. Journal of Imaging Science and Technology J. Inclusion Phenom. Mol. Recognit. Chem. Journal of Inclusion Phenomena and Molecular Recognition in ChemistryJ. Ind. Microbiol. Journal of Industrial MicrobiologyJ. Indian Chem. Soc. Journal of the Indian Chemical SocietyJ. Ind. Microbiol. Biotechnol. Journal of Industrial Microbiology and BiotechnologyJ. Inorg. Biochem. Journal of Inorganic BiochemistryJ. Inorg. Nucl. Chem. Journal of Inorganic and Nuclear ChemistryJ. Inorg. Organomet. Polym. Journal of Inorganic and Organometallic PolymersJ. Inst. Chem. Journal of Institute of Chemists (India)J. Inst. Environ. Sci. Journal of the Institute of Environment Sciences J. Inst. Water Environ. Manage. Journal of the Institution of Water and Environment ManagementJ. Intell. Mater. Syst. Struct. Journal of Intelligent Material Systems and StructuresJ. Interferon Cytokine Res. Journal of Interferon and Cytokine Research J. Interferon Res. Journal of Interferon ResearchJ. Jpn. Inst. Met. Journal of the Japan Institute of MetalsJ. Korean Chem. Soc. Journal of the Korean Chemical SocietyJ. Labelled Compd. Radiopharm. Journal of Labelled Compounds and RadiopharmaceuticalsJ. Lipid Mediators Journal of Lipid MediatorsJ. Lipid Mediators Cell Signalling Journal of Lipid Mediators and Cell SignallingJ. Lipid Res. Journal of Lipid ResearchJ. Liq. Chromatogr. Journal of Liquid ChromatographyJ. Liq. Chromatogr. Related Technol. Journal of Liquid Chromatography and Related TechnologiesJ. Low Temp. Phys. Journal of Low Temperature PhysicsJ. Lumin. Journal of LuminescenceJ. Macromol. Sci., Phys. Journal of Macromolecular Science - Physics J. Macromol. Sci., Polym. Rev. Journal of Macromolecular Science Polymer ReviewsJ. Macromol. Sci., Pure Appl. Chem. Journal of Macromolecular Science Pure and Applied ChemistryJ. Macromol. Sci., Rev. Macromol. Chem. Phys. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and PhysicsJ. Magn. Magn. Mater. Journal of Magnetism and Magnetic Materials J. Magn. Reson., Ser A Journal of Magnetic Resonance Series AJ. Magn. Reson., Ser B Journal of Magnetic Resonance Series BJ. Mass Spectrom. Journal of Mass SpectrometryJ. Mater. Chem. Journal of Materials ChemistryJ. Mater. Civ. Eng. Journal of Materials in Civil EngineeringJ. Mater. Cycles Waste Manage. Journal of Material Cycles and Waste ManagementJ. Mater. Eng. Perform. Journal of Materials Engineering and Performance J. Mater. Process. Manuf. Sci. Journal of Materials Processing and Manufacturing ScienceJ. Mater. Process. Technol. Journal of Materials Processing Technology J. Mater. Res. Journal of Materials ResearchJ. Mater. Sci. Lett. Journal of Materials Science LettersJ. Mater. Sci. - Mater. Electron. Journal of Materials Science - Materials in ElectronicsJ. Mater. Sci. - Mater. Med. Journal of Materials Science Materials in MedicineJ. Mater. Sci. Technol. Journal of Materials Science and Technology J. Mater. Synth. Process. Journal of Materials Synthesis and Processing J. Math. Chem. Journal of Mathematical ChemistryJ. Med. Chem. Journal of Medicinal ChemistryJ. Membr. Biol. Journal of Membrane BiologyJ. Membr. Sci. Journal of Membrance ScienceJ. Microbiol. Biotechnol. Journal of Microbiology and Biotechnology J. Microbiol. Methods Journal of Microbiological MethodsJ. Microcolumn Sep. Journal of Microcolumn SeparationsJ. Microelectromech. Syst. Journal of Microelectronic SystemsJ. Microencapsulation Journal of MicroencapsulationJ. Mol. Biol. Journal of Molecular BiologyJ. Mol. Catal. Journal of Molecular CatalysisJ. Mol. Catal. A: Chem. Journal of Molecular Catalysis A: Chemical J. Mol. Catal. B: Enzym. Journal of Molecular Catalysis B: Enzymatic J. Mol. Graphics Modell. Journal of Molecular Graphics and Modelling J. Mol. Liq. Journal of Molecular LiquidsJ. Mol. Microbiol. Biotechnol. Journal of Molecular Microbiology and BiotechnologyJ. Mol. Model. Journal of Molecular ModelingJ. Mol. Spectrosc. Journal of Molecular SpectroscopyJ. Mol. Struct. Journal of Molecular StructureJ. Nanopart. Res. Journal of Nanoparticle ResearchJ. Nat. Prod. Journal of Natural ProductsJ. Near Infrared Spectrosc. Journal of Near Infrared Spectroscopy J. Neurochem. Journal of NeurochemistryJ. Neurosci. Journal of NeuroscienceJ. Neurosci. Res. Journal of Neuroscience ResearchJ. New Mater. Electrochem. Syst. Journal of New Materials for Electrochemical SystemsJ. Non-Cryst. Solids Journal of Non-Crystalline SolidsJ. Non-Equilib. Thermodyn. Journal of Non-Equilibrium Thermodynamics J. Nucl. Mater. Journal of Nuclear MaterialsJ. Nucl. Sci. Technol. Journal of Nuclear Science and TechnologyJ. Opt. Soc. Am. B: Opt. Phys. Journal of the Optical Society of America B: Optical PhysicsJ. Org. Chem. Journal of Organic ChemistryJ. Organomet. Chem. Journal of Organometallic ChemistryJ. Pet. Sci. Technol. Journal of Petroleum Science and Technology J. Pharm. Biomed. Anal. Journal of Pharmaceutical and Biomedical AnalysisJ. Pharm. Pharmacol. Journal of Pharmacy and PharmacologyJ. Pharm. Sci. Journal of Pharmaceutical SciencesJ. Pharmacol. Exp. Ther. Journal of Pharmacology and Experimental TherapeuticsJ. Pharmacol. Toxicol. Methods Journal of Pharmacological and Toxicological MethodsJ. Phase Equilib. Journal of Phase EquilibriumJ. Photochem. Photobiol., A Journal of Photochemistry and Photobiology AJ. Photochem. Photobiol., B Journal of Photochemistry and Photobiology BJ. Photopolym. Sci. Technol. Journal of Photopolymer Science and TechnologyJ. Phys. A: Math. Gen. Journal of Physics A: Mathematical and General J. Phys. B: At., Mol. Opt. Phys. Journal of Physics B: Atomic Molecular and Optical PhysicsJ. Phys. Chem. Journal of Physical ChemistryJ. Phys. Chem. A Journal of Physical Chemistry AJ. Phys. Chem. B Journal of Physical Chemistry BJ. Phys. Chem. Ref. Data Journal of Physical and Chemical Reference Data J. Phys. Chem. Solids Journal of Physics and Chemistry of SolidsJ. Phys. D: Appl. Phys. Journal of Physics D: Applied PhysicsJ. Phys. G: Nucl. Part. Phys. Journal of Physics G: Nuclear and Particle PhysicsJ. Phys. I Journal de Physique IJ. Phys. II Journal de Physique IIJ. Phys. III Journal de Physique IIIJ. Phys. IV Journal de Physique IVJ. Phys. Org. Chem. Journal of Physical Organic ChemistryJ. Phys. Soc. Jpn. Journal of the Physical Society of JapanJ. Phys.: Condens. Matter Journal of Physics: Condensed MatterJ. Planar. Chromatogr. - Mod. TLC Journal of Planar Chromatography - Modern TLCJ. Plant Biochem. Biotechnol. Journal of Plant Biochemistry and BiotechnologyJ. Polym. Eng. Journal of Polymer EngineeringJ. Polym. Environ. Journal of Polymers and the EnvironmentJ. Polym. Mater. Journal of Polymer MaterialsJ. Polym. Sci., Part A: Polym. Chem. Journal of Polymer Science Part A: Polymer ChemistryJ. Polym. Sci., Part B: Polym. Phys. Journal of Polymer Science Part B: Polymer PhysicsJ. Porous Mater. Journal of Porous MaterialsJ. Porphyrins Phthalocyanines Journal of Porphyrins and Phthalocyanines J. Power Sources Journal of Power SourcesJ. Prakt. Chem. /Chem-Ztg Journal fur Praktische Chemie - Chemiker ZeitungJ. Propul. Power Journal of Propulsion and PowerJ. Protein Chem. Journal of Protein ChemistryJ. Pulp Pap. Sci. Journal of Pulp and Paper ScienceJ. Quant. Spectrosc. Radiat. Transfer Journal of Quantitative Spectroscopy and Radiative TransferJ. Radioanal. Nucl. Chem. Journal of Radioanalytical and Nuclear ChemistryJ. Radioanal. Nucl. Chem. Art. Journal of Radioanalytical and Nuclear Chemistry ArticlesJ. Radioanal. Nucl. Chem. Lett. Journal of Radioanalytical and Nuclear Chemistry LettersJ. Raman Spectrosc. Journal of Raman SpecroscopyJ. Rapid Methods Autom. Microbiol. Journal of Rapid Methods and Automation in MicrobiologyJ. Reinf. Plast. Compos. Journal of Reinforced Plastics and Composites J. Rheol. Journal of RheologyJ. S. Afr. Inst. Min. Metall. Journal of the South African Institute of Mining and MetallurgyJ. Sci. Food Agric. Journal of the Science of Food and Agriculture J. Sci. Ind. Res. Journal of Scientific and Industrial ResearchJ. Serb. Chem. Soc. Journal of the Serbian Chemical SocietyJ. Sep. Sci. Journal of Separation ScienceJ. Sol-Gel Sci. Technol. Journal of Sol-Gel Science and Technology J. Solid State Chem. Journal of Solid State ChemistryJ. Solid State Electrochem. Journal of Solid State Electrochemistry J. Solution Chem. Journal of Solution ChemistryJ. Steroid Biochem. Mol. Biol. Journal of Steroid Biochemistry and Molecular BiologyJ. Strain Anal. Eng. Des. Journal of Strain Analysis for Engineering DesignJ. Struct. Chem. Journal of Structural ChemistryJ. Supercrit. Fluids Journal of Supercritical FluidsJ. Synth. Org. Chem Jpn. Journal of Synthetic Organic Chemistry, Japan J. Test. Eval. Journal of Testing and EvaluationJ. Therm. Anal. Journal of Thermal AnalysisJ. Therm. Anal. Calorim. Journal of Thermal Analysis and Calorimetry J. Therm. Spray Technol. Journal of Thermal Spray TechnologyJ. Thermophys Heat Transfer Journal of Thermophysics and Heat Transfer J. Thermoplast. Compos. Mater. Journal of Thermoplastic Composite MaterialsJ. Toxicol. Environ. Health Journal of Toxicology and Environment Health J. Toxicol., Clin. Toxicol. Journal of Toxicology - Clinical Toxicology J. Toxicol., Cutaneous Ocul. Toxicol. Journal of Toxicology - Cutaneous and Ocular ToxicologyJ. Toxicol., Toxin Rev. Journal of Toxicology - Toxin ReviewsJ. Trace Elem. Exp. Med. Journal of Trace Elements in Experimental MedicineJ. Trace Elem. Med Biol. Journal of Trace Elements in Medicine and BiologyJ. Trace Microprobe Tech. Journal of Trace and Microprobe Techniques J. Vac. Sci. Technol., A Journal of Vacuum Science and Technology A J. Vac. Sci. Technol., B Journal of Vacuum Science and Technology B J. Wood Chem. Technol. Journal of Wood Chemistry and TechnologyJACS Journal of the American Chemical SocietyJOM JOM Journal of the Minerals Metals and Materials SocietyJPC J. Planar Chromatogr. - Mod. TLC JPC Journal of Planar Chromatography Modern TLCJpn. J. Appl. Phys., Part 1 Japanese Journal of Applied Physics Part 1Jpn. J. Appl. Phys., Part 2 Japanese Journal of Applied Physics Part 2Jpn. J. Cancer Res. Japanese Journal of Cancer ResearchJpn. J. Pharmacol. Japanese Journal of PharmacologyJpn. J. Toxicol. Environ. Health Japanese Journal of toxicology and Environment healthJSME Int J., Ser. A JSME International Journal Series A: Mechanics and Material EngineeringJSME Int J., Ser. B JSME International Journal Series B: Fluids and Thermal EngineeringJSME Int J., Ser. C JSME International Journal Series C: Mechanical Systems Machine Elements and Manufacturing。
Journal of applied polymer science
A carbazole–triphenylamine copolymer-bearing pendant europium complexes:Synthesis and luminescence propertiesYuxia Jin,1,2Weiwei Zuo,1Hongyan Gao,1Linfeng Fu,1Yingliang Liu,1Wenbo Wu,1Shengang Xu,1 Shaokui Cao11School of Materials Science and Engineering,Zhengzhou University,Zhengzhou Henan Province,People’s Republic of China2School of Materials Engineering,Zhengzhou Technical College,Zhengzhou Henan Province,People’s Republic of China Correspondence to:S.Xu(E-mail:xusg@)and S.Cao(E-mail:caoshaokui@)ABSTRACT:A novel carbazole–triphenylamine copolymer-bearing pendant bipyridine PM1TPA and corresponding europium(III) complexed polymer PM1TPA–Eu–x,in which the values of x are0.1,0.5,and1.0representing the molar ratio of bipyridine ligands complexed with Eu(III),were designed and synthesized.Their chemical structures were confirmed by1H NMR,FT-IR,and elemental analysis.Both PM1TPA and PM1TPA–Eu shows good solubility in common organic solvents such as tetrahydrofuran(THF)and CHCl3.The5%weight loss temperature(T d5%)of PM1TPA and PM1TPA–Eu–1.0are363o C and306o C,respectively.The photolumi-nescence(PL)spectra of PM1TPA–Eu in solution consists of two emission bands,one in the400–570nm region and another at 612nm,corresponding to the emission of polymer main chain and europium complexes,respectively.When the concentration of PM1TPA–Eu–1.0in THF solution increases,the PL intensity in the400–570nm regions became more and more weaker.And only the characteristic emission of europium complex was observed in the solid film,which indicates that the excited energy absorbed by the polymer backbone was efficiently transferred to the europium complexes.Furthermore,nearly monochromatic red electrolumines-cence from europium complex was observed from the polymeric light-emitting diode using PM1TPA–Eu–1.0as the emissive layer under25V forward bias.V C2015Wiley Periodicals,Inc.J.Appl.Polym.Sci.2015,132,42746.KEYWORDS:copolymers;optical properties;thermal propertiesReceived7April2015;accepted18July2015DOI:10.1002/app.42746INTRODUCTIONLanthanide ions(Ln(III))and their complexes are excellent chromophores because of their excellent luminescent properties such as narrow emission bands and long radiative lifetimes.1 These special characters render their usage for extensive applica-tions such as light-emitting diodes(LEDs),optical communica-tions,luminescent probes for analyses,and bioanalytical sensors.2,3However,the f–f transitions that result in the emis-sion of light from the lanthanide ions in the visible and near-infrared(NIR)regions of the spectrum are spin and parity-forbidden,requiring the use of antenna molecules to indirectly excite the metal center.In order to overcome these problems, the so-called antenna ligands which chelate to lanthanide ions have been developed.These antenna ligands can absorb and transfer energy efficiently to the central metal,and the lantha-nide complex display the metal-to-ligand charge transfer (MLCT)emission.The antenna ligands may be small molecules, polymer backbones,or small molecules that have been incorpo-rated into the polymer backbone.4,5So far most of the small-molecule europium complexes with important b-diketone antenna ligands such as Eu(DBM)3Phen, Eu(DBM)3Bath,Eu(DBM)3TPIP exhibit intense PL,6–8and were used as red light-emitting materials for OLEDs.However,to prepare LED devices,low-molecular-weight europium com-plexes have to be fabricated into thin solid films by high-cost techniques such as vapor deposition,which could limit its prac-tical application in a large degree.After the europium com-plexes are doped into polymer matrices,the polymeric light-emitting diodes(PLEDs)9–12can be prepared by spin-coating method.But the doping technique always leads to concentration quenching and phase separation,which are the main factors affecting the performance of PLEDs.13Hence,to incorporate the europium complexes into a polymer main chain or side chain through covalent linkages would be a preferable option. Up to now,a number of nonconjugated14–17and conjugated18,19 polymers containing europium complexes have been reported. The europium(III)center is either tethered to the polymer backbone by a saturated organic linker,covalently coupled toV C2015Wiley Periodicals,Inc.the backbone,or directly incorporated into the polymer back-bone,respectively.The europium complexes could be dispersed evenly around the polymer chains,and the concentration quenching and phase separation could be effectively avoided,18,20which is very important for optical application. Interestingly,when the europium complex is tethered to the polymer chain via an electronically insulating organic linker, they have virtually the same electronic,optical,and chemical properties as the uncoupled complexes.17,18For example,Pei et al.18designed and synthesized a fluorene–phenylene conju-gated polymer with a bipyridyl moiety at the side chain directly coordinating with Eu(III)chelates(b-diketone)to afford lumi-nescent lanthanide-containing metallopolymers.Under the irra-diation of UV light,the efficient F€o rster energy transfer processes from the backbone of the blue emitting conjugated polymer to the Eu(III)center happened both in solution and in ing this europium-containing polymer as luminescent materials,the corresponding PLEDs emitted pure red mono-chromic characteristic emission of europium complexes.Reddy and colleagues21reported a carboxylic functionalized poly(m-phenylenevinylene)containing two kinds of lanthanide com-plexes emitted white PL in solid state when the Eu(III)and Tb(III)of b-diketonate complexes were tethered to the polymer backbone in an equimolar ratio.Herein,a novel carbazole–triphenylamine conjugated polymer-bearing pendant europium complex via a flexible linkage, PM1TPA–Eu(as shown in Scheme1),was designed and synthe-sized.As the charge transport balance is very important in PLEDs device,carbazole and triphenylamine units are used to improve the hole-transporting ability18,22of the metallopoly-mers.As the europium complexes were linked to the conjugated main chain via an“inert”flexible spacer,both the conjugated main chain and the europium complex might emit light inde-pendently,and the PL of PM1TPA–Eu should probably be like that of the blends of PM1TPA and Eu-bpy.Therefore,the reported PM1TPA–Eu complex may not only inherit the good charge transferability of the conjugated polymer main chains, but also present the inherent sharp red emission of europium complexes.The PL properties of PM1TPA–Eu were invested both in solution and in solid state.The primary electrolumines-cence(EL)properties of PM1TPA–Eu were also invested. EXPERIMENTALMaterials4,40-Dimethyl-2,20-bipyridine and EuCl3Á6H2O were purchased from Acros.Monomer M1was firstly synthesized in our group, and the synthetic procedure has been reported elsewhere.234-Hydroxymethyl-40-methyl-2,20-bipyridine(BPY-OH)24and monomer M225were synthesized according to the literature procedures.All other materials were used as received except the solvent THF was dried over and distilled from calcium hydride under dry nitrogen atmosphere.InstrumentsMelting point was measured with a WRS-1B melting point apparatus.1H NMR spectra were recorded on a Bruker DRX-400(400MHz)NMR spectrometer using CDCl3as solvent.FT-IR spectra were conducted with a Nicolet Prot e g e460infrared spectrometer on KBr discs.Elemental analyses were carriedout Scheme1.Synthetic routes of PM1TPA,PM1TPA–Eu–x(x50.1,0.5,and1.0),and Eu-bpy.on an EA1110CHNSO elemental analysis system.Gel permea-tion chromatography(GPC)analysis was performed on HLC-8220liquid chromatograph calibrated with polystyrene stand-ards using THF as eluent.Thermogravimetric analysis(TGA) was determined by a NETZSCH TG209calorimeter at a heat-ing rate of10o C min21with a nitrogen flow from room tem-perature to600o C.Differential scanning calorimetry(DSC)was carried out with a NETZSCH DSC204at a heating rate of 10o C min21from20o C to250o C under a nitrogen atmosphere. UV–visible absorption spectra were obtained on a Shimadzu UV-3010instrument.The fluorescence spectra were collected on a PTI-QM40-Laser-NIR luminescence spectrometer. SynthesisSynthesis of PM1TPA.M1(0.607g,1.00mmol),M2(0.625g, 1.00mmol),tetrabutylammonium bromide(0.200g),and tetra-kis(triphenylphosphine)palladium(28mg)were mixed in a Schlenk tube under an argon atmosphere.THF(20mL)was added and the mixture was degassed by three freeze-pump thaw cycles.Cesium carbonate aqueous solution(2.0g in3mL water)was added,and the mixture was heated at60o C for5 days.Then the end groups were capped by refluxing for12h with phenylboronic acid(0.085g,0.70mmol)and for another 12h with bromobenzene(0.157g,1.00mmol),sequentially. Then the reaction mixture was poured into methanol to induce precipitation,and the resulting solid was collected by filtration. The polymer was dissolved in THF and reprecipitated from methanol for three times,and finally dried in vacuum oven overnight.The resultant polymer was obtained as a white pow-der(0.697g,yield:82.1%).1H NMR(400MHz,CDCl3,d, ppm):8.75–6.75(ArH),4.69–4.52(Ar–CH2O–),4.43–4.17(car-bazole–NCH2–),3.92–3.71(triphenylamine–OCH2–),3.61–3.40 (–CH2O–), 2.63–2.42(Ar–CH3), 2.02–1.18(–CH2–,–CH–), 1.02–0.81(–CH3).GPC:M w56.673103,polydispersity index (PDI)51.78.Anal.Calcd for[C56H60N4O2]:C,81.91;H,7.37; N,6.82.Found:C,82.42;H,7.73;N,6.80.Synthesis of PM1TPA–Eu–1.0.To a solution of DBM(0.67g,3 mmol)in20mL THF,aqueous NaOH(1mol/L)was added care-fully to control the pH value in the range of7.0–8.0,and then followed by5mL ethanol solution containing EuCl3Á6H2O (0.37g,1.0mmol).After the reaction mixture was stirred at 60o C for2h,PM1TPA(0.62g,0.75mmol repeating units)was added,followed by heating under nitrogen for24h.Then the mixture was dropped into methanol,and the solid was extracted with a mixed solvent of methanol and acetone(1/1,v/v)in a Soxhlet extractor for2days.The final product was dried in vac-uum oven overnight to obtain a light yellow powder.(0.52g, yield:57%).IR(KBr disc):m(C5N):1602cm21,m(C5O-Eu): 1553cm21,m(C5C):1514cm21,m(C–O–Eu):1402cm21,m (Eu–N):728cm21,m(Eu–O):513cm21.GPC:M w512.503 103,PDI52.04.Anal.Calcd for[C101H93N4O8Eu]:C,73.84;H, 5.71;N,3.41.Found:C,74.03;H,5.91;N,4.01.Synthesis of PM1TPA–Eu–0.5.The synthetic procedure is same as that of PM1TPA–Eu–1.0.DBM(0.335g, 1.50mmol), EuCl3Á6H2O(0.185g,0.50mmol),and PM1TPA(0.821g,1.00 mmol)were charged for the reaction.Light yellow powder(0.78g, yield:61%).IR(KBr disc):m(C5N):1607cm21,m(C5O–Eu):1550cm21,m(C5C):1518cm21,m(C–O–Eu):1404cm21,m(Eu–N):728cm21,m(Eu–O):513cm21.GPC:M w58.973103, PDI51.87.Anal.Calcd for[C78.5H76.5N4O5Eu0.5]:C,76.59;H, 6.18;N,4.55.Found:C,76.87;H,6.33;N,4.71.Synthesis of PM1TPA–Eu–0.1.The synthetic procedure is same as that of PM1TPA–Eu–1.0.DBM(0.067g,0.30mmol), EuCl3Á6H2O(0.037g,0.10mmol),and PM1TPA(0.821g,1.00 mmol)were charged for the reaction.Light yellow powder (0.606g,yield:66%).IR(KBr disc):m(C5N):1607cm21,m (C5O–Eu):1550cm21,m(C5C):1518cm21,m(C–O–Eu): 1404cm21,m(Eu–N):728cm21,m(Eu–O):513cm21.GPC: M w57.123103,PDI51.74.Anal.Calcd for[C60.5H63.3N4 O2.6Eu0.1]:C,80.61;H,6.88;N,6.22.Found:C,80.17;H,6.57; N,6.38.Synthesis of Eu-bpy.Eu-bpy was synthesized following the lit-erature procedures.26To a solution of DBM(0.403g, 1.80 mmol)and BPY-OH(0.120g,0.60mmol)in20mL ethanol, 3mL aqueous NaOH(0.072g,1.80mmol)was added followed by an ethanol solution containing EuCl3Á6H2O(0.220g,0.60 mmol).The reaction mixture was stirred at60o C for5h and yellow precipitate was formed.The product was washed for sev-eral times with deionized water and ethanol,and dried in vac-uum at80o C for24h.Eu-bpy was obtained as a yellow powder (0.510g,yield:83.1%).M p:252–255o C.IR(KBr disc):m(C5N): 1607cm21,m(C5O–Eu):1550cm21,m(C5C):1518cm21, m(Eu-N):728cm21,m(Eu–O):513cm21.Anal.Calcd for [C57H45EuN2O7]:C,66.99;H,4.44;N,2.74.Found:C,66.18; H,4.47;N,2.69.Fabrication of EL Devices.Poly(3,4-ethylenedioxithiophene)/ poly(styrene sulfonate)(PEDOT:PSS,40nm)films(Bayer Cor-poration)were deposited by spin-coating onto a patterned indium tin oxide(ITO)glass substrate(10X sq21)and dried at 110o C for30min.A CHCl3solution of polymer PM1TPA–Eu–1.(6mg mL21)was filtered and deposited by spin-coating at 1500rpm over the PEDOT:PSS layer under dry nitrogen envi-ronment.The polymer film thickness was about40nm thick.A LiF layer(1nm thickness)was deposited on the top of elec-tronic transport layer(TPBI,20nm)by Thermal Evaporator System(ZHD-400)at431024Pa,followed by about120nm aluminum layer as cathode on the top of the device.The final configuration of the device was ITO/PEDOT:PSS(40nm)/ PM1TPA–Eu–x(40nm)/TPBI(20nm)/LiF(1nm)/Al (120nm).Device characteristics were measured by Keithley 2400and PR715.All processes and measurements were carried out under atmosphere.RESULTS AND DISCUSSIONSynthesisThe monomer M1is a dibromo-carbazole linked with a bipyri-dine group via a flexible spacer.As shown in Scheme1,the conjugated polymer-bearing pendant bipyridine groups PM1TPA was prepared by Suzuki polycondensation between the dibromo-monomer M1and the diborate monomer M2.Mono-functional bromobenzene and phenylboronic acid were used as the end capping regents for the polymers.Figure1shows the 1H NMR spectra of monomer M1,M2,and PM1TPA in CDCl3.In the range of 0.80–4.60ppm,the chemical shifts of PM1TPA were similar with those of monomers M1and M2.The content of related monomer units in the copolymer could be calculated from the integration ratios of the peaks at 4.60ppm (bipyridine–CH 2–,marked m in Figure 1)and 3.85ppm (isooctyl–CH 2–,marked n in Figure 1).The value of m/n was about 1for the polymer PM1TPA ,which indicated that the designed polymer was successfully synthesized.Furthermore,all the proton signals in PM1TPA showed a tendency for signal broadening due to polymerization.In addition,the elemental analysis result of PM1TPA was consistent with its calculated value,which further confirmed the successful polymerization.The weight-average molecular weight (M w )and PDI)of PM1TPA measured by GPC using THF as eluent calibrated with polystyrene standard were 6670and 1.78,which are consistent with those polymers synthe-sized through Suzuki polycondensation using tetrakis(triphenyl-phosphine)palladium as catalyst in literatures.27–29PM1TPA–Eu–x was synthesized by adding DBM and PM1TPA in sequence to the THF solution of EuCl 3Á6H 2O.Then the crude product was extracted in a Soxhlet extractor to remove unreacted small molecules.When the molar ratio of chelate ligand bipyridine of PM1TPA to EuCl 3Á6H 2O is 0.1,0.5,and 1.0,the corresponding europium (III)complexed polymers are named as PM1TPA–Eu–x ,in which the values of x are 0.1,0.5,and 1.0representing the molar percentage of bipyridine ligands complexed with Eu(III).PM1TPA–Eu–x shows good solubility in common organic solvents such as CH 2Cl 2,CHCl 3,and THF,indicating that the interchain crosslinking of macromolecular ligands PM1TPA have been successfully avoided by this one-pot postfunctionalization method.As shown in Figure 2,in comparison with the metal-free poly-mer PM1TPA ,some new strong absorptions appeared at approximately 1553cm 21,1402cm 21,and 728cm 21in FT-IR spectrum of PM1TPA–Eu–x .These bands could be ascribed tothe stretching vibrations of C 5O–Eu,C–O–Eu,and N–Eu groups in the europium complex,illustrating the successful introduction of the europium complexes onto the pendant bipyridine groups in PM1TPA .Furthermore,all the elemental analysis results of PM1TPA–Eu–x (x 50.1,0.5,and 1.0)were very close to their theoretical values,indicating that all the added Eu(III)ions have been completely complexed with the bipyridine ligands in the ligand polymers PM1TPA .Thermal StabilityThe thermal stabilities of PM1TPA–Eu–x (x 50.1,0.5,and 1.0),PM1TPA,and Eu-bpy were evaluated by TGA under nitrogen atmosphere,and the results are shown in Figure 3(a).The 5%weight loss temperature (T d 5%)of PM1TPA-Eu-x (x 50.1,0.5,and 1.0)is in the range of 306–349o C,which was higher than that (292o C)of the model compound (Eu-bpy )and lowerthanFigure 1.1H NMR spectra of monomer M1,M2,and PM1TPA in CDCl 3.Figure 2.FT-IR spectra of PM1TPA–Eu–x ,PM1TPA ,and Eu-bpy in KBr disc.[Color figure can be viewed in the online issue,which is available at .]that (363o C)of PM1TPA .With the content of europium increase,its T d 5%decrease.The weight loss at this temperature was mainly due to the decomposition of Eu–bpy complexes in the copolymer.The glass transition temperature (T g )was meas-ured as 113o C for PM1TPA (bipyridine-containing polymer)and 135o C for PM1TPA–Eu (complex-containing polymer),respectively,as determined by DSC under nitrogen atmosphere shown in Figure 3(b).The introduction of europium complexes rendered the polymer backbone more rigid,since the bulkiness of the complexed site required a higher energy for rotation.30UV–Vis Absorption PropertiesThe UV–vis absorption spectra of PM1TPA–Eu–x ,PM1TPA,and Eu-bpy in THF solutions and in solid state at room tem-perature are shown in Figure 4.The polymer thin films for UV–vis absorption and PL measurements were prepared by spin-coating their THF solution (6mg/mL)onto quartz sub-strates with a rotating speed of 1200rpm at room temperature and dried in oven under vacuum.The maximum absorption of the UV–vis spectra (k abs )is summarized in Table I.As shown in Figure 4a,all of them exhibited a series of broad absorption peaks in the region from 250to 420nm in THFsolution,which could be attributed to the energy levels under-going reorganization and p –p *electronic transitions of the con-jugated main chain or the low molar mass organic ligands.31Furthermore,as the absorption of conjugated main chain over-lapped with the europium complex,the absorption intensity of PM1TPA–Eu–x at about 350nm was higher than that of europium-free polymer PM1TPA at the same pared with the UV–vis absorption spectra in solution,the absorption spectra of all the five materials in films (Figure 4b)had undergone a red shift to long wavelengths due to the mole-cules aggregation.32The red shift values of Eu-bpy and PM1TPA–Eu–1.0are 15nm and 5nm,respectively,indicating that the molecular aggregation of small molecule europium complexes could be avoided in a large extent after the introduc-tion to the polymer pendant groups.Photoluminescence PropertiesAll the PL spectra of PM1TPA–Eu–x (x 50.1,0.5,and 1.0),PM1TPA,and Eu-bpy were excited by 360nm light both in solution and in films.The emission spectra of PM1TPA–Eu–x ,PM1TPA,and Eu-bpy in solutions and in solid state at room temperature are shown in Figures 5and6,respectively.The maximum emission of PL spectra (k em )is also summarizedinFigure 3.(a)TGA curves of PM1TPA–Eu–x (x 50.1,0.5,and 1.0),PM1TPA ,and Eu-bpy ;(b)DSC curves of PM1TPA and PM1TPA–Eu–1.0under nitrogen atmosphere at a heating rate of 10o C min 21.[Color figure can be viewed in the online issue,which is available at.]Figure 4.UV–vis absorption spectra of PM1TPA–Eu–x (x 50.1,05,and 1.0),PM1TPA and Eu-bpy in THF solution (a)and in thin films (b).[Color figure can be viewed in the online issue,which is available at .]Table I.Additionally,the PL spectra of PM1TPA–Eu–1.0in films annealed at different temperature are shown in Figure 7.Figure 5shows the normalized PL spectra of PM1TPA–Eu–x (x 50.1,0.5,and 1.0),PM1TPA and Eu-bpy in 4mg/mL THF solution.The ligand polymer PM1TPA showed blue light emis-sion of the maximum emission wavelength 423nm with FWHM of 70nm.The broad emission of PM1TPA indicates the conjugation between the carbazole moiety and triphenyl-amine moiety formed.Eu-bpy exhibits the typical emission of a europium (III)complex.The main emission centered at 612nm was assigned to 5D 0!7F 2transition,and the other emissions such as peaks at approximately 580,593,649,and 701nm cor-respond to 5D 0!7F 0,5D 0!7F 1,5D 0!7F 3,5D 0!7F 4electronic transition of europium (III),respectively.33While the com-plexed polymer PM1TPA–Eu–1.0exhibited two main emission peaks centered at 458nm and 612nm,compared with the PL spectra of PM1TPA and Eu-bpy ,the peaks of PM1TPA–Eu–1.0centered at 465nm and 612nm originated from the emission from the conjugated main chain and from the europium com-plex,pared with the ligand polymer PM1TPA ,42nm red shift of the emission from the conjugated main chain of PM1TPA–Eu–1.0was observed.Figure 6(a)shows the PL spectra of PM1TPA–Eu–1.0in the concentrations from 2mg/mL to 14mg/mL.With the solution concentration increase,the fluorescence intensity of the emis-sion peak from the conjugated backbone gradually decreased,and about 47nm red shift from the dilute solution (2mg/mL)to concentrated solution (14mg/mL)is observed.While the flu-orescence intensity of the emission peak from the europium complexes firstly increased,then decreased and finally increased again with the increase in solution concentration.When the concentration reached to 14mg/mL,the PL emission of PM1TPA–Eu–1.0was dominated by the emission from the europium complexes,and the emission from the conjugated backbone almost disappeared.As expected,the PL spectrum of PM1TPA–Eu–1.0in thin film (Figure 6b)was similar to that in concentrated solution (14mg/mL)and also same as that of Eu-bpy .On the other hand,the PL spectrum of PM1TPA in films was similar to that in solution,only 5nm red shifted.Consid-ered that only the emission from the europium complex was observed,and the emission from the conjugated main chain completely vanished,the efficient energy transfer from the con-jugated main chain to europium complex must have occurred.As shown in Figure 6c,the emission spectrum of PM1TPA in film overlapped with the absorption spectrum of Eu-bpy ,thus Eu-bpy could accept the emission energy from PM1TPA .34As europium complexes were linked to the polymer chain via an “inert”flexible linkage,the two chromophores could emit light independently,and the PL of PM1TPA–Eu probably like that of the blends of PM1TPA and Eu-bpy .Therefore,the intramolecu-lar and/or intermolecular F €orster energy transfer from the main chain to the europium complexes of PM1TPA–Eu could also occur.With the europium complexes content of PM1TPA–Eu–x (x 50.1,0.5,and 1.0)increase,the energy transfer became more effective both in solution (Figure 5)and in films (Figure 6b).As the europium complexes were directly bonded to the main chain of the copolymer,and the distance between the donor (main chain)and the acceptor (europium complex)was fixed,the energy transfer should not be influenced by the solu-tion concentration.However,w ith the concentration of PM1TPA–Eu-1.0increase (Figure 6a),the energy transfer also became more and more efficiently.Therefore,it seems more reasonable to attribute this process to the combined action of the intermolecular and intramolecular energy transfer in PM1TPA–Eu–x rather than to the intramolecular process.35As for the PL process,the polymer backbones are excited by absorption of light,and the excited states are created on poly-mer backbones and then transfer to the europium complexes.With the PM1TPA–Eu–1.0concentration increase [Figure 6(a)],the distance between polymer backbones and europium com-plex is getting shorter and shorter,the F €orster energy transfer from the polymer backbones to europium complex is getting more and more effective,and the emission from the polymer backbones gradually become pared with the PL spec-tra (Figure 5)of three europium-containing PM1TPA–Eu–x (x 50.1,0.5,and 1.0)in solution,the emission of polymer backbone become more and more weak with the increase of the europium content,which indicates that the energy transfer from the backbone to the europium complexes was enhanced with the increase of the europium content.Previously,Pei 18and Ling 35also reported the complete energy transfer from theTable I.Data of UV–Vis and PL Measurements for PM1TPA,PM1TPA–Eu–x ,and Eu-bpyCompounds k abs (nm)(insolution)k abs (nm)(in films)k em (nm)(insolution)k em (nm)(in films)PM1TPA348353423428PM1TPA–Eu–0.1348354430,612470,612PM1TPA–Eu–0.5348354433,612472,612PM1TPA–Eu–1.0350355465,612612Eu-bpy346361612612Figure 5.PL spectra of PM1TPA–Eu–x (x 50.1,0.5,and 1.0),PM1TPA,and Eu-bpy in 4mg/mL THF solution.[Color figure can be viewed in the online issue,which is available at .]main chain to the europium complexes in the copolymers bearing pendant europium complexes.While for a europium-complexed fluorene–bipyridine copolymer reported by Turchetti,36as euro-pium complexes were complexed directly with the polymer main chain,no energy transfer from the polymer backbone (polyfluor-ene)to the metal complex was observed,and the europium com-plexed polymer emitted strong light from the polymer main chain and weak light from the europium complexes.In order to study the effect of temperature on the luminescent sta-bility,the thin films of PM1TPA–Eu–1.0was annealed at different temperatures for 30min and cooled down to room temperature.The corresponding PL spectra are shown in Figure 7.The emission of PM1TPA–Eu–1.0was kept stable until after being annealed at 100o C and the emission intensity decreased severely after being annealed at 120o C.As the annealed temperature of 120o C was close to its T g (Figure 3b),the morphology of PM1TPA–Eu–1.0film would vary,which made the PL intensity of PM1TPA–Eu–1.0film decayed greatly.35The results suggested that the working tem-perature of device using PM1TPA–Eu–1.0as luminescent material should be lower than its T g .Of course,the above temperature was high enough to satisfy the demand of practical application.Electroluminescence PropertiesTo investigate the EL properties of PM1TPA–Eu–x (x 50.1,0.5,and 1.0)and to understand internal energy transfer within thewhole molecule under the electric field,three multilayer devices using PM1TPA–Eu–x as light-emitting layer with the configura-tion of ITO/PEDOT:PSS (40nm)/PM1TPA–Eu–x (40nm)/TPBI (20nm)/LiF (1nm)/Al (120nm)were fabricated.As shown in Figure 8a,the maximum luminance of the devices using PM1TPA–Eu–0.1,PM1TPA–Eu–0.5,and PM1TPA–Eu–1.0as emissive layer are 69,27,and 28cd/m 2,respectively.Figure 6.(a)PL spectra of PM1TPA–Eu–1.0in different THF concentrations;(b)PL spectra of PM1TPA ,PM1TPA–Eu–x (x 50.1,0.5,and 1.0)and Eu-bpy in films;and (c)the normalized absorption spectra of Eu-bpy and the emission spectra of PM1TPA in films.[Color figure can be viewed in the online issue,which is available at.]Figure 7.The PL spectra of PM1TPA–Eu–1.0in films after annealed at different temperature.[Color figure can be viewed in the online issue,which is available at .]Figure 8b shows the EL spectra of PLED using PM1TPA–Eu–1.0as luminescent layer under different voltage.Under low for-ward bias,the EL spectra exhibits the characteristic emission of europium complex,and no emission from the conjugated poly-mer is observed,which is consistent with the PL spectra of PM1TPA–Eu–1.0in films.This implied that the emission from the conjugated backbone was quenched by the europium com-plexes in the EL emission of the device.37The CIE color coordi-nates of EL spectrum at 25V calculated according to 1931standards was x 50.618,y 50.312,which demonstrated that PM1TPA–Eu–1.0could emit nearly pure red light under the electric field.With the applied voltage raised,the emission peak from the conjugated polymer emerged.This reason may be that the europium complex was excited by injecting electrons from the cathode and hole from the anode,so the neutral excitations may be formed directly in the europium complexes.When the injected electrons and holes exceeded the need of europium complexes,some electrons and holes could encounter in the polymer main chain,so the emission of the polymer can also be observed.Furthermore,as the lower europium complex con-tent,the EL spectra (Figure 8c)of PLED device using PM1TPA–Eu–0.1and PM1TPA–Eu–0.5as light-emitting layer consist of both the characteristic emission of europium complex and the emission from the conjugated polymer under different voltage.The reason may also result from the deficiency of acceptors (europium complex)in the PM1TPA–Eu–0.1or PM1TPA–Eu–0.5emissive layer,some excitons formed in the main chain emitted light directly.CONCLUSIONSThe designed carbazole–triphenylamine conjugated polymer-bearing pendant bipyridine units via a flexible linkage,PM1TPA ,was successfully synthesized by Suzuki polycondensa-tion.Then PM1TPA–Eu–x (x 50.1,0.5,and 1.0)were prepared by adding DBM and PM1TPA in sequence to different amount of EuCl 3Á6H 2O solution.PM1TPA and PM1TPA–Eu–x showed good solubility and high thermal stability.As the europium complexes were linked to the conjugated main chain via an “inert”flexible spacer,both the conjugated main chain and the europium complex emitted light independently,and the energy transfer from the backbone to the europium complexes hap-pened efficiently.The ligand polymer PM1TPA in solution shows blue light emission at 423nm with FWHM of 70nm.While the europium-containing metallopolymer PM1TPA–Eu–1.0e xhibits two main emission peaks centered at 458nm and 612nm,originating from the emission from the conjugated main chain and from the europium complex,respectively.The PL intensity,peak shape,and energy transfer of PM1TPA–Eu–x (x 50.1,0.5,and 1.0)are strongly influenced by the europium complex content in the copolymer and the solution concentra-tion.In thin solid films,the PL spectra of PM1TPA–Eu–1.0had a sharp peak at 612nm with a FWHM of about 10nm,no emission from the conjugated polymer backbone was observed.Under forward bias,the device using PM1TPA–Eu–1.0as emis-sive layer emitted red light with the CIE coordinates at (0.618,0.312)from europium (III)complex at 25V voltage.The cur-rent efficiency obtained was about 0.09cd/A whentheFigure 8.(a)Current density–voltage–brightness (J–V–B)characteristics of the PLEDs using PM1TPA–Eu–x (x 50.1,0.5,and 1.0)as luminescent layer;(b)EL spectra of PLED using PM1TPA–Eu–1.0as luminescent layer under different voltage;(c)normalized EL spectra PLED using PM1TPA–Eu–x as luminescent layer.(Note:PM1TPA–Eu–0.1at 21V,PM1TPA–Eu–0.5at 23V,and PM1TPA–Eu–1.0at 25V .).[Color figure can be viewed in the online issue,which is available at .]。
材料类的国外期刊以及投稿经验
英文材料期刊简介Journal of Alloys and Compounds《合金与化合物杂志》瑞士ISSN:0925-8388,1959年创刊,全年36期,Elsevier Science出版社出版,SCI收录期刊,SCI2003年影响因子1.080。
国际性材料科学和固体化学与固体物理学杂志。
刊载稀有金属及其化合物、合金的实验和理论研究论文、会议报告、简讯与书评。
文章多用英文发表。
Journal of Composites for Construction《建筑复合材料杂志》美国ISSN:1090-0268,1997年创刊,每年4期,American Society of Civil Engineers,USA出版。
刊载有关建筑用合成纤维增强复合材料的研究论文。
SCI、EI收录期刊,SCI2003年影响因子1.234,被引频次249、即年指标0.125、年载文量40。
2003年EI收录91篇。
EI收录期刊,EI2001年收录25篇。
Journal of Materials in Civil Engineering《土木工程材料杂志》美国ISSN:0899-1561,1989年创刊,每年6期,American Society of Civil Engineers,USA出版。
刊载土建材料的开发、加工与现场生产、特性评价、应用和性能等方面的研究论文。
SCI、EI收录期刊,2002年SCI影响因子0.346、被引频次193、即年指标0.015、年载文量66、被引半衰期4.9。
EI2002年收录66篇。
Journal of the European Ceramic Society《欧洲陶瓷学会志》英国ISSN:0955-2219,1985年创刊,全年16期,Elsevier Science出版社出版,SCI、EI收录期刊,SCI2003年影响因子1.248,2003年EI收录396篇。
主要发表研究陶瓷材料结构、特性和加工的原始论文。
三大检索工具、化学化工类常用期刊
Fluid Phas. Equili. = Fluid Phase Equilibria (流体相平衡)
J. Chem. Eng. Data = Journal of Chemical and Engineering Data (化学 和工程数据杂志)
Int. J. Chem. Kinetics = International Journal of Chemical Kinetics (国际 化学动力学杂志) Kinetics and Catalysis (动力学和催化)
J. Polymer Sci. = Journal of Polymer Science (聚合物科学杂志) J. Appl. Polymer Sci. = Journal of Applied Polymer Science (应用聚合 物科学杂志)
Modern Plastics (现代塑料)
Brit. Polymer J. = British Polymer Journal (英国聚合物杂志)
Polymer J. = Polymer Journal (聚合物杂志,日本)
Macromolecules (大分子)
Chem. Mater. = Chemistry of Material (材料化学) Polymer (聚合物) Hydro. Process. = Hydrocarbon Processing (烃加工) Cryogenics (低温工程)
J. Chem. Eng. Japan = Journal of Chemical Engineering of Japan (日本 化学工程杂志) 0.644 Chinese J. Chem. Eng. = Chinese Journal of Chemical Engineering (中国 化学工程杂志) 1.098 Trans. Fara. Soc. = Transactions of The Faraday Society (法拉第协会学报) Chem. Rev. = Chemical Reviews (化学评论)
汽车工程学院认可的中,英文期刊目录(草案)
104. Chinese Journal Of Mechanical Engineering (English Edition) 机械工程学报 105. Chinese Optics Letters 106. High Technology Letters 107. Journal Of Beijing Institute Of Technology (English Edition) 108. Journal Of Central South University Of Technology (English Edition) 109. Journal Of Computational Information Systems 110. Journal Of Harbin Institute Of Technology (New Series) 111. Journal Of Hydrodynamics 112. Journal Of Information And Computational Science 113. Journal Of Materials Science And Technology
ห้องสมุดไป่ตู้
∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
130. 计算机科学与技术学报 (国内期刊英文版) 131. 计算数学 (国内期刊英文版) 132. 高等学校计算数学学报 133. 机械工程学报 (国内期刊英文版) 134. 科学通报 (国内期刊英文版) 135. 生物医学与环境科学 (国内期刊英文版) 136. 水动力学研究与进展: A,B辑 (国内期刊英文版) 137. 系统工程与电子技术 (国内期刊英文版) 138. 中国海洋工程 (国内期刊英文版) 139. 中国化学工程学报 (国内期刊英文版) 140. 中国科学 E,G辑 技术科学 (国内期刊英文版) 141. 自然科学进展 (国内期刊英文版) 142. Advances In Structural Engineering 143. Microcomputer Applications 144. 传感技术学报 145. 传感器技术 146. 电源技术 147. 动力工程 148. 中国电机工程学报 149. 钢铁 150. 冶金能源 151. 金属学报 152. 中国有色金属学报 153. 空气动力学学报
聚酰胺弹性体的应用及研究进展
聚酰胺弹性体的应用及研究进展吴文敬卢先博张勇上海交通大学高分子材料研究所纲要1. 聚酰胺弹性体简介2. 聚酰胺弹性体的研究进展3. 本课题组的相关研究工作4. 结语1. 聚酰胺弹性体简介•热塑性弹性体:聚烯烃类(TPO)、苯乙烯类(SBC)、聚氨酯类(TPU)、聚酰胺类(TPAE)、聚酯类(TPEE)、聚氯乙烯类(TPVC)、聚硅氧烷类(TPSE)•性能优势:力学性能好、具有耐油性、使用温度高•主要厂家:德国Hüls公司(Diamide,现为朗盛收购)、美国Upjohn公司(现为Dow化学公司,Estamid)、法国ATO化学公司(Pebax)、瑞士EMS公司(Grilamid、Grilon)、日本酰胺公司、日本油墨公司、德国Evonik公司(Daiamid, Vestamid E)•生产方式:嵌段共聚、简单共混、动态硫化•嵌段共聚:-[(PA)m-PE-]n-–软段PE为聚醚或聚酯,如四氢呋喃聚醚(PT2MG) 、环氧丙烷聚醚(PPG) 、聚乙二醇(PEG) 、聚己内酯(PCL) 聚乙二醇、聚丙二醇、聚丁二醇、双端羟基脂肪族聚酯等;硬段PA是聚酰胺(共聚尼龙、PA6、PA11、PA12、PA66、芳香族聚酰胺等)–二元酸法:端羧基脂肪族聚酰胺嵌段与端羟基聚醚二元醇通过酯化反应–异氰酸酯法:半芳酰胺为硬段,脂肪族聚酯、聚醚或聚碳酸酯作为软段,半芳酰胺硬段是由芳香族二异氰酸酯与二元羧酸反应得到的•动态硫化(TPV):PA/rubber–最早由Gessler于1962年提出,并于80年代由Coran等成功开发出PP/EPDM TPV (美国孟山都,Santoprene)–橡胶弹性的实现:共混比,橡胶占主导,熔融共混过程橡胶相发生硫化–热塑性的实现:相反转,硫化橡胶呈分散相–性能堪比共聚型弹性体,某些性能更优–工艺简单,成本低–弹性体品种多:塑料相可为PA6、三元尼龙、共聚尼龙、长链尼龙;橡胶相涉及几乎所有橡胶(EPDM、EPM、NBR、HNBR、ACM、IIR)体育用品电器电子部件机械部件精密仪器的功能部件软管带、医用胶管high strength, high elasticity, good resiliencehigh flexibilityhigh resistance to solvents and chemicals 共混改性剂汽车输油管•聚酰胺弹性体的应用2. 聚酰胺弹性体的研究进展动态硫化、增容、形态演变/NBR/HNBR耐热性、耐油性、相间反应性动态硫化、增容方法、卤化橡胶类型Nylon /EP(D)M动态硫化、增容、形貌--性能辐射交联、动态硫化、耐热性、耐油性/ACM/IIR•PA6/EPDM1–Curing systems, compatibilizer, nylon content–Sulfur (0.5 %), MAH-g-EPR (20 wt%), rubber/plastics ratio (60/40)•PA6/EPDM-g-MA2Tensile deformation &(plastic deformation of nylon phase) relaxation recovery(elastic recovery of rubber phase)•Tensile deformation —gradual stress-transfer mechanism •Nylon ligament thickness distributionNylon phase:local yield ÆelongationÆlocal hardening Ætransfer•Elastic restoring force, elastic recovery •Interconnection of rubber particles by continuous substructure•PA6/NBR3–Curing systems (phenolic, DCP,sulfur)–Rubber/plastics ratio (60/40)–Partial miscibility (by DMA)Phenolic functional groups reactingwith PA6, increasing the viscosity,improving the mixing•PA-6/66 /NBR4•melt flow behavior (blend ratio, dynamic crosslinking, compatibilization)Nylon content Positive deviationIncreasing viscosity•Effect of compatibilizer(CPE)–High interfacial viscosity, hindering the coalescence of dispersed phase –3wt%Æ5 wt%, Interfacial saturation, starting forming micelles in the nylon matrix•Effect of dynamic vulcanization–Crosslink density, stable morphology–C-C linkage > S-S linkage–Higher crosslink density, higher viscosity, higher stresses, more extensive break up of domains•PA-6/66/10 /NBR 5,6–Carboxylation of NBR[5] Chowdhury R, et al.. Journal of Applied Polymer Science. 2007;104(1):372-7.Figure Isothermal DSC scans for a representative 60 : 40NBR/polyamide composition: (A) 60 : 40 NBR/polyamide;(B) 60 : 40 XNBR (1% OCOOH)/polyamide; (C) 60 : 40XNBR (7% OCOOH)/polyamide.Figure Plausible mechanism of reactive compatibilization of polyamide with carboxylated NBR through in situ amide formation.Tan δtraces•PA-6/66/10 /NBR–Carboxylation of NBRTable Physical and Mechanical Properties of Polyamide/NBR Blends.(A)(B)(C)Figure SEM micrographs of a 60 : 40 NBR/polyamide composition: (A) 60 : 40 NBR/polyamide;(B) 60 : 40 XNBR (1% OCOOH)/polyamide; (C) 60 : 40 XNBR (7% OCOOH)/polyamide.•PA6/HNBR7–Blending ratio–Dynamic vulcanization (peroxide)–Dynamic vulcanization (peroxide)•PA6/HNBR8, 9–Irradiation crosslinking[8] Das PK, et. al.. Polymer International 2006; 55 (1): 118-123.•Nylon MXD6/HNBR10–Cross-linker:2,5-Dimethyl( t-butylperoxy) hexane (0.9 phr), rubber/plastics ratio: 50/50, 70/30, 30/70–Effect of vulcanization, time, temperature,cross-linking degree, blend ratio•PA6/ACM 11, 12, (40/60)–The interaction between PA6 and ACMÆPA6-g-ACM–Epoxy-amine and epoxy-acid reactions[11] Jha A, et al.. Rubber Chem Technol. 1997;70(5):798-814.Figure SEM photos of cryogenically fractured nylon 6/ACM(50/50) blend after extracting the ACM phase by chloroform. X3000Figure Weight percentage of nylon grafted vs. weight fraction of ACM in the blend mixed for 13 min at 220 ℃.without dynamicvulcanizationwith dynamicvulcanizationFigure Increment in mixing torque (L max –L min ) vs. weight fraction of ACM in the blend.•Compatibilization of nylon 6-g-ACMTable Mechanical properties of 40/60 nylon 6/ACM blends.Figure Temperature dependence of tan δand E’of nylon 6/ACM (40/60) blends.•PA6/ACM13, (40/60)•Fillers (CB, silica, clay), plasticizers (DOP, DBP)•Strong interfacial reactionÆPA6-g-ACM•PA6/IIR14–IIR/PA6 (70/30)–CompatibilizerFigure SEM photographs of the composites of IIR (70) and PA (30);(a) Alloy with 10 wt parts compatibilizer and (b) Blend without compatibilizer.Table Physical Properties of Elastic Gas-Barrier Materials•PA12/CIIR15–CIIR/PA12 (60/40), sulfur curative–Dynamic vulcanization, increasing viscosity at low shear rates and dependence of viscosity on shear rateTable Mechanical properties, percentage insolubles, and swelling index values of 40PA/60CIIR blends.•PA12/IIR16–Chemical interactions:crosslinking, grafting–Reactivity: BIIR > IIRTable Percentage of Insolubles in Hexane-Extracted Samples of Polyamide/Butyl or Bromobutyl Blends•PA12/IIR17–Effects of butyl rubber type on properties–The presence and type of halogenTable Effects of rubber type on properties of 40 PA/60 butyl rubber blends. (sulfur curing system)•PA12/CIIR18–Improved solvent resistanceby dynamic vulcanization:a caging effect of the thermoplasticcomponent on the rubber phaseFigure Swelling index and elongation at break for PA/CIIR blends.Table Properties of polyamide/chlorobutyl rubber Blends3. 本课题组的相关研究工作•EPDM/Ter PA TPV–最优配方:EPDM 52、PA 35、EPM-g-MAH 13、硫黄2–硬度85,拉伸强度13.3 MPa,伸长率295 %Fig Scanning electron micrographs of dynamic vulcanized EPDM/nylon TPE fractured under liquid nitrogen and etched by heptane for 24 h: (a) EPDM/nylon (30/70) TPE and (b) EPDM/MAH-g-EPR/nylon (24/6/70) TPE.•EPDM/Ter PA TPV19–增容剂的加入使橡胶粒子更细分散,异相成核作用促进了尼龙相的结晶–增容剂含量变化与对性能影响一致Fig DSC cooling traces (cooling rate of 5°C/min):(a) PA, (b) EPDM–PA (65:35), (c) EPDM/EPR–g–MAH/PA (52:13:35), (d) EPDM/EPDM–g–MAH/PA (52:13:35), (e) EPDM–CPE–PA (52:13:35).Fig Effect of compatibilizer content on TCand enthalpies of crystallization in EPDM–PA TPVs (EPDM + compatibilizer)/PA (65:35).•EPDM/Ter PA TPV20–AFM表征形貌–增容Æ橡胶(亮区)更细分散(a)(b)(a)(c)(b)(d)Figure AFM image of dynamically vulcanized EPDM/EPDM-g-MAH/PA: (a) 65/0/35; (b)58.5/6.5/35; (c) 39/26/35; (d) 0/65/35.•EPDM/Ter PA TPV21–良好增容剂:CPEFig Scanning electron micrographs of dynamic vulcanized EPDM/PA TPV fractured under liquid nitrogen and etched by heptane for 24 hours: (a) EPDM/PA (30/70), (b) EPDM/CPE/PA (24/6/70).•PA1010/EVM blends22–EVM橡胶:尼龙良好的增韧剂Figure Effect of EVM content on the impact strength of nylon/EVM blends.Table Tensile and Flexural Properties of Nylon/EVM Blends.•PA1010/EVM blends–增容:提高增韧效率Figure Effect of EVA-g-MAH content on the impact strength ofnylon/EVM/EVA-g-MAH blends.Table Tensile and Flexural Properties of Nylon/EVM/EVA-g-MAH Blends•PA1010/EVM blendsFigure SEM image of fracture surface of nylon/EVM/EVA-g-MAH blends.(a) nylon/EVM = 100/5, (b) nylon/EVM = 100/20, (c) nylon/EVM = 100/80, (d)nylon/EVM/EVA-g-MAH = 100/20/2.5, (e) nylon/EVM/EVA-g-MAH = 100/20/5.•PA1010/EVM blends23–EVM/EVA-g-MAH RatioTable Mechanical Properties of Nylon/EVM/EVA-g-MAH Blends Table Particle Size and Impact Strength of Nylon/EVM/EVA-g-MAH Blends4. 结语•有关共混型聚酰胺热塑性弹性体的实验室研究已渐趋完善,工业化进程尚待努力•特种橡胶EVM作为橡胶相与聚酰胺制备弹性体,潜力巨大感谢国家自然科学基金委(51073092)给予的巨大支持!。
国外著名药剂学期刊
推荐两个杂志(大综述):Advanced Drug Delivery ReviewNature Reviews Drug Discovery也包括了药剂学很多最新最前沿的研究领域,读几期就会发现视野霍然开朗,呵呵除了penspeed 兄说的几本外,我再推荐几本:European Journal of Pharmaceutical SciencesEuropean Journal of Pharmaceutics and BiopharmaceuticsJournal of Controlled ReleaseInternational Journal of PharmaceutisJournal of Pharmaceutical SciencesJournal of Pharmacy and Pharmacology在制剂版收索了一下,大家还没有讨论过国外著名药剂学期刊,现在大家都出来说说平时都参考哪些国外的药剂学期刊呢,入一行爱一行,既然搞药剂了,就得知道几本好的杂志吧!先抛砖引玉:(如果大家还没有统一的格式,本着简洁明了的原则,就先按照下面的格式发吧)1.全称:International Journal of Pharmaceutics简称:Int. J. Pharm.2.全称:Pharmaceutical Research简称:Pharm. Res.3.全称:Journal Of Pharmaceutical Sciences简称:J. Pharm. Sci.4.全称:European Journal of Pharmaceutical Sciences简称:Eur. J. Pharm. Sci.5.全称:European Journal of Pharmaceutics and Biopharmaceutics简称:Eur. J. Pharm. Biopharm.6.全称:Journal of Controlled Release简称:J. Control. Release7.全称:Advanced Drug Delivery Reviews简称:Adv. Drug Delivery. Rev.8.全称:Pharmaceutical Development And Technology简称:Pharm. Dev. Technol.9.全称:Chemical & Pharmaceutical Bulletin简称:Chem. Pharm. Bull.10.全称:Journal of Applied Polymer Science简称:J. Appl. Polym. Sci.尽管9和10算上是药剂学的期刊略微有勉强,但实际上搞药剂的人是经常参考这两个杂志的,药理、药化和生化方面也经常被参考就不列举了,感谢您的补充!!!!--------------------------------------------------------------------------------•【求助】上海二军医长征医院怎么样,我要不要去?chen327丁香园中级站友Posts: 754Score: 2022004-08-21 20:05--------------------------------------------------------------------------------这个我也感兴趣,可惜我知道的不多~--------------------------------------------------------------------------------水穷之处待云起,危崖旁侧觅坦途。
journal of applied polymer science
journal of applied polymer scienceEXPRESS POL YMER LETTERSAdvances in Polymer TechnologyMaterials Science and Engineering: AMolecules(要钱)jornal of applied polymer science编辑不要求做的东西很新,但是数据要全面,分析要合理第一次作为这个期刊的审稿人,拿到一篇老外的文章,感觉写的一般,写了30页,差点把自己看吐了,所以建议大家写稿的时候,控制重点,把握主线,实验性文章不要超过20页就可以了,结论部分尽量少加参考文献,搞得作者得到的结论不知道是引用的?还是自己的?如果可以的话,尽量都把参考文献放引言部分。
论文能否发表,做实验是一方面,写好文章很重要,有些东西说了很多,但是让别人看不明白!最后提出了几个问题,让大修,这个期刊要求审稿人半个月必须完成审稿,感觉效率还可以,一般是三个审稿人!格式什么的,也需要好好注意,又审了好几篇,基本格式差不多的都让通过了,如果需要的,可以联系我作为审稿人!可以站短找我要信息,但是我比较注重文章的格式,内容差不多的都让通过,如果格式看不下去了,起码给人感觉不认真,所以,如果推荐我作为审稿人的话,格式一定要认真修改!没有在这个期刊上投过稿子,但是已经做过审稿人审过10篇以上的文章,今天刚提交了一篇审稿意见,中国人的,总共有52页,13张图,看得我想吐,前言部分写的很不好,跳跃很大,逻辑不顺畅,编辑要求半个月就给结果,我也不可能天天看他的文章,没有其他的事情干,大家都很忙,52页看完估计就至少需要一周以上,所以请大家推荐审稿人的话,别折磨审稿人,搞那么多,你折磨他,他就折磨你,慢慢看,我看了一下,那篇文章到今天已经外审了60天,太不符合JPAS的半个月的风格了,估计就死在太长了,没有人愿意及时审稿的原因,最后耽误的还是作者自己。
材料类的国外期刊以及投稿经验
英文材料期刊简介Journal of Alloys and Compounds《合金与化合物杂志》瑞士ISSN:0925-8388,1959年创刊,全年36期,Elsevier Science出版社出版,SCI收录期刊,SCI2003年影响因子1.080。
国际性材料科学和固体化学与固体物理学杂志。
刊载稀有金属及其化合物、合金的实验和理论研究论文、会议报告、简讯与书评。
文章多用英文发表。
Journal of Composites for Construction《建筑复合材料杂志》美国ISSN:1090-0268,1997年创刊,每年4期,American Society of Civil Engineers,USA出版。
刊载有关建筑用合成纤维增强复合材料的研究论文。
SCI、EI收录期刊,SCI2003年影响因子1.234,被引频次249、即年指标0.125、年载文量40。
2003年EI收录91篇。
EI收录期刊,EI2001年收录25篇。
Journal of Materials in Civil Engineering《土木工程材料杂志》美国ISSN:0899-1561,1989年创刊,每年6期,American Society of Civil Engineers,USA出版。
刊载土建材料的开发、加工与现场生产、特性评价、应用和性能等方面的研究论文。
SCI、EI收录期刊,2002年SCI影响因子0.346、被引频次193、即年指标0.015、年载文量66、被引半衰期4.9。
EI2002年收录66篇。
Journal of the European Ceramic Society《欧洲陶瓷学会志》英国ISSN:0955-2219,1985年创刊,全年16期,Elsevier Science出版社出版,SCI、EI收录期刊,SCI2003年影响因子1.248,2003年EI收录396篇。
主要发表研究陶瓷材料结构、特性和加工的原始论文。
如何向Applied polymer 投稿
1.进入Applied polymer science 的主页,进行账户注册。
2.点击Submit Now.3.输入账户、密码。
4. 进入Author center.5.进入Author Center 后,会提示作者在提交前要阅读Author Guideline,进入链接。
6.在Author Guideline界面,会看到Journal's Aims and Scope,Graphical Abstract Guidelines,How to Prepare High Quality Images,Guidelines for Cover Submission。
分别点击进入了解。
还会看到文章的格式模版,点击下载(word)。
7.文章格式按照期刊修改好,返回到Author Center 的界面,点击红圈处,进入提交文章的步骤。
8. 根据提示:第一步,填写Type,Title,Abstract。
需要注意的是,在红圈处会让作者选择是否是为一个专题而提交(Yes or No)?这是因为期刊在不同时期会设定一个特殊的讨论专题,专题的具体征文要求会在期刊首页显示。
如果是应邀发表的这类文章或者认为文章的类型、要求都符合专题征稿,可以选择此项。
此页填好后,点击Save and continute。
9.第二步,选择Keywords。
但与文章给出的Keywords会有出入,因为期刊要求在它给出的LIST里选择。
红圈处会提示有两种方法进行添加,一是在下拉框中自己选择,二是输入后,Search,注意区分大小写(例如:fictionalization of polymers,molecular recognition,radical polymerization,porous material,properties and characterization)。
完成后,点击Save andcontinue,或者点击Save and Go back,返回上一项进行修改。
与高分子有关的国内外重要期刊
1、期刊名称:polymer degradation and stability;聚合物降解与稳定化2、出版机构:ELSEVIER-sciencedirect3、刊发周期:月刊4、每期刊发论文数:20-25篇5、期刊检索:SCI,影响因子2.0736、推荐理由:该期刊历史久远,为老牌的聚合物材料类期刊,主要涉及聚合物材料的降解和稳定性问题,如降解反应与控制,包括聚合物的热降解、光降解、生物降解、环境降解等。
还包括各类阻燃材料的设计研究与应用,特种聚合物的合成与应用,聚合物在各类条件下的老化和分解研究,聚合物对环境的影响等。
该期刊发刊速度快,如果顺利,基本上一个月内就可得到回改通知,提交回改后2个星期内即可从网上检索下载。
该期刊很受国内外从事聚合物降解与老化研究的科研人员喜爱,因此大量优秀论文得以在该期刊上发表。
7、给出推荐星级:5星vagrantyang2009-02-13 22:261、期刊名称:Progress in polymer science;聚合物科学进展2、出版机构:ELSEVIER-sciencedirect3、刊发周期:月刊4、每期刊发论文数:8篇以内5、期刊检索:SCI,影响因子12.8696、推荐理由:从影响因子看,就知道它的分量了吧。
本刊专门接受综述文章,一般是主编约稿,论文的作者均是某领域的绝对牛人,我所知道的有复旦大学的江明院士发表过关于自组装的文章。
论述的内容基本上包括高分子相关的所有领域,可以作为了解某一领域研究进展的经典文献。
话不多说,是高分子学科的地球人应该都知道它。
7、给出推荐星级:5星,超5星都不为过吧。
llwang2009-02-17 15:361、期刊名称:高分子学报Acta Polymerica Sinica2、出版机构:中国化学会;中国科学院化学研究所3、刊发周期:月刊4、每期刊发论文数:18篇以内5、期刊检索:SCI,影响因子0.541 ;CA;6、推荐理由:从影响因子看,不是很高,但它是中国化学会、中国科学院化学研究所主办,中国科学院主管,主要刊登高分子化学、高分子合成、高分子物理、高分子物理化学、高分子应用和高分子材料科学等领域中,基础研究和应用基础研究的论文、研究简报、快报和重要专论文章。
关于高分子专业可以投稿的杂志
关于高分子专业可以投稿的杂志★★★★★yogidan(金币+5,VIP+0):辛苦了。
o(∩_∩)o...哈哈最近看到有很多虫子在版上询问关于发表文章的杂志的问题正好今天上班有空趁这个空当做一个关于高分子方面杂志的扫盲贴希望不要被老板抓住……一、最高档次的杂志众所周知的Nature、Science,包括其旗下的比如Nature Material等杂志这些呢就不在这里说了呃……反正对我来说是永远摸不到的事情不过希望上面能看到本版的虫子的文章二、高档次的杂志这里的杂志比较属于大家能够得着的杂志(虽然我只有眼巴巴地看着)1.JACS(全称:Journal of the American Chemical Society)网址:/journals/jacsat/index.html07年IF:7.885相信JACS在化学领域中的地位不用我在这里多唠叨了ACS(美国化学会)旗下杂志投稿要点:新颖,新颖,非常新颖,JACS上较多有机的文章,也有高分子领域的,但是相对较少2.德国应化(Angew. Chem. Int. Ed.,全称:Angewandte Chemie International Edition)网址:/journal/26737/home07年IF:10.031虽然德国应化不如JACS来得权威和悠久,但是其IF暴涨到10以上是大家有目共睹的德国应化也强调新颖,虽然不是特别新但结果很好的也有发表的可能据说很多人是JACS掉下来投他家的另外德国应化上高分子方面的文章比JACS的多3.先进材料(Adv. Mater.,全称:Advanced Materials)网址:/journal/10008336/home07年IF:8.191也是wiley旗下的品牌杂志,也是属于顶级也是要新颖、结果好4.先进功能材料(ADV FUNCT MATER,全称:Advanced Functional Materials)网址:/journal/77003362/home07年IF:7.496跟先进材料一个系列的,文章基本都是全文表征一定要全面,做到无懈可击5.纳米快报(全称:Nano Letters)网址:/journals/nalefd/index.html07年IF:9.627这个比较适合做纳米材料的虫子三、较高档次的杂志(Chem Commun,全称:Chemical Communications)网址:/Publishing/Journals/CC/07年IF:5.141RSC(英国皇家化学会)旗下最好的杂志之一这个杂志应该算是这个梯队里面的领军杂志只接收快报,非常快是它的一大特点高分子方面的文章不是特别多只要新颖性足够就能发表2.材料化学(Chem Mater,全称:Chemistry of Materials)网址:/journals/cmatex/index.html07年IF:4.883ACS里面的,要求数据非常翔实那种注意是非常翔实3.大分子(全称:Macromolecules)网址:/journals/mamobx/index.html07年IF:4.411专门关于高分子的档次最高的杂志有快报也有全文大家可以多试试新颖的结果好的测试全面的都可以投4.生物大分子(全称:Biomacromolecules)网址:/journals/bomaf6/index.html07年IF:4.169ACS关于高分子里面一个小类的杂志记得前几天有虫子问天然多糖的可以投啥这个就是最对口的杂志之一跟生物相关的都可以往上面灌5.化学材料(JMC,全称:Journal of Materials Chemistry)网址:/Publishing/Journals/jm/Index.asp 07年IF:4.339RSC里面一个跟ACS的CM大擂台的杂志不过感觉稍逊于CM 中不了CC的可以改成全文投JMC6.控制与释放(全称:Journal of Controlled Release)网址:/science/journal/0168365907年IF:4.756Elsevier旗下的一个杂志主要是释药方面的文章做生物高分子啊、自组装纳米相关的虫子可以考虑这个7.大分子快报(MRC,全称:Macromolecular Rapid Communications)网址:/journal/10003270/home07年IF:3.383wiley关于高分子系列杂志中的领头羊快报性质很快适合着急的虫子高分子相关的啥都收8.生物材料(全称:Biomaterials)网址:/science/journal/0142961207年IF:6.262刚查影响因子的时候吓了我一跳这个杂志近几年影响因子冲得很快做生物材料的虫子有福了9.Small网址:/journal/107640323/home 07年IF:6.40805年新出的杂志也是适合做纳米的虫子10.软物质(全称:Soft Matter)网址:/publishing/journals/SM/07年IF:4.703顾名思义还满适合高分子的11.欧洲化学(全称:Chemistry - A European Journal)网址:http://www3.interscience.wiley.c ... /cover/current.html 07年IF:5.33综合类杂志高分子的内容较少12.Polymer网址:/locate/polymer07年IF:3.065这是一个非常老牌的杂志了其影响力绝对跟它的影响因子不是一个等级每年收录的文章很多但是比较慢如果工作数据比较充分的但是新颖性有点缺乏可以选择这个杂志加工之类也推荐这个13.JPS系列Journal of Polymer Science Part A: Polymer Chemistry网址:http://www3.interscience.wiley.c ... grouphome/home.html 07年IF:3.529Journal of Polymer Science Part B: Polymer Physics网址:http://www3.interscience.wiley.c ... grouphome/home.html 07年IF:1.524这个杂志还是不错的收稿风格跟Polymer相近ngmuir网址:http://www3.interscience.wiley.c ... grouphome/home.html 07年IF:4.009ACS旗下的也很不错尤其适合高分子胶体、界面方面的虫子15.JPC系列The Journal of Physical Chemistry A网址:/journals/jpcafh/index.html07年IF:2.918The Journal of Physical Chemistry B网址:/journals/jpcbfk/index.html07年IF:4.086The Journal of Physical Chemistry C网址:h/journals/jpccck/index.html其中和高分子相关的是B和CB主要收一些高分子、胶体、界面之类的稿子而C是新出的分辑还没有影响因子纳米相关的可以考虑三、一般档次的杂志嗯这样的杂志就可多了我在这里列举就成了大家有兴趣进主页自己看投什么杂志1.Wiley高分子系列的其他杂志除了MRC以外,Wiley高分子系列还有以下杂志Macromolecular Chemistry and Physics网址:/journal/10003495/home07年IF:2.046Macromolecular Theory and Simulations网址:/journal/10003417/home07年IF:1.792Macromolecular Bioscience网址:/journal/77002860/home07年IF:2.831Macromolecular Materials and Engineering网址:http://www3.interscience.wiley.c ... grouphome/home.html07年IF:1.3682.Reactive and Functional Polymers网址:/locate/inca/50269407年IF:1.720这个适合做功能高分子啊之类的虫子3.Carbohydrate Polymers网址:/locate/carbpol07年IF:1.782碳水化合物的4.e-polymers网址:07年IF:0.917只有网络版的文章,但是速度蛮快,也容易中是不求影响因子只求有SCI能毕业的虫子的好选择5.Polymer Bulletin网址:/openurl.asp?genre=journal&issn=0170-0839 07年IF:1.022老牌杂志也很快不过比e-polymers稍难中即使你是全文的长度也可以当快报投过去……6.Polymer International网址:http://www3.interscience.wiley.c ... grouphome/home.html07年IF:1.557也是一个老杂志了速度一般7.Journal of Applied Polymer Science网址:/journal/30035/home07年IF:1.008影响力是满大的可是巨慢无比8.Korea Polymer Journal网址:www.polymer.or.kr/eng_polymer/publications/journals.html 07年IF:0.377韩国的Polymer杂志9.Biopolymers网址:/journal/28380/home 07年IF:2.389又是一个生物高分子的10.Colloid & Polymer Science网址:/content/101551/07年IF:1.62这个是Springer的11.European Polymer Journal网址:/locate/inca/29407年IF:2.248很慢很慢非常慢12.高分子学报网址:/07年IF:0.753其实满难中的能在上面发表的文章改成英文1左右的外文期刊随便中影响因子不高只不过因为是中文的而已13.Journal of Colloid and Interface Science网址:/locate/jcis07年IF:2.309这个是Elsevier的胶体啊微球啊都可以投14.New Journal of Chemistry网址:/publishing/jo ... p?type=currentissue 07年IF:2.651RSC的一杂志有全文都可以往上面扔15.高等学校化学学报网址:07年IF:0.695比高分子学报还难中的样子16.高分子通报网址:/gyjs.asp?ID=4027256收综述类的文章不是SCI的小硕们凑文章可以用17.功能高分子学报网址:/default.html这个应该是非常好中的杂志了也不是SCI的18.化学进展网址:也是综述的SCI-E的杂志比高分子通报好19.中国科学B 辑: 化学网址:/new_web_Fa/index.asp07年IF:0.615国内很少的不要版面费的杂志清华张希老师的主编总的来说关于投稿接收和拒稿的速度全快报的杂志是最快的比如MRC、CC、Polymer Bulletin等快的还有e-polymers以上是我匆忙赶出来的希望虫子们根据自己的体会在后面补充我会根据你们的发帖整理杂志的投稿要点然后补充在后面另外作为过来人(不是牛人= =|||)还是提醒大家看文献的重要性请大家踊跃参加本版的文献活动:高分子版文献大家读活动第一季/bbs/viewthread.php?tid=930719&fpage=1虫友ChemiSteve 补充的:1.Journal of Macromolecular Science, Part A: Pure and Applied Chemistry网址:/smpp/title~content=t713597274~db=all 07 IF: 0.7592.Journal of Macromolecular Science, Part B: Physics网址:/smpp/title~content=t713375300~db=all 07 IF: 0.809这两个杂志是Taylor出版社的C辑是综述外国的综述一般都是约稿的就不列在这里了虫友tanghx1982 补充:Polymer Engineering & Science网址:http://www3.interscience.wiley.c ... ETRY=1&SRETRY=007 IF:1.272tanghx1982本人投过一篇,在高分子加工改性这块比较合适虫友ChemiSteve又补充:上次是凭记忆补充了几个,今天查了一下我的综述引文来源,再补充几个1.Advances in Polymer Technology网址:/journal/35650/home07 IF:0.833这个刊是Wiley的2.Carbohydrate Research网址:/science/journal/0008621507 IF:1.723Elsevier的,看名字比较专业,有关糖类(如淀粉等),3.Polymer Degradation and Stability网址:/locate/polydegstabElsevier的,降解材料方面的,07 IF:2.0734.Polymer for Advanced Technologies网址:/journal/5401/home07 IF:1.504Wiley的,这个是人称PAT的那个5.Macromolecular Symposia网址:/journal/60500249/home Wiley的,SCI刊,07IF没查到这个好像是什么会议集来着我之前没有列它好像停刊了还是咋的6.Polymer Composites网址:/journal/107639242/home 07 IF:1.058Wiley的,共混材料7.Journal of Environmental Polymer Degradation网址:/link.asp?id=105721Springer Link的,降解材料,好像现在没有被SCI收录了。
高分子专业常用期刊缩写
PROG POLYM SCI详评PROGRESS IN POLYMER SCIENCEADV POLYM SCI详评ADV ANCES IN POLYMER SCIENCEPOLYM REV详评Polymer ReviewsMACROMOLECULES详评MACROMOLECULESBIOMACROMOLECULES详评BIOMACROMOLECULESMACROMOL RAPID COMM详评MACROMOLECULAR RAPID COMMUNICATIONSJ POLYM SCI POL CHEM详评JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRYPOLYMER详评POLYMERMACROMOL BIOSCI详评MACROMOLECULAR BIOSCIENCEJ MEMBRANE SCI详评JOURNAL OF MEMBRANE SCIENCEPLASMA PROCESS POLYM详评Plasma Processes and PolymersCARBOHYD POLYM详评CARBOHYDRATE POLYMERSPOLYM DEGRAD STABIL详评POLYMER DEGRADATION AND STABILITYMACROMOL CHEM PHYS详评MACROMOLECULAR CHEMISTRY AND PHYSICSJ BIOMAT SCI-POLYM E详评JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITIONEUR POLYM J详评EUROPEAN POLYMER JOURNALREACT FUNCT POLYM详评REACTIVE & FUNCTIONAL POLYMERSPOLYM INT详评POLYMER INTERNATIONALPOLYM ADV AN TECHNOL详评POLYMERS FOR ADV ANCED TECHNOLOGIESSYNTHETIC MET详评SYNTHETIC METALSEUR PHYS J E详评EUROPEAN PHYSICAL JOURNAL EMACROMOL MATER ENG详评MACROMOLECULAR MATERIALS AND ENGINEERINGMACROMOL THEOR SIMUL详评MACROMOLECULAR THEORY AND SIMULATIONSJ BIOACT COMPAT POL详评JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERSCELLULOSE详评CELLULOSEMACROMOL RES详评MACROMOLECULAR RESEARCHPOLYM TEST详评POLYMER TESTINGCOLLOID POLYM SCI详评COLLOID AND POLYMER SCIENCEJ POLYM SCI POL PHYS详评JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICSPOLYM J详评POLYMER JOURNALJ INORG ORGANOMET P详评JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERSPOLYM ENG SCI详评POLYMER ENGINEERING AND SCIENCEJ APPL POLYM SCI详评JOURNAL OF APPLIED POLYMER SCIENCEJ PHOTOPOLYM SCI TEC详评JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGYJ POLYM ENVIRON详评JOURNAL OF POLYMERS AND THE ENVIRONMENTPOLYM BULL详评POLYMER BULLETINIRAN POLYM J详评IRANIAN POLYMER JOURNALPOLYM COMPOSITE详评POLYMER COMPOSITESMACROMOL REACT ENG详评Macromolecular Reaction Engineering?J POLYM RES详评JOURNAL OF POLYMER RESEARCHADV POLYM TECH详评ADV ANCES IN POLYMER TECHNOLOGYJ MACROMOL SCI B详评JOURNAL OF MACROMOLECULAR SCIENCE-PHYSICSHIGH PERFORM POLYM详评HIGH PERFORMANCE POLYMERSINT J POLYM ANAL CH详评INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATIONKOREA-AUST RHEOL J详评KOREA-AUSTRALIA RHEOLOGY JOURNALJ MACROMOL SCI A详评JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRYE-POLYMERS详评E-POLYMERSJ ELASTOM PLAST详评JOURNAL OF ELASTOMERS AND PLASTICSCHINESE J POLYM SCI详评CHINESE JOURNAL OF POLYMER SCIENCERUBBER CHEM TECHNOL详评RUBBER CHEMISTRY AND TECHNOLOGYJ CELL PLAST详评JOURNAL OF CELLULAR PLASTICSPOLYM-KOREA详评POLYMER-KOREAFIBER POLYM详评FIBERS AND POLYMERSJ REINF PLAST COMP详评JOURNAL OF REINFORCED PLASTICS AND COMPOSITESCELL POLYM详评CELLULAR POLYMERSACTA POLYM SIN详评ACTA POLYMERICA SINICAPOLYM SCI SER A+详评POLYMER SCIENCE SERIES ANIHON REOROJI GAKK详评NIHON REOROJI GAKKAISHIINT POLYM PROC详评INTERNATIONAL POLYMER PROCESSINGDES MONOMERS POLYM详评DESIGNED MONOMERS AND POLYMERSPOLYM-PLAST TECHNOL详评POLYMER-PLASTICS TECHNOLOGY AND ENGINEERINGMECH COMPOS MATER详评MECHANICS OF COMPOSITE MATERIALSPLAST RUBBER COMPOS详评PLASTICS RUBBER AND COMPOSITESJ POLYM ENG详评JOURNAL OF POLYMER ENGINEERINGPOLYM POLYM COMPOS详评POLYMERS & POLYMER COMPOSITESJ VINYL ADDIT TECHN详评JOURNAL OF VINYL & ADDITIVE TECHNOLOGYJ POLYM MATER详评JOURNAL OF POLYMER MATERIALSKGK-KAUT GUMMI KUNST详评KGK-Kautschuk Gummi KunststoffePOLYM SCI SER B+详评POLYMER SCIENCE SERIES BPOLYM SCI SER C+详评POLYMER SCIENCE SERIES CSEN-I GAKKAISHI详评SEN-I GAKKAISHIKOBUNSHI RONBUNSHU详评KOBUNSHI RONBUNSHU。
Wiley旗下43本OA期刊及其影响因子
Wiley旗下43本OA期刊及其影响因子Wiley是全球领先的学术出版公司之一,其旗下拥有众多优质的开放获取(OA)期刊。
OA期刊是一种采用开放获取模式发布学术研究成果的期刊,它不仅让学术研究免费对全球读者开放,还提供高质量的同行评审,推动了学术交流和知识的传播。
以下是Wiley旗下的43本OA期刊,以及它们的影响因子。
1. Advanced Materials - 影响因子21.952. Advanced Science - 影响因子15.803. Advanced Energy Materials - 影响因子25.014. Advanced Functional Materials - 影响因子16.845. Small - 影响因子11.466. Greenhouse Gases: Science and Technology - 影响因子4.447. Angewandte Chemie International Edition - 影响因子13.868. ChemCatChem - 影响因子4.799. ChemElectroChem - 影响因子4.4510. ChemPhotoChem - 影响因子3.9811. Asian Journal of Organic Chemistry - 影响因子3.0112. Biofuels, Bioproducts and Biorefining - 影响因子3.7313. ChemBioChem - 影响因子3.1614. Chemistry & Biodiversity - 影响因子1.8215. ChemistrySelect - 影响因子1.7816. ChemMedChem - 影响因子2.9417. Energy Science & Engineering - 影响因子3.8018. Green Chemistry - 影响因子10.1820. Energy Technology - 影响因子3.0121. Journal of the American Ceramic Society - 影响因子5.7122. Journal of Applied Toxicology - 影响因子3.0623. Biomedical Chromatography - 影响因子1.8524. Journal of Applied Crystallography - 影响因子4.3525. Journal of Chemical Technology & Biotechnology - 影响因子3.9026. Journal of Microscopy - 影响因子3.1627. Journal of Molecular Recognition - 影响因子2.2928. Environmental Progress & Sustainable Energy - 影响因子2.0729. Journal of Physical Organic Chemistry - 影响因子2.3430. Mass Spectrometry Reviews - 影响因子8.8931. Polymers for Advanced Technologies - 影响因子3.8632. Sustainable Energy & Fuels - 影响因子5.5033. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology - 影响因子2.1434. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution - 影响因子2.4535. Journal of Pharmaceutical Sciences - 影响因子3.5536. Journal of Polymer Science Part A: Polymer Chemistry - 影响因子4.2837. Phytochemical Analysis - 影响因子2.4938. Proteomics - 影响因子4.0139. Spectroscopy Letters - 影响因子1.2940. Surface and Interface Analysis - 影响因子1.4741. The Canadian Journal of Chemical Engineering - 影响因子1.8842. X-Ray Spectrometry - 影响因子1.3343. Zeitschrift für anorganische und allge meine Chemie - 影响因子1.40这些期刊涵盖了诸多学科领域,包括材料科学、化学、环境科学、能源技术、生物医学和生命科学等。
适合SCI投稿影响因子在1.0-3.0之间的朋友参考
Journal of Applied Polymer Science 1.395 (3.61个月,68%)EUR POLYM J (慢)2.143REACT FUNCT POLYM2.039POLYM INT2.029POLYM ADVAN TECHNOL2.017Polymer advanced technology 2.017Polymer international 2.029Composite part A-applied science and manufacturing 2.695Composite structures 2.240COMP MATER SCI : 1.574Polymer composite 1.2311.REACTIVE & FUNCTIONAL POLYMERS 影响因子2.0392.POLYMER INTERNATIONAL 影响因子2.0293.MACROMOLECULAR MATERIALS AND ENGINEERING 影响因子1.9253.MACROMOLECULAR THEORY AND SIMULATIONS 影响因子1.9124.JOURNAL OF BIOACTIVE AND COMPATIBLE POLYMERS 影响因子1.8965.JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS 影响因子 1.5866.MACROMOLECULAR RESEARCH 影响因子1.7877.COLLOID AND POLYMER SCIENCE 影响因子1.7368.POLYMER TESTING 影响因子1.7369.JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS 影响因子1.44310.'POLYMER JOURNAL 影响因子1.45611. POLYMER ENGINEERING AND SCIENCE 影响因子1.24512.JOURNAL OF APPLIED POLYMER SCIENCE 影响因子1.18713.JOURNAL OF POLYMERS AND THE ENVIRONMENT 影响因子1.12914.POLYMER COMPOSITES 影响因子1.05415.JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY 影响因子 1.1416.Macromolecular Reaction Engineering 影响因子1.04117.'POLYMER BULLETIN 影响因子1.127Journal of Nanoscience and Nanotechnology 纳米科学和纳米技术 1.929 Journal of Materials Research 材料研究杂志 1.743Advanced Engineering Materials 先进工程材料 1.506 Composite Structures 复合材料结构 1.454 Materials Characterization 材料表征 1.225 Journal of Materials Science 材料科学杂志 1.181 POLYMER COMPOSITES 聚合物复合材料 1.231 Journal of Composite Materials 复合材料杂志 1.034 杂志影响因子投稿周期Acta Materialia 3.755 1-2个月Polymer 3.483 3-4个月Nanotechnology 3.446 3个月Compos sci technol 3.328 3-6个月Scripta Materialia 2.887 1-2个月Eur Polym J 2.739 2-3个月Materials Letters 2.307 1个月Polym Advan Technol 2.0 1-3个月J PHYS CHEM C 4.805 1-3个月ACTA MATER 3.755POLYMER 3.483COMPOS SCI TECHNOL 3.328 审稿周期:3-6个月SCRIPTA MATER 2.821EUR POLYM J 2.739COMPOS PART A-APPL S 2.695 3个月COMPOS STRUCT 2.24POLYM ADVAN TECHNOL 2.00 容易APPL PHYS A-MATER 1.63Nature 28.751Science 26.372Nature Materials 19.782Nature Nanotechnology 14.917Nature Physics 14.677Angewandte Chemie-International Edition 10.031Nano Letters 9.627Advanced Materials 8.191Journal of the American Chemical Society 7.885Advances in Catalysis 7.667Advanced Functional Materials 7.496Physical Review Letters 6.994Small 6.408MRS bulletin 5.168Chemical Communications 5.141Chemistry of Materials 4.883International Journal of Plasticity 4.516Journal of Materials Chemistry 4.339Carbon 4.260Electrochemistry Communications 4.186 Inorganic Chemistry 4.123The Journal of Physical Chemistry B 4.086Crystal Growth & Design 4.046Langmuir 4.009Journal of Applied Crystallography 3.629Acta materialia 3.624Applied Physics Letters 3.596Journal of the Mechanics and Physics of Solids 3.542 Physical Chemistry Chemical Physics 3.343 Nanotechnology 3.310Physical Review B 3.172The Journal of Physical Chemistry A 2.918Journal of power sources 2.809Current Nanoscience 2.793Journal of the Electrochemical Society 2.483 Scripta materialia 2.481Journal of nanoparticle research 2.338 Intermetallics 2.219Mechanics of Materials 2.211Microporous and Mesoporous Materials 2.210 Nanoscale Research Letters 2.158Composites Science and Technology 2.171Journal of Applied Physics 2.171Journal of Solid State Chemistry 2.149IEEE Transactions on Nanotechnology 2.110 Electrochemical and Solid State Letters 2.109Solid State Ionics 2.012Solar Energy Materials and Solar Cells 2.002 Ultramicroscopy 1.996Journal of Nanoscience and Nanotechnology 1.987 Microscopy and Microanalysis 1.941Journal of Materials research 1.916Corrosion Science 1.895Journal of Physics: Condensed Matter 1.886Philosophical Magazine Letters 1.878Materials Chemistry and Physics 1.871Applied Physics A – Materials Science &Processing 1.857 Surface Science 1.855Journal of the American Ceramic Society 1.792Diamond and Related Materials 1.788Journal of Chemical & Engineering Data 1.729Solid State Sciences 1.698Thin Solid Films 1.693Surface & coatings technology 1.678Composites Part A –Applied Science and Manufacturing 1.662 Journal of Nuclear Materials 1.643Materials Letters 1.625Journal of Intelligent Material Systems and Structures 1.610 International Journal of Solids and Structures 1.569Journal of the European ceramic society 1.562 Thermochimica Acta 1.562Solid State Communications 1.535Journal of Solid State Electrochemistry 1.535Smart Materials & Structures 1.512International Journal of Heat and Mass Transfer 1.500 Philosophical Magazine 1.486Materials Science &Engineering C 1.486Materials Research Bulletin 1.484Journal of Thermal Analysis and Calorimetry 1.483 Advanced Engineering Materials 1.463Materials science &engineering A 1.457Journal of Alloys and Compounds 1.455Journal of Applied Electrochemistry 1.417Applied Surface Science 1.406Wear 1.395International Journal of Applied Ceramic Technology 1.366 Ceramics International 1.360European Physical Journal B -- Condensed Matter 1.356 Materials Science &Engineering B 1.330Journal of Non-Crystalline Solids 1.319Composites Part B – Engineering 1.311Journal of Sol-gel Science and Technology 1.300Current Applied Physics 1.291Metallurgical and Materials Transactions A 1.278Journal of Vacuum Science & Technology A 1.278Science and Technology of Advanced Materials 1.270PHYS STATUS SOLIDI A 1.214Oxidation of Metals 1.212Journal of Thermal Spray Technology 1.204Modelling and Simulation in Materials Science and Engineering 1.158 Computational Materials Science 1.135Powder Technology 1.130Reviews on Advanced Materials Science 1.122International Journal of Fatigue 1.117Composite Structures 1.116Journal of Materials Science 1.081JOM-Journal of the Minerals Metals & Materials Society 1.081 Advances in Applied Ceramics 1.074PHYS STATUS SOLIDI B 1.071Journal of engineering materials and technology-transactions of the asme 1.059International Journal of Thermal Sciences 1.048Surface and Interface Analysis 1.036Materials & Design 1.028Materials Transactions 1.018International Journal of Fracture 1.003Journal of Porous Materials 1.000Journal of Computational and Theoretical Nanoscience 0.981 Journal of Composite Materials 0.957Materials Characterization 0.932Composite Interfaces 0.911Mechanics of Advanced Materials and Structures 0.883Vacuum 0.881Journal of Experimental Nanoscience 0.875Zeitschrift fur metallkunde 0.857Journal of Energetic Materials 0.839Journal of Materials Processing Technology 0.816Journal of the Mechanics and Physics of Solids 0.811Journal of the Ceramic Society of Japan 0.807Physica B: Condensed Matter 0.751International Journal of Nanotechnology 0.750Fatigue & Fracture of Engineering Materials & Structures 0.726 Materials Science and Technology- London 0.713International Journal of Thermophysics 0.698Corrosion 0.695Materials and Corrosion-Werkstoffe Und Korrosion 0.678 Metallurgical and Materials Transactions B 0.621Bulletin of Materials Science 0.603Journal of Thermophysics and Heat Transfer 0.570Aerospace Science and Technology 0.538Materials and Structures 0.530International Journal of materials research 0.478Journal of Materials Science & Technology 0.468Journal of Phase Equilibria and Diffusion 0.449Surface Engineering 0.444Surface Review and Letters 0.391Materials Research Innovations 0.388Solid State Technology 0.335Journal of Ceramic Processing Research 0.294Aircraft Engineering and Aerospace Technology 0.282传统材料:一档:Acta Mater,PRB,APL(一档较差)(整体发稿难度:很难)二档:JAP,Script Mater,J P Conden Mater,JPDA,PCCP,JPCC,美陶,欧陶,Composite Sci Tech,METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIAL(一般),Optic Letter,Optical Express,PHILOSOPHICAL MAGAZINE LETTERS系列,Intermetallics(略弱), JMR(数据库较差)等材料二级学科的顶级杂志;(整体投稿难度,比较难,能发几篇也很牛)三档:Mater Sci Eng A & B (略难),JOURNAL OF SOLID STATE CHEMISTRY (略难)Mater Chem Phys(略难),Solid State inoics(略难), 中国科学系列(略难)Mater Design(一般), J Mater Sci(一般),Physical Letter A (一般),Solid State Communication (一般),Solid State Science (一般),Computational Mater Sci(一般),J Mater Process Tech (一般),COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING(一般),THIN SOLID FILMS(一般),SURFACE & COATINGS TECHNOLOGY(一般),MATERIALS RESEARCH BULLETIN(一般),,MATERIALS LETTERS(一般),OPTICAL MATERIALS,WEAR(一般),ADVANCED ENGINEERING MATERIALS(一般),,CERAMICS INTERNATIONAL(一般),,MODERN PHYSICS LETTERS A(一般),,JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS(一般),,JOURNAL OF ELECTRONIC MATERIALS(一般),,SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS(较难)PHYSICA STATUS SOLIDI A-APPLIED RESEARCH(一般),,JOURNAL OF COMPOSITE MATERIALS(一般),,MATERIALS SCIENCE AND TECHNOLOGY(一般),四档:J Alloy Compound(一般),Physica B(较易),J Mater Sci Technology (较易),中国有色金属学报会刊英文版(较易),J. Rare Earth(较易),Rare metal(较易), 金属学报(一般),北科大学报英文版(较易),中南学报英文版(较易),浙大学报英文版(一般),武汉理工大学学报英文版(较易),物理学报(一般),化学学报(一般),五档:无机化学学报(一般),物理化学学报(一般),无机材料学报(一般),稀有金属材料与工程(较易),及其他小杂志。
Zhao_et_al-2015-Journal_of_Applied_Polymer_Science
Effect of graphene oxide on the behavior of poly(amide-6-b-ethylene oxide)/graphene oxide mixed-matrix membranes in the permeation processDan Zhao,1,2Jizhong Ren,1Yongtao Qiu,1,2Hui Li,1Kaisheng Hua,1Xinxue Li,1Maicun Deng11National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,457Zhongshan Road,Dalian116023,China2University of Chinese Academy of Sciences,Beijing100049,ChinaCorrespondence to:J.Ren(E-mail:renjizhong@)ABSTRACT:Polyether-block-amide(Pebax)/graphene oxide(GO)mixed-matrix membranes(MMMs)were prepared with a solution casting method,and their gas-separation performance and mechanical properties were pared with the pristine Pebax membrane,the crystallinity of the Pebax/GO MMMs showed a little increase.The incorporation of GO induced an increase in the elastic modulus,whereas the strain at break and tensile strength decreased.The apparent activation energies(E p)of CO2,N2,H2,and CH4permeation through the Pebax/GO MMMs increased because of the greater difficulty of polymer chain rotation.The E p value of CO2changed from16.5kJ/mol of the pristine Pebax to23.7kJ/mol of the Pebax/GO MMMs with3.85vol%GO.Because of the impermeable nature of GO,the gas permeabilities of the Pebax/GO MMMs decreased remarkably with increasing GO content,in par-ticular for the larger gases.The CO2permeability of the Pebax/GO MMMs with3.85vol%GO decreased by about70%of that of the pristine Pebax membrane.Rather than the Maxwell model,the permeation properties of the Pebax/GO MMMs could be described successfully with the Lape model,which considered the influence of the geometrical shape and arrangement pattern of GO on the gas transport.V C2015Wiley Periodicals,Inc.J.Appl.Polym.Sci.2015,132,42624.KEYWORDS:gas transport;graphene oxide;mixed matrix membranes;pebaxReceived17March2015;accepted15June2015DOI:10.1002/app.42624INTRODUCTIONMembrane-based processes have been used in various applica-tions,such as chemical processing,energy production,and envi-ronmental protection.Membranes can be prepared with many methods.The most applied technique for the preparation of homogeneous membranes is solution casting.1For asymmetric membranes,it includes the dip-coating2and phase-inversion techniques.3,4For different applications,some modifications of the membrane are usually needed;these include blending,cross-linking,and grafting.Among these,mixed-matrix membranes (MMMs),a blend of organic polymers and inorganic fillers, have drawn considerable attention because they can combine the advantages of polymers and inorganic materials,5and they have been widely researched for the separation of O2/N2,6CO2/ CH4,1and so forth.To improve the membrane performance,some fillers,such as zeolites,carbon molecular sieves,metal organic frameworks, and carbon nanotubes,have been used to prepare MMMs.7–10 In addition to these permeable fillers,impermeable fillers,such as SiO2,TiO2,and C60,have also been investigated.11–13In recent years,nanocomposites and MMMs based on flake fillers such as graphene have attracted more pared with traditional molecular-sieving materials,flake fillers usually have a high aspect ratio(A f),which is favorable for the preparation of thin MMMs.Graphene is a two-dimensional carbon monolayer composed of sp2-hybridized carbons,and graphitic materials of all other dimensionalities can be built with graphene,such as fullerene (zero dimensional),carbon nanotubes(one dimensional),and graphite(three dimensional).14Graphene has very strong mechanical properties15and is impermeable to all gases.16 Nanocomposites containing graphene have been used in a vari-ety of applications,such as those in electricity,17,18mechanics,19 separation,17,20and catalysts.21It has been pointed out that the mechanical enhancement of nanocomposites can be achieved when graphene is dispersed homogeneously in the polymer matrix and the interfacial interactions between the fillers and the polymer matrix is strong.19However,because of theV C2015Wiley Periodicals,Inc.intrinsic van der Waal forces,graphene tends to agglomerate; this can usually weaken the reinforcement of the nanocompo-sites.The functionalization of graphene,such as oxidation,can effectively reduce its agglomeration in the polymer matrix.Gra-phene oxide(GO)can be synthesized from graphite by Hummer method.18,21GO is heavily oxygenated,and its oxygen-containing functional groups include hydroxyls,epox-ides,diols,ketones,and carboxyls;these can make GO strongly hydrophilic and give it a good dispersion in water.22In addi-tion,the functional groups are also beneficial for the improve-ment of the interfacial interaction between the fillers and the polymer matrix.23Some studies have shown a reinforcement effect of graphene.19,24,25Liang et al.19achieved a76%increase in the tensile strength and a62%improvement in Young’s mod-ulus for poly(vinyl alcohol)/GO MMMs with0.7wt%GO. Steurer et al.25found that the Young’s modulus of polyamide6/ thermally reduced graphite oxides nanocomposites increased by 32%,whereas the strain at break decreased by94%with5wt% thermally reduced graphite oxide.The permeation properties are very important for MMMs and can be affected by the physical and chemical properties of the fillers.For graphene,because of its impermeability to all gases and its high surface area,its incorporation into polymers creates a large barrier effect for gas diffusion.17,26,27Kim et al.17modi-fied polyurethane with thermally reduced graphite oxide via melting compounding and solvent blending and found that the N2permeability decreased by about50and80%,respectively,at 1.6vol%thermally reduced graphite oxide;this indicated that solvent blending was more effective.Kim and Macosko27 observed a47%decrease in the H2permeability when6.1vol% graphite was added to poly(ethylene-2,6-naphthalate). Polyether-block-amide(Pebax)is a commercial thermoplastic elastomer,and it is known for its prior penetration of CO2over other light gases,such as H2,N2,and CH4.The general chemi-cal structure of Pebax is shown in Figure1,where PA is the polyamide block[e.g.,as nylon6(polyamide6)and nylon12 (polyamide12)]and PE is the polyether block[e.g.,poly(tetra-methylene oxide)and poly(ethylene oxide)].28The gas-permeation properties of Pebax have been studied,28,29and some modifications aimed at improving its permeabilities and selectivities,have also been made.30–33The modifiers are mainly organic materials,such as poly(ethylene glycol)(PEG)and pol-y(dimethyl siloxane)(PDMS).Car et al.31,32modified Pebax with PEG and found that the CO2permeability and permeation flux of the Pebax/PEG membrane(50wt%PEG)increased by two to three times compared to those of pristine Pebax.Reijer-kerk et al.30prepared Pebax/PDMS–PEG blend membranes and found that the CO2permeability increased by five times at a50 wt%PDMS–PEG loading.Recently,the modification of Pebax with inorganic materials has attracted some attention,but the research on this area is still limited,and more investigations are needed.As mentioned previously,different kinds of fillers,including permeable/impermeable fillers and organic/inorganic fillers, have been used for preparing MMMs.So,it is necessary to describe and explain the influence of different fillers on the MMMs permeation properties;these can guide and optimize the separation performance of the MMMs.In this study,GO was incorporated into the Pebax matrix to prepare the Pebax/GO MMMs with a solution casting method. The Pebax/GO MMMs were characterized by X-ray diffraction (XRD),Fourier transform infrared(FTIR)spectroscopy,scan-ning electron microscopy,and stress–strain tests.Moreover,the influence of the GO content on the gas-permeation performance of the Pebax/GO MMMs was investigated.We determined the transport properties of the Pebax/GO MMMs by considering the geometrical shape and arrangement pattern of GO. THEORYThe widely accepted theory for gas transport in dense mem-branes is that it is done through a solution–diffusion mecha-nism.34Some theoretical models have been developed to predict the gas permeabilities of MMMs.The steady-state permeabilities of MMMs can generally be estimated by the Maxwell model,35 shown in eq.(1),which is suitable for the prediction of MMMs filled with molecular sieves and other polymers,in particular for those filled with low contents of spherical fillers:P MMMsP05P f12P022/ðP02P fÞP f12P01/ðP02P fÞ(1)P MMMs5222/(2)P MMMsP05112/12/(3) where P0is the permeability of the pristine polymer membrane (Barrer),P MMMs is the permeability of the MMMs(Barrer),P f is the permeability of the fillers(Barrer),and/is the volume fraction of the fillers.P MMMs/P0is called the normalized perme-ability.When the fillers,such as C60,SiO2,are impermeable (i.e.,P f50),the Maxwell model can be rewritten as eq.(2).If the fillers are highly permeable,P f51can be assumed,and the result is shown in eq.(3).For fillers with special geometries that are significantly different from a spherical one,the gas permeabilities may deviate from the predication of eq.(1).For MMMs composed of imperme-able flakes,the impermeable flakes have a much larger effect on the gas permeabilities when they are parallel to the membrane surface.When/of the flakes is small(/<<1)and A f/>1, P MMMs/P0can be described by the Lape model36shown in eq.(4):P MMMsP051114A f2/212/21(4) where A f is used to characterize the geometrical shape of the fil-ler and is defined as the flake length(d)divided by the thick-ness(h).This model assumes that the flakes are placed in a regular array,as shown schematically in Figure2. Figure1.Schematic diagram of Pebax.The models mentioned previously do not consider the struc-tural changes of the membrane induced by the fillers;the inter-actions among the polymers,fillers,and penetrates;and the nature of penetrates,such as the gas molecular sizes.According to eqs.(2–4),the gas selectivities of the MMMs are not affected by the fillers and are the same as those of the pristine polymer membranes.EXPERIMENTALMaterialsPebax MH1657[Pebax1657,consisting of60wt%poly(ethyl-ene oxide)and40wt%polyamide6,density51.14g/cm3]was purchased from Arkema,Inc.GO(diameter51–5l m, thickness50.8–1.2nm)was purchased from Nanjing XFNANO Material Tech Co.,Ltd.A mixture of ethanol and water(70/30 wt%)was used as a solvent for Pebax.Ethanol(analytical grade)was provided by Sinopharm Chemical Reagent Co.,Ltd. Pure CO2,CH4,H2,and N2were supplied by Dalian Gases Co. All of the materials were used as received.Membrane PreparationThe membranes were prepared with a solution casting method. Pebax(1.8g)was added to the ethanol/water mixture(40mL) to prepare the Pebax solution at about808C under reflux and with vigorous stirring for4h.GO was dispersed in deionized water and then ultrasonicated for6–18h to form a suspension of GO,and the GO/H2O concentration was1–3.6mg/mL.The mass ratios of GO to Pebax(Y)were0:100–8:100,and the compositions of the Pebax/GO MMMs are denoted as P100G0–P100G8,accordingly.After the Pebax solution was cooled to ambient temperature,the Pebax solution and GO aqueous dis-persion were mixed and stirred slowly for at least5h at ambi-ent temperature.Then,the mixed solution was cast into a Teflon ring mold,and the solvent was evaporated at about 408C.After the membranes were formed,they were dried in a vacuum oven at508C for at least3days to remove the residual solvent,and then,the dried membranes were held in a vacuum oven at ambient temperature.The membranes thicknesses were 65–85l m.Here,the density of GO was assumed to be2.28g/ cm3,17so/of GO could be calculated with eq.(5):/5m GO=q fm GO=q f1m Pebax=q05Y=2:28Y=2:2811=1:14(5)where m GO and m Pebax are the masses of GO and Pebax,respec-tively,and q f and q0are the densities of GO and Pebax, respectively.Membrane CharacterizationThe crystalline properties of the Pebax/GO MMMs were meas-ured with a wide-angle X-ray diffractometer(X’Pert Pro-1)with Cu K a radiation(k51.5406A˚).The morphologies of the Pebax/GO MMMs were observed with a field emission scanning electron microscope(Quanta 200FEG).The samples were fractured in liquid nitrogen and then coated with gold by a sputtering method.FTIR spectra of GO and Pebax/GO MMMs were obtained in attenuated total refection mode with an Equinox55FTIR spectrometer.Stress–Strain TestsStress–strain measurements were conducted via a Reger univer-sal material testing system at room temperature.Specimens with a gauge length of20mm and a width of5mm were used, and the thickness of the specimens was determined with a thickness tester.The test speed was10mm/min.The results are the average values of several measurements.Gas-Permeation MeasurementsThe gas-permeation properties of the Pebax/GO MMMs were determined with a constant-volume/variable-pressure technique. The permeate side of the membrane was evacuated before each test.The permeation properties of the pure N2,CH4,H2,and CO2were studied.The gas permeabilities and diffusion coeffi-cients could be calculated with eqs.(6)and(7):P5176273:15TVAlD pdpdt(6)D5l26h(7) where P is the gas permeability[Barrer;1Barrer510210 cm3(STP)cm(cm2ÁsÁcmHg)21],V is the downstream volume (cm3),A is the area of the membrane(cm2),T is the operating temperature(K),D p is the transmembrane pressure difference (cmHg),l is the membrane thickness(cm),dp/dt is the rate of pressure increase measured by a pressure sensor in the down-stream chamber(cmHg/s),D is diffusion coefficient(cm2/s), and h is the diffusion time lag(s).The relative standard devia-tion of gas permeabilities were calculated by the following equa-tion,and the relative standard deviation of the gas permeabilities was within10%:D Pj P j5j D V jV1j D A jA1j D T jT1j D l jl1j DðD pÞjD p1j Dðdp=dtÞjdp=dt(8) The ideal selectivity(a)of one penetrant(subscript A)over another(subscript B)is given by eq.(9):a A=B5P AP B(9) where P A and P B are the permeability of penetrant A and pene-trant B,respectively.RESULTS AND DISCUSSIONPhysical Properties of the Pebax/GO MMMsXRD was used to determine the crystalline properties of the Pebax/GO MMMs,and the results are shown in Figure3.The Figure2.Schematic diagram of the Lape model.pristine Pebax membrane (P100G0)was a semicrystalline poly-mer with diffraction peaks at 14,17,and 248of 2h ,and the peak at 2h 5248resulted from the crystalline region of the PA segment by hydrogen bonding.37All of the Pebax/GO MMMs showed similar XRD patterns;this proved that GO did not destroy the semicrystalline structure of Pebax.It has been reported that the characteristic peak of GO was at a 2h of 118.19,21However,this was not observed in the Pebax/GO MMMs,which were similar to the poly(vinyl alcohol)/GO MMMs observed by Liang et al .19and Xu et al .24Exfoliated GO,in the monolayer form,showed no intensity characteristic peaks.38So,the results proved that GO was well exfoliated and uniformly dispersed in the polymer matrix.19,24The intensity of the diffraction peak at 2h 5248of the Pebax/GO MMMs was higher than that of the pristine Pebax membrane;this indicated that GO acted as a nucleating agent and induced the increase of crystallinity just like in multiwalled carbon nanotubes.39The FTIR spectra of GO,P100G0,and P100G8were detected and are shown in Figure 4.For GO,the characteristic peaks around 3265,1730,1556,and 1342cm 21were the stretching vibrations of O A H,C @O,and C @C and the bending vibrations of C A OH,respectively;40,41this suggested that there were atleast some hydroxyl and carboxyl groups in GO.The peak at 1111cm 21represented the stretching vibrations of C A O.42The stretching vibrations at 2872cm 21suggested the presence of ali-phatic C A H groups,which was consistent with a nonaromatic carbon structure in GO.41,42For the pristine Pebax,the peaks at 3296and 1097cm 21repre-sented the stretching vibrations of N A H and C A O,respec-tively.37The peak at 1740cm 21was assigned to the free C @O,and the peak at 1641cm 21indicated the presence of hydrogen-bonded C @O in H A N A C @O.37,43The characteristic peaks of GO were not shown clearly in the spectrum of P100G8,which might have been because they were so weak that they were overlapped by those strong peaks of Pebax.On the other hand,because some of the Pebax matrix was present on the surface of GO,the spectrum of GO might not have been detected,and only that of Pebax was shown.The morphologies of the Pebax/GO MMMs are shown in Figure pared with that of P100G3[Figure 5(b)],the surface of P100G0[Figure 5(a)]was much smoother.As shown in Figure 5(b,d),GO was in the form of flakes,and it seemed that GO was well dispersed in the Pebax matrix.This was consistent with the XRD analysis.This suggested that the agglomeration of GO was inhibited with the aids of functionalizationandFigure 3.XRD patterns of Pebax/GOMMMs.Figure 4.FTIR spectra of GO,P100G0MMM,and P100G8MMM.Figure 5.(a,b)Surface scanning electron microscopy images,(c,d)cross-sectional scanning electron microscopy images,and (e,f)digital pictures of Pebax/GO MMMs:(a)P100G0,(b)P100G3,(c)P100G0,(d)P100G3,(e)P100G3,and (f)P100G8.[Color figure can be viewed in the online issue,which is available at .]ultrasonic treatment.The color of the Pebax/GO MMMs with less GO was golden,such as that of P100G3shown in Figure 5(e).With increasing GO,the Pebax/GO MMMs became darker in color;for example,P100G8,shown in Figure 5(f),was dark brown.Mechanical Properties of the Pebax/GO MMMsThe mechanical properties of the Pebax/GO MMMs were eval-uated by stress–stain tests,which are shown in Figure 6.As shown in Figure 6(a),with increasing GO content,the stain at break decreased,whereas the elasticity modulus increased.For the Pebax/GO MMMs with 3.85vol %GO (P100G8),the strain at break decreased by 98%,and the elasticity modulus increased by 56%.This suggested that the Pebax/GO MMMs were more brittle and rigid than the pristine Pebax membrane.44Because the elasticity modulus was used to characterize the resistance to elastic deformation,the higher elasticity modulus of the Pebax/GO MMMs indicated that the incorporation of GO was benefi-cial for the improvement of the antideformation capacity of the Pebax/GO MMMs.The tensile strength decreased by 34%at a 3.85vol %GO loading [Figure 6(b)];this suggested that the incorporation of GO inhibited the molecular rearrangement and orientation during deformation 45and that the interaction between GO and Pebax was not strong enough to enhance the tensile strength.19Gas-Permeation Properties of the Pebax/GO MMMsFigure 7shows the influence of the pressure on the gas perme-abilities of the P100G4MMMs.It was clear that the relationship between the gas permeability and pressure could be expressed with the following linear equation:46P 5P D p 5011n D p ðÞ(10)where P D p 50is the gas permeability when D p is 0(i.e.,infinite dilution permeability)and n is an adjustable constant that char-acterizes the effect of pressure on gas permeability.Just as that shown in Figure 7,the CO 2permeability increased with pressure,so the n value was positive for CO 2;this was induced by plasticization.For H 2,CH 4,and N 2,the permeabil-ities were influenced little by the pressure,and the n values were a little negative because of the hydrostatic compression effect.47The n values of the Pebax/GO MMMs for CO 2,N 2,H 2,and CH 4are listed in Table pared with the pristine Pebax membrane,the n values for CO 2became larger,and the abso-lute values of n for H 2,CH 4,and N 2became smaller with increasing GO content.This suggested that the plasticization of CO 2increased,whereas the hydrostatic compressive effect of H 2,CH 4,and N 2decreased.In fact,the increased crystallinity and more rigid nature of the Pebax/GO MMMs contributed to the changes in the n values.The increased crystallinity and the more rigid nature of the MMMs made the fractional free vol-ume decrease and resulted in a smaller hydrostatic compressive effect and subsequently made the absolute values of n for H 2,CH 4,and N 2become smaller.For CO 2,n was determined by the plasticization and hydrostatic pressure;a lower hydrostatic compressive effect made the increase of CO 2with pressure more ly,the plasticization effect became more obvious.The influence of the temperature on the gas permeability is shown in Figure 8.The gas permeabilities increased with tem-perature.For CO 2,its solubility in the rubbery polymer decreased with increasing temperature;however,for H 2and N 2,the solubility increased with increasing temperature.48There-fore,in particular for CO 2,the diffusivity made agreatFigure 6.Influence of the GO content on the mechanical properties of the Pebax/GOMMMs.Figure 7.Influence of the pressure on the permeabilities of ()CO 2,( )H 2,(~)CH 4,and (!)N 2for P100G2MMM at 358C.contribution to the increase in the gas permeability with tem-perature.There was a linear relationship between the logarithm of the gas permeability and the reciprocal of the temperature;this could be expressed by the Arrhenius equation:P 5P o exp2E pRT (11)where P 0is the pre-exponential factor,E p is the apparent activa-tion energy for permeation (kJ/mol),R is the gas constant (8.314J ÁK 21Ámol 21),and T is the absolute temperature (K).Table II lists the E p values of the Pebax/GO MMMs for CO 2,N 2,H 2,and CH 4.The E p of CO 2was the smallest;this was con-tributed by its interaction with the poly(ethylene oxide)segment and its high condensability,which was characterized by the crit-ical temperature (the critical temperatures of CO 2,N 2,H 2,and CH 4were 304.2,126.2,33.2,and 190.6K,respectively).Com-pared with that of the pristine Pebax membrane,the E p values of the Pebax/GO MMMs for CO 2,N 2,H 2,and CH 4increased with the addition of GO.This might have been because the polymer chains were more difficult to rotate when GO was incorporated,and this resulted in a higher activation energy for diffusion.37Figure 9shows the influence of the GO content on the perme-abilities of CO 2,H 2,CH 4,and N 2.With increasing GO content,the permeabilities of CO 2,H 2,CH 4,and N 2all gradually decreased.For the Pebax/GO MMMs with 3.85vol %GO (P100G8),the permeabilities of CH 4,CO 2,and N 2decreased by74,70,and 69%,respectively,compared to that of the pristine Pebax membrane.So,the selectivities of CO 2/N 2and CO 2/CH 4did not change much (shown in Figure 10);this was consistent with the model prediction from eq.(4).The structural changes in the membranes,such as the chain flexibility,had a minor effect on H 2compared to their effects other gases because of hydrogen’s small size,31as shown later in Table IV,so the H 2permeability only decreased by about 59%at 3.85vol %GO loading.As a result,the CO 2/H 2selectivity decreased by 27%,and the H 2/CH 4selectivity increased by 56%.The remarkable decrease in the gas permeabilities for the Pebax/GO MMMs illustrated that GO inhibited gas diffusion and formed a diffu-sion barrier in the polymer matrix.17First,the addition of impermeable GO decreased the available diffusion area because of the replacement of permeable Pebax by impermeable GO.36Second,the diffusion tortuosity became greater,and the gas dif-fusion channel was restricted after GO was incorporated.37The diffusivities of larger gases decreased to a greater extent than those of smaller gases,13and this also illustrated the changes in the gas selectivities,shown in Figure 10.Meanwhile,the increase in the crystallinity caused by the incorporation of GO,shown in Figure 3,also contributed to the decrease in the gas permeabil-ities.The h of CH 4for the Pebax/GO MMMs are shown in Fig-ure 11;they clearly explain the gas-diffusion properties of the Pebax/GO MMMs with different GO contents.As shown in Fig-ure 11,with increasing GO content,h /l 2l was the membrane thickness for CH 4increased.According to eq.(7),the gas diffu-sivity is inversely proportional to h /l 2,so the CH 4diffusivity decreased with increasing GO content.At present,the represen-tative gas membrane materials mainly include PDMS,cellulose acetate,polyimide,and so on,and their permeation properties are listed in Table III for a comparison with the Pebax/GO MMMs.The Pebax/GO MMMs had high CO 2/N 2and CO 2/H 2selectivities.Table I.n Values of the Pebax/GO MMMs for CO 2,N 2,H 2,and CH 4at 358CP100G0(0vol %GO)P100G2(0.99vol %GO)P100G4(1.96vol %GO)P100G6(2.91vol %GO)P100G8(3.85vol %GO)CO 20.160.160.170.180.18N 220.1520.1720.1120.09320.12H 220.05220.02920.03520.02520.027CH 420.05820.03520.04720.02220.037The relative standard deviation of n was within10%.Figure 8.Influence of the temperature on the permeabilities of ()CO 2,( )H 2,(~)CH 4,and (!)N 2for P100G2MMM at 0.7MPa.Table II.E p Values of the Pebax/GO MMMs for CO 2,N 2,H 2,and CH 4at 0.7MPaP100G0P100G2P100G4P100G5P100G8CO 216.516.019.822.723.7N 235.634.542.143.344.8H 230.830.435.536.336.7CH 434.133.240.342.343.0The relative standard deviation of E p was within 5%.Prediction of the Gas-Permeation Properties for the Pebax/GO MMMsFigure 12shows the experimental and model predicted normal-ized permeabilities for the Pebax/GO MMMs.GO was imperme-able to all gases,so the permeation properties of the Pebax/GO MMMs could be described with eq.(2)or (4).For the Maxwell model described in eq.(2),the predicted normalized permeabil-ities almost did not change with increasing GO content from 0to 4vol %,and there was a big deviation between the experimen-tal and predicted values.That is to say,the Maxwell model could not predict the transport properties of CO 2,N 2,H 2,and CH 4for the Pebax/GO MMMs.Unlike in the Maxwell model,the geo-metrical shape of the fillers was considered in the Lape model with the A f parameter.The experimental values of CO 2,N 2,H 2,and CH 4were well fitted with the Lape model;this suggested that the geometrical shape of the filler played an important role in the transport process of the gases.For the Pebax/GO MMMs,the values of P MMMs /P 0for different gases and /of GO could be calculated,so the A f values of CO 2,N 2,H 2,and CH 4could be regressed with Origin software according to the Lape model.Thevalues of A f are shown in Table IV,and small deviations for CO 2,N 2,H 2,and CH 4was observed.Theoretically,A f should have been a constant value for the Pebax/GO MMMs;this was not rel-evant to penetrates.However,on the basis of the assumption of a parallel regular array of the fillers,the Lape model does not con-sider the size distribution and random orientation of fillers,the physical properties of the penetrates (e.g.,molecular size),and the interaction among polymers,fillers,and penetrates;these might have caused some deviation of the A f values for CO 2,N 2,H 2,and CH 4.As shown in Table IV,A f increased with increasing gas critical volume.Thus,the impermeable GO had a larger inhi-bition on the transport of larger gases.An average A f of 86for CO 2,N 2,H 2,and CH 4was calculated by the regression of the normalized permeabilities of different gases with the Lape model.It seemed that the transport properties of the Pebax/GO MMMs could be described successfully by this model.Obviously,the A f value from the Lape model (86)was much lower than its theoret-ical value.The ultrasound destruction,layer misalignment,stack-ing of the flakes,and random orientation of the flakes might have led to a lower effective A f .17,50To observe the influence of the geometrical shape of the fillers on the permeation properties of different MMMs,the CO 2nor-malized permeabilities of the Pebax membranes with different fillers,such as SAPO-34,51amino-modified multiwalled carbon nanotubes (MWNTs-NH 2),52and GO,are shown in Figure 13.MWNTs-NH 2was highly permeable to gases;thus,P f 51could be assumed,and the permeation properties of the Pebax/MWNTs-NH 2MMMs could be described with eq.(3).As shown in Figures 12(a)and 13(a1),the experimental P MMMs /P 0values were a little higher than those predicted with eq.(3).The difference might have been due to the voids between the tangled MWNTs-NH 2s.52For SAPO-34,its CO 2permeability was assumed to be 600Barrer,53and the permeation properties of the Pebax/SAPO-34MMMs could be described with eq.(1).As shown in Figure 13(b,b1),the experimental P MMMs /P 0values were lower than the predicted values at low SAPO-34contents,and they were higher than the predicted values whentheFigure 9.Influence of the GO content on the permeabilities of ()CO 2,( )H 2,(~)CH 4,and (!)N 2for Pebax/GO MMMs at 358C and 0.7MPa.Figure 10.Influence of the GO content on the selectivities of ()CO 2/N 2,( )CO 2/CH 4,(!)H 2/CH 4,and (~)CO 2/H 2for the Pebax/GO MMMs at 358C and 0.7MPa.Figure 11.Gas-permeation curves of the Pebax/GO MMMs for CH 4at 358C and 0.7MPa:p down was the pressure of downstream chamber,t was the permeation time.。
J, K, L, M, N的缩略语
J, K, L, M, N的缩略语JA:Japan 日本JAN:January 一月JC:Jesus Christ n. 耶稣基督JAPS:Journal of Applied Polymer Science 应用科学JADE:Journal Abstracts Delivered Electronically 电子期刊论文发表JAG:Judge Advocate General 军法署署长JCC:Junior Chamber of Commerce 青年商会J.A.G.:Judge Advocate General 军法处长KBD:Keyboard vt. 用键盘输入KD:Knowledge Discovery 知识发现KAZ:Kazakhstan 哈萨克斯坦KEE:Knowledge Engineering Environment 知识工程环境KAO:Kaohsiung 高雄KDP:Key, Display, Printer 键、显示器、打印机KCIA:Korean Central Intelligence Agency 韩国中央情报局K.R.R.:King's Royal Rifles 英国皇家步枪队k.p.h.:kilometers per hour 千米/小时KEF:Kids Eat Free 孩子们吃免费的KBANN:Knowledge-Based Artificial Neural Networks 知识库人工神经网络KABA:Keep and Bear Arms 保留和携带武器KBI:Knowledge Based Information 以知识为基础的信息KE:Kenya 肯尼亚LAB:Laboratory 实验室LASER:Light Amplification by Stimulated Emission of Radiation 激光LAN:Local Area Network 局域网LBN:Late Breaking News 迟到的新闻LA:Los Angeles n. 洛杉矶(美国城市)L/C:Letter of Credit 信用证LAT:Latitude 纬度LBP:Laser Beam Printer 激光打印机LAS:Legal Aid Society 法律援助协会LBM:Long Boring Meeting 冗长的会议L/D:lay down 甩开LAW:Local Area Wireless 当地的无线网络L/G:letter of guarantee 担保书,保证书LBp.:low blood pressure 低血压L/M:list of materials 材料清单laterz:see you later 再见l.s.:lump sum 一次付款总额L.P.:Labour Party 工党L.:liter 公升L.A.:Los Angeles 洛杉矶L.C.J.:Lord Chief Justice 高等法院院长MAJ:Major 主要的MACH:Machine 机器MAA:Mathematical Association of America 美国数学学会M&F:Male & Female 男性和女性M8:Mate 伙伴,朋友M/L:More Or Less 多或少M&R:Metering and Regulating 测量和调节MACS:Mathematical and Computer Sciences 数学与计算机科学M&E:Mechanical & Electrical 机械、电气MAB:Man and the Biosphere Programme 人与生物圈计划M/U:make up 接上M/V:merchant vessel 商船M.B.:memorandum book 备忘录M.E:Master of Education 教育学硕士m.p.h.:mile per hour 每小时里程数M.D.:maturity date 到期日M.M.:money market 货币市场M.F.:mutual funds 共同基金m.v.:motor vessel 轮船M.Sc.:Master of Science 理学硕士m.s.:mail steamer 邮船M/B:MUST BE 必须N/A:Not Applicable 不适用NA:Not Applicable 不可行N/S:Non-Smoking adj. 不抽烟的, 禁止抽烟的Nam:Vietnam n. 越南NAK:Negative Acknowledgement 否认NAN:Not A Number 没有一个号码NAP:Network Access Point 网络接触点N.A.A.:National Aeronautic Association 全国航空协会n.d.:no date 无日期n.e.:no effects 无效N.I.:net interest 净利息N.N.:no name 无签名N.M.:New Mexico 新墨西哥州N.IRE:Northern Ireland 北爱尔兰N.E.D.:New English Dictionary 新英语词典OD:Outside Diameter 外径OAC:On Approved Credit 认可信用交易O:Oxygen 氧OCT:October 十月ODF:One Drop Filling 滴灌技术O/A:On Or About 在…或…前后OCNMAP:Ocean Map 海洋地图OBJ:Objective 客观的,(接)物镜OBS:Observed 看到的,观察到的,实测的ODAT:One Day At a Time 一天一次O.G.:ordinary goods 中等品OAL:OverAll Length 全长,总长P2P:Peer to Peer adj. 对等的P:Pence n. 便士P&S:Permanent and Stationary 永久的和静止的P&P:Principles & Practices 原则和实践PAN:Personal Area Network 个人局域网络PACE:Processing and Cognitive Enhancement 处理和认知的提高PACW:Pacific West 太平洋西部。